Welcome to TFSnippet¶
TFSnippet is a set of utilities for writing and testing TensorFlow models.
The design philosophy of TFSnippet is non-interfering. It aims to provide a set of useful utilities, possible to be used along with any other TensorFlow libraries and frameworks.
Installation¶
pip install git+https://github.com/thu-ml/zhusuan.git
pip install git+https://github.com/haowen-xu/tfsnippet.git
Documentation¶
API Docs¶
tfsnippet¶
tfsnippet Package¶
Functions¶
as_distribution (distribution) |
Convert a supported type of distribution into Distribution type. |
reduce_group_ndims (operation, tensor, …[, …]) |
Reduce the last group_ndims dimensions in tensor, using operation. |
summarize_variables (variables[, title, …]) |
Get a formatted summary about the variables. |
auto_batch_weight (*batch_arrays) |
Automatically inspect the metric weight for an evaluation mini-batch. |
merge_feed_dict (*feed_dicts) |
Merge all feed dicts into one. |
resolve_feed_dict (feed_dict[, inplace]) |
Resolve all dynamic values in feed_dict into fixed values. |
elbo_objective (log_joint, latent_log_prob[, …]) |
Derive the ELBO objective. |
importance_sampling_log_likelihood (…[, …]) |
Compute \(\log p(\mathbf{x})\) by importance sampling. |
iwae_estimator (log_values, axis[, keepdims, …]) |
Derive the gradient estimator for \(\mathbb{E}_{q(\mathbf{z}^{(1:K)}|\mathbf{x})}\Big[\log \frac{1}{K} \sum_{k=1}^K f\big(\mathbf{x},\mathbf{z}^{(k)}\big)\Big]\), by IWAE (Burda, Y., Grosse, R. |
monte_carlo_objective (log_joint, latent_log_prob) |
Derive the Monte-Carlo objective. |
nvil_estimator (values, latent_log_joint[, …]) |
Derive the gradient estimator for \(\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\big[f(\mathbf{x},\mathbf{z})\big]\), by NVIL (Mnih and Gregor, 2014) algorithm. |
sgvb_estimator (values[, axis, keepdims, name]) |
Derive the gradient estimator for \(\mathbb{E}_{q(\mathbf{z}|\mathbf{x})}\big[f(\mathbf{x},\mathbf{z})\big]\), by SGVB (Kingma, D.P. |
vimco_estimator (log_values, latent_log_joint) |
Derive the gradient estimator for |
get_config_defaults (config) |
Get the default config values of config. |
register_config_arguments (config, parser[, …]) |
Register config to the specified argument parser. |
model_variable (name[, shape, dtype, …]) |
Get or create a model variable. |
get_model_variables ([scope]) |
Get all model variables (i.e., variables in MODEL_VARIABLES collection). |
instance_reuse ([method_or_scope, _sentinel, …]) |
Decorate an instance method to reuse a variable scope automatically. |
global_reuse ([method_or_scope, _sentinel, scope]) |
Decorate a function to reuse a variable scope automatically. |
add_histogram (tensor[, summary_name, …]) |
Add the histogram of tensor to the default summary collector, and to collections. |
add_summary (summary[, collections]) |
Add the summary to the default summary collector, and to collections. |
default_summary_collector () |
Get the SummaryCollector object at the top of context stack. |
Classes¶
BatchToValueDistribution (distribution, ndims) |
Distribution that converts the last few batch_ndims into values_ndims. |
Bernoulli (logits[, dtype]) |
Univariate Bernoulli distribution. |
Categorical (logits[, dtype]) |
Univariate Categorical distribution. |
Concrete (temperature, logits[, …]) |
The class of Concrete (or Gumbel-Softmax) distribution from (Maddison, 2016; Jang, 2016), served as the continuous relaxation of the OnehotCategorical . |
Discrete |
alias of tfsnippet.distributions.univariate.Categorical |
DiscretizedLogistic (mean, log_scale, bin_size) |
Discretized logistic distribution (Kingma et. |
Distribution (dtype, is_continuous, …) |
Base class for probability distributions. |
ExpConcrete (temperature, logits[, …]) |
The class of ExpConcrete distribution from (Maddison, 2016), transformed from Concrete by taking logarithm. |
FlowDistribution (distribution, flow) |
Transform a Distribution by a BaseFlow , as a new distribution. |
FlowDistributionDerivedTensor (tensor, …) |
A combination of a FlowDistribution derived tensor, and its original stochastic tensor from the base distribution. |
Mixture (categorical, components[, …]) |
Mixture distribution. |
Normal (mean[, std, logstd, …]) |
Univariate Normal distribution. |
OnehotCategorical (logits[, dtype]) |
One-hot multivariate Categorical distribution. |
Uniform ([minval, maxval, …]) |
Univariate Uniform distribution. |
AnnealingVariable (name, initial_value, ratio) |
A non-trainable tf.Variable , whose value will be annealed as training goes by. |
CheckpointSavableObject |
Base class for all objects that can be saved via CheckpointSaver . |
CheckpointSaver (variables, save_dir[, …]) |
Save and restore tf.Variable , ScheduledVariable and CheckpointSavableObject with tf.train.Saver . |
DefaultMetricFormatter |
Default training metric formatter. |
EventKeys |
Defines event keys for TFSnippet. |
MetricFormatter |
Base class for a training metrics formatter. |
MetricLogger ([summary_writer, …]) |
Logger for the training metrics. |
ScheduledVariable (name, initial_value[, …]) |
A non-trainable tf.Variable , whose value might need to be changed as training goes by. |
TrainLoop (param_vars[, var_groups, …]) |
Training loop object. |
AnnealingScalar (loop, initial_value, ratio) |
A DynamicValue scalar, which anneals every few epochs or steps. |
BaseTrainer (loop[, ensure_variables_initialized]) |
Base class for all trainers. |
DynamicValue |
Dynamic values to be fed into trainers and evaluators. |
Evaluator (loop, metrics, inputs, data_flow) |
Class to compute evaluation metrics. |
LossTrainer (**kwargs) |
A subclass of BaseTrainer , which optimizes a single loss. |
Trainer (loop, train_op, inputs, data_flow[, …]) |
A subclass of BaseTrainer , executing a training operation per step. |
Validator (**kwargs) |
Class to compute validation loss and other metrics. |
VariationalChain (variational, model[, …]) |
Chain of the variational and model nets for variational inference. |
VariationalEvaluation (vi) |
Factory for variational evaluation outputs. |
VariationalInference (log_joint, latent_log_probs) |
Class for variational inference. |
VariationalLowerBounds (vi) |
Factory for variational lower-bounds. |
VariationalTrainingObjectives (vi) |
Factory for variational training objectives. |
BayesianNet ([observed]) |
Bayesian networks. |
DataFlow |
Data flows are objects for constructing mini-batch iterators. |
DataMapper |
Base class for all data mappers. |
SlidingWindow (data_array, window_size) |
DataMapper for producing sliding windows according to indices. |
Config |
Base class for defining config values. |
ConfigField (type[, default, description, …]) |
A config field. |
GraphKeys |
Defines TensorFlow graph collection keys for TFSnippet. |
InvertibleMatrix (size[, strict, dtype, …]) |
A matrix initialized to be an invertible, orthogonal matrix. |
VarScopeObject ([name, scope]) |
Base class for objects that own a variable scope. |
SummaryCollector ([collections, …]) |
Collecting summaries and histograms added by tfsnippet.add_summary() and tfsnippet.add_histogram() . |
StochasticTensor (distribution, tensor[, …]) |
Samples or observations of a stochastic variable. |
Class Inheritance Diagram¶

tfsnippet.dataflows¶
tfsnippet.dataflows Package¶
Classes¶
ArrayFlow (arrays, batch_size[, shuffle, …]) |
Using numpy-like arrays as data source flow. |
DataFlow |
Data flows are objects for constructing mini-batch iterators. |
DataMapper |
Base class for all data mappers. |
ExtraInfoDataFlow (array_count, data_length, …) |
Base class for DataFlow subclasses with auxiliary information about the mini-batches. |
GatherFlow (flows) |
Gathering multiple data flows into a single flow. |
IteratorFactoryFlow (factory) |
Data flow constructed from an iterator factory. |
MapperFlow (source, mapper[, array_indices]) |
Data flow which transforms the mini-batch arrays from source flow by a specified mapper function. |
SeqFlow (start, stop[, step, batch_size, …]) |
Using number sequence as data source flow. |
SlidingWindow (data_array, window_size) |
DataMapper for producing sliding windows according to indices. |
ThreadingFlow (source, prefetch) |
Data flow to prefetch from the source data flow in a background thread. |
Class Inheritance Diagram¶

tfsnippet.datasets¶
tfsnippet.datasets Package¶
Functions¶
load_cifar10 ([channels_last, x_shape, …]) |
Load the CIFAR-10 dataset as NumPy arrays. |
load_cifar100 ([label_mode, channels_last, …]) |
Load the CIFAR-100 dataset as NumPy arrays. |
load_fashion_mnist ([x_shape, x_dtype, …]) |
Load the Fashion MNIST dataset as NumPy arrays. |
load_mnist ([x_shape, x_dtype, y_dtype, …]) |
Load the MNIST dataset as NumPy arrays. |
tfsnippet.layers¶
tfsnippet.layers Package¶
Functions¶
act_norm (*args, **kwargs) |
ActNorm proposed by (Kingma & Dhariwal, 2018). |
as_gated (layer_fn[, sigmoid_bias, default_name]) |
Wrap a layer function into a gated layer function. |
avg_pool2d (*args, **kwargs) |
2D average pooling over spatial dimensions. |
broadcast_log_det_against_input (log_det, …) |
Broadcast the shape of log_det to match the shape of input. |
conv2d (*args, **kwargs) |
2D convolutional layer. |
deconv2d (*args, **kwargs) |
2D deconvolutional layer. |
default_kernel_initializer ([weight_norm]) |
Get the default initializer for layer kernels (i.e., W of layers). |
dense (*args, **kwargs) |
Fully-connected layer. |
dropout (*args, **kwargs) |
Apply dropout on input. |
global_avg_pool2d (*args, **kwargs) |
2D global average pooling over spatial dimensions. |
l2_regularizer (lambda_[, name]) |
Construct an L2 regularizer that computes the L2 regularization loss. |
max_pool2d (*args, **kwargs) |
2D max pooling over spatial dimensions. |
pixelcnn_2d_input (*args, **kwargs) |
Prepare the input for a PixelCNN 2D network (Tim Salimans, 2017). |
pixelcnn_2d_output (input) |
Get the final output of a PixelCNN 2D network from the previous layer. |
pixelcnn_conv2d_resnet (*args, **kwargs) |
PixelCNN 2D convolutional ResNet block. |
planar_normalizing_flows ([n_layers, …]) |
Construct a sequential of :class`PlanarNormalizingFlow`. |
resnet_conv2d_block (*args, **kwargs) |
2D convolutional ResNet block. |
resnet_deconv2d_block (*args, **kwargs) |
2D deconvolutional ResNet block. |
resnet_general_block (*args, **kwargs) |
A general implementation of ResNet block. |
shifted_conv2d (*args, **kwargs) |
2D convolution with shifted input. |
weight_norm (*args, **kwargs) |
Weight normalization proposed by (Salimans & Kingma, 2016). |
Classes¶
ActNorm ([axis, value_ndims, initialized, …]) |
ActNorm proposed by (Kingma & Dhariwal, 2018). |
BaseFlow (x_value_ndims[, y_value_ndims, …]) |
The basic class for normalizing flows. |
BaseLayer ([name, scope]) |
Base class for all neural network layers. |
CouplingLayer (shift_and_scale_fn[, axis, …]) |
A general implementation of the coupling layer (Dinh et al., 2016). |
FeatureMappingFlow (axis, value_ndims, **kwargs) |
Base class for flows mapping input features to output features. |
FeatureShufflingFlow ([axis, value_ndims, …]) |
An invertible flow which shuffles the order of input features. |
InvertFlow (flow[, name, scope]) |
Turn a BaseFlow into its inverted flow. |
InvertibleActivation |
Base class for intertible activation functions. |
InvertibleActivationFlow (activation, value_ndims) |
A flow that converts a InvertibleActivation into a flow. |
InvertibleConv2d ([channels_last, …]) |
Invertible 1x1 2D convolution proposed in (Kingma & Dhariwal, 2018). |
InvertibleDense ([strict_invertible, …]) |
Invertible dense layer, modified from the invertible 1x1 2d convolution proposed in (Kingma & Dhariwal, 2018). |
LeakyReLU ([alpha]) |
Leaky ReLU activation function. |
MultiLayerFlow (n_layers, **kwargs) |
Base class for multi-layer normalizing flows. |
PixelCNN2DOutput (vertical, horizontal) |
The output of a PixelCNN 2D layer, including tensors from the vertical and horizontal convolution stacks. |
PlanarNormalizingFlow ([w_initializer, …]) |
A single layer Planar Normalizing Flow (Danilo 2016) with tanh activation function, as well as the invertible trick. |
ReshapeFlow (x_value_ndims, y_value_shape[, …]) |
A flow which reshapes the last x_value_ndims of x into y_value_shape. |
SequentialFlow (flows[, name, scope]) |
Compose a large flow from a sequential of BaseFlow . |
SpaceToDepthFlow (block_size[, …]) |
A flow which computes y = space_to_depth(x) , and conversely x = depth_to_space(y) . |
SplitFlow (split_axis, left[, join_axis, …]) |
A flow which splits input x into halves, apply different flows on each half, then concat the output together. |
Class Inheritance Diagram¶

tfsnippet.ops¶
tfsnippet.ops Package¶
Functions¶
add_n_broadcast (tensors[, name]) |
Add zero or many tensors with broadcasting. |
assert_rank (x, ndims[, message, name]) |
Assert the rank of x is ndims. |
assert_rank_at_least (x, ndims[, message, name]) |
Assert the rank of x is at least ndims. |
assert_scalar_equal (a, b[, message, name]) |
Assert 0-d scalar a == b. |
assert_shape_equal (x, y[, message, name]) |
Assert the shape of x equals to y. |
bits_per_dimension (log_p, value_size[, …]) |
Compute “bits per dimension” of x. |
broadcast_concat (x, y, axis[, name]) |
Broadcast x and y, then concat them along axis. |
broadcast_to_shape (x, shape[, name]) |
Broadcast x to match shape. |
broadcast_to_shape_strict (x, shape[, name]) |
Broadcast x to match shape. |
classification_accuracy (y_pred, y_true[, name]) |
Compute the classification accuracy for y_pred and y_true. |
convert_to_tensor_and_cast (x[, dtype]) |
Convert x into a tf.Tensor , and cast its dtype if required. |
depth_to_space (input, block_size[, …]) |
Wraps tf.depth_to_space() , to support tensors higher than 4-d. |
flatten_to_ndims (x, ndims[, name]) |
Flatten the front dimensions of x, such that the resulting tensor will have at most ndims dimensions. |
log_mean_exp (x[, axis, keepdims, name]) |
Compute \(\log \frac{1}{K} \sum_{k=1}^K \exp(x_k)\). |
log_sum_exp (x[, axis, keepdims, name]) |
Compute \(\log \sum_{k=1}^K \exp(x_k)\). |
maybe_clip_value (x[, min_val, max_val, name]) |
Maybe clip the elements of x. |
pixelcnn_2d_sample (fn, inputs, height, width) |
Sample output from a PixelCNN 2D network, pixel-by-pixel. |
prepend_dims (x[, ndims, name]) |
Prepend [1] * ndims to the beginning of the shape of x. |
reshape_tail (input, ndims, shape[, name]) |
Reshape the tail (last) ndims into specified shape. |
shift (input, shift[, name]) |
Shift each axis of input according to shift, but keep identical size. |
smart_cond (cond, true_fn, false_fn[, name]) |
Execute true_fn or false_fn according to cond. |
softmax_classification_output (logits[, name]) |
Get the most possible softmax classification output for each logit. |
space_to_depth (input, block_size[, …]) |
Wraps tf.space_to_depth() , to support tensors higher than 4-d. |
transpose_conv2d_axis (input, …[, name]) |
Ensure the channels axis of input tensor to be placed at the desired axis. |
transpose_conv2d_channels_last_to_x (input, …) |
Ensure the channels axis (known to be the last axis) of input tensor to be placed at the desired axis. |
transpose_conv2d_channels_x_to_last (input, …) |
Ensure the channels axis of input tensor to be placed at the last axis. |
unflatten_from_ndims (x, static_front_shape, …) |
The inverse transformation of flatten() . |
tfsnippet.preprocessing¶
tfsnippet.preprocessing Package¶
Classes¶
BaseSampler |
Base class for samplers. |
BernoulliSampler ([dtype, random_state]) |
A DataMapper which can sample 0/1 integers according to the input probability. |
UniformNoiseSampler ([minval, maxval, dtype, …]) |
A DataMapper which can add uniform noise onto the input array. |
Class Inheritance Diagram¶

tfsnippet.utils¶
tfsnippet.utils Package¶
Functions¶
DocInherit (kclass) |
Class decorator to enable kclass and all its sub-classes to automatically inherit docstrings from base classes. |
add_histogram (tensor[, summary_name, …]) |
Add the histogram of tensor to the default summary collector, and to collections. |
add_name_and_scope_arg_doc (method) |
Add name and scope argument to the doc of method. |
add_name_arg_doc (method) |
Add name argument to the doc of method. |
add_summary (summary[, collections]) |
Add the summary to the default summary collector, and to collections. |
append_arg_to_doc (doc, arg_doc) |
Add the doc for name and scope argument to the doc string. |
append_to_doc (doc, content) |
Append content to the doc string. |
assert_deps (*args, **kwds) |
If tfsnippet.settings.enable_assertions == True , open a context that will run assert_ops. |
camel_to_underscore (name) |
Convert a camel-case name to underscore. |
concat_shapes (shapes[, name]) |
Concat shapes from shapes. |
create_session ([lock_memory, …]) |
A convenient method to create a TensorFlow session. |
default_summary_collector () |
Get the SummaryCollector object at the top of context stack. |
deprecated_arg (old_arg[, new_arg, version]) |
|
ensure_variables_initialized ([variables, name]) |
Ensure variables are initialized. |
generate_random_seed () |
Generate a new random seed from the default NumPy random state. |
get_batch_size (tensor[, axis, name]) |
Infer the mini-batch size according to tensor. |
get_cache_root () |
Get the cache root directory. |
get_config_defaults (config) |
Get the default config values of config. |
get_config_validator (type) |
Get an instance of ConfigValidator for specified type. |
get_default_scope_name (name[, cls_or_instance]) |
Generate a valid default scope name. |
get_default_session_or_error () |
Get the default session. |
get_dimension_size (tensor, axis[, name]) |
Get the size of tensor of specified axis. |
get_dimensions_size (tensor[, axes, name]) |
Get the size of tensor of specified axes. |
get_model_variables ([scope]) |
Get all model variables (i.e., variables in MODEL_VARIABLES collection). |
get_rank (tensor[, name]) |
Get the rank of the tensor. |
get_reuse_stack_top () |
Get the top of the reuse scope stack. |
get_static_shape (tensor) |
Get the the static shape of specified tensor as a tuple. |
get_uninitialized_variables ([variables, name]) |
Get uninitialized variables as a list. |
get_variable_ddi (name, initial_value[, …]) |
Wraps tf.get_variable() to support data-dependent initialization. |
get_variables_as_dict ([scope, collection]) |
Get TensorFlow variables as dict. |
global_reuse ([method_or_scope, _sentinel, scope]) |
Decorate a function to reuse a variable scope automatically. |
humanize_duration (seconds[, short_units]) |
Format specified time duration as human readable text. |
instance_reuse ([method_or_scope, _sentinel, …]) |
Decorate an instance method to reuse a variable scope automatically. |
is_float (x) |
Test whether or not x is a Python or NumPy float. |
is_integer (x) |
Test whether or not x is a Python or NumPy integer. |
is_shape_equal (x, y[, name]) |
Check whether the shape of x equals to y. |
is_tensor_object (x) |
Test whether or not x is a tensor object. |
is_tensorflow_version_higher_or_equal (version) |
Check whether the version of TensorFlow is higher than or equal to version. |
iter_files (root_dir[, sep]) |
Iterate through all files in root_dir, returning the relative paths of each file. |
makedirs (name[, mode, exist_ok]) |
|
maybe_add_histogram (tensor[, summary_name, …]) |
If tfsnippet.settings.auto_histogram == True , add the histogram of tensor via tfsnippet.add_histogram() . |
maybe_check_numerics (tensor, message[, name]) |
If tfsnippet.settings.check_numerics == True , check the numerics of tensor. |
maybe_close (*args, **kwds) |
Enter a context, and if obj has .close() method, close it when exiting the context. |
minibatch_slices_iterator (length, batch_size) |
Iterate through all the mini-batch slices. |
model_variable (name[, shape, dtype, …]) |
Get or create a model variable. |
print_as_table (title, key_values[, hr]) |
Print a key-value sequence as a table. |
register_config_arguments (config, parser[, …]) |
Register config to the specified argument parser. |
register_config_validator (type, validator_class) |
Register a config value validator. |
register_tensor_wrapper_class (cls) |
Register a sub-class of TensorWrapper into TensorFlow type system. |
reopen_variable_scope (*args, **kwds) |
Reopen the specified var_scope and its original name scope. |
resolve_negative_axis (ndims, axis) |
Resolve all negative axis indices according to ndims into positive. |
root_variable_scope (*args, **kwds) |
Open the root variable scope and its name scope. |
scoped_set_config (*args, **kwds) |
Set config values within a context scope. |
set_cache_root (cache_root) |
Set the root cache directory. |
set_random_seed (seed) |
Generate random seeds for NumPy, TensorFlow and TFSnippet. |
split_numpy_array (array[, portion, size, …]) |
Split numpy array into two halves, by portion or by size. |
split_numpy_arrays (arrays[, portion, size, …]) |
Split numpy arrays into two halves, by portion or by size. |
validate_enum_arg (arg_name, arg_value, choices) |
Validate the value of a enumeration argument. |
validate_group_ndims_arg (group_ndims[, name]) |
Validate the specified value for group_ndims argument. |
validate_int_tuple_arg (arg_name, arg_value) |
Validate an integer or a tuple of integers, as a tuple of integers. |
validate_n_samples_arg (value, name) |
Validate the n_samples argument. |
validate_positive_int_arg (arg_name, arg_value) |
Validate a positive integer argument. |
Classes¶
AutoInitAndCloseable |
Classes with init() to initialize its internal states, and also close() to destroy these states. |
BaseRegistry ([ignore_case]) |
A base class for implement a type or object registry. |
BoolConfigValidator |
Config value validator for boolean values. |
CacheDir (name[, cache_root]) |
Class to manipulate a cache directory. |
ClassRegistry ([ignore_case]) |
A subclass of BaseRegistry , dedicated for classes. |
Config |
Base class for defining config values. |
ConfigField (type[, default, description, …]) |
A config field. |
ConfigValidator |
Base config value validator. |
ConsoleTable (col_count[, col_space, …]) |
A class to help format a console table. |
ContextStack ([initial_factory]) |
A thread-local context stack for general purpose. |
Disposable |
Classes which can only be used once. |
DisposableContext |
Base class for contexts which can only be entered once. |
ETA ([take_initial_snapshot]) |
Class to help compute the Estimated Time Ahead (ETA). |
EventSource ([allowed_event_keys]) |
An object that may trigger events. |
Extractor (archive_file) |
The base class for all archive extractors. |
FloatConfigValidator |
Config value validator for float values. |
GraphKeys |
Defines TensorFlow graph collection keys for TFSnippet. |
InputSpec ([shape, dtype]) |
Class to describe the specification for an input tensor. |
IntConfigValidator |
Config value validator for integer values. |
InvertibleMatrix (size[, strict, dtype, …]) |
A matrix initialized to be an invertible, orthogonal matrix. |
NoReentrantContext |
Base class for contexts which are not reentrant (i.e., if there is a context opened by __enter__ , and it has not called __exit__ , the __enter__ cannot be called again). |
ParamSpec (*args, **kwargs) |
Class to describe the specification for a parameter. |
PermutationMatrix (data) |
A non-trainable permutation matrix. |
RarExtractor (fpath) |
Extractor for “.rar” files. |
StatisticsCollector ([shape]) |
Computing \(\mathrm{E}[X]\) and \(\operatorname{Var}[X]\) online. |
StrConfigValidator |
Config value validator for string values. |
SummaryCollector ([collections, …]) |
Collecting summaries and histograms added by tfsnippet.add_summary() and tfsnippet.add_histogram() . |
TFSnippetConfig |
Global configurations of TFSnippet. |
TarExtractor (fpath) |
Extractor for “.tar”, “.tar.gz”, “.tgz”, “.tar.bz2”, “.tbz”, “.tbz2”, “.tb2”, “.tar.xz”, “.txz” files. |
TemporaryDirectory ([suffix, prefix, dir]) |
Create and return a temporary directory. |
TensorArgValidator (name) |
Class to validate argument values of tensors. |
TensorSpec ([shape, dtype]) |
Base class to describe and validate the specification of a tensor. |
TensorWrapper |
Tensor-like object that wraps a tf.Tensor instance. |
VarScopeObject ([name, scope]) |
Base class for objects that own a variable scope. |
VarScopeRandomState (variable_scope) |
A sub-class of np.random.RandomState , which uses a variable-scope dependent seed. |
ZipExtractor (fpath) |
Extractor for “.zip” files. |
deprecated ([message, version]) |
Decorate a class, a method or a function to be deprecated. |
Class Inheritance Diagram¶
