
tf-lenet Documentation
Release a1

Ragav Venkatesan

Sep 27, 2017

Contents

1 Tutorial 3
1.1 Introduction . 3
1.2 Dot-Product Layers . 4

1.2.1 Implementation . 4
1.3 Convolutional Layers . 5

1.3.1 Implementation . 8
1.4 Pooling Layers . 10

1.4.1 Implementation . 10
1.5 Softmax Layer . 10

1.5.1 Implementation . 12
1.6 Reshaping layers . 13
1.7 CNN Architecture Philosophies . 14
1.8 Normalization Layer . 15
1.9 Dropout Layers . 15

1.9.1 Implementation . 15
1.10 Network . 17

1.10.1 Dataset . 17
1.10.2 Network Architecture . 18
1.10.3 Cooking the network . 20

1.11 Trainer . 23
1.12 Run and Outputs . 25

1.12.1 Tensorboard . 26
1.13 Additional Notes . 28

1.13.1 Stochastic Gradient Descent . 30
1.13.2 Off-the-shelf Downloadable networks . 30
1.13.3 Distillation from downloaded networks . 31

1.14 Bibiliography . 31

2 Code Documentation 33
2.1 Dataset . 33
2.2 Layers . 34
2.3 Network . 36
2.4 Support . 38
2.5 Third Party . 39
2.6 Trainer . 40

3 License 43

i

Bibliography 45

Python Module Index 49

ii

tf-lenet Documentation, Release a1

Welcome to the Lenet tutorial using TensorFlow. From being a long time user of Theano, migrating to TensorFlow is
not that easy. Recently, tensorflow is showing strong performance leading to many defecting from theano to tensorflow.
I am one such defector. This repository contains an implementation Lenet, the hello world of deep CNNs and is my
first exploratory experimentation with TensorFlow. It is a typical Lenet-5 network trained to classify MNIST dataset.
This is a simple implementation similar to that, which can be found in the tutorial that comes with TensorFlow and
most other public service tutorials. This is however modularized, so that it is easy to understand and reuse. This
documentation website that comes along with this repository might help users migrating from theano to tensorflow,
just as I did while implementing this repository. In this regard, whenever possible, I make explicit comparisons to help
along. Tensorflow has many contrib packages that are a level of abstraction higher than theano. I have avoided
using those whenever possible and stuck with the fundamental tensorflow modules for this tutorial. While this is
most useful for theano to tensorflow migrants, this will also be useful for those who are new to CNNs. There are small
notes and materials explaining the theory and math behind the working of CNNs and layers. While these are in no way
comprehensive, these might help those that are unfamiliar with CNNs but want to simply learn tensorflow and would
rather not spend time on a semester long course.

Note: The theoretical material in this tutorial are adapted from a forthcoming book chapter on Feature Learning for
Images

To begin with, it might be helpful to run the entire code in its default setting. This will enable you to ensure that the
installations were proper and that your machine was setup.

Obviously, you’d need tensorflow and numpy installed. There might be other tools that you’d require for advanced
uses which you can find in the requirements.txt file that ships along with this code. Firstly, clone the repository
down into some directory as follows,

git clone http://github.com/ragavvenkatesan/tf-lenet
cd tf-lenet

You can then run the entire code in one of two ways. Either run the main.py file like so:

python main.py

or type in the contents of that file, line-by-line in a python shell:

from lenet.trainer import trainer
from lenet.network import lenet5
from lenet.dataset import mnist

dataset = mnist()
net = lenet5(images = dataset.images)
net.cook(labels = dataset.labels)
bp = trainer (net, dataset.feed)
bp.train()

Once the code is running, setup tensorboard to observe results and outputs.

tensorboard --logdir=tensorboard

If everything went well, the tensorboard should have content populated in it. Open a browser and enter the address
0.0.0.0:6006, this will open up tensorboard. The accuracy graph in the scalars tab under the test column will look
like the following:

This implies that the network trained fully and has achieved about 99% accuracy and everything is normal. From the
next section onwards, I will go in detail, how I built this network.

If you are interested please check out my Yann Toolbox written in theano completely. Have fun!

Contents 1

https://github.com/Theano/Theano
https://www.tensorflow.org/
https://www.tensorflow.org/install/
https://docs.scipy.org/doc/numpy/user/install.html
http://yann.network

tf-lenet Documentation, Release a1

2 Contents

CHAPTER 1

Tutorial

This is a CNN tutorial. This tutorial contains some minimal explanations of the types of what CNNs are and some
discussions on the types of layers and so on. This is not detailed enough to be a complete guide, but just, so that it
could be used as a recap. The tutorial is more implementation centric. Whenever possible code snippets are provided
and comparisons made between theano and tensorflow to help migrants.

The tutorial is organized in such a way that the reader should be able to go article-by-article by clicking the next button
at the end of each article. Although there is some ordering in the tutorial, one may skip sections that they are aware of
and simple navigate to the section of interest as each one is written independently of the others. Have fun!

Introduction

The features that were classic to computer vision were designed by hand. Some, like PCA were designed with a
particular objective, such as creating representations on basis where the variance was large. These features were,
for the most part, general enough that they were used for a variety of tasks. Features like HOG [DT05] and SIFT
[Low99] for instance, have been used for tasks including video activity recognition [WOC+07], [SMYC10], [OL13],
vehicle detection [KHD11], [SBM06], object tracking [ZYS09], [ZvdM13], pedestrian detection [DWSP12] and face
detection [ZYCA06], [LMT+07], [KS04], just to list a few. While this school of thought continue to be quite popular
and some of these features have standardized implementations that are available for most researchers to plug and play
for their tasks, they were not task-specific. These were designed to be useful feature representations of images that
are capable of providing cues about certain aspects of images. HOG and SIFT for instance, provided shape-related
information and were therefore used in tasks involving shape and structure. Features like color correlogram [VCLL12]
provided cues on color transitions and were therefore used in medical images and other problems where, shape was not
necessarily an informative feature. In this tutorial we will study a popular technique used in learning to create good
features and task-specific feature extractors. These machine learn to extract useful feature representations of images
using the data for a particular task.

Multi-layer neural networks have long since been viewed as a means of extracting hierarchical task-specific features.
Ever since the early works of Rumelhart et al., [RHW85] it was recognized that representations learnt using back-
propagation had the potential to learn fine-tuned features that were task-specific. Until the onset of this decade, these
methods were severely handicapped by a dearth of large-scale data and large-scale parallel compute hardware to be
leveraged sufficiently. This, in part, directed the creativity of computer vision scientists to develop the aforementioned

3

tf-lenet Documentation, Release a1

general-purpose feature representations. We now have access to datasets that are large enough and GPUs that are
capable of large-scale parallel computations. This has allowed an explosion in neural image features and their usage.
In the next sections we will study some of these techniques.

An artificial neural network is a network of computational neurons that are connected in a directed acyclic graph.
There are several types of neural networks. While dealing with images, we are mostly concerned with the use the
convolutional neural network (CNN). Each neuron accepts a number of inputs and produces one output, which can
further be supplied to many other neurons. A typical function of a computational neuron is to weight all the inputs,
sum all the weighted inputs and generate an output depending on the strength of the summed weighted inputs. Neurons
are organized in groups, where each group typically receives input from the same sources. These groups are called as
layers. Layers come in three varieties, each characterized by its own type of a neuron. They are, the dot-product or the
fully-connected layer, the convolutional layer and the pooling layer.

Dot-Product Layers

Consider a 1𝐷 vector of inputs x ∈ [𝑥0, 𝑥1, . . . 𝑥𝑑] of 𝑑 dimensions. This may be a vectorized version of the image
or may be the output of a preceding layer. Consider a dot-product layer containing 𝑛 neurons. The 𝑗th neuron in this
layer will simply perform the following operation,

𝑧𝑗 = 𝛼

(︃
𝑑−1∑︁
𝑖=0

𝑥𝑖 × 𝑤𝑗
𝑖

)︃
,

where, 𝛼 is typically an element-wise monotonically-increasing function that scales the output of the dot-product. 𝛼
is commonly referred to as the activation function. The activation function is used typically as a threshold, that either
turns ON (or has a level going out) or OFF, the neuron. The neuron output that has been processed by an activation
layer is also referred to as an activity. Inputs can be processed in batches or mini-batches through the layer. In these
cases x is a matrix in R𝑏×𝑑, where 𝑏 is the batch size. Together, the vectorized output of the layer is the dot-product
operation between the weight-matrix of the layer and the input signal batch,

z = 𝛼(x ·w),

where, z ∈ R𝑏×𝑛, w ∈ R𝑑×𝑛 and the (𝑖, 𝑗)th element of z represents the output of the 𝑗th neuron for the 𝑖th sample of
input.

Fig. 1.1: A typical dot-product layer

The above figure shows such a connectivity of a typical dot-product layer. This layer takes in an input of 𝑑 dimensions
and produces an output of 𝑛 dimensions. From the figure, it should be clear as to why dot-product layers are also
referred to as fully-connected layers. These weights are typically learnt using back-propagation and gradient descent
[RHW85].

Implementation

Dot-product layers are implemented in tensorflow by using the tf.matmul() operation, which is a dot product
operation. Consider the following piece of code:

4 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

Open a new scope
with tf.variable_scope('fc_layer') as scope:

Initialize new weights
weights = tf.Variable(initializer([input.shape[1].value,neurons], name = 'xavier_

→˓weights'),\
name = 'weights')

Initialize new bias
bias = tf.Variable(initializer([neurons], name = 'xavier_bias'), name = 'bias')
Perform the dot product operation
dot = tf.nn.bias_add(tf.matmul(input, weights, name = 'dot'), bias, name = 'pre-

→˓activation')
activity = tf.nn.relu(dot, name = 'activity') # relu is our alpha and activity

→˓is z

Add things to summary
tf.summary.histogram('weights', weights)
tf.summary.histogram('bias', bias)
tf.summary.histogram('activity', activity)

This code block is very similar to how a dot product would be implemented in theano. For instance, in yann I
implemented a dot product layer like so:

w_values = numpy.asarray(0.01 * rng.standard_normal(
size=(input_shape[1], num_neurons)), dtype=theano.config.floatX)

weights = theano.shared(value=w_values, name='weights')
b_values = numpy.zeros((num_neurons,), dtype=theano.config.floatX)
bias = theano.shared(value=b_values, name='bias')
dot = T.dot(input, w) + b
activity = theano.nnet.relu(dot)

We can already see that the theano.shared() equivalent in tensorflow is the tf.Variable(). They work
in similar fashion as well. tf.Variable() is a node in a computational graph, just like theano.shared()
variable. Operationally, the rest is easy to infer from the code itself.

There are some newer elements in the tensorflow code. Tensorflow graph components (variables and ops) could be
enclosed using tf.variable_scope() declarations. I like to think of them as boxes to put things in literally.
Once we go through tensorboard, it can be noticed that sometimes they literally are boxes. For instance, the following
is a tensorboard visualization of this scope.

The initialization is also nearly the same. The API for the Xavier initializer can be found in the lenet.support.
initializer() module. Tensorflow summaries is an entirely new option that is not available clearly in theano.
Summaries are hooks that can write down or export information presently stored in graph components that can be
used later by tensorboard to read and present in a nice informative manner. They can be pretty much anything of a
few popular hooks that tensorflow allows. the summary.histogram allows us to track the histogram of particular
variables as they change during iterations. We will go into more detail about summaries as we study the lenet.
trainer.trainer.summaries() method, but at this moment you can think of them as hooks that export data.

The entire layer class description can be found in the lenet.layers.dot_product_layer() method.

Convolutional Layers

Fully-connected layers require a huge amount of memory to store all their weights. They involve a lot of computation
as well. Vitally, they are not ideal for use as feature extractors for images. This is because, a dot product layer has an
extreme receptive field. A receptive field of a neuron is the range of input flowing into the neuron. It is the view of
the input that the neuron has access to to. In our definition of the dot-product layer, the receptive field of a neuron is

1.3. Convolutional Layers 5

http://www.yann.network
https://www.tensorflow.org/api_guides/python/summary

tf-lenet Documentation, Release a1

Fig. 1.2: A dot-product layer scope visualized in tensorboard

6 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

the length of the signal 𝑑. Most image features such as SIFT or HOG have small receptive fields that are typically a
few tens of pixels such as 16 × 16. A convolution layer also has a small receptive field. This idea of having a small
receptive field is also often referred to as local-connectivity.

Fig. 1.3: Locally-connected neurons with a receptive field of 𝑟 = 3

Locality arises in this connection because the input dimensions are organized in some order of spatial significance
of the input itself. This implies that adjacent dimensions of inputs are locally-related. Consider a neuron that has
a local-receptive field of 𝑟 = 3. The figure above illustrates this connectivity. Each neuron in this arrangement, is
only capable of detecting a pattern in an image that is local and small. While each location in an image might have
spatially independent features, most often in images, we find that spatial independence doesn’t hold. This implies that
one feature learnt from one location of the image can be reasonably assumed to be useful at all locations.

Although the above figure shows the neurons being independent, typically several neurons share weights. In the
representation shown in the figure, all the neurons share the same set of weights. Even though we produce 𝑛− 𝑟 + 1
outputs, we only use 𝑟 unique weights. The convolutional layer shown here takes a 1𝐷 input and is therefore a 1𝐷
convolutional layer. The figure below illustrates a 2𝐷 convolutional layer, which is what in reality, we are interested
in. This figure does not show independent neurons and their connectivities but instead describe the weight shared
neurons as sliding convolutional filters. In cases where the input has more than one channel, convolution happens
along all channels independently and the outputs are summed location-wise.

Fig. 1.4: A typical convolution layer.

The 2𝐷 convolution layer typically performs the following operation:

𝑧(𝑗, 𝑑1, 𝑑2) = 𝛼

[︃
𝐶−1∑︁
𝑐=0

𝑟−1∑︁
𝑢=0

𝑟−1∑︁
𝑣=0

𝑥𝑐,𝑑1+𝑢,𝑑2+𝑢 × 𝑤𝑗
𝑢,𝑣

]︃
,∀𝑗 ∈ [0, 1, . . . 𝑛] and ∀𝑑1, 𝑑2 ∈ [0, 1, . . . 𝑑],

1.3. Convolutional Layers 7

tf-lenet Documentation, Release a1

where, the weights w ∈ R𝑗,𝑟,𝑟 are 𝑗 sets of weights, each set being shared by several neurons, each with a receptive
field of 𝑟 working on an input 𝑥 ∈ R𝑑1×𝑑2 . Since we have 𝑗 sets of weights shared by several neurons, we will produce
j activation images each (due to boundary conditions) of size R𝑑−𝑟+1×𝑑−𝑟+1.

In the context of convolution layers, the activations are also referred to as feature maps. The figure above shows
three feature maps being generated at the end of the layer. The convolutional layer’s filters are also learnt by back-
propagation and gradient descent. Once learnt, these filters typically work as pattern detectors. Each filter produces
one feature map. The feature map is a spatial map of confidence values for the existence of the pattern, the filter has
adapted to detect.

Implementation

Similar to the dot-product layer, the conv layer implementation is also very similar to a theano structure. It can be
implemented as follows:

Create graph variables using the same xavier initialization
weights = tf.Variable(initializer(f_shp,

name = 'xavier_weights'),\
name = 'weights')

bias = tf.Variable(initializer([neurons], name = 'xavier_bias'), name = 'bias')
Produce the convolution output
c_out = tf.nn.conv2d(input = input,

filter = weights,
strides = stride,
padding = padding,
name = scope.name)

c_out_bias = tf.nn.bias_add(c_out, bias, name = 'pre-activation')
activation through relu
activity = tf.nn.relu(c_out_bias, name = 'activity')

Prepare summaries. Notice how even 4D tensors can be summarized using histogram
tf.summary.histogram('weights', weights)
tf.summary.histogram('bias', bias)
tf.summary.histogram('activity', activity)

Visualize the first layer weights
visualize_filters(weights, name = 'filters_' + name)

While most of the code is easily understandable and migrated analogously from theano, the visualization needs to be
adapted for tensorboard. The lenet.support.visualize_filters() method is a wrapper to a nice function
written by kukurza . The code rastarizes the filters similar to what we are used to from pylearn2. The original code is
hosted on their gist . My modified version is in lenet.third_party.put_kernels_on_grid().

Some arguments to tf.nn.conv2d() are different from theano’s conv2d structure. For instance, the arguments
supplied here are:

filter_size = (5,5),
stride = (1,1,1,1),
padding = 'VALID',

Also the filter and image shapes is a little different as well. Images are 4D tensors in NHWC format. NHWC stands
for number of images, height, width and channels, which for theano users is the b01c. This format difference is what
that put me off while trying to implement this myself and is a useful reminders for migrants to keep in the back of their
minds. The filters created in the lenet.support.initializer() method take f_shp shape where,

f_shp = [filter_size[0], filter_size[1], input.shape[3].value, neurons]

8 Chapter 1. Tutorial

https://github.com/kukuruza
https://gist.github.com/kukuruza/03731dc494603ceab0c5

tf-lenet Documentation, Release a1

Fig. 1.5: A convolution layer scope visualized in tensorboard. The filters that it learnt are also shown.

1.3. Convolutional Layers 9

tf-lenet Documentation, Release a1

That is, filter height, filter width, input channels, number of kernels. This is also a little strange for theano users
and might take some getting used to. The entire layer class description can be found in the lenet.layers.
conv_2d_layer() method.

Pooling Layers

The convolution layer creates activations that are 𝑑 − 𝑟 + 1 long on each axis. Adjacent activities in each of these
feature maps are often related to each other. This is because, in imaging contexts, most patterns spread across a few
pixels. We want to avoid storing (and processing) these redundancies and preferably only use the most prominent of
these features.

This is typically accomplished by using a pooling or a sub-sampling operation. Pooling is done typically using non-
overlapping sliding windows, where each window will sample one activation. In the context of images, pooling by
maximum (max-pooling) is typically preferred. Pooling by 𝑝 (widow size of 𝑝) reduces the sizes of activations by 𝑝
fold. A pooling layer has no learnable components.

Implementation

A maxpooling layer for 4D tensors can be implemented as follows:

The pooling size and strides are 4 dimensions also.
pool_size = (1,2,2,1)
stride = (1,2,2,1)
padding = 'VALID'
output = tf.nn.max_pool (value = input,

ksize = pool_size,
strides = stride,
padding = padding,
name = name)

The only difference is between theano and tensorflow syntactically is that the arguments are different from theano.
pool2d(). The arguments for pooling size (ksize) and strides are 4 dimensions as well. The shapes of inputs
remain consistent with the conv2d module as discussed before. The entire layer class description can be found in the
lenet.layers.max_pool_2d_layer() method.

Softmax Layer

The filter weights that were initialized with random numbers become task specific as we learn. Learning is a process
of changing the filter weights so that we can expect a particular output mapped for each data samples. Consider the
task of handwritten digit recognition [LBD+90]. Here, we attempt to map images (28 × 28 pixels) to an integer
𝑦 ∈ [0, 1 . . . 9]. MNIST is the perfect dataset for this example, which was desigend for this purpose. MNIST images
typically look as follows:

Learning in a neural network is typically achieved using the back-prop learning strategy. At the top end of the neural
network with as many layers is a logistic regressor that feeds off of the last layer of activations, be it from a fully-
connected layer as is conventional or a convolutional layer such as in some recent network implementations used in
image segmentation [LSD15]. When the layer feeding into a softmax layer is a dot-product layer with an identity
activation 𝛼(𝑥) = 𝑥, we refer to the inputs often as logits. In modern neural networks, the logits are not limited
in operation with any activations. Often, this regressor is also implemented using a dot-product layer, for logistic
regression is simply a dot-product layer with a softmax activation.

10 Chapter 1. Tutorial

http://yann.lecun.com/exdb/mnist/

tf-lenet Documentation, Release a1

Fig. 1.6: MNIST dataset of handwritten character recognition.

1.5. Softmax Layer 11

tf-lenet Documentation, Release a1

A typical softmax layer is capable of producing the probability distribution over the labels 𝑦 ∈ [0, 1, . . . 𝑐] that we
want to predict. Given an input image x, 𝑃 (𝑦|x) is estimated as follows,⎡⎢⎣𝑃 (𝑦 = 1|x)

...
𝑃 (𝑦 = 𝑐|x)

⎤⎥⎦ =
1

𝑐∑︀
𝑝=1

𝑒𝑤𝑝𝑁 ′(x)

⎡⎢⎣𝑒
𝑤1𝑁 ′(x)

...
𝑒𝑤

𝑐𝑁 ′(x)

⎤⎥⎦ ,

where, w is the weight matrix of the dot-product layer preceding the softmax layer with 𝑤𝑝 representing the weight
vector that produces the output of the class 𝑝 and 𝑁 ′(x) is the output of the layer in the network 𝑁 , immediately
preceding this dot-product-softmax layer. The label that the network predicts 𝑦, is the maximum of these probabilities,

𝑦 = arg max
𝑦

𝑃 (𝑦|x).

Implementation

I implemented the softmax layer as follows:

• Use a lenet.layers.dot_product_layer() with 10 neurons and identity activation.

• Use a lenet.layers.softmax_layer() to produce the softmax.

In the softmax layer, we can return computational graph nodes to predictions, logits and softmax. The reason for using
logits will become clear in the next section when we discuss errors and back prop. Essentially, we will create a layer
that will look like the following image in its tensorboard visualization:

Fig. 1.7: Softmax Layer implementation.

12 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

The logits layer is a lenet.layers.dot_product_layer() with identity activation (no activation). The
inference node will produce the softmax and the prediction node will produce the label predicted. Th softmax
layer is implemented as:

inference = tf.nn.softmax(input, name = 'inference')
predictions = tf.argmax(inference, 1, name = 'predictions')

Where tf.nn.softmax() and tf.nn.argmax() have similar syntax as the theano counterparts. To have the
entire layer, in the lenet.network.lenet5 which is where these layer methods are called, I use the following
strategy:

logits layer returns logits node and params = [weights, bias]
logits, params = lenet.layers.dot_product_layer (

input = fc2_out_dropout,
neurons = C,
activation = 'identity',
name = 'logits_layer')

Softmax layer returns inference and predictions
inference, predictions = lenet.layers.softmax_layer (

input = logits,
name = 'softmax_layer')

Where C is a globally defined variable with C=10 defined in lenet.gloabl_definitions file. The layer
definitions can be seen in full in the documentation of the lenet.layers.softmax_layer() method.

Reshaping layers

Most often datasets are of the form where x ∈ [𝑥0, 𝑥1, . . . 𝑥𝑑] of 𝑑 dimensions. We want x ∈ R
√
𝑑×

√
𝑑 for the

convolutional layers. For this and for other purposes, we might be helped by having some reshaping layers. Here are
a few in tensorflow.

For flattening, which is converting an image into a vector, used for instance, before feeding into the first fully-connected
layers:

in_shp = input.get_shape().as_list()
output = tf.reshape(input, [-1, in_shp[1]*in_shp[2]*in_shp[3]])

The reshape command is quite simlar to theano. The nice thing here is the -1 option, which implies that any dimension
that have -1 immediately accommodates the rest. This means that we don’t have to care about knowing the value of
that dimension and could assign it during runtime. I use this for the mini batch size being unknown. One network can
now run in batch, stochastic or online gradient descent and during test time, I can supply how many ever samples I
want.

Similarly, we can also implement an unflatten layer:

dim = int(np.sqrt(input.shape[1].value / channels))
output = tf.reshape(input, [-1, dim, dim, channels])

These are also found in the Layers module in lenet.layers.flatten_layer() and lenet.layers.
unflatten_layer().

1.6. Reshaping layers 13

tf-lenet Documentation, Release a1

CNN Architecture Philosophies

Analogous to model design in most of machine learning and to the practice of hand-crafting features, CNNs also
involve some degree of skilled hand-crafting. Most of hand-crafting involves the design of the architecture of the
network. This involves choosing the types and number of layers and types of activations and number of neurons in
each layer. One important design choice that arises particularly in image data and CNNs, is the design of the receptive
fields.

The receptive field is typically guided by the size of filters (weights) in each layer and by the use of pooling layers.
The receptive field grows after each layer as the range of the signal received from the input layer grows progressively.
There are typically two philosophies relating to the choice of filter sizes and therefore to the receptive fields. The
first was designed by Yann LeCun et al., [LBBH98], [LBD+90] and was later re-introduced and widely preferred in
modern day object categorization by Alex Krizhevsky et al., [KSH12]. They employ a relatively large receptive field at
the earlier layers and continue growing with the rate of growth reducing by a magnitude. Consider AlexNet [KSH12].
This network won the ImageNet VOC challenge [DDS+09] in 2012 which involves recognizing objects belonging to
1000 categories with each image being 224 × 224 in size. This network has a first layer with 11 × 11 convolutional
filters (which are strided by 4 pixels), followed by a 3 × 3 pooling (strided by 2). The next layer is 5 × 5, followed by
3 × 3, each with their own respective pooling layers.

The second of these philosophies is increasing the receptive field as minimally as possible. These were pioneered by
the VGG group [SZ14] and one particular implementation won the 2014 ImageNet competition [DDS+09]. These
networks have a fixed filter size, typically of 3 × 3 and have fixed pooling size of 2 × 2 at some checkpoint layers.
These philosophies aim to hierarchically learn better filters over various growth of small receptive fields. The classic
LeNet from Yann LeCun is a trade-off between these two case studies [LBBH98].

Fig. 1.8: Filters learnt by CNNs.

The figure above show various filters that were learnt by each of these philosophies at the first layer that is closest
to the image. From left to right are filters learnt by VGG (3 × 3), a typical Yann LeCun style LeNet (5 × 5) and a
AlexNet (11 × 11). It can be noticed that although most first layer filters adapt themselves to simple edge filters and
Gabor filters, the 3× 3 filters are simpler lower-dimensional corner detectors while the larger receptive field filters are
complex high-dimensional pattern detectors.

Although we studied some popular network architecture design and philosophies, several other styles of networks also
exists. In this section we have only studied those that feed forward from the input layer to the task layer (whatever
that task might be) and there is only one path for gradients to flow during back-prop. Recently, several networks such
as the GoogleNet [SLJ+15] and the newer implementations of the inception layer [SVI+16], [SIVA17], Residual Net
[HZRS16] and Highway Nets [SGS15] have been proposed that involve creating DAG-style networks that allow for
more than one path to the target. One of these paths typically involve directly feeding forward the input signal. This
therefore allows for the gradient to not attenuate and help in solving the vanishing gradient problems [BSF94].

14 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

Normalization Layer

Implementing normalization was much simpler than using theano. All I had to do was

output = tf.nn.lrn(input)

tf.nn.lrn() is an implementation of the local response normalization [LS08]. This layer definition could also be
found in the lenet.layers.local_response_normalization_layer() method.

Dropout Layers

Dropout layers are an indirect means of regularization and ensemble learning for neural networks [SHK+14]. Consider
that we have a layer with 𝑛 activations. Consider now, we randomly zero-out neurons independently with Bernoulli
probability 0.5 everytime we provide the network a training sample. We update the weights for only those weights
that were not zeroed-out during backprop. This in essence is the working of dropouts.

Dropouts have several different interpretations. The first and most often used is that dropout is a form of ensembling.
In this form of dropping out some neurons, we are in-effect sampling from a pool of 2𝑛 architectures, every time we
feed-forward the sample is going through a new architecture (network). Which means each network in this pool of
network architectures will only see one if it sees any sample at all. We train each of these networks with one update.
Since all the networks in this system share weights, they all learn simultaneously.

During test time, we halve the weights (if we used 0.5 as the Bernoulli probability) of weights. This halving is needed
because during test time we do not dropout and the output signals of each layer are therefore in expectation doubled.
Theoretically, this halving (at least with just one layer) is the same as the output of the geometric ensemble of all the
networks in the pool.

A second way of looking at dropout is from a regularization perspective. Dropouts are a strong form of regularizer,
because in the pool of all th networks, one can think of dropouts as penalizing the network in learning weights that are
regularized by the weights on the other networks. Yet another perspective of dropout is that dropout avoid neurons to
co-adapt with each other. They learn functionalities that are unique to itself and are independent. Therefore dropout
neurons are more powerful than co-adapted neurons.

Implementation

In theano, dropouts are typically implemented as follows:

from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
from theano.tensor.shared_randomstreams import RandomStreams
The above import is an experimental code. Not sure if it works perfectly, but I
→˓have seen no problems
yet.
srng = RandomStreams(rng.randint(1,2147462468), use_cuda=None)
I have raised this issue with the theano guys, use_cuda = True is creating a
→˓duplicate
process in the GPU.
mask = srng.binomial(n=1, p=1-dropout_rate, size=params.shape, dtype = theano.config.
→˓floatX)
output = input * mask

Ignoring the comments about the RandomStreams itself, the implementation is a little quirky. We create a mask
which is the same shape as the input, and multiply the input by that mask to get the dropout output. This output is used
during training time. We create another parallel copy of the network which uses the already initialized weights but are
halved during inference time.

1.8. Normalization Layer 15

tf-lenet Documentation, Release a1

If dropout_rate is 0, this is just a wasted multiplication by 1, but who cares.
w = dropout_layer.w * (1 - dropout_rate)
b = dropout_layer.b

inference_layer = dot_product_layers(params = [w,b])

Assuming of course that the layers are defined as classes.

In tensorflow, we will make use a placeholder node in the graph to implement this system (which also could be done
using theano). A placeholder is a node in tensorflow similar to theano.tensor() or theano.scalar(). Let
us create the dropout probability as a placeholder node.

dropout_prob = tf.placeholder(tf.float32, name = 'dropout_probability')

In tensorflow, we have a dropout method written for us internally, which can use a placeholder probability node.
Let us supply the placeholder we created into the dropout layer method and create a dropout layer.

output = tf.nn.dropout (input, dropout_prob)

During test time, we can feed into the placeholder 1.0, which implies that none of the nodes are dropped out. During
training time, we can feed whatever value we want into the dropout variable. The internal tensorflow implementa-
tion of dropout will scale the input accordingly (note that it does not scale the weights, so this has problems when
implementing on non-dot-product layers some times).

When there are multiple layers, we can still use the same placeholder and therefore control the action of dropout
globally. The tensorboard will look like the following when we use these ideas to create dropout layers.

Fig. 1.9: Dropout visualized in tensorflow. One placeholder controls three dropout layers. Note: we also dropout
the input signal even before the first dot-product layer. This idea was taken from the de-noising auto-encoder paper
[VLBM08].

The layer definition can be seen in the lenet.layers.dropout_layer() module.

16 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

Network

Now that we have seen all the layers, let us assemble our network together. Assembling the network together takes
several steps and tricks and there isn’t one way to do that. To make things nice, clean and modular, let us use python
class to structure the network class. Before we even begin the network, we need to setup the dataset. We can then
setup our network. We are going to setup the popular Lenet5 [LBD+90]. This network has many incarnations, but we
are going to setup the latest one. The MNIST images that are input are 28 × 28. The input is fed into two convolution
layers with filter sizes 5 × 5 and 3 × 3 with 20 and 50 filters, respectively. This is followed by two fully-connected
layers of 800 neurons each. The last softmax layer will have 10 nodes, one for each class. In between, we add some
dropout layers and normalization layers, just to make things a little better.

Let us also fix this by using global definitions (refer to them all in lenet.gloabl_definitions module).

Some Global Defaults for Network
C1 = 20 # Number of filters in first conv layer
C2 = 50 # Number of filters in second conv layer
D1 = 1200 # Number of neurons in first dot-product layer
D2 = 1200 # Number of neurons in second dot-product layer
C = 10 # Number of classes in the dataset to predict
F1 = (5,5) # Size of the filters in the first conv layer
F2 = (3,3) # Size of the filters in the second conv layer
DROPOUT_PROBABILITY = 0.5 # Probability to dropout with.

Some Global Defaults for Optimizer
LR = 0.01 # Learning rate
WEIGHT_DECAY_COEFF = 0.0001 # Co-Efficient for weight decay
L1_COEFF = 0.0001 # Co-Efficient for L1 Norm
MOMENTUM = 0.7 # Momentum rate
OPTIMIZER = 'adam' # Optimizer (options include 'adam', 'rmsprop') Easy to upgrade if
→˓needed.

Dataset

Tensorflow examples provides the MNIST dataset in a nice feeder-worthy form, which as a theano user, I find very
helpful. The example itself is at tf.examples.tutorials.mnist.input_data() for those who want to
check it out. You can quite simply import this feeder as follows:

from tensorflow.examples.tutorials.mnist import input_data as mnist_feeder

Using this, let us create a class that will not only host this feeder, but will also have some placeholders for labels and
images.

def __init__ (self, dir = 'data'):
self.feed = mnist_feeder.read_data_sets (dir, one_hot = True)

#Placeholders
with tf.variable_scope('dataset_inputs') as scope:

self.images = tf.placeholder(tf.float32, shape=[None, 784], name = 'images')
self.labels = tf.placeholder(tf.float32, shape = [None, 10], name = 'labels')

This now creates the following section of the graph:

Fashion-MNIST

Fashion-MNIST is a new dataset that appears to take the place of MNIST as a good CV baseline dataset. It has the

1.10. Network 17

https://github.com/zalandoresearch/fashion-mnist/blob/master/doc/arxiv.pdf

tf-lenet Documentation, Release a1

Fig. 1.10: Dataset visualized in tensorboard.

same characteristics as MNIST itself and could be a good drop-in dataset in this tutorial. If you prefer using this
dataset instead of the classic MNIST, simply download the dataset from here into the data/fashion directory and
use the lenet.dataset.fashion_mnist() instead of the old lenet.dataset.mnist() method. This
uses the data in the new directory.

Network Architecture

With all this initialized, we can now create a network class (lenet.network.lenet5), whose constructor will
take this image placeholder.

def __init__ (self,
images):

"""
Class constructor for the network class.
Creates the model and all the connections.
"""
self.images = images

As can be seen in the documentation of lenet.network.lenet5, I have a habit of assigning some variables with
self so that I can have access to them via the objects. This will be made clear when we study further lenet.
trainer.trainer module and others. For now, let us proceed with the rest of the network architecure.

The first thing we need is to unflatten the images placeholder into square images. We need to do this because the
images placeholder contains images in shape x ∈ [𝑥0, 𝑥1, . . . 𝑥𝑑] of 𝑑 dimensions. To have the input feed into a
convolution layer, we want, 4D tensors in NHWC format as we discussed in the convolution layer Implementation
section. Let us continue building our network constructor with this unflatten added.

images_square = unflatten_layer (self.images)
visualize_images(images_square)

The method lenet.support.visualize_images() will simply add these images to tensorboard summaries
so that we can see them in the tensorboard. Now that we have a unflattened image node in the computational graph,
let us construct a couple of convolutional layers, pooling layers and normalization layers.

Conv Layer 1
conv1_out, params = conv_2d_layer (input = images_square,

neurons = C1,
filter_size = F1,
name = 'conv_1',
visualize = True)

process_params(params)
pool1_out = max_pool_2d_layer (input = conv1_out, name = 'pool_1')

18 Chapter 1. Tutorial

https://github.com/zalandoresearch/fashion-mnist#get-the-data

tf-lenet Documentation, Release a1

lrn1_out = local_response_normalization_layer (pool1_out, name = 'lrn_1')

Conv Layer 2
conv2_out, params = conv_2d_layer (input = lrn1_out,

neurons = C2,
filter_size = F2,
name = 'conv_2')

process_params(params)

pool2_out = max_pool_2d_layer (input = conv2_out, name = 'pool_2')
lrn2_out = local_response_normalization_layer (pool2_out, name = 'lrn_2')

lenet.layers.conv_2d_layer() returns one output tensor node in the computation graph and also returns the
parameters list [w, b]. The parameters are sent to the lenet.network.process_params(). This method is
a simple method which will add the parameters to various collections.

tf.add_to_collection('trainable_params', params[0])
tf.add_to_collection('trainable_params', params[1])
tf.add_to_collection('regularizer_worthy_params', params[0])

These tensorflow collections span throughout the implementation session, therefore these collections can be
used at a later time to apply gradients to the trainable_params collections or to add regularization to
regularizer_worthy_params. I typically do not regularize biases.

If this method was not called after a layer was added, you can think of it as being used for frozen or obstinate layers
as is typically used in mentoring networks purposes [VL16]. We now move on to the fully-connected layers. Before
adding them, we need to flatten the outputs we have so far. We can use the lenet.layers.flatten_layer()
to reshape the outputs.

flattened = flatten_layer(lrn2_out)

In case we are implementing a dropout layer, we need a dropout probability placeholder that we can feed in during
train and test time.

self.dropout_prob = tf.placeholder(tf.float32, name = 'dropout_probability')

Let us now go ahead and add some fully-connected layers along with some dropout layers.

Dropout Layer 1
flattened_dropout = dropout_layer (input = flattened, prob = self.dropout_prob, name
→˓= 'dropout_1')

Dot Product Layer 1
fc1_out, params = dot_product_layer (input = flattened_dropout, neurons = D1, name
→˓= 'dot_1')
process_params(params)

Dropout Layer 2
fc1_out_dropout = dropout_layer (input = fc1_out, prob = self.dropout_prob, name =
→˓'dropout_2')
Dot Product Layer 2
fc2_out, params = dot_product_layer (input = fc1_out_dropout, neurons = D2, name =
→˓'dot_2')
process_params(params)

Dropout Layer 3
fc2_out_dropout = dropout_layer (input = fc2_out, prob = self.dropout_prob, name =
→˓'dropout_3')

1.10. Network 19

tf-lenet Documentation, Release a1

Again we supply the parameters through to a regularizer. Finally, we add a lenet.layers.softmax_layer().

Logits layer
self.logits, params = dot_product_layer (input = fc2_out_dropout, neurons = C,

activation = 'identity', name = 'logits_
→˓layer')
process_params(params)

Softmax layer
self.inference, self.predictions = softmax_layer (input = self.logits, name =
→˓'softmax_layer')

We use the lenet.layers.dot_product_layer() to add a self.logits node that we can pass through
to the softmax layer that will provide us with a node for self.inference and self.predictions.

Putting all this together, the network will look like the image above in tesorboard. The complete definition of this
network class could be found in the class constructor of lenet.network.lenet5.

Cooking the network

Before we begin training though, the network needs several things added to it. The first one of which is a set of cost
and objectives. Firstly we begin with adding a self.labels property to the network class. This placeholder comes
from the lenet.dataset.mnist class.

For a loss we can start with a categorical cross entropy loss.

self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits (labels = self.
→˓labels,

logits = self.
→˓logits))
tf.add_to_collection('objectives', self.cost)
tf.summary.scalar('cost', self.cost)

The method tf.nn.softmax_cross_entropy_with_logits() is another unique feature of tensorflow.
This method will take in logits which are the outputs of the identity dot-product layer before the softmax, ap-
ply softmax to it and estimate its cross-entropy loss with a one-hot vector version of labels provided to the labels
argument, all doing so efficiently.

We can add this to the objectives collection. Collections are in essence, kind of like lists that span globally as
long as we are in the same tensorflow shell. There are much more to it, but for a migrant, at this stage, this is simple.
We can add up everything in the objectives collection which ends up in a node that we want to minimize. For
instance, we can add regularizers to the objectives collection also, so that they all can be added to the minimizing
node. Since lenet.network.process_params() method was called after all params were created and we
added parameters to collections, we can apply regularizers to all parameters in the collection.

var_list = tf.get_collection('regularizer_worthy_params')
apply_regularizer (var_list)

where, the lenet.network.apply_regularizer() adds 𝐿1 and 𝐿2 regularizers.

for param in var_list:
norm = L1_COEFF * tf.reduce_sum(tf.abs(param, name = 'abs'), name = 'l1')
tf.summary.scalar('l1_' + param.name, norm)
tf.add_to_collection('objectives', norm)

20 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

Fig. 1.11: Network visualized in tensorboard.

1.10. Network 21

tf-lenet Documentation, Release a1

for param in var_list:
norm = WEIGHT_DECAY_COEFF * tf.nn.l2_loss(param)
tf.summary.scalar('l2_' + param.name, norm)
tf.add_to_collection('objectives', norm)

Most of the methods used above are reminiscent of theano except for tf.nn.l2_loss(), which should also be
obvious to understand.

The Overall objective of the network is,

𝑜 =
1

𝑏

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑦𝑖𝑗 log(𝑙𝑖𝑗) + 𝑙1
∑︁

|𝑤| + 𝑙2
∑︁

||𝑤||,∀𝑤 ∈ 𝒩 .

This is essentially, the cross-entropy loss added with the weighted sum of 𝐿1 and 𝐿2 norms of all the weights in the
network. Cumulatively the objective 𝑜 can be calculated as follows:

self.obj = tf.add_n(tf.get_collection('objectives'), name='objective')
tf.summary.scalar('obj', self.obj)

Also, since we have an self.obj, we can then add an ADAM optimizer that minimizes the node.

back_prop = tf.train.AdamOptimizer(learning_rate = LR, name = 'adam').minimize(
loss = self.obj, var_list =

→˓var_list)

In tensorflow, adding optimizer is as simple as that. In theano, we would have had to use theano.tensor.
grad() method to extract gradients for each parameter and then write codes for weight updates and use theano.
function() to create update rules. In tensorflow, we can create a tf.train.Optimizer.minimize() node
that can be run in a tf.Session(), session, which will be covered in lenet.trainer.trainer. Similarly,
we can do different optimizers.

With the optimizer is done, we are done with the training part of the network class. We can now move on to other
nodes in the graph that could be used at inference time. We can create one node, which will create a flag for every
correct predictions that the network is making using tf.equal().

correct_predictions = tf.equal(self.predictions, tf.argmax(self.labels, 1), \
name = 'correct_predictions')

We can then create one node, which will estimate accuracy and add it to summaries so we can actively monitor it.

self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32) , name =
→˓'accuracy')
tf.summary.scalar('accuracy', self.accuracy)

Tensorflow provides a method for estimating confusion matrix, give labels. We can estimate labels from our one-hot
labels, using the tf.argmax() method and create a confusion node. If we also reshape this into an image, we
can then add this as an image to the tensorflow summary. This implies that we will be able to monitor it as an image
visualization.

confusion = tf.confusion_matrix(tf.argmax(self.labels,1), self.predictions,
num_classes=C,
name='confusion')

confusion_image = tf.reshape(tf.cast(confusion, tf.float32),[1, C, C, 1])
tf.summary.image('confusion',confusion_image)

This concludes the network part of the computational graph. The cook method is described in lenet.network.
lenet5.cook() and the entire class in lenet.network.lenet5.

22 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

Trainer

Todo

This part of the tutorial is currently being done.

The trainer is perhaps the module that is most unique to tensorflow and is most different from theano. Tensroflow
uses tf.Session() to parse computational graphs unlike in theano where we’d use the theano.function()
methods. For a detailed tutorial on how tensorflow processes and runs graphs, refer this page.

The lenet.trainer.trainer class takes as input an object of lenet.network.lenet5 and lenet.
dataset.mnist. After adding them as attributes, it then initializes a new tensorflow session to run the compu-
tational graph and initializes all the variables in the graph.

self.network = network
self.dataset = dataset
self.session = tf.InteractiveSession()
tf.global_variables_initializer().run()

The initializer class also calls the lenet.trainer.trainer.summaries() method that initializes the sum-
mary writer (tf.summary.FileWriter()) so that any processing on this computational graph could be moni-
tored at tensorboard.

self.summary = tf.summary.merge_all()
self.tensorboard = tf.summary.FileWriter("tensorboard")
self.tensorboard.add_graph(self.session.graph)

The mnist example from tf.examples.tutorials.mnist.input_data() that we use here as self.
dataset is written in such a way that given a mini_batch_size, we can easily query and retrieve the next
batch as follows:

x, y = self.dataset.train.next_batch(mini_batch_size)

While in theano, we would use the theano.function() method to produce the function to run back prop updates,
here we can use the minimizer that we created in lenet.network.lenet5 (self.network.back_prop in
lenet.trainer.trainer) to run one update step. We also want to collect (fetch is the tensorflow terminology)
self.network.obj and self.network.cost (see definitions at lenet.network.lenet5) to be able to
monitor the network training. All this can be done using the following code:

_, obj, cost = self.session.run(
fetches = [self.network.back_prop, self.network.obj, self.network.

→˓cost], \
feed_dict = {self.network.images:x, self.network.labels:y, \

self.network.dropout_prob: DROPOUT_PROBABILITY})

This is similar to how we’d run a theano.function(). The givens operation which is used in theano to feed
values to placeholders is now supplied here using feed_dict which takes in a dictionary, whose key, value pair
is a node and its initialization value. Here we assign to self.network.images the images we just retrieved, to
self.network.labels the y we just queried and to self.network.dropout_prob which was the node
controlling the dropout Bernoulli probability, the gloabl defined dropout. We use this value of dropout, since this does
back prop. If we were just feeding forward without updating the weights (such as during inference or test) we would
not use this probability, instead we would use,

acc = self.session.run(self.network.accuracy,\
feed_dict = { self.network.images: x,

1.11. Trainer 23

https://www.tensorflow.org/api_guides/python/client

tf-lenet Documentation, Release a1

self.network.labels: y,
self.network.dropout_prob: 1.0})

as was used in the lenet.trainer.trainer.accuracy(). The same lenet.trainer.trainer.
accuracy() method with different placeholders could be used for testing and training accuracies.

Testing
x = self.dataset.test.images
y = self.dataset.test.labels
acc = self.accuracy (images =x, labels = y)

Training
x, y = self.dataset.train.next_batch(mini_batch_size)
acc = self.accuracy (images =x, labels = y)

After a desired number of iterations, we might want to update the tensorboard summaries or print out a cost to use for
reference on how well we are training. We can use self.session, which is the same session previously used, to
write out all summaries. This run call to session will write out everything we have added to the summaries along the
way of building the network itself using our self.tensorboard writer.

x = self.dataset.test.images
y = self.dataset.test.labels
s = self.session.run(self.summary, feed_dict = {self.network.images: x,

self.network.labels: y,
self.network.dropout_prob: 1.0})

self.tensorboard.add_summary(s, iter)

The last thing we have to define is the the lenet.trainer.trainer.train() method. This method
will run the training loops for the network that we have definied, taking in input arguments iter= 10000,
mini_batch_size = 500, update_after_iter = 1000, summarize = True, with obviously named
variables.

The trainer loop can be coded as:

Iterate over iter
for it in range(iter):

obj, cost = self.bp_step(mini_batch_size) # Run a step of back prop minimizer
if it % update_after_iter == 0: # Check if it is time to flush out

→˓summaries.
train_acc = self.training_accuracy(mini_batch_size = 50000)
acc = self.test() # Measure training and testing

→˓accuracies.
print(" Iter " + str(it) + # Print them on terminal.

" Objective " + str(obj) +
" Cost " + str(cost) +
" Test Accuracy " + str(acc) +
" Training Accuracy " + str(train_acc)
)

if summarize is True: # Write summaries to tensorflow
self.write_summary(iter = it, mini_batch_size = mini_batch_size)

The above code essentially iterates over iter supplied to the method and runs one step of self.network.
back_prop method, which we cooked in lenet.network.lenet5.cook(). If it was time to flush out sum-
maries it does so. Finally, once the training is complete, we can call the lenet.trainer.trainer.test()
method to produce testing accuracies.

24 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

acc = self.test()
print ("Final Test Accuracy: " + str(acc))

Since everything else, including the first layer filters and confusion matrices were all stored in summaries, they would
have been adequately flushed out.

The trainer class documentation can be found in Trainer.

Run and Outputs

main.py essentially guides how to run the code. Firstly import all the modules we have created.

from lenet.trainer import trainer
from lenet.network import lenet5
from lenet.dataset import mnist

Begin by creating the dataset and its placeholders,

dataset = mnist()

Create the network object and cook it.

net = lenet5(images = dataset.images)
net.cook(labels = dataset.labels)

Create a trainer module that takes as input, the cooked network and the datafeed and then train it.

bp = trainer (net, dataset.feed)
bp.train()

If everything went correctly, the following output would have been produced:

Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
.
.
.
.
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:02:00.0
Total memory: 7.91GiB
Free memory: 7.80GiB
2017-08-15 19:58:04.465420: W tensorflow/stream_executor/cuda/cuda_driver.cc:485]
→˓creating context when one is currently active; existing: 0x3eec930
2017-08-15 19:58:04.513975: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887]
→˓Found device 1 with properties:
name: NVS 310
major: 2 minor: 1 memoryClockRate (GHz) 1.046
pciBusID 0000:01:00.0
Total memory: 444.50MiB
Free memory: 90.00MiB
2017-08-15 19:58:04.514091: W tensorflow/stream_executor/cuda/cuda_driver.cc:485]
→˓creating context when one is currently active; existing: 0x3ee8b70

1.12. Run and Outputs 25

tf-lenet Documentation, Release a1

2017-08-15 19:58:04.770913: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887]
→˓Found device 2 with properties:
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:03:00.0
Total memory: 7.91GiB
Free memory: 7.80GiB
.
.
.
.
Iter 0 Objective 6.67137 Cost 2.39042 Test Accuracy 0.0892 Training Accuracy 0.09062
Iter 1000 Objective 0.784603 Cost 0.205023 Test Accuracy 0.9865 Training Accuracy 0.
→˓98592
Iter 2000 Objective 0.707837 Cost 0.158198 Test Accuracy 0.9877 Training Accuracy 0.
→˓98638
Iter 3000 Objective 0.658972 Cost 0.0991117 Test Accuracy 0.9877 Training Accuracy 0.
→˓98734
Iter 4000 Objective 0.709337 Cost 0.138037 Test Accuracy 0.9882 Training Accuracy 0.
→˓9889
Iter 5000 Objective 0.687822 Cost 0.115233 Test Accuracy 0.9862 Training Accuracy 0.
→˓98782
Iter 6000 Objective 0.767473 Cost 0.192869 Test Accuracy 0.9863 Training Accuracy 0.
→˓98504
Iter 7000 Objective 0.717531 Cost 0.138536 Test Accuracy 0.9875 Training Accuracy 0.
→˓98738
Iter 8000 Objective 0.730901 Cost 0.161923 Test Accuracy 0.987 Training Accuracy 0.
→˓98738
Iter 9000 Objective 0.692139 Cost 0.127491 Test Accuracy 0.9889 Training Accuracy 0.
→˓98832
Final Test Accuracy: 0.9852

A few other prints that were unique to the systems are all skipped.

Tensorboard

The tensorboard that is created can be setup by running,

tensorboard --logdir=tensorboard

Open a browser and enter the address 0.0.0.0:6006, this will open up tensorboard. The tensorboard will have the
following sections that are populated:

• Scalars

• Images

• Graphs

• Distributions

• Histograms

Let us go over a few of these sections, while leaving the others to the reader to interpret.

26 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

Scalars

In scalars we see all of the scalars that we were tracking in summary. Two of these that are important for us to observe
are the costs going down and the test accuracies going up with iterations.

Images

In the images section, we see the filters learnt by the first layer, the confusion matrix and the images that are used in
training. Note that there are sliders in all these which could be used to scroll through various levels of information.

1.12. Run and Outputs 27

tf-lenet Documentation, Release a1

Graphs

In the graphs section, we see the graph now with the training and other auxillary nodes present.

We can see here how the training modules are setup with gradients and how the objectives are derived from all the
regularizers. Tensorboard is a nice utility and for a theano user it is a miracle come true. In fact, tensorboard is the
primary and pretty much the only reason I am migrating to tensorflow.

Additional Notes

Thanks for checking out my tutorial, I hope it was useful.

28 Chapter 1. Tutorial

tf-lenet Documentation, Release a1

1.13. Additional Notes 29

tf-lenet Documentation, Release a1

Stochastic Gradient Descent

Since in theano we use the theano.tensor.grad() to estimate gradients from errors and back propagate our-
selves, it was easier to understand and learn about various minimization algorithms. In yann for instance, I had to write
all the optimizers I used, by hand as seen here. In tensorflow everything is already provided to us in the Optimizer
module. I could have written out all the operations myself, but I copped out by using the in-built module. Therefore,
here is some notes on how to minimize an error.

Consider the prediction 𝑦. Consider we come up with some error 𝑒, that measure how different is 𝑦 with 𝑦. In our
tutorial, we used the categorical cross-entropy error. If 𝑒 were a measure of error in this prediction, in order to learn
any weight 𝑤 in the network, we can acquire its gradient 𝜕𝑒

𝜕𝑤 , for every weight 𝑤 in the network using the chain rule
of differentiation. Once we have this error gradient, we can iteratively learn the weights using the following gradient
descent update rule:

𝑤𝜏+1 = 𝑤𝜏 − 𝜂
𝜕𝑒

𝜕𝑤
,

where, 𝜂 is some predefined rate of learning and 𝜏 is the iteration number. It can be clearly noticed in the back-prop
strategy outlined above that the features of a CNN are learnt with only one objective - to minimize the prediction error.
It is therefore to be expected that the features learnt thusly, are specific only to those particular tasks. Paradoxically, in
deep CNNs trained using large datasets, this is often not the typical observation.

Fig. 1.12: The anatomy of a typical convolutional neural network.

In most CNNs, we observe as illustrated in the figure above, that the anatomy of the CNN and the ambition of each
layer is contrived meticulously. The features that are close to the image layer are more general (such as edge detectors
or Gabor filters) and those that are closer to the task layer are more task-specific.

Off-the-shelf Downloadable networks

Given this observation among most popular CNNs, modern day computer vision engineers prefer to simply download
off-the-shelf neural networks and fine-tune it for their task. This process involves the following steps. Consider that a
stable network 𝑁 is well-trained on some task 𝑇 that has a large dataset and compute available at site. Consider that
the target for an engineer is build a network 𝑛 that can make inferences on task 𝑡. Also assume that these two tasks are
somehow related, perhaps 𝑇 was visual object categorization on ImageNet and 𝑡 on the COCO dataset [LMB+14] or
the Caltech-101/256 datasets [FFFP06]. To learn the task on 𝑡, one could simply download 𝑁 , randomly reinitialize

30 Chapter 1. Tutorial

https://github.com/ragavvenkatesan/yann/blob/master/yann/modules/optimizer.py

tf-lenet Documentation, Release a1

the last few layers (at the extreme case reinitialize only the softmax layer) and continue back-prop of the network to
learn the task 𝑡 with a smaller eta. It is expected that 𝑁 is very well-trained already that they could serve as good
initialization to begin fine-tuning the network for this new task. In some cases where enough compute is not available
to update all the weights, we may simply choose to update only a few of the layers close to the task and leave the
others as-is. The first few layers that are not updated are now treated as feature extractors much the same way as HOG
or SIFT.

Some networks capitalized on this idea and created off-the-shelf downloadable networks that are designed specifically
to work as feed-forward deterministic feature extractors. Popular off-the-shelf networks were the decaf [DJV+14] and
the overfeat [SEZ+13]. Overfeat in particular was used for a wide-variety of tasks from pulmonary nodule detection
in CT scans [vGSJC15] to detecting people in crowded scenes [SAN16]. While this has been shown to work to some
degrees and has been used in practice constantly, it is not a perfect solution and some problems have known to exist.
This problem is particularly striking when using a network trained on visual object categorization and fine-tuned for
tasks in medical image.

Distillation from downloaded networks

Another concern with this philosophy of using off-the-shelf network as feature extractors is that the network 𝑛 is also
expected to be of the same size as 𝑁 . In some cases, we might desire a network of a different architecture. One strategy
to learn a different network using a pre-trained network is by using the idea of distillation [HVD15], [BRMW15]. The
idea of distillation works around the use of a temperature-raised softmax, defined as follows:⎡⎢⎣𝑃 (𝑦 = 1|x,Γ)

...
𝑃 (𝑦 = 𝑐|x,Γ)

⎤⎥⎦ =
1

𝑐∑︀
𝑝=1

𝑒
𝑤𝑝𝑁′(x)

Γ

⎡⎢⎢⎣
𝑒

𝑤1𝑁′(x)
Γ

...

𝑒
𝑤𝑐𝑁′(x)

Γ

⎤⎥⎥⎦
This temperature-raised softmax for Γ > 1 (Γ = 1 is simply the original softmax) provides a softer target which is
smoother across the labels. It reduces the probability of the most probable label and provides rewards for the second
and third most probable labels also, by equalizing the distribution. Using this dark-knowledge to create the errors 𝑒 (in
addition to the error over predictions as discussed above), knowledge can be transferred from 𝑁 , during the training
of 𝑛. This idea can be used to learn different types of networks. One can learn shallower [VL16] or deeper [RBK+14]
networks through this kind of mentoring.

Bibiliography

1.14. Bibiliography 31

tf-lenet Documentation, Release a1

32 Chapter 1. Tutorial

CHAPTER 2

Code Documentation

This is an API detailing every method and class in this project. You can refer to all the tools using this API.

Dataset

This module contains all the dataset related classes.

class lenet.dataset.fashion_mnist(dir=’data/fashion’)
Class for the fashion mnist objects. Ensure that data is downloaded from here

Parameters dir – Directory to cache at

images
This is the placeholder for images. This needs to be fed in using feed_dict.

labels
This is the placeholder for images. This needs to be fed in using feed_dict.

feed
This is a feeder from mnist tutorials of tensorflow. Use this for feeding in data.

class lenet.dataset.mnist(dir=’data’)
Class for the mnist objects

Parameters dir – Directory to cache at

images
This is the placeholder for images. This needs to be fed in using feed_dict.

labels
This is the placeholder for images. This needs to be fed in using feed_dict.

feed
This is a feeder from mnist tutorials of tensorflow. Use this for feeding in data.

33

https://github.com/zalandoresearch/fashion-mnist#get-the-data

tf-lenet Documentation, Release a1

Layers

This module contains classes definitions for different types of layers.

lenet.layers.conv_2d_layer(input, neurons=20, filter_size=(5, 5), stride=(1, 1, 1, 1),
padding=’VALID’, name=’conv’, activation=’relu’, visualize=False)

Creates a convolution layer

Parameters

• input – (NHWC) Where is the input of the layer coming from

• neurons – Number of neurons in the layer.

• name – name scope of the layer

• filter_size – A tuple of filter size (5,5) is default.

• stride – A tuple of x and y axis strides. (1,1,1,1) is default.

• name – A name for the scope of tensorflow

• visualize – If True, will add to summary. Only for first layer at the moment.

• activation – Activation for the outputs.

• padding – Padding to be used in convolution. “VALID” is default.

Returns The output node and A list of parameters that are learnable

Return type tuple

lenet.layers.dot_product_layer(input, params=None, neurons=1200, name=’fc’, activa-
tion=’relu’)

Creates a fully connected layer

Parameters

• input – Where is the input of the layer coming from

• neurons – Number of neurons in the layer.

• params – List of tensors, if supplied will use those params.

• name – name scope of the layer

• activation – What kind of activation to use.

Returns The output node and A list of parameters that are learnable

Return type tuple

lenet.layers.dropout_layer(input, prob, name=’dropout’)
This layer drops out nodes with the probability of 0.5 During training time, run a probability of 0.5. During test
time run a probability of 1.0. To do this, ensure that the prob is a tf.placeholder. You can supply this
probability with feed_dict in trainer.

Parameters

• input – a 2D node.

• prob – Probability feeder.

• name – name scope of the layer.

Returns An output node

Return type tensorflow tensor

34 Chapter 2. Code Documentation

tf-lenet Documentation, Release a1

lenet.layers.flatten_layer(input, name=’flatten’)
This layer returns the flattened output :param input: a 4D node. :param name: name scope of the layer.

Returns a 2D node.

Return type tensorflow tensor

lenet.layers.local_response_normalization_layer(input, name=’lrn’)
This layer returns the flattened output

Parameters

• input – a 4D node.

• name – name scope of the layer.

Returns a 2D node.

Return type tensorflow tensor

lenet.layers.max_pool_2d_layer(input, pool_size=(1, 2, 2, 1), stride=(1, 2, 2, 1),
padding=’VALID’, name=’pool’)

Creates a max pooling layer

Parameters

• input – (NHWC) Where is the input of the layer coming from

• name – name scope of the layer

• pool_size – A tuple of filter size (5,5) is default.

• stride – A tuple of x and y axis strides. (1,1,1,1) is default.

• name – A name for the scope of tensorflow

• padding – Padding to be used in convolution. “VALID” is default.

Returns The output node

Return type tensorflow tensor

lenet.layers.softmax_layer(input, name=’softmax’)
Creates the softmax normalization

Parameters

• input – Where is the input of the layer coming from

• name – Name scope of the layer

Returns (softmax, prediction), A softmax output node and prediction output node

Return type tuple

lenet.layers.unflatten_layer(input, channels=1, name=’unflatten’)
This layer returns the unflattened output :param input: a 2D node. :param chanels: How many channels are
there in the image. (Default = 1) :param name: name scope of the layer.

Returns a 4D node in (NHWC) format that is square in shape.

Return type tensorflow tensor

2.2. Layers 35

tf-lenet Documentation, Release a1

Network

This module contains the class for lenet. This contains all the architecture design.

lenet.network.apply_adam(var_list, obj, learning_rate=0.0001)
Sets up the ADAM optimizer

Parameters

• var_list – List of variables to optimizer over.

• obj – Node of the objective to minimize

Notes

learning_rate: What learning rate to run with. (Default = 0.01) Set with LR

lenet.network.apply_gradient_descent(var_list, obj)
Sets up the gradient descent optimizer

Parameters

• var_list – List of variables to optimizer over.

• obj – Node of the objective to minimize

Notes

learning_rate: What learning rate to run with. (Default = 0.01) Set with LR

lenet.network.apply_l1(var_list, name=’l1’)
This method applies L1 Regularization to all weights and adds it to the objectives collection.

Parameters

• var_list – List of variables to apply l1

• name – For the tensorflow scope.

Notes

What is the co-efficient of the L1 weight? Set L1_COEFF.(Default = 0.0001)

lenet.network.apply_regularizer(var_list)
This method applyies Regularization to all weights and adds it to the objectives collection.

Parameters var_list – List of variables to apply l1

Notes

What is the co-efficient of the L1 weight? Set L1_COEFF.(Default = 0.0001)

lenet.network.apply_rmsprop(var_list, obj)
Sets up the RMS Prop optimizer

Parameters

• var_list – List of variables to optimizer over.

36 Chapter 2. Code Documentation

tf-lenet Documentation, Release a1

• obj – Node of the objective to minimize

Notes

•learning_rate: What learning rate to run with. (Default = 0.001). Set LR

•momentum: What is the weight for momentum to run with. (Default = 0.7). Set MOMENTUM

•decay: What rate should learning rate decay. (Default = 0.95). Set DECAY

lenet.network.apply_weight_decay(var_list, name=’weight_decay’)
This method applies L2 Regularization to all weights and adds it to the objectives collection.

Parameters

• name – For the tensorflow scope.

• var_list – List of variables to apply.

Notes

What is the co-efficient of the L2 weight? Set WEIGHT_DECAY_COEFF.(Default = 0.0001)

class lenet.network.lenet5(images)
Definition of the lenet class of networks.

Notes

•Produces the lenet model and returns the weights. A typical lenet has two convolutional layers with filters
sizes 5X5 and 3X3. These are followed by two fully-connected layers and a softmax layer. This network
model, reproduces this network to be trained on MNIST images of size 28X28.

•Most of the important parameters are stored in global_definitions in the file
global_definitions.py.

Parameters images – Placeholder for images

images
This is the placeholder for images. This needs to be fed in from lenet.dataset.mnist`.

dropout_prob
This is also a placeholder for dropout probability. This needs to be fed in.

logits
Output node of the softmax layer, before softmax. This is an output from a lenet.layers.
dot_product_layer().

inference
Output node of the softmax layer that produces inference.

predictions
Its a predictions node which is tf.nn.argmax() of inference.

back_prop
Backprop is an optimizer. This is a node that will be used by a lenet.trainer.trainer later.

2.3. Network 37

tf-lenet Documentation, Release a1

obj
Is a cumulative objective tensor. This produces the total summer objective in a node.

cost
Cost of the back prop error alone.

labels
Placeholder for labels, needs to be fed in. This is added fed in from the dataset class.

accuracy
Tensor for accuracy. This is a node that measures the accuracy for the mini batch.

cook(labels)
Prepares the network for training

Parameters labels – placeholder for labels

Notes

•Each optimizer has a lot parameters that, if you want to change, modify in the code directly. Most do
not take in inputs and runs. Some parameters such as learning rates play a significant role in learning
and are good choices to experiment with.

•what optimizer to run with. (Default = sgd), other options include ‘rmsprop’ and ‘adam’. Set
OPTIMIZER

lenet.network.process_params(params)
This method adds the params to two collections. The first element is added to
regularizer_worthy_params. The first and second elements are is added to trainable_parmas.

Parameters params – List of two.

Support

This module contains additional code that I used from outside in support of this. These are typically outside of the
neural network, but used in filter visualization and similar.

lenet.support.initializer(shape, name=’xavier’)
A method that returns random numbers for Xavier initialization.

Parameters

• shape – shape of the initializer.

• name – Name for the scope of the initializer

Returns random numbers from tensorflow random_normal

Return type float

lenet.support.nhwc2hwcn(nhwc, name=’nhwc2hwcn’)
This method reshapes (NHWC) 4D bock to (HWCN) 4D block

Parameters nhwc – 4D block in (NHWC) format

Returns 4D block in (HWCN) format

Return type tensorflow tensor

38 Chapter 2. Code Documentation

tf-lenet Documentation, Release a1

lenet.support.nhwc2hwnc(nhwc, name=’nhwc2hwnc’)
This method reshapes (NHWC) 4D bock to (HWNC) 4D block

Parameters nhwc – 4D block in (NHWC) format

Returns 4D block in (HWNC) format

Return type tensorflow tensor

lenet.support.visualize_filters(filters, name=’conv_filters’)
This method is a wrapper to put_kernels_on_grid. This adds the grid to image summaries.

Parameters tensor (tensorflow) – A 4D block in (HWNC) format.

lenet.support.visualize_images(images, name=’images’, num_images=6)
This method sets up summaries for images.

Parameters

• images – a 4D block in (NHWC) format.

• num_images – Number of images to display

Todo

I want this to display images in a grid rather than just display using tensorboard’s ugly system. This method
should be a wrapper that converts images in (NHWC) format to (HWNC) format and makes a grid of the images.

Perhaps a code like this:

‘‘‘ images = images [0:num_images-1] images = nhwc2hwcn(images, name = ‘nhwc2hwcn’ + name) visual-
ize_filters(images, name)

Third Party

This module contains third party code that I used from outside in support of this. This file contains third party support
code that I have used from elsewhere. I have cited them appropriately where ever needed

lenet.third_party.put_kernels_on_grid(kernel, pad=1, name=’visualizer’)
Visualize convolutional filters as an image (mostly for the 1st layer). Arranges filters into a grid, with some
paddings between adjacent filters.

Parameters

• kernel – tensor of shape [Y, X, NumChannels, NumKernels] (HWCN)

• pad – number of black pixels around each filter (between them)

• name – name for tensorflow scope

Returns Tensor of shape [1, (Y+2*pad)*grid_Y, (X+2*pad)*grid_X, NumChannels].

Notes

This is not my method. This was written by kukurza and was hosted at: https://gist.github.com/kukuruza/
03731dc494603ceab0c5

2.5. Third Party 39

https://gist.github.com/kukuruza/03731dc494603ceab0c5
https://gist.github.com/kukuruza/03731dc494603ceab0c5

tf-lenet Documentation, Release a1

Trainer

This module contains the trainer code and other codes regarding training.

class lenet.trainer.trainer(network, dataset)
Trainer for networks

Parameters

• network – A network class object

• dataset – A tensorflow dataset object

network
This is the network we initialized with. We pass this as an argument and we add it to the current trainer
class.

dataset
This is also the initializer. It comes from the lenet.dataset.mnist module.

session
This is a session created with trainer. This session is used for training.

tensorboard
Is a summary writer tool. This writes things into the tensorboard that is then setup on the tensorboard
server. At the end of the trainer, it closes this tensorboard.

accuracy(images, labels)
Return accuracy

Parameters

• images – images

• labels – labels

Returns accuracy

Return type float

bp_step(mini_batch_size)
Sample a minibatch of data and run one step of BP.

Parameters mini_batch_size – Integer

Returns total objective and cost of that step

Return type tuple of tensors

summaries(name=’tensorboard’)
Just creates a summary merge bufer

Parameters name – a name for the tensorboard directory

test()
Run validation of the model

Returns accuracy

Return type float

train(iter=10000, mini_batch_size=500, update_after_iter=1000, training_accuracy=False, summa-
rize=True)

Run backprop for iter iterations

Parameters

40 Chapter 2. Code Documentation

tf-lenet Documentation, Release a1

• iter – number of iterations to run

• mini_batch_size – Size of the mini batch to process with

• training_accuracy – if True, will calculate accuracy on training data also.

• update_after_iter – This is the iteration for validation

• summarize – Tensorboard operation

training_accuracy(mini_batch_size=500)
Run validation of the model on training set

Parameters mini_batch_size – Number of samples in a mini batch

Returns accuracy

Return type float

write_summary(iter=0, mini_batch_size=500)
This method updates the summaries

Parameters

• iter – iteration number to index values with.

• mini_batch_size – Mini batch to evaluate on.

2.6. Trainer 41

tf-lenet Documentation, Release a1

42 Chapter 2. Code Documentation

CHAPTER 3

License

The MIT License

TF-Lenet Copyright (c) [2017] Ragav Venkatesan

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice, the credits below and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Credits and copyright attributions to other sources:

• To kukurza for the rasterizing code that hosted on their gist

43

http://www.ragav.net
https://github.com/kukuruza
https://gist.github.com/kukuruza/03731dc494603ceab0c5

tf-lenet Documentation, Release a1

44 Chapter 3. License

Bibliography

[BRMW15] Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian dark knowledge.
In Advances in Neural Information Processing Systems, 3438–3446. 2015.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[DT05] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, 886–893. IEEE, 2005.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: a large-scale hierarchical
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 248–255.
IEEE, 2009.

[DWSP12] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection: an evaluation of the
state of the art. IEEE transactions on pattern analysis and machine intelligence, 34(4):743–761, 2012.

[DJV+14] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell.
Decaf: a deep convolutional activation feature for generic visual recognition. In International conference on ma-
chine learning, 647–655. 2014.

[FFFP06] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4):594–611, 2006.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. 2016.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[KS04] Yan Ke and Rahul Sukthankar. Pca-sift: a more distinctive representation for local image descriptors. In
Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, II–II. IEEE, 2004.

[KHD11] Aniruddha Kembhavi, David Harwood, and Larry S Davis. Vehicle detection using partial least squares.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1250–1265, 2011.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, 1097–1105. 2012.

45

tf-lenet Documentation, Release a1

[LBD+90] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E Hub-
bard, and Lawrence D Jackel. Handwritten digit recognition with a back-propagation network. In Advances in
neural information processing systems, 396–404. 1990.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: common objects in context. In European conference on computer vision,
740–755. Springer, 2014.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440. 2015.

[Low99] David G Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference on, volume 2, 1150–1157. Ieee, 1999.

[LMT+07] Jun Luo, Yong Ma, Erina Takikawa, Shihong Lao, Masato Kawade, and Bao-Liang Lu. Person-specific sift
features for face recognition. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, volume 2, II–593. IEEE, 2007.

[LS08] Siwei Lyu and Eero P Simoncelli. Nonlinear image representation using divisive normalization. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1–8. IEEE, 2008.

[OL13] Omar Oreifej and Zicheng Liu. Hon4d: histogram of oriented 4d normals for activity recognition from depth
sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 716–723. 2013.

[RBK+14] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error
propagation. Technical Report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[SEZ+13] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Overfeat:
integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229,
2013.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning research,
15(1):1929–1958, 2014.

[SGS15] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

[SAN16] Russell Stewart, Mykhaylo Andriluka, and Andrew Y. Ng. End-to-end people detection in crowded scenes.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[SMYC10] Ju Sun, Yadong Mu, Shuicheng Yan, and Loong-Fah Cheong. Activity recognition using dense long-
duration trajectories. In Multimedia and Expo (ICME), 2010 IEEE International Conference on, 322–327. IEEE,
2010.

[SBM06] Zehang Sun, George Bebis, and Ronald Miller. On-road vehicle detection: a review. IEEE transactions on
pattern analysis and machine intelligence, 28(5):694–711, 2006.

[SIVA17] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In AAAI, 4278–4284. 2017.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 1–9. 2015.

46 Bibliography

tf-lenet Documentation, Release a1

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2818–2826. 2016.

[vGSJC15] Bram van Ginneken, Arnaud AA Setio, Colin Jacobs, and Francesco Ciompi. Off-the-shelf convolutional
neural network features for pulmonary nodule detection in computed tomography scans. In Biomedical Imaging
(ISBI), 2015 IEEE 12th International Symposium on, 286–289. IEEE, 2015.

[VCLL12] Ragav Venkatesan, Parag Chandakkar, Baoxin Li, and Helen K Li. Classification of diabetic retinopa-
thy images using multi-class multiple-instance learning based on color correlogram features. In Engineering in
Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 1462–1465. IEEE,
2012.

[VL16] Ragav Venkatesan and Baoxin Li. Diving deeper into mentee networks. 2016.

[VLBM08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and compos-
ing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine
learning, 1096–1103. ACM, 2008.

[WOC+07] Jianxin Wu, Adebola Osuntogun, Tanzeem Choudhury, Matthai Philipose, and James M Rehg. A scalable
approach to activity recognition based on object use. In Computer Vision, 2007. ICCV 2007. IEEE 11th Interna-
tional Conference on, 1–8. IEEE, 2007.

[ZvdM13] Lu Zhang and Laurens van der Maaten. Structure preserving object tracking. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 1838–1845. 2013.

[ZYS09] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using sift features and mean shift. Computer
vision and image understanding, 113(3):345–352, 2009.

[ZYCA06] Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and Shai Avidan. Fast human detection using a cascade
of histograms of oriented gradients. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 2, 1491–1498. IEEE, 2006.

Bibliography 47

tf-lenet Documentation, Release a1

48 Bibliography

Python Module Index

l
lenet.dataset, 33
lenet.layers, 34
lenet.network, 36
lenet.support, 38
lenet.third_party, 39
lenet.trainer, 40

49

tf-lenet Documentation, Release a1

50 Python Module Index

Index

A
accuracy (lenet.network.lenet5 attribute), 38
accuracy() (lenet.trainer.trainer method), 40
apply_adam() (in module lenet.network), 36
apply_gradient_descent() (in module lenet.network), 36
apply_l1() (in module lenet.network), 36
apply_regularizer() (in module lenet.network), 36
apply_rmsprop() (in module lenet.network), 36
apply_weight_decay() (in module lenet.network), 37

B
back_prop (lenet.network.lenet5 attribute), 37
bp_step() (lenet.trainer.trainer method), 40

C
conv_2d_layer() (in module lenet.layers), 34
cook() (lenet.network.lenet5 method), 38
cost (lenet.network.lenet5 attribute), 38

D
dataset (lenet.trainer.trainer attribute), 40
dot_product_layer() (in module lenet.layers), 34
dropout_layer() (in module lenet.layers), 34
dropout_prob (lenet.network.lenet5 attribute), 37

F
fashion_mnist (class in lenet.dataset), 33
feed (lenet.dataset.fashion_mnist attribute), 33
feed (lenet.dataset.mnist attribute), 33
flatten_layer() (in module lenet.layers), 34

I
images (lenet.dataset.fashion_mnist attribute), 33
images (lenet.dataset.mnist attribute), 33
images (lenet.network.lenet5 attribute), 37
inference (lenet.network.lenet5 attribute), 37
initializer() (in module lenet.support), 38

L
labels (lenet.dataset.fashion_mnist attribute), 33
labels (lenet.dataset.mnist attribute), 33
labels (lenet.network.lenet5 attribute), 38
lenet.dataset (module), 33
lenet.layers (module), 34
lenet.network (module), 36
lenet.support (module), 38
lenet.third_party (module), 39
lenet.trainer (module), 40
lenet5 (class in lenet.network), 37
local_response_normalization_layer() (in module

lenet.layers), 35
logits (lenet.network.lenet5 attribute), 37

M
max_pool_2d_layer() (in module lenet.layers), 35
mnist (class in lenet.dataset), 33

N
network (lenet.trainer.trainer attribute), 40
nhwc2hwcn() (in module lenet.support), 38
nhwc2hwnc() (in module lenet.support), 38

O
obj (lenet.network.lenet5 attribute), 37

P
predictions (lenet.network.lenet5 attribute), 37
process_params() (in module lenet.network), 38
put_kernels_on_grid() (in module lenet.third_party), 39

S
session (lenet.trainer.trainer attribute), 40
softmax_layer() (in module lenet.layers), 35
summaries() (lenet.trainer.trainer method), 40

T
tensorboard (lenet.trainer.trainer attribute), 40

51

tf-lenet Documentation, Release a1

test() (lenet.trainer.trainer method), 40
train() (lenet.trainer.trainer method), 40
trainer (class in lenet.trainer), 40
training_accuracy() (lenet.trainer.trainer method), 41

U
unflatten_layer() (in module lenet.layers), 35

V
visualize_filters() (in module lenet.support), 39
visualize_images() (in module lenet.support), 39

W
write_summary() (lenet.trainer.trainer method), 41

52 Index

	Tutorial
	Introduction
	Dot-Product Layers
	Implementation

	Convolutional Layers
	Implementation

	Pooling Layers
	Implementation

	Softmax Layer
	Implementation

	Reshaping layers
	CNN Architecture Philosophies
	Normalization Layer
	Dropout Layers
	Implementation

	Network
	Dataset
	Network Architecture
	Cooking the network

	Trainer
	Run and Outputs
	Tensorboard

	Additional Notes
	Stochastic Gradient Descent
	Off-the-shelf Downloadable networks
	Distillation from downloaded networks

	Bibiliography

	Code Documentation
	Dataset
	Layers
	Network
	Support
	Third Party
	Trainer

	License
	Bibliography
	Python Module Index

