Tethys Platform Documentation
Release 1.4.0

Nathan Swain

June 20, 2017

Contents

1 Contents 3
1.1 Features e e e e e e e e e 3
1.2 What's New o o i e e e e e e e e e 10
1.3 Installation e e e e e 17
1.4 Tutorials e e e e e 35
1.5 Software Suite e e 67
1.6 Software Development Kit e e e e e 73
1.7 Tethys Portal e e e e e e e e e e 222
1.8 Production Installation e e e e e e 241
1.9 Source Code e e e e e e e e e e 255
1.10 Contribute e e e e e e e 255
111 Supplementary o oL e e e e e e 255
1.12 Summary of References e e e e 267
L3 GlOSSATY . . v o o e e e e e e e e e e e e e e e e e e 268
2 Acknowledgements 271
3 Indices and tables 273

Tethys Platform Documentation, Release 1.4.0

Last Updated: December 12, 2016

Tethys is a platform that can be used to develop and host environmental web apps. It includes a suite of free and
open source software (FOSS) that has been carefully selected to address the unique development needs of water
resources web apps. Tethys web apps are developed using a Python software development kit (SDK) which includes
programmatic links to each software component. Tethys Platform is powered by the Django Python web framework
giving it a solid web foundation with excellent security and performance. Refer to the Fearures article for an overview
of the features of Tethys Platform.

Important: Tethys Platform 1.4.0 has arrived! Check out the What’s New article for a description of the new features
and changes.

Contents 1

Tethys Platform Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Contents

Features

Last Updated: May 28, 2015

Tethys is a platform that can be used to develop and host engaging, interactive water resources web applications or
web apps. It includes a suite of free and open source software (FOSS) that has been carefully selected to address
the unique development needs of water resources web apps. Tethys web apps are developed using a Python software
development kit (SDK) which includes programmatic links to each software component. Tethys Platform is powered
by the Django Python web framework giving it a solid web foundation with excellent security and performance.

@ Stream Gages

cages Stream G 1
ream Gage
All Gages
. N W12008 e \ 2 2 9 o IV
® [GD)] \ Z 3 A | g |3 Map | sateliite
T l 3 3 {87 o
Stream Gage 1 P \gh Waterfow! 5 o BN % (a8
\ < 2 entarea £ Riverside Couniry Club °
\\V/ LAKEVIEW ; E1600 S St 5 Y
Stream Gage 2 H)
= 2
@ o) £2200N
Stream Gage 3
- N o z ¥ Mountain
+ WIT00N S\ J © L\T00N 3 (&)
Stream Gage 4 e e PN
3,
%
<
P g =
5 T WAL 3-& EsooN
e @ = ET00N
2 Z8 =
o ¢ 2 g
S H m
f H
W Catiter 5 o Cemerst k% D) Provo
(-] z X »
w2008 2 %, g €300
@ 8 % S »
— z @ %, o
= Wsso 2, 2
2 o
2
]
%
) %
Q
18605
=l | a,
East Bay Golf[Course (i A %,
o & o .
3% 3
Clogale

Map data ©2014 Google * 1 kmi——_1 TemsofUse Reporta map error

Back

https://www.djangoproject.com/

Tethys Platform Documentation, Release 1.4.0

Tethys platform can be used to create engaging, interactive web apps for water resources.

Software Suite

Tethys Platform provides a suite of free and open source software. Included in the Software Suite is PostgreSQL
with the PostGIS extension for spatial database storage, GeoServer for spatial data publishing, and 52 North WPS for
geoprocessing. Tethys also provides Gizmos for inserting OpenLayers and Google Maps for interactive spatial data
visualizations in your web apps. The Software Suite also includes HTCondor for managing distributed computing

resources and scheduling computing jobs.
S 1 0 =

.
—t

Web Apps
Tethys Portal
Tethys SOK

POWERED BY

django

V| Ckan Windows Azure
@ HYDROSHARE

,;1! Google maps
@ OpenLayers™

@ Highcharts Js

amazon
webservices™

Daiaset Storage Iﬂmgnw

Cloud Computing

Distributed Computing

Visualization

External Resources

Tethys Platform include software to meet water resources web app development needs.

Note: Read more about the Software Suite by reading the Software Suite documentation.

Python Software Development Kit

Tethys web apps are developed with the Python programming language and a Software Development Kit (SDK). Tethys
web apps projects are organized using a model-view-controller (MVC) approach. The SDK provides Python module
links to each software component of the Tethys Platform, making the functionality of each software easy to incorporate
each in your web apps. In addition, you can use all of the Python modules that you are accustomed to using in your
scientific Python scripts to power your web apps.

Tethys web apps are developed using Python and the Tethys SDK.

4 Chapter 1. Contents

http://www.postgresql.org/
http://postgis.net/
http://geoserver.org/
http://52north.org/communities/geoprocessing/wps/
http://openlayers.org/
https://developers.google.com/maps/web/
http://research.cs.wisc.edu/htcondor/
https://www.python.org/

Tethys Platform Documentation, Release 1.4.0

G- Project - | r:.app.py
v [dtethysapp-my_first_app tethys_apps.base TethysAppBase, PersistentStore, app_controller_maker
¥ [Otethysapp
¥ [E1my first_app
» [public
» [dtemplates
& _init___py
n;app.pv name = 'My First App'
[controllers.py index = ‘my_fi W H R
E;inn_ﬂoreapv icon = 'my_first_app/images/icon.gif'
E;rnodeva package = 'my_first app'
ﬂ;uﬂnﬁeapv TGGtTUiL.: 'my—f%rs -app'
color = '#9b59b6
r;__jnn_,pv
» [Jtethysapp_my_first_apg controllers(
E;__jniL_,pv
r:.setup.pv
» [ils External Libraries AppController = app_controller_maker(.root_url)

MyFirstApp(TethysAppBase):

controllers = (AppController(="home '
='my-first-app'
='my_first_app.controllers.home'

controllers

persistent_stores(

stores = (PersistentStore(='primary'
init_stores:init_primary'

stores

1.1. Features 5

Tethys Platform Documentation, Release 1.4.0

Note: Read more about the Tethys SDK by reading the Software Development Kit documentation.

Templating and Gizmos

Tethys SDK takes advantage of the Django template system so you can build dynamic pages for your web app while
writing less HTML. It also provides a series of modular user interface elements called Gizmos. With only a few lines
of code you can add range sliders, toggle switches, auto completes, interactive maps, and dynamic plots to your web

app.

Quick Start Ma \/‘ ew

Buttons p

Date Picker The Map View gizmo can be used to visualize maps of spatial data. Map View is powered by OpenLayers 3, an open source pure javascript
mapping library.

Range Slider .)
For example code and an explanation of options see Gizmo Options Object API for Map View

Select Input
NOTE: Do not create more than one Map View gizmo on a page at any given time.

Text Input

. Click here for demo on a separate page.

Toggle Switch

Message Box Demo

Table View

—— O aaoEsEaE 1]

£

Google Map View
FetchClimate

Drawing Layer -

USA Population -

’ Low Density
. Medium Density

’ High Density

Test Geo)SON -
Q Polygons

< Lines

Park City Watershed ~

4 watershed Boundary

<X stream Network

Basemap -

Insert common user interface elements like date pickers, maps, and plots with minimal coding.

Note: Read more about templating and Gizmo by reading the App Templating API and the Template Gizmos API
documentation.

Tethys Portal

Tethys Platform includes a modern web portal built on Django that is used to host web apps called Tethys Portal. It
provides the core website functionality that is often taken for granted in modern web applications including a user
account system with with a password reset mechanism for forgotten passwords. It provides an administrator backend
that can be used to manage user accounts, permissions, link to elements of the software suite, and customize the
instance.

6 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

The portal also includes landing page that can be used to showcase the capabilities of the Tethys Platform instance and
an app library page that serves as the access point for installed apps. The homepage and theme of Tethys Portal are
customizable allowing organizations to re-brand it to meet the their needs.

@ Tethys Apps Developer john & +

Apps Library

Early Flood UEB Model Burned Area
Warning Builder Flooding

Wasatch Front

Urban .
Stormwater ADHydro imulator
Runoff Visualizer

Browse available web apps using the Apps Library.

Note: Read more about the Tethys Portal by reading the 7ethys Portal documentation.

Computing

Tethys Platform includes Python modules that allow you to provision and run computing jobs in distributed comput-
ing environments. With CondorPy you can define your computing jobs and submit them to distributed computing
environments provided by HTCondor.

CondorPy enables computing jobs to be created and submitted to a HTCondor computing pool.

HTCondor provides a way to make use of the idle computing power that is already available in your office. Alterna-
tively, TethysCluster enables you to provision scalable computing resources in the cloud using commercial services
like Amazon AWS and Microsoft Azure.

TethysCluster makes it easy to scale your computing resources using commercial cloud services.

1.1. Features 7

http://research.cs.wisc.edu/htcondor/
https://aws.amazon.com/free/cloud-computing-free-tier/?sc_channel=PS&sc_campaign=AWS_Free_Tier_2013_T&sc_country=US&sc_publisher=Google&sc_medium=b_test_cloud_computing_e-amazon_computing&sc_content=50999158962&sc_detail=Amazon%20computing&sc_category=aws_cloud_computing&sc_segment=cloud_computing&sc_matchtype=e&s_kwcid=AL!4422!3!50999158962!e!!g!!amazon%20computing&ef_id=U2k10QAAAbgQyF5m:20141124202406:s
https://azure.microsoft.com/en-us/

Tethys Platform Documentation, Release 1.4.0

X CondorPy

“«HTCond%r

@529 High Throughput Computing

8 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

gE\B TethysCluster

== Microsoft Azure Eg‘sgrﬁgeg

1.1. Features 9

Tethys Platform Documentation, Release 1.4.0

Note: To learn more, read the Jobs API and the Compute API.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1135482

What’s New

Last Updated: December 1, 2016

Refer to this article for information about each new release of Tethys Platform.

Release 1.4.0
App Permissions

* There is now a formalized mechanism for creating permissions for apps.

e It includes a permission_required decorator for controllers and a has_permission method for checking permis-
sions within controllers.

See: Permissions API

Tags for Apps

* Apps can be assigned tags via the “tags” property in app.py.
* App tags can be overriden by portal admins using the Installed Apps settings in the admin portal.

« If there are more than 5 app tiles in the apps library, a list of buttons, one for each tag, will be displayed at the
top of the Apps Library page.

* Clicking on one of the tag buttons, will filter the list of displayed apps to only those with the selected tag.

Terms and Conditions Management

* Portal Admins can now manage and enforce portal-wide terms and conditions and other legal documents.
* Documents are added via the admin interface of the portal.

* Documents can be versioned and dates at which they become active can be set.

* Once the date passes, all users will be prompted to accept the terms of the new documents.

See: Manage Terms and Conditions

10 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

GeoServer

* The GeoServer docker was updated to version 2.8.3

¢ It can be configured to run in clustered mode (multiple instances of GeoServer running inside the container) for
greater stability and performance

¢ Several extensions are now included:

— JMS Clustering

Flow Control

CSS Styles
NetCDF
NetCDF Output

GDAL WCS Output

Image Pyramid

See: software_suite/geoserver

Tethys Docker CLI
* Modified behaviour of “-c¢” option to accept a list of containers names so that commands can be performed on
subsets of the containers

 Improved behaviour of “start” and “stop” commands such that they will start/stop all installed containers if some
are not installed

* Improved behaviour of the “remove” command to skip containers that are not installed

See: docker <subcommand> [options]

Select2 Gizmo

* Updated the Select2 Gizmo libraries to version 4.0.

» Not changes should be necessary for basic usage of the Select2 Gizmo.

« If you are using advanced features of Select2, you will likely need to migrate some of your code.
 Refer to https://select2.github.io/announcements-4.0.html#migrating-from-select2-35 for migration help.

See: Select Input

MapView Gizmo

* New JavaScript API endpoints for the MapView.

e Use the TETHYS_MAP_VIEW.getSelectInteraction() method to have more control over items that are selected.
* MVLayer Select Features now supports selection of vector layers in addition to the WMS Layers.

¢ Added support for images in the legend including support for GeoServer GetLegendGraphic requests.

See: Map View

1.2. What’s New 11

http://docs.geoserver.org/2.8.x/en/user/community/jms-cluster/index.html
http://docs.geoserver.org/2.8.x/en/user/extensions/css/index.html
http://docs.geoserver.org/2.8.x/en/user/extensions/controlflow/index.html
http://docs.geoserver.org/2.8.x/en/user/extensions/netcdf/netcdf.html
http://docs.geoserver.org/2.8.x/en/user/extensions/netcdf-out/index.html
http://docs.geoserver.org/2.8.x/en/user/community/gdal/index.html
http://docs.geoserver.org/2.8.x/en/user/tutorials/imagepyramid/imagepyramid.html
https://select2.github.io/announcements-4.0.html#migrating-from-select2-35

Tethys Platform Documentation, Release 1.4.0

PlotView Gizmo

» New JavaScript API endpoints for initializing PlotViews dynamically.

See: Plot View

Workflow Job Type
* New Condor Workflow provides a way to run a group of jobs (which can have hierarchical relationships) as a
single job.
* The hierarchical relationships are defined as parent-child relationships between jobs.

e As part of this addition the original Condor Job type was refactored and, while backwards compatibility is
maintained in version 1.4, several aspects of how job templates are defined have been deprecated.

See: Condor Workflow Job Type

Testing Framework

e New Tethys CLI command to run tests on Tethys and apps.

* Tethys SDK now provides a TethysTestCase to streamlines app testing.

* Persistent stores is supported in testing.

* Tethys App Scaffold now includes testing module with example test code.

See: Testing API and test [options]
Installation

e Installation Instructions for Ubuntu 16.04
See: Installation on Ubuntu 16.04
Bug Fixes

* Fixed an issue with URL mapping that was masking true errors with contollers (see: Issue #177)
* Fixed an issue with syncstores that use the string version of the path to the intializer function (see: Issue #185)

* Fixed an issue with syncstores that would cause it to fail the first time (see: Issue #194)

Prior Release Notes

Prior Release Notes

Last Updated: May 28, 2016

Information about prior releases is shown here.

12 Chapter 1. Contents

https://github.com/tethysplatform/tethys/issues/177
https://github.com/tethysplatform/tethys/issues/185
https://github.com/tethysplatform/tethys/issues/194

Tethys Platform Documentation, Release 1.4.0

Release 1.3.0

Tethys Portal
* Open account signup disabled by default
» New setting in settings.py that allows open signup to be enabled

See: Customize

Map View
* Feature selection enabled for ImageWMS layers
* Clicking on features highlights them when enabled
¢ Callback functions can be defined in JavaScript to trap on the feature selection change event
» Custom styles can be applied to highlighted features
* Basemap can be disabled
» Layer attributes can be set in MVLayer (e.g. visibility and opacity)
¢ Updated to use OpenLayers 3.10.1
See: Map View

Plot View

* D3 plotting implemented as a free alternative to Highcharts for line plot, pie plot, scatter plot, bar plot, and
timeseries plot.

See: Plot View

Spatial Dataset Services
» Upgraded gsconfig dependency to version 1.0.0

¢ Provide two new methods on the geoserver engine to create SQL views and simplify the process of linking
PostGIS databases with GeoServer.

See: GeoServer Spatial Dataset Engine Reference

App Feedback
* Places button on all app pages that activates a feedback form
 Sends app-users comments to specified developer emails
* Includes user and app specific information

See: App Feedback

Handoff

* Handoff Manager now available, which can be used from controllers to handoff from one app to another on the
same Tethys portal (without having to use the REST API)

* The way handoff handler controllers are specified was changed to be consistent with other controllers

See: Handoff API

1.2. What’s New 13

Tethys Platform Documentation, Release 1.4.0

Jobs Table Gizmo
* The refresh interval for job status and runtime is configurable

See: Jobs Tuble

Social Authentication
* Support for HydroShare added

See: Social Authentication

Dynamic Persistent Stores
* Persistent stores can now be created dynamically (at runtime)
* Helper methods to list persistent stores for the app and check whether a store exists.

See: Persistent Stores API

App Descriptions
* Apps now feature optional descriptions.
* An information icon appears on the app icon when descriptions are available.
* When the information icon is clicked on the description is shown.

See: App Base Class API

Bugs
* Missing initial value parameter was added to the select and select2 gizmos.
* Addressed several cases of mixed content warnings when running behind HTTPS.

* The disconnect social account buttons are now disabled if your account doesn’t have a password or there is only
one social account associated with the account.

* Fixed issues with some of the documentation not being generated.
* Fixed styling issues that made the Message Box gizmo unusable.
* Normalized references to controllers, persistent store initializers, and handoff handler functions.

* Various docs typos were fixed.

Release 1.2.0

Social Authentication
* Social login supported
* Google, LinkedIn, and Facebook
* HydroShare coming soon
» New controls on User Profile page to manage social accounts

See: Social Authentication

14 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

D3 Plotting Gizmos
* D3 alternatives for all the HighCharts plot views
» Use the same plot objects to define both types of charts
 Simplified and generalized the mechanism for declaring plot views

See: Plot View

Job Manager Gizmo

* New Gizmo that will show the status of jobs running with the Job Manager

Workspaces
* SDK methods for creating and managing workspaces for apps
* List files and directories in workspace directory
¢ Clear and remove files and directories in workspace

See: Workspaces API

Handoff
* Use handoff to launch one app from another
 Pass arguments via GET parameters that can be used to retrieve data from the sender app

See: Handoff API

Video Tutorials
» New video tutorials have been created
* The videos highlight working with different software suite elements
¢ CKAN, GeoServer, PostGIS
* Advanced user input forms
* Advanced Mapping and Plotting Gizmos

See: Video Tutorials

New Location for Tethys SDK
» Tethys SDK methods centralized to a new convenient package: tethys_sdk

See: Software Development Kit

Persistent Stores Changes
* Moved the get_persistent_stores_engine() method to the TethysAppBase class.
* To call the method import your app class and call it on the class.
* The old get_persistent_stores_engine() method has been flagged for deprecation.

See: Persistent Stores API

1.2. What’s New 15

Tethys Platform Documentation, Release 1.4.0

Command Line Interface
e New management commands including createsuperuser, collectworkspaces,and collectall
* Modified behavior of syncdb management command, which now makes and then applies migrations.

See: Command Line Interface

Release 1.1.0

Gizmos
* Options objects for configuring gizmos (see Template Gizmos API for more details).

* Many improvements to Map View (see Map View)

Improved layer support including GeoJSON, KML, WMS services, and ArcGIS REST services

Added a mechanism for creating legends

Added drawing capabilities
— Upgraded to OpenLayers version 3.5.0

* New objects for simplifying Highcharts plot creation (see Plot View)
— HighChartsLinePlot

HighChartsScatterPlot

HighChartsPolarPlot

HighChartsPiePlot

HighChartsBarPlot

HighChartsTimeSeries

HighChartsAreaRange
* Added the ability to draw a box on Google Map View

Tethys Portal Features
* Reset forgotten passwords
* Bypass the home page and redirect to apps library
* Rename the apps library page title
* The two mobile menus were combined into a single mobile menu

» Dataset Services and Web Processing Services admin settings combined into a single category called Tethys
Services

* Added “Powered by Tethys Platform” attribution to footer

Job Manager
 Provides a unified interface for all apps to create submit and monitor computing jobs
* Abstracts the CondorPy module to provide a higher-level interface with computing jobs

 Allows definition of job templates in the app.py module of apps projects

16 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Documentation Updates

* Added documentation about the Software Suite and the relationship between each software component and the
APIs in the SDK is provided

* Documentation for manual download and installation of Docker images

* Added system requirements to documentation

Bug Fixes
* Naming new app projects during scaffolding is more robust
* Fixed bugs with fetch climate Gizmo
* Addressed issue caused by usernames that included periods (.) and other characters
* Made header more responsive to long names to prevent header from wrapping and obscuring controls
* Fixed bug with tethys gen apache command

* Addressed bug that occurred when naming WPS services with uppercase letters

Other
* Added parameter of UrlMap that can be used to specify custom regular expressions for URL search patterns
¢ Added validation to service engines

 Custom collectstatic command that automatically symbolically links the public/static directories of Tethys apps
to the static directory

* Added “list” methods for dataset services and web processing services to allow app developers to list all available
services registered on the Tethys Portal instance

Installation

Last Updated: July 1, 2016

This section describes how to install Tethys Platform. Installation instructions are provided for Ubuntu 14.04 and
16.04.

System Requirements

Last Updated: April 20, 2015

Use these guidelines as a starting point for installing Tethys Platform as a stand alone environment:
* Processor: 4 CPU Cores
* RAM: 4GB
* Hard Disk: 10 GB

Caution: The stand alone configuration should be used primarily for development purposes. It is not recom-
mended that you use a stand alone configuration for production installations. See the Production Installation
documentation for system requirements of a production installation.

1.3. Installation 17

Tethys Platform Documentation, Release 1.4.0

Installation on Ubuntu 14.04

Last Updated: December 12, 2016

Warning: These installation instructions have been tested for Ubuntu 14.04 only. It is likely that you will
encounter problems if you try to use these instructions on any other Linux distribution (e.g. RedHat, CentOS) or
even other versions of Ubuntu. The current release of Ubuntu is 16.04, so use the Alternative Downloads page to
download and install Ubuntu 14.04.

Tip: To install and use Tethys Platform, you will need to be familiar with using the command line/terminal. For a
quick introduction to the command line, see the Terminal Quick Guide article.

Also, check to make sure that your installation of Ubuntu = version 14.04. The following steps are likely not to work
with other versions.

1. Install the Dependencies

1. Install most of the dependencies via apt-get. Open a terminal and execute the following commands:

$ sudo apt-get update
$ sudo apt-get install python-dev python-pip python-virtualenv libpg-dev libxml2-dev libxsltl-de

You may be prompted to enter your password to authorize the installation of these packages. If you are
prompted about the disk space that will be used to install the dependencies, enter Y and press Enter to
continue.

2. Finish the Docker Installation

There are a few additional steps that need to be completed to finish the installation of Docker.
1. Execute the following command to finish the installation of Docker:

$ source /etc/bash_completion.d/docker

Note: If running this command and those that follow with docker doesn’t work, try substituting docker.io
instead.

2. Add your user to the Docker group. This is necessary to use the Tethys Docker commandline tools. In a
command prompt execute:

$ sudo gpasswd —a ${USER} docker
$ sudo service docker restart
$ gnome-session-quit --logout

3. Select log out and then log back in to make the changes take effect.

Important: DO NOT FORGET PART C! Be sure to logout of Ubuntu and log back in before you continue. You
will not be able to complete the installation without completing this step.

Warning: Adding a user to the Docker group is the equivalent of declaring a user as root. See Giving non-root
access for more details.

18 Chapter 1. Contents

http://www.ubuntu.com/download/alternative-downloads
https://docs.docker.com/installation/ubuntulinux/#giving-non-root-access
https://docs.docker.com/installation/ubuntulinux/#giving-non-root-access

Tethys Platform Documentation, Release 1.4.0

3. Create Virtual Environment and Install Tethys Platform

Python virtual environments are used to create isolated Python installations to avoid conflicts with dependencies of
other Python applications on the same system. The following commands should be executed in a terminal.

1. Create a Python virtual environment and activate it:

$ sudo mkdir -p /usr/lib/tethys

$ sudo chown “whoami® /usr/lib/tethys

$ virtualenv --no-site-packages /usr/lib/tethys
$. /usr/lib/tethys/bin/activate

Hint: You may be tempted to enter single quotes around the whoami directive above, but those characters are actually
grave accent characters: ‘. This key is usually located to the left of the 1 key or in that vicinity.

Important: The final command above activates the Python virtual environment for Tethys. You will know the virtual
environment is active, because the name of it will appear in parenthesis in front of your terminal cursor:

(tethys) $ _

The Tethys virtual environment must remain active for the entire installation. If you need to logout or close the terminal
in the middle of the installation, you will need to reactivate the virtual environment. This can be done at anytime by
executing the following command (don’t forget the dot):

$. /usr/lib/tethys/bin/activate

If you get tired of typing . /usr/lib/tethys/bin/activate to activate your virtual environment, you can
add an alias to your .bashrc file:

$ echo "alias t='. /usr/lib/tethys/bin/activate'" >> ~/.bashrc

Close your terminal window and reopen it to effect the changes. Now, to activate your virtual environment all you

have to do is use the alias t:

$t
(tethys) $ _

2. Install Tethys Platform into the virtual environment with the following command:

(tethys) $ git clone https://github.com/tethysplatform/tethys /usr/lib/tethys/src

Tip: If you would like to install a different version of Tethys Platform, you can use git to checkout the tagged release
branch. For example, to checkout version 1.0.0:

$ cd /usr/lib/tethys/src
$ git checkout tags/1.0.0

For a list of all tagged releases, see Tethys Platform Releases. Depending on the version you intend to install, you may
need to delete your entire virtual environment (i.e.: the /usr/lib/tethys directory) to start fresh.

3. Install the Python modules that Tethys requires:

(tethys) $ pip install —--upgrade -r /usr/lib/tethys/src/requirements.txt
(tethys) $ python /usr/lib/tethys/src/setup.py develop

4. Restart the Python virtual environment:

1.3. Installation 19

http://www.wikiwand.com/en/Grave_accent
https://github.com/tethysplatform/tethys/releases

Tethys Platform Documentation, Release 1.4.0

(tethys) $ deactivate
$. /usr/lib/tethys/bin/activate
4, Install Tethys Software Suite Docker Containers

Execute the following Tethys commands using the tethys Command Line Interface to initialize the Docker containers:

(tethys) $ tethys docker init

You will be prompted to enter various parameters needed to customize your instance of the software. Take note of the
usernames and passwords that you specify. You will need them to complete the installation.

Tip: Running into errors with this command? Make sure you have completed all of step 2, including part c.

Occasionally, you may encounter an error due to poor internet connection. Run the tethys docker init com-
mand repeatedly. It will pick up where it left off and eventually lead to success. When in doubt, try, try again.

5. Start the Docker Containers

Use the following Tethys command to start the Docker containers:

(tethys) $ tethys docker start

If you would like to test the Docker containers, see Test Docker Containers.

6. Create Settings File and Configure Settings

In the next steps you will configure your Tethys Platform and link it to each of the software in the software suite.
Create a new settings file for your Tethys Platform installation using the tethys Command Line Interface. Execute the
following command in the terminal:

(tethys) $ tethys gen settings —-d /usr/lib/tethys/src/tethys_apps

This will create a file called settings.py in the directory /usr/lib/tethys/src/tethys_apps. As the
name suggests, the settings.py file contains all of the settings for the Tethys Platform. There are a few settings
that need to be configured in this file.

Note: The usr directory is located in the root directory which can be accessed using a file browser and selecting
Computer from the menu on the left.

Open the settings.py file that you just created (/usr/lib/tethys/src/tethys_apps/settings.py)
in a text editor and modify the following settings appropriately.

1. Run the following command to obtain the host and port for Docker running the database (PostGIS). You will
need these in the following steps:

(tethys) $ tethys docker ip

2. Replace the password for the main Tethys Portal database, tethys_default, with the password you created in
the previous step. Also make sure that the host and port match those given from the tethys docker ip
command (PostGIS). This is done by changing the values of the PASSWORD, HOST, and PORT parameters of
the DATABASES setting:

20 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'tethys_default',

'USER': 'tethys_default',

'PASSWORD': 'pass',

'HOST': '127.0.0.1"',

'"PORT': '5435"

}
}

3. Find the TETHYS_DATABASES setting near the bottom of the file and set the PASSWORD parameters with
the passwords that you created in the previous step. If necessary, also change the HOST and PORT to match the
host and port given by the tethys docker ip command for the database (PostGIS):

TETHYS_DATABASES = {
'tethys_db_manager': {

'NAME': 'tethys_db_manager',
'USER': 'tethys_db_manager',
'"PASSWORD': 'pass',

'HOST': '127.0.0.1°",

'"PORT': '5435"

}y
'tethys_super': {

'NAME': 'tethys_super',
'USER': 'tethys_super',
'PASSWORD': 'pass',
'HOST': '127.0.0.1"',
'"PORT': '5435"

}

4. Setup social authentication

If you wish to enable social authentication capabilities for testing your Tethys Portal, follow the Social
Authentication instructions.

5. Save your changes and close the settings.py file.
7. Create Database Tables

Execute the following command to initialize the database tables:

(tethys) $ tethys manage syncdb

8. Create a Superuser

Create a superuser/website administrator for your Tethys Portal:

(tethys) $ tethys manage createsuperuser

9. Start up the Django Development Server

You are now ready to start the development server and view your instance of Tethys Platform. The website that ships
with Tethys Platform is called 7ethys Portal. In the terminal, execute the following command to start the development
server:

1.3. Installation 21

Tethys Platform Documentation, Release 1.4.0

(tethys) $ tethys manage start

Open http://localhost:8000/ in a new tab in your web browser and you should see the default 7ethys Portal landing
page.

@ Tethys Portal i

Welcome to Tethys Portal,
the hub for your apps.

Sign Up

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

9. Web Admin Setup

You are now ready to configure your Tethys Platform installation using the web admin interface. Follow the Web
Admin Setup instructions to finish setting up your Tethys Platform.

Installation on Ubuntu 16.04

Last Updated: July 1, 2016

Warning: These installation instructions have been tested for Ubuntu 16.04 only. It is likely that you will
encounter problems if you try to use these instructions on any other Linux distribution (e.g. RedHat, CentOS) or
even other versions of Ubuntu.

Tip: To install and use Tethys Platform, you will need to be familiar with using the command line/terminal. For a
quick introduction to the command line, see the Terminal Quick Guide article.

Also, check to make sure that your installation of Ubuntu = version 16.04. The following steps are likely not to work
with other versions.

22 Chapter 1. Contents

http://localhost:8000/

Tethys Platform Documentation, Release 1.4.0

1. Install the Dependencies

1. Install most of the dependencies via apt-get. Open a terminal and execute the following commands:

$ sudo apt-get update
$ sudo apt-get install python-dev python-pip python-virtualenv libpg-dev libxml2-dev libxsltl-de

You may be prompted to enter your password to authorize the installation of these packages. If you are
prompted about the disk space that will be used to install the dependencies, enter Y and press Enter to
continue.

2. Install Docker

Docker needs to be installed to install the Tethys Software Suite. These instructions are adapted from the Installation
on Ubuntu Docker tutorial and the How to Install and Use Docker on Ubuntu 16.04 Digital Ocean tutorial.

1. Add the GPG key for the official Docker repository:

$ sudo apt-key adv —--keyserver hkp://p80.pool.sks-keyservers.net:80 —--recv-keys 58118E89F3A9128¢
2. Add the Docker repository to APT sources:

$ echo "deb https://apt.dockerproject.org/repo ubuntu-xenial main" | sudo tee /etc/apt/sources.l

3. Update APT sources again and install Docker engine:

$ sudo apt-get update
$ sudo apt-get install -y docker-engine

4. Add your user to the Docker group. This is necessary to use the Tethys Docker commandline tools. In a
command prompt execute:

$ sudo gpasswd —-a ${USER} docker
$ sudo service docker restart
$ gnome-session-quit --logout

5. Select log out and then log back in to make the changes take effect.

Important: DO NOT FORGET PART E! Be sure to logout of Ubuntu and log back in before you continue. You
will not be able to complete the installation without completing this step.

Warning: Adding a user to the Docker group is the equivalent of declaring a user as root. See Giving non-root
access for more details.

3. Create Virtual Environment and Install Tethys Platform

Python virtual environments are used to create isolated Python installations to avoid conflicts with dependencies of
other Python applications on the same system. The following commands should be executed in a terminal.

1. Create a Python virtual environment and activate it:

$ sudo mkdir -p /usr/lib/tethys

$ sudo chown ‘whoami® /usr/lib/tethys

$ virtualenv --no-site-packages /usr/lib/tethys
$. /usr/lib/tethys/bin/activate

1.3. Installation 23

https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04
https://docs.docker.com/installation/ubuntulinux/#giving-non-root-access
https://docs.docker.com/installation/ubuntulinux/#giving-non-root-access

Tethys Platform Documentation, Release 1.4.0

Hint: You may be tempted to enter single quotes around the whoami directive above, but those characters are actually
grave accent characters: . This key is usually located to the left of the 1 key or in that vicinity.

Important: The final command above activates the Python virtual environment for Tethys. You will know the virtual
environment is active, because the name of it will appear in parenthesis in front of your terminal cursor:

(tethys) $ _

The Tethys virtual environment must remain active for the entire installation. If you need to logout or close the terminal
in the middle of the installation, you will need to reactivate the virtual environment. This can be done at anytime by
executing the following command (don’t forget the dot):

$. /usr/lib/tethys/bin/activate

If you get tired of typing . /usr/lib/tethys/bin/activate to activate your virtual environment, you can
add an alias to your .bashrc file:

$ echo "alias t='. /usr/lib/tethys/bin/activate'" >> ~/.bashrc

Close your terminal window and reopen it to effect the changes. Now, to activate your virtual environment all you
have to do is use the alias t:

St
(tethys) $ _

2. Install Tethys Platform into the virtual environment with the following command:

(tethys) $ git clone https://github.com/tethysplatform/tethys /usr/lib/tethys/src

Tip: If you would like to install a different version of Tethys Platform, you can use git to checkout the tagged release
branch. For example, to checkout version 1.0.0:

$ cd /usr/lib/tethys/src
$ git checkout tags/1.0.0

For a list of all tagged releases, see Tethys Platform Releases. Depending on the version you intend to install, you may
need to delete your entire virtual environment (i.e.: the /usr/lib/tethys directory) to start fresh.

3. Install the Python modules that Tethys requires:

(tethys) $ pip install --upgrade -r /usr/lib/tethys/src/requirements.txt
(tethys) $ python /usr/lib/tethys/src/setup.py develop

4. Restart the Python virtual environment:

(tethys) $ deactivate
$. /usr/lib/tethys/bin/activate

4, Install Tethys Software Suite Docker Containers

Execute the following Tethys commands using the tethys Command Line Interface to initialize the Docker containers:

(tethys) $ tethys docker init

24 Chapter 1. Contents

http://www.wikiwand.com/en/Grave_accent
https://github.com/tethysplatform/tethys/releases

Tethys Platform Documentation, Release 1.4.0

You will be prompted to enter various parameters needed to customize your instance of the software. Take note of the
usernames and passwords that you specify. You will need them to complete the installation.

Tip: Running into errors with this command? Make sure you have completed all of step 2, including part c.

Occasionally, you may encounter an error due to poor internet connection. Run the tethys docker init com-
mand repeatedly. It will pick up where it left off and eventually lead to success. When in doubt, try, try again.

5. Start the Docker Containers

Use the following Tethys command to start the Database Docker container for the next steps:

(tethys) $ tethys docker start -c postgis

If you would like to test the Docker containers, see Test Docker Containers.

6. Create Settings File and Configure Settings

In the next steps you will configure your Tethys Platform and link it to each of the software in the software suite.
Create a new settings file for your Tethys Platform installation using the tethys Command Line Interface. Execute the
following command in the terminal:

(tethys) $ tethys gen settings -d /usr/lib/tethys/src/tethys_apps
This will create a file called settings.py in the directory /usr/lib/tethys/src/tethys_apps. As the

name suggests, the settings.py file contains all of the settings for the Tethys Platform. There are a few settings
that need to be configured in this file.

Note: The usr directory is located in the root directory which can be accessed using a file browser and selecting
Computer from the menu on the left.

Open the settings.py file that you just created (/usr/lib/tethys/src/tethys_apps/settings.py)
in a text editor and modify the following settings appropriately.

1. Run the following command to obtain the host and port for Docker running the database (PostGIS). You will
need these in the following steps:

(tethys) $ tethys docker ip

2. Replace the password for the main Tethys Portal database, tethys_default, with the password you created in
the previous step. Also make sure that the host and port match those given from the tethys docker ip
command (PostGIS). This is done by changing the values of the PASSWORD, HOST, and PORT parameters of
the DATABASES setting:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'tethys_default',

'USER': 'tethys_default',

'"PASSWORD': 'pass',

'HOST': '127.0.0.1"',

'PORT': '5435"

}

1.3. Installation 25

Tethys Platform Documentation, Release 1.4.0

3. Find the TETHYS_DATABASES setting near the bottom of the file and set the PASSWORD parameters with
the passwords that you created in the previous step. If necessary, also change the HOST and PORT to match the
host and port given by the tethys docker ip command for the database (PostGIS):

TETHYS_DATABASES = {
'tethys_db_manager': {

'NAME': 'tethys_db_manager',
'USER': 'tethys_db_manager',
'"PASSWORD': 'pass',

'HOST': '127.0.0.1"',

'"PORT': '5435"

}l
'tethys_super': {

'NAME': 'tethys_super',
'USER': 'tethys_super',
'PASSWORD': 'pass',
'HOST': '127.0.0.1"',
'"PORT': '5435"

}

4. Setup social authentication

If you wish to enable social authentication capabilities for testing your Tethys Portal, follow the Social
Authentication instructions.

5. Save your changes and close the settings.py file.

7. Create Database Tables

Execute the following command to initialize the database tables:

(tethys) $ tethys manage syncdb

8. Create a Superuser

Create a superuser/website administrator for your Tethys Portal:

(tethys) $ tethys manage createsuperuser

9. Start up the Django Development Server

You are now ready to start the development server and view your instance of Tethys Platform. The website that ships
with Tethys Platform is called 7ethys Portal. In the terminal, execute the following command to start the development
server:

(tethys) $ tethys manage start

Open http://localhost:8000/ in a new tab in your web browser and you should see the default 7ethys Portal landing
page.

9. Web Admin Setup

You are now ready to configure your Tethys Platform installation using the web admin interface. Follow the Web
Admin Setup instructions to finish setting up your Tethys Platform.

26 Chapter 1. Contents

http://localhost:8000/

Tethys Platform Documentation, Release 1.4.0

@ Tethys Portal i

Welcome to Tethys Portal,
the hub for your apps.

Sign Up

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

Web Admin Setup

Last Updated: February 2, 2015

The final step required to setup your Tethys Platform is to link it to the software that is running in the Docker containers.
This is done using the Tethys Portal Admin console.

1. Access Tethys Portal Admin Console

The Tethys Portal Admin Console is only accessible to users with administrator rights. When you installed Tethys
Platform, you created superuser. Use these credentials to log in for the first time.

1. Use the “Log In” link on the Tethys Portal homepage to log in as an administrator.

2. Select “Site Admin” from the user drop down menu.

You will now see the Tethys Portal Web Admin Console. The Web Admin console can be used to manage user
accounts, customize the homepage of your Tethys Portal, and configure the software included in Tethys Platform.
Take a moment to familiarize yourself with the different options that are available in the Web Admin.

1.3. Installation 27

Tethys Platform Documentation, Release 1.4.0

@ Tethys Portal Lozl

Welcome to Tethys Portal,
the hub for your apps.

Sign Up

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

@ TethyS Portal Apps Developer - v

& User Settings

£+ Site Admin

G LogOut

Welcome to Tethys Portal,
the hub for your apps.

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

Inealhost:8000/admin/

28 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

@ TethyS Portal Apps Developer

Site Administration

Authentication and Authorization

Groups g Add # Change

My Actions

Users dhAdd Change < General Settings
Settings Category

Tethys Compute

Clusters dAdd #Change
Settings ¢ Change
Tethys Portal A
Spatial Dataset Service
Site Settings & Change & default
Dataset Service
. & default
Tethys Services Dataset Service
¢ default_ckan
Dataset Services dhAdd # Change Dataset Service
& default
Spatial Dataset Services gAdd ¢ Change Dataset Service
Web Processing Services gAdd ¢ Change

Copyright © 2015 Your Organization Powered by @ Tethys Platform

2. Link to 52 North WPS Docker

The built in 52 North Web Processing Service (WPS) is provided as one mechanism for Geoprocessing in apps. It
exposes the GRASS GIS and Sextante geoprocessing libraries as web services. See Web Processing Services API
documentation for more details about how to use 52 North WPS processing in apps. Complete the following steps to
link Tethys with the 52 North WPS:

1. Select “Web Processing Services” from the options listed on the Tethys Portal Admin Console.

2. Click on the “Add Web Processing Service” button to create a new link to the web processing service.

3. Provide a unique name for the web processing service.

4. Provide an endpoint to the 52 North WPS that is running in Docker. The endpoint is a URL pointing to the WPS
API. The endpoint will be of the form:

http://<host>:<port>/wps/WebProcessingService

Execute the following command in the terminal to determine the endpoint for the built-in 52 North server:

(tethys)$ tethys docker ip

52 North WPS:
Host: 192.168.59.103
Port: 8282
Endpoint: http://192.168.59.103:8282/wps/WebProcessingService

When you are done you will have something similar to this:

5. Press “Save” to save the WPS configuration.

1.3. Installation 29

Tethys Platform Documentation, Release 1.4.0

@ TethyS Portal Apps Developer

Home > Tethys Services » Web Processing Services
Select Web Processing Service To Change

Action: [—er :‘\m 0 of 2 selected

Web Processing Service

Add Web Processing Service 4

default_wps

default

2 Web Processing Services

Copyright © 2015 Your Organization Powered by @ Tethys Platform

@ TethyS Portal Apps Developer

Home > Tethys Services » Web Processing Services » default_wps

Change Web Processing Service

Name: default_wps
Endpoint: http://192.168.59.103:8282/wps/WebProc
Username: wps
Password: [
Delete Save and add another] [Save and continue editing] @

Copyright © 2015 Your Organization Powered by @ Tethys Platform

30 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

3. Link to GeoServer

Tethys Platform provides GeoServer as a built-in Spatial Dataset Service. Spatial Dataset Services can be used by
apps to publish Shapefiles and other spatial files as web resources. See Spatial Dataset Services APl documentation
for how to use Spatial Dataset Services in apps. To link your Tethys Platform to the built-in GeoServer or an external
Spatial Dataset Service, complete the following steps:

1. Select “Spatial Dataset Services” from the options listed on the Tethys Portal Admin Console.

2. Click on the “Add Spatial Dataset Service” button to create a new spatial dataset service.

@ TethyS Portal Apps Developer

Home > Tethys Services > Spatial Dataset Services

Select Spatial Dataset Service To Change

Action: | —ee 4 | Kl O of 1 selected

Spatial Dataset Service

default_geoserver

1 Spatial Dataset Service

Copyright © 2015 Your Organization Powered by @ Tethys Platform

3. Provide a unique name for the spatial dataset service.

4. Select “GeoServer” as the engine and provide an endpoint to the Spatial Dataset Service. The endpoint is a
URL pointing to the API of the Spatial Dataset Service. For GeoServers, this endpoint is of the form:

http://<host>:<port>/geoserver/rest

Execute the following command in the terminal to determine the endpoint for the built-in GeoServer:

(tethys)$ tethys docker ip

GeoServer:

Host: 127.0.0.1
Port: 8181

Endpoint: http://127.0.0.1:8181/geoserver/rest

5. Specify either the username or password of your GeoServer as well. The default GeoServer username and
password are “admin” and “geoserver”, respectively. When you are done you will have something similar to
this:

1.3. Installation 31

Tethys Platform Documentation, Release 1.4.0

Apps Developer

Home > Tethys Services » Spatial Dataset Services » default_geoserver

Change Spatial Dataset Service

Name: default_geoserver
Engine: GeoServer %
Endpoint: http://192.168.59.103:8181/geoserver/res
Apikey:
Username: admin
Password: [eeeeeeee
Delete Save and add anotherJ [Save and continue editing] m

Copyright © 2015 Your Organization Powered by @ Tethys Platform

6. Press “Save” to save the Spatial Dataset Service configuration.

4. Link to Dataset Services

Optionally, you may wish to link to external Dataset Services such as CKAN and HydroShare. Dataset Services can be
used by apps as data stores and data sources. See Dataset Services API documentation for how to use Dataset Services
in apps. Complete the following steps for each dataset service you wish to link to:

1. Select “Dataset Services” from the options listed on the Tethys Portal Admin Console.

2. Click on the “Add Dataset Service” button to create a new link to the dataset service.

3. Provide a unique name for the dataset service.

4. Select the appropriate engine and provide an endpoint to the Dataset Service. The endpoint is a URL pointing
to the dataset service API. For example, the endpoint for a CKAN dataset service would be of the form

http://<host>:<port>/api/3/action

If authentication is required, specify either the API Key or username or password as well. When you are
done you will have something similar to this:

Tip: When linking Tethys to a CKAN dataset service, an API Key is required. All user accounts are
issued an API key. To access the API Key log into the CKAN site where you have an account and browse

to your user profiles. The API key will be listed as a private attribute of your user profile.

5. Press “Save” to save the Dataset Service configuration.

32 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

@ TethyS POI’ta| Apps Developer

Home > Tethys Services » Dataset Services
Select Dataset Service To Change

Action: | e 3 m 0 of 2 selected

Dataset Service

Add Dataset Service 4

default_ckan

default

2 Dataset Services

Copyright © 2015 Your Organization Powered by @ Tethys Platform

@ TethyS Portal Apps Developer

Home > Tethys Services > Dataset Services » default_ckan

Change Dataset Service

Name: default_ckan
Engine: CKAN 8
Endpoint: http://ciwckan.chpc.utah.edu
Apikey: tHi$-is-mY-@Pi-k3Y|
Username:
Password:
Delete Save and add another] [Save and continue editingJ @

Copyright © 2015 Your Organization Powered by @ Tethys Platform

1.3. Installation 33

Tethys Platform Documentation, Release 1.4.0

What’s Next?

Head over to Getting Started and create your first app. You can also check out the Software Development Kit docu-
mentation to familiarize yourself with all the features that are available.

Upgrade from 1.3 to 1.4

Last Updated: December 1, 2016

1. Get the Latest Version
When you installed Tethys Platform you did so using it’s remote Git repository on GitHub. To get the latest version of
Tethys Platform, you will need to pull the latest changes from this repository:

$ cd /usr/lib/tethys/src
$ git pull origin master

2. Install Requirements and Run Setup Script

Install new dependencies and upgrade old ones:

$. /usr/lib/tethys/bin/activate
(tethys) $ pip install --upgrade -r /usr/lib/tethys/src/requirements.txt
(tethys) $ python /usr/lib/tethys/src/setup.py develop

3. Generate New Settings Script

Backup your old settings script (settings.py) and generate a new settings file to get the latest version of the
settings. Then copy any settings (like database usernames and passwords) from the backed up settings script to the
new settings script.

(tethys) $ mv /usr/lib/tethys/src/tethys_apps/settings.py /usr/lib/tethys/src/tethys_apps/settings.p:
(tethys) $ tethys gen settings -d /usr/lib/tethys/src/tethys_apps

Caution: Don’t forget to copy any settings from the backup settings script (settings.py_lbak) to the new
settings script. Common settings that need to be copied include:

 DEBUG

« ALLOWED_HOSTS

* DATABASES, TETHYS_DATABASES

e STATIC_ROOT, TETHYS_WORKSPACES_ROOT

 EMAIL_HOST, EMAIL_PORT, EMAIL_HOST_USER, EMAIL_HOST_PASSWORD,

EMAIL_USE_TLS, DEFAULT_FROM_EMAIL

* SOCIAL_OAUTH_XXXX_KEY, SOCIAL_OAUTH_XXXX_SECRET

* BYPASS_TETHYS_HOME_PAGE
After you have copied these settings, you can delete or archive the backup settings script.

4. Sync the Database

Start the database docker if not already started and apply any changes to the database that may have been issued with
the new release:

34 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

(tethys) $ tethys docker start -c postgis
(tethys) $ tethys manage syncdb

Note: For migration errors use:

$ cd ~/usr/lib/tethys/src
$ python manage.py makemigrations —--merge
$ tethys manage syncdb

Tutorials

Last Updated: August 6, 2015

Use the following tutorials to learn the basics about Tethys Platform.

Getting Started

Last Updated: September 29, 2016

The getting started tutorial will walk you through the steps of setting up a new Tethys App project using Tethys
Platform. If you have not already installed Tethys Platform, follow the /nstallation documentation and then return.

You will need to use the command line/terminal to manage your app and run the development server. It is highly
recommended that you read the Terminal Quick Guide article for some tips if you are new to command line.

Create a New Tethys App Project

Last Updated: September 29, 2016

Tethys Platform provides an easy way to create new app projects called a scaffold. The scaffold generates a Tethys app
project with the minimum files and the folder structure that is required (see App Project Structure). In this tutorial you
will start a new Tethys app project using the scaffold and install it into your Tethys Platform ready for development.

Tip: You will need to use the command line/terminal to manage your app and run the development server. See the
Terminal Quick Guide article for some tips if you are new to command line.

Generate Scaffold

To generate a new app using the scaffold, open a terminal, press CTRL~C to stop the development server if it is still
running, and execute the following commands:

$. /usr/lib/tethys/bin/activate
(tethys) $ mkdir ~/tethysdev
(tethys) $ cd ~/tethysdev
(tethys) $ tethys scaffold my_first_app

The final command from the code block above is provided by the Tethys Command Line Interface. It will prompt you
to enter metadata about your app such as, proper name, version, author, and description. All of these metadata are
optional and you can accept the default value by pressing enter.

The commands you entered did the following tasks:

1.4. Tutorials 35

Tethys Platform Documentation, Release 1.4.0

1. activated the Tethys Python virtual environment,

2. created a new directory called “tethysdev” in your home directory,

3. changed your working directory into the tethysdev directory, and
4. executed the tethys scaffold command to create the new app.

In a file browser change into your Home directory and open the tethysdev directory. If the scaffolding worked,
you should see a directory called tethysapp-my_first_app. All of the source code for your app is located in
this directory. Open the tethysapp-my_first_app and explore the contents. The main directory of your app
project, my_first_app, is located within a namespace directory called tethysapp. Each part of the app project
will be explained throughout these tutorials. For more information about the app project structure, see App Project
Structure.

Development Installation

Now that you have a new Tethys app project, you need to install the app into Tethys Platform. In a terminal, change
into the tethysapp-my_first_app directory and execute the python setup.py develop command. Be sure to
activate the Tethys Python virtual environment if it is not already activated (see line 1 of the first code block):

(tethys) $ cd ~/tethysdev/tethysapp-my_first_app
(tethys) $ python setup.py develop

View Your New App

Use start up the database Docker (postgis) and the development server:

(tethys) $ tethys docker start -c postgis
(tethys) $ tethys manage start

Browse to http://127.0.0.1:8000/apps. If all has gone well, you should see your app listed on the app library page.
Exploring your new app won’t take long, because there is only one page. Familiarize yourself with different parts of
the app interface (see below).

Parts of a Tethys app interface: (1) app navigation toggle, (2) exit button, (3) app navigation, (4) actions, and
(5) app content.

Tip: To stop the development server press CTRL—-C. To stop the dockers run:
(tethys) $ tethys docker stop

Model View Controller

Tethys apps are developed using the Model View Controller (MVC) software architecture pattern. Following the MVC
pattern will make your app project easier to develop and maintain in the future. Most of the code in your app will
fall into one of the three MVC categories. The Model represents the data of your app, the View is composed of the
representation of the data, and the Controller consists of the logic to prepare the data for the view and any other logic
your app needs. In the next few tutorials, you will be introduced to how the MVC development paradigm is used to
develop Tethys apps. For more information about MVC, see Key Concepts.

36 Chapter 1. Contents

http://127.0.0.1:8000/apps

Tethys Platform Documentation, Release 1.4.0

Welcome! ®

Congratulations on creating a new Tethys app!

App Project Paths

Throughout the tutorial, you will be asked to open various files. Most of the files will be located in your app package
directory which shares the name of your app: “my_first_app”. If you generated your scaffold exactly as above, this
directory will be located at the following path:

Path to App Package Directory
~/tethysdev/tethysapp-my_first_app/tethysapp/my_first_app/

For convenience, all paths in the following tutorials will be given relative to the app package directory. For example:

Relative App Package Directory Notation
my_first_app/controllers.py

Tip: As you explore the contents of your app project, you will notice that many of the directories have filed named
__init__ .py. Though many of these files are empty, they are important and should not be deleted. They inform

Python that the containing directory is a Python package. Python packages and their contents can be imported in
Python scripts. Removing the __init__ .py files could result in breaking import statements and it could make
some of your code inaccessible. Similarly, if you add a directory to your project that contains Python modules and you
would like them to be made available to your code, adda __init__ .py file to the directory to make it a package.

The Model and Persistent Stores

Last Updated: September 29, 2016

In this part of the tutorial you’ll learn about the Model component of MVC development for Tethys apps. The Model
represents the data of your app and the code used to manage it. The data of your app can take many forms. It can

1.4. Tutorials 37

Tethys Platform Documentation, Release 1.4.0

be generated on-the-fly and stored in Python data structures (e.g.: lists, dictionaries, and NumPy arrays), stored in
databases, or contained in files via the Dataset Services API.

In this tutorial you will define your model using the Persistent Stores API to create a spatially enabled database for
your app and you will learn how to use the SQLAlchemy object relational mapper (ORM) to create a data model for

your app.
Register a Persistent Store

The Tethys Portal provides the Persistent Stores API to streamline the use of SQL databases in apps. To register a new
persistent store database add the persistent_stores () method to your app class, which is located in your app
configuration file. This method must return a list or tuple of PersistentStore objects.

Open the app configuration file for your app located atmy_first_app/app.py in your favorite text editor. Import
the PersistentStore object at the top of the file, add the persistent_stores () method to your app class,
and save the changes:

from tethys_sdk.base import TethysAppBase, url_map_maker
from tethys_sdk.stores import PersistentStore

class MyFirstApp (TethysAppBase) :

mmn

Tethys app class for My First App.

mon

name = 'My First App'

index = 'my_first_app:home'

icon = 'my_first_app/images/icon.gif'
package = 'my_first_app'

root_url = 'my-first-app'

color = '#e74c3c’'

description = "'

tags = "'

enable_feedback = False
feedback_emails = []

def url_maps(self):

mmn

Add controllers

mon

UrlMap = url_map_maker (self.root_url)

url_maps = (UrlMap (name="home',
url="my-first-app',
controller="my_first_app.controllers.home'),

return url_maps

def persistent_stores(self):
mmrn

Add one or more persistent stores

mmn

stores = (PersistentStore (name='stream gage_db',
initializer="my_first_app.init_stores.init_stream_gage_db',
spatial=True

38 Chapter 1. Contents

http://www.sqlalchemy.org/

Tethys Platform Documentation, Release 1.4.0

)y

return stores

A persistent store database will be created for each PersistentStore object that is returned by the
persistent_stores () method of your app class. In this case, your app will have a persistent store named
“stream_gage db”. The initializer argument points to a function that you will define in a later step. The
spatial argument can be used to add spatial capabilities to your persistent store. Tethys Platform provides Post-
greSQL databases for persistent stores and PostGIS for the spatial database capabilities.

Note: Read more about persistent stores in the Persistent Stores API documentation.

Create an SQLAIchemy Data Model

After your database is created, you will need to create the tables that will store the data for your app. The plan for
your database tables or schema is called a data model. SQLAIlchemy provides an Object Relational Mapper (ORM)
that allows you to create data models using Python code and issue queries using an object-oriented approach. In other
words, you are able to harness the power of SQL databases without writing SQL. As a primer to SQLAlchemy ORM,
we highly recommend you complete the Object Relational Tutorial.

In this step, you will use SQLAIchemy to create a data model for the tables that will store the data for your app. Open
the model . py file located atmy_ first_app/model.py in a text editor.

First, add the following import statements to your model . py file:

from sglalchemy.ext.declarative import declarative_base
from sglalchemy import Column, Integer, Float
from sglalchemy.orm import sessionmaker

from .app import MyFirstApp

Next, add these lines to your model . py file:

DB Engine, sessionmaker and base

engine = MyFirstApp.get_persistent_store_engine ('stream gage_db'")
SessionMaker = sessionmaker (bind=engine)

Base = declarative_base ()

The get_persistent_store_engine () method that is used here accepts the name of a persistent store as an
argument and returns an SQLAlchemy engine object. The engine object contains the connection information needed
to connect to the persistent store database. Anytime you want to query or modify your persistent store data, you will
do so with an SQLAlchemy session object. As the name implies, the SessionMaker can be used to create new
session objects. The Base object is used in the next step when we define our data model. Add these lines to your
model . py file:

SQLAlchemy ORM definition for the stream _gages table
class StreamGage (Base) :

rrr

Example SQLAlchemy DB Model

rrr

__tablename__ = 'stream_gages'

Columns
id = Column (Integer, primary_key=True)
latitude = Column (Float)

1.4. Tutorials 39

http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html

Tethys Platform Documentation, Release 1.4.0

longitude = Column (Float)
value = Column (Integer)

def _ init__ (self, latitude, longitude, value):

mon

Constructor for a gage

mmwmn
self.latitude = latitude

self.longitude = longitude
self.value = value

Each class in an SQLAlchemy data model defines a table in the database. The model you defined above consists
of a single table called “stream_gages”, as denoted by the ___tablename__ property of the St reamGage class.
The St reamGage class inherits from the Base class that we created in the previous lines. This inheritance notifies
SQLAIchemy that the St reamGage class is part of the data model.

The class defines four other properties that are SQLAlchemy Column objects: id, latitude, longitude, and value.
These properties define the columns of the “stream_gages” table. The column type and options are defined by the
arguments passed to the Column constructor. For example, the latitude column is of type F1loat while the id column
is of type Integer and is also flagged as the primary key for the table. The St reamGage class also has a simple
constructor method called __init__ ().

This class is not only used to define the tables for your persistent store, it will also be used to create objects for
interacting with your data.

Be sure to save the changes to model . py and close before proceeding.

Create an Initialization Function

Now that you have created a data model, the next step is to write a database initialization function. This function will
be called during the initialization phase of your persistent store database and will be used to create the tables in your
database and add any initial data that you may need in the database for your app to work.

Open the my_first_app/init_stores.py in a text editor. At the top of this file, import the engine,
SessionMaker, Base, and St reamGage from your data model:

from .model import engine, SessionMaker, Base, StreamGage

Next, create a new function called init_stream_gage_db () with a single argument called first_time and
the following code:

def init_stream_gage_db (first_time):

mmn

An example persistent store initializer function
mrmmn

Create tables

Base.metadata.create_all (engine)

Initial data
if first_time:
Make session
session = SessionMaker ()

Gage 1

gagel = StreamGage (latitude=40.23812952992122,
longitude=-111.69585227966309,
value=1)

40 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

session.add (gagel)

Gage 2

gage2 = StreamGage (latitude=40.238784729316215,
longitude=-111.7101001739502,
value=2)

session.add (gage2)

-

Gage 3

gage3 = StreamGage (latitude=40.23650788415366,
longitude=-111.73278093338013,
value=3)

session.add (gage3)

Gage 4

gage4 = StreamGage (latitude=40.242519244799816,
longitude=-111.68254852294922,
value=4)

session.add (gage4)
session.commit ()

The Base.metedata.create_all (engine) line is all that is needed to create the tables in your persis-
tent store database. Every class that inherits from the Base class is tracked by a metadata object. The
metadata.create_all () method issues the SQL that is needed to create the tables associated with the Base
class. Notice that you must give it the engine object for connection information.

The first_time parameter that is passed to all persistent store initialization functions is a boolean that is True if
the function is being called after the tables have been created for the first time. This is provided as a mechanism for
adding initial data only the first time. Notice the code that adds initial data to your persistent store database is wrapped
in a conditional statement that uses the first_time parameter.

This initial data code adds four stream gages to your persistent store database. Creating a new record in the database
using SQLAlchemy is achieved by creating a new St reamGage object and adding it to the session object using
the session.add () method. To persist the new records to the persistent store database, the session.commit ()
method is called. You will learn how to query the persistent store database using SQLAlchemy in the The Controller
tutorial.

Save your changes to init_stores.py and close before moving on.

Register Initialization Function

Recall that when you registered the persistent store in your app configuration file, you specified the
initializer function for the persistent store. This argument accepts a string representing the path to
the function using dot notation and a colon to delineate the function (e.g.: ‘“app_name.module.function”).
Check your app configuration file (app.py) to ensure the path to the initializer function is correct:
'my_first_app.init_stores.init_stream gage_db’.

Persistent Store Initialization

The Tethys command line utility provides a command for initializing persistent stores. Save all changes to the files you
edited and stop your development server using CTRL~C if it is still running. It is possible that your server may have

1.4. Tutorials 41

Tethys Platform Documentation, Release 1.4.0

crashed during editing and is displaying errors; ignore these errors. Execute the following command in the terminal:

(tethys) $ tethys syncstores my_first_app

The database will be initialized and you will see text printed to the terminal that will indicate this:

Loading Tethys Apps...
Tethys Apps Loaded: my_first_app

Provisioning Persistent Stores...

Creating database "stream_gage_db" for app "my_first_app"...

Enabling PostGIS on database "stream_gage_db" for app "my_first_app"...

Initializing database "stream_gage_db" for app "my_first_app" using initializer "init_stream_gage_db

If you have a graphical database client like PGAdmin III, you may wish to connect to your PostgreSQL database server
and confirm that the database was created. You can use the credentials for tethys_super database user that you
defined during installation to connect to the database. The name of the database will be a combination of the name of
your app and the name of the persistent store: (e.g.: my_first_app_stream_gage_db). For a more detailed explanation
of connecting to your database using PGAdmin III, see the PGAdmin III Tutorial.

o e
I T EEN T K

Properties | Statistics | Dependencies = Dependents -
B B server Groups Property Value
=2 Servers (1
8 m Name my_first_app_stream_gage_db
E [} tethys (localhost:5432) oD 21827
= I,J.E).atabases (5) owner tethys_db_manager
(B} my_First_app_stream_gage_db AcL
[postgres Tablespace pg_default
|38 tethys_db_manager Default tablespace pg_default
(3¢ tethys_default Encoding UTF8
(38 tethys_super Collation en_US.UTF-8
Tablespaces (2) Character type en_US.UTF-8
Group Roles (0) Defau:t S(hfma public
o & tognroles @ e
Default function ACL
Default type ACL
Allow connections? Yes
Connected? Yes
Connection limit -1
System database? No
Comment
S0L pane 5
-- Database: my first app stream gage db
-- DROP DATABASE my first app stream gage db;
CREATE DATABASE my first app_stream_gage_db
WITH OWNER = tethys_db_manager
ENCODING = 'UTF8"
TABLESPACE = pg_default
LC_COLLATE = 'en_US.UTF-8°
LC_CTYPE = 'en_US.UTF-8°
CONMECTION LIMIT = -1;

Retrieving details on database my_first_app_stream_gage_db... Done. 0.00 secs

Example of graphical database client PGAdmin III.

The View and Templating

Last Updated: September 29, 2016

42 Chapter 1. Contents

http://www.pgadmin.org

Tethys Platform Documentation, Release 1.4.0

In this section the View aspect of MVC will be introduced. The View consists of the representation or visualizations
of your app’s data and the user interface. Views for Tethys apps are constructed using the standard web programming
tools: HTML, JavaScript, and CSS. Additionally, Tethys Platform provides the Django Python templating language
allowing you to insert Python code into your HTML documents, similar to how PHP is used. The result is dynamic,
reusable templates for the web pages of your app.

In this tutorial you will add a view to your app for displaying the stream gages that are in your database on a Google
Map.

Templating

The Django template language is a simple, but powerful templating language. This section will provide a crash
course in Django template language basics, but we highly recommend a review of the Django Template Language
documentation.

Browse to the your templates directory located atmy_first_app/templates/. By convention, all the templates
for your app are stored in a directory with the same name of your app package inside the templates directory (e.g.:
templates/my_first_app). This will prevent potential conflicts with the templates of other apps. You will
find two templates in this directory: base.html and home . html. Refer to these templates as the Django template
concepts are introduced.

Variables, Filters, and Tags Django templates can contain variables, filters, and tags. Variables are denoted by
double curly brace syntax like this: { { variable }}. Template variables are replaced by the value of the variable.
Dot notation can be used access attributes of a variable: { { variable.attribute }}.

Variables can be modified by filters which look like this: { { variable|filter:argument }}. Filters perform
modifying functions on variable output such as formatting dates, formatting numbers, changing the letter case, and
concatenating multiple variables.

Tags use curly-brace-percent-sign syntax like this: {$ tag %}. Tags perform many different functions including
creating text, controlling flow, or loading external information to be used in the app. Some commonly used tags
include for, if, block, and extends.

Tip: For a better explanation of variables, filters and tags, see the App Templating API.

Template Inheritance One of the advantages of using the Django template language is that it provides a way for
child templates to extend parent templates, which reduces the amount of HTML you need to write. Template inher-
itance is accomplished using two tags: extends and block. Parent templates provide blocks of content that
can be overridden by child templates. Child templates can extend parent templates by using the extends tag and
specifying the template they which to inherit from. Calling the b1 ock tag of a parent template in a child template will
override any content in that b1 ock tag with the content in the child template.

Tip: If you are unfamiliar with Django template inheritance, please review the Django Template Inheritance docu-
mentation before proceeding.

Base Template Tethys apps generated from the scaffold come with abase . html template which has the following
contents:

{% extends "tethys_apps/app_base.html" %}

% load staticfiles %}

1.4. Tutorials 43

https://docs.djangoproject.com/en/1.7/topics/templates/
https://docs.djangoproject.com/en/1.7/topics/templates/#template-inheritance

Tethys Platform Documentation, Release 1.4.0

{% block title %}- {{ tethys_app.name }}{% endblock %}

{% block styles %}

{{ block.super }}

<link href="{% static 'my_first_app/css/main.css' %}" rel="stylesheet"/>
{% endblock %}

{% block app_icon %}
{# The path you provided in your app.py is accessible through the tethys_app.icon context variable

{% endblock %}

{# The name you provided in your app.py 1is accessible through the tethys_app.name context variable #
{% block app_title %} {{ tethys_app.name }}{% endblock %}

{% block app_navigation_items %}
<1li class="title">App Navigation</1li>

<li class="active">Home</1li>
Jobs</1li>
Results</1li>

<li class="title">Steps</1li>
1. The First Step
2. The Second Step
3. The Third Step</1li>
<1li class="separator"></1li>
Get Started</1li>

{%$ endblock %}

block app_content %}
endblock %}

— -
oo o

block app_actions %}
endblock %}

oo oo

_—

_~—
oe

block scripts %}

{{ block.super }}

<script src="{% static 'my_first_app/js/main.]js' $}" type="text/Jjavascript"></script>
{% endblock %}

The base.html template is intended to be used as the parent template for all your app templates via the extends
tag. It contains several block tags that your app templates can override or extend. The block tags you will use
most often are app_navigation_items, app_content, and, app_actions. These blocks correspond with
different parts of the app interface (shown in the figure below). As a rule, content that you would like to be present in
all your templates should be included in the base.html template and content that is specific to a certain template
should be included in that template.

The block tags of the base.html template correspond with different parts of the interface: (1)
app_navigation_items, (2) app_content, and (3) app_actions.

Tip: For an explanation of the blocks in the base . html template see the App Templating API.

Public Files and Resources

Most apps will use files and resources that are static-meaning they do not need to be preprocessed before being
served like templates do. Examples of these files include images, CSS files, and JavaScript files. Tethys Platform will
automatically register static files that are located in the pub11ic directory of your app project. Use the static tagin

44 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

wpnavgion @D || \Welcome! ©)
Congratulations on creating a new Tethys app!

Jobs

Results
Steps
1. The First Step

2. The Second Step

3. The Third Step

Get Started

@ Back Next

1.4. Tutorials 45

Tethys Platform Documentation, Release 1.4.0

templates to load the resource URLs. The base.html template provides examples of how to use the static tag.
See the Django documentation for the static tag for more details.

Caution: Any file stored in the public directory will be accesible to anyone. Be careful not to expose sensitive
information.

Make a New Template

Now that you know the basics of templating, you will learn how to create new templates that ex-
tend the base template and use the block tags. Create a new template in your templates directory
(my_first_app/templates/my_first_app/) and name it map.html. Open this file in a text editor and
copy and paste the following code into it:

{% extends "my_first_app/base.html" %}
{% load tethys_gizmos %}

{% block app_content %}

<hl>Stream Gages</hl>

{% gizmo map_view map_options %}
{% endblock %}

{% block app_actions %}
Back
% endblock %}

The map . html template that you created extends the base .html template. It also overrides the app_content,
app_actions®, and scripts blocks. An action called “Back” is added to the app_actions block. It uses a new
tag, the url tag, to provide a link back to the home page of the app. The url tag will be discussed in more detail in
the URL Mapping tutorial.

The map is inserted into the app_content block using one of the Tethys Gizmos called map_view. Gizmos are
an easy way to insert common user interface elements in to your templates with minimal code. The map is configured
via a dictionary called map_options, which is defined in the controller. This will be discussed in the next tutorial.
For more information on Gizmos, refer to the Template Gizmos API documentation.

The Controller

Last Updated: September 29, 2016

The Controller component of MVC will be discussed in this part of the tutorial. The job of the controller is to
coordinate between the View and the Model. Often this means querying a database and transforming the data to a
format that the view expects it to be in. The Controller also handles most of the application logic such as processing
and validating form data or launching model runs. In a Tethys app, controllers are simple Python functions.

Django is used to implement Tethys controllers but they are called “views” in Django. The Writing Views documen-
tation for Django is a good reference for Tethys controllers. Note that URL mapping is handled differently in Tethys
app development than in Django development and will be discussed in the URL Mapping tutorial.

In this tutorial you will write a controller that will retrieve the data from your stream gage model and then pass it to
the template that you created in the previous tutorial.

46 Chapter 1. Contents

https://docs.djangoproject.com/en/1.7/ref/contrib/staticfiles/#static
https://docs.djangoproject.com/en/1.7/topics/http/views/

Tethys Platform Documentation, Release 1.4.0

Make a New Controller

Recall that in The Model and Persistent Stores tutorial you created an SQLAlchemy data model to store information
about stream gages. You also created an initialization function that loaded some dummy data into your database. You
will now add some logic to your controller to retrieve this data and pass it to the template.

Open your controllers.py file located at my_first_app/controllers.py. This file should contain a
function called home. This function is the controller for the home page of your app. All controller functions must
accept a request object and they must return a response object. The request object contains information about the
HTTP request, including any form data that is submitted (more on this later). There are several ways to return a
response object, but the most common way is to use the render () function provided by Django. This function
requires three arguments: the request object, the template to be rendered, and the context dictionary.

Add the following imports to the top of the file:

from .model import SessionMaker, StreamGage
from tethys_ sdk.gizmos import MapView, MVLayer, MVView

Then add a new controller function called map after the home function:

@login_required ()
def map (request) :

mon

Controller for map page.
mmwn

Create a session
session = SessionMaker ()

Query DB for gage objects
gages = session.query (StreamGage) .all()

Transform into GeoJSON format
features = []

for gage in gages:
gage_feature = {
'type': 'Feature',
'geometry': {
'type': 'Point',
'coordinates': [gage.longitude, gage.latitude]

features.append(gage_feature)

geojson_gages = {
'type': 'FeatureCollection',
'crs': {
'type': 'name',
'properties': {
'name': 'EPSG:4326"'
}
br

'features': features

Define layer for Map View
geojson_layer = MVLayer (source='GeoJSON',
options=geojson_gages,

1.4. Tutorials 47

Tethys Platform Documentation, Release 1.4.0

legend_title='Provo Stream Gages',
legend_extent=[-111.74, 40.22, -111.67, 40.25])

Define initial view for Map View
view_options = MVView (
projection="EPSG:4326",
center=[-111.70, 40.247,
zoom=13,
maxzZoom=18,
minZoom=2

Configure the map

map_options = MapView (height='500px",
width="100%",
layers=[geojson_layer],
view=view_options,
basemap='OpenStreetMap',
legend=True)

Pass variables to the template via the context dictionary
context = {'map_options': map_options}

return render (request, 'my_ first_app/map.html', context)
The new map controller queries the persistent store for the stream gages, converts the data into GeoJSON format for
the map, and configures the map options for the Map View Gizmo that is used in the template.

To query the database, an SQLAlIchemy session object is needed. It is created using the SessionMaker object
imported from the model.py file. Querying is accomplished by using the query () method on the session
object. The result is a list of St reamGage objects representing the records in the database.

The map is capable of consuming spatial data in a few formats including GeoJSON, so the map controller handles the
job of converting the data from the list of St reamGage objects to GeoJSON format.

The map Gizmo that is used in the map.html template requires a dictionary of configuration options called
“map_options”. This is created in the controller and the input_overlays option is used to give the GeoJSON
formatted stream gage data to the map.

Next, a template context dictionary is defined that contains all of the variables that you wish to be available for use in
the template.

Finally, the render () function is used to create the response object. It is in the render () function that you
specify the template that is to be rendered by the controller. In this case, the map.html that you created in
the last tutorial. Note that the path you provide to the template is relative to the template directory of your app:
my_first_app/map.html.

Save controllers.py before going on.

URL Mapping

Last Updated: September 29, 2016

Whenever you create a new controller, you will also need to associate it with a URL by creating URL map for it. When
a URL is requested, the controller that it is mapped to will be executed.

In this tutorial you will create a new URL map for the new map controller you created in the previous tutorial.

48 Chapter 1. Contents

http://geojson.org/

Tethys Platform Documentation, Release 1.4.0

Map Controller to URL

Mapping a controller to a URL is performed in the app configuration file (app . py). Open your app configuration
file located at my_first_app/app.py. Your app class will already have a method called url_maps (). This
method must return a list or tuple of Ur1Map objects. Ur1Map objects require three attributes: name, url, and
controller.

Your app class will already have one Ur1Map for the home page called “home”. Add a new Ur1Map object for the
map controller that you created in the previous step. Give it a name of “map”, a url of “my-first-app/map”, and a path
to the controller of “my_first_app.controllers.map”. The url_maps () method for your app should look something
like this when you are done:

def url_maps (self):

mmn

Add controllers

mmon

UrlMap = url_map_maker (self.root_url)

url_maps = (UrlMap (name='home',
url="my-first-app',
controller="my_first_app.controllers.home'),
UrlMap (name="map"',
url='my-first-app/map',
controller="my_first_app.controllers.map'),

)

return url_maps

Important: All of the URL patterns for your app should begin with the base URL of your app (e.g.: ‘my-first-app’)
to prevent conflicts with other apps.

Now that you have created the URL map for your new map page, you can create a link to it from the home page. Open
the home . html template located atmy_ first_app/templates/my_first_app/home.html. Replace the
app_actions template block with the following:

o

% block app_actions %}
Go To Map
{% endblock %}

In this code, the url template tag is used to provide the url to the map page. It accepts a string with the following
pattern: "name_of_app:name_of_url_map". The advantage of using the url tag as opposed to hard coding
the URL is that if the URL ever needs to be changed, you will only need to change it in your app configuration file and
not in every template that references that URL.

View New Map Page

At this point, your app should be ready to run again. Save all changes in the files you edited and restart the development
server using the tethys manage start command in the terminal (stop it using CTRL—C if necessary). Browse
to your app home page at http://127.0.0.1:8000/apps/my-first-app. Use the “Go To Map” action to browse to your new
map page. Click on the “Provo Stream Gages” layer in the legend to zoom to that layer. Your map page should look
similar to this:

Advanced Concepts

Last Updated: September 29, 2016

1.4. Tutorials 49

http://127.0.0.1:8000/apps/my-first-app

Tethys Platform Documentation, Release 1.4.0

@ My First App

App Navigation Stream G ages

Jobs

Results

Steps
1. The First Step
2. The Second Step

3. The Third Step

Get Started

50 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

The purpose of this tutorial will be to introduce some advanced concepts in Tethys app development. In the map page
you created in the previous tutorials, you are able to view all of the stream gages on a map concurrently. In this tutorial
you will add the ability to view individual stream gages on the map page. This will involve creating a new url map,
new controller, and some modifications to the map template. This exercise will also serve as a good review of MVC
development in Tethys Platform.

New URL Map and URL Variables

You can add variables to your URLs to make your controllers and web pages more dynamic. URL variables
are denoted by single curly braces in the URL string like this: /example/url/{variable}. Open the
my_first_app/app.py file in a text editor. Modify the url_maps () method by adding a new Ur1Map ob-
ject named “map_single” with a URL variable called “id”. Your url_maps () method should look like this when
you are done:

def url_maps(self):

mmn

Add controllers

mmn

UrlMap = url_map_maker (self.root_url)

url_maps = (UrlMap (name='home',

url="my-first-app',
controller="my_first_app.controllers.home'),

UrlMap (name="map"',
url="my-first-app/map',
controller="my_first_app.controllers.map'),

UrlMap (name='map_single',
url='my-first-app/map/{id}",
controller="my_first_app.controllers.map_single'),

return url_maps

Note: The Django documentation on URL mapping will not be useful for Tethys apps. A different approach is used
by Tethys that is easier to use than the Django method.

New Controller

Notice that the map_single UrlMap object points to a controller named “map_single”. This controller doesn’t
exist yet, so we will need to create it. Open the my_first_app/controllers.py in a text editor and add the
map_single controller function to it:

@login_required
def map_single (request, id):

mmn

Controller for map page.

mmon

Create a session
session = SessionMaker ()

Query DB for gage objects
gage = session.query (StreamGage) .filter (StreamGage.id==id) .one ()

Transform into GeoJSON format

1.4. Tutorials 51

Tethys Platform Documentation, Release 1.4.0

gage_feature = {
'type': 'Feature',
'geometry': {
'type': 'Point',
'coordinates': [gage.longitude, gage.latitude]

geojson_gages = {
'type': 'FeatureCollection',
'crs': {
'type': 'name',
'properties': {
'name': 'EPSG:4326"'
}
}I
'features': [gage_feature]

Define layer for Map View

geojson_layer = MVLayer (source='GeoJSON',
options=geojson_gages,
legend_title="'Provo Stream Gages',
legend_extent=[-111.74, 40.22, -111.67, 40.25])

Define initial view for Map View
view_options = MVView (
projection="EPSG:4326",
center=[-111.70, 40.247,
zoom=13,
maxzZoom=18,
minZoom=2

Configure the map

map_options = MapView (height='500px",
width="100%",
layers=[geojson_layer],
view=view_options,
basemap="'0OpenStreetMap',
legend=True)

context = {'map_options': map_options,
'gage_id': id}

return render (request, 'my first_app/map.html', context)

The map_single controller function is slightly different than the map controller you created earlier. It accepts an
additional argument called “id”. The id URL variable value will be passed to the map_single controller making
the id variable available for use in the controller logic.

Anytime you create a URL with variables in it, the variables need to be added to the arguments of the controller
function it maps to.

The map_single controller is similar but different from the map controller you created earlier. The SQLAlchemy
query searches for a single stream gage record using the id variable via the‘‘filter()** method. The stream gage
data returned by the query is reformatted into GeoJSON format as before and the map_options for the Gizmo are
defined.

52 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

The context is expanded to include the id variable, so that it will be available for use in the template. The same
map.html template is being used by this controller as was used by the map controller. However, it will need to be
modified slightly to make use of the new gage_ id context variable.

Modify the Template

Open the map . html template located at my_first_app/templates/my_first_app/map.html. Modify
the template so that it matches this:

{% extends "my_first_app/base.html" %}
{% load tethys_gizmos %}

{% block app_navigation_items %}
<li class="title">Gages</1li>
<1li{% if not gage_id %} class="active"{% endif %}>
All Gages
</1li>
<1li{% if gage_id == '1' %} class="active"{% endif %}>
Stream Gage 1
</1li>
<1li{% if gage_id == '2' %} class="active"{% endif %}>
Stream Gage 2
</1li>

<1li{% if gage_id == '3' %} class="active"{% endif %}>

Stream Gage 3
</1li>
<1li{% if gage_id == '4' %} class="active"{% endif %}>

Stream Gage 4
</1li>
{% endblock %}

{% block app_content %}
{% 1f gage_id %}
<hl>Stream Gage {{gage_id}}</hl>
{% else %}
<hl>Stream Gages</hl>
{% endif %}

{% gizmo map_view map_options %}
{% endblock %}

{% block app_actions %}
Back
{% endblock %}

There are two changes to the map.html template that are worth noting. First, the template now overrides the
app_navigation_block to provide links for each of the stream gages in the navigation. The if template tag is
used in each of the nav items to highlight the appropriate link based on the gage_id. Notice that all if tags must
also end with a endif tag. The text between the two tags is displayed only if the conditional statement evaluates
to True. The href for each link is provided using the url, but this time the id variable is also provided as an
argument.

The other change to the template is the heading of the page (<h1>) is wrapped by i f, else, and endif tags. The
effect is to display “Stream Gage id#” when viewing only one stream gage and “Stream Gages” when viewing all of
them.

1.4. Tutorials 53

Tethys Platform Documentation, Release 1.4.0

View Updated Map Page

Just like that, you added a new page to your app using MVC. Save the changes to any files you edited and start up
the development server using the tethys manage start command and browse to your app. Use the “Go To
Map” action on the home page to browse to your new map page and use the options in the navigation pane to view the
different gages. It should look like this (although you may need to pan and zoom some):

cages Stream Gage 2
All Gages
Stream Gage 1

Stream Gage 2

Stream Gage 3

~ Brgham i |
oung

Stream Gage 4 Universin

3006 WHON

~m3008 oS

i +) WY

Provo Stream Gages -

Basemap -
———_ = Y i-E v

Back

Variable URLs

Take note of the URL as you are viewing the different gages. You should see the ID of the current gage. For ex-
ample, the URL for the gage with an ID of 1 would be http://127.0.0.1:8000/apps/my-first-app/map/1/. You can
manually change the ID in the URL to request the gage with that ID. Visit this URL http://127.0.0.1:8000/apps/my-
first-app/map/3/ and it will map the gage with ID 3.

Try this URL: http://127.0.0.1:8000/apps/my-first-app/map/100/. You should see a lovely error message, because you
don’t have a gage with ID 100 in the database. This uncovers a bug in your code that we won’t take the time to fix
in this tutorial. If this were a real app, you would need to handle the case when the ID doesn’t match anything in the
database so that it doesn’t give you an error.

This exercise also exposes a vulnerability with using integer IDs in the URL—-they can be guessed easily. For example
if your app had a delete method, it would be very easy for an attacker to write a script that would increment through
integers and call the delete method—effectively clearing your database. It would be a much better practice to use a
UUID (see Universally unique identifier) or something similar for IDs.

54 Chapter 1. Contents

http://127.0.0.1:8000/apps/my-first-app/map/1/
http://127.0.0.1:8000/apps/my-first-app/map/3/
http://127.0.0.1:8000/apps/my-first-app/map/3/
http://127.0.0.1:8000/apps/my-first-app/map/100/
http://en.wikipedia.org/wiki/Universally_unique_identifier

Tethys Platform Documentation, Release 1.4.0

User Input and Forms

Last Updated: September 29, 2016

Eventually you will need to request input from the user, which will involve working with HTML forms. In this tutorial,
you’ll learn how to create forms in your template and process the data submitted through the form in your controller.

New URL Map

The form will be created on a new page, which means you will need to create a new URL map and controller. Open
your my_first_app/app.py and add a new Ur1Map object called “echo_name” to the url_maps () method
of your app class. The url_maps () method of your app class should look like this now:

def url_maps(self):

mmn

Add controllers

mmon

UrlMap = url_map_maker (self.root_url)

url_maps = (UrlMap (name='home',
url="my-first-app',
controller="my_first_app.controllers.home'),
UrlMap (name="map"',
url='my-first-app/map',
controller="my_first_app.controllers.map'),
UrlMap (name="'map_single',
url="my-first-app/map/{id}",
controller="my_first_app.controllers.map_single'),
UrlMap (name="'echo_name',
url='my-first-app/echo-name',
controller="my_first_app.controllers.echo_name'),

return url_maps

New Template

Create a new template called “echo_name.html” in your templates directory
(my_first_app/templates/my_first_app/echo_name.html). Open the file and add the follow-
ing contents:

{% extends "my_first_app/base.html" %}
{% load tethys_gizmos %}

{% block app_navigation_items %}
<li class="active">Name Echoer
{% endblock %}

{% block app_content %}
<form method="post">
{% csrf_token %}
{% gizmo text_input text_input_options %}
<input type="submit" name="name-form-submit" class="btn btn-default">
</form>

1.4. Tutorials 55

Tethys Platform Documentation, Release 1.4.0

{% if name %}
<hl>Hello, {{ name }}!</hl>
{% endif %}
{% endblock %}

{% block app_actions %}
Back
{% endblock %}

The form is denoted by the HTML <form> tag and it contains a text input (created by a template Gizmo) and a submit
button. Also note the use of the csrf_token tag. This is a security precaution that is required to be included in all
the forms of your app (see the Cross Site Forgery protection article in the Django documentation for more details).

Also note that the method attribute of the <form> element is set to post. This means the form will use the HTTP
method called POST to submit the data to the server. For an introduction to HTTP methods, see The Definitive Guide
to GET vs POST.

New Controller

Now you need to create the echo_name controller function. First, add the following import statement to the top of
my_ first _app/controllers.py ' file:

from tethys_sdk.gizmos import TextInput

Then add the following function to your my_first_app/controllers.py file:

Qlogin_required
def echo_name (request) :

mmon

Controller that will echo the name provided by the user via a form.
mrmmn

Default value for name

name = "'
Define Gizmo Options

text_input_options = TextInput (display_text='Enter Name',
name="name—-input")

Check form data
if request.POST and 'name—-input' in request.POST:
name = request.POST['name-input']

Create template context dictionary
context = {'name': name,
'text_input_options': text_input_options}

return render (request, 'my_ first_app/echo_name.html', context)

There are a few features to point out in this controller. First, the Gizmo options for the text input are defined in this
controller via the text__input_options dictionary. The text input must have a name assigned to it for its value to
be sent with the form data. In this case the name of the text input is “name-input”. See the Template Gizmos API.

Next, the data that is submitted with HTML forms is returned through the reque st object. For forms submitted using
the “post” method, the data will be accessible in the request . POST attribute. Similarly, form data submitted using
the “get” method will be available via the request . GET attribute. Both request .GET and request .POST are
dictionary like objects where the keys are the names of the fields from the form.

56 Chapter 1. Contents

https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/
http://blog.teamtreehouse.com/the-definitive-guide-to-get-vs-post
http://blog.teamtreehouse.com/the-definitive-guide-to-get-vs-post

Tethys Platform Documentation, Release 1.4.0

The controller contains logic that checks the request . POST for data with the name of the text input field, “name-
input”. If it exists (which it will after the user submits the form), the name variable is replaced with the value of the
text input. The name variable is passed to template where it renders a nice greeting.

Link to New Page

Create a link to the new page from the home page using the url tag. Open the
my_first_app/templates/my_first_app/home.html file and replace the contents with this:

{% extends "my_first_app/base.html" %}

{% block app_navigation_items %}
Name Echoer
{%$ endblock %}

{% block app_content %}

<hl>Welcome!</hl>

<p>Congratulations on creating a new Tethys app!</p>
{% endblock %}

{% block app_actions %}
Go To Map
{% endblock %}

View New Page

The app is ready to be tested. Run the tethys manage start command in the terminal and browse to your app. Use the
“Name Echoer” link in the navigation to access the new page. Enter your name, press submit, and enjoy the greeting.
Your new page should look something like this:

Distributing Apps

Last Updated: September 29, 2016

Once your app is complete, you will likely want to distribute it for others to use or at the very least install it in a
production Tethys Platform environment. When you share your app with others, you will share the entire release
package, which is the outermost directory of your app project. For these tutorials, your release package is called
“tethysapp-my_first_app”.

The release package contains the source code for your app and a sefup script (setup.py). You may also wish to
include a README file and a LICENSE file in this directory. The sefup script can be used to streamline installation
of your app and any Python dependencies it may have. You already used the sefup script without realizing it in the
Create a New Tethys App Project tutorial when you installed your app for the first time (this command: python
setup.py develop). A brief introduction to the sefup script will be provided in this tutorial.

Setup Script

When you generate your app using the scaffold, it will automatically generate a sefup script (setup.py). Open the
setup script for your app located at ~/tethysdev/tethysapp-my_first_app/setup.py. It should look
something like this:

1.4. Tutorials 57

Tethys Platform Documentation, Release 1.4.0

Enter Name

Name Echoer

Submit

Hello, Erick!

58 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

import os
import sys

from setuptools import setup, find_packages

from tethys_apps.app_installation import custom_develop_command, custom_install_command

Apps Definition

app_package = 'my_ first_app'

release_package = 'tethysapp-' + app_package

app_class = 'my_first_app.app:MyFirstApp'

app_package_dir = os.path.join(os.path.dirname (os.path.abspath(file)), 'tethysapp',

Python Dependencies
dependencies = []

setup (
name=release_package,
version='0.0",
tags="'",
description="",
long_description="",
keywords="",
author="",
author_email="",
url="",
license="",

packages=find_packages (exclude=["'ez_setup',

namespace_packages=['tethysapp',
include_package_data=True,
zip_safe=False,
install_requires=dependencies,

'examples', 'tests']),

'tethysapp.' + app_packagel],

cmdclass={
"install': custom_install_command (app_package, app_package_dir, dependencies),
'develop': custom_develop_command (app_package, app_package_dir, dependencies)

)

As a general rule, you should never modify the parameters under the “Apps Definition” heading. These parameters
are used by the sefup script to find the source code for your app and changing their values could result in your app not
working properly. If you use Python libraries that are external to your app or Tethys Platform, you will need add the
library name to the dependencies list in the setup script. These libraries will automatically be installed when your

app is installed.

The final part of the setup script makes a call to the setup () function that is provided by the setuptools library.
You will see the metadata that you defined during the scaffold process listed here. As you release subsequent versions
of your app, you may wish to increment the version parameter of this function.

Setup Script Installation

The setup script is used to install your app and there are two types of installation that can be performed: install and
develop. The install type of installation hard copies the source code of your app into the site-packages
directory of your Python installation. The site-packages directory is where Python keeps all of the code for

external modules and libraries that have been installed.

This is the type of installation you would use for a completed app that is being installed in a production environment.
To perform this type of installation, open a terminal, change into the release package directory of your app, and run

the install command on the sefup script as follows:

1.4. Tutorials

59

app_package)

Tethys Platform Documentation, Release 1.4.0

cd ~/tethysdev/tethysapp-my_first_app
python setup.py install

The install type of installation is not well suited for working with your app during development, because you
would need to reinstall it (i.e.: run the commands above) every time you made a change to the app source code. This
is why the develop type of installation exists. When an app is installed with the develop command, the source
code for your app is only linked to the site-packages directory. This allows you to change your code and test the
changes without reinstalling the app.

You already performed this type of installation on your app during the Create a New Tethys App Project tutorial. To
perform this type of installation, open a terminal, change into the release package directory, and run the develop
command on the setup script like so:

cd ~/tethysdev/tethysapp-my_first_app
python setup.py develop

Tip: For more information about setuptools and the sefup script, see the Setuptools Documentation.

Spatial Dataset Services and GeoServer

Last Updated: September 30, 2016

This tutorial will walk you through the steps of working with GeoServer in a Tethys App project using Tethys Platform.
If you have not already installed Tethys Platform, follow the /nstallation documentation and then return.

This tutorial will make use of the . . /software_suite/geoserver and the Spatial Dataset Services API.

Start and Register

Last Updated: September 30, 2016

Start GeoServer Docker

Startup your . ./../software_suite/geoserver container:

$ tethys docker start -c geoserver

Register GeoServer Docker

Get the endpoint for your GeoServer Docker container:

$ tethys docker ip

Register the GeoServer with Tethys in the Portal admin page. Select the dropdown menu next to your username in the
top right-hand corner of the screen and select the “Site Admin” link. Select the “Spatial Dataset Servics” link from
the “Tethys Services” section and then press the “Add Spatial Dataset Service” button. Create a new Spatial Dataset
Service named “default” of type GeoServer, enter the endpoint and public endpoint as the same from the print out in
the terminal, and fill out the username and password.

Note: The default username and password for GeoServer is “admin” and “geoserver”, respectfully. You do not need
to enter an API key.

60 Chapter 1. Contents

https://pythonhosted.org/setuptools/setuptools.html

Tethys Platform Documentation, Release 1.4.0

GeoServer Web Admin Interface

Explore the GeoServer web admin interface by visiting link: http://localhost:8181/geoserver/web/.

Scaffold New App

Create a new app and install it:

$ tethys scaffold geoserver_app
$ cd tethysapp-geoserver_app
$ python setup.py develop

Download Test Files

Download the sample shapefiles that you will use to test your app:

geoserver_app_data.zip

Upload Shapefile

Last Updated: September 30, 2016

Add Form to Home Page

Replace the contents of the existing home . htm1 template with:

{% extends "geoserver_app/base.html" %}

{% block app_content %}
<hl>Upload a Shapefile</hl>
<form action="" method="post" enctype="multipart/form-data">.
{% csrf_token %}
<div class="form-group">
<label for="fileInput">Shapefiles</label>
<input name="files" type="file" multiple class="form-control" id="fileInput" placeholder="S5h:
</div>
<input name="submit" type="submit" class="btn btn-default">
</form>
{% endblock %}

Handle File Upload in Home Controller

Add these imports to the top of the controllers.py module:

import random
import string

from django.shortcuts import render
from django.contrib.auth.decorators import login_required

from tethys_sdk.gizmos import =
from tethys_sdk.services import get_spatial_dataset_engine

1.4. Tutorials 61

http://localhost:8181/geoserver/web/

Tethys Platform Documentation, Release 1.4.0

WORKSPACE = 'geoserver_app'
GEOSERVER_URI = 'http://www.example.com/geoserver—app'

Modify the home () controller so that it can handle the file upload event like so:

Qlogin_required
def home (request) :

mmn

Controller for the app home page.

mmwmn

Retrieve a geoserver engine

geoserver_engine = get_spatial_dataset_engine (name='default')

Check for workspace and create workspace for app if it doesn't exist
response = geoserver_engine.list_workspaces ()

if response['success']:
workspaces = response['result']

if WORKSPACE not in workspaces:
response = geoserver_engine.create_workspace (workspace_id=WORKSPACE,
uri=GEOSERVER_URI)

Case where the form has been submitted
if request.POST and 'submit' in request.POST:
Verify files are included with the form
if request.FILES and 'files' in request.FILES:
Get a list of the files
file_list = request.FILES.getlist('files')

Upload shapefile

store = ''.join(random.choice(string.ascii_lowercase + string.digits) for _ in range (6))
store_id = WORKSPACE + ':' + store
response = geoserver_engine.create_shapefile_resource (

store_id=store_id,
shapefile_upload=file_list,
overwrite=True,

debug=True

context = {}

return render (request, 'geoserver_app/home.html', context)

Test Shapefile Upload

Go to the home page of your app located at http://localhost:8000/apps/geoserver-app/. You should see a form with a
file input (“Browse” button or similar) and a submit button. To test this page, select the “Browse” button and upload
one of the shapefiles from the data that you downloaded earlier. Remember that for the shapefile to be valid, you need
to select at least the files with the extensions “shp”, “shx”, and “dbf”. Press submit to upload the files.

Use the GeoServer web admin interface (http://localhost:8181/geoserver/web/) to verify that the layers were success-
fully uploaded. Look for layers belonging to the workspace ‘geoserver_app’.

62 Chapter 1. Contents

http://localhost:8000/apps/geoserver-app/
http://localhost:8181/geoserver/web/

Tethys Platform Documentation, Release 1.4.0

Map GeoServer Layers

Last Updated: September 30, 2016

Map Page UriMap

Add a new Ur1Map to the url_maps method of the app . py module:

UrlMap (name='map"',
url='geoserver-app/map"',
controller="'geoserver_app.controllers.map'),

Map Page Controller

Add a new controller to the controller.py module:

Qlogin_required
def map (request) :

mmn

Controller for the map page

mon

geoserver_engine = get_spatial_dataset_engine (name='default')
options = []
response = geoserver_engine.list_layers(with_properties=False)

if response['success']:
for layer in response['result']:
options.append((layer.title(), layer))

select_options = SelectInput (display_text='Choose Layer',
name="'layer',
multiple=False,
options=options)

map_layers = []
if request.POST and 'layer' in request.POST:
selected_layer = request.POST['layer']

legend_title = selected_layer.title()

geoserver_layer = MVLayer (
source="ImageWMS"',

options={'url': 'http://localhost:8181/geoserver/wms',
'params': {'LAYERS': selected_layer},
'serverType': 'geoserver'},

legend_title=legend_title,
legend_extent=[-114, 36.5, -109, 42.5],
legend_classes=[

MVLegendClass ('polygon', 'County', £i11='#999999"),

1)

map_layers.append (geoserver_layer)

1.4. Tutorials 63

Tethys Platform Documentation, Release 1.4.0

view_options = MVView (
projection="EPSG:4326",
center=[-100, 407,
zoom=4,
maxzZoom=18,
minZoom=2

map_options = MapView (height='500px",
width="100%",
layers=map_layers,
legend=True,
view=view_options)

context = {'map_options': map_options,
'select_options': select_options}

return render (request, 'geoserver_app/map.html', context)

Map Page Template

Create a new map . html template in your template directory and add the following contents:

{%$ extends "geoserver_app/base.html" %}
{% load tethys_gizmos %}
{% block app_content %}
<hl>GeoServer Layers</hl>
<form action="" method="post">
{% csrf_token %}
{% gizmo select_input select_options %}
<input name="submit" type="submit" value="Update" class="btn btn-default">
</form>
{% gizmo map_view map_options %}
{% endblock %}

Test Map Page

Navigate to the map page (http://localhost:8000/apps/geoserver-app/map/). Use the select box to select a layer to
display on the map. Press the submit button to effect the change.

Spatial Input

Last Updated: September 30, 2016

Spatial Input Page UriMap

Add a new Ur1Map to the url_maps method of the app . py module:

UrlMap (name="draw',
url='geoserver—-app/draw',
controller='geoserver_app.controllers.draw'),

64 Chapter 1. Contents

http://localhost:8000/apps/geoserver-app/map/

Tethys Platform Documentation, Release 1.4.0

Spatial Input Controller

Add a new controller to the controller.py module:

Qlogin_required
def draw(request):

user = request.user
drawing_options MVDraw (
controls=["'Modify', 'Move', 'Point',
'LineString', 'Polygon', 'Box'],

initial="Polygon'

map_options = MapView (height="'450px"',
width="100%",
layers=[1],
draw=drawing_options)

geometry = "'

if request.POST and 'geometry' in request.POST:
geometry = request.POST['geometry']

context = {'map_options': map_options,
'geometry': geometry}

return render (request, 'geoserver_app/draw.html', context)

Spatial Input Template

Create a new draw.html template in your template directory and add the following contents:

{% extends "geoserver_app/base.html" %}
{% load tethys_gizmos %}

—~
oe

block app_content %}
<hl>Draw on the Map</hl>

{%$ 1f geometry %}
<p>{{ geometry }}</p>
{% endif %}

<form action="" method="post">
{% csrf_token %}
{% gizmo map_view map_options %}
<input name="submit" type="submit">
</form>
{% endblock %}

Add Navigation Links

Replace the app_navigation_items block of the base.html template with:

1.4. Tutorials

65

Tethys Platform Documentation, Release 1.4.0

{% block app_navigation_items %}
<li class="title">App Navigation
Upload Shapefile</1li>
GeoServer Layers
Draw</1li>

% endblock %}

Test Spatial Input Page

Navigate to the spatial input page using the “Draw” link in your navigation (http://localhost:8000/apps/geoserver-
app/draw/). Use the drawing controls to add features to the map, then press the submit button. The GeoJSON encoded
spatial data should be displayed when the page refreshes.

Dam Break Tutorial

Last Updated: April 12, 2016

Build the Dam Break app from scratch in this step by step tutorial. This tutorial was originally given during the
CUAHSI 2015 conference on HydroIlnformatics in Tuscaloosa, AL. It provides a good overview of many of the
features of Tethys Platform.

Get Started At: https://github.com/erdc-cm/tethysapp-dam_break/wiki

Video Tutorials

Last Updated: August 6, 2015

The following video tutorials provide more detailed demonstration of Tethys Platform’s capabilities.

File Management, CKAN, and NetCDF Parsing

This tutorial was given during the National Flood Interoperability Experiment summer institute and demonstrates how
to work with file dataset in Tethys apps including how to work with a CKAN server. Topics covered included the
Dataset Storage API with CKAN, multi-stage forms, Highcharts plotting using the Template Gizmos API, and more.

View Solution Source Code: https://github.com/tethysplatform/tethysapp-ckan_app

GeoServer and Web Mapping

This tutorial was given during the National Flood Interoperability Experiment and demonstrates how to use GeoServer
with the Web Mapping features of Tethys Platform. The topics covered include Spatial Dataset Services API, the Map
View from the Tethys Gizmos API, and working with advanced user forms.

View Solution Source Code: https://github.com/tethysplatform/tethysapp-geoserver_app

PostGIS Databases and Geoprocessing

This training was given during the National Flood Interoperability Experiment and demonstrates how to create
spatially-enabled databases and perform geoprocessing tasks using PostGIS. Topics covered include both Persistent
Stores APIs, mapping with Template Gizmos, SQLAlchemy, GeoAlchemy, PostgreSQL, and PostGIS.

View Solution Source Code: https://github.com/tethysplatform/tethysapp-postgis_app

66 Chapter 1. Contents

http://localhost:8000/apps/geoserver-app/draw/
http://localhost:8000/apps/geoserver-app/draw/
https://github.com/erdc-cm/tethysapp-dam_break/wiki
https://github.com/tethysplatform/tethysapp-ckan_app
https://github.com/tethysplatform/tethysapp-geoserver_app
https://github.com/tethysplatform/tethysapp-postgis_app

Tethys Platform Documentation, Release 1.4.0

Intro to Git and Versioning

This tutorial was given during the National Flood Interoperability Experiment and provides a short introduction to
versioning using Git and GitHub.

Software Suite

Last Updated: May 18, 2016

The Software Suite is the component of Tethys Platform that provides access to resources and functionality that are
commonly required to develop water resources web apps. The primary motivation of creating the Tethys Software
Suite was overcome the hurdle associated with selecting a GIS software stack to support spatial capabilities in apps.
Some of the more specialized needs for water resources app development arise from the spatial data components of
the models that are used in the apps. Distributed hydrologic models, for example, are parameterized using raster or
vector layers such as land use maps, digital elevation models, and rainfall intensity grids.

O = O
Sy w =
Web Apps

Tethys Portal
Tethys SDK

django

A Ckan Winﬁmure
& HYDROSHARE

,‘:2 Google maps
@ OpenLayers™

@ Highcharts JS

Visualization

amazon
webservices™

JHTCOndS

Cloud Computing

Distributed Computing

External Resources

A majority of the software projects included in the software suite are web GIS projects that can be used to acquire,
modify, store, visualize, and analyze spatial data, but Tethys Software Suite also includes other software projects to
address computing and visualization needs of water resources web apps. This article will describe the components
included in the Tethys Software Suite in terms of the functionality provided by the software.

1.5. Software Suite 67

Tethys Platform Documentation, Release 1.4.0

Spatial Database Storage

Tethys Software Suite includes the PostgreSQL database with PostGIS, a spatial database extension, to provide spatial
data storage capabilities for Tethys web apps. PostGIS adds spatial column types including raster, geometry, and
geography. The extension also provides database functions for basic analysis of GIS objects.

To use a PostgreSQL database in your app use the Persistent Stores API. To use a spatially enabled database with
PostGIS use the Spatial Persistent Stores API.

xﬁ—v GeoServer

Tethys Software Suite provides GeoServer for publishing spatial data as web services. GeoServer is used to publish
common spatial files such as Shapefiles and GeoTIFFs in web-friendly formats.

Map Publishing

To use the map publishing capabilities of GeoServer in your app refer to the . /software_suite/geoserver
documentation and use the Spatial Dataset Services API.

Geoprocessing

52°North Web Processing Service (WPS) is included in Tethys Software Suite as one means for supporting geopro-
cessing needs in water resources web app development. It can be linked with geoprocessing libraries such as GRASS,
Sextante, and ArcGIS® Server for out-of-the-box geoprocessing capabilities.

The PostGIS extension, included in the software suite, can also provide geoprocessing capabilities on data that is
stored in a spatially-enabled database. PostGIS includes SQL geoprocessing functions for splicing, dicing, morphing,
reclassifying, and collecting/unioning raster and vector types. It also includes functions for vectorizing rasters, clipping
rasters with vectors, and running stats on rasters by geometric region.

To use 52°North WPS or other WPS geoprocessing services in your app use the Web Processing Services API.

68 Chapter 1. Contents

http://www.postgresql.org/
http://postgis.net/
http://geoserver.org/
http://52north.org/communities/geoprocessing/wps/
http://grass.osgeo.org/
http://www.wikiwand.com/es/SEXTANTE_(SIG)
http://www.esri.com/software/arcgis/arcgisserver

Tethys Platform Documentation, Release 1.4.0

Visualization

OpenLayers 3 is a JavaScript web-mapping client library for rendering interactive maps on a web page. It is capable
of displaying 2D maps of OGC web services and a myriad of other spatial formats and sources including GeoJSON,
KML, GML, TopoJSON, ArcGIS REST, and XYZ.

To use an OpenLayers map in your app use the Map View Gizmo of the Template Gizmos API.

Google Maps™ provides the ability to render spatial data in a 2D mapping environment similar to OpenLayers, but
it only supports displaying data in KML formats and data that are added via JavaScript API. Both maps provide a
mechanism for drawing on the map for user input.

To use an OpenLayers map in your app use the Google Map View Gizmo of the Template Gizmos API.

1.5. Software Suite 69

http://openlayers.org/
https://developers.google.com/maps/web/

Tethys Platform Documentation, Release 1.4.0

Plotting capabilities are provided by Highcharts, a JavaScript library created by Highsoft AS. The plots created using
Highcharts are interactive with hovering effects, pan and zoom capabilities, and the ability to export the plots as
images.

To use an OpenLayers map in your app use the Plot View Gizmo of the Template Gizmos API.

Distributed Computing

’_;:v o

.,rﬂ,“ingh Throughput Computing

To facilitate the large-scale computing that is often required by water resources applications, Tethys Software Suite
leverages the computing management middleware HTCondor. HTCondor is both a resource management and a job
scheduling software.

To use the HTCondor and the computing capabilities in your app use the Jobs API and the Compute API.
File Dataset Storage
Tethys Software Suite does not include software for handling flat file storage. However, Tethys SDK provides APIs

for working with CKAN and HydroShare to address flat file storage needs. Descriptions of CKAN and HydroShare
are provided here for convenience.

70 Chapter 1. Contents

http://www.highcharts.com/
http://research.cs.wisc.edu/htcondor/

Tethys Platform Documentation, Release 1.4.0

ckan

CKAN is an open source data sharing platform that streamlines publishing, sharing, finding, and using data. There
is no central CKAN hub or portal, rather data publishers setup their own instance of CKAN to host the data for their

' & HYDROSHARE

HydroShare is an online hydrologic model and data sharing portal being developed by CUAHSI. It builds on the
sharing capabilities of CUAHSI’s Hydrologic Information System by adding support for sharing models and using
social media functionality.

To use a CKAN instance for flat file storage in your app use the Daraset Services API. HydroShare is not fully
supported at this time, but when it is you will use the Dataset Services API to access HydroShare resources.

1.5. Software Suite 71

http://ckan.org/
http://hydroshare.cuahsi.org/

Tethys Platform Documentation, Release 1.4.0

Docker Installation

oocker

Tethys Software Suite uses Docker virtual container system to simplify the installation of some elements. Docker
images are created and used to create containers, which are essentially stripped down virtual machines running only
the software included in the image. Unlike virtual machines, the Docker containers do not partition the resources
of your computer (processors, RAM, storage), but instead run as processes with full access to the resources of the
computer.

Three Docker images are provided as part of Tethys Software Suite including:
* PostgreSQL with PostGIS
* 52° North WPS
* GeoServer.

The installation procedure for each software has been encapsulated in a Docker image reducing the installation proce-
dure to three simple steps:

1. Install Docker
2. Download the Docker images

3. Deploy the Docker images as containers

72 Chapter 1. Contents

https://www.docker.com/

Tethys Platform Documentation, Release 1.4.0

SDK Relationships

Tethys Platform provides a software development kit (SDK) that provides application programming interfaces (APIs)
for interacting with each of the software included in teh Software Suite. The appropriate APIs are referenced in each
section above, but a summary table of the relationship between the Software Suite and the SDK is provided as a
reference.

Software API Functionality
PostgreSQL Persistent Stores API SQL Database Storage
PostGIS Spatial Persistent Stores Spatial Database Storage and
API Geoprocessing
GeoServer Spatial Dataset Services Spatial File Publishing
API
52° North WPS Web Processing Services Geoprocessing Services
API
OpenLayers, Google Maps, Template Gizmos API Spatial and Tabular Visualization
HighCharts
HTCondor Compute API and Jobs API | Computing and Job Management
CKAN, HydroShare Dataset Services API Flat File Storage

Software Development Kit

Last Updated: May 11, 2016

The Tethys Platform provides a Python Software Development Kit (SDK) to make it easier to incorporate the func-
tionality of the various supporting software packages into apps. The SDK is includes an Application Programming
Interface (API) for each of the major software components of Tethys Platform. This section contains the documenta-
tion for each API that is included in the SDK:

App Base Class API

Last Updated: May 11, 2016

Tethys apps are configured via the app class, which is contained in the app configuration file (app .py) of the app
project. The app class must inherit from the Tet hy sAppBase class to be loaded properly into CKAN. The following
article contains the API documentation for the TethysAppBase class.

class tethys_apps.base.app_base.TethysAppBase
Base class used to define the app class for Tethys apps.

name
string

Name of the app.

index
string

Lookup term for the index URL of the app.

icon
string

Location of the image to use for the app icon.

package
string

1.6. Software Development Kit 73

Tethys Platform Documentation, Release 1.4.0

Name of the app package.

root_url
string

Root URL of the app.

color
string

App theme color as RGB hexadecimal.

description
string

Description of the app.

tag [string]
A string for filtering apps.

enable feedback
boolean

Shows feedback button on all app pages.

feedback emails
list

A list of emails corresponding to where submitted feedback forms are sent.

classmethod create_persistent_store (persistent_store_name, spatial=False)
Creates a new persistent store database for this app.

Parameters
* persistent_store_name (string) — Name of the persistent store that will be created.
« spatial (bool) — Enable spatial extension on the database being created.
Returns True if successful.
Return type bool
Example:

from .app import MyFirstApp
result = MyFirstApp.create_persistent_store ('example db')

if result:
engine = MyFirstApp.get_persistent_store_engine ('example db')

classmethod destroy_persistent_store (persistent_store_name)
Destroys (drops) a persistent store database from this app.
Parameters persistent_store_name (string) — Name of the persistent store that will be created.
Returns True if successful.
Return type bool
Example:

from .app import MyFirstApp

result = MyFirstApp.destroy_persistent_store('example db')

74 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

if result:
App database 'example db' was successfuly destroyed and no longer exists

pass

classmethod get_app_workspace ()
Get the file workspace (directory) for the app.

Returns An object representing the workspace.
Return type tethys_apps.base.TethysWorkspace
Example:

import os
from .app import MyFirstApp

def a_controller (request):

mmon

Example controller that uses get_app_workspace () method.

mmn

Retrieve the workspace
app_workspace = MyFirstApp.get_app_workspace ()
new_file_path = os.path.join (app_workspace.path, 'new_file.txt'")

with open (new_file_path, 'w') as a_file:
a_file.write('...")

context = {}

return render (request, 'my_first_app/template.html', context)
classmethod get_handoff_ manager ()
Get the handoff manager for the app.

classmethod get_job_manager ()
Get the job manager for the app

classmethod get_persistent_store_engine (persistent_store_name)
Creates an SQLAIchemy engine object for the app and persistent store given.

Parameters persistent_store_name (string) — Name of the persistent store for which to retrieve
the engine.

Returns An SQLAIlchemy engine object for the persistent store requested.
Return type object
Example:

from .app import MyFirstApp

engine = MyFirstApp.get_persistent_store_engine ('example db')
classmethod get_user_workspace (user)
Get the file workspace (directory) for a user.
Parameters user (User or HttpRequest) — User or request object.
Returns An object representing the workspace.

Return type tethys_apps.base. TethysWorkspace

1.6. Software Development Kit 75

Tethys Platform Documentation, Release 1.4.0

Example:

import os
from .app import MyFirstApp

def a_controller (request):

mmn

Example controller that uses get_user_workspace () method.
mmn

Retrieve the workspace
user_workspace = MyFirstApp.get_user_workspace (request.user)
new_file_path = os.path.join(user_workspace.path, 'new_file.txt')

with open (new_file_path, 'w') as a_file:
a_file.write('...")

context = {}
return render (request, 'my first_app/template.html', context)
handoff_ handlers ()
Use this method to define handoff handlers for use in your app.
Returns A list or tuple of HandoffHandler objects.
Return type iterable
Example:

from tethys_sdk.handoff import HandoffHandler

def handoff handlers (self):

mmn

Example handoff_handlers method.

mmn

handoff_handlers = (HandoffHandlers (name='example',
handler='my_first_app.controllers.my_handler'),

return handoff_handlers

job_templates ()
Use this method to define job templates to easily create and submit jobs in your app.

Returns A list or tuple of JobTemplate objects.
Return type iterable
Example:

from tethys_sdk.jobs import CondorJobTemplate
from tethys_sdk.compute import list_schedulers

def job_templates(cls):

mmn

Example job_templates method.

mmn

my_scheduler list_schedulers () [0]

job_templates = (CondorJobTemplate (name='example',
parameters={'executable': 'S (APP_WORKSPACE) /example_c¢

76 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

'condorpy_template_name': 'vanilla_transf
'attributes': {'transfer_input_files': ('
'transfer_output_files': |

by
'scheduler': my_scheduler,
'remote_input_files': ('S (APP_WORKSPACE) /

)y

return job_templates
classmethod 1ist_persistent_stores ()
Returns a list of existing persistent stores for this app.
Returns A list of persistent store names.
Return type list
Example:

from .app import MyFirstApp
persistent_stores = MyFirstApp.list_persistent_stores()

permissions ()
Use this method to define permissions for your app.

Returns A list or tuple of Permission or PermissionGroup objects.
Return type iterable
Example:

from tethys_sdk.permissions import Permission, PermissionGroup

def permissions(self):

mmon

Example permissions method.

mmn

Viewer Permissions

view_map = Permission(
name="'view_map',
description='View map'

delete_projects Permission (
name='delete_projects’',
description='Delete projects'

create_projects

Permission (
name='create_projects',
description='Create projects'

admin = PermissionGroup (
name="admin',
permissions=(delete_projects, create_projects)

1.6. Software Development Kit 77

Tethys Platform Documentation, Release 1.4.0

permissions = (admin, view_map)
return permissions
classmethod persistent_store_exists (persistent_store_name)

Returns True if a persistent store with the given name exists for this app.
Parameters persistent_store_name (string) — Name of the persistent store that will be created.
Returns True if persistent store exists.
Return type bool

Example:

from .app import MyFirstApp

result = MyFirstApp.persistent_store_exists ('example db')

if result:
engine = MyFirstApp.get_persistent_store_engine ('example db')

persistent_stores|()
Define this method to register persistent store databases for your app. You may define up to 5 persistent

stores for an app.

Returns A list or tuple of PersistentStore objects. A persistent store database will be
created for each object returned.

Return type iterable
Example:

from tethys_sdk.stores import PersistentStore

def persistent_stores(self):

mmnn

Example persistent_stores method.

mmn

stores = (PersistentStore (name='example db',
initializer="init_stores:init_example_db',

spatial=True
),

return stores

url_maps ()
Use this method to define the URL Maps for your app. Your Ur1Map objects must be created from a
UrlMap class that is bound to the root_url of your app. Use the url_map_maker () function to
create the bound Ur1Map class. If you generate your app project from the scaffold, this will be done

automatically.
Returns A list or tuple of Ur1Map objects.
Return type iterable

Example:

78 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

from tethys_sdk.base import url_map_maker

def url_maps(self):

mmn

Example url_maps method.

mmon

Create UrlMap class that is bound to the root url.
UrlMap = url_map_maker (self.root_url)

url_maps = (UrlMap (name="home',
url="my-first-app',

controller="my_first_app.controllers.home'

)y

return url_maps

App Templating API

Last Updated: November 24, 2014

The pages of a Tethys app are created using the Django template language. This provides an overview of important
Django templating concepts and introduces the base templates that are provided to make templating easier.

Django Templating Concepts

The Django template language allows you to create dynamic HTML templates and minmizes the amount of HTML
you need to write for your app pages. This section will provide a crash course in Django template language basics, but
we highly recommend a review of the Django Template Language documentation.

Tip: Review the Django Template Language to get a better grasp on templating in Tethys.

Variables

In Django templates, variables are denoted by double curly brace syntax: {{ variable }}. The variable ex-
pression will be replaced by the value of the variable. Dot notation can be used access attributes of a variable: { {
variable.attribute }}.

Examples:

Examples of Django template variable syntax
{{ variable }}

Access items in a list or tuple using dot notation
{{ list.0 }}

Access items in a dictionary using dot notation
{{ dict.key }}

Access attributes of objects using dot notation
{{ object.attribute }}

Hint: See Django template Variables documentation for more information.

1.6. Software Development Kit 79

https://docs.djangoproject.com/en/1.7/topics/templates/
https://docs.djangoproject.com/en/1.7/topics/templates/
https://docs.djangoproject.com/en/1.7/topics/templates/#variables

Tethys Platform Documentation, Release 1.4.0

Filters

Variables can be modified by filters which look like this: { { variable|filter:argument } }. Filters perform
modifying functions on variable output such as formatting dates, formatting numbers, changing the letter case, and
concatenating multiple variables.

Examples:

The default filter can be used to print a default value when the variable is falsy
{{ variable|default:"nothing" }}

The join filter can be used to join a list with a the separator given
{{ list|join:", " }}

Hint: Refer to the Django Filter Reference for a full list of the filters available.

Tags

Tags use curly brace percent sign syntax like this: {$ tag $%}. Tags perform many different functions including
creating text, controlling flow, or loading external information to be used in the app. Some commonly used tags
include for, if, block, and extends.

Examples:

The if tag only prints its contents when the condition evaluates to True
{% if name %}
<hl>Hello, {{ name }}!</hl>
{% else %}
<hl>Welcome!</hl>
{% endif %}

The for tag can be used to loop through iterables printing its contents on each iteration

{% for item in item_list %}
{{ item }}</1li>
{% endfor %}

The block tag is used to override the contents of the block of a parent template
{% block example %}

<p>I Jjust overrode the contents of the "example" block with this paragraph.</p>
{% endblock %}

Hint: See the Django Tag Reference for a complete list of tags that Django provides.

Template Inheritance

One of the advantages of using the Django template language is that it provides a method for child templates to extend
parent templates, which can reduce the amount of HTML you need to write. Template inheritance is accomplished
using two tags, extends and block. Parent templates provide blocks of content that can be overridden by child
templates. Child templates can extend parent templates by using the ext ends tag. Calling the block tag of a parent
template in a child template will override any content in that b1l ock tag with the content in the child template.

80 Chapter 1. Contents

https://docs.djangoproject.com/en/1.7/ref/templates/builtins/#ref-templates-builtins-filters
https://docs.djangoproject.com/en/1.7/ref/templates/builtins/#ref-templates-builtins-tags

Tethys Platform Documentation, Release 1.4.0

Hint: The Django Template Inheritance documentation provides an excellent example that illustrates how inheritance
works.

Base Templates

There are two layers of templates provided for Tethys app development. The app_base.html template provides
the HTML skeleton for all Tethys app templates, which includes the base HTML structural elements (e.g.: <html>,
<head>, and <body> elements), the base style sheets and JavaScript libraries, and many blocks for customization.
All Tethys app projects also include a base . html template that inherits from the app_base.html template.

App developers are encouraged to use the base . html file as the base template for all of their templates, rather than
extending the app_base.html file directly. The base.html template is easier to work with, because it includes
only the blocks that will be used most often from the app_base.html template. However, all of the blocks that
are available from app_base.html template will also be available for use in the base.html template and any
templates that extend it.

Many of the blocks in the template correspond with different portions of the app interface. Figure 1 provides a graphi-
cal explanation of these blocks. An explanation of all the blocks provided in the app_base .html and base.html
templates can be found in the section that follows.

Blocks

This section provides an explanation of the blocks are available for use in child templates of either the
app_base.html or the base.html templates.

htmltag

Override the <html> element open tag.
Example:

% block htmltag %$}<html lang="es">{% endblock %}

headtag

Add attributes to the <head> element.
Example:

{% block headtag %}style="display: block;"{% endblock %}

meta

Override or append <meta> elements to the <head> element. To append to existing elements, use block . super.
Example:

{% block meta %}

{{ block.super }}

<meta name="description" value="My website description" />
{% endblock %}

1.6. Software Development Kit 81

https://docs.djangoproject.com/en/1.7/topics/templates/#template-inheritance

Tethys Platform Documentation, Release 1.4.0

App Navigation This is a flash message. @

Home

Jobs

Welcome!

Congratulations on creating a new Tethys app!

Results

Steps
1. The First Step
2. The Second Step

3. The Third Step

Get Started ® @

Back Next

Figure 1.1: Figure 1. Illustration of the blocks that correspond with app interface elements as follows:
. app_header_override
. app_navigation_toggle_override
. app_icon_override, app_icon
. app_title_override, app_title
. exit_button_override
. app_content_override
app_navigation_override
app_navigation, app_navigation_items

flash

O 0 N AW N~

10. app_content
11. app_actions_override

12. app_actions

82 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

title

Change title for the page. The title is used as metadata for the site and shows up in the browser in tabs and bookmark
names.

Example:

{% block title %}{{ block.super }} - My Sub Title{% endblock %}

links

Add content before the stylesheets such as rss feeds and favicons. Use block . super to preserve the default favicon
or override completely to specify custom favicon.

Example:

{%$ block links %}
<link rel="shortcut icon" href="/path/to/favicon.ico" />
{% endblock %}

styles

Add additional stylesheets to the page. Use block . super to preserve the existing styles for the app (recommended)
or override completely to use your own custom stylesheets.

Example:

{% block styles %}

{{ block.super }}

<link href="/path/to/styles.css" rel="stylesheet" />
{% endblock %}

global_scripts

Add JavaScript libraries that need to be loaded prior to the page being loaded. This is a good block to use for libraries
that are referenced globally. The global libraries included as global scripts by default are JQuery and Bootstrap. Use
block. super to preserve the default global libraries.

Example:

{% block global_scripts %}

{{ block.super }}

<script src="/path/to/script.js" type="text/Jjavascript"></script>
{% endblock %}

bodytag

Add attributes to the body element.
Example:

{% block bodytag %}class="a-class" onload="run_this();"{% endblock %}

1.6. Software Development Kit 83

Tethys Platform Documentation, Release 1.4.0

app_content_wrapper_override

Override the app content structure completely. The app content wrapper contains all content in the <body> element
other than the scripts. Use this block to override all of the app template structure completely.

Override Eliminates:

app_header_override, app_navigation_toggle_override, app_icon_override, app_icon, app_title_override, app_title,
exit_button_override, app_content_override, flash, app_navigation_override, app_navigation, app_navigation_items,
app_content, app_actions_override, app_actions.

Example:
{% block app_content_wrapper_override %}
<div>
<p>My custom content</p>
</div>

{% endblock %}

app_header_override

Override the app header completely including any wrapping elements. Useful for creating a custom header for your
app.
Override Eliminates:

app_navigation_toggle_override, app_icon_override, app_icon, app_title_override, app_title, exit_button_override

app_navigation_toggle_override

Override the app navigation toggle button. This is useful if you want to create an app that does not include the
navigation pane. Use this to remove the navigation toggle button as well.

Example:

{% block app_navigation_toggle_override %}{% endblock %}

app_icon_override

Override the app icon in the header completely including any wrapping elements.
Override Eliminates:

app_icon

app_icon

Override the app icon element in the header.
Example:

{% block app_icon $}{% endblock %}

84 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

app_title_override

Override the app title in the header completely including any wrapping elements.
Override Eliminates:

app_title

app_title

Override the app title element in the header.
Example:

{% block app_title %$}My App Title{% endblock %}

exit_button_override

Override the exit button completely including any wrapping elements.

app_content_override

Override only the app content area while preserving the header. The navigation and actions areas will also be overrid-
den.

Override Eliminates:

flash, app_navigation_override, app_navigation, app_navigation_items, app_content, app_actions_override,
app_actions

flash

Override the flash messaging capabilities. Flash messages are used to display dismissible messages to the user using
the Django messaging capabilities. Override if you would like to implement your own messaging system or eliminate
functionality all together.

app_navigation_override

Override the app navigation elements including any wrapping elements.
Override Eliminates:

app_navigation, app_navigation_items

app_navigation

Override the app navigation container. The default container for navigation is an unordered list. Use this block to
override the unordered list for custom navigation.

Override Eliminates:

app_navigation_items

1.6. Software Development Kit 85

Tethys Platform Documentation, Release 1.4.0

app_navigation_items

Override or append to the app navigation list. These should be <11i> elements.

app_content

Add content to the app content area. This should be the primary block used to add content to the app.
Example:

{% block app_content %}
<p>Content for my app.</p>
{% endblock %}

app_actions_override

Override app content elements including any wrapping elements.

app_actions

Override or append actions to the action area. These are typically buttons or links. The actions are floated right, so
they need to be listed in right to left order.

Example:

{%$ block app_actions %}
Next
Back

{% endblock %}

scripts

Add additional JavaScripts to the page. Use block . super to preserve the existing scripts for the app (recommended)
or override completely to use your own custom scripts.

Example:

{%$ block scripts %}

{{ block.super }}

<script href="/path/to/script.js" type="text/javascript"></script>
{% endblock %}

app_base.html
This section provides the complete contents of the app_base.html template. It is meant to be used as a reference
for app developers, so they can be aware of the HTML structure underlying their app templates.

{% load staticfiles tethys_gizmos %}
<!DOCTYPE html>

{% block htmltag %}
<!-—[if IE 7]> <html lang="en" class="ie ie7"> <![endif]-->

86 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

<!-—[if IE 8]> <html lang="en" class="ie ie8"> <![endif]-->
<!-—[if IE 9]> <html lang="en" class="ie9"> <![endif]-->
<!-—[1if gt IE 8]><!-—> <html lang="en" > <!--<![endif]-->

{% endblock %}
<head {% block headtag %}{% endblock %}>

{% block meta %}
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="generator" content="Django" />
{% endblock %}

<title>
{%$ if site_globals.site_title %}
{{ site_globals.site_title }}
{% elif site_globals.brand_text %}
{{ site_globals.brand_text }}
{%$ else %}
Tethys
{%$ endif %}
{% block title %} {% endblock %}
</title>

{% block links %}
{% if site_globals.favicon %}
<link rel="shortcut icon" href="{{ site_globals.favicon }}" />
{%$ endif %}
{% endblock %}

{% block styles %}
<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css" rel="stylesheet" |
<link href="{% static 'tethys_apps/css/app_base.css' %$}" rel="stylesheet" />

{% endblock %}

{% block global_scripts %}

<script src="//code.jquery.com/jquery-2.1.1.min.js" type="text/javascript"></script>

<script src="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js" type="text/javascr:
{% endblock %}

</head>
<body {% block bodytag %}{% endblock %}>

{% block app_content_wrapper_override %}
<div id="app-content-wrapper" class="show-nav">

{% block app_header_override %}
<div id="app-header" class="clearfix">
<div class="tethys-app-header" style="background: {{ tethys_app.color|default:'#1b95dc'

{% block app-navigation-toggle-override %}

<div></div>
<div></div>
<div></div>

1.6. Software Development Kit 87

Tethys Platform Documentation, Release 1.4.0

{% endblock %}

{% block app_icon_override %}
<div class="icon-wrapper">

{% block app_icon %}{% endblock %}

</div>
{% endblock %}

{% block app_title_override %}
<div class="app-title-wrapper">

{% block app_title %}{{ tethys_app.name }}{% endblock %}</:

</div>
{% endblock %}

{% block exit_button_override %}
<div class="exit-button">

<a href="javascript:void(0);" onclick="TETHYS_APP_BASE.exit_app('{% url
</div>
{% endblock %}
</div>

</div>
{% endblock %}

{% block app_content_override %}
<div id="app-content">

{% block flash %}
{% 1f messages %}
<div class="flash-messages">

{%$ for message in messages %}
<div class="alert {% if message.tags %}{{ message.tags }}{% endif %
<button type="button" class="close" data-dismiss="alert">
×
Close
</button>
{{ message }}
</div>
{% endfor %}
</div>
{% endif %}
{% endblock %}

{% block app_navigation_override %}
<div id="app-navigation">
{% block app_navigation %}
<ul class="nav nav-pills nav-stacked">
{% block app_navigation_items %}{% endblock %}

{% endblock %}
</div>

{% endblock %}

<div id="inner-app-content">
{% block app_content %}{% endblock %}

App actions are fixed to the bottom #}
block app_actions_override %}

o° =H=

88 Chapter 1. Contents

}

'app_libra:

alert—-dismis:

Tethys Platform Documentation, Release 1.4.0

<div id="app-actions">
{% block app_actions %} {% endblock %}

</div>
{% endblock %}
</div>
</div>
{% endblock %}

</div>
{% endblock %}

{% block scripts %}
<script src="{% static 'tethys_apps/vendor/cookies.js' %$}" type="text/javascript"></script>
<script src="{% static 'tethys_apps/js/app_base.]js' %}" type="text/javascript"></script>
{% gizmo_dependencies %}
{% endblock %}
</body>
</html>

base.html

The base.html is the base template that is used directly by app templates. This file is generated in all new Tethys
app projects that are created using the scaffold. The contents are provided here for reference.

All of the blocks provided by the base.html template are inherited from the app_base.html template. The
base.html template is intended to be a simplified version of the app_base.html template, providing only the the
blocks that should be used in a default app configuration. However, the blocks that are excluded from the base . html
template can be used by advanced Tethys app developers who wish customize parts or all of the app template structure.

See the Blocks section for an explanation of each block.

{% extends "tethys_apps/app_base.html" %}

{% load staticfiles %}

—_-—
oe

block title %}- {{ tethys_app.name }}{% endblock %}

{% block styles %}
{{ block.super }}

<link href="{% static 'new_template_app/css/main.css' %}" rel="stylesheet"/>
{% endblock %}

{% block app_icon %}
{# The path you provided in your app.py 1is accessible through the tethys_app.icon context variable

{% endblock %}

{# The name you provided in your app.py 1is accessible through the tethys_app.name context variable #
{%$ block app_title %} {{ tethys_app.name }}{% endblock %}

{% block app_navigation_items %}
<1li class="title">App Navigation

<li class="active">Home
Jobs</1li>
Results

<1li class="title">Steps
1. The First Step
2. The Second Step

1.6. Software Development Kit 89

Tethys Platform Documentation, Release 1.4.0

3. The Third Step</1li>
<1li class="separator"></1li>

Get Started
endblock %}

—_~
oe

block app_content %}
endblock %}

o° oo

_—

{% block app_actions %}
{% endblock %}

{% block scripts %}

{{ block.super }}

<script src="{% static 'new_template_app/js/main.js' %$}" type="text/javascript"></script>
{% endblock %}

Template Gizmos API

Last Updated: August 10, 2015

Template Gizmos are building blocks that can be used to create beautiful interactive controls for web apps. Using the
Template Gizmos API, developers can add date-pickers, plots, and maps to their app pages with minimal coding. This
article provides an overview of how to use Gizmos. If you are not familiar with templating in Tethys apps, please
review The View and Templating tutorial before proceeding.

For a detailed explanation and code examples of each Gizmo, see the Gizmos Options Objects section.

Working with Gizmos
The best way to illustrate how to use Template Gizmos is to look at an example. The following example illustrates
how to add a date picker to a page using the Date Picker Gizmo. The basic workflow involves three steps:

1. Define gizmo options in the controller for the template

2. Load gizmo library in the template

3. Insert the gizmo tag in the template

A detailed description of each step follows.

1. Define Gizmo Options

The first step is to import the appropriate options object and configure the Gizmo. This is performed in the controller
of the template where the Gizmo will be used.

In this case, we import DatePicker and initialize a new object called date_picker_options with the appro-
priate options. Then we pass the object to the template via the context dictionary:

from tethys_sdk.gizmos import DatePicker

def example_controller (request) :

mmn

Example of a controller that defines options for a Template Gizmo.

mmon

date_picker_options = DatePicker (name='datal',
display_text='Date',

920 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

autoclose=True,

format="MM d, yyyy',
start_date='2/15/2014",
start_view='decade',
today_button=True,
initial="February 15, 2014")

context = {'date_picker_options': date_picker_options}

return render (request, 'path/to/my/template.html', context)

Note: The Gizmo Options objects are new as of version 1.1.0. Prior to this time, Gizmo options were defined using
dictionaries. The dictionary parameterization of Gizmos is still supported, but will no longer be referenced in the

documentation.

The Gizmos Options Objects section provides detailed descriptions of each Gizmo option object, valid parameters,
and examples of how to use them.

2. Load Gizmo Library

Now near the top of the template where the Gizmo will be inserted, load the tethys_gizmos library using the
Django load tag. This only needs to be done once per template:

{% load tethys_gizmos %}

3. Insert the Gizmo

The gizmo tag is used to insert the date picker anywhere in the template. The gi zmo tag accepts two arguments: the
name of the Gizmo to insert and a dictionary of configuration options for the Gizmo:

{% gizmo <name> <options> %}
For this example, the date_picker Gizmo is inserted and the date_picker_options object that was defined
in the controller and passed to the template is provided:

{% gizmo date_picker date_picker_options %}

Rendered Gizmo

The Gizmo tag is replaced with the appropriate HTML, JavaScript, and CSS that is needed to render the Gizmo. In
the example, the date picker is inserted at the location of the gizmo tag. The template with the rendered date picker
would look something like this:

Gizmo Showcase

Live demos of each Gizmo is provided as a developer tool called “Gizmo Showcase”. To access the Gizmo Showcase,
start up your development server and navigate to the home page of your Tethys Portal at http://127.0.0.1:8000. Login
and select the Developer link from the main navigation. This will bring up the Developer Tools page of your Tethys
Portal:

Select the Gizmos developer tool and you will be brought to the Gizmo Showcase page:

For explanations the Gizmo Options objects and code examples, refer to the Gizmos Options Objects section.

1.6. Software Development Kit 91

https://docs.djangoproject.com/en/1.8/ref/templates/builtins/#load
http://127.0.0.1:8000

Tethys Platform Documentation, Release 1.4.0

LJuIy 21, 2015

«

Su

28

5

12

26

19 20

July 2015
Mo Tu We Th
29 30 1 2
6 7 8 9
13 14 15 16
21 [EEEXS

27 28 29 30

Fr

10

17

24

31

Sa

11

18

25

92

Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

@ Tethys Apps Developer

Developer Tools

Gizmos

Gizmos are building blocks that can be used to create beautiful interactive controls In Tethys
Apps. Using gizmos, developers can add date-pickers, plots, and maps to their templates
with minimal coding. Follow the link to learn more.

Show me the docs.

Dataset Services

Use this tool to browse the dataset services that are available for use in app development.
Depending on what level of access you have to the dataset service, you may be able to view,
update, create, and delete datasets.

Go to tool.

Geoprocessing

Geoprocessing in Tethys apps can be accomplished using the built-in 52 North WPS service.
The Geoprocess Formulator tool can be used to view avallable 52 North processes and
formulate the WPS request.

1.6. Software Development Kit 93

Tethys Platform Documentation, Release 1.4.0

Developer

Gizmo Showcase

Button Groups

Date Picker Gizmos are building blocks that can be used to create beautiful Interactive controls for web
I apps. Using gizmos, developers can add date-pickers, plots, and maps to their templates

Range slider with minimal coding. This page provides the documentation developers need to user

Select Input Gizmos.

Text Input

Toggle switch Q u | Ck Sta r.t

Table View

Plot View What does "minimal ceding" mean? Take a look at the following example. Let's say you want

to include a date picker in your template using a gizmo. First, create a dictionary with all the
Message Box configuration options for the date picker (more on that later) in your view/controller for the
template and add it to the context:

Google Map
Map View
def my viewlrequest):
Editable Google Map date_picker_options = {'display_text': 'Date’,

‘name': ‘datel’,

‘autoclose’: True,

“format': 'MM d, yyyy'.
‘start_date': '2/15/2014',
"start_view': 'decade’,

*today button': True,
*initial®: 'February 15, 2014'}

FetchClimate

context = {'date_picker options': date_picker_options}

return render(request, 'path/to/my/template.html’, context)

Next, open the template you intend to add the gizmo to and load the tethys_gizmos library.
Be sure to do this somewhere nearthe top of your template—before any gizmo occurances.
This only needs to be done once for each template that uses gizmos.

{% load tethys_gizmos %}

94 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Django Tag Reference

This section contains a brief explanation of the template tags that power Gizmos. These are provided by the
tethys_gizmos library that you load at the top of templates that use Gizmos.

gizmo

Inserts a Gizmo at the location of the tag.
Parameters:

* name (string or literal) - The name of the Gizmo to insert as either a string (e.g.: “date_picker”) or a literal (e.g.:
date_picker).

* options (dict) - The configuration options for the Gizmo. The options are Gizmo specific. See the Gizmo
Showcase documentation for descriptions of the options that are available.

Examples:

With literal for name parameter
{% gizmo date_picker date_picker_options %}

With string for name parameter
{% gizmo "date_picker" date_picker_options %}

gizmo_dependencies

Inserts the CSS and JavaScript dependencies at the location of the tag. This tag must appear after all occurrences of the
gizmo tag. In Tethys Apps, these depenencies are imported for you, so this tag is not required. For external Django
projects that use the tethys_gizmos Django app, this tag is required.

Parameters:

* type (string or literal, optional) - The type of dependency to import. This parameter can be used to include
the CSS and JavaScript dependencies at different locations in the template. Valid values include “css” for CSS
dependencies or “js” for JavaScript dependencies.

Examples:

No type parameter
{% gizmo_dependencies %}

CSS only
{% gizmo_dependencies css %}

JavaScript only
{% gizmo_dependencies js %}
Gizmos Options Objects

This section provides explanations of each of the Gizmo Options Objects available for configuring Gizmos. It also
provide code and usage examples for each object.

1.6. Software Development Kit 95

Tethys Platform Documentation, Release 1.4.0

Button and Button Group

Last Updated: August 10, 2015

class tethys_sdk.gizmos.Button (display_text="‘, name="", style="", icon="", href="", submit=False,
disabled=False, attributes={}, classes="")

display text
str

Display text that appears on the button.

name
str

Name of the input element that will be used for form submission.

style
str

Name of the input element that will be used for form submission.

icon
Str

Name of a valid Twitter Bootstrap icon class (see the Bootstrap glyphicon reference).

href
Str

Link for anchor type buttons.

submit
bool

Set this to true to make the button a submit type button for forms.

disabled
bool

Set the disabled state.

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™:
“run_me();”}).

classes
Str

Additional classes to add to the primary HTML element (e.g. “example-class another-class™).
Example:

CONTROLLER
from tethys_sdk.gizmos import Button

Single Button

single_button = Button(display_text='Click Me',
name="'click_me_name',
attributes={"onclick": "alert (this.name);"},
submit=True)

96 Chapter 1. Contents

http://getbootstrap.com/components/#glyphicons-glyphs

Tethys Platform Documentation, Release 1.4.0

TEMPLATE
{% gizmo button single_button %}

class tethys_sdk.gizmos.ButtonGroup (buttons, vertical=False, attributes="", classes="")
The button group gizmo can be used to generate a single button or a group of buttons. Groups of buttons can be
stacked horizontally or vertically. For a single button, specify a button group with one button. This gizmo is a
wrapper for Twitter Bootstrap buttons.

buttons
list, required

A list of dictionaries where each dictionary contains the options for a button.

vertical
bool

Set to true to have button group stack vertically.

attributes
Str

A string representing additional HTML attributes to add to the primary element (e.g.
“onclick=run_me();”).

classes
Str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Example

CONTROLLER
from tethys_sdk.gizmos import Button, ButtonGroup

Horizontal Button Group
add_button = Button(display_text='Add',
icon='glyphicon glyphicon-plus',
style="'success')
delete_button = Button(display_text='Delete',
icon='glyphicon glyphicon-trash',
disabled=True,
style='danger")
horizontal_ buttons = ButtonGroup (buttons=[add_button, delete_button])

Vertical Button Group

edit_button = Button(display_text='Edit',
icon='glyphicon glyphicon-wrench',
style='warning',
attributes='id=edit_button')

info_button = Button(display_text="'Info',
icon='glyphicon glyphicon-question-sign’,
style='info',
attributes='name=info')

apps_button = Button(display_text='Apps',
icon='glyphicon glyphicon-home',
href="'/apps',
style='primary"')

vertical_buttons = ButtonGroup (buttons=[edit_button, info_button, apps_button], vertical=True)

1.6. Software Development Kit 97

Tethys Platform Documentation, Release 1.4.0

TEMPLATE

{% gizmo button_group horizontal_ buttons %}
{% gizmo button_group vertical_buttons %}

Date Picker

Last Updated: August 10, 2015

class tethys_sdk.gizmos.DatePicker (name, display_text="", autoclose=False, cal-
endar_weeks=False, clear_button=False,
days_of _week_disabled="", end_date="", format="",
min_view_mode="days’, multidate=1, start_date="",
start_view="month’, today_button=False, to-
day_highlight=False, = week_start=0, initial="", dis-

abled=False, error="", attributes={}, classes="")
Date pickers are used to make the input of dates streamlined and easy. Rather than typing the date, the user is

presented with a calendar to select the date. This date picker was implemented using Bootstrap Datepicker.

name
str, required

Name of the input element that will be used for form submission.

display text
str

Display text for the label that accompanies date picker.

autoclose
bool

Set whether datepicker auto closes when a date is selected.

calendar_weeks
bool

Set whether calendar week numbers are shown on the left of the datepicker.

clear_button
bool

Set whether the clear button is displayed or not.

days_of_ week_disabled
Str

Days of the week that are disabled 0-6 with 0 being Sunday and 6 being Saturday. Multiple days are
comma separated (e.g.: ‘0,6”).

end_date
Str

Last date that can be selected. All other dates after this date are shown as disabled.

format
Str

String representing date format. For valid formats see Bootstrap Datepicker documentation here.

98 Chapter 1. Contents

http://bootstrap-datepicker.readthedocs.org/en/release/index.html
http://bootstrap-datepicker.readthedocs.org/en/release/options.html#format

Tethys Platform Documentation, Release 1.4.0

min_view_mode
Str

Set the minimum view mode. Possible values are ‘days’, ‘months’, ‘years’.

multidate
int

Enables multi-selection of dates up to the number given.

start_date
Str

First date that can be selected. All other dates before this date are shown as disabled.

start_view
Str

View the date picker starts on. Valid values include ‘month’, ‘year’, and ‘decade’.

today_ button
bool

Set whether a today button is displayed or not.

today_highlight
bool

Set whether to highlight the current date.
week_start

int

Set the day the week starts on 0-6, where O is Sunday and 6 is Saturday.
initial

str

Initial date to appear in date picker.

disabled
bool

Disabled state of the date picker.

error
str

Error message for form validation.

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
Str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Example

CONTROLLER

from tethys_sdk.gizmos import DatePicker

1.6. Software Development Kit 99

Tethys Platform Documentation, Release 1.4.0

Date Picker Options
date_picker =

DatePicker (name='datel',

display_text='Date',
autoclose=True,
format="MM d, vyyyy',

start_
start_

date='2/15/2014",
view="'decade',

today_button=True,

initial='February 15,

date_picker_error =

TEMPLATE

2014")

DatePicker (name='data2',

display_text='Date',
initial='10/2/2013",
disabled=True,

error="'Here is my error text.

{% gizmo date_picker date_picker %}
{% gizmo date_picker date_picker_error %}

Range Slider

Last Updated: August 10, 2015

class tethys_sdk.gizmos.RangeSlider (name,

display_ text
str

min, max, initial,

step,

disabled=False, dis-

play_text="", error="", attributes={}, classes="")
Sliders can be used to request an input value from a range of possible values. A slider is configured with a

dictionary of key-value options. The table below summarizes the options for sliders.

Display text for the label that accompanies slider

name
str, required

Name of the input element that will be used on form submission

min
int, required

Minimum value of range

max
int, required

Maximum value of range
initial

int, required

Initial value of slider

step
int, required

Increment between values in range

100

Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

disabled
bool

Disabled state of the slider

error
str

Error message for form validation

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
Sstr

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Example

CONTROLLER
from tethys_sdk.gizmos import RangeSlider

sliderl = RangeSlider (display_text='Slider 1°',
name='sliderl"',
min=0,
max=100,
initial=50,
step=1)

slider2 = RangeSlider (display_text='Slider 2',
name='slider2',

min=0,
max=1,
initial=0.5,
step=0.1,

disabled=True,
error="'Incorrect, please choose another wvalue.')

TEMPLATE

{% gizmo range_slider sliderl %}
{% gizmo range_slider slider2 %}

Select Input

Last Updated: August 10, 2015

class tethys_sdk.gizmos.SelectInput (name, display_text="‘, initial=[], multiple=False, orig-
inal=False, options=’‘, disabled=False, error="‘, at-

tributes={}, classes="")
Select inputs are used to select values from an given set of values. Use this gizmo to create select inputs and

multi select inputs. This uses the Select2 functionality.

display text
str

Display text for the label that accompanies select input

1.6. Software Development Kit 101

Tethys Platform Documentation, Release 1.4.0

name
str;, required

Name of the input element that will be used for form submission

multiple
bool

If True, select input will be a multi-select

original
bool

If True, Select2 reference functionality will be turned off

options

list

List of tuples that represent the options and values of the select input
initial

list or str

List of keys or values that represent the initial selected values or a string representing a singular initial
selected value.

disabled
bool

Disabled state of the select input

error
str

Error message for form validation

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
Str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Example

CONTROLLER
from tethys_sdk.gizmos import SelectInput

select_input2 = SelectInput (display_text='Select2',
name="'selectl',
multiple=False,

options=[('One', '1'), ('Two', '2"'), ('Three', '3")],
initial=['Three'],
original=["'Two'])

select_input2_multiple = SelectInput (display_text='Select2 Multiple',
name="'select2',
multiple=True,
options=[('One', '1'), ('Two', '2'), ('Three', '3")1,
initial=["'1"', '2'])

102 Chapter 1. Contents

http://ivaynberg.github.io/select2/

Tethys Platform Documentation, Release 1.4.0

select_input_multiple = SelectInput (display_text='Select Multiple',
name="'select2.1"',
multiple=True,
original=True,
options=[('One', '1'"), ('Two', '2"'"), ('Three', '3")1)

select_input2_error = SelectInput (display_text='Select2 Disabled',
name="'select3',
multiple=False,
options=[('One', '1'), ('Two', '2'), ('Three', '3")1,
disabled=True,
error="'Here is my error text')

TEMPLATE

gizmo select_input select_input2 %}

gizmo select_input select_input2_multiple %}
gizmo select_input select_input_multiple %}
gizmo select_input select_input2_error %}

e e
o° o° o o

Text Input

Last Updated: August 10, 2015

class tethys_sdk.gizmos.TextInput (name, display_text="", initial="", placeholder="", prepend="",
append="", icon_prepend="", icon_append="", disabled=False,
error="", attributes={}, classes="")
The text input gizmo makes it easy to add text inputs to your app that are styled similarly to the other input
snippets.

display_ text
str

Display text for the label that accompanies select input

name
str, required

Name of the input element that will be used for form submission
initial

str

The initial text that will appear in the text input when it loads

placeholder
str

Placeholder text is static text that displayed in the input when it is empty

prepend
str

Text that is prepended to the text input

append
str

Text that is appended to the text input

1.6. Software Development Kit 103

Tethys Platform Documentation, Release 1.4.0

icon_prepend
str

The name of a valid Bootstrap v2.3 icon. The icon will be prepended to the input.

icon_append
Str

The name of a valid Bootstrap v2.3 icon. The icon will be appended to the input.

disabled
bool

Disabled state of the select input

error
Str

Error message for form validation

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™:
“run_me();”}).

classes
Str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Example

CONTROLLER
from tethys_sdk.gizmos import TextInput

text_input = TextInput (display_text='Text',
name="'inputAmount',
placeholder='e.g.: 10.00",
prepend="'$")

text_error_input = TextInput (display_text='Text Error',
name='"inputEmail',
initial='boblexample.com',
disabled=True,
icon_append='glyphicon glyphicon-envelope',
error="'Here is my error text')

TEMPLATE

{% gizmo text_input text_input %}
{% gizmo text_input text_error_input %}

Toggle Switch

Last Updated: August 10, 2015

class tethys_sdk.gizmos.ToggleSwitch (name, display_text="*, on_label="ON’, off label="OFF",
on_style="primary’, off_style="default’, size='regular’,
initial=False, disabled=False, error="°, attributes={},
classes="")

104 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Toggle switches can be used as an alternative to check boxes for boolean or binomial input. Toggle switches are
implemented using the excellent Bootstrap Switch reference project.

display text
Str

Display text for the label that accompanies switch

name
str;, required

Name of the input element that will be used for form submission

on_label
Str

Text that appears in the “on” position of the switch

off label
str

Text that appears in the “off” position of the switch

on_style
Str

Color of the “on” position. Either: ‘default’, ‘info’, ‘primary’, ‘success’, ‘warning’, or ‘danger’

off_style
Str

Color of the “off” position. Either: ‘default’, ‘info’, ‘primary’, ‘success’, ‘warning’, or ‘danger’

size
Str

Size of the switch. Either: ‘large’, ‘small’, or ‘mini’.
initial
bool
The initial position of the switch (True for “on” and False for “off”)

disabled
bool

Disabled state of the switch

error
str

Error message for form validation

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).

Example

1.6. Software Development Kit 105

http://www.bootstrap-switch.org/

Tethys Platform Documentation, Release 1.4.0

CONTROLLER
from tethys_sdk.gizmos import ToggleSwitch

toggle_switch = ToggleSwitch (display_text='Defualt Toggle',
name='togglel')

toggle_switch_styled = ToggleSwitch(display_text='Styled Toggle',

name='toggle2"',
on_label="Yes',
off_label='No',
on_style='success',
off_style='danger',
initial=True,

size="'large')

toggle_switch_disabled = ToggleSwitch (display_text='Disabled Toggle',
name="'toggle3"',
on_label="'On"',
off_label='0Off"',
on_style='success',
off_style='warning',
size="mini',
initial=False,
disabled=True,
error="'Here is my error text')

TEMPLATE

gizmo toggle_switch toggle_switch %}
gizmo toggle_switch toggle_switch_styled %}
gizmo toggle_switch toggle_switch_disabled %}

~—~ - -
o° o° oP

Message Box

Last Updated: August 10, 2015

class tethys_sdk.gizmos.MessageBox (name, title, message="", dismiss_button="Cancel’, affirma-
tive_button="0k’, affirmative_attributes="", width=560, at-
tributes={}, classes="")
Message box gizmos can be used to display messages to users. These are especially useful for alerts and warning

messages. The message box gizmo is implemented using Twitter Bootstrap’s modal.

name
str, required

Unique name for the message box

title
str, required

Title that appears at the top of the message box

message
Str

Message that will appear in the main body of the message box

dismiss_button
Str

106 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Title for the dismiss button (a.k.a.: the “Cancel” button)

affirmative button
Str

Title for the affirmative action button (a.k.a.: the “OK” button)

affirmative_attributes
Str

Use this to place any html attributes on the affirmative button. (e.g.: ‘href="/action”
onclick="doSomething();”’)

width
int
The width of the message box in pixels
attributes
dict
A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”™).
Example

CONTROLLER
from tethys_sdk.gizmos import MessageBox

message_box = MessageBox (name='sampleModal',
title="'Message Box Title',
message='Congratulations! This is a message box.',
dismiss_button='Nevermind',
affirmative_button='Proceed',
width=400,
affirmative_attributes='href=javascript:void(0);")

TEMPLATE

Show Message Bc
{% gizmo message_box message_box %}

Table View

Last Updated: August 10, 2015

class tethys_sdk.gizmos.TableView (rows, column_names=’‘, hover=False, striped=False,
bordered=False, condensed=Fualse, editable_columns="",

row_ids="", attributes={}, classes="")
Table views can be used to display tabular data. The table view gizmo can be configured to have columns that

are editable. When used in this capacity, embed the table view in a form with a submit button.

rows
tuple or list, required

A list/tuple of lists/tuples representing each row in the table.

1.6. Software Development Kit 107

Tethys Platform Documentation, Release 1.4.0

column_names
tuple or list

A tuple or list of strings that represent the table columns names.

hover
bool

Illuminate rows on hover (does not work on striped tables)

striped
bool

Stripe rows

bordered
bool

Add borders and rounded corners

condensed
bool

A more tightly packed table

editable_columns
list or tuple

A list or tuple with an entry for each column in the table. The entry is either False for non-editable columns
or a string that will be used to create identifiers for the input column_fields in that column.

row_ids
list or tuple

A list or tuple of ids for each row in the table. These will be combined with the string in the ed-
itable_columns parameter to create unique identifiers for easy input field in the table. If not specified,
each row will be assigned an integer value.

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Example

CONTROLLER
from tethys_sdk.gizmos import TableView

table_view = TableView (column_names=('Name', 'Age', 'Job'),

rows=[('Bill', 30, 'contractor'),
('"Fred', 18, 'programmer'),
('"Bob', 26, 'boss')],

hover=True,

striped=False,

bordered=False,

condensed=False)

table_view_edit = TableView (column_names=('Name', 'Age', 'Job'),

108 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

rows=[('Bill', 30, 'contractor'),
('"Fred', 18, 'programmer'),
('"Bob', 26, 'boss')],
hover=True,
striped=True,
bordered=False,
condensed=False,
editable_columns=(False, 'agelnput',6 'JobInput'),
row_ids=[21, 25, 31])

TEMPLATE

% gizmo table_view table_view %}
{% gizmo table_view table_view_edit %}

Plot View

Last Updated: August 10, 2015

Tethys Platform provides two interactive plotting engines: D3 and Highcharts. The Plot view options objects have been
designed to be engine independent, meaning that you can configure a D3 plot using the same syntax as a Highcharts
plot. This allows you to switch which plotting engine to use via configuration. This article describes each of the plot
views that are available.

Warning: Highcharts is free-of-charge for certain applications (see: Highcharts JS Licensing). If you need a
guaranteed fee-free solution, D3 is recommended.

Note: D3 plotting implemented for Line Plot, Pie Plot, Bar Plot, Scatter Plot, and Timeseries Plot.

Line Plot

class tethys_sdk.gizmos.LinePlot (series, height=‘500px’, width=‘500px’, engine='d3’, title="",
subtitle="", spline=False, x_axis_title="", x_axis_units="",
y_axis_title="", y_axis_units=""*, **kwargs)

Used to create line plot visualizations.

series
list, required

A list of series dictionaries.

height
str

Height of the plot element. Any valid css unit of length.

width
Str

Width of the plot element. Any valid css unit of length.

engine
str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
str

1.6. Software Development Kit 109

http://d3js.org/
http://www.highcharts.com/
http://shop.highsoft.com/highcharts.html

Tethys Platform Documentation, Release 1.4.0

Title of the plot.

subtitle
Str

Subtitle of the plot.

spline
bool

If True, lines are smoothed using a spline technique.

X axis title
str

Title of the x-axis.

X_axis_units
Str

Units of the x-axis.

y_axis_title
str

Title of the y-axis.

y_axis_units
Str

Units of the y-axis.
Example

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos import LinePlot

line_plot_view = LinePlot (
height='500px"',
width="'500px",
engine='highcharts',
title='Plot Title',
subtitle='Plot Subtitle',
spline=True,
x_axis_title='Altitude',
X_axis_units='km',
y_axis_title='Temperature',
y_axis_units='°C"',
series=|[

{

'name': 'Air Temp',

'color': '"#0066ff"',

'marker': {'enabled': False},
'data': [

(o, 51, f[rio, =701,

[20, -86.5], [30, -66.5],
[40, -32.1],

[50, -12.5], [60, —-47.7],
[70, -85.7], [80, -106.5]

}y

110 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

'name': 'Water Temp',
'color': '"#£ff6600',
'data': [

[0, 151, [10, =501,

[20, -56.5], [30, -46.5],
[4o0, -22.171,

[50, -2.5], [60, -27.7],
[70, -55.7], [80, -76.5]

)
TEMPLATE

{% gizmo plot_view line_plot_view %}

Scatter Plot

class tethys_sdk.gizmos.ScatterPlot (series=[], height=‘500px’, width="500px’, engine='d3’,
title="", subtitle="‘, x_axis_title="", x_axis_units="",
y_axis_title="", y_axis_units="", **kwargs)

Use to create a scatter plot visualization.

series
list, required

A list of series dictionaries.

height
str

Height of the plot element. Any valid css unit of length.

width
Str

Width of the plot element. Any valid css unit of length.

engine
str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
str

Title of the plot.

subtitle
Str

Subtitle of the plot.

spline
bool

If True, lines are smoothed using a spline technique.

X axis title
Str

1.6. Software Development Kit 111

Tethys Platform Documentation, Release 1.4.0

Title of the x-axis.

X_axis_units
Str

Units of the x-axis.

y_axis_title
Str

Title of the y-axis.

y_axis_units
str

Units of the y-axis.
Example

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos import ScatterPlot

male_dataset = {
'name': 'Male',
'color': '"#0066ff"',
'data': [
[174.0, 65.6], [175.3, 71.8], [193.5, 80.7], [186.5, 72.6],
[187.2, 78.8], [181.5, 74.8], [184.0, 86.4], [184.5, 78.4],
[175.0, 62.0], [184.0, 81.6], [180.0, 76.6], [177.8, 83.6]1,
[192.0, 90.0], [176.0, 74.6], [174.0, 71.0]1, [184.0, 79.6],
[192.7, 93.8], [171.5, 70.0], [173.0, 72.4]1, [176.0, 85.9],
[176.0, 78.8], [180.5, 77.8], [172.7, 66.2], [176.0, 86.47,
[173.5, 81.8], [178.0, 89.6], [180.3, 82.8], [180.3, 76.47],
[164.5, 63.2], [173.0, 60.9], [183.5, 74.8], [175.5, 70.07],
[188.0, 72.4]1, [189.2, 84.1], [172.8, 69.1], [170.0, 59.571,
[182.0, 67.2]1, [170.0, 61.3], [177.8, 68.6], [184.2, 80.1],
[186.7, 87.8], [171.4, 84.7], [172.7, 73.4]1, [175.3, 72.17,
[180.3, 82.6], [182.9, 88.7], [188.0, 84.1]1, [177.2, 94.171,
[172.1, 74.91, [167.0, 59.1], [169.5, 75.6], [174.0, 86.2],
[(172.7, 75.31, [182.2, 87.1], [1l64.1, 55.2], [163.0, 57.01,
[171.5, 61.4], [184.2, 76.8], [174.0, 86.8], [174.0, 72.21,
[177.0, 71.6], [186.0, 84.8], [167.0, 68.2], [171.8, 66.1]
1
}
female_dataset = {
'name': 'Female',
'color': "#ff6600°',
'data': [
[161.2, 51.6], [167.5, 59.0], [159.5, 49.2], [157.0, 63.01,
[155.8, 53.6], [170.0, 59.0], [159.1, 47.6], [l66.0, 69.81],
[176.2, 66.8], [160.2, 75.2], [172.5, 55.2], [170.9, 54.27,
[172.9, 62.5], [153.4, 42.0], [160.0, 50.0], [147.2, 49.8],
[168.2, 49.2], [175.0, 73.2], [157.0, 47.8], [l67.6, 68.8],
[159.5, 50.6], [175.0, 82.5], [l166.8, 57.2], [l176.5, 87.81,
[170.2, 72.8], [174.0, 54.5], [173.0, 59.8], [179.9, 67.31,
[170.5, 67.8], [160.0, 47.0], [154.4, 46.2], [162.0, 55.0],
[176.5, 83.0], [160.0, 54.4], [152.0, 45.8], [l62.1, 53.61,
[170.0, 73.2], [160.2, 52.1], [161.3, 67.9], [l66.4, 56.6],

112 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

[(168.9, 62.3], [163.8, 58.5], [l67.6, 54.5], [160.0, 50.2],
[161.3, 60.3], [1l67.6, 58.3], [1l65.1, 56.2], [160.0, 50.2],
(170.0, 72.91, [157.5, 59.8], [1le67.6, 61.0], [160.7, 69.1],
[163.2, 55.9]1, [152.4, 46.5], [157.5, 54.3], [168.3, 54.8],
[180.3, 60.7], [165.5, 60.0], [165.0, 62.0], [164.5, 60.3]

scatter_plot_view = ScatterPlot (

width='500px"',
height="500px"',
engine="'highcharts',
title='Scatter Plot',
subtitle='Scatter Plot',
X_axis_title='Height',
x_axis_units='cm',
y_axis_title="'Weight',
y_axis_units='kg',
series=|

male_dataset,

female_dataset

TEMPLATE

{% gizmo plot_view scatter_plot_view %}

Polar Plot
class tethys_sdk.gizmos.PolarPlot (series=[], height=‘500px’, width=‘500px’, engine=’d3’, ti-

tle="", subtitle="", categories=[], **kwargs)
Use to create a polar plot visualization.

series
list, required

A list of series dictionaries.

height
str

Height of the plot element. Any valid css unit of length.

width
str

Width of the plot element. Any valid css unit of length.

engine
str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
Str

Title of the plot.

subtitle
str

1.6. Software Development Kit 113

Tethys Platform Documentation, Release 1.4.0

Subtitle of the plot.

categories
list

List of category names, one for each data point in the series.
Example

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos import PolarPlot

web_plot = PolarPlot (

height='500px"',
width="500px"',
engine='highcharts',
title='Polar Chart',
subtitle='Polar Chart',
pane={

'size': '80%"'

by

categories=["'Infiltration', 'Soil Moisture', 'Precipitation', 'Evaporation',
'Roughness', 'Runoff', 'Permeability', 'Vegetation'],

series=|
{
'name': 'Park City',
'data': [0.2, 0.5, 0.1, 0.8, 0.2, 0.6, 0.8, 0.31,
'pointPlacement': 'on'
}I
{
'name': 'Little Dell',
'data': [0.8, 0.3, 0.2, 0.5, 0.1, 0.8, 0.2, 0.6],
'pointPlacement': 'on'
}
]
)
TEMPLATE

{% gizmo plot_view web_plot %}

Pie Plot

class tethys_sdk.gizmos.PiePlot (series=[], height="500px’, width=500px’, engine="d3’, title="",

subtitle="", **kwargs)
Use to create a pie plot visualization.

series
list, required

A list of series dictionaries.

height
str

Height of the plot element. Any valid css unit of length.

width
Str

114

Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Width of the plot element. Any valid css unit of length.

engine
str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
Str

Title of the plot.

subtitle
str

Subtitle of the plot.
Example

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos import PieChart

pie_plot_view = PiePlot (
height="'500px"',
width='500px"',
engine='highcharts',
title='Pie Chart',
subtitle='Pie Chart',

series=|
{'name': 'Firefox', 'value': 45.0},
{"name': 'IE', 'value': 26.8},
{'name': 'Chrome', 'value': 12.8},
{'name': 'Safari', 'value': 8.5},
{'name': 'Opera', 'value': 8.5},
{'name': 'Others', 'value': 0.7}
]
)
TEMPLATE

{% gizmo plot_view pie_plot_view %}

Bar Plot
class tethys_sdk.gizmos.BarPlot (series=[], height="500px’, width="500px’, engine='d3’, ti-
tle="", subtitle="", horizontal=False, categories=[], axis_title="",
axis_units="", group_tools=True, **kwargs)
Bar Plot

Displays as either a bar or column chart.

series
list, required

A list of series dictionaries.

height
str

Height of the plot element. Any valid css unit of length.

1.6. Software Development Kit 115

Tethys Platform Documentation, Release 1.4.0

width
Str

Width of the plot element. Any valid css unit of length.

engine
Str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
Str

Title of the plot.

subtitle
Str

Subtitle of the plot.

horizontal
bool

If True, bars are displayed horizontally, otherwise they are displayed vertically.

categories
list

A list of category titles, one for each bar.

axis_title
Str

Title of the axis.

axis_units
Str

Units of the axis.
Example

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos import BarPlot

bar_plot_view = BarPlot (
height='500px"',
width='500px",
engine='highcharts',
title='Bar Chart',
subtitle='Bar Chart',
vertical=True,
categories=|[

'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

1,
axis_units='millions',
axis_title='Population',
series=|[{

'name': "Year 1800",

'data': [100, 31, 635, 203, 275, 487,

oo A

'name': "Year 1900",

'Jul',

872,

671,

'Aug',

736,

'Sep', 'Oct', 'Nov',

568, 487, 432]

116

Chapter 1. Contents

'Dec'

Tethys Platform Documentation, Release 1.4.0

'data': [133, 200, 947, 408, 682, 328, 917, 171, 482, 140, 176, 237]
oo A

'name': "Year 2000",

'data': [764, 628, 300, 134, 678, 200, 781, 571, 773, 192, 836, 172]
oo A

'name': "Year 2008",

'data': [973, 914, 500, 400, 349, 108, 372, 726, 638, 927, 621, 364]

TEMPLATE

{% gizmo plot_view bar_plot_view %}

Time Series
class tethys_sdk.gizmos.TimeSeries (series=[], height="500px’, width=‘500px’, engine='d3’,
title="°, subtitle="", y_axis_title="", y_axis_units="",

**kwargs)
Use to create a timeseries plot visualization

series
list, required

A list of series dictionaries.

height
str

Height of the plot element. Any valid css unit of length.

width
Str

Width of the plot element. Any valid css unit of length.

engine
str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
str

Title of the plot.

subtitle
Str

Subtitle of the plot.

y_axis_title
Str

Title of the axis.

y_axis_units
Str

Units of the axis.

Example

1.6. Software Development Kit 117

Tethys Platform Documentation, Release 1.4.0

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos import TimeSeries

timeseries_plot = TimeSeries (
height='500px"',
width='500px",
engine='highcharts',
title='Irregular Timeseries Plot',
y_axis_title='Snow depth',
y_axis_units='m',
series=[{
'name': 'Winter 2007-2008",
'data': [
datetime (2008, 12, 2), 0.87,
datetime (2008, 12, 9), 0.61],
datetime (2008, 12, 16), 0.6],
datetime (2008, 12, 28), 0.67],

[

[

[

[

[datetime (2009, 1, 1), 0.81],
[datetime (2009, 1, 8), 0.78],
[datetime (2009, 1, 12), 0.987],
[datetime (2009, 1, 27), 1.84],
[datetime (2009, 2, 10), 1.80],
[datetime (2009, 2, 18), 1.801],
[datetime (2009, 2, 24), 1.92],
[datetime (2009, 3, 4), 2.49],
[datetime (2009, 3, 11), 2.79],
[datetime (2009, 3, 15), 2.731,
[datetime (2009, 3, 25), 2.61],
[datetime (2009, 4, 2), 2.76],
[datetime (2009, 4, 6), 2.82],
[datetime (2009, 4, 13), 2.8],
[datetime (2009, 5, 3), 2.1],
[datetime (2009, 5, 26), 1.11,
[datetime (2009, 6, 9), 0.25],
[datetime (2009, 6, 12), 0]

TEMPLATE

{% gizmo plot_view timeseries_plot %}

Area Range
class tethys_sdk.gizmos.AreaRange (series=[], height=‘500px’, width=‘500px’, engine=’d3’, ti-
tle="", subtitle="", y_axis_title="", y_axis_units="", **kwargs)
Use to create a area range plot visualization.
series
list, required

A list of series dictionaries.

height
str

118 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Height of the plot element. Any valid css unit of length.

width
Str

Width of the plot element. Any valid css unit of length.

engine
str

The plot engine to be used for rendering, either ‘d3” or ‘highcharts’. Defaults to ‘d3’.

title
str

Title of the plot.

subtitle
Str

Subtitle of the plot.

y_axis_title
str

Title of the axis.

y_axis_units
Str

Units of the axis.
Example

coding=utf-8

CONTROLLER
from tethys_sdk.gizmos

averages = [
[datetime (2009,

[datetime (2009,

[datetime (2009,

[datetime (2009,

[datetime (2009,

[datetime (2009,

[datetime (2009,

[(

[(

[(

[(

~

~

~

~

~

~

datetime (2009,
datetime (2009,
2009,
2009,

~

~

datetime
datetime

~

R N N e e e N Y
~

~

= [

[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,
[(
[(
[(
[(

ranges

~

~

~

~

datetime (2009,
datetime (2009,
2009,
2009,

~

~

datetime
datetime

~

B B e e e Y
~

~

import AreaRange

1), 21.5], [datetime (2009, 7, 2), 22.1],
4), 23.8], [datetime (2009, 7, 5), 21.4],
7), 18.3], [datetime (2009, 7, 8), 15.4],
10), 17.7]1, [datetime (2009, 7, 11), 17.5
13), 17.7], [datetime (2009, 7, 14), 16.8
16), 16.3], [datetime (2009, 7, 17), 17.8
19), 17.2]1, [datetime (2009, 7, 20), 14.4
21), 13.7], [datetime (2009, 7, 22), 15.7
24), 15.3], [datetime (2009, 7, 25), 15.3
27), 15.2], [datetime (2009, 7, 28), 14.8
30), 15], [datetime (2009, 7, 31), 13.6]

1), 14.3, 27.7], [datetime (2009, 7, 2),

4), 16.7, 30.7], [datetime (2009, 7, 5),

7), 13.5, 24.8], [datetime (2009, 7, 8),

10), 11.6, 21.8], [datetime (2009, 7, 11)
13), 11.6, 23.7], [datetime (2009, 7, 14)
16), 13.6, 19.6], [datetime (2009, 7, 17)
19), 14.2, 21.6], [datetime (2009, 7, 20)
22), 12.0, 20.8], [datetime (2009, 7, 23)
25), 12.4, 19.4], [datetime (2009, 7, 26)

[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009, 7,

’

~

~

~

~

~

~

14.
16.
10.5,

[datetime (2009,
[datetime (2009,
[datetime (2009,

S,
5,

10.
11.
11.
13.
12.
12.

’

’

’

’

~

o O W 00 J

~

23.
20.
22.
17.
17.
19.

27.81,
25.07,
21.4]

[datetime (2009,
[datetime (2009,
[datetime (2009,

7y
7,
7,

3), 231,
6), 21.371,
9), 16.4],

7, 12), 17.

7, 15), 17.

18), 18.

14.
15.
14.

~J
~

23),
26),
29),

~J
~

[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,
[datetime (2009,

1.6. Software Development Kit

119

7,
7, €
7, S

Tethys Platform Documentation, Release 1.4.0

[datetime (2009, 7, 28), 11.0, 19.3], [datetime (2009,

[datetime (2009, 7, 31), 10.8, 16.1]

area_range_plot_object = AreaRange (

title="'July Temperatures',
y_axis_title='Temperature',
y_axis_units='«C"',
series=[{
'name': 'Temperature',
'data': averages,
'zIndex': 1,
'marker': {
'lineWidth': 2,

'name': 'Range',

'data': ranges,

'type': 'arearange',
'lineWidth': O,
'linkedTo': ':previous',
'fillOpacity': 0.3,
'zIndex': 0

width='500px"',
height="500px")

TEMPLATE

gizmo plot_view area_range_plot %}

7,

area_range_plot = PlotView (_object=area_range_plot_object,

29),

10.

8,

17.81,

[datetime (2009,

JavaScript API For advanced features, the JavaScript API can be used to interact with the HighCharts object that is
generated by the Plot View JavaScript library.

TETHYS_PLOT_VIEW.initHighChartsPlot(jquery_element) This method initializes a chart generated from an

AJAX request. An example is demonstrated in the Dam Break javascript tutorial.

Note: In order to use this, you will either need to use a PlotView gizmo or import the JavaScript libraries in the main
html template page.

For example:

{%

block global_scripts %}

{{ block.super }}
<script src="/static/tethys_gizmos/vendor/highcharts/Jjs/highcharts.js" type="text/Jjavascript"></sc:
<script src="/static/tethys_gizmos/vendor/highcharts/js/highcharts-more.js" type="text/javascript™:

{%

endblock %}

{% block scripts %}
{{ block.super }}
<script src="/static/tethys_gizmos/Jjs/plot_view.js" type="text/javascript"></script>

{%

endblock %}

120

Chapter 1. Contents

7,

https://github.com/erdc-cm/tethysapp-dam_break/wiki/Javascript-Tutorial

Tethys Platform Documentation, Release 1.4.0

Four elements are required:
1) A controller for the AJAX call with a plot view gizmo.

Qlogin_required()
def hydrograph_ajax(request):

mmn

Controller for the hydrograph ajax request.

mmn

hydrograph = ... #insert data here

Configure the Hydrograph Plot View
flood_plot = TimeSeries (
title='Flood Hydrograph',
y_axis_title='Flow',
y_axis_units='cms',
series=|[
{
'name': 'Flood Hydrograph',
'color': '"#0066ff",
'data': hydrograph,
}y
]I
width="'500px",
height="500px"

context = {'flood_ plot': flood_plot}
return render (request, 'dam break/hydrograph_ajax.html', context)

2) A url map to the controller in app.py

UrlMap (name="'hydrograph_ajax"',
url='dam-break/map/hydrograph',
controller='dam break.controllers.hydrograph_ajax'),

3) A template for with the tethys gizmo (e.g. hydrograph_ajax.html)

{% load tethys_gizmos %}
{% gizmo highcharts_plot_view flood_plot %}

4) The AJAX call in the javascript

$ (function() { //wait for page to load

S.ajax ({
url: 'hydrograph',
method: 'GET',
data: |
'peak_flow': 500, //example data to pass to the controller
}V
success: function(data) {

1.6. Software Development Kit 121

Tethys Platform Documentation, Release 1.4.0

//Initialize Plot
TETHYS_PLOT_VIEW.initHighChartsPlot ($('.highcharts-plot"'));

Highcharts JavaScript API The Highcharts plots can be modified via JavaScript by using jQuery to select the
Highcharts div and calling the highcharts () method on it. This will return the JavaScript object that represents
the plot, which can be modified using the Highcharts API.

var plot = $('#my-plot').highcharts();

Map View

class tethys_sdk.gizmos.MapView (height=‘100%’, width="100%", basemap="OpenStreetMap’,
view={‘center’: [-100, 40], ‘zoom’: 2}, controls=[], lay-
ers=[], draw=None, legend=False, attributes={}, classes=""

disable_basemap="False, feature_selection=None)
The Map View gizmo can be used to produce interactive maps of spatial data. It is powered by OpenLayers

3, a free and open source pure javascript mapping library. It supports layers in a variety of different formats
including WMS, Tiled WMS, GeoJSON, KML, and ArcGIS REST. It includes drawing capabilities and the
ability to create a legend for the layers included in the map.

Shapes that are drawn on the map by users can be retrieved from the map via a hidden text field named ‘geome-
try’ and it is updated every time the map is changed. The text in the text field is a string representation of JSON.
The geometry definition contained in this JSON can be formatted as either GeoJSON or Well Known Text. This
can be configured via the output_format option of the MVDraw object. If the Map View is embedded in a form,
the geometry that is drawn on the map will automatically be submitted with the rest of the form via the hidden
text field.

height
str

Height of the map element. Any valid css unit of length (e.g.: ‘500px’). Defaults to ‘520px’.

width
Str

Width of the map element. Any valid css unit of length (e.g.: ‘100%”). Defaults to ‘100%"’.

basemap
str or dict

The base map to dispaly: either OpenStreetMap, MapQuest, or a Bing map. Valid values for the string
option are: ‘OpenStreetMap’ and ‘MapQuest’. If you wish to configure the base map with options, you
must use the dictionary form. The dictionary form is required to use a Bing map, because an API key must
be passed as an option. See below for more detail.

view
MVView

An MVView object specifying the initial view or extent for the map.

controls
list

122 Chapter 1. Contents

http://api.highcharts.com/highcharts

Tethys Platform Documentation, Release 1.4.0

A list of controls to add to the map. The list can be a list of strings or a list of dictionaries. Valid controls
are ZoomSlider, Rotate, FullScreen, ScaleLine, ZoomToExtent, and ‘MousePosition’. See below for more
detail.

layers
list

A list of MVLayer objects.

draw
MVDraw

An MVDraw object specifying the drawing options.

disable_basemap
bool

Render the map without a base map.

feature_selection
bool

A dictionary of global feature selection options. See below.

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).
Options Dictionaries

Many of the options above will accept dictionaries with additional options. These dictionaries should be struc-
tured with a single key that is the name of the original option with a value of another dictionary containing
the additional options. For example, to provide additional options for the ‘“ZoomToExtent’ control, you would
create a dictionary with key ‘ZoomToExtent’ and value of a dictionary with the additional options like this:

{'ZoomToExtent': {'projection': 'EPSG:4326', 'extent': [-135, 22, -55, 54]1}}

Most of the additional options correspond with the options objects in the OpenLayers API. The following sec-
tions provide links to the OpenLayers objects that you can refer to when selecting the options.

Base Maps

There are three base maps supported by the Map View gizmo: OpenStreetMap, Bing, and MapQuest. Use the
following links to learn about the additional options you can configure the base maps with:

*Bing: ol.source.BingMaps
*MapQuest: ol.source.MapQuest
*OpenStreetMap: ol.source.OSM

{'Bing': {'key': 'Ap|k3yheRE', 'imagerySet': 'Aerial'}}

Controls
Use the following links to learn about options for the different controls:

eFullScreen: ol.control.FullScreen

1.6. Software Development Kit 123

http://openlayers.org/en/v3.10.1/apidoc/ol.source.BingMaps.html
http://openlayers.org/en/v3.10.1/apidoc/ol.source.MapQuest.html
http://openlayers.org/en/v3.10.1/apidoc/ol.source.OSM.html
http://openlayers.org/en/v3.10.1/apidoc/ol.control.FullScreen.html

Tethys Platform Documentation, Release 1.4.0

*MousePosition: ol.control.MousePosition
*Rotate: ol.control.Rotate

*ScaleLine: ol.control.ScaleLine
*ZoomSlider: ol.control.ZoomSlider
eZoomToExtent: ol.control.ZoomToExtent

Feature Selection

The feature_selection dictionary contains global settings that can be used to modify the behavior of the feature
selection functionality. An explanation of valid options follows:

emultiselect: Set to True to allow multiple features to be selected while holding the shift key on the key-

board. Defaults to False.

esensitivity: Integer value that adjust the feature selection sensitivity. Defaults to 2.

Example

CONTROLLER
from tethys_sdk.gizmos import MapView,

Define view options
view_options = MVView (
projection="'EPSG:4326"',
center=[-100, 4017,
zoom=3.5,
maxzZoom=18,
minZoom=2

Define drawing options

drawing_options = MVDraw (
controls=["'Modify', 'Delete',
initial='Point',
output_format="WKT'

Define GeoJSON layer
geojson_object = {
'type': 'FeatureCollection',
'crs': {
'type':
'properties': {
'name': 'EPSG:3857"'
}

'name’',

}I
'features': |
{
'type': 'Feature',
'geometry': {
'type': 'Point',
'coordinates': [0, 0]
}
}y
{
'type': 'Feature',
'geometry': {

'type': 'LineString',

MVDraw,

'Move',

MVView, MVLayer, MVLegendClass

'Point', 'LineString', 'Polygon', 'Box'],

124

Chapter 1. Contents

http://openlayers.org/en/v3.10.1/apidoc/ol.control.MousePosition.html
http://openlayers.org/en/v3.10.1/apidoc/ol.control.Rotate.html
http://openlayers.org/en/v3.10.1/apidoc/ol.control.ScaleLine.html
http://openlayers.org/en/v3.10.1/apidoc/ol.control.ZoomSlider.html
http://openlayers.org/en/v3.10.1/apidoc/ol.control.ZoomToExtent.html

Tethys Platform Documentation, Release 1.4.0

'coordinates': [[4e6, —-2e6], [8e6, 2e6]]
}
}I
{
'type': 'Feature',
'geometry': {
'type': 'Polygon',
'coordinates': [[[-5e6, -1le6], [-4e6, le6], [-3e6, -1le6]]]

geojson_layer = MVLayer (source='GeoJSON',

options=geojson_object,

legend_title='Test GeoJSON',

legend_extent=[-46.7, -48.5, 74, 59],

legend_classes=][
MVLegendClass ('polygon', 'Polygons', fill='rgba (255,255,255,0.8)"', =
MVLegendClass ('line', 'Lines', stroke='#3d9%dcd')

1)

Define GeoServer Layer

geoserver_layer = MVLayer (source='ImageWMS',
options={'url': 'http://192.168.59.103:8181/geoserver/wns’',
'params': {'LAYERS': 'topp:states'},
'serverType': 'geoserver'},

legend_title="'USA Population',

legend_extent=[-126, 24.5, -66.2, 49],

legend_classes=][
MVLegendClass ('polygon', 'Low Density', fill='#00ff00', stroke="'#(
MVLegendClass ('polygon', 'Medium Density', fill='#f£f0000', stroke=
MVLegendClass ('polygon', 'High Density', £ill='#0000ff', stroke='#

1)

Define KML Layer
kml_layer = MVLayer (source='KML',
options={'url': '/static/tethys_gizmos/data/model.kml"'},
legend_title='Park City Watershed',
legend_extent=[-111.60, 40.57, -111.43, 40.70],
legend_classes=]|
MVLegendClass ('polygon', 'Watershed Boundary', fill='#£f£8000'),
MVLegendClass ('line', 'Stream Network', stroke='#0000ff'),
1)

Tiled ArcGIS REST Layer

arc_gis_layer = MVLayer (source='TileArcGISRest',
options={'url': 'http://sampleserverl.arcgisonline.com/ArcGIS/rest/servi
legend_title="'ESRI USA Highway',
legend_extent=[-173, 17, -65, 721)

Define map view options

map_view_options = MapView (
height='600px"',
width="100%",

controls=["'ZoomSlider', 'Rotate', 'FullScreen',
{'"MousePosition': {'projection': 'EPSG:4326'}},
{'ZoomToExtent': {'projection': 'EPSG:4326', 'extent': [-130, 22, -65, 541}}1,

1.6. Software Development Kit 125

Tethys Platform Documentation, Release 1.4.0

layers=[geojson_layer, geoserver_layer, kml_layer, arc_gis_layer],
view=view_options,
basemap="'0OpenStreetMap',
draw=drawing_options,
legend=True
)

TEMPLATE

)

% gizmo map_view map_view_options %}

MYVLayer

class tethys_sdk.gizmos.MVLayer (source, options, legend_title, layer_options=None,
legend_classes=None, legend_extent=None, leg-
end_extent_projection="EPSG:4326°, feature_selection=False,

geometry_attribute=None)
MVLayer objects are used to define map layers for the Map View Gizmo.

source
str;, required

The source or data type of the layer (e.g.: ImageWMS)

options
dict, required

A dictionary representation of the OpenLayers options object for ol.source.

legend_title
str, required

The human readable name of the layer that will be displayed in the legend.

layer_options
dict

A dictionary representation of the OpenLayers options object for ol.layer.

feature_ selection
bool

Set to True to enable feature selection on this layer. Defaults to False.

geometry attribute
str

The name of the attribute in the shapefile that describes the geometry

legend_classes
list

A list of MVLegendClass objects.

legend_extent
list

A list of four ordinates representing the extent that will be used on “zoom to layer”: [minx, miny, maxx,
maxy].

legend_extent_projection
str

The EPSG projection of the extent coordinates. Defaults to “EPSG:4326”.

126 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Example

Define GeoJSON layer
geojson_object = {
'type': 'FeatureCollection',
'crs': {
'type': 'name',
'properties': {
'name': 'EPSG:3857'
}
}I
'features': [
{
'type': 'Feature',
'geometry': {
'type': 'Point',
'coordinates': [0, 0]

'type': 'Feature',
'geometry': {
'type': 'LineString',
'coordinates': [[4e6, —2e6], [8e6, 2e6]]

'type': 'Feature',
'geometry': {
'type': 'Polygon',
'coordinates': [[[-5e6, -1le6], [-4e6, le6], [-3e6, -1le6]]]

geojson_layer = MVLayer (source='GeoJSON',
options=geojson_object,
legend_title="'Test GeoJSON',
legend_extent=[-46.7, -48.5, 74, 591,
legend_classes=][

MVLegendClass ('polygon', 'Polygons', fill='rgba (255,255,255,0.8)",

MVLegendClass ('line', 'Lines', stroke='#3d9%dcd")
1)

Define GeoServer Layer
geoserver_layer = MVLayer (source='ImageWMs',

options={'url': 'http://192.168.59.103:8181/geoserver/wns',
'params': {'LAYERS': 'topp:states'},
'serverType': 'geoserver'},

legend_title='USA Population',
legend_extent=[-126, 24.5, -66.2, 4971,
legend_classes=]|

s

MVLegendClass ('polygon', 'Low Density', £ill='#00£ff00"', stroke='#(

MVLegendClass ('polygon', 'Medium Density', fill="#£f£f0000",

stroke=

MVLegendClass ('polygon', 'High Density', £ill="#0000ff', stroke='#

1)

Define GeoServer Tile Layer with Custom tile grid

1.6. Software Development Kit 127

Tethys Platform Documentation, Release 1.4.0

The default EPSG:900913 gridset can be used with OpenLayers.
You must ensure that OpenLayers requests tiles with the same gridset and origin as the gridset
to use GeoWebCaching capabilities. This is done by setting the TILESORIGIN parameter and speci
Refer to OpenLayers API for ol.tilegrid.TileGrid for explanation and options.
See: http://docs.geoserver.org/2.7.0/user/webadmin/tilecache/index.html
geoserver_layer = MVLayer (source='TileWMS',
options={'url': 'http://192.168.59.103:8181/geoserver/wns"',
'params': {'LAYERS': 'topp:states',
'TILED': True,
'"TILESORIGIN': '0.0,0.0'},
'serverType': 'geoserver',
'tileGrid': {
'resolutions': [

156543.03390625,
78271.516953125,
39135.7584765625,
19567.87923828125,
9783.939619140625,
4891.9698095703125,
2445.9849047851562,
1222.9924523925781,
611.4962261962891,
305.74811309814453,
152.87405654907226,
76.43702827453613,
38.218514137268066,
19.109257068634033,
9.554628534317017,
.777314267158508,
.388657133579254,
.194328566789627,
.5971642833948135,
.2985821416974068,
.1492910708487034,
.0746455354243517,

O O O O F N b

I

'extent': [-20037508.34, -20037508.34, 20037508.34, 200375C
'origin': [0, O],

'tileSize': [256, 256]

by
legend_title='USA Population')

Define KML Layer
kml_layer = MVLayer (source='KML',
options={'url': '/static/tethys_gizmos/data/model.kml'},
legend_title='Park City Watershed',
legend_extent=[-111.60, 40.57, -111.43, 40.701,
legend_classes=[
MVLegendClass ('polygon', 'Watershed Boundary', fill='#££8000"),
MVLegendClass ('line', 'Stream Network', stroke='#0000ff'),
1)

Tiled ArcGIS REST Layer

arc_gis_layer = MVLayer (source='TileArcGISRest',
options={'url': 'http://sampleserverl.arcgisonline.com/ArcGIS/rest/servi
legend_title='ESRI USA Highway',
legend_extent=[-173, 17, -65, 721),

128 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

MVLegendClass
class tethys_sdk.gizmos.MVLegendClass (type, value, fill="*, stroke="*, ramp=[])
MVLegendClasses are used to define the classes listed in the legend.

type
str, required

The type of feature to be represented by the legend class. Either ‘point’, ‘line’, ‘polygon’, or ‘raster’.

value
str, required

The value or name of the legend class.
fill
str
Valid RGB color for the fill (e.g.: ‘#00ff00’, ‘rgba(0, 255, 0, 0.5)’). Required for ‘point’ or ‘polygon’
types.

stoke
Str

Valid RGB color for the stoke/line (e.g.: ‘#00ff00’, ‘rgba(0, 255, 0, 0.5)’). Required for ‘line’ types and
optional for ‘polygon’ types.

ramp
list
A list of hexidecimal RGB colors that will be used to construct a color ramp. Required for ‘raster’ types.

Example

point_class = MVLegendClass (type='point', value='Cities', £ill='#00££00")
line_class = MVLegendClass (type='line', value='Roads', stroke='rbga(0,0,0,0.7)")
polygon_class = MVLegendClass (type='polygon', value='Lakes', stroke='#0000aa', fill='#0000ff")

MVLegendImageClass
class tethys_sdk.gizmos.MVLegendImageClass (value, image_url)
MVLegendImageClasses are used to define the classes listed in the legend using a pre-generated image.

value
str;, required

The value or name of the legend class.

image_url
str, required

The url to the legend image.
Example

image_class = MVLegendImageClass (value='Cities',
image_url='https://upload.wikimedia.org/wikipedia/commons/d/da/
)

MYVLegendGeoServerImageClass
class tethys_sdk.gizmos.MVLegendGeoServerImageClass (value, geoserver_url, style, layer,
width=20, height=10)
MVLegendGeoServerImageClasses are used to define the classes listed in the legend using the GeoServer gen-
erated legend.

1.6. Software Development Kit 129

Tethys Platform Documentation, Release 1.4.0

value
str;, required

The value or name of the legend class.

geoserver_url
str, required

The url to your geoserver (e.g. http://localhost:8181/geoserver).

style
str, required

The name of the geoserver style (e.g. green).

layer

str;, required

The name of the geoserver layer (e.g. rivers).
width

int

The legend width (default is 20).

height
int

The legend height (default is 10).
Example

image_class = MVLegendGeoServerImageClass (value='Cities"',
geoserver_url='http://localhost:8181/geoserver’,
style='green',
layer='rivers',
width=20,
height=10)

MVDraw
class tethys_sdk.gizmos.MVDraw (controls, initial, output_format="GeoJSON’)
MVDraw objects are used to define the drawing options for Map View.

controls
list, required

List of drawing controls to add to the map. Valid options are ‘Modify’, ‘Delete’, ‘Move’, ‘Point’,
‘LineString’, ‘Polygon’ and ‘Box’.

initial
str, required

Drawing control to be enabled initially. Must be included in the controls list.

output_format
str

Format to output to the hidden text area. Either ‘WKT’ (for Well Known Text format) or ‘GeoJSON’.
Defaults to ‘GeoJSON’

Example

130 Chapter 1. Contents

http://localhost:8181/geoserver

Tethys Platform Documentation, Release 1.4.0

drawing_options = MVDraw (
controls=['Modify', 'Delete', 'Move', 'Point', 'LineString', 'Polygon', 'Box'],
initial='Point"',
output_format="WKT'

MVView

class tethys_sdk.gizmos.MVView (projection, center, zoom, maxZoom=28, minZoom=0)
MVView objects are used to define the initial view of the Map View. The initial view is set by specifying a
center and a zoom level.

projection
str

Projection of the center coordinates given. This projection will be used to transform the coordinates into
the default map projection (EPSG:3857).

center
list

An array with the coordinates of the center point of the initial view.

zoom
int or float

The zoom level for the initial view.

maxZoom
int or float

The maximum zoom level allowed. Defaults to 28.

minZoom
int or float

The minimum zoom level allowed. Defaults to 0.
Example

view_options = MVView (
projection="EPSG:4326",
center=[-100, 40],
zoom=3.5,
maxzoom=18,
minZoom=2

JavaScript API For advanced features, the JavaScript API can be used to interact with the OpenLayers map object
that is generated by the Map View JavaScript library.

TETHYS_MAP_VIEW.getMap() This method returns the OpenLayers map object. You can use the OpenLayers
Map API version 3.10.1 to perform operations on this object such as adding layers and custom controls.

$ (function() { //wait for page to load

var ol_map = TETHYS_MAP_VIEW.getMap();
ol_map.addLayer(...);
ol_map.setView(...);

1.6. Software Development Kit 131

http://openlayers.org/en/v3.10.1/apidoc/ol.Map.html
http://openlayers.org/en/v3.10.1/apidoc/ol.Map.html

Tethys Platform Documentation, Release 1.4.0

)i

Caution: The Map View Gizmo is powered by OpenLayers version 3.10.1. When referring to the OpenLayers
documentation, ensure that you are browsing the correct version of documentation (see the URL of the documen-
tation page).

TETHYS_MAP_VIEW.updateLegend() This method can be used to update the legend after removing/adding lay-
ers to the map.

$ (function() { //wait for page to load

var ol_map = TETHYS_MAP_VIEW.getMap () ;
ol_map.addLayer(...);
TETHYS_MAP_VIEW.updatelLegend() ;

TETHYS_MAP_VIEW.zoomToExtent(latlongextent) This method can be used to set the view of the map to the
extent provided. The extent is assumed to be given in the EPSG:4326 coordinate reference system.

$ (function() { //wait for page to load

var extent = [-109.49945001309617, 37.58047995600726, -109.44540360290348, 37.679502621605735];
TETHYS_MAP_VIEW.zoomToExtent (extent) ;
}) i

TETHYS_MAP_VIEW.clearSelection() This method applies to the WMS layer feature selection functionality.
Use this method to clear the current selection via JavaScript.

TETHYS_MAP_VIEW.clearSelection();

TETHYS_MAP_VIEW.overrideSelectionStyler(geometry_type, styler) This method applies to the WMS layer
feature selection functionality. This method can be used to override the default styling for the points, lines, and
polygons selected feature layers.

» geometry_type (str): The type of the layer that the styler function will apply to. One of: ‘points’, ‘lines’, or
‘polygons’.

* styler (func): A function that accepts two arguments, feature and resolution, and returns an array of valid ol.style
objects.

function my_styler (feature, resolution) {
var image, properties;
properties = feature.getProperties();

// Default icon
image = new ol.style.Circle ({
radius: 5,
fill: new ol.style.Fill ({
color: 'red'
})
1)

132 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

if ('type' in properties) {
if (properties.type === 'TANK') {
image = new ol.style.RegularShape ({
fill: new ol.style.Fill ({
color: SELECTED_NODE_COLOR
1)y
stroke: new ol.style.Stroke ({
color: 'white',
width: 1
1)y
points: 4,
radius: 14,
rotation: O,
angle: Math.PI / 4
}) i

}
else if (properties.type === 'RESERVOIR') ({
image = new ol.style.RegularShape ({
fill: new ol.style.Fill ({
color: SELECTED_NODE_COLOR

1)y

stroke: new ol.style.Stroke ({
color: 'white',
width: 1

1)y

points: 3,

radius: 14,

rotation: O,

angle: 0

return [new ol.style.Style({image: image})];

TETHYS_MAP_VIEW.overrideSelectionStyler ('points', my_styler);

TETHYS_MAP_VIEW.onSelectionChange(callback) This method applies to the WMS layer feature selection
functionality. The callback function provided will be called each time the feature selection is changed.

* callback (func): A function that accepts three arguments, points_layer, lines_layer, polygons_layer. These are
handles on the OpenLayers layers that are rendering the selected features. The features are divided into three

layers by type.

function my_callback (points_layer, lines_layer, polygons_layer) {
console.log(points_layer);

TETHYS_MAP_VIEW.onSelectionChange (my_callback) ;

TETHYS_MAP_VIEW.getSelectInteraction() This method applies to the WFS/GeoJSON/KML layer feature se-
lection functionality.

1.6. Software Development Kit 133

Tethys Platform Documentation, Release 1.4.0

$ (function() { //wait for page to load
var selection_interaction = TETHYS_MAP_VIEW.getSelectInteraction();

//when selected, print feature to developers console
selection_interaction.getFeatures () .on('change:length', function(e) {
if (e.target.getArray () .length > 0) {
// this means there is at least 1 feature selected
var selected_feature = e.target.item(0); // 1lst feature in Collection
console.log(selected_feature);

TETHYS_MAP_VIEW.relnitializeMap() This method is intended for initializing a map generated from an AJAX
request.

Caution: This method assumes there is only one and that there will only ever be one map on the page.

Note: In order to use this, you will either need to use a MapView gizmo or import the JavaScript/CSS libraries in the
main html template page.

For example:

{% block styles %}

{{ block.super }}

<link rel="stylesheet" href="/static/tethys_gizmos/vendor/openlayers/ol.css"" type="text/css">
{% endblock %}

{% block global_scripts %}

{{ block.super }}

<script src="/static/tethys_gizmos/vendor/openlayers/ol.js" type="text/javascript"></script>
{% endblock %}

{% block scripts %}

{{ block.super }}

<script src="/static/tethys_gizmos/Jjs/tethys_map_view.js" type="text/javascript"></script>
{% endblock %}

Four elements are required:
1) A controller for the AJAX call with a map view gizmo.

Qlogin_required ()
def dam_break_map_ajax (request) :

mmn

Controller for the dam _break_map ajax request.

mmn

if request.GET:

#get layers

134 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

map_layer_list =
Define initial view for Map View
view_options = MVView (
projection="EPSG:4326",
center=[(bbox [0]+bbox[2]) /2.0, (bbox[1]+bbox[3])/2.0],
zoom=10,
maxzoom=18,
minZoom=2,

Configure the map

map_options = MapView (height="'500px",
width='100%",
layers=map_layer_list,
controls=['FullScreen'],
view=view_options,
basemap='0OpenStreetMap"',
legend=True,

)

context { 'map_options': map_options }

return render (request, 'dam_break_map_ajax/map_ajax.html', context)

2) A url map to the controller in app.py

UrlMap (name="'dam_break_map_ajax',
url='dam-break/map/dam_break_map_ajax',
controller="'dam_break.controllers.dam_break_map_ajax'),

3) A template for with the tethys gizmo (e.g. map_ajax.html)

{% load tethys_gizmos %}
{% gizmo map_view map_options %}

4) The AJAX call in the javascript

$ (function() { //wait for page to load

S.ajax ({
url: ajax_url,
method: 'GET',
data: ajax_data,
success: function(data) {
//add new map to map div
S ('"#main_map_div') .html (data) ;

TETHYS_MAP_VIEW.reInitializeMap();

1.6. Software Development Kit 135

Tethys Platform Documentation, Release 1.4.0

Google Map View

Last Updated: August 10, 2015

class tethys_sdk.gizmos.GoogleMapView (height, width, maps_api_key="", refer-

ence_kml_action="", drawing_types_enabled=[],
initial_drawing_mode="", output_format="GEOJSON’,
input_overlays=[None], attributes={}, classes="")
Google Map View
The Google Map View is similar to Map View, but it is powered by Google Maps 3. It has the drawing library
enabled to allow geospatial user input. An optional background dataset can be specified for reference, but only
the shapes drawn by the user are returned (see Retrieving Shapes reference section).

Shapes that are drawn on the map by users can be retrieved from the map in two ways. A hidden text field
named ‘geometry’ is updated every time the map is changed. The text in the text field is a string representation
of JSON. The geometry can be formatted as either GeoJSON or Well Known Text. This can be configured by
setting the output_format parameter. If the Google Map View is embedded in a form, the geometry that is drawn
on the map will automatically be submitted with the rest of the form via the hidden text field.

Alternatively, the data can be extracted directly using the JavaScript API (see below).

height
string, required

Height of map container in normal css units

width
string, required

Width of map container in normal css units

maps_api_key
string, required

The Google Maps API key. If the API key is provided in the settings.py via the
TETHYS_GIZMOS_GOOGLE_MAPS_API_KEY option, this parameter is not required.

reference_kml_action
url string

The action that returns the background kml datasets. These datasets are used for reference only.

drawing types_enabled
list of strings

A list of the types of geometries the user will be allowed to draw (POLYGONS, POINTS, POLYLINES).

initial_drawing_mode
string

A string representing the drawing mode that will be enabled by default. Valid modes are: ‘POLYGONS’,
‘POINTS’, ‘POLYLINES’. The mode used must be one of the drawing_types_enabled that the user is
allowed to draw.

output_format
string

A string specifying the format of the string that is output by the editable map tool. Valid values are
‘GEOJSON’ for GeoJSON format or “‘WKT’ for Well Known Text Format.

input_overlays
PySON

136

Chapter 1. Contents

http://127.0.0.1:8000/developer/gizmos/#retrieving_shapes

Tethys Platform Documentation, Release 1.4.0

A JavaScript-equivalent Python data structure representing GeoJSON or WktJSON containing the geome-
try and attributes to be added to the map as overlays (see example below). Only points, lines and polygons
are supported.

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”).

Example

CONTROLLER
from tethys_sdk.gizmos import GoogleMapView

google_map_view = GoogleMapView (height="'600px"',
width='100%",
reference_kml_action=reverse('gizmos:get_kml"'),
drawing_types_enabled=['POLYGONS', 'POINTS', 'POLYLINES'],
initial_drawing_mode='POINTS',
output_format="WKT")

GeoJSON Example
geo_json = {'type':'WKTGeometryCollection',

'geometries': [
{'type':'Point',
'wkt':"POINT (-111.5123462677002 40.629197012613545) "',
'properties':{'id':1, 'value':1}
b
{'"type':'Polygon',
'wkt':'"POLYGON ((-111.50153160095215 40.63193284946615, —-111.50101661682129 4C
'properties':{'id':2, 'value':2}
}I
{'type':'PolyLine’', #
'wkt':'POLYLINE (-111.49123191833496 40.65003865742191, -111.49088859558105 4C
'properties':{'id':3, 'value':3}
}
]
}
google_map_view_options = {'height': '700px',
'width': '100%°',
'maps_api_key': 'SOmEaPIk3y',
'drawing_types_enabled': ['POLYGONS', 'POINTS', 'POLYLINES'],
'initial drawing_mode': 'POINTS',
'input_overlays': geo_json}

WKT Example

wkt_json = {"type":"GeometryCollection",
"geometries": [

{"type":"Point",
"coordinates":[40.629197012613545,-111.5123462677002],
"properties":{"id":1,"value":1}},

{"type":"Polygon",

1.6. Software Development Kit 137

Tethys Platform Documentation, Release 1.4.0

"coordinates":[[40.63193284946615,-111.50153160095215], [40.617210120505035, -1
"properties":{"id":2, "value":2}},

{"type":"LineString",

"coordinates":[[40.65003865742191,-111.49123191833496], [40.635319920747456, -1

"properties":{"id":3, "value":3}}
1
}
google_map_view_options = {'height': '700px',

'width': '100%"',
'maps_api_key': 'SOmEaPIk3y',
'drawing_types_enabled': ['POLYGONS', 'POINTS', 'POLYLINES'],
'initial drawing_mode': 'POINTS',
'input_overlays': wkt_json}

TEMPLATE

% gilzmo google_map_view google_map_view_options %}

JavaScript API For advanced features, the JavaScript API can be used to interact with the editable map. If you need
capabilities beyond the scope of this API, we recommend using the Google Maps version 3 API to create your own
map.

TETHYS_GOOGLE_MAP_VIEW.getMap() This method returns the Google Map object for direct manipulation
through JavaScript.

TETHYS_GOOGLE_MAP_VIEW.getGeoJson() This method returns the GeoJSON object representing all of the
overlays on the map.

TETHYS_GOOGLE_MAP_VIEW.getGeoJsonString() This method returns a stringified GeoJSON object repre-
senting all of the overlays on the map.

TETHYS_GOOGLE_MAP_VIEW.getWktJson() This method returns a Well Known Text JSON object repre-
senting all of the overlays on the map.

TETHYS_GOOGLE_MAP_VIEW.getWktJsonString() This method returns a stringified Well Known Text
JSON object representing all of the overlays on the map.

TETHYS_GOOGLE_MAP_VIEW.swapKmlService(kml_service) Use this method to swap out the current ref-
erence kml layers for new ones.

* kml_service (string) = URL endpoint that returns a JSON object with a property called ‘kml_link’ that is an
array of publicly accessible URLs to kml or kmz documents

TETHYS_GOOGLE_MAP_VIEW.swapOverlayService(overlay_service, clear_overlays) Use this method to
add new overlays to the map dynamically without reloading the page.

* overlay_service (string) = URL endpoint that returns a JSON object with a property called ‘overlay_json’ that
has a value of a WKT or GeoJSON object in the same format as is used for input_overlays

138 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

* clear_overlays (boolean) = if true, will clear all overlays from the map prior to adding the new overlays.
Otherwise all overlays will be retained.

Jobs Table

Last Updated: August 10, 2015

class tethys_sdk.gizmos.JobsTable (jobs, column_fields, status_actions=True, run_btn=True,
delete_btn=True, results_url="", hover=False, striped=False,
bordered=False, condensed=Fualse, attributes={}, classes="",

refresh_interval=5000, delay_loading_status=True)
A jobs table can be used to display users’ jobs. The JobsTable gizmo takes the same formatting options as the

table view gizmo, but does not allow the columns to be edited. Additional attributes for the jobs table allows for
a dynamically updating status field, and action buttons.

jobs
tuple or list, required

A list/tuple of TethysJob objects.

column_ fields
tuple or list, required

A tuple or list of strings that represent TethysJob object attributes to show in the columns.

status_actions
bool

Add a column to the table to show dynamically updating status, and action buttons. If this is false then the
values for run_btn, delete_btn, and results_url will be ignored. Default is True.

run_btn
bool

Add a button to run the job when job status is “Pending”. Default is True.

delete_btn
bool

Add a button to delete jobs. Default is True.

results_url
Str

A string representing the namespaced path to a controller to that displays job results (e.g.
app_name:results_controller)

hover
bool

Illuminate rows on hover (does not work on striped tables)

striped
bool

Stripe rows

bordered
bool

Add borders and rounded corners

1.6. Software Development Kit 139

Tethys Platform Documentation, Release 1.4.0

condensed
bool

A more tightly packed table

attributes
dict

A dictionary representing additional HTML attributes to add to the primary element (e.g. {“onclick™
“run_me();”}).

classes
Str

Additional classes to add to the primary HTML element (e.g. “example-class another-class”™).

refresh interval
int

The refresh interval for the runtime and status fields in milliseconds. Default is 5000.
Example

CONTROLLER
from tethys_apps.sdk.gizmos import JobsTable

jobs_table_options = JobsTable (
jobs=7jobs,
column_fields=('id', 'name', 'description', 'creation_time', 'exe
hover=True,
striped=False,
bordered=False,
condensed=False,
results_url='app_name:results_controller’,

TEMPLATE

{% gizmo jobs_table jobs_table_options %}

Persistent Stores API

Last Updated: January 19, 2016

The Persistent Store API streamlines the use of SQL databases in Tethys apps. Using this API, you can provision up
to 5 SQL databases for your app. The databases that will be created are PostgreSQL databases. Currently, no other
databases are supported.

The process of creating a new persistent database can be summarized in the following steps:
1. register a new persistent store in the app configuration file,
2. create a data model to define the table structure of the database,
3. write a persistent store initialization function, and
4. use the Tethys command line interface to create the persistent store.

More detailed descriptions of each step of the persistent store process will be discussed in this article.

140 Chapter 1. Contents

http://www.postgresql.org/

Tethys Platform Documentation, Release 1.4.0

Persistent Store Registration

Registering new persistent stores is accomplished by adding the persistent_stores () method to your app
class, which is located in your app configuration file (app.py). This method should return a list or tuple of
PersistentStore objects. For example:

from tethys_sdk.base import TethysAppBase, url_map_maker
from tethys_sdk.stores import PersistentStore

class MyFirstApp (TethysAppBase) :

mmon

Tethys App Class for My First App.

mmn

def persistent_stores(self):

mmn

Add one or more persistent stores
mmn

stores = (PersistentStore (name='example_db',
initializer="my_first_app.init_stores.init_example_db'

)y

return stores

Caution: The ellipsis in the code block above indicates code that is not shown for brevity. DO NOT COPY
VERBATIM.

In this example, a database called “example_db” would be created for this app. It would be initialized by a function
called “init_example_db”, which is located in a Python module called init_stores.py. Notice that the path to
the initializer function is given using dot notation (e.g.: ' foo.bar.function’).

Databases follow a specific naming convention that is a combination of the app name and the name that is provided
during registration. For example, the database for the example above may have a name “my_first_app_example_db”.
To register another database, add another Persistent Store object to the tuple that is returned by the
persistent_stores () method.

Data Model Definition

The tables for a persistent store should be defined using an SQLAIchemy data model. The recommended location
for data model code is model . py file that is generated with the scaffold. The following example illustrates what a
typical SQLAlchemy data model may consist of:

from sglalchemy.ext.declarative import declarative_base
from sglalchemy import Column, Integer, Float
from sglalchemy.orm import sessionmaker

from .app import MyFirstApp

DB Engine, sessionmaker, and base

engine = MyFirstApp.get_persistent_store_engine ('example_db'")
SessionMaker = sessionmaker (bind=engine)

Base = declarative_base ()

SQLAlchemy ORM definition for the stream gages table

1.6. Software Development Kit 141

Tethys Platform Documentation, Release 1.4.0

class StreamGage (Base):

rrr

Example SQLAlchemy DB Model

rrr

__tablename__ = 'stream_gages'

Columns

id = Column (Integer, primary_key=True)
latitude = Column (Float)

longitude = Column (Float)

value = Column (Integer)

def _ init__ (self, latitude, longitude, value):

mnn

Constructor for a gage

mmomn
self.latitude = latitude

self.longitude = longitude
self.value = value

Object Relational Mapping

Each class in an SQLAlchemy data model defines a table in the database. Each object instantiated using an
SQLAIchemy class represent a row or record in the table. The contents of a table or multiple rows would be rep-
resented as a list of SQLAlchemy objects. This pattern for interacting between database tables using objects in code
is called Object Relational Mapping or ORM.

The example above consists of a single table called “stream_gages”, as denoted by the ___tablename___ property of
the St reamGage class. The St reamGage class is defined as an SQLAlchemy data model class because it inherits
from the Base class that was created in the previous lines using the declarative_base () function provided by
SQLAIchemy. This inheritance makes SQLAIchemy aware of the St reamGage class is part of the data model. All
tables belonging to the same data model should inherit from the same Base class.

The columns of tables defined using SQLAlchemy classes are defined by properties that contain Column objects. The
class in the example above defines four columns for the “stream_gages” table: id, latitude, longitude, and
value. The column type and options are defined by the arguments passed to the Column constructor. For example,
the 1at itude column is of type Float while the id column is of type Integer and is also flagged as the primary
key for the table.

Engine Object

Anytime you wish to retrieve data from a persistent store database, you will need to connect to it. In SQLAlchemy,
the connection to a database is provided via engine objects. You can retrieve the SQLAlchemy engine object
for a persistent store database using the get_persistent_store_engine () method of the app class provided
by the Persistent Store API. The example above shows how the get_persistent_store_engine () function
should be used. Provide the name of the persistent store to the function and it will return the engine object for that
store.

Note: Although the full name of the persistent store database follows the app-database naming convention described
in Persistent Store Registration, you need only use the name you provided during registration to retrieve the engine

using get_persistent_store_engine ().

142 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Session Object

Database queries are issued using SQLAlchemy session objects. You need to create new session objects each
time you perform a new set of queries (i.e.: in each controller). Creating session objects is done via a
SessionMaker. Inthe example above, the SessionMaker is created using the sessionmaker () function pro-
vided by SQLAIchemy. The SessionMaker is bound to the engine object. This means that anytime a session
is created using that SessionMaker it will automatically be connected to the database that the engine provides a
connection to. You should create a SessionMaker for each persistent store that you create. An example of how to
use session and SessionMaker objects is shown in the Initialization Function section.

SQLAIchemy ORM is a powerful tool for working with SQL databases. As a primer to SQLAIchemy ORM, we highly
recommend you complete the Object Relational Tutorial.

Initialization Function

The code for initializing a persistent store database should be defined in an initialization function. The recommended
location for initialization functions is the :file:init_stores.py file that is generated with the scaffold. In most
cases, each persistent store should have it’s own initialization function. The initialization function makes use of the
SQLAIchemy data model to create the tables and load any initial data the database may need. The following example
illustrates a typical initialization function for a persistent store database:

from .model import engine, SessionMaker, Base, StreamGage

def init_example_db(first_time) :

mmn

An example persistent store initializer function
mmwmn

Create tables

Base.metadata.create_all (engine)

Initial data
if first_time:
Make session
session = SessionMaker ()

Gage 1

gagel = StreamGage (latitude=40.23812952992122,
longitude=-111.69585227966309,
value=1)

session.add (gagel)

Gage 2

gage?2 = StreamGage (latitude=40.238784729316215,
longitude=-111.7101001739502,
value=2)

session.add (gage2)

session.commit ()
session.close ()

1.6. Software Development Kit 143

http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html

Tethys Platform Documentation, Release 1.4.0

Create Tables

The SQLAIchemy Base class defined in the data model is used to create the tables. Every class that inherits from
the Base class is tracked by a metadata object. As the name implies, the metadata object collects metadata
about each table defined by the classes in the data model. This information is used to create the tables when the
metadata.create_all () method is called:

Base.metadata.create_all (engine)

Note: The metadata.create_all () method requires the engine object as an argument for connection infor-
mation.

Initial Data

The initialization functions should also be used to add any initial data to persistent store databases. The first_time
parameter is provided to all initialization functions as an aid to adding initial data. It is a boolean that is True if the
function is being called after the tables have been created for the first time. This is provided as a mechanism for adding
initial data only the first time the initialization function is run. Notice the code that adds initial data to the persistent
store database in the example above is wrapped in a conditional statement that uses the £irst_t ime parameter.

Example SQLAIchemy Query

This initial data code uses an SQLAlchemy data model to add four stream gages to the persistent store database. A
new session object is created using the SessionMaker that was defined in the model. Creating a new record in
the database using SQLAlchemy is achieved by creating a new St reamGage object and adding it to the session
object using the session.add () method. The session.commit () method is called, to persist the new records
to the persistent store database. Finally, session.close () is called to free up the connection to the database.

Managing Persistent Stores

Persistent store management is handled via the syncstores command provided by the Tethys Command Line Interface
(Tethys CLI). This command is used to create the persistent stores of apps during installation. It should also be used
anytime you make changes to persistent store registration, data models, or initialization functions. For example, after
performing the registration, creating the data model, and defining the initialization function in the example above, the
syncstores command would need to be called from the command line to create the new persistent store:

$ tethys syncstores my_first_app

This command would create all the non-existent persistent stores that are registered for my_first_app and run the
initialization functions for them. This is the most basic usage of the syncstores command. A detailed description of
the syncstores command can be found in the Command Line Interface documentation.

Dynamic Persistent Store Provisioning

As of Tethys Platform 1.3.0, three methods were added to the app class that allow apps to create persistent stores at
run time, list existing persistent stores, and check if a given persistent store exists. See the API documentation below
for details.

144 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

API Documentation

classmethod TethysAppBase.get_persistent_store_engine (persistent_store_name)
Creates an SQLAIchemy engine object for the app and persistent store given.

Parameters persistent_store_name (string) — Name of the persistent store for which to retrieve the
engine.

Returns An SQLAlchemy engine object for the persistent store requested.
Return type object

Example:

from .app import MyFirstApp

engine =

MyFirstApp.get_persistent_store_engine ('example_db'")

TethysAppBase.persistent_stores ()

Define this method to register persistent store databases for your app. You may define up to 5 persistent stores
for an app.

Returns A list or tuple of PersistentStore objects. A persistent store database will be created
for each object returned.

Return type iterable
Example:

from tethys_sdk.stores import PersistentStore

mon

def persistent_stores(self):

Example persistent_stores method.

mnn

stores (PersistentStore (name="'example_db',
initializer="init_stores:init_example_db',
spatial=True
)y

return stores

classmethod TethysAppBase.create_persistent_store (persistent_store_name, spatial=False)
Creates a new persistent store database for this app.

Parameters

* persistent_store_name (string) — Name of the persistent store that will be created.

* spatial (bool) — Enable spatial extension on the database being created.
Returns True if successful.

Return type bool
Example:

from .app import MyFirstApp

result =

MyFirstApp.create_persistent_store ('example_db')

1.6. Software Development Kit

145

Tethys Platform Documentation, Release 1.4.0

if result:
engine = MyFirstApp.get_persistent_store_engine ('example db')

classmethod TethysAppBase.list_persistent_stores ()
Returns a list of existing persistent stores for this app.
Returns A list of persistent store names.
Return type list
Example:

from .app import MyFirstApp
persistent_stores = MyFirstApp.list_persistent_stores()

classmethod TethysAppBase.persistent_store_exists (persistent_store_name)
Returns True if a persistent store with the given name exists for this app.

Parameters persistent_store_name (string) — Name of the persistent store that will be created.
Returns True if persistent store exists.
Return type bool

Example:

from .app import MyFirstApp
result = MyFirstApp.persistent_store_exists ('example db')

if result:
engine = MyFirstApp.get_persistent_store_engine ('example db')

class tethys_sdk.stores.PersistentStore (name, initializer, spatial=False, postgis=False)
An object that stores the registration data for a Tethys Persistent Store.
Parameters
* name (string) — The name of the persistent store.

* initializer (string) — Path to the initialization function for the persistent store. Use dot-
notation with a colon delineating the function (e.g.: “foo.bar:function”).

* spatial (bool, optional) — PostGIS spatial extension will be enabled on the persistent store
if True. Defaults to False.

* postgis (bool, deprecated) — PostGIS spatial extension will be enabled on the persistent
store if True. Defaults to False. Deprecated, use spatial instead.

Spatial Persistent Stores API

Last Updated: November 24, 2014

Persistent store databases can support spatial data types. The spatial capabilities are provided by the PostGIS extension
for the PostgreSQL database. PostGIS extends the column types of PostgreSQL databases by adding geometry,
geography, and raster types. PostGIS also provides hundreds of database functions that can be used to perform

spatial operations on data stored in spatial columns. For more information on PostGIS, see http://www.postgis.net.

The following article details the the spatial capabilities of persistent stores in Tethys Platform. This article builds on

the concepts and ideas introduced in the Persistent Stores API documentation. Please review it before continuing.

146 Chapter 1. Contents

http://postgis.net/
http://www.postgresql.org/
http://www.postgis.net

Tethys Platform Documentation, Release 1.4.0

Register Spatial Persistent Store

Registering spatially enabled persistent stores follows the same process as registering normal persistent stores. The
only difference is that you will set the spatial attribute of the PersistentStore objectto True:

from tethys_sdk.base import TethysAppBase, url_map_maker
from tethys_sdk.stores import PersistentStore

class MyFirstApp (TethysAppBase) :

mmn

Tethys App Class for My First App.

mmn

def persistent_stores(self):

mmn

Add one or more persistent stores
mmrn

stores = (PersistentStore (name='spatial_db',
initializer="my_first_app.init_stores.init_spatial_db',
spatial=True

)y

return stores

Caution: The ellipsis in the code block above indicates code that is not shown for brevity. DO NOT COPY
VERBATIM.

Adding Spatial Columns to Model

Working with the raster, geometry, and geography column types provided by PostGIS is not supported na-
tively in SQLAIchemy. For this, Tethys Platform provides the GeoAlchemy?2, which extends SQLAlchemy to support
spatial columns and database functions. A data model that uses a geometry column type to store the points for
stream gages may look like this:

from sglalchemy.ext.declarative import declarative_base
from sglalchemy import Column, Integer
from sglalchemy.orm import sessionmaker

from geocalchemy2 import Geometry
from .app import MyFirstApp

Spatial DB Engine, sessiomaker, and base

spatial_engine = MyFirstApp.get_persistent_store_engine('spatial db')
SpatialSessionMaker = sessionmaker (bind=spatial_engine)

SpatialBase = declarative_base ()

SQLAlchemy ORM definition for the spatial_stream gages table
class SpatialStreamGage (SpatialBase):

mmon

Example of SQLAlchemy spatial DB model

mmn

__tablename__ = 'spatial_ stream_gages'

1.6. Software Development Kit 147

https://geoalchemy-2.readthedocs.org/en/latest/index.html

Tethys Platform Documentation, Release 1.4.0

Columns

id = Column (Integer, primary_key=True)
value = Column (Integer)

geom = Column (Geometry ('POINT'"))

def _ _init__ (self, latitude, longitude, value):

mn

Constructor for a gage
mmn

self.geom = '"SRID=4326;POINT ({0} {1})"'.format (longitude, latitude)
self.value = value

This data model is very similar to the data model defined in the Persistent Stores API documentation. Rather than
using Float columns to store the latitude and longitude coordinates, the spatial data model uses a GeoAlchemy?2
Geometry column called “geom”. Notice that the constructor (__init__ .py) takes the latitude and
longitude provided and sets the value of the geom column to a string with a special format called Well Known
Text. This is a common pattern when working with GeoAlchemy?2 columns.

Important: This article only briefly introduces the concepts of working with GeoAlchemy?2. It is highly recom-
mended that you complete the GeoAlchemy ORM tutorial.

Initialization Function

Initializing spatial persistent stores is performed in exactly the same way as normal persistent stores. An initialization
function for the example above, would look like this:

from .model import spatial_engine, SpatialSessionMaker, SpatialBase, SpatialStreamGage

def init_spatial_db(first_time):

mmn

An example persistent store initializer function
mmwn

Create tables

SpatialBase.metadata.create_all (spatial_engine)

Initial data
if first_time:
Make session
session = SpatialSessionMaker ()

Gage 1

gagel = SpatialStreamGage (latitude=40.23812952992122,
longitude=-111.69585227966309,
value=1)

session.add (gagel)

Gage 2

gage2 = SpatialStreamGage (latitude=40.238784729316215,
longitude=-111.7101001739502,
value=2)

session.add (gage?2)

148 Chapter 1. Contents

http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/Well-known_text
https://geoalchemy-2.readthedocs.org/en/latest/orm_tutorial.html

Tethys Platform Documentation, Release 1.4.0

session.commit ()
session.close ()

Using Spatial Database Functions

One of the major advantages of storing spatial data in PostGIS is that the data is exposed to spatial querying. PostGIS
includes over 400 database functions (not counting variants) that can be used to perform spatial operations on the data
stored in the database. Refer to the Geometry Function Reference and the Raster Function Reference in the PostGIS
documentation for more details.

GeoAlchemy2 makes it easy to use the spatial functions provided by PostGIS to perform spatial queries. For example,
the ST_Contains function can be used to determine if one geometry is contained inside another geometry. To
perform this operation on the spatial stream gage model would look something like this:

from sglalchemy import func
from .model import SpatialStreamGage, SpatialSessionMaker

session = SpatialSessionMaker ()

query = session.query (SpatialStreamGage) .filter(
func.ST_Contains ('POLYGON((O 0,0 1,1 1,0 1,0 0))"', SpatialStreamGage.geom)
)

Important: This article only briefly introduces the concepts of working with GeoAlchemy?2. It is highly recom-
mended that you complete the GeoAlchemy ORM tutorial.

Dataset Services API

Last Updated: August 5, 2015

Dataset services are web services external to Tethys Platform that can be used to store and publish file-based datasets
(e.g.: text files, Excel files, zip archives, other model files). Tethys app developers can use the Dataset Services API
to access datasets for use in their apps and publish any resulting datasets their apps may produce. CKAN is currently
they only supported dataset service.

Key Concepts

Tethys Dataset Services API provides a standardized interface for interacting with dataset services. This means that
you can use datasets from different sources without completely overhauling your code. Each of the supported dataset
services provides a DatasetEngine object with the same methods. For example, all DatasetEngine objects
have a method called 1ist_datasets () that will have the same result, returning a list of the datasets that are
available.

There are two important definitions that are applicable to dataset services: dataset and resource. A resource contains
a single file or other object and the metadata associated with it. A dataset is a container for one or more resources.

Dataset Service Engine References

All DatasetEngine objects implement a minimum set of base methods. However, some DatasetEngine
objects may include additional methods that are unique to that DatasetEngine and the arguments that each
method accepts may vary slightly. Refer to the following references for the methods that are offered by each
DatasetEngine.

1.6. Software Development Kit 149

http://postgis.net/docs/reference.html
http://postgis.net/docs/RT_reference.html
https://geoalchemy-2.readthedocs.org/en/latest/orm_tutorial.html
http://ckan.org

Tethys Platform Documentation, Release 1.4.0

Base Dataset Engine Reference

Last Updated: January 19, 2015

All DatasetEngine object provide a minimum set of methods for interacting with datasets and resources. Specifi-
cally, the methods allow the standard CRUD operations (Create, Read, Update, Delete) for both datasets and resources.

All DatasetEngine methods return a dictionary, often called the Response dictionary. The Response dictionary
contains an item named ‘success’ that contains a boolean indicating whether the operation was successful or not. If
‘success’ is True, then the the dictionary will also have an item named ‘result’ that contains the result of the operation.
If ‘success’ is False, then the Response dictionary will contain an item called ‘error’ with information about what

went wrong.

The following reference provides a summary of the base methods and properties provided by all DatasetEngine

objects.

Properties DatasetEngine. endpoint (string): URL for the dataset service API endpoint.
DatasetEngine. apikey (string, optional): API key may be used for authorization.
DatasetEngine. username (string, optional): Username key may be used for authorization.
DatasetEngine. password (string, optional): Password key may be used for authorization.

DatasetEngine. type (string, readonly): Identifies the type of DatasetEngine object.

Create Methods
DatasetEngine.create_dataset (name, **kwargs)
Create a new dataset.

Parameters

* name (string) — Name of the dataset to create.

» **kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)
DatasetEngine.create_resource (dataset_id, url=None, file=None, **kwargs)
Create a new resource.

Parameters
 dataset_id (srring) — Identifier of the dataset to which the resource will be added.
* url (string, optional) — URL of resource to associate with resource.
* file (string, optional) — Path of file to upload as resource.
o *¥kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)

Read Methods
DatasetEngine.get_dataset (dataset_id, **kwargs)
Retrieve a dataset object.

Parameters

150 Chapter 1

. Contents

Tethys Platform Documentation, Release 1.4.0

 dataset_id (string) — Identifier of the dataset to retrieve.
o **kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)
DatasetEngine.get_resource (resource_id, **kwargs)
Retrieve a resource object.

Parameters

* resource_id (string) — Identifier of the dataset to retrieve.

o **¥kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary
Return type (dict)

DatasetEngine.search_datasets (query, **kwargs)
Search for datasets that match a query.

Parameters

* query (dict) — Key value pairs representing the fields and values of the datasets to be in-
cluded.

o *¥kwargs — Any number of additional keyword arguments.
Returns Response dictionary
Return type (dict)

DatasetEngine.search_resources (query, **kwargs)
Search for resources that match a query.

Parameters

* query (dict) — Key value pairs representing the fields and values of the resources to be
included.

o **kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary
Return type (dict)

DatasetEngine.list_datasets (**kwargs)
List all datasets available from the dataset service.

Parameters **kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)

Update Methods
DatasetEngine.update_dataset (dataset_id, **kwargs)
Update an existing dataset.

Parameters
* dataset_id (string) — Identifier of the dataset to update.

» **kwargs (kwargs, optional) — Any number of additional keyword arguments.

1.6. Software Development Kit 151

Tethys Platform Documentation, Release 1.4.0

Returns Response dictionary

Return type (dict)
DatasetEngine.update_resource (resource_id, url=None, file=None, **kwargs)
Update an existing resource.

Parameters

* resource_id (string) — Identifier of the resource to update.

* url (string) — URL of resource to associate with resource.

* file (string) — Path of file to upload as resource.

o *¥kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)

Delete Methods
DatasetEngine.delete_dataset (dataset_id, **kwargs)
Delete a dataset.

Parameters

* dataset_id (string) — Identifier of the dataset to delete.

o *¥kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)
DatasetEngine.delete_resource (resource_id, **kwargs)
Delete a resource.

Parameters

* resource_id (string) — Identifier of the resource to delete.

o **kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)

CKAN Dataset Engine Reference

Last Updated: January 19, 2015
The following reference provides a summary the class used to define the CkanDatasetEngine objects.

class tethys_dataset_services.engines.CkanDatasetEngine (endpoint, apikey=None,
username=None, pass-

word=None)
Definition for CKAN Dataset Engine objects.

create_dataset (name, console=False, **kwargs)
Create a new CKAN dataset.

Wrapper for the CKAN package_create API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters

152 Chapter 1. Contents

http://docs.ckan.org/en/ckan-2.2/api.html

Tethys Platform Documentation, Release 1.4.0

* name (string) — The id or name of the resource to retrieve.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

create_resource (dataset_id, url=None, file=None, console=False, **kwargs)
Create a new CKAN resource.

Wrapper for the CKAN resource_create API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
* dataset_id (string) — The id or name of the dataset to to which the resource will be added.
e url (string, optional) — URL for the resource that will be added to the dataset.
* file (string, optional) — Absolute path to a file to upload for the resource.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o *¥*kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

delete_dataset (dataset_id, console=False, file=None, **kwargs)
Delete CKAN dataset

Wrapper for the CKAN package_delete API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
* dataset_id (string) — The id or name of the dataset to delete.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

 **kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

delete_resource (resource_id, console=False, **kwargs)
Delete CKAN resource

Wrapper for the CKAN resource_delete API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
* resource_id (string) — The id of the resource to delete.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o *¥*kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

download_dataset (dataset_id, location=None, console=False, **kwargs)
Downloads all resources in a dataset

Description

1.6.

Software Development Kit 153

http://docs.ckan.org/en/ckan-2.2/api.html
http://docs.ckan.org/en/ckan-2.2/api.html
http://docs.ckan.org/en/ckan-2.2/api.html

Tethys Platform Documentation, Release 1.4.0

Parameters
 dataset_id (string) — The id of the dataset to download.

* location (string, optional) — Path to the location for the resource to be downloaded. Default
is a subdirectory in the current directory named after the dataset.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments to pass to the get_dataset method
(see CKAN docs).

Returns A list of the files that were downloaded.

download_ resouce (resource_id, location=None, local_file_name=None, console=Fualse,
**kwargs)
Deprecated alias for download_resource method for backwards compatibility (the old method was mis-
spelled).
Description
Parameters

¢ resource_id (string) — The id of the resource to download.

¢ location (string, optional) — Path to the location for the resource to be downloaded. De-
faults to current directory.

* local_file_name (string, optional) — Name for downloaded file.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o *¥*kwargs — Any number of optional keyword arguments to pass to the get_resource
method (see CKAN docs).

Returns Path and name of the downloaded file.

download resource (resource_id, location=None, local_file_name=None, console=False,
**kwargs)
Download a resource from a resource id

Description
Parameters
¢ resource_id (string) — The id of the resource to download.

* location (string, optional) — Path to the location for the resource to be downloaded. De-
faults to current directory.

¢ local_file_name (string, optional) — Name for downloaded file.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments to pass to the get resource
method (see CKAN docs).

Returns Path and name of the downloaded file.

get_dataset (dataset_id, console=False, **kwargs)
Retrieve CKAN dataset

Wrapper for the CKAN package_show API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

154 Chapter 1. Contents

http://docs.ckan.org/en/ckan-2.2/api.html

Tethys Platform Documentation, Release 1.4.0

Parameters
* dataset_id (string) — The id or name of the dataset to retrieve.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» *¥kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

get_resource (resource_id, console=False, **kwargs)
Retrieve CKAN resource

Wrapper for the CKAN resource_show API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
¢ resource_id (string) — The id of the resource to retrieve.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

list_datasets (with_resources=False, console=False, **kwargs)
List CKAN datasets.

Wrapper for the CKAN package_list and current_package_list_with_resources API methods. See the
CKAN API docs for these methods to see applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
» with_resources (bool, optional) — Return a list of dataset dictionaries. Defaults to False.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» *¥kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns A list of dataset names or a list of dataset dictionaries if with_resources is true.
Return type list

search_datasets (query=None, filtered_query=None, console=False, **kwargs)
Search CKAN datasets that match a query.

Wrapper for the CKAN search_datasets API method. See the CKAN API docs for this methods to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters

* query (dict, optional if filtered_query set) — Key value pairs representing field and values
to search for.

« filtered_query (dict, optional if filtered_query set) — Key value pairs representing field
and values to search for.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» *¥*kwargs — Any number of optional keyword arguments for the method (see CKAN docs).

Returns The response dictionary or None if an error occurs.

1.6.

Software Development Kit 155

http://docs.ckan.org/en/ckan-2.2/api.html
http://docs.ckan.org/en/ckan-2.2/api.html
http://docs.ckan.org/en/ckan-2.2/api.html

Tethys Platform Documentation, Release 1.4.0

search_resources (query, console=False, **kwargs)
Search CKAN resources that match a query.

Wrapper for the CKAN search_resources API method. See the CKAN API docs for this methods to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
* query (dict) — Key value pairs representing field and values to search for.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o *¥kwargs — Any number of optional keyword arguments for the method (see CKAN docs).

Returns The response dictionary or None if an error occurs.

type
CKAN Dataset Engine Type

update_dataset (dataset_id, console=False, **kwargs)
Update CKAN dataset

Wrapper for the CKAN package_update API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
 dataset_id (string) — The id or name of the dataset to update.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o *¥*kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

update_resource (resource_id, url=None, file=None, console=False, **kwargs)
Update CKAN resource

Wrapper for the CKAN resource_update API method. See the CKAN API docs for this method to see
applicable options (http://docs.ckan.org/en/ckan-2.2/api.html).

Parameters
¢ resource_id (string) — The id of the resource that will be updated.
e url (string, optional) — URL of the resource that will be added to the dataset.
« file (string, optional) — Absolute path to a file to upload for the resource.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments for the method (see CKAN docs).
Returns The response dictionary or None if an error occurs.

validate ()
Validate CKAN dataset engine. Will throw an error if not valid.

HydroShare Dataset Engine Reference

Last Updated: August 5, 2015

156 Chapter 1. Contents

http://docs.ckan.org/en/ckan-2.2/api.html
http://docs.ckan.org/en/ckan-2.2/api.html
http://docs.ckan.org/en/ckan-2.2/api.html

Tethys Platform Documentation, Release 1.4.0

Warning: Coming Soon!

The following reference provides a summary the class used to define the HydroShareDatasetEngine objects.

class tethys_dataset_services.engines.HydroShareDatasetEngine (endpoint,
apikey=None,
username=None,

password=None)
Definition for HydroShare Dataset Engine objects.

create_dataset (name, console=False, **kwargs)
Create a new HydroShare resource.

Parameters
¢ name (string) — The id or name of the resource to retrieve.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» *¥*kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

create_resource (dataset_id, url=None, file=None, console=False, **kwargs)
Create a new HydroShare file

Parameters
 dataset_id (string) — The id or name of the dataset to to which the resource will be added.
* url (string, optional) — URL for the resource that will be added to the dataset.
« file (string, optional) — Absolute path to a file to upload for the resource.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

 **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

delete_dataset (dataset_id, console=False, **kwargs)
Delete HydroShare resource

Parameters
* dataset_id (string) — The id or name of the dataset to delete.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» *¥*kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

delete_resource (resource_id, console=False, **kwargs)
Delete HydroShare file.

Parameters

¢ resource_id (string) — The id of the resource to delete.

1.6. Software Development Kit 157

Tethys Platform Documentation, Release 1.4.0

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

 **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

get_dataset (dataset_id, console=False, **kwargs)
Retrieve HydroShare resource

Parameters
 dataset_id (string) — The id or name of the dataset to retrieve.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

get_resource (resource_id, console=False, **kwargs)
Retrieve HydroShare file

Parameters
* resource_id (string) — The id of the resource to retrieve.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

list_datasets (with_resources=False, console=False, **kwargs)
List HydroShare resources

Parameters
» with_resources (bool, optional) — Return a list of dataset dictionaries. Defaults to False.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns A list of dataset names or a list of dataset dictionaries if with_resources is true.
Return type list

search_datasets (query, console=False, **kwargs)
Search HydroShare resources that match a query.

Parameters
* query (dict) — Key value pairs representing field and values to search for.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

o **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

158 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Returns The response dictionary or None if an error occurs.

search_resources (query, console=False, **kwargs)
Search HydroShare files that match a query.

Parameters
* query (dict) — Key value pairs representing field and values to search for.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

type
HydroShare Dataset Engine Type

update_dataset (dataset_id, console=False, **kwargs)
Update HydroShare resource

Parameters
* dataset_id (string) — The id or name of the dataset to update.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

 **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.

update_resource (resource_id, url=None, file=None, console=False, **kwargs)
Update HydroShare file

Parameters
* resource_id (string) — The id of the resource that will be updated.
* url (string, optional) — URL of the resource that will be added to the dataset.
« file (string, optional) — Absolute path to a file to upload for the resource.

* console (bool, optional) — Pretty print the result to the console for debugging. Defaults to
False.

» **kwargs — Any number of optional keyword arguments for the method (see HydroShare
docs).

Returns The response dictionary or None if an error occurs.
Register New Dataset Service

Registering new dataset services is performed through the System Admin Settings.
1. Login to your Tethys Platform instance as an administrator.

2. Select “Site Admin” from the user drop down menu.

3. Select “Dataset Services” from the “Tethys Services” section.

1.6. Software Development Kit 159

Tethys Platform Documentation, Release 1.4.0

Apps Developer

& User Settings

£+ Site Admin

@ LogOut

Welcome to Tethys Portal,
the hub for your apps.

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

Incalhost:8000/admin/

@ TethyS POFta| Apps Developer

Site Administration

Authentication and Authorization

Groups dAdd #Change My Actions
Users @Add & Change & General Settings
Settings Category

& default
Tethys Compute Web Processin

¢ default_geoserver
Clusters dAdd ¢ Change Spatial Dataset

& default
Settings # Change Web Proce:

default
Spatial Dat: jice
Tethys Portal & default_geoserver
Spatial Dataset Service
Site Settings & Change & default
Dataset Service
. & default
Tethys Services Dataset Service
& default_ckan
Dataset Services dhAdd # Change Dataset Service
& default
Spatial Dataset Services dAdd ¢ Change Dataset Service

Web Processing Services gAdd ¢ Change

Copyright © 2015 Your Organization Powered by @ Tethys Platform

160 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

4. Select an existing Dataset Service configuration from the list to edit it OR click on the “Add Dataset Service”
button to create a new one.

@ TethyS POI’ta| Apps Developer

Home > Tethys Services » Dataset Services
Select Dataset Service To Change

Action: | - $) m 0 of 2 selected

Dataset Service

Add Dataset Service 4

default_ckan

default

2 Dataset Services

Copyright © 2015 Your Organization Powered by @ Tethys Platform

5. Give the Dataset Service configuration a name, select an appropriate engine, and specify the endpoint. The
name must be unique, because it is used to retrieve the Dataset Service connection object. The endpoint is a
URL pointing to the Dataset Service API. Example endpoints for several different types of Dataset Services are
shown below:

CKAN Endpoint URL
http://www.example.com/api/3/action

If authentication is required, specify either the API key or the username and password.

Note: When linking Tethys to a CKAN dataset service, an API Key is required. All user accounts are
issued an API key. To access the API Key log into the CKAN on which you have an account and browse

to your user profile page. The API key will be listed there. Depending on the CKAN instance and the
dataset, you may have full read-write access or you may have read-only access.

When you are done, the form should look similar to this:

6. Press “Save” to save the Dataset Service configuration.

Note: Prior to version Tethys Platform 1.1.0, it was possible to register dataset services using a mechanism in the app
configuration file. This mechanism has been deprecated due to security concerns.

1.6. Software Development Kit 161

Tethys Platform Documentation, Release 1.4.0

@ TethyS Portal Apps Developer

Home > Tethys Services > Dataset Services » default_ckan

Change Dataset Service

Name: default_ckan
Engine: CKAN 8
Endpoint: http://ciwckan.chpc.utah.edu
Apikey: tHi$-is-mY-@Pi-k3Y|
Username:
Password:
Delete Save and add another] [Save and continue editing] m

Copyright © 2015 Your Organization Powered by @ Tethys Platform

Working with Dataset Services

After dataset services have been properly configured, you can use the services to store and retrieve data for your apps.
The process involves the following steps:

1. Get a Dataset Service Engine

The Dataset Services API provides a convenience function for working with dataset services called
get_dataset_engine. To retrieve and engine for a sitewide configuration, call get_dataset_engine with
the name of the configuration:

from tethys_sdk.services import get_dataset_engine
dataset_engine = get_dataset_engine (name='example')

It will return the first service with a matching name or raise an exception if the service cannot be found with the
given name. Alternatively, you may retrieve a list of all the dataset engine objects that are registered using the
list_dataset_engines function:

from tethys_sdk.services import list_dataset_engines
dataset_engines = list_dataset_engines|()

You can also create a DatasetEngine object directly without using the convenience function. This can be useful if
you want to vary the credentials for dataset access frequently (e.g.: using user specific credentials). Simply import it
and instantiate it with valid credentials:

162 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

from tethys_dataset_services.engines import CkanDatasetEngine

dataset_engine = CkanDatasetEngine (endpoint="http://www.example.com/api/3/action', apikey='a-R311Y-n.

Caution: Take care not to store API keys, usernames, or passwords in the source files of your app—especially if
the source is made public. This could compromise the security of the dataset service.

2. Use the Dataset Service Engine

After you have a DatasetEngine, simply call the desired method on it. All DatasetEngine methods return
a dictionary with an item named ’ success’ that contains a boolean. If the operation was successful, the value of
"success’ will be True, otherwise it will be False. If the value of ' success’ is True, the dictionary will
also contain an item named ' result’ that will contain the results. If it is False, the dictionary will contain an item
named ' error’ that will contain information about the error that occurred. This can be used for debugging purposes
as illustrated in the following example:

from tethys_sdk.services import get_dataset_engine
dataset_engine = get_dataset_engine (name='example')
result = dataset_engine.list_datasets|()

if result['success']:
dataset_list = result['result']

for each dataset in dataset_list:
print dataset
else:
print (result['error'])

Use the dataset service engines references above for descriptions of the methods available and examples.

Note: The HydroShare dataset engine uses OAuth 2.0 to authenticate and authorize interactions with the HydroShare
via the REST API. This requires passing the reque st object as one of the arguments in get _dataset_engine ()

method call. Also, to ensure the user is connected to HydroShare, app developers must use the ensure_oauth?2 ()
decorator on any controllers that use the HydroShare dataset engine. For example:

from tethys_sdk.services import get_dataset_engine, ensure_oauth2

@ensure_oauth2 ('hydroshare')
def my_controller (request) :

mmn

This is an example controller that uses the HydroShare API.

mmon

engine = get_dataset_engine('hydroshare', request=request)
response = engine.list_datasets|()
context = {}

return render (request, 'red_one/home.html', context)

1.6. Software Development Kit 163

Tethys Platform Documentation, Release 1.4.0

Spatial Dataset Services API

Last Updated: July 17, 2015

Spatial dataset services are web services that can be used to store and publish file-based spatial datasets (e.g.: Shapefile
and GeoTiff). The spatial datasets published using spatial dataset services are made available in a variety of formats,
many of which or more web friendly than the native format (e.g.: PNG, JPEG, GeoJSON, and KML). Tethys app
developers can use this Spatial Dataset Services API to store and access :term:* spatial datasets® for use in their apps
and publish any resulting datasets their apps may produce.

Powered by GeoServer

GeoServer powers the Spatial Dataset Service capabilities of Tethys Platform. It is capable of storing and serving
vector and raster datasets in several popular formats including Shapefiles, GeoTiff, ArcGrid and others. GeoServer
serves the data in a variety of formats via the Open Geospatial Consortium (OGC) standards including Web Feature
Service (WES), Web Map Service (WMS), and Web Coverage Service (WCS).

Key Concepts
There are quite a few concepts that you should understand before working with GeoServer and spatial dataset services.
Definitions of each are provided here for quick reference.

Resources are the spatial datasets. These can vary in format ranging from a single file or multiple files to database
tables depending on the type resource.

Feature Type: is a type of resource containing vector data or data consisting of discreet features such as points, lines,
or polygons and any tables of attributes that describe the features.

Coverage: is a type of resource containing raster data or numeric gridded data.

Layers: are resources that have been published. Layers associate styles and other settings with the resource that are
needed to generate maps of the resource via OGC services.

Layer Groups: are preset groups of layers that can be served as WMS services as though they were one layer.

Stores: represent repositories of spatial datasets such as database tables or directories of shapefiles. A sfore containing
only feature types is called a Data Store and a store containing only coverages is called a Coverage Store.

Workspaces: are arbitrary groupings of data to help with organization of the data. It would be a good idea to store all
of the spatial datasets for your app in a workspace resembling the name of your app to avoid conflicts with other apps.

Styles: are a set of rules that dictate how a layer will be rendered when accessed via WMS. A layer may be associated
with many styles and a style may be associated with many layers. Styles on GeoServer are written in Styled Layer
Descriptor (SLD) format.

Styled Layer Descriptor (SLD): An XML-based markup language that can be used to specify how spatial datasets
should be rendered. See GeoServer’s SLD Cookbook for a good primer on SLD.

Web Feature Service (WFS): An OGC standard for exchanging vector data (i.e.: feature types) over the internet.
WES can be used to not only query for the features (points, lines, and polygons) but also the attributes associated with
the features.

Web Coverage Service (WCS): An OGC standard for exchanging raster data (i.e.: coverages) over the internet. WCS
is roughly the equivalent of WFS but for coverages, access to the raw coverage information, not just the image.

Web Mapping Service (WMS): An OGC standard for generating and exchanging maps of spatial data over the
internet. WMS can be used to compose maps of several different spatial dataset sources and formats.

164 Chapter 1. Contents

http://geoserver.org/
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/sld
http://docs.geoserver.org/stable/en/user/styling/sld-cookbook/index.html#sld-cookbook

Tethys Platform Documentation, Release 1.4.0

Spatial Dataset Engine References

All SpatialDatasetEngine objects implement a minimum set of base methods. However,
some SpatialDatasetEngine objects may include additional methods that are unique to that
SpatialDatasetEngine implementation and the arguments that each method accepts may vary slightly.
Refer to the following references for the methods that are offered by each SpatailDatasetEngine.

Base Spatial Dataset Engine Reference

Last Updated: January 30, 2015

All SpatialDatasetEngine objects provide a minimum set of methods for interacting with layers and resources.
Specifically, the methods allow the standard CRUD operations (Create, Read, Update, Delete) for both layers and
resources.

All SpatialSpatialDatasetEngine methods return a dictionary called the response dictionary. The Response
dictionary contains an item named ‘success’ that is a boolean indicating whether the operation was successful or not. If
‘success’ is True, then the the dictionary will also have an item named ‘result’ that contains the result of the operation.
If ‘success’ is False, then the Response dictionary will contain an item called ‘error’ with information about what
went wrong.

The following reference provides a summary of the base methods and properties provided by all
SpatialDatasetEngine objects.

Properties SpatialDatasetEngine. endpoint (string): URL for the spatial dataset service API endpoint.
SpatialDatasetEngine. apikey (string, optional): API key may be used for authorization.
SpatialDatasetEngine. username (string, optional): Username key may be used for authorization.
SpatialDatasetEngine. password (string, optional): Password key may be used for authorization.

SpatialDatasetEngine. type (string, readonly): Identifies the type of SpatialDatasetEngine object.

Create Methods
SpatialDatasetEngine.create_resource (resource_id, **kwargs)
Create a new resource.

Parameters

* resource_id (string) — Identifier of the resource to create.

o *¥kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)
SpatialDatasetEngine.create_layer (layer_id)
Create a new layer.

Parameters layer_id (string) — Identifier of the layer to create.
Returns Response dictionary

Return type (dict)

1.6. Software Development Kit 165

Tethys Platform Documentation, Release 1.4.0

Read Methods
SpatialDatasetEngine.get_resource (resource_id)
Retrieve a resource object.

Parameters resource_id (string) — Identifier of the dataset to retrieve.
Returns Response dictionary

Return type (dict)
SpatialDatasetEngine.get_layer (layer_id)
Retrieve a single layer object.

Parameters layer_id (string) — Identifier of the layer to retrieve.
Returns Response dictionary
Return type (dict)

SpatialDatasetEngine.list_resources ()
List all resources available from the spatial dataset service.

Returns Response dictionary
Return type (dict)

SpatialDatasetEngine.list_layers ()
List all layers available from the spatial dataset service.

Returns Response dictionary

Return type (dict)

Update Methods
SpatialDatasetEngine.update_resource (resource_id, **kwargs)
Update an existing resource.

Parameters

* resource_id (string) — Identifier of the resource to update.

o *¥kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)
SpatialDatasetEngine.update_layer (layer_id, **kwargs)
Update an existing layer.

Parameters

* layer_id (string) — Identifier of the layer to update.

o **kwargs (kwargs, optional) — Any number of additional keyword arguments.
Returns Response dictionary

Return type (dict)

Delete Methods
SpatialDatasetEngine.delete_resource (resource_id)
Delete a resource.

Parameters resource_id (string) — Identifier of the resource to delete.

Returns Response dictionary

166 Chapter 1

. Contents

Tethys Platform Documentation, Release 1.4.0

Return type (dict)
SpatialDatasetEngine.delete_layer (layer_id)
Delete a layer.

Parameters layer_id (string) — Identifier of the layer to delete.
Returns Response dictionary

Return type (dict)

GeoServer Spatial Dataset Engine Reference

Last Updated: January 30, 2015

The following reference provides a summary the class used to define the GeoServerSpatialDatasetEngine
objects.

class tethys_dataset_services.engines.GeoServerSpatialDatasetEngine (endpoint,

apikey=None,
user-
name=None,
pass-
word=None)

Definition for GeoServer Dataset Engine objects.

add_table_to_postgis_store (store_id, table, debug=True)

Add an existing postgis table as a feature resource to a postgis store that already exists.

Parameters

* store_id (string) — Identifier for the store to add the resource to. Can be a store name
or a workspace name combination (e.g.: “name” or “workspace:name’”). Note that the
workspace must be an existing workspace. If no workspace is given, the default workspace
will be assigned.

* table (string) — Name of existing table to add as a feature resource. A layer will auto-
matically be created for this resource. Both the resource and the layer will share the same
name as the table.

 debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.add_table_to_postgis_store(store_id="workspace:store_name’, table="table_name’)

create_coverage_resource (store_id, coverage_file, coverage_type, coverage_name=None,

overwrite=False, debug="False)
Use this method to add coverage resources to GeoServer.

This method will result in the creation of three items: a coverage store, a coverage resource, and a layer.
If store_id references a store that does not exist, it will be created. Unless coverage_name is specified, the
coverage resource and the subsequent layer will be created with the same name as the image file that is
uploaded.

Parameters

1.6. Software Development Kit 167

Tethys Platform Documentation, Release 1.4.0

* store_id (string) — Identifier for the store to add the image to or to be created. Can be
a name or a workspace name combination (e.g.: “name” or “workspace:name”). Note
that the workspace must be an existing workspace. If no workspace is given, the default
workspace will be assigned.

 coverage_file (string) — Path to the coverage image or zip archive. Most files will require
a .prj file with the Well Known Text definition of the projection. Zip this file up with the
image and send the archive.

* coverage_type (string) — Type of coverage that is being created. Valid values include:
‘geotiff’, ‘worldimage’, ‘imagemosaic’, ‘imagepyramid’, ‘gtopo30’, ‘arcgrid’, ‘grass-
grid’, ‘erdasimg’, ‘aig’, ‘gif’, ‘png’, ‘jpeg’, ‘tiff’, ‘dted’, ‘rpftoc’, ‘rst’, ‘nitf’, ‘envihdr’,
‘mrsid’, ‘ehdr’, ‘ecw’, ‘netcdf’, ‘erdasimg’, ‘jp2mrsid’.

* coverage_name (string) — Name of the coverage resource and subsequent layer that are
created. If unspecified, these will match the name of the image file that is uploaded.

 overwrite (bool, optional) — Overwrite the file if it already exists.

* charset (string, optional) — Specify the character encoding of the file being uploaded (e.g.:
ISO-8559-1)

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Note: If the type coverage being uploaded includes multiple files (e.g.: image, world file, projecttion file),
they must be uploaded as a zip archive. Otherwise upload the single file.

Returns Response dictionary

Return type (dict)

Examples

coverage_file = ‘/path/to/geotiff/example.zip’

response = engine.create_coverage_resource(store_id="workspace:store_name’, cover-
age_file=coverage_file, coverage_type="geotiff’)

create_layer_group (layer_group_id, layers, styles, bounds=None, debug="False)
Create a layer group. The number of layers and the number of styles must be the same.

Parameters
* layer_group_id (string) — Identifier of the layer group to create.

* layers (iterable) — A list of layer names to be added to the group. Must be the same length
as the styles list.

* styles (iterable) — A list of style names to associate with each layer in the group. Must be
the same length as the layers list.

* bounds (iterable) — A tuple representing the bounding box of the layer group (e.g.: (‘-
74.02722’, *-73.907005°, ‘40.684221°, ‘40.878178’, ‘EPSG:4326’))

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

168 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Examples

layers = (‘layer!’, ‘layer2’)
styles = (‘stylel’, ‘style2’)
bounds = (‘-74.02722’, *-73.907005°, ‘40.684221°, ‘40.878178’, ‘EPSG:4326’)

response = engine.create_layer_group(layer_group_id="layer_group_name’, layers=layers, styles=styles,
bounds=bounds)

create_postgis_feature_resource (store_id, host, port, database, user, password, ta-

ble=None, debug=False)
Use this method to link an existing PostGIS database to GeoServer as a feature store. Note that this method

only works for data in vector formats.
Parameters

* store_id (string) — Identifier for the store to add the resource to. Can be a store name
or a workspace name combination (e.g.: “name” or “workspace:name’”). Note that the
workspace must be an existing workspace. If no workspace is given, the default workspace
will be assigned.

* host (string) — Host of the PostGIS database (e.g.: ‘www.example.com’).
* port (string) — Port of the PostGIS database (e.g.: ‘5432’)

» database (string) — Name of the database.

* user (string) — Database user that has access to the database.

» password (string) — Password of database user.

* table (string, optional) — Name of existing table to add as a feature resource to the newly
created feature store. A layer will automatically be created for the feature resource as well.
Both the layer and the resource will share the same name as the table.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

With Table

response = engine.create_postgis_feature_resource(store_id="workspace:store_name’, ta-
ble="table_name’, host="localhost’, port=‘5432’, database="database_name’, user="user’, pass-
word="pass’)

Without table

response = engine.create_postgis_resource(store_id="workspace:store_name’, host="localhost’,
port=‘5432’, database="database_name’, user="user’, password="pass’)

create_shapefile_resource (store_id, shapefile_base=None, shapefile_zip=None, shape-
file_upload=None, overwrite=False, charset=None, de-
bug=False)

1.6. Software Development Kit 169

Tethys Platform Documentation, Release 1.4.0

Use this method to add shapefile resources to GeoServer.

This method will result in the creation of three items: a feature type store, a feature type resource,
and a layer. If store_id references a store that does not exist, it will be created. The feature type
resource and the subsequent layer will be created with the same name as the feature type store.
Provide shapefile with either shapefile_base, shapefile_zip, or shapefile_upload arguments.

Parameters

store_id (string) — Identifier for the store to add the resource to. Can be a store name
or a workspace name combination (e.g.: “name” or “workspace:name”). Note that the
workspace must be an existing workspace. If no workspace is given, the default workspace
will be assigned.

shapefile_base (string, optional) — Path to shapefile base name (e.g.: “/path/base” for
shapefile at “/path/base.shp”)

shapefile_zip (string, optional) — Path to a zip file containing the shapefile and side cars.

shapefile_upload (FileUpload list, optional) — A list of Django FileUpload objects con-
taining a shapefile and side cars that have been uploaded via multipart/form-data form.

overwrite (bool, optional) — Overwrite the file if it already exists.

charset (string, optional) — Specify the character encoding of the file being uploaded (e.g.:
ISO-8559-1)

debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

For example.shp (path to file but omit the .shp extension)

shapefile_base = “/path/to/shapefile/example”

response

= engine.create_shapefile_resource(store_id="workspace:store_name’, shape-

file_base=shapefile_base)

Using zip

shapefile_zip = “/path/to/shapefile/example.zip”

response

= engine.create_shapefile_resource(store_id="workspace:store_name’, shape-

file_zip=shapefile_zip)

Using upload
file_list = request.FILES.getlist(‘files’)

response

= engine.create_shapefile_resource(store_id="workspace:store_name’, shape-

file_upload=file_list)

create_sql_view (feature_type_name, postgis_store_id, sql, geometry_column, geometry_type,

geometry_srid=4326, default_style_id=None, key_column=None, parame-
ters=None, debug=False)

Create a new feature type configured as an SQL view.

Parameters

170

Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

* feature_type_name (string) — Name of the feature type and layer to be created.

* postgis_store_id (string) — Identifier of existing postgis store with tables that will be
queried by the sql view. Can be a store name or a workspace-name combination (e.g.:
“name” or “workspace:name”).

* sql (string) — SQL that will be used to construct the sql view / virtual table.
* geometry_column (string) — Name of the geometry column.

» geometry_type (string) — Type of the geometry column (e.g. “Point”, “LineString”,
“Polygon”).

» geometry_srid (string, optional) — EPSG spatial reference id of the geometry column.
Defaults to 4326.

* default_style (string, optional) — Identifier of a style to assign as the default style. Can be
a style name or a workspace-name combination (e.g.: “name” or “workspace:name”).

* key_column (string, optional) — The name of the key column.

* parameters (iterable, optional) — A list/tuple of tuple-triplets representing parameters
in the form (name, default, regex_validation), (e.g.: ((‘variable’, ‘pressure’, ‘"[w]+$’),
(‘simtime’, ‘0:00:00’, ‘A[w:]+$’))

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

sql = “SELECT name, value, geometry FROM pipes”

response = engine.create_sql_view(feature_type_name="my_feature_type’, post-
gis_store_id="my_workspace:my_postgis_store’, sql=sql, geometry_column=’geometry’, geome-
try_type="LineString’, geometry_srid=32144, default_style_id="my_workspace:pipes’, debug=True

)

create_style (style_id, sld, overwrite=False, debug=False)
Create a new SLD style object.

Parameters
* create_style (string) — Identifier of the style to create.
* sld (string) — Styled Layer Descriptor string
* overwrite (bool, optional) — Overwrite if style already exists. Defaults to False.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

1.6.

Software Development Kit 171

Tethys Platform Documentation, Release 1.4.0

Examples

sld = */path/to/style.sld’

sld_file = open(sld, ‘r’)

response = engine.create_style(style_id="fred’, sld=sld_file.read(), debug=True)
sld_file.close()

create_workspace (workspace_id, uri, debug=False)
Create a new workspace.

Parameters
» workspace_id (string) — Identifier of the workspace to create. Must be unique.

* uri (string) — URI associated with your project. Does not need to be a real web URL, just
a unique identifier. One suggestion is to append the URL of your project with the name of
the workspace (e.g.: http:www.example.com/workspace-name).

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.create_workspace(workspace_id="workspace_name’,
uri="www.example.com/workspace_name’)

delete_layer (layer_id, purge=False, recurse=False, debug=False)
Delete a layer.

Parameters
* layer_id (string) — Identifier of the layer to delete.
* purge (bool, optional) — Purge if True.

* recurse (bool, optional) — Delete recursively if True (i.e: delete layer groups it belongs
to).

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.delete_layer(‘workspace:layer_name’)

delete_layer_ group (layer_group_id, purge=False, recurse=False, debug=False)
Delete a layer group.

Parameters

* layer_group_id (string) — Identifier of the layer group to delete.

172 Chapter 1. Contents

http:www.example.com/workspace-name

Tethys Platform Documentation, Release 1.4.0

* purge (bool, optional) — Purge if True.
* recurse (bool, optional) — Delete recursively if True.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.delete_layer_group(‘layer_group_name’)

delete_resource (resource_id, store=None, purge=False, recurse=False, debug=False)
Delete a resource.

Parameters
* resource_id (string) — Identifier of the resource to delete.
* store (string, optional) — Delete resource from this store.
* purge (bool, optional) — Purge if True.

* recurse (bool, optional) — Delete recursively any dependencies if True (i.e.: layers or layer
groups it belongs to).

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.delete_resource(‘workspace:resource_name’)

delete_store (store_id, purge=False, recurse=False, debug=False)
Delete a store.

Parameters
* store_id (string) — Identifier of the store to delete.
* purge (bool, optional) — Purge if True.
* recurse (bool, optional) — Delete recursively if True.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

1.6.

Software Development Kit 173

Tethys Platform Documentation, Release 1.4.0

Examples

response = engine.delete_store(‘workspace:store_name’)

delete_style (style_id, purge=False, recurse=False, debug="False)
Delete a style.

Parameters
o style_id (string) — Identifier of the style to delete.
* purge (bool, optional) — Purge if True.
* recurse (bool, optional) — Delete recursively if True.

 debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.delete_resource(‘style_name’)

delete_workspace (workspace_id, purge=False, recurse=False, debug=False)
Delete a workspace.

Parameters
» workspace_id (string) — Identifier of the workspace to delete.
 purge (bool, optional) — Purge if True.
* recurse (bool, optional) — Delete recursively if True.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.delete_resource(‘workspace_name’)

get_layer (layer_id, debug=False)
Retrieve a layer object.

Parameters

* layer_id (string) — Identifier of the layer to retrieve. Can be a name or a workspace-name
combination (e.g.: “name” or “workspace:name”).

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

174 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Examples

response = engine.get_layer(‘layer_name’)
response = engine.get_layer(‘workspace_name:layer_name’)

get_layer_ group (layer_group_id, debug=False)
Retrieve a layer group object.

Parameters

* layer_group_id (string) — Identifier of the layer group to retrieve. Can be a name or a
workspace-name combination (e.g.: “name” or “workspace:name”).

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.get_layer_group(‘layer_group_name’)
response = engine.get_layer_group(‘workspace_name:layer_group_name’)

get_resource (resource_id, store=None, debug=False)
Retrieve a resource object.

Parameters

* resource_id (string) — Identifier of the resource to retrieve. Can be a name or a workspace-
name combination (e.g.: “name” or “workspace:name”).

* store (string, optional) — Get resource from this store.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.get_resource(‘example_workspace:resource_name’)
response = engine.get_resource(‘resource_name’, store="example_store’)

get_store (store_id, debug=False)
Retrieve a store object.

Parameters

* store_id (string) — Identifier of the store to retrieve. Can be a name or a workspace-name
combination (e.g.: “name” or “workspace:name”).

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

1.6.

Software Development Kit 175

Tethys Platform Documentation, Release 1.4.0

Return type (dict)

Examples

response = engine.get_store(‘store_name’)
response = engine.get_store(‘workspace_name:store_name’)

get_style (style_id, debug=False)
Retrieve a style object.

Parameters
« style_id (string) — Identifier of the style to retrieve.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.get_style(‘style_name’)

get_workspace (workspace_id, debug="False)
Retrieve a workspace object.

Parameters
» workspace_id (string) — Identifier of the workspace to retrieve.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.get_workspace(‘workspace_name’)

link_sqlalchemy_db_to_geoserver (store_id, sqlalchemy_engine, docker=False, de-

bug=False, docker_ip_address="172.17.42.1")
Helper function to simplify linking postgis databases to geoservers using the sqlalchemy engine object.

Parameters

* store_id (string) — Identifier for the store to add the resource to. Can be a store name
or a workspace name combination (e.g.: “name” or “workspace:name’”). Note that the
workspace must be an existing workspace. If no workspace is given, the default workspace
will be assigned.

* sqlalchemy_engine (sqlalchemy_engine) — An SQLAlchemy engine object.

* docker (bool, optional) — Set to True if the database and geoserver are running in a Docker
container. Defaults to False.

176 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

¢ docker_ip_address (str; optional) — Override the docker network ip address. Defaults to
‘172.17.41.1°.

Returns Response dictionary
Return type (dict)

list_layer_groups (with_properties=False, debug=False)
List the names of all layer groups available from the spatial dataset service.

Parameters

» with_properties (bool, optional) — Return list of layer group dictionaries instead of a list
of layer group names.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.list_layer_groups()
response = engine.list_layer_groups(with_properties=True)

list_layers (with_properties=False, debug="False)
List names of all layers available from the spatial dataset service.

Parameters

» with_properties (bool, optional) — Return list of layer dictionaries instead of a list of layer
names.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.list_layers()
response = engine.list_layers(with_properties=True)

list_resources (with_properties=False, store=None, workspace=None, debug=False)
List the names of all resources available from the spatial dataset service.

Parameters

» with_properties (bool, optional) — Return list of resource dictionaries instead of a list of
resource names.

* store (string, optional) — Return only resources belonging to a certain store.

» workspace (string, optional) — Return only resources belonging to a certain workspace.

1.6.

Software Development Kit 177

Tethys Platform Documentation, Release 1.4.0

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.list_resource()
response = engine.list_resource(store="example_store”)
response = engine.list_resource(with_properties=True, workspace="example_workspace”)

list_stores (workspace=None, with_properties=False, debug=False)
List the names of all stores available from the spatial dataset service.

Parameters
» workspace (string, optional) — List long stores belonging to this workspace.

¢ with_properties (bool, optional) — Return list of store dictionaries instead of a list of store
names.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.list_stores()
response = engine.list_stores(workspace="example_workspace”, with_properties=True)

list_styles (with_properties=False, debug=False)
List the names of all styles available from the spatial dataset service.

Parameters

» with_properties (bool, optional) — Return list of style dictionaries instead of a list of style
names.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.list_styles()
response = engine.list_styles(with_properties=True)

list_workspaces (with_properties=False, debug=False)
List the names of all workspaces available from the spatial dataset service.

178 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Parameters

» with_properties (bool, optional) — Return list of workspace dictionaries instead of a list
of workspace names.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

Returns Response dictionary

Return type (dict)

Examples

response = engine.list_workspaces()
response = engine.list_workspaces(with_properties=True)

type
GeoServer Spatial Dataset Type

update_layer (layer_id, debug=False, **kwargs)
Update an existing layer.

Parameters
* layer_id (string) — Identifier of the layer to update.

 debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

o **kwargs (kwargs, optional) — Key value pairs representing the attributes and values to
change.

Returns Response dictionary

Return type (dict)
Examples

updated_layer = engine.update_layer(layer_id="workspace:layer_name’, default_style="stylel’,
styles=[stylel’, ‘style2’])

update_layer_ group (layer_group_id, debug=False, **kwargs)
Update an existing layer. If modifying the layers, ensure the number of layers and the number of styles are
the same.

Parameters
* layer_group_id (string) — Identifier of the layer group to update.

 debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

o *¥*kwargs (kwargs, optional) — Key value pairs representing the attributes and values to
change

Returns Response dictionary

Return type (dict)

1.6.

Software Development Kit 179

Tethys Platform Documentation, Release 1.4.0

Examples

updated_layer_group = engine.update_layer_group(layer_group_id="layer_group_name’, lay-
ers=["layer1’, ‘layer2’], styles=[’stylel’, ‘style2’])

update_resource (resource_id, store=None, debug=False, **kwargs)
Update an existing resource.

Parameters

* resource_id (string) — Identifier of the resource to update. Can be a name or a workspace-
name combination (e.g.: “name” or “workspace:name”).

* store (string, optional) — Update a resource in this store.

* debug (bool, optional) — Pretty print the response dictionary to the console for debugging.
Defaults to False.

o **kwargs (kwargs, optional) — Key value pairs representing the attributes and values to
change.

Returns Response dictionary

Return type (dict)

Examples

response = engine.update_resource(resource_id="workspace:resource_name’, enabled=False, title="New
Title’)

validate ()
Validate the GeoServer spatial dataset engine. Will throw and error if not valid.

Register New Spatial Dataset Services

Registering new spatial dataset services is performed using the System Admin Settings.
1. Login to your Tethys Platform instance as an administrator.

2. Select “Site Admin” from the user drop down menu.

3. Select “Spatial Dataset Services” from the “Tethys Services” section.

4. Select an existing Spatial Dataset Service configuration from the list to edit it OR click on the “Add Spatial
Dataset Service” button to create a new one.

5. Give the Spatial Dataset Service configuration a name, select an appropriate engine, specify the endpoint, and
provide a username and password. The name of the configuration must be unique, because it is used to retrieve
the Spatial Dataset Service connection object. The endpoint is a URL pointing to the GeoServer REST endpoint.
This endpoint can be for any GeoServer. If you want to use the built-in GeoServer installation, you can obtain
the endpoint by running tethys docker ip in a terminal:

180 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Apps Developer

& User Settings

£+ Site Admin

@ LogOut

Welcome to Tethys Portal,
the hub for your apps.

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

Incalhost:8000/admin/

@ TethyS POFta| Apps Developer

Site Administration

Authentication and Authorization

Groups dAdd #Change My Actions
Users @Add & Change & General Settings
Settings Category
& default
Tethys Compute Web Processin
¢ default_geoserver
Clusters dAdd ¢ Change Spatial Dataset
& default
Settings # Change Web Proce:
default

Spatial Dat ice
& default_geoserver
Spatial Dataset Service

Tethys Portal

Site Settings & Change & default
Dataset Service
. & default
Tethys Services Dataset Service
& default_ckan
Dataset Services dhAdd # Change Dataset Service
& default
Spatial Dataset Services dAdd ¢ Change Dataset Service

Web Processing Services gAdd ¢ Change

Copyright © 2015 Your Organization Powered by @ Tethys Platform

1.6. Software Development Kit 181

Tethys Platform Documentation, Release 1.4.0

Apps Developer

Home > Tethys Services > Spatial Dataset Services

Select Spatial Dataset Service To Change

Action: | eeeeeeee 5 Bl 0 of 1 selected

Spatial Dataset Service

default_geoserver

1 Spatial Dataset Service

Copyright © 2015 Your Organization Powered by @ Tethys Platform

$ tethys docker ip

GeoServer:
Host: localhost
Port: 8181

Endpoint: http://localhost:8181/geoserver/rest

When you are done, your Spatial Dataset Service configuration should look similar to this:

6. Press “Save” to save the Dataset Service configuration.

Note: Prior to version Tethys Platform 1.1.0, it was possible to register spatial dataset services using a mechanism in
the app configuration file. This mechanism has been deprecated due to security concerns.

Working with Spatial Dataset Services

After spatial dataset services have been properly configured, you can use the services to store, publish, and retrieve
data for your apps. This process typically involves the following steps:

1. Get a Spatial Dataset Engine

The Spatial Dataset Services API provides a convenience function called get_spatial_dataset_engine. To
retrieve and engine for a sitewide configuration, call get_spatial_dataset_engine with the name of the
configuration:

182 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Apps Developer

Home > Tethys Services » Spatial Dataset Services » default_geoserver

Change Spatial Dataset Service

Name: default_geoserver
Engine: GeoServer %

Endpoint: http://192.168.59.103:8181/geoserver/res
Apikey:

Username: admin

Password: | seerseene

Delete Save and add another] [Save and continue editing] m

Copyright © 2015 Your Organization Powered by @ Tethys Platform

from tethys_sdk.services import get_spatial_dataset_engine
dataset_engine = get_dataset_engine (name='example')

It will return the first service with a matching name or raise an exception if the service cannot be found with the
given name. Alternatively, you may retrieve a list of all the spatial dataset engine objects that are registered using the
list_spatial_dataset_engines function:

from tethys_sdk.services import list_spatial_dataset_engines
dataset_engines = list_spatial_dataset_engines/()

You can also create a SpatialDatasetEngine object directly without using the convenience function. This can
be useful if you want to vary the credentials for dataset access frequently (e.g.: using user specific credentials). Simply
import it and instantiate it with valid credentials:

from tethys_dataset_ services.engines import GeoServerSpatialDatasetEngine

spatial_dataset_engine = GeoServerSpatialDatasetEngine (endpoint="http://www.example.com/geoserver/re:

Caution: Take care not to store API keys, usernames, or passwords in the source files of your app—especially if
the source code is made public. This could compromise the security of the spatial dataset service.

2. Use the Spatial Dataset Engine

After you have a SpatialDatasetEngine object, simply call the desired method on it. All
SpatialDatasetEngine methods return a dictionary with an item named ‘success’ that contains a boolean. If

1.6. Software Development Kit 183

Tethys Platform Documentation, Release 1.4.0

the operation was successful, ‘success’ will be true, otherwise it will be false. If ‘success’ is true, the dictionary will
have an item named ‘result’ that will contain the results. If it is false, the dictionary will have an item named ‘error’
that will contain information about the error that occurred. This can be very useful for debugging and error catching
purposes.

Consider the following example for uploading a shapefile to spatial dataset services:

from tethys_sdk.services import get_spatial_dataset_engine

First get an engine
engine = get_spatial_dataset_engine (name='example')

Create a workspace named after our app
engine.create_workspace (workspace_id="'my_app', uri='http://www.example.com/apps/my-app')

Path to shapefile base for foo.shp, side cars files (e.g.: .shx, .dbf) will be
gathered in addition to the .shp file.
shapefile_base = '/path/to/foo'

Notice the workspace in the store_id parameter
result = dataset_engine.create_shapefile_resource (store_id="'my_app:foo', shapefile_base=shapefile_ba:

Check if it was successful
if not result['success']:
raise

A new shapefile Data Store will be created called ‘foo’ in workspace ‘my_app’ and a resource will be created for the
shapefile called ‘foo’. A layer will also automatically be configured for the new shapefile resource.

Tip: When you are learning how to use the spatial dataset engine methods, run the commands with the debug
parameter set to true. This will automatically pretty print the result dictionary to the console so that you can inspect

its contents:

Example method with debug option
engine.list_layers (debug=True)

3. Get OGC Web Service URL

Publishing the spatial dataset with a spatial dataset service would be pointless without using the service to render
the data on a map. This can be done by querying the data using the OGC web services WFS, WCS, or WMS. The
dictionary that is returned when retrieving layers, layer groups, or resources will include a key for appropriate OGC
services for the object returned. Feature type resources will provide a “wfs” key, coverage resources will provide a
“wcs” key, and layers and layergroups will provide a “wms” key. The value will be another dictionary of OGC queries
for different endpoints. For example:

Get a feature type layer
response = engine.get_layer (layer_id='sf:roads', debug=True)

Response dictionary includes "wms" key with links to maps in various formats
{'result': {'advertised': True,

'attribution': None,

'catalog': 'http://localhost:8181/geoserver/"',

'default_style': 'simple_roads',

'enabled': None,

'href': 'http://localhost:8181/geoserver/rest/layers/sf%3Aroads.xml’',
'name': 'sf:roads',

184 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

'resource': 'sf:roads',

'resource_type': 'layer',

'styles': ['sf:1line'],

'wms': {'georss': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request:
'geotiff8': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&reque:
'geptiff': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request
'gif': 'http://localhost:8181/geoserver/wns?service=WMS&version=1.1.0&request=Get
'Jpeg': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=G¢
'kml': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=Get
'kmz': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=Get
'openlayers': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&reqt
'pdf': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=Get
'png': 'http://localhost:8181/geoserver/wns?service=WMS&version=1.1.0&request=Get
'png8': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=Ge
'svg': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=Get
'tiff': 'http://localhost:8181/geoserver/wms?service=WMS&version=1.1.0&request=G¢
'tiff8': 'http://localhost:8181/geoserver/wmns?service=WMS&version=1.1.0&request=(

'success': True}

These links could be passed on to a web mapping client like OpenLayers or Google Maps to render the map interac-
tively on a web page. Note that the OGC mapping services are very powerful and the links provided represent only a
simple query. You can construct custom OGC URLs queries without much difficulty. For excellent primers on WES,
WCS, and WMS with GeoServer, visit these links:

* GeoServer Web Feature Service Overview
* GeoServer Web Coverage Service Overview

* GeoServer Web Map Service Overview

Web Processing Services API

Last Updated: May 13, 2015

Web Processing Services (WPS) are web services that can be used perform geoprocessing and other processing activ-
ities for apps. The Open Geospatial Consortium (OGC) has created the WPS interface standard that provides rules for
how inputs and outputs for processing services should be handled. Using the Web Processing Services API, you will
be able to provide processing capabilities for your apps using any service that conforms to the OGC WPS standard.
For convenience, the 52 North WPS is provided as part of the Tethys Platform software suite. Refer to the /nstallation
documentation to learn how to install Tethys Platform with 52 North WPS enabled.

Configuring WPS Services

Before you can start using WPS services in your apps, you will need link your Tethys Platform to a valid WPS. This
can be done either at a sitewide level or at an app specific level. When a WPS is configured at the sitewide level,
all apps that are installed on that Tethys Platform instance will be able to access the WPS. When installed at an app
specific level, the WPS will only be accessible to the app that it is linked to. The following sections will describe how
to configure a WPS to be used at both of these levels.

Register New WPS Service

Sitewide configuration is performed using the System Admin Settings.
1. Login to your Tethys Platform instance as an administrator.

2. Select “Site Admin” from the user drop down menu.

1.6. Software Development Kit 185

http://docs.geoserver.org/stable/en/user/services/wfs/index.html
http://docs.geoserver.org/stable/en/user/services/wcs/index.html
http://docs.geoserver.org/stable/en/user/services/wms/index.html
http://www.opengeospatial.org/standards/wps

Tethys Platform Documentation, Release 1.4.0

@ Tethys Portal Apps Developer . v

& User Settings

G LogOut

Welcome to Tethys Portal,
the hub for your apps.

Tethys Portal is designed to be customizable, so that you can host apps for your

organization. You can change everything on this page from the Home Page settings.

Iocalhost:8000/admin/

3. Select “Web Processing Services” from the “Tethys Services” section.

4. Select an existing Web Processing Service configuration from the list to edit it OR click on the “Add Web
Processing Service” button to create a new one.

5. Give the Web Processing Service configuration a name and specify the endpoint. The name must be unique,
because it is used to connect to the WPS. The endpoint is a URL pointing to the WPS. For example, the endpoint
for the 52 North WPS demo server would be:

http://geoprocessing.demo.52north.org:8080/wps/WebProcessingService

If authentication is required, specify the username and password.

6. Press “Save” to save the WPS configuration.

Note: Prior to version Tethys Platform 1.1.0, it was possible to register WPS services using a mechanism in the app
configuration file. This mechanism has been deprecated due to security concerns.

186 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

@ TethyS POI’ta| Apps Developer

Site Administration

Authentication and Authorization

Groups #Add & Change My Actions
Users #Add & Change « General Settings
Settings Category
T & default
ethys Compute Web Processing Service

¢ default_geoserver

Clusters &Add ¢ Change Spatial Dataset Service
& default

Settings & Change Web Processing Service

default_geoserver
Spatial Dataset Service

Tethys Portal # default_geoserver
Spatial Dataset Service
Site Settings & Change & default
Dataset Service
) & default
Tethys Services Dataset Service
& default_ckan
Dataset Services dhAdd ¢ Change Dataset Service
& default
Spatial Dataset Services dAdd ¢ Change Dataset Service

Web Processing Services dAdd # Change

Copyright © 2015 Your Organization Powered by @ Tethys Platform

@ TethyS Portal Apps Developer

Home > Tethys Services » Web Processing Services
Select Web Processing Service To Change

Action: [—me s) m 0 of 2 selected

Web Processing Service

Add Web Processing Service 4

default_wps

default

2 Web Processing Services

Copyright © 2015 Your Organization Powered by @ Tethys Platform

1.6. Software Development Kit 187

Tethys Platform Documentation, Release 1.4.0

@ TethyS Portal Apps Developer

Home > Tethys Services > Web Processing Services » default_wps

Change Web Processing Service

Name: default_wps
Endpoint: http://192.168.59.103:8282/wps/WebProc
Username: wps

Password: \

Delete [Save and add anotherJ [Save and continue editing} @

Copyright © 2015 Your Organization Powered by @ Tethys Platform

Working with WPS Services in Apps

The Web Processing Service API is powered by OWSLIib, a Python client that can be used to interact with OGC web
services. For detailed explanations the WPS client provided by OWSLIib, refer to the OWSLib WPS Documentation.
This article only provides a basic introduction to working with the OWSLib WPS client.

Get a WPS Engine

Anytime you wish to wuse a WPS service in an app, you will need to obtain an
owslib.wps.WebProcessingService engine object. The Web Processing Service API provides
a convenience function for retrieving owslib.wps.WebProcessingService engine objects called
get_wps_service_engine. Basic usage involves calling the function with the name of the WPS service
that you wish to use. For example:

from tethys_sdk.services import get_wps_service_engine

wps_engine = get_wps_service_engine (name="'example')

Alternatively, you may retrieve a list of all the dataset engine objects that are registered using the
list_wps_service_engines function:

from tethys_sdk.services import list_wps_service_engines
wps_engines = list_wps_service_engines ()

You can also create an owslib.wps.WebProcessingService engine object directly without using the conve-
nience function. This can be useful if you want to vary the credentials for WPS service access frequently (e.g.: using
user specific credentials).

188 Chapter 1. Contents

http://geopython.github.io/OWSLib/#wps
http://geopython.github.io/OWSLib/#wps

Tethys Platform Documentation, Release 1.4.0

from owslib.wps import WebProcessingService

wps_engine = WebProcessingService ('http://www.example.com/wps/WebProcessingService', verbose=False,

wps_engine.getcapabilities ()

Using the WPS Engine

After you have retrieved a valid owslib.wps.WebProcessingService engine object, you can use it execute
process requests. The following example illustrates how to execute the GRASS buffer process on a 52 North WPS:

from owslib.wps import GMLMultiPolygonFeatureCollection

polygon = [(-102.8184, 39.5273), (-102.8184, 37.418), (-101.2363, 37.418), (-101.2363, 39.5273),

feature_collection = GMLMultiPolygonFeatureCollection([polygon])
process_id = 'v.buffer'
inputs = [('DISTANCE', 5.0),
("INPUT', feature_collection)

1
output = 'OUTPUT'
execution = wps_engine.execute (process_id, inputs, output)
monitorExecution (execution)

It is also possible to perform requests using data that are hosted on WFS servers, such as the GeoServer that is provided
as part of the Tethys Platform software suite. See the OWSLib WPS Documentation for more details on how this is to
be done.

Web Processing Service Developer Tool
Tethys Platform provides a developer tool that can be used to browse the sitewide WPS services and the processes that
they provide. This tool is useful for formulating new process requests. To use the tool:

1. Browse to the Developer Tools page of your Tethys Platform by selecting the “Developer” link from the menu
at the top of the page.

2. Select the tool titled “Web Processing Services”.

3. Select a WPS service from the list of services that are linked with your Tethys Instance. If no WPS services are
linked to your Tethys instance, follow the steps in Sitewide Configuration, above, to setup a WPS service.

4. Select the process you wish to view.

A description of the process and the inputs and outputs will be displayed.

Compute API

Last Updated: February 11, 2015

Distributed computing in Tethys Platform is made possible with HTCondor. Portal wide HTCondor computing re-
sources are managed through the Tethys Compute Admin Pages. Accessing these resources in your app and configuring
app specific resources is made possible through the Compute APIL

1.6. Software Development Kit 189

(=10

http://geopython.github.io/OWSLib/#wps

Tethys Platform Documentation, Release 1.4.0

@ TethyS Apps Developer

Developer Tools

Gizmos

Gizmos are building blocks that can
be used to create beautiful interactive
controls in Tethys Apps. Using gizmos,
developers can add date-pickers,...

Show me the docs.

Dataset Services

Use this tool to browse the dataset
services that are available for use in
app development. Depending on what
level of access you have to the data...

Go to tool.

Web Processing Services

Geoprocessing in Tethys apps can be
accomplished using any web
processing service (WPS). For
convenience, Tethys provides the 5...

Go to tool.

Cloud Computing

Hac semper conubia tellus porttitor
vestibulum blandit aenean a
parturient id ultricies platea vulputate
vestibulum euismod sapien ut a nisi..

See docs.

Apps Developer

Web Processing Services

This tool can be used to browse the available processing capabilities of any Web Processing
Services (WPS) that are linked with this instance of Tethys Platform.

Linked WPS Services

52°North WPS 3.3.1

Service based on the 52°North implementation of WPS 1.0.0
Provider: 52North

Type: WPS

Version: 1.0.0

190 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Apps Developer

52°North WPS 3.3.1

Service based on the 52°North implementation of WPS 1.0.0

Processes

‘ bufferi

org.n52.wps.server.algorithm.SimpleBufferAlgorithm

org.n52.wps.server.algorithm.SimpleBufferAlgorithm

v.buffer

Creates a buffer around vector features of given type.

Apps Developer

v.buffer

Creates a buffer around vector features of given type.

http://grass.osgeo.org/grass70/manuals/v.buffer.html
Input

input (ComplexData): Name of input vector map -
REQUIRED

Or data source for direct OGR access

Min. Occurrences: 1
Max. Occurrences: 1
Default Value:

Complex Data [L T R

Supported Values:

Complex Data [L T R

Complex Data
MIME Type: application/fml

Complex Data [L N PR R]

1.6. Software Development Kit 191

Tethys Platform Documentation, Release 1.4.0

See also:

For more information on HTCondor see Overview of HTCondor or the HTCondor User Manual.

Key Concepts

HTCondor is a job and resources management middleware. It can be used to create High-Throughput Computing
(HTC) systems from diverse computing units including desktop computers or cloud-computing resources. These HTC
systems are known as HTCondor pools or clusters. In Tethys the Python library TethysCluster is used to automatically
provision HTCondor clusters on Amazon Web Services (AWS) or Microsoft Azure. Portal-wide clusters can be con-
figured by the Tethys Portal admin using the Tethys Compute Admin Pages, or app-specific clusters can be configured
in apps using the ClusterManager. To run jobs to a clusters, it must have a Scheduler configured. Portal-wide
schedulers can also be configured by the Tethys Portal admin using the 7ethys Compute Admin Pages, or app-specific
schedulers can be set up through the Compute API.

See also:

To see how to configure a job with a Scheduler see the Jobs API.

Working with the Cluster Manager

The cluster manager can be used to create new computing -clusters. It is accessed through the
get_cluster_manager function.

from tethys_sdk.compute import get_cluster_manager

tethyscluster_config_file = '/path/to/TethysCluster/config/file'
cluster_manager = get_cluster_manager (tethyscluster_config_file)

For more information on how to use the cluster manager see the TethysCompute documentation

Working with Schedulers

Portal-wide schedulers can be accessed through the 1ist_schedulers and the get__scheduler functions.
from tethys_ sdk.compute import list_schedulers, get_scheduler

scheduler = list_schedulers () [0]

this assumes the Tethys Portal administrator has created a scheduler named 'Default'.
scheduler = get_scheduler ('Default")

App-specific schedulers can be created with the create_scheduler function.

from tethys_sdk.compute import create_scheduler

scheduler = create_scheduler (name="my_app_scheduler', host='example.com', username='root', private_k«

API Documentation

tethys_sdk.compute.get_cluster_manager (config_file=None, cache=False)
Factory for ClusterManager class that attempts to load AWS credentials from the TethysCluster config file.
Returns a ClusterManager object if successful

192 Chapter 1. Contents

http://condorpy.readthedocs.org/en/latest/htcondor.html
http://research.cs.wisc.edu/htcondor/manual/
http://www.tethysplatform.org/TethysCluster/
http://tethyscluster.readthedocs.org/en/dev/

Tethys Platform Documentation, Release 1.4.0

tethys_sdk.compute.list_schedulers ()
Gets a list of all scheduler objects registered in the Tethys Portal

Returns List of Schedulers

tethys_sdk.compute.get_scheduler (name)
Gets the scheduler associated with the given name

Parameters name (str) — The name of the scheduler to return
Returns The scheduler with the given name or None if no scheduler has the name given.

tethys_sdk.compute.create_scheduler (name, host, username=None, password=None, pri-

vate_key_path=None, private_key_pass=None)
Creates a new scheduler

Parameters
e name (str) — The name of the scheduler
¢ host (str) — The hostname or IP address of the scheduler
* username (str; optional) — The username to use when connecting to the scheduler
» password (str, optional) — The password for the username
* private_key_path (str; optional) — The path to the location of the SSH private key file
 private_key_pass (st7; optional) — The passphrase for the private key

Returns The newly created scheduler

Note: The newly created scheduler object is not committed to the database.

Jobs API

Last Updated: September 12, 2016

The Jobs API provides a way for your app to run asynchronous tasks (meaning that after starting a task you don’t
have to wait for it to finish before moving on). As an example, you may need to run a model that takes a long time
(potentially hours or days) to complete. Using the Jobs API you can create a job that will run the model, and then
leave it to run while your app moves on and does other stuff. You can check the job’s status at any time, and when the
job is done the Jobs API will help retrieve the results.

Key Concepts

To facilitate interacting with jobs asynchronously, they are stored in a database. The Jobs API provides a job manager
to handle the details of working with the database, and provides a simple interface for creating and retrieving jobs.
The first step to creating a job is to define a job template. A job template is like a blue print that describes certain key
characteristics about the job, such as the job type and where the job will be run. The job manager uses a job template
to create a new job that has all of the attributes that were defined in the template. Once a job has been created from a
template it can then be customized with any additional attributes that are needed for that specific job.

The Jobs API supports various types of jobs (see Job Types).

Note: The real power of the jobs API comes when it is combined with the Compute API. This make it possible for
jobs to be offloaded from the main web server to a scalable computing cluster, which in turn enables very large scale

jobs to be processed. This is done through the Condor Job Type or the Condor Workflow Job Type.

1.6. Software Development Kit 193

Tethys Platform Documentation, Release 1.4.0

See also:

The Condor Job and the Condor Workflow job types use the CondorPy library to submit jobs to HTCondor compute
pools. For more information on CondorPy and HTCondor see the CondorPy documentation and specifically the
Overview of HTCondor.

Defining Job Templates

To create jobs in an app you first need to define job templates. A job template specifies the type of job, and also
defines all of the static attributes of the job that will be the same for all instances of that template. These attributes
often include the names of the executable, input files, and output files. Job templates are defined in a method on the
TethysAppBase subclass in app . py module. The following code sample shows how this is done:

from tethys_sdk. jobs import CondorJobTemplate, CondorJobDescription
from tethys_sdk.compute import list_schedulers

def job_templates(cls):

mon

Example job_templates method.

mmn

my_scheduler = list_schedulers() [0]

my_job_description = CondorJobDescription (condorpy_template_name='vanilla transfer files',
remote_input_files=('S$ (APP_WORKSPACE) /my_script.py', !

executable="my_script.py',

transfer_input_files=('../input_1', '../input_2"'),

transfer_output_files=('example outputl',

)

job_templates = (CondorJobTemplate (name='example',
job_description=my_job_description,
scheduler=my_scheduler,
),

return job_templates

Note: To define job templates the appropriate template class and any supporting classes must be imported from
tethys_sdk. jobs. In this case the template class CondorJobTemplate is imported along with the supporting class

CondorJobDescription.

There is a corresponding job template class for every job type. In this example the CondorJobTemplate class is used,
which corresponds to the Condor Job Type. For a list of all possible job types see Job Types.

When instantiating any job template class there is a required name parameter, which is used used to identify the
template to the job manager (see Using the Job Manager in your App). The template class for each job type may
have additional required and/or optional parameters. In the above example the job_description and the scheduler
parameters are required because the the CondorJobTemplate class is being instantiated. Job template classes may also
support setting job attributes as parameters in the template. See the Job Types documentation for a list of acceptable
parameters for the template class of each job type.

Warning: The generic template class JobTemplate allong with the dictionary JOB_TYPES have been used
to define job templates in the past but are being deprecated in favor of job-type specific templates classes (e.g.
CondorJobTemplate or CondorWorkflowTemplate).

194 Chapter 1. Contents

example_outpt

http://condorpy.readthedocs.org/en/latest/
http://condorpy.readthedocs.org/en/latest/htcondor.html

Tethys Platform Documentation, Release 1.4.0

Job Types

The Jobs API is designed to support multiple job types. Each job type provides a different framework and environment
for executing jobs. To create a job of a particular job type, you must first create a job template from the template class
corresponding to that job type (see Defining Job Templates). After the job template for the job type you want has been
instantiated you can create a new job instance using the job manager (see Using the Job Manager in your App).

Once you have a newly created job from the job manager you can then customize the job by setting job attributes. All
jobs have a common set of attributes, and then each job type may add additional attributes.

The following attributes can be defined for all job types:

* name (string, required): a unique identifier for the job. This should not be confused with the job template name.
The template name identifies a template from which jobs can be created and is set when the template is created.
The job name attribute is defined when the job is created (see Creating and Executing a Job).

* description (string): a short description of the job.

* workspace (string): a path to a directory that will act as the workspace for the job. Each job type may interact
with the workspace differently. By default the workspace is set to the user’s workspace in the app that is creating
the job (see Workspaces).

* extended_properties (dict): a dictionary of additional properties that can be used to create custom job
attributes.

All job types also have the following read-only attributes:
e user (User): the user who created the job.
e label (string): the package name of the Tethys App used to created the job.
* creation_time (datetime): the time the job was created.
* execute_time (datetime): the time that job execution was started.
e start_time (datetime):
e completion_time (datetime): the time that the job status changed to ‘Complete’.
* status (string): a string representing the state of the job. Possible statuses are:
— ‘Pending’
— ‘Submitted’
— ‘Running’
— ‘Complete’
— ‘Error’
— ‘Aborted’
— ‘Various’*
— ‘Various-Complete’*

*used for job types with multiple sub-jobs (e.g. CondorWorkflow).

Note: Job template classes may support passing in job attributes as additional arguments. See the documentation for
each job type for a list of acceptable parameters for each template class add if additional arguments are supported.

Specific job types may define additional attributes. The following job types are available.

1.6. Software Development Kit 195

Tethys Platform Documentation, Release 1.4.0

Basic Job Type Last Updated: March 29, 2016

The Basic Job type is a sample job type for creating dummy jobs. It has all of the basic properties and methods of
a job, but it doesn’t have any mechanism for running jobs. It’s primary purpose is for demonstration. There are no
additional attributes for the BasicJob type other than the common set of job attributes. The only required parameter
for the BasicJobTemplate class is name, but it also supports passing in other job attributes as additional arguments.

Setting up a BasicJobTemplate
from tethys_sdk.jobs import BasicJobTemplate

def job_templates(cls):

nnn

Example job_templates method with a BasicJob type.

nnn

job_templates = (BasicJobTemplate (name="'example',

description='This is a sample basic job. It can't actually comy
extended_properties={'app_spcific_property': 'default_value',
'persistent_store_id': None, # Will be d¢

}
)y

return job_templates

Creating and Customizing a Job To create a job call the create_ job method on the job manager. The required
parameters are name, user and template_name. Any other job attributes can also be passed in as kwargs.

create a new job

job = job_manager.create_job (name='unique_job_name', user=request.user, template_name='example',

Before a controller returns a response the job must be saved or else all of the changes made to the job will be lost
(executing the job automatically saves it). If submitting the job takes a long time (e.g. if a large amount of data has to
be uploaded to a remote scheduler) then it may be best to use AJAX to execute the job.

API Documentation
class tethys_sdk. jobs.BasicJobTemplate (name, parameters=None)
A subclass of JobTemplate with the t ype argument set to BasicJob.

Parameters
* name (str) — Name to refer to the template.

* parameters (dict) — A dictionary of parameters to pass to the BasicJob constructor.
class tethys_compute.models.BasicJob (*args, **kwargs)
Basic job type. Use this class as a model for subclassing TethysJob

Condor Job Type Last Updated: March 29, 2016

Setting up a CondorJobTemplate

from tethys_sdk. jobs import CondorJobTemplate, CondorJobDescription
from tethys_sdk.compute import list_schedulers

def job_templates(cls):

196 Chapter 1. Contents

desc

Tethys Platform Documentation, Release 1.4.0

mon

Example job_templates method.

mmn

my_scheduler = list_schedulers() [0]

my_job_description = CondorJobDescription (condorpy_template_name='vanilla transfer files',
remote_input_files=('$ (APP_WORKSPACE) /my_script.py', !
executable="'my_script.py',
transfer_input_files=('../input_1', '../input_2"'),
transfer_output_files=('example outputl', example_outpr
)

job_templates = (CondorJobTemplate (name='example',

job_description=my_job_description,
scheduler=my_scheduler,

)y

return job_templates

Creating and Customizing a Job To create a job call the create_ job method on the job manager. The required
parameters are name, user and template_name. Any other job attributes can also be passed in as kwargs.

create a new job

job = job_manager.create_job (name='job_name', user=request.user, template_name='example',

customize the job using methods provided by the job type
job.set_attribute ('arguments', 'input_2")

save or execute the job
job.save ()

or

job.execute ()

Before a controller returns a response the job must be saved or else all of the changes made to the job will be lost
(executing the job automatically saves it). If submitting the job takes a long time (e.g. if a large amount of data has to
be uploaded to a remote scheduler) then it may be best to use AJAX to execute the job.

API Documentation
class tethys_sdk. jobs.CondorJobTemplate (name, parameters=None, job_description=None,
scheduler=None, **kwargs)
A subclass of the JobTemplate with the t ype argument set to CondorJob.

Parameters
* name (str) — Name to refer to the template.

» parameters (dict, DEPRECATED) — A dictionary of key-value pairs. Each Job type defines
the possible parameters.

* job_description (CondorJobDescription) — An object containing the attributes for the con-
dorpy job.

* scheduler (Scheduler) — An object containing the connection information to submit the
condorpy job remotely.
class tethys_compute.models.CondorJob (*args, **kwargs)
CondorPy Job job type

1.6. Software Development Kit 197

descriptior

Tethys Platform Documentation, Release 1.4.0

Condor Workflow Job Type Last Updated: March 29, 2016

A Condor Workflow provides a way to run a group of jobs (which can have hierarchical relationships) as a single
(Tethys) job. The hierarchical relationships are defined as parent-child relationships. For example, suppose a workflow
is defined with three jobs: JobA, JobB, and JobC, which must be run in that order. These jobs would be defined
with the following relationships: JobA is the parent of JobB, and JobB is the parent of JobC.

See also:

The Condor Workflow job type uses the CondorPy library to submit jobs to HTCondor compute pools. For more in-
formation on CondorPy and HTCondor see the CondorPy documentation and specifically the Overview of HTCondor.

Setting up a CondorWorkflowTemplate Creating a CondorWorkflowTemplate involves 3 steps:

1. Define job descriptions for each of the sub-jobs wusing CondorJobDescription (see
condor_job_description).

2. Create the sub-jobs and define relationships using CondorWorkflowJobTemplate.

3. Create the CondorWorkflowTemplate.

Note: The CondorWorkflowJobTemplate is similar to a CondorJobTemplate in that it represents a single HTCondor
job and requires a CondorJobDescription to define the attributes of that job. However, unlike a CondorJobTemplate a

CondorWorkflowJobTemplate cannot be run independently; it can only be part of a CondorWorkflowTemplate. Also,
note that the CondorWorkflowJobTemplate has a parents parameter, which is used to define relationships between jobs.

The following code sample demonstrates how to set up a CondorWorkflowTemplate:

Example job_templates method with a CondorWorkflow type.

nwn

job_a_description =

job_b_description =

job_c_description =

CondorJobDescription (condorpy_template_name='vanilla_transfer_files',
remote_input_files=('$ (APP_WORKSPACE) /my_script.py', '$ (APP.
executable="'my_script.py',
transfer_input_files=('../input_1"', '../input_2"'),
transfer_output_files=('example_outputl', example_output2),
)

CondorJobDescription (condorpy_template_name='vanilla_transfer_files',
remote_input_files=('$ (APP_WORKSPACE) /my_script.py', '$ (APP.
executable="my_script.py',
transfer_input_files=('../input_1"', '../input_2"'),
transfer_output_files=('example_outputl', example_output2),
)

CondorJobDescription (condorpy_template_name='vanilla_transfer_files',
remote_input_files=('$ (APP_WORKSPACE) /my_script.py', '$ (APP.
executable="'my_script.py',

transfer_input_files=('../input_1"', '../input_2"'),
transfer_output_files=('example_outputl', example_output2),
)
job_a = CondorWorkflowJobTemplate (name="'JobA"',
job_description=job_a_description,
)
job_b = CondorWorkflowJobTemplate (name="'JobB',
job_description=job_b_description,
parents=[job_a]
)
job_c = CondorWorkflowJobTemplate (name="'JobC"',
job_description=job_c_description,
parents=[job_b]
198 Chapter 1. Contents

http://condorpy.readthedocs.org/en/latest/
http://condorpy.readthedocs.org/en/latest/htcondor.html

Tethys Platform Documentation, Release 1.4.0

job_templates

(CondorWorkflowTemplate (name="'WorkflowABC',
job_list=[job_a, job_b, job_c],
scheduler=None,

If the you want to use the same job both as part of a workflow and as a stand alone job then use the same job description
in setting up the CondorJobTemplate and the CondorWorkflowJobTemplate. This process is demonstrated below:

from tethys_sdk.jobs import CondorJobTemplate, CondorWorkflowTemplate, CondorWorkflowJobTemplate, Coi
from tethys_sdk.compute import list_schedulers

def job_templates(cls):

mmn

Example job_templates method with a CondorWorkflow type.

mmn

reusable_job_a_description

job_bl_description

job_b2_description

job_c_description

job_a =

job_bl

Jjob_b2

job_c =

job_templates

CondorJobDescription (condorpy_template_name='vanilla_transfer_files

remote_input_files=('S$ (APP_WORKSPACE) /my_script
executable="my_script.py',

transfer_input_files=('../input_1', '../input_:
transfer_output_files=('example outputl', examj

)

CondorJobDescription (condorpy_template_name='vanilla_transfer_files',

remote_input_files=('$ (APP_WORKSPACE) /my_script.py', !
executable="my_script.py',
transfer_input_files=('../input_1', '../input_2"),
transfer_output_files=('example_ outputl', example_outp:

)

CondorJobDescription (condorpy_template_name='vanilla_transfer_files',

remote_input_files=('$ (APP_WORKSPACE) /my_script.py', !
executable="my_script.py',
transfer_input_files=('../input_1', '../input_2"),
transfer_output_files=('example_ outputl', example_outp:

)

CondorJobDescription (condorpy_template_name='vanilla_transfer_ files',

remote_input_files=('$ (APP_WORKSPACE) /my_script.py', 'S$
executable="my_script.py',
transfer_input_files=('../input_1', '../input_2"),
transfer_output_files=('example_outputl', example_output

)

CondorWorkflowJobTemplate (name="JobA",
job_description=reusable_job_a_description,

CondorWorkflowJobTemplate (name="JobB1"',
job_description=reusable_job_a_description,
parents=[job_al

CondorWorkflowJobTemplate (name="'JobB2"',
job_description=reusable_job_a_description,
parents=[job_a]

CondorWorkflowJobTemplate (name="JobC"',
job_description=reusable_job_a_description,

parents=[job_bl, job_b2]

(CondorWorkflowTemplate (name="'DiamondWorkflow',

1.6. Software Development Kit

199

Tethys Platform Documentation, Release 1.4.0

job_list=[Jjob_a, job_bl, job_b2, job_cl],
scheduler=None,
)I
CondorJobTemplate (name="'JobAStandAlone"',
job_description=reusable_job_a_description,
scheduler=None,
)I

Creating and Customizing a Job To create a job call the create_ job method on the job manager. The required
parameters are name, user and template_name. Any other job attributes can also be passed in as kwargs.

create a new job
job = job_manager.create_job (name='job_name', user=request.user, template_name='example', descriptior:

customize the job using methods provided by the job type
job.set_attribute ('arguments', 'input_2")

save or execute the job
job.save ()

or

job.execute ()

Before a controller returns a response the job must be saved or else all of the changes made to the job will be lost
(executing the job automatically saves it). If submitting the job takes a long time (e.g. if a large amount of data has to
be uploaded to a remote scheduler) then it may be best to use AJAX to execute the job.

API Documentation
class tethys_sdk. jobs.CondorWorkflowTemplate (name, parameters=None, jobs=None,

max_jobs=None, config=None, **kwargs)
A subclass of the JobTemplate with the t ype argument set to CondorWorkflow.

Parameters
* name (str) — Name to refer to the template.

» parameters (dict, DEPRECATED) — A dictionary of key-value pairs. Each Job type defines
the possible parameters.

* jobs (list) — A list of CondorWorkflowJobTemplates.

* max_jobs (dict, optional) — A dictionary of category-max_job pairs defining the maximum
number of jobs that will run simultaneously from each category.

* config (str, optional) — A path to a configuration file for the condorpy DAG.
class tethys_sdk. jobs.CondorWorkflowJobTemplate (name, job_description, **kwargs)
A subclass of the CondorWorkflowNodeBaseTemplate with the t ype argument set to CondorWorkflowJobN-
ode.

Parameters
* name (str) — Name to refer to the template.

* job_description (CondorJobDescription) — An instance of CondorJobDescription contain-
ing of key-value pairs of job attributes.

class tethys_compute.models.CondorWorkflow (*args, ¥*kwargs)
CondorPy Workflow job type

200 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

class tethys_compute.models.CondorWorkflowJobNode (*args, **kwargs)
CondorWorkflow JOB type node

Workspaces

Each job has it’s own workspace, which by default is set to the user’s workspace in the app where the job is created.
However, the job may need to reference files that are in other workspaces. To make it easier to interact with workspaces
in job templates, two special variables are defined: $ (APP_WORKSPACE) and $ (USER_WORKSPACE) . These two
variables are resolved to absolute paths when the job is created. These variables can only be used in job templates.
To access the app’s workspace and the user’s workspace when working with a job in other places in your app use the
Workspaces API.

Job Manager

The Job Manager is used in your app to interact with the jobs database. It facilitates creating and querying jobs.

Using the Job Manager in your App

To use the Job Manager in your app you first need to import the TethysAppBase subclass from the app.py module:

from app import MyFirstApp as app

You can then get the job manager by calling the method get_job_manager on the app.

job_manager = app.get_Jjob_manager ()

You can now use the job manager to create a new job, or retrieve an existing job or jobs.

Creating and Executing a Job

To create a job call the create_job method on the job manager. The required parameters are name, user and
template_name. Any other job attributes can also be passed in as kwargs.

create a new job
job = job_manager.create_job (name='7job_name', user=request.user, template_name='example',6 descriptio:

customize the job using methods provided by the job type
job.set_attribute ('arguments', 'input_2")

save or execute the job
job.save ()

or

job.execute ()

Before a controller returns a response the job must be saved or else all of the changes made to the job will be lost
(executing the job automatically saves it). If submitting the job takes a long time (e.g. if a large amount of data has to
be uploaded to a remote scheduler) then it may be best to use AJAX to execute the job.

Tip: The Jobs Table Gizmo has a built-in mechanism for submitting jobs with AJAX. If the Jobs Table Gizmo is used
to submit the jobs then be sure to save the job after it is created.

1.6. Software Development Kit 201

Tethys Platform Documentation, Release 1.4.0

Retrieving Jobs

Two methods are provided to retrieve jobs: 1ist_jobs and get_job. Jobs are automatically filtered by app. An
optional user parameter can be passed in to these methods to further filter jobs by the user.

get list of all jobs created in your app
job_manager.list_jobs ()

get list of all jobs created by current user in your app
job_manager.list_jobs (user=request.user)

get job with id of 27
job_manager.get_job (job_id=27)

get job with id of 27 only if it was created by current user
job_manager.get_job (job_id=27, user=request.user)

Caution: Be thoughtful about how you retrieve jobs. The user filter is provided to prevent unauthorized users
from accessing jobs that don’t belong to them.

Jobs Table Gizmo

The Jobs Table Gizmo facilitates job management through the web interface and is designed to be used in conjunction
with the Job Manager. It can be configured to list any of the properties of the jobs, and will automatically update the
job status, and provides buttons to run, delete, or view job results. The following code sample shows how to use the
job manager to populate the jobs table:

job_manager = app.get_job_manager ()
jobs = job_manager.list_jobs (request.user)

jobs_table_options = JobsTable (jobs=jobs,
column_fields=('id', 'description', 'run_time'),
hover=True,
striped=False,
bordered=False,
condensed=False,
results_url="my_first_app:results',

)

See also:

Jobs Table

Job Status Callback

Each job has a callback URL that will update the job’s status. The URL is of the form:

http://<host>/update-job-status/<job_id>/

For example, a URL may look something like this:

http://example.com/update-job-status/27/

The output would look something like this:

202 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

{"success": true}

This URL can be retrieved from the job manager with the get_job_status_callback_url method, which
requires a request object and the id of the job.

job_manager app.get_job_manager ()
callback_url = job_manager.get_job_status_callback_url (request, Jjob_id)

API Documentation

class tethys_compute. job_manager .JobManager (app)
A manager for interacting with the Jobs database providing a simple interface creating and retrieving jobs.

Note: Each app creates its own instance of the JobManager. the get__job_manager method returns the app.

from app import MyApp as app

job_manager = app.get_job_manager ()

create_job (name, user, template_name, **kwargs)
Creates a new job from a JobTemplate.

Parameters
* name (str) — The name of the job.
 user (User) — A User object for the user who creates the job.
» template_name (str) — The name of the JobTemplate from which to create the job.
o *¥*kwargs —
Returns A new job object of the type specified by the JobTemplate

get__job (job_id, user=None, filters=None)
Gets a job by id.

Parameters
* job_id (int) — The id of the job to get.
* user (User, optional) — The user to filter the jobs by.

Returns A instance of a subclass of TethysJob if a job with job_id exists (and was created by
user if the user argument is passed in).

get_job_status_callback_url (request, job_id)
Get the absolute url to call to update job status

list_jobs (user=None, order_by="id’, filters=None)
Lists all the jobs from current app for current user.

Parameters
¢ user (User, optional) — The user to filter the jobs by. Default is None.
» order_by (str, optional) — An expression to order jobs. Default is ‘id’.
« filters (dict, optional) — A list of key-value pairs to filter the jobs by. Default is None.

Returns A list of jobs created in the app (and by the user if the user argument is passed in).

1.6. Software Development Kit 203

Tethys Platform Documentation, Release 1.4.0

class tethys_sdk. jobs.JobTemplate (name, type=None, parameters=None)
A template from which to create a job.

Parameters
* name (str) — Name to refer to the template.

* type (TethysJob) — A subclass of the TethysJob base class. Use the JOB_TYPE dictionary
for possible values.

* parameters (dict) — A dictionary of key-value pairs. Each Job type defines the possible
parameters.

class tethys_sdk. jobs.BasicJobTemplate (name, parameters=None)
A subclass of JobTemplate with the t ype argument set to BasicJob.

Parameters
* name (str) — Name to refer to the template.
* parameters (dict) — A dictionary of parameters to pass to the BasicJob constructor.

class tethys_sdk. jobs.CondorJobTemplate (name, parameters=None, job_description=None,

scheduler=None, **kwargs)
A subclass of the JobTemplate with the t ype argument set to CondorJob.

Parameters
* name (str) — Name to refer to the template.

» parameters (dict, DEPRECATED) — A dictionary of key-value pairs. Each Job type defines
the possible parameters.

* job_description (CondorJobDescription) — An object containing the attributes for the con-
dorpy job.

* scheduler (Scheduler) — An object containing the connection information to submit the
condorpy job remotely.

Workspaces API

Last Updated: August 6, 2014

The Workspaces API makes it easy for you to create directories for storing files that your app operates on. This can
be a tricky task for a web application, because of the multi-user, simultaneous-connection environment of the web.
The Workspaces API provides a simple mechanism for creating and managing a global workspace for your app and
individual workspaces for each user of your app to prevent unwanted overwrites and file lock conflicts.

Get a Workspace

The Workspaces API adds two methods to your app class, get_app_workspace() and
get_user_workspace (), that can be used to retrieve with the global app workspace and the user workspaces,
respectively. To use the Workspace API methods, import your app class from the app configuration file (app .py)
and call the appropriate method on that class. Explanations of the methods and example usage follows.

get_app_workspace

classmethod TethysAppBase.get_app_workspace ()
Get the file workspace (directory) for the app.

204 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Returns An object representing the workspace.

Return type tethys_apps.base.TethysWorkspace

Example:

import os
from .app import MyFirstApp

def a_controller (request) :

mon

Example controller that uses get_app_workspace () method.

mon

Retrieve the workspace
app_workspace = MyFirstApp.get_app_workspace ()
new_file_path = os.path.join (app_workspace.path,

with open(new_file_path, 'w')
a_file.write('...")

as a_file:

context = {}

return render (request, 'my_first_app/template.html’,

get_user_workspace

classmethod TethysAppBase.get_user_workspace (user)
Get the file workspace (directory) for a user.

Parameters user (User or HttpRequest) — User or request object.
Returns An object representing the workspace.

Return type tethys_apps.base.TethysWorkspace

'new_file.txt")

context)

Example:

import os
from .app import MyFirstApp

def a_controller (request):

mmn

Example controller that uses get_user_workspace () method.

moon

Retrieve the workspace

user_workspace = MyFirstApp.get_user_workspace (request.user)

new_file_path = os.path.join(user_workspace.path,

with open (new_file_path,
a_file.write('...")

context = {}

return render (request,

w')

'my_first_app/template.html’,

'new_file.txt"')

as a_file:

context)

1.6. Software Development Kit

205

Tethys Platform Documentation, Release 1.4.0

Working with Workspaces

The two methods described above return a TethysWorkspace object that contains the path to the workspace and
several convenience methods for working with the workspace. An explanation of the TethysWorkspace object
and examples of it’s usage is provided below.

TethysWorkspace Objects

class tethys_apps.base.TethysWorkspace (path)
Defines objects that represent file workspaces (directories) for apps and users.

path
Str

The absolute path to the workspace directory. Cannot be overwritten.

clear (exclude=[], exclude_files=False, exclude_directories=False)
Remove all files and directories in the workspace.

Parameters

* exclude (iterable) — A list or tuple of file and directory names to exclude from clearing
operation.

« exclude_files (bool) — Excludes all files from clearing operation when True. Defaults to
False.

* exclude_directories (bool) — Excludes all directories from clearing operation when True.
Defaults to False.

Examples:

Clear everything
workspace.clear ()

Clear directories only
workspace.clear (exclude_files=True)

Clear files only
workspace.clear (exclude_directories=True)

Clear all but specified files and directories
workspace.clear (exclude=['filel.txt', '/full/path/to/directoryl', 'directory2', '/full/path/

directories (full_path=False)
Return a list of directories that are in the workspace.

Parameters full_path (bool) — Returns list of directories with full path names when True. De-
faults to False.

Returns A list of directories in the workspace.
Return type list
Examples:

List directory names
workspace.directories ()

List full path directory names
workspace.directories (full_path=True)

206 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

files (full_path=False)
Return a list of files that are in the workspace.

Parameters full_path (bool) — Returns list of files with full path names when True. Defaults to
False.

Returns A list of files in the workspace.
Return type list
Examples:

List file names
workspace.files ()

List full path file names
workspace.files (full_path=True)

remove (item)
Remove a file or directory from the workspace.

Parameters item (str) — Name of the item to remove from the workspace.
Examples:

workspace.remove
workspace.remove
workspace.remove
workspace.remove
workspace.remove
workspace.remove

file.txt'")
/full/path/to/file.txt")

(!
(r
('relative/path/to/file.txt")
('"directory')
('/full/path/to/directory")

('relative/path/to/directory")

Note: Though you can specify relative paths, the remove () method will not allow you to back into other
directories using ”../” or similar notation. Futhermore, absolute paths given must contain the path of the

workspace to be valid.

Centralize Workspaces

The Workspaces API includes a command, collectworkspaces, for moving all workspaces to a central location
and symbolically linking them back to the app project directories. This is especially useful for production where the
administrator may want to locate workspace content on a mounted drive to optimize storage. A brief explanation
of how to use this command will follow. Refer to the Command Line Interface documentation for details about the
collectworkspaces command.

Setting

To enable centralized workspaces create a directory for the workspaces and specify its path in the settings.py file
using the TETHYS_WORKSPACES_ROOT setting.

TETHYS_WORKSPACES_ROOT = '/var/www/tethys/workspaces'

Command

Run the collectworkspaces command to automatically move all of the workspace directories to the
TETHYS_WORKSPACES_ROOT directory and symbolically link them back. You will need to run this command
each time you install new apps.

1.6. Software Development Kit 207

Tethys Platform Documentation, Release 1.4.0

$ tethys manage collectworkspaces

Tip: A convenience command is provided called collectall that can be used to run both the collectstatic
and the collectworkspaces commands:

$ tethys manage collectall

Handoff API

Last Updated: October 14, 2015

App developers can use Handoff to launch one app from another app or an external website. Handoff also provides
a mechanism for passing data from the originator app to the target app. Using Handoff, apps can be strung together
to form a workflow, allowing apps to become modular and specialized in their capabilities. If the handoff is initiated
from an app then the HandoffManager can be used. Alternatively, there are REST endpoints (described below) that
allow an app to be launched from an external site, but can also be used for app-to-app handoff.

As an example, consider an app called “Hydrograph Plotter” that plots hydrographs. We would like Hydrograph Plotter
to be able to accept hydrograph CSV files from other apps so that it can be used as a generic hydrograph viewer. One
way to do this would be to define a Handoff endpoint that accepts a URL to a CSV file. The Handoff handler would use
that URL to download or pull the CSV file into the app and then redirect it to a page with a plot. The GET request/pull
mechanism is used to get around the limitations associated with POST requests, which are required to push or upload
files.

Create a Handoff Handler

The first step is to define a Handoff handler. The purpose of the Handoff handler is to handle the transfer data from
the originator and then redirect the call to a page in the target app. It is implemented as a function that returns a URL
or name of a view. For the example, the Handoff handler could be defined as follows:

import os
import requests
from .app import HydrographPlotter

def csv(request, csv_url):

mon

Handoff handler for csv files.

Get a filename in the current user's workspace

user_workspace = HydrographPlotter.get_user_workspace (request.user)
filename = os.path.join (user_workspace, 'hydrograph.csv')

Initiate a GET request on the CSV URL
response = requests.get (csv_url, stream=True)

Stream content into a file
with open(filename, 'w') as f:
for chunk in response.iter_content (chunk_size=512):
if chunk:
f.write (chunk)

return 'hydrograph_plotter:plot_csv'

208 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

This Handoff handler uses the request s library and the Workspaces API to download the file and store it in the cur-
rent user’s workspace. Then it returns the name of a controller called plot_csv to be redirected to. The plot_csv
controller would need to know to look for a file in the current user’s workspace and plot it.

Register Handoff Handler

The Handoff handler needs to be registered to make it available for other apps to use. This is done by adding the
handoff_handlers method to the app class. This method needs to return a list or tuple of HandoffHandler
objects.

from tethys_sdk.handoff import HandoffHandler

class HydrographPlotter (TethysAppBase) :

mmon

Tethys app class for Hydrograph Plotter

mmn

def handoff handlers(self):

mmwn

Register some handoff handlers

mnn

handoff_handlers = (HandoffHandler (name='plot-csv',
handler='hydrograph_plotter.handoff.csv'),
)

return handoff_handlers

Execute a Handoff

To execute a Handoff, the originator app or website needs to provide a link of the form:

http://<host>/handoff/<app_name>/<handler_name>/?paraml=x¶m2=y

Any parameters that need to be passed with the Handoff call are passed as query parameters on the URL. For our
example, the URL would look something like this:

http://www.example.com/hydrograph-plotter/plot-csv/?csv_url=http://www.another.com/url/to/file.csv

The URL must have query parameters for each argument defined in the Handoff handler function or it will throw
an error. It will also throw an error if extra query parameters are provided that are not defined as arguments for the
Handoff handler function.

View Handoff Endpoints for Apps

For convenience, a list of the available Handoff endpoints for an app can be viewed by visiting the URL:

http://<host>/handoff/<app_name>/

For our example, the URL would look like this:

http://www.example.com/handoff/hydrograph-plotter/

The output would look something like this:

[{"arguments": ["csv_url"], "name": "plot-csv"}]

1.6. Software Development Kit 209

Tethys Platform Documentation, Release 1.4.0

HandoffManager

If a handoff is initiated from an app to another app on the same instance of Tethys then the HandoffManager can be
used. This has several benefits including being able to being able to process the handoff in a controller and use Python
to add logic or handle errors. Additionally, the HandoffManager will expose HandoffHandlers that are marked as
“internal”. An internal HanoffHandler can take advantage of the assumption that the both sides of the handoff are on
the same system by, for example, using file paths and symbolic links rather than passing large files over the network.

A HandoffHandler can be marked as internal when it is registered in app class.

from tethys_sdk.handoff import HandoffHandler

class HydrographPlotter (TethysAppBase) :

mon

Tethys app class for Hydrograph Plotter

mon

def handoff handlers(self):

mon

Register some handoff handlers

mmn

handoff_handlers = (HandoffHandler (name='internal-plot-csv',
handler='hydrograph_plotter.handoff.csv_internal’,
internal=True),

)

return handoff_handlers

An example of an internal HandoffHandler:

import os
import requests
from .app import HydrographPlotter

def csv_internal (request, path_to_csv):

mmon

Internal handoff handler for csv files.

mmwn

Get a filename in the current user's workspace

user_workspace = HydrographPlotter.get_user_workspace (request.user)

Create symbolic link to the csv in the user's workspace
src = path_to_csv
dst = os.path.join(user_workspace, 'hydrograph.csv')

try:

os.symlink (src, dst)
except OSError:

pass

return 'hydrograph_plotter:plot_csv'

An example of initiating a handoff with the HandoffManager from a controller:

def plot (request) :
handoff_manager = app.get_handoff_manager ()
app_name = 'hydrograph_plotter'
handler_name = 'internal-plot-csv'

210 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

handler = handoff_manager.get_handler (handler_name, app_name)
if handler:
try:
return redirect (handler (request, path_to_netcdf_file=file_path))
except Exception, e:
pass

return redirect (reverse('my_app:home', kwargs={'message': 'Hydrograph plotting is not working.'}))

HandoffManager API

class tethys_apps.base.handoff.HandoffManager (app)
An object that is used to interact with HandoffHandlers.

app
str

Instance of a TethysAppBase object.

handlers
listfHandoffHandler]

A list of HandoffHandlers registered in the app.

valid handlers
listfHandoffHandler]

A filtered list of only the valid HandoffHandlers.

get_capabilities (app_name=None, external_only=False, jsonify=False)
Gets a list of the valid handoff handlers.

Parameters

* app_name (str, optional) — The name of another app whose capabilities should be listed.
Defaults to None in which case the capabilities of the current app will be listed.

* external_only (bool, optional) — If True only return handlers where the internal attribute
is False. Default is False.

e jsonify (bool, optional) — If True return the JSON representation of the handlers is used.
Default is False.

Returns A list of valid HandoffHandler objects (or a JSON string if jsonify=True) representing
the capabilities of app_name, or None if no app with app_name is found.

get_handler (handler_name, app_name=None)
Returns the HandoffHandler with name == handler name.

Parameters
* handler_name (str) — the name of a HandoffHandler object.

* app_name (st7; optional) — the name of the app with handler_name. Defaults to None in
which case the current app will be used.

Returns A HandoffHandler object where the name attribute is equal to handler_name or None
if no HandoffHandler with that name is found or no app with app_name is found.

handof£ff (request, handler_name, app_name=None, external_only=True, **kwargs)
Calls handler if it is not internal and if it exists for the app.

Parameters

1.6. Software Development Kit 211

Tethys Platform Documentation, Release 1.4.0

* request (HrtpRequest) — The request object passed by the http call.

* handler_name (str) — The name of the HandoffHandler object to handle the handoff.

Must not be internal.

e app_name (str, optional) — The name of another app where the handler should exist.
Defaults to None in which case the current app will attempt to handle the handoff.

o **kwargs — Key-value pairs to be passed on to the handler.

Returns HttpResponse object.

Permissions API

Last Updated: May 28, 2016

Permissions allow you to restrict access to certain features or content of your app. We recommend creating permissions
for specific tasks or features of your app (e.g.: “Can view the map” or “Can delete projects”) and then define groups
of permissions to create the roles for you app.

Create Permissions and Permission Groups

Declare the permissions method in the app class and have it return a list or tuple of Permission and/or
PermissionGroup objects. Permissions are synced everytime you start or restart the development server (i.e.:

tethys manage start) or Apache server in production.

Once you have created permissions and permission groups for your app, they will be available for the Tethys Portal
administrator to assign to users. See the Manage Users and Permissions documentation for more details.

TethysAppBase.permissions ()

Use this method to define permissions for your app.

Returns A list or tuple of Permission or PermissionGroup objects.

Return type iterable

Example:

from tethys_sdk.permissions import Permission,

def permissions(self):

mmon

Example permissions method.

mmn

Viewer Permissions

view_map = Permission (
name='view_map"',
description='View map'

delete_projects = Permission/(
name='delete_projects',
description='Delete projects'

create_projects = Permission (
name='create_projects',
description='Create projects'

PermissionGroup

212

Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

admin = PermissionGroup (
name="admin"',
permissions=(delete_projects, create_projects)

permissions = (admin, view_map)

return permissions

Permission and Permission Group Objects

class tethys_sdk.permissions.Permission (name, description)
Defines an object that represents a permission for an app.

name
string

The code name for the permission. Only numbers, letters, and underscores allowed.

description
string

Short description of the permission for the admin interface.
Example:

from tethys_sdk.permissions import Permission

create_projects = Permission(
name='create_projects',
description='Create projects'

class tethys_sdk.permissions.PermissionGroup (name, permissions=[])
Defines an object that represents a permission group for an app.

name
string

The name for the group. Only numbers, letters, and underscores allowed.

permissions
iterable

A list or tuple of Permission objects.
Example:

from tethys_sdk.permissions import Permission, PermissionGroup

create_projects = Permission(
name='create_projects’',
description='Create projects'

delete_projects = Permission(
name='delete_projects',
description='Delete projects'

1.6. Software Development Kit 213

Tethys Platform Documentation, Release 1.4.0

admin = PermissionGroup (
name="'admin',

permissions=(create_projects, delete_projects)

Check Permission

Use the has_permission method to check whether the user of the current request has a permission.

static permissions.has_permission (request, perm, user=None)

Returns True if the user of the given request has the given permission for the app. If a user object is provided, it is
tested instead of the request user. The Request object is still required to derive the app context of the permission

check.
Parameters
* request (Request) — The current request object.
* perm (string) — The name of the permission (e.g. ‘create_things’).
* user (django.contrib.auth.models.User) — A user object to test instead of the user provided
in the request.
Example:

from tethys_sdk.permissions import has_permission

def my_controller (request) :

mon

Example controller

mon

can_create_projects = has_permission(request, 'create_projects')

if can_create_projects:

Controller Decorator

Use the permission_required decorator to enforce permissions for an entire controller.

static permissions.permission_required (*args, **kwargs)
Decorator for Tethys App controllers that checks whether a user has a permission.

Parameters
* *args — Any number of permission names for the app (e.g. ‘create_projects’)
» **kwargs — Any of keyword arguments specified below.

Valid Kwargs:

*message: (string): Override default message that is displayed to user when permission is denied. Default
message is “We’re sorry, but you are not allowed to perform this operation.”.

eraise_exception (bool): Raise 403 error if True. Defaults to False.

euse_or (bool): When multiple permissions are provided and this is True, use OR comparison rather than
AND comparison, which is default.

214 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Example:

from tethys_sdk.permissions import permission_required

Basic use
@permission_required('create_projects')
def my_controller (request) :

mmn

Example controller

moon

Custom message when permission is denied

@permission_required('create_projects', message="You do not have permission to create projects")
def my_controller (request) :

mmon

Example controller
mimnm

Multiple permissions with AND comparison (must pass both permissions tests)
@permission_required('create_projects', 'delete_projects')
def my_controller (request) :

mon

Example controller

mon

Multiple permissions with OR comparison (must pass at least one permissions test)
@permission_required('create_projects', 'delete_projects', use_or=True)
def my_controller (request) :

mon

Example controller

mmon

Raise 403 exception rather than redirecting and displaying message (useful for REST controlle:
@permission_required('create_projects', raise_exception=True)
def my_controller (request) :

mmon

Example controller
mmnm

Command Line Interface

Last Updated: November 18, 2014

The Tethys Command Line Interface (CLI) provides several commands that are used for managing Tethys Platform
and Tethys apps. The Python virtual environment must be activated to use the command line tools. This can be done
using the following command:

$./usr/lib/tethys/bin/activate

The following article provides and explanation for each command provided by Tethys CLI.

1.6. Software Development Kit 215

Tethys Platform Documentation, Release 1.4.0

Usage

$ tethys <command> [options]

Options

¢ -h, —help: Request the help information for Tethys CLI or any command.

Commands

scaffold <name>

This command is used to create new Tethys app projects via the scaffold provided by Tethys Platform. You will be
presented with several interactive prompts requesting metadata information that can be included with the app. The
new app project will be created in the current working directory of your terminal.

Arguments:

* name: The name of the new Tethys app project to create. Only lowercase letters, numbers, and underscores are
allowed.

Examples:

$ tethys scaffold my_first_app

gen <type>

Aids the installation of Tethys by automating the creation of supporting files.
Arguments:
* type: The type of object to generate. Either “settings” or “apache”.

— settings: When this type of object is specified, gen will generate a new settings.py file. It generates
the settings.py with anew SECRET_KEY each time it is run.

— apache: When this type of object is specified gen will generate a new apache.conf file. This file is
used to configure Tethys Platform in a production environment.

Optional Arguments:

* -d DIRECTORY, —directory DIRECTORY: Destination directory for the generated object.

Examples:

$ tethys gen settings

$ tethys gen settings -d /path/to/destination
$ tethys gen apache

$ tethys gen apache -d /path/to/destination

manage <subcommand> [options]

This command contains several subcommands that are used to help manage Tethys Platform.

Arguments:

216 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

* subcommand: The management command to run. Either “start”, “syncdb”, or “collectstatic”.

start: Starts the Django development server. Wrapper for manage.py runserver.
— syncdb: Initialize the database during installation. Wrapper for manage .py syncdb.

— collectstatic: Link app static/public directories to STATIC_ROOT directory and then run Django’s collect-
static command. Preprocessor and wrapper for manage.py collectstatic.

— collectworkspaces: Link app workspace directories to TETHYS_WORKSPACES_ROOT directory.
— collectall: Convenience command for running both collectstatic and collectworkspaces.
— superuser: Create a new superuser/website admin for your Tethys Portal.
Optional Arguments:
¢ -p PORT, —port PORT: Port on which to start the development server. Default port is 8000.

¢ -m MANAGE, —-manage MANAGE: Absolute path to manage.py file for Tethys Platform installation if
different than default.

Examples:

Start the development server
tethys manage start
$ tethys manage start -p 8888

Ur

Sync the database
$ tethys manage syncdb

Collect static files
$ tethys manage collectstatic

Collect workspaces
$ tethys manage collectworkspaces

Collect static files and workspaces
$ tethys manage collectall

Create a new superuser
$ tethys manage createsuperuser

syncstores <app_name, app_name...> [options]

Management command for Persistent Stores. To learn more about persistent stores see Persistent Stores API.
Arguments:

* app_name: Name of one or more apps to target when performing persistent store sync OR “all” to sync all
persistent stores on this Tethys Platform instance.

Optional Arguments:

¢ -1, —refresh: Drop databases prior to performing persistent store sync resulting in a refreshed database.

-f, —firsttime: All initialization functions will be executed with the first_time parameter set to True.

-d DATABASE, —database DATABASE: Name of the persistent store database to target.

-m MANAGE, -manage MANAGE: Absolute path to manage.py file for Tethys Platform installation if
different than default.

1.6. Software Development Kit 217

Tethys Platform Documentation, Release 1.4.0

Examples:

Sync all persistent store databases for one app
$ tethys syncstores my_first_app

Sync all persistent store databases for multiple apps
$ tethys syncstores my_first_app my_second_app yet_another_app

Sync all persistent store databases for all apps
$ tethys syncstores all

Sync a specific persistent store database for an app
$ tethys syncstores my_first_app -d example_db

Sync persistent store databases with a specific name for all apps
$ tethys syncstores all -d example_db

Sync all persistent store databases for an app and force first_time to True
$ tethys syncstores my_first_app -f

Refresh all persistent store databases for an app
$ tethys syncstores my_first_app -r

uninstall <app>

Use this command to uninstall apps.
Arguments:

 app: Name the app to uninstall.
Examples:

Uninstall my_first_app
$ tethys uninstall my_first_app

docker <subcommand> [options]

Management commands for the Tethys Docker containers. To learn more about Docker, see What is Docker?.
Arguments:
e subcommand: The docker command to run. One of the following:

— init: Initialize the Tethys Dockers including, starting Boot2Docker if applicable, pulling the Docker im-
ages, and installing/creating the Docker containers.

— start: Start the Docker containers.

— stop: Stop the Docker containers.

— restart: Restart the Docker containers.

— status: Display status of each Docker container.

— update: Pull the latest version of the Docker images.
— remove: Remove a Docker images.

— ip: Display host, port, and endpoint of each Docker container.

218 Chapter 1. Contents

https://www.docker.com/whatisdocker/

Tethys Platform Documentation, Release 1.4.0

Optional Arguments:

* -d, —defaults: Install Docker containers with default values (will not prompt for input). Only applicable to init
subcommand.

¢ -c {postgis, geoserver, wps} [{postgis, geoserver, wps} ...], —containers {postgis, geoserver, wps} [{postgis,
geoserver, wps} ...]: Execute subcommand only on the container(s) specified.

* -b, -boot2docker: Also stop Boot2Docker when stop subcommand is called with this option.
Examples:

Initialize Tethys Dockers
$ tethys docker init

Initialize with Default Parameters
$ tethys docker init -d

Start all Tethys Dockers
$ tethys docker start

Start only PostGIS Docker
$ tethys docker start -c postgis

Start PostGIS and GeoServer Docker
$ tethys docker start -c postgis geoserver

Stop Tethys Dockers
$ tethys docker stop

Stop Tethys Dockers and Boot2Docker if applicable
$ tethys docker stop -b

Update Tethys Docker Images
$ tethys docker update

Remove Tethys Docker Images
$ tethys docker remove

View Status of Tethys Dockers
$ tethys docker status

View Host and Port Info
$ tethys docker ip

test [options]

Management commands for running tests for Tethys Platform and Tethys Apps. See Testing API.

Optional Arguments:

-c, —coverage: Run coverage with tests and output report to console.

-C, —coverage-html: Run coverage with tests and output html formatted report.

-u, —unit: Run only unit tests.

-g, —gui: Run only gui tests. Mutually exclusive with -u. If both flags are set, then -u takes precedence.

-f FILE, —file FILE: File or directory to run test in. If a directory, recursively searches for tests starting at this
directory. Overrides -g and -u.

1.6. Software Development Kit 219

Tethys Platform Documentation, Release 1.4.0

Examples:

Run all tests
tethys test

Run all unit tests with coverage report
tethys test -u -c

Run all gui tests
tethys test —-g

Run tests for a single app
tethys test -f tethys_apps.tethysapp.my_first_app

Testing API

Last Updated: November 18, 2016

Manually testing your app can be very time consuming, especially when modifying a simple line of code usually
warrants retesting everything. To help automate and streamline the testing of your app, Tethys Platform provides you
with a great starting point by providing the following:

1. A tests directory with a tests. py script within your app’s default scaffold that contains well-commented
sample testing code.

2. The Testing API which provides a helpful test class for setting up your app’s testing environment.

Writing Tests

Tests should be written in a separate python script that is contained somewhere within your app’s scaffold. By default,
a tests directory already exists in the app-level directory and contains a test s . py script. Unless you have a good
reason not to, it would be best to start writing your test code here.

As an example, if wanting to automate the testing of a the map controller in the “My First App” from the tutorials, the
tests.py script might be modified to look like the following:

from tethys_sdk.testing import TethysTestCase
from ..app import MyFirstApp

class MapControllerTestCase (TethysTestCase) :
def set_up(self):
self.create_test_persistent_stores_for_app (MyFirstApp)
self.create_test_user (username="7joe", email="joelsome_site.com", password="secret")
self.c = self.get_test_client()

def tear_down (self):
self.destroy_test_persistent_stores_for_app (MyFirstApp)

def test_success_and_context (self):
self.c.force_login(self.user)
response = self.c.get ('/apps/my-first-app/map/")

Check that the response returned successfully
self.assertEqual (response.status_code, 200)

Check that the response returned the context variable
self.assertIsNotNone (response.context['map_options'])

220 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Tethys Platform leverages the native Django testing framework (which leverages the unittests Python module) to make
writing tests for your app much simpler. While Tethys Platform encapsulates most of what is needed in its Testing
API, it may still be necessary to refer to the Django and Python documentation for additional help while writing tests.
Refer to their documentation here:

https://docs.djangoproject.com/en/1.9/topics/testing/overview/#writing-tests

https://docs.python.org/2.7/library/unittest. html#module-unittest

Running Tests

To run any tests at an app level:

1. Open a terminal

2. Enter the Tethys Platform python environment: $. /usr/lib/tethys/bin/activate
3. In settings.py make sure that the tethys_default database user is set to tethys_super:

DATABASES = {
'default': {

'"ENGINE': 'django.db.backends.postgresqgl_psycopg?2',
'NAME': 'tethys_default',

'USER': 'tethys_super',

'"PASSWORD': 'pass',

"HOST': '127.0.0.1",

'"PORT': '5435"

4. Enter app-level tethys test command. (tethys)$ tethys test -f
tethys_apps.tethysapp.<app_name (required)>.<folder_name>.<file_name>.<class_name>. -
[-c/C] Where —c tracks code coverage and prints out a report in the terminal, and —C does opens the
report as an interactive HTML page in your browser

More specifically:

To run all tests across an app: Test command: (tethys)$ tethys test -f
tethys_apps.tethysapp.<app_name>

To run all tests within specific directory of an app: Test = command: (tethys)$ tethys test -f
tethys_apps.tethysapp.<app_name>.<folder_name>

And so forth... Thus, you can hone in on the exact tests that you want to run.

Note: Remember to append either —c or —C if you would like a coverage report at the end of the testing
printed in your terminal, or opened in your browser as an interactive HTML page, respectively.

API Documentation

class tethys_apps.base.testing.TethysTestCase (methodName="runlest’)
This class inherits from the Django TestCase class and is itself the class that is should be inherited from when
creating test case classes within your app. Note that every specific test written within your custom class inherit-
ing from this class must begin with the word “test” or it will not be executed during testing.

static create_test_persistent_stores_for_app (app_class)
Creates temporary persistent store databases for this app to be used in testing.

Parameters app_class — The app class from the app’s app.py module

1.6. Software Development Kit 221

https://docs.djangoproject.com/en/1.9/topics/testing/overview/#writing-tests
https://docs.python.org/2.7/library/unittest.html#module-unittest

Tethys Platform Documentation, Release 1.4.0

Returns None

static create_test_superuser (username, password, email=None)
Creates and returns a temporary superuser to be used in testing

Parameters
* username (string) — The username for the temporary test user
» password (string) — The password for the temporary test user
 email (string) — The email address for the temporary test user
Returns User object

static create_test_user (username, password, email=None)
Creates and returns temporary user to be used in testing

Parameters
* username (string) — The username for the temporary test user
» password (string) — The password for the temporary test user
 email (string) — The email address for the temporary test user
Returns User object

static destroy_test_persistent_stores_for_app (app_class)
Destroys the temporary persistent store databases for this app that were used in testing.

Parameters app_class — The app class from the app’s app.py module
Returns None

static get_test_client ()
Returns a Client object to be used to mimic a browser in testing

Returns Client object

set_up ()
This method is to be overridden by the custom test case classes that inherit from the TethysTestCase class
and is used to perform any set up that is applicable to every test function that is defined within the custom

test class
Returns None

tear down ()
This method is to be overridden by the custom test case classes that inherit from the TethysTestCase class
and is used to perform any tear down that is applicable to every test function that is defined within the
custom test class. It is often used in conjunction with the “set_up” function to tear down what was setup

therein.

Returns None

Tethys Portal

Last Updated: December 14, 2015

Tethys Portal is the Django web site provided by Tethys Platform that acts as the runtime environment for apps. It
leverages the capabilities of Django to provide the core website functionality that is often taken for granted in modern
web applications. A description of the primary capabilities of Tethys Portal is provided in this section.

222 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Administrator Pages

Last Updated: August 4, 2015

Tethys Portal includes administration pages that can be used to manage the website (see Figure 1). The administration
dashboard is only available to administrator users. You should have created a default administrator user when you
installed Tethys Platform. If you are logged in as an administrator, you will be able to access the administrator
dashboard by selecting the “Site Admin” option from the user drop down menu in the top right-hand corner of the

page.

@ TethyS POI’ta| Apps Developer

Site Administration

Recent Actions

Authentication and Authorization

Groups #Add & Change My Actions
Users e Add & Change # General Settings
Settings Category
& default
& default_geoserver
Clusters gAdd ¢ Change Spatial Dataset Service
& default
Settings & Change Web Processing Service
& default_geoserver
Spatial Dataset Service
Spatial Dataset Service
Site Settings # Change & default
Dataset Service
. & default
& default_ckan
Dataset Services g Add # Change Dataset Service
& default
Spatial Dataset Services dAdd ¢ Change Dataset Service
Web Processing Services g Add # Change

Copyright © 2015 Your Organization Powered by @ Tethys Platform

Figure 1. Administrator dashboard for Tethys Portal.

Note: If you did not create an administrator user during installation, run the following command in the terminal:

$ python /usr/lib/tethys/src/manage.py createsuperuser

Manage Users and Permissions

Permissions and users can be managed from the administrator dashboard using Users link under the
Authentication and Authorization heading. Figure 4 shows an example of the user management page
for a user named John.

Figure 4. User management for Tethys Portal.

1.7. Tethys Portal 223

Tethys Platform Documentation, Release 1.4.0

Apps Developer John £ «~

Home » Authentication and Authorization » Users » john

Change User

Username: john

Password: algorithm: pbkdf2_sha2S6 iterations: 12000 salt: SkjUnht hash: SVxTQb

Personal info

First name: John

Last name: Brown

Email address: | john@doe.com

Permissions

[Active

@ Staff status

Superuser status

Groups: &
Available groups @ Chosen groups @
Q

224 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Assign App Permission Groups

To assign an app permission group to a user, select the desired user and locate the Groups dialog under the
Permissions heading of the Change User page. All app permission groups will appear in the Available
Groups list box. Assigning the permission group is done by moving the permission group to the Chosen Groups
list box. Although the permissions may also appear in the User Permissions list box below, they cannot be
properly assigned in the Change User dialog.

Assign App Permissions

To assign a singluar app permission to a user, return to the administrator dashboard and navigate to the Installed
Apps link under the Tethys Apps heading. Select the link with the app name from the list. In the upper right corner
of the Change Tethys App page click the Object Permissions button. On the Object Permissions
page you can assign app specific permissions to a user by entering the username in the User Identification
field and press the Manage user button. Incidentally, you can also manage the app permissions groups from the
Object Permisions page, but changes will be overridden the next time the server restarts and permissions are
synced from the app.

Note: Since assigning the individual app permissions is so difficult, we highly recommend that you use the app
permission groups to group app permissions and then assign the permission groups to the users using the Change

User page.

Anonymous User

The AnonymousUser can be used to assign permissions and permission groups to users who are not logged in. This
means that you can define permissions for each feature of your app, but then assign them all to the AnonymousUser
if you want the app to be publicly accessible.

Manage Tethys Services

The administrator pages provide a simple mechanism for linking to the other services of Tethys Platform. Use the
Spatial Dataset Services link to connect your Tethys Portal to GeoServer, the Dataset Services link
to connect to CKAN instances or HydroShare, or the Web Processing Services link to connect to WPS in-
stances. For detailed instructions on how to perform each of these tasks, refer to the Spatial Dataset Services API,
Dataset Services API, and Web Processing Services API documentation, respectively.

Manage Terms and Conditions

Portal administrators can manage and enforce portal wide terms and conditions and other legal documents via the
administrator pages.

Use the Terms and Conditions link to create new legal documents (see Figure 5). To issue an update to a
particular document, create a new entry with the same slug (e.g. ‘site-terms’), but a different version number (e.g.:
1.10). This allows you to track multiple versions of the legal document and which users have accepted each. The
document will not become active until the Date active field has been set and the date has past.

Figure 5. Creating a new legal document using the terms and conditions feature.

When a new document becomes active, users will be presented with a modal prompting them to review and accept the
new terms and conditions (see Figure 6). The modal can be dismissed, but will reappear each time a page is refreshed
until the user accepts the new versions of the legal documents.

1.7. Tethys Portal 225

Tethys Platform Documentation, Release 1.4.0

TethyS POI’ta| Apps Developer Nathan M +

Home Termsandconditions » Terms and Conditions

Change Terms And Conditions

Slug: site-terms
Name: Terms and Conditions.
4
Version number: 1.00
Text: <h2= -
Web Site Terms and Conditions of Use
</h2>
<h3>
1. Terms
</h3>
<p> o

8y accessing this web site, you are agreeing to be bound by these

Info:

@ New App 1 Exit

App Navigation Welcome!

_ Congratulations on creating a new Tethys app!

Jobs

Results

Steps

1.The First Step
2_The Second Step

3. The Third Step

Get Started

Our Terms

Changes have been made to our Privacy Policy and Terms and
Conditions documents. Please, review and accept the changes to prevent
future interruptions.

Back Next
ACCEPTALL

226 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Figure 6. Terms and conditions modal.

Manage Computing Resources

Computing resources can be managed using the Tethys Compute admin pages. Powered, by TethysCluster
<http://www.tethysplatform.org/TethysCluster/>‘_, these pages allow Tethys Portal administrators to spin up clus-
ters of computing resources on either the Amazon or Microsoft Azure commercial clouds, and link local computing
clusters that are managed with HTCondor. These computational These computational resources are accessed in apps
through the Jobs API and the Compute API. For more detailed documentation refer to the links below.

Tethys Compute Admin Pages

The Tethys Compute settings in site admin allows an administrator to manage computing clusters, oversee jobs, con-
figure schedulers, and configure settings for computing resources.

e Clusters
e Jobs
¢ Schedulers

* Settings

Apps Developer Scott

Home > Tethys Compute

Tethys Compute Administration

Tethys Compute

Clusters #Add #Change
Jobs # Change
Schedulers #Add #Change
Settings # Change

Copyright © 2015 Brigham Young University Powered by @ Tethys Platform

Figure 1. Dashboard for Tethys Compute admin pages.

Clusters A cluster is a group of virtual machines (VMs) that are configured with HTCondor so that they provided
a distributed computing environment. Each cluster is made up of a master node and zero to many worker nodes.
The master node is responsible for assigning jobs to the worker nodes based on their availability and capability.
Tethys Platform uses a Python module called TethysCluster to provision and manage clusters using commercial clouds.
TethysCluster enables provisioning clusters using either Amazon Web Services (AWS) or Microsoft Azure.

1.7. Tethys Portal 227

http://www.tethysplatform.org/TethysCluster/
http://www.tethysplatform.org/TethysCluster/

Tethys Platform Documentation, Release 1.4.0

When creating a new cluster there are only two required settings: name and size ; and four options settings: master
image id, master instance type, node image id, and node instance type.

@ DemO Apps Developer Scott v

Home > Tethys Compute » Clusters > tethys_default (5-node)

Change Cluster

General

name; tethys_default
size: 5

status: Starting

Advanced Options

cloud provider: Amazon Web Services

node image id: node instance
type:

Delete Save and add another | | Save and continue editing |m

Copyright © 2015 Brigham Young University Powered by @ Tethys Platform

Figure 2. Form for creating a new Cluster.

name The name can be any string, but must be unique among all of the clusters for a given cloud account. Therefore,
if the same account credentials are used for two separate instances of Tethys Portal then the the two Tethys Portals
may not both have a cluster with the same name.

size The size is the number of VMs the cluster will contain (including the master). The minimum is 1 and the
maximum is determined by the limits on the cloud account being uses. The size may be changed after the cluster is
created.

master image id The master image id refers to the image that the master node will be made from. When using AWS
this would be the AMI ID (e.g. ami-38e4a750). When using Azure it is the name of the image (e.g. tc-ubuntul4). If
left blank the master node will be created from the node image id.

master instance type The master instance type refers to the VM type for the master node. For AWS this would be
something like t2.small, m3.medium, etc. For Azure it would be Small, Large, A4, etc. If left blank then the master
instance type will be the same as the node instance type. For default values refer to the Default Cluster setting below.

node image id The node image id refers to the image that the worker nodes will be made from. When using AWS
this would be the AMI ID (e.g. ami-38e4a750). When using Azure it is the name of the image (e.g. tc-ubuntul4). If
left blank the image id specified in the Default Cluster template will be used.

228 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

node instance type The node instance type refers to the VM type for the worker nodes. For AWS this would be
something like t2.small, m3.medium, etc. For Azure it would be Small, Large, A4, etc. If left blank then the default
value specified by the Default Cluster template will be used.

Jobs Jobs represent some sort of computation that is sent from an app to a cluster using the Job Manager. For each
job that is created a database record is made to store some of the basic information about the job including: name,
user, creation time, and status. The Jobs section in the Tethys Compute admin page allows for basic management of
these database records. Jobs cannot be created in the admin pages, but they can be edited.

Schedulers Schedulers are HTCondor nodes that have scheduling rights in the pool they belong to. Schedulers
are needed for CondorJob types (see Job Manager documentation). When creating a new Scheduler there are two
required settings: Name and Host ; an optional setting: Username ; and then two options for specifying authentication
credentials: Password or Private key path and Private key pass.

Apps Developer Scott

Home » Tethys Compute » Schedulers » Add scheduler

Add Scheduler

Name: Demo

Host: demo.tethysplatform.org
Username:

Password:

Private key ~/.ssh/id_rsa

path:

Private key

pass:

Save and add another | | Save and continue editing |m

Copyright © 2015 Brigham Young University Powered by @ Tethys Platform

Figure 3. Form for creating a new Scheduler.

Name A name to refer to the scheduler. Can be any string, but must be unique among schedulers.

Host The fully qualified domain name (FQDN) or the IP address of the scheduler.

1.7. Tethys Portal 229

Tethys Platform Documentation, Release 1.4.0

Username The username that will be used to connect to the scheduler. The default username is ‘root’.

Password The password for the user specified by Username on the scheduler. Either a Password or a Private key
path must be specified.

Private key path The absolute path to the private key that is configured with the scheduler. Either a Password or a
Private key path must be specified.

Note: The shortcut for the home directory: ‘~/° can be used and will be evaluated to the home directory of the Apache
user.

Private key pass The passphrase for the private key. If there is no passphrase then leave this field blank.

Settings Tethys Compute settings are divided into three sections: Azure Credentials, Amazon Credentials, and
Cluster Management. The Azure and Amazon Credentials sections are used to store the cloud account credentials that
will be used by Tethys Portal to create clusters. Both Azure and Amazon credentials may be added, however, Tethys
Portal is only capable of using one cloud provider at a time. The cloud provider that will be used is determined by
the Default Cluster setting in the Cluster Management section. In addition to the Default Cluster setting the Cluster
Management section also holds settings for the scheduler server.

Azure Credentials This section contains settings for connecting to an Azure account. There are two required set-
tings: Subscription ID and Certificate Path.

Subscription ID The Subscription ID is a unique identifier for your Azure subscription. For instructions on how to
find your subscription id see this video.

Certificate Path The Certificate Path is the path to an SSL certificate file on the Tethys Portal server that is also
registered in with your Azure subscription. View these instructions for help creating and uploading a certificate to the
Microsoft Azure Management Portal.

Amazon Credentials This section contains settings for connecting to an Amazon Web Services (AWS) account.

AWS Access Key ID The AWS Access Key ID is a unique id for your IAM user. View these instructions for getting
your Access Key ID and Secret Access Key.

AWS Secret Access Key The AWS Secret Access Key is like a password for the AWS account. It is associated with
your Access Key ID, but is not viewable through the AWS Management Console. They only time a Secret Access Key
can be retrieved is when it is created. View these instructions for getting your Access Key ID and Secret Access Key.

AWS User ID The AWS User ID is a unique 12-digit number that identifies the AWS account. This is different from
the AWS Access Key ID which is associated with a specific IAM user within an AWS account.

Key Name The Key Name is the name of an SSH key pair that is uploaded to your AWS account. For more
information see Amazon EC2 Key Pairs.

230 Chapter 1. Contents

https://www.youtube.com/watch?v=VNoGnxvTLDQ
https://msdn.microsoft.com/en-us/library/azure/gg551722.aspx
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Tethys Platform Documentation, Release 1.4.0

Key Location The Key Location is the path to the SSH private key on the Tethys Portal server. For more information
see Amazon EC2 Key Pairs.

Cluster Management This section contains general settings for clusters.

Scheduler IP The ip address or host name of the global HTCondor scheduler server. This should be one of the nodes
in a cluster.

Note: This setting is deprecated. Use the Schedulers options to set up schedulers now.

Scheduler Key Location The path to the private ssh key allowing passwordless ssh into the scheduler server. When
a node in a cluster is used as the scheduler server then this will be the same as either the Key Location (for AWS) or
the Certificate Path (for Azure).

Note: This setting is deprecated. Use the Schedulers options to set up schedulers now.

Default Cluster The template that will be used to create new clusters. This value also determines which cloud
provider will be used to create clusters. Acceptable values are:

* azure_default_cluster

e aws_default_cluster

Azure Default Cluster

[cluster azure_default_cluster]
CLOUD_PROVIDER = Azure
CLUSTER_SIZE = 1

CLUSTER_SHELL = Dbash
NODE_IMAGE_ID = ami-3393a4b5a
NODE_INSTANCE_TYPE = m3.medium

AWS Default Cluster

[cluster aws_default_cluster]
CLOUD_PROVIDER = AWS
CLUSTER_SIZE = 1
CLUSTER_SHELL = bash
NODE_IMAGE_ID = tc-linuxl2-2
NODE_INSTANCE_TYPE = Small

Customize

Last Updated: August 4, 2015

The content of Tethys Portal can be customized or rebranded to reflect your organization. To access these settings, login
to Tethys Portal using an administrator account and select the Site Settings link under the Tethys Portal
heading. Sitewide settings can be changed using the General Settings link and the content on the home page
can be modified by using the Home Page link.

1.7. Tethys Portal 231

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Tethys Platform Documentation, Release 1.4.0

General Settings

The following settings can be used to modify global features of the site.

Settings > General Settings links on the admin pages.

Setting Description

Site Title Title of the web page that appears in browser tabs and bookmarks of the site.
Favicon Path to the image that is used in browser tabs and bookmarks.

Brand Text Title that appears in the header.

Brand Image

Logo or image that appears next to the title in the header.

Brand Image Height Height to scale the brand image to.

Brand Image Width Width to scale the brand image to.

Brand Image Padding Adjust space above brand image to center it.
Apps Library Title Title of the page that displays app icons.

Primary Color
Secondary Color

Primary Text Color

Primary Text Hover Color
Secondary Text Color
Secondary Text Hover Color
Background Color

Footer Copyright

Color that is used as the primary theme color (e.g.: #ff0000 or rgb(255,0,0)).
Color that is used as the secondary theme color.

Color of the text appearing in the headers and footer.

Hover color of the text appearing in the headers and footer (where applicable).
Color of secondary text on the home page.

Hover color of the secondary text on the home page.

Color of the background on the apps library page and other pages.

Copyright text that appears in the footer.

Figure 2. General settings for Tethys Portal.

Home Page Settings

The following settings can be used to modify the content on the home page. Access the settings using the Site

Settings > Home Page links on the admin pages.

Setting Description

Hero Text Text that appears in the hero banner at the top of the home page.
Blurb Text Text that appears in the blurb banner, which follows the hero banner.
Feature 1 Heading for 1st feature highlight.

Heading

Feature 1 Body
Feature 1 Image
Feature 2
Heading
Feature 2 Body
Feature 2 Image
Feature 3
Heading
Feature 3 Body
Feature 3 Image
Call to Action

Call to Action
Button

Body text for the 1st feature highlight.
Path or url to image for the st feature highlight.
Heading for 2nd feature highlight.

Body text for the 2nd feature highlight.
Path or url to image for the 2nd feature highlight.
Heading for 3rd feature highlight.

Body text for the 3rd feature highlight.

Path or url to image for the 3rd feature highlight.

Text that appears in the call to action banner at the bottom of the page (only visible when
user is not logged in).

Text that appears on the call to action button in the call to action banner (only visible when
user is not logged in).

Figure 3. Home page settings for Tethys Portal.

232

Chapter 1. Contents

Access the settings using the Site

Tethys Platform Documentation, Release 1.4.0

Apps Developer

Feature 1 Image /static/tethys_portal /images/placeholder.gif Feb. 6, 2015, 2:50 a.m.
4

Feature 2 Heading Feature 2 Feb. 6, 2015, 2:50 a.m.
4

Feature 2 Body Describe the apps and tools that your Tethys Portal provides and addcustom pictures to Feb. 6, 2015, 2:50 a.m.
each feature as a finishing touch. 4

Feature 2 Image /static/tethys_portal /images/placeholder.gif Feb. 6, 2015, 2:50 a.m.
4

Feature 3 Heading Feature 3 Feb. 6, 2015, 2:50 a.m.
4

Feature 3 Body You can change the color theme and branding of your Tethys Portal in a jiffy. Visit the Feb. 6, 2015, 2:50 a.m.

Site Admin settings from the user menu and select General Settings.

N

Feature 3 Image /static/tethys_portal /images/placeholder.gif Feb. 6, 2015, 2:50 a.m.
Z

Call to Action Ready to get started? Feb. 6, 2015, 2:50 a.m.
z

Call to Action Button Start Using Tethys! Feb. 6, 2015, 2:50 a.m.

N

[Save and continue editing] m

1.7. Tethys Portal 233

Tethys Platform Documentation, Release 1.4.0

Bypass the Home Page

Tethys Portal can also be configured to bypass the home page. When this setting is applied, the root url will al-
ways redirect to the apps library page. This setting is modified in the settings.py script. Simply set the
BYPASS_TETHYS_HOME_PAGE setting to True like so:

BYPASS_TETHYS_HOME_PAGE = True

Enable Open Signup

Prior to version 1.3.0, any visitor to a Tethys portal could signup for an account without administrator approval or
in other words account signup was open. For version 1.3.0+ the open signup capability has been disabled by de-
fault for security reasons. To enable open signup, you must modify the ENABLE_OPEN_SIGNUP setting in the
settings.py script:

ENABLE_OPEN_SIGNUP = True

Social Authentication

Last Updated: August 5, 2015

Tethys Portal supports authenticating users with Google, Facebook, LinkedIn and HydroShare via the OAuth 2.0
method. The social authentication and authorization features have been implemented using the Python Social Auth
module and the social buttons provided by the Social Buttons for Bootstrap. Social login is disabled by default,
because enabling it requires registering your tethys portal instance with each provider.

Enable Social Login

Use the following instructions to setup social login for the providers you desire.

Caution: These instructions assume that you have generated a new settings file after upgrading to Tethys Plat-
form 1.2.0 or later. If this is not the case, please review the Social Auth Settings section.

Google

1. Create a Google Developer Account

You will need a Google developer account to register your Tethys Portal with Google. To create an
account, visit https://developers.google.com and sign in with a Google account.

2. Create a New Project
Use the Google Developer Console to create a new project.
3. Create a New Client ID

After the project has been created, select the project and use the navigation on the left to go to APIs &
auth > Credentials and press the Create new Client ID button in the OAuth section.

1. Configure the Consent Screen

In the window that appears, select Web Application and press Configure consent
screen. The consent screen is what the user sees when they log into Tethys using their
Google account. You need to provide information like the name of your Tethys Portal and
your logo.

234 Chapter 1. Contents

http://psa.matiasaguirre.net/
http://lipis.github.io/bootstrap-social/
https://developers.google.com
https://console.developers.google.com/project/_/appengine/logs

Tethys Platform Documentation, Release 1.4.0

2. Provide Authorized Origins

As a security precaution, Google will only accept authentication requests from the hosts listed
in the Authorized JavaScript Origins box. Add the domain of your Tethys Portal
to the list. Optionally, you may add a localhost domain to the list to be used during testing.
For example, if the domain of your Tethys Portal is www . example . org, you would add the
following entries:

https://www.example.org
http://localhost:8000

3. Provide Authorized Redirect URIs

You also need to provide the callback URI for Google to call once it has authenticated the user.
This follows the pattern http://<host>/ocauth2/complete/google-oauth2/.
For a Tethys Portal at domain www . example.org:

https://www.example.org/oauth2/complete/google-oauth2/
https://localhost:8000/0auth2/complete/google—-ocauth2/

4. Press Create Client ID Button

Take note the Client IDand Client secret that are assigned to your app for the next
step.

3. Enable the Google+ API
1. Use the navigation on the left to goto APIs & auth > APIs.
2. Search for Google+ APT and select it from the results.

3. Click on the Enable API button to enable it.

Note: Some Google APIs are free to use up to a certain quota of hits. Familiarize your self with the
quotas for any APIs you use by selecting the API and viewing the Quota tab.

4. Open settings.py scriptlocated in /usr/lib/tethys/src/tethys_apps/settings.py

Add the social.backends.google.GoogleOAuth?2 backend to the
AUTHENTICATION_BACKENDSsmﬁng

AUTHENTICATION_BACKENDS = (

'social.backends.google.GoogleOAuth2',
'django.contrib.auth.backends.ModelBackend',
)

Assign the Client ID and Client secret to the SOCIAL_AUTH_GOOGLE_OAUTH2_KEY and
SOCIAL_AUTH_GOOGLE_AUTH2_SECRET settings, respectively:

SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = '...'
SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = '...'

References For more detailed information about using Google social authentication see the following articles:
» Python Social Auth Supported Backends: Google
* Developer Console Help

* Google Identity Platform

1.7. Tethys Portal 235

http://psa.matiasaguirre.net/docs/backends/google.html
https://developers.google.com/console/help/new/?hl=en_US#generatingoauth2
https://developers.google.com/identity/protocols/OAuth2

Tethys Platform Documentation, Release 1.4.0

Facebook

1. Create a Facebook Developer Account

You will need a Facebook developer account to register your Tethys Portal with Facebook. To create an
account, visit https://developers.facebook.com and sign in with a Facebook account.

Point to My Apps and select Become a Facebook Developer. Click on Register Now and
then accept the terms.

2. Create a Facebook App
1. Point to My Apps and select Add a New App.

2. Select the Website option.

»

Type the name of the new app in the text field and press the Create New Facebook App ID button from
the drop down.

Choose a category and press Create App ID.

View the Quick Start tutorial if you wish or press the Skip Quick Start button to skip.
Note the App ID and App Secret for Step 5.

Setup OAuth

S

1. Select Settings from the left navigation menu and add a Contact Email address.

2. Click on the Advanced tab and add the callback URIs to the Valid OAuth redirect URIs field. For
example, if my Tethys Portal was located at www . example.org:

https://www.example.org/oauth2/complete/facebook/
http://localhost:8000/0auth2/complete/facebook/

3. Select Status & Review from the left navigation menu. Make the app public by changing the
toggle switch to Yes.

Note: The Facebook app must be public for you to allow anyone to authenticate using Facebook in your
Tethys Portal. For testing, you can use the Roles menu item to add specific Facebook users that are

allowed to authenticate when the app is in development mode.

5. Open settings.py scriptlocated in /usr/lib/tethys/src/tethys_apps/settings.py

Add the social.backends. facebook.FacebookOAuth?2 backend to the
AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (

'social.backends. facebook.FacebookOAuth2',
'django.contrib.auth.backends.ModelBackend',
)

ASSign the App ID and App secret to the SOCIAL_AUTH_FACEBOOK_KEY and
SOCIAL_AUTH_FACEBOOK_SECRET settings, respectively:

SOCIAL_AUTH_FACEBOOK_KEY = '...'
SOCIAL_AUTH_FACEBOOK_SECRET = '...'

References For more detailed information about using Facebook social authentication see the following articles:

* Python Social Auth Supported Backends: Facebook

236 Chapter 1. Contents

https://developers.facebook.com/
http://psa.matiasaguirre.net/docs/backends/facebook.html

Tethys Platform Documentation, Release 1.4.0

 Facebook Login
» Facebook Login for the Web with the JavaScript SDK

LinkedIn

1. Create a LinkedIn Developer Account

You will need a LinkedIn developer account to register your Tethys Portal with LinkedIn. To create an
account, visit https://developer.linkedin.com/my-apps and sign in with a LinkedIn account.

2. Create a LinkedIn Application

1. Navigate back to https://developer.linkedin.com/my-apps, if necessary and press the Create Application
button.

2. Fill out the form and press Submit.
3. Notethe Client IDand Client Secret for Step 5.
4. Setup OAuth

1. Add the call back URLs under the OAuth 2.0 section. For example, if my Tethys Portal was located
at the domain www . example.org:

https://www.example.org/oauth2/complete/linkedin-ocauth2/
http://localhost:8000/0auth2/complete/linkedin-oauth2/

2. Select Settings from the left navigation menu. Make the app public by selecting Live from the
Application Status dropdown.

Note: The LinkedIn app must be public for you to allow anyone to authenticate using LinkedIn in your
Tethys Portal. For testing, you can use the Roles menu item to add specific LinkedIn users that are

allowed to authenticate when the app is in development mode.

5. Open settings.py scriptlocated in /usr/lib/tethys/src/tethys_apps/settings.py

Add the social.backends.linkedin.LinkedinOAuth?2 backend to the
AUTHENTICATION_BACKENDSSﬂﬁng

AUTHENTICATION_BACKENDS = (

'social.backends.linkedin.LinkedinOAuth2"',
'django.contrib.auth.backends.ModelBackend',
)

Assign the Client ID and Client Secret to the SOCIAL_AUTH_LINKEDIN_OAUTH2_KEY
and SOCIAL_AUTH_LINKEDIN_OAUTH2_SECRET settings, respectively:

SOCIAL_AUTH LINKEDIN_OAUTH2_KEY = '...'
SOCIAIL_AUTH_LINKEDIN_OAUTH2 SECRET = '...'

References For more detailed information about using LinkedIn social authentication see the following articles:
* Python Social Auth Supported Backends: LinkedIn
e LinkedIn: Authenticating with OAuth 2.0

1.7. Tethys Portal 237

https://developers.facebook.com/docs/facebook-login/v2.4
https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.4
https://developer.linkedin.com/my-apps
https://developer.linkedin.com/my-apps
http://psa.matiasaguirre.net/docs/backends/linkedin.html
https://developer.linkedin.com/docs/oauth2

Tethys Platform Documentation, Release 1.4.0

HydroShare

1. Create a HydroShare Account

You will need a HydroShare account to register your Tethys Portal with HydroShare. To create an account,
visit https://www.hydroshare.org.

2. Create a HydroShare Application

1. Navigate to https://www.hydroshare.org/o/applications/register/.
See Step 4 for instructions on Redirect URISs.

Fill out the form and press Save.

Note the Client IDand Client Secret for Step 5.
Setup OAuth

Eal

1. Add the call back URLs under the Redirect URIs section. For example, if my Tethys Portal was
located at the domain www . example.org:

https://www.example.org/oauth2/complete/hydroshare/
http://localhost:8000/0auth2/complete/hydroshare/

5. Open settings.py scriptlocated in /usr/lib/tethys/src/tethys_apps/settings.py

Add the social.backends.hydroshare.HydroShareOAuth2 backend to the
AUTHENTICATION_BACKENDSSﬂﬁng

AUTHENTICATION_BACKENDS = (
'tethys_services.backends.hydroshare.HydroShareOAuth2',

'django.contrib.auth.backends.ModelBackend',

)

Assign the Client ID and Client Secret to the SOCIAL_AUTH_HYDROSHARE_KEY and
SOCIAL_AUTH_HYDROSHARE_SECRET settings, respectively:

SOCIAL_AUTH_HYDROSHARE_KEY = '...'
SOCIAL_AUTH_HYDROSHARE_SECRET = '...'

References For more detailed information about using HydroShare social authentication see the following articles:

* https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API#oauth-20-support

Social Auth Settings

Social authentication requires Tethys Platform 1.2.0 or later. If you are using an older version of Tethys Platform, you
will need to upgrade by following either the Upgrade from 1.3 to 1.4 or the Upgrade from 1.3 to 1.4 instructions. The
settings.py script is unaffected by the upgrade. You will need to either generate a new settings.py script
using tethys gen settings or add the following settings to your existing settings.py script to support
social login.

INSTALLED_APPS = (

'social.apps.django_app.default',

MIDDLEWARE_CLASSES = (

238 Chapter 1. Contents

https://www.hydroshare.org
https://www.hydroshare.org/o/applications/register/
https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API#oauth-20-support

Tethys Platform Documentation, Release 1.4.0

'tethys_portal.middleware.TethysSocialAuthExceptionMiddleware',

TEMPLATE_CONTEXT_PROCESSORS = (
'django.core.context_processors.request’,

'social.apps.django_app.context_processors.backends’,
'social.apps.django_app.context_processors.login_redirect',

OAuth Settings

SOCIAL_AUTH_ADMIN_USER_SEARCH_FIELDS = ['username', 'first_name', 'email']
SOCIAL_AUTH_SLUGIFY_USERNAMES = True

SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/apps/'

SOCIAL_AUTH_LOGIN_ERROR_URL = '/accounts/login/'

OAuth Providers

Google
SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = "'
SOCIAL_AUTH GOOGLE_OAUTH2_ SECRET = ''

Facebook

SOCIAL_AUTH FACEBOOK KEY = ''
SOCIAL_AUTH_FACEBOOK_SECRET = "'
SOCIAL_AUTH_FACEBOOK_SCOPE = ['email']

LinkedIn
SOCIAL_AUTH_LINKEDIN_OAUTH2_KEY = ''
SOCIAL_AUTH_LINKEDIN_OAUTH2_SECRET = ''

HydroShare
SOCIAL_AUTH_HYDROSHARE_KEY = "'
SOCIAL_AUTH_HYDROSHARE_SECRET = ''

Developer Tools

Last Updated: August 4, 2015

Tethys provides a Developer Tools page that is accessible when you run Tethys in developer mode. Developer Tools
contain documentation, code examples, and live demos of the features of various features of Tethys. Use it to learn
how to add a map or a plot to your web app using Gizmos or browse the available geoprocessing capabilities and
formulate geoprocessing requests interactively.

Figure 4. Use the Developer Tools page to assist you in development.

App Feedback

Last Updated: December 15, 2015

Tethys Portal includes a feature for enabling app feedback from the app-users. When activated, the feature shows
a button on the bottom-left of each app page that activates a feedback form. The form is submitted to specified
developers. The feature is supported starting in Tethys 1.3.0.

1.7. Tethys Portal 239

Tethys Platform Documentation, Release 1.4.0

@ Tethys Portal

Developer Tools

Gizmos

Gizmos are building blocks that can be used to create beautiful interactive controls in
Tethys Apps. Using gizmos, developers can add date-pickers, plots, and maps to their
templates with minimal coding. Follow the link to learn more.

Show me the docs.

Web Processing Services

Geoprocessing in Tethys apps can be accomplished using any web processing service
a (WPS). For canvenience, Tethys provides the 52 North WPS service built in. Use this tool to
explore the processes that are available and how to parameterize them.

Go to tool.

Copyright ® 2015 Your Organization Powered by i’_; Tethys Platform

240 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Enable Feedback

Use the following instructions to setup the feedback form on a Tethys app.
Add feedback properties to the app configuration file (app . py)

Open the app configuration file (app . py) found in the app installation directory using a text editor and
add the following properties to the TethysAppBase class. The feedback_emails should corre-
spond to specific app developers that desire feedback.

enable_feedback = True
feedback_emails = ['app_developer@emaildomain.com', 'another_app__developer@emaildomain.com'

Note: The emails will only be sent if Step 6. Setup Email Capabilities has been setup upon installing
Tethys.

If either of the properties listed above are not defined or if enable_feedback is set to False, the
feedback feature will not be available.

Example

class MyFirstApp (TethysAppBase) :

mmn

Tethys app class for My First App.

mmn

name = 'My First App'

index = 'my_first_app:home'

icon = 'my_first_app/images/icon.gif'
package = 'my_first_app'

root_url = 'my-first-app'

color = '#29ABEL'

enable_feedback = True
feedback_emails = ['developer@myfirstapp.com']

Production Installation

Last Updated: August 12, 2015

The following instructions can be used to install Tethys Platform on a production server.

System Requirements

Last Updated: April 18, 2015

Tethys Platform is composed of several software components, each of which has the potential of using a copious
amount of computing resources (see Figure 1). We recommend distributing the software components across several
servers to optimize the use of computing resources and improve performance of Tethys Platform. Specifically, we
recommend having a separate server for each of the following components:

* Tethys Portal
* PostgreSQL with PostGIS

1.8. Production Installation 241

Tethys Platform Documentation, Release 1.4.0

¢ GeoServer

52 North WPS
¢ HTCondor
« CKAN

Figure 1.2: Figure 1. Tethys Platform consists of several software components that should be hosted on separate
servers in a production environment.

The following requirements should be interpreted as minimum guidelines. It is likely you will need to expand storage,
RAM, or processors as you add more apps. Each instance of Tethys Platform will need to be fine tuned depending to
fit the requirements of the apps that it is serving.

Tethys Portal

Tethys Portal is a Django web application. It needs to be able to handle requests from many users meaning it will need
processors and memory. Apps should be designed to offload data storage onto one of the data storage nodes (CKAN,
database, GeoServer) to prevent the Tethys Portal server from get bogged down with file reads and writes.

¢ Processor: 2 CPU Cores @ 2 GHz each
« RAM: 4 GB
e Hard Disk: 20 GB

GeoServer

GeoServer is used to render maps and spatial data. It performs operations like coordinate transformations and format
conversions on the fly, so it needs a decent amount of processing power and RAM. It also requires storage for the
datasets that it is serving.

242 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

¢ Processor: 4 CPU Cores @ 2 GHz each
* RAM: 8 GB
¢ Hard Disk: 500 GB +

52 North WPS

52 North WPS is a geoprocessing service provider and as such will require processing power.
* Processors: 4 CPU Cores @ 2 GHz each
* RAM: 8 GB
e Hard Disk: 100 GB

PostgreSQL with PostGIS
PostgreSQL is a database server and it should be optimized for storage. The PostGIS extension also provide the server
with geoprocessing capabilities, which may require more processing power than recommended here.

* Processors: 4 CPU Cores @ 2 GHz each

* RAM: 4 GB

 Hard Disk: 500 GB +

Production Installation on Ubuntu 14.04

Last Updated: August 11, 2015

This article will provide an overview of how to install Tethys Portal in a production setup ready to host apps. The
recommended deployment platform for Python web projects is to use WSGI. The easiest and most stable way to
deploy a WSGI application is with the modwsgi extension for the Apache Server. These instructions are optimized for
Ubuntu 14.04 using Apache and modwsgi, though installation on other Linux distributions will be similar.

1. Install Tethys Portal
Follow the default . ./installation/linux instructions to install Tethys Portal with the following considera-
tions

* Assign strong passwords to the database users.

* Create a new settings file, do not use the same file that you have been using in development.

* Optionally, Follow the Distributed Configuration instructions to install Docker and the components of the soft-
ware suite on separate servers.

2. Install Apache and Dependencies

Install Apache and the modwsgi module if they are not installed already. In this tutorial, vim is used to edit file,
however, you are welcome to use any text editor you are comfortable with.

$ sudo apt-get install apache2 libapache2-mod-wsgi vim

1.8. Production Installation 243

http://www.wsgi.org/
https://code.google.com/p/modwsgi/
http://httpd.apache.org/

Tethys Platform Documentation, Release 1.4.0

3. Make BASELINE Virtual Environment

An additional virtual environment needs to be created to use modwsgi in Apache. This virtual environment needs to
be independent of the Tethys virtual environment and the system Python installation.

$ sudo mkdir -p /usr/local/pythonenv
$ sudo virtualenv --no-site-packages /usr/local/pythonenv/BASELINE

4. Set WSGI Python Home

Edit the Apache configuration to use the BASELINE environment as the home python for WSGI. Open
apache?2.conf using vim or another text editor:

$ sudo vim /etc/apache2/apache2.conf

To edit the file using vim, you need to be in INSERT mode. Press i to enter INSERT mode and add this line to the
bottom of the apache?2 . conf file:

WSGIPythonHome /usr/local/pythonenv/BASELINE

Press ESC to exit INSERT mode and then press : x and ENTER to save changes and exit.

5. Make Directories for Static Files and TethysCluster

When running Tethys Platform in development mode, the static files are automatically served by the development
server. In a production environment the static files will need to be collected into one location and Apache or another
server will need to be configured to serve these files (see Deployment Checklist: STATIC_ROOT). Since Apache will
be serving Tethys Portal under Apache user (www-data) the TethysCluster home directory also needs to be created:

$ sudo mkdir /var/www/.tethyscluster && sudo mkdir -p /var/www/tethys/static
$ sudo chown “whoami® /var/www/tethys/static

6. Setup Email Capabilities

Tethys Platform provides a mechanism for resetting forgotten passwords that requires email capabilities, for which we
recommend using Postfix. Install Postfix as follows:

$ sudo apt-get install postfix

When prompted select “Internet Site”. You will then be prompted to enter you Fully Qualified Domain Name (FQDN)
for your server. This is the domain name of the server you are installing Tethys Platform on. For example:

foo.example.org

Next, configure Postfix by opening its configuration file:

$ sudo vim /etc/postfix/main.cf

Press 1 to start editing, find the myhostname parameter, and change it to point at your FQDN:

myhostname = foo.example.org

Find the mynetworks parameter and verify that it is set as follows:

mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128

244 Chapter 1. Contents

https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#static-root-and-static-url

Tethys Platform Documentation, Release 1.4.0

Press ESC to exit INSERT mode and then press : x and ENTER to save changes and exit. Finally, restart the Postfix
service to apply the changes:

$ sudo service postfix restart

Django must be configured to use the postfix server. The next section will describe the Django settings that must be
configured for the email server to work. For an excellent guide on setting up Postfix on Ubuntu, refer to How To Install
and Setup Postfix on Ubuntu 14.04.

7. Set Secure Settings

Several settings need to be modified in the settings.py module to make the installation ready for a production
environment. The internet is a hostile environment and you need to take every precaution to make sure your Tethys
Platform installation is secure. Django provides a Deployment Checklist that points out critical settings. You should
review this checklist carefully before launching your site. As a minimum do the following:

Open the settings.py module for editing using vim or another text editor:

$ sudo vim /usr/lib/tethys/src/tethys_apps/settings.py

Press 1 to start editing and change the following settings:

1.

Create new secret key

Create a new SECRET_KEY for the production installation of Tethys Platform. Do not use the same key
you used during development and keep the key a secret. Take care not to store the settings.py file
with the production secret key in a repository. Django outlines several suggestions for making the secret
key more secure in the Deployment Checklist: SECRET_KEY documentation.

Turn off debugging

Turn off the debugging settings by changing DEBUG and TEMPLATE_DEBUG to False. You must
never turn on debugging in a production environment.

DEBUG = False

Set the allowed hosts

Allowed hosts must be set to a suitable value, usually a list of the names and aliases of the server that
you are hosting Tethys Portal on (e.g.: “www.example.com”). Django will not work without a value
set for the ALLOWED_HOSTS parameter when debugging is turned of. See the Deployment Checklist:
ALLOWED_HOSTS for more information.

ALLOWED_HOSTS = ['www.example.com']

Set the static root directory

You must set the STATIC_ROOT settings to tell Django where to collect all of the static files. Set this
setting to the directory that was created in the previous step (/var/www/tethys/static). See the
Deployment Checklist: STATIC_ROOT for more details.

STATIC_ROOT = '/var/www/tethys/static'

Set email settings

Several email settings need to be configured for the forget password functionality to work properly. The
following exampled illustrates how to setup email using the Postfix installation from above:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMATIL_HOST = 'localhost'
EMAIL_PORT = 25

1.8. Production Installation

245

https://www.digitalocean.com/community/tutorials/how-to-install-and-setup-postfix-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-setup-postfix-on-ubuntu-14-04
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#secret-key
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#allowed-hosts
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#allowed-hosts
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#static-root-and-static-url

Tethys Platform Documentation, Release 1.4.0

EMAIL_HOST_USER = ''

EMAIL_HOST_PASSWORD = ''

EMAIL_USE_TLS = False

DEFAULT_FROM_EMAIL = 'Example <noreplylexmaple.com>'

For more information about setting up email capabilities for Tethys Platform, refer to the Sending email
documentation.
4. Setup social authentication

If you wish to enable social authentication capabilities in your Tethys Portal, follow the Social Authenti-
cation instructions.

5. Configure workspaces (optional)

If you would like all of the app workspace directories to be aggregated to a central location, create the
directory and then specify it using the TETHYS_WORKSPACES_ROOT setting.

Press ESC to exit INSERT mode and then press : x and ENTER to save changes and exit.

Important: Review the Deployment Checklist carefully.

8. Create Apache Site Configuration File

Create an Apache configuration for your Tethys Platform using the gen command and open the
tethys—-default.conf file that was generated using vim:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys gen apache -d /etc/apache2/sites—available
(tethys) $ vim /etc/apache2/sites—available/tethys-default.conf
(tethys) $ exit

Press i to enter INSERT mode and edit the file. Change the ServerName and ServerAlias to match the domain
for your Tethys Portal. The tethys-default.conf will look similar to this when you are done:

<VirtualHost 0.0.0.0:80>
ServerName example.net
ServerAlias www.example.net

Alias /static/ /var/www/tethys/static/

<Directory /var/www/tethys/static/>
Require all granted
</Directory>

WSGIScriptAlias / /usr/lib/tethys/src/tethys_portal/wsgi.py

<Directory /usr/lib/tethys/src/tethys_portal>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

Daemon config

WSGIDaemonProcess tethys_default \
python-path=/usr/lib/tethys/src/tethys_portal:/usr/lib/tethys/lib/python2.7/site-packages

WSGIProcessGroup tethys_default

246 Chapter 1. Contents

https://docs.djangoproject.com/en/1.8/topics/email/
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/

Tethys Platform Documentation, Release 1.4.0

Logs

ErrorLog /var/log/apache2/tethys_default.error.log

CustomLog /var/log/apache2/tethys_default.custom.log combined
</VirtualHost>

There is a lot going on in this file, for more information about Django and WSGI review Django’s How to deploy with
WSGI documentation.

9. Install Apps

Download and install any apps that you want to host using this installation of Tethys Platform. It is recommended that
you create a directory to store the source code for all of the apps that you install. The installation of each app may
vary, but generally, an app can be installed as follows:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ cd /path/to/tethysapp-my_first_app
(tethys) $ python setup.py install
(tethys) $ exit

10. Collect Static Files
The static files need to be collected into the directory that you created. Enter the following commands and enter “yes”
if prompted:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys manage collectstatic
(tethys) $ exit

11. Collect Workspaces (optional)

If you configured a workspaces directory with the TETHYS_WORKSPACES_ROOT setting, you will need to run the
following command to collect all the workspaces to that directory:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys manage collectworkspaces
(tethys) $ exit

12. Setup the Persistent Stores for Apps

After all the apps have been successfully installed, you will need to initialize the persistent stores for the apps:

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys syncstores all
13. Transfer Ownership to Apache

When you are finished installing Tethys Portal, change the ownership of the source code and static files to be the
Apache user (www-data):

1.8. Production Installation 247

https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/
https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/

Tethys Platform Documentation, Release 1.4.0

$ sudo chown -R www-data:www-data /usr/lib/tethys/src /var/www/tethys/static /var/www/.tethyscluster

14. Enable Site and Restart Apache

Finally, you need to disable the default apache site, enable the Tethys Portal site, and reload Apache:

$ sudo a2dissite 000-default.conf && sudo aZensite tethys-default.conf && sudo service apache2 reloac

Tip: To install additional apps after the initial setup of Tethys, you will follow the following process:

1. Change ownership of the src and static directories to your user using the patter in step 12 OR login as root
user using sudo su.

2. Install apps, syncstores, collectstatic, and collectworkspaces as in steps 9-12.
3. Transfer ownership of files to Apache user as in step 13.
4. Reload the apache server using sudo service apache2 reload.

For more information see: Installing Apps in Production.

Installing Apps in Production

Last Updated: August 10, 2015

Installing apps in a Tethys Platform configured for production can be challenging. Most of the difficulties arise,
because Tethys is served by Apache in production and all the files need to be owned by the Apache user. The following
instructions for installing apps in a production environment are provided to aid administrators of a Tethys Portal.

1. Create a Directory for App Source

Create a directory on your server that will store the source code for the apps that are installed on your server. For
example:

$ sudo mkdir -p /var/www/tethys/apps/

2. Download App Source Code

You will need to copy the source code of the app to the server. There are many methods for accomplishing this, but
one way is to create a repository for your code in GitHub. To download the source from GitHub, clone it as follows:

$ cd /var/www/tethys/apps/
$ sudo git clone https://github.com/username/tethysapp-my_first_app.git

Tip: Substitute “username” for your GitHub username or organization and substitute “tethysapp-my_first_app” for
the name of the repository with your app source code.

3. Install the App

Execute the setup script (setup . py) with the install command to make Python aware of the app and install any
of its dependencies:

248 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

$ sudo su

$ /usr/lib/tethys/bin/activate
(tethys) $ cd /var/www/tethys/apps/tethysapp—-my_first_app
(tethys) $ python setup.py install
(tethys) $ exit

Tip: If you plan to execute the commands in steps 4 - 6, do not run the exit until after you have completed the
commands in these steps. That way you will not need to run the sudo su and ‘. /usr/lib/tethys/bin/activate*

commands multiple times.

4. Collect and Static Files

The static files for apps are hosted by Apache, which necessitates collecting all of the static files to a single directory.
This directory is configured through the STATIC_ROOT setting in the settings.py script. Collect the static files
with this command:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys manage collectstatic
(tethys) $ exit

5. Collect Workspaces (optional)

As a means of optimizing storage on the server, the workspaces of apps can be collected to a central location. This
location is configured through the TETHYS_WORKSPACES_ROOT setting in the settings. py script. Collect the
workspaces with this command:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys manage collectworkspaces
(tethys) $ exit

Tip: The collectall command provides a shortcut for running both collectstatic and
collectworkspaces commands:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys manage collectall
(tethys) $ exit

6. Initialize Persistent Stores (optional)

If your app requires a database via the persistent stores API, you will need to initialize it:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys syncstores my_first_app
(tethys) $ exit

1.8. Production Installation 249

Tethys Platform Documentation, Release 1.4.0

7. Change the Ownership of Files to the Apache User

The Apache user must own any files that it Apache is serving. This includes the source files, static files, and any
workspaces that your app may have. Assuming the sources files, static files, and workspaces are all located in the
/var/www/tethys/ directory, the following command will accomplish the change in ownership that is required:

$ sudo chown -R www-data:www-data /var/www/tethys/ /usr/lib/tethys/src/tethys_apps/tethysapp/

Note: The name of the Apache user in RedHat or CentOS flavored systems is apache, not www-data.

8. Restart Apache

Restart Apache to effect the changes:

$ sudo service apache2 restart

Note: The command for managing Apache on CentOS or RedHat flavored systems is ht t pd. Restart as follows:

$ sudo service httpd restart

Distributed Configuration

Last Updated: April 18, 2015

The Tethys Docker images can be used to easily install each of the software components of Tethys Platform on separate
servers. However, you will not be able to use the Tethys commandline tools to install the Dockers as you do during
development. The following article describes how to deploy each software component using the native Docker API.

Install Docker on Each Server

After you have provisioned servers for each of the Tethys software components, install Docker on each using the
appropriate Docker installation instructions. Docker provides installation instructions for most major types of servers.

GeoServer Docker Deployment

Pull the Docker image for GeoServer using the following command:

$ sudo docker pull ciwater/geoserver

After the image has been pulled, run a new Docker container as follows:

$ sudo docker run -d -p 80:8080 —--restart=always —--name geoserver ciwater/geoserver

Refer to the Docker Run Reference for an explanation of each parameter. To summarize, this will start the container
as a background process on port 80, with the restart policy set to always restart the container after a system reboot,
and with an appropriate name.

More information about the GeoServer Docker can be found on the Docker Registry:

https://registry.hub.docker.com/u/ciwater/geoserver/

Important: The admin username and password can only be changed using the web admin interface. Be sure to

250 Chapter 1. Contents

http://docs.docker.com/installation/
https://docs.docker.com/reference/run/
https://registry.hub.docker.com/u/ciwater/geoserver/

Tethys Platform Documentation, Release 1.4.0

log into GeoServer and change the admin password using the web interface. The default username and password are
admin and geoserver, respectively.

Backup

PostgreSQL with PostGIS Docker Deployment

Pull the Docker image for PostgreSQL with PostGIS using the following command:

$ sudo docker pull ciwater/postgis

The PostgreSQL with PostGIS Docker automatically initializes with the three database users that are needed for Tethys
Platform:

* tethys_default
* tethys_db_manager
* tethys_super

The default password for each is “pass”. For production, you will obviously want to change these passwords. Do so
using the appropriate environmental variable:

e -¢ TETHYS_DEFAULT_PASS=<TETHYS_DEFAULT_PASS>
* -e TETHYS_DB_MANAGER_PASS=<TETHYS_DB_MANAGER_PASS>
e -e TETHYS_SUPER_PASS=<TETHYS_SUPER_PASS>
Here is an example of how to use the environmental variables to set passwords when starting a container:

$ sudo docker run -d -p 80:5432 -e TETHYS_DEFAULT_PASS="pass" -e TETHYS_DB_MANAGER_PASS="pass" -e TE’

Refer to the Docker Run Reference for an explanation of each parameter. To summarize, this will start the container
as a background process on port 80, with the restart policy set to always restart the container after a system reboot,
and with an appropriate name. It also set the passwords for each database at startup.

More information about the PostgreSQL with PostGIS Docker can be found on the Docker Registry:

https://registry.hub.docker.com/u/ciwater/postgis/

Important: Set strong passwords for each database user for a production system.

Backup

52 North WPS Docker Deployment

Pull the Docker image for 52 North WPS using the following command:

$ sudo docker pull ciwater/n52wps

After the image has been pulled, run a new Docker container as follows:
$ sudo docker run -d -p 80:8080 —-e USERNAME="foo" -e PASSWORD="bar" --restart=always —--name n52wps cC:
Refer to the Docker Run Reference for an explanation of each parameter. To summarize, this will start the container

as a background process on port 80, with the restart policy set to always restart the container after a system reboot,
and with an appropriate name. It also sets the username and password for the admin user.

1.8. Production Installation 251

https://docs.docker.com/reference/run/
https://registry.hub.docker.com/u/ciwater/postgis/
https://docs.docker.com/reference/run/

Tethys Platform Documentation, Release 1.4.0

You may pass several environmental variables to set the service metadata and the admin username and password:
¢ -e USERNAME=<ADMIN_USERNAME>

-e PASSWORD=<ADMIN_PASSWORD>

* -¢ NAME=<INDIVIDUAL_NAME>

-e POSITION=<POSITION_NAME>

¢ -¢e PHONE=<VOICE>

* -¢ FAX=<FACSIMILE>

* -¢ ADDRESS=<DELIVERY_POINT>

e - CITY=<CITY>

-e STATE=<ADMINISTRATIVE_AREA>

-e POSTAL_CODE=<POSTAL_CODE>

-e COUNTRY=<COUNTRY>

¢ -¢e EMAIL=<ELECTRONIC_MAIL_ADDRESS>

Here is an example of how to use the environmental variables to set metadata when starting a container:

$ sudo docker run -d -p 80:8080 -e USERNAME="foo" -e PASSWORD="bar" -e NAME="Roger" -e COUNTRY="USA"

More information about the 52 North WPS Docker can be found on the Docker Registry:

https://registry.hub.docker.com/u/ciwater/n52wps/

Important: Set strong passwords for the admin user for a production system.

Maintaining Docker Containers

This section briefly describes some of the common maintenance tasks for Docker containers. Refer to the Docker
Documentation for a full description of Docker.

Status

You can view the status of containers using the following commands:

Running containers
$ sudo docker ps

All containers
$ sudo docker ps -a

Start and Stop

Docker containers can be stopped and started using the names assigned to them. For example, to stop and start a
Docker named “postgis’:

$ sudo docker stop postgis
$ sudo docker start postgis

252 Chapter 1. Contents

https://registry.hub.docker.com/u/ciwater/n52wps/
https://docs.docker.com/
https://docs.docker.com/

Tethys Platform Documentation, Release 1.4.0

Attach to Container

You can attach to running containers to give you a command prompt to the container. This is useful for checking logs
or modifying configuration of the Docker manually. For example, to attach to a container named “postgis’:

$ sudo docker exec —--rm -it postgis bash

Upgrade from 1.3 to 1.4

Last Updated: December 1, 2016

1. Pull Repository

When you installed Tethys Platform you did so using it’s remote Git repository on GitHub. To get the latest version of
Tethys Platform, you will need to pull the latest changes from this repository:

sudo su

cd /usr/lib/tethys/src
git pull origin master
exit

v W A

2. Install Requirements and Run Setup Script

Install new dependencies and upgrade old ones:

$ sudo su

$. /usr/lib/tethys/bin/activate
(tethys) $ pip install --upgrade -r /usr/lib/tethys/src/requirements.txt
(tethys) $ python /usr/lib/tethys/src/setup.py develop
(tethys) $ exit

3. Generate New Settings Script

Backup your old settings script (settings.py) and generate a new settings file to get the latest version of the
settings. Then copy any settings (like database usernames and passwords) from the backed up settings script to the
new settings script.

$ sudo su
(tethys) $ mv /usr/lib/tethys/src/tethys_apps/settings.py /usr/lib/tethys/src/tethys_apps/settings.ps
(tethys) $ tethys gen settings -d /usr/lib/tethys/src/tethys_apps
(tethys) $ exit

1.8. Production Installation 253

Tethys Platform Documentation, Release 1.4.0

Caution: Don’t forget to copy any settings from the backup settings script (settings.py_bak) to the new
settings script. Common settings that need to be copied include:

* DEBUG

« ALLOWED_HOSTS

* DATABASES, TETHYS_DATABASES

* STATIC_ROOT, TETHYS_WORKSPACES_ROOT

* EMAIL_HOST, EMAIL_PORT, EMAIL_HOST_USER, EMAIL_HOST_PASSWORD,

EMAIL_USE_TLS, DEFAULT_FROM_EMAIL

* SOCIAL_OAUTH_XXXX_KEY, SOCIAL_OAUTH_XXXX_SECRET

*« BYPASS_TETHYS_HOME_PAGE
After you have copied these settings, you can delete the backup settings script.

4. Setup Social Authentication (optional)

If you would like to allow users to signup using their social credentials from Facebook, Google, LinkedIn, and/or
HydroShare, follow the Social Authentication instructions.

5. Sync the Database

Start the database docker if not already started and apply any changes to the database that may have been issued with
the new release:

$. /usr/lib/tethys/bin/activate
(tethys) $ tethys docker start -c postgis
(tethys) $ tethys manage syncdb

Note: For migration errors use:

$ cd ~/usr/lib/tethys/src
$ python manage.py makemigrations —--merge
$ tethys manage syncdb

6. Collect Static Files

Collect the new static files and update the old ones:

$ sudo su
(tethys) $ tethys manage collectstatic
(tethys) $ exit

7. Transfer Ownership to Apache

Assign ownership of Tethys Platform files and resources to the Apache user:

$ sudo chown -R www-data:www-data /usr/lib/tethys/src /var/www/tethys

Note: The name of the Apache user in RedHat or CentOS flavored systems is apache, not www—data.

254 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

8. Restart Apache

Restart Apache to effect the changes:

$ sudo service apache2 restart

Note: The command for managing Apache on CentOS or RedHat flavored systems is ht tpd. Restart as follows:

$ sudo service httpd restart

Source Code

Last Updated: August 11, 2015
The source code for Tethys Platform is contained in the following repositories:
e Tethys Platform
* Tethys Dockers
 Tethys Dataset Services
 TethysCluster
* CondorPy

Contribute

Last Updated: July 13, 2016

Tethys Platform is a growing Open Source project and we are always looking for developers who wish to contribute
and help improve the platform. If you would like to contribute, join the discussion on the Tethys Forum and visit the
Tethys Development Wiki on the Tethys Platform GitHub repository.

Resources:
e Tethys Forum
* Tethys Development Wiki

Supplementary

Last Updated: May 27, 2015

This section provides a list of miscellaneous reference material that can be used to help you understand Tethys Platform
and Tethys app development in more detail.

Key Concepts

Last Updated: April 6, 2015

The purpose of this page is to provide an explanation of some of the key concepts of Tethys Platform. The concepts
are only discussed briefly here to provide a basic overview. It is highly recommended that you visit the suggested

1.9. Source Code 255

https://github.com/tethysplatform/tethys
https://github.com/tethysplatform/tethys_docker
https://github.com/tethysplatform/tethys_dataset_services
https://github.com/tethysplatform/TethysCluster
https://github.com/tethysplatform/condorpy
https://groups.google.com/forum/#!forum/tethysplatform
https://github.com/tethysplatform/tethys/wiki
https://groups.google.com/forum/#!forum/
https://github.com/tethysplatform/tethys/wiki

Tethys Platform Documentation, Release 1.4.0

resources to have a better understanding of these concepts, as developing apps in Tethys Platform relies heavily on
them.

What is an App?

In the most basic sense, an app is a workflow. The purpose of an app is not provide an all-in-one solution, but rather
to perform a narrowly focused task or set of tasks. For example, an app that works with hydrologic models might be
focused on guiding the user to change the land use layer of a model, run the modified model, and compare the result
with the original model results.

In terms of implementation, an app built with Tethys Platform or a Tethys app is a web app(as opposed to a mobile
app). A Tethys Platform installation provides a website called the Tethys Portal that can be used to organize and access
your apps. Tethys apps are technically extensions of the Tethys Portal web page, because when you create a Tethys
app you will be adding additional web pages to the Tethys Portal web site. Tethys Platform is built on the Django
Python web framework, so Tethys apps are also Django web apps—though Tethys Platform streamlines many aspects
of Django web development. This is why the Django documentation is referred to often in the documentation for
Tethys Platform.

Web Frameworks

Tethys Portal is built using the Django web framework. Understanding the difference between a static website and a
dynamic website built with a web framework is important for app developers, because apps rely on web framework
concepts.

Static web development consists of creating a series of HTML files—one for every page of the website. The files are
organized using the server’s file system and stored in some directory on the server that is accessible by the Internet.
For a static site, the URL works very similar to how a file path works on an operating system. When a request is sent
from the web browser to a server, the server locates the HTML file that the URL is requesting and returns it to the
browser for the user to view.

The static method of developing web pages presents some problems for developers. For example, if a developer wants
to include a consistent header and footer on every page of her website, she would end up duplicating the header and
footer code many times (via copy and paste). As a result, static websites are more difficult to update and maintain,
because changes need to be made wherever the code is duplicated. Developing a website in this way is error prone and
can become prohibitive for large websites.

Web frameworks provide a way to develop websites using a programmatic approach. Instead of static HTML files,
developers create generic reusable HTML templates. With a web framework, the developer can create one template
file containing only the markup for the header and another template file for the footer. Now when the developer wants
to include the header and footer in another page, she uses an import construct that references the header and footer
templates. The header and footer markup is added dynamically to all the files that need it upon request by a template
rendering program. Maintenance is much easier, because changes to the header and footer only need to be made in
one place and the entire site will be updated. In this way, the site becomes dynamic. One type of software that makes
it possible to create dynamic web pages is a web framework.

Web frameworks also handle requests differently than traditional web pages. When the user submits a request to the
server, instead of looking up a file on the server at the directory implied by the URL, the request is handed to the web
framework application. The web framework application processes the request and usually returns a web page that
has been generated dynamically as the result. This type of web framework application is called a Common Gateway
Interface (CGI) application; or if the application is a Python web framework, it is called a Web Server Gateway
Interface (WSGI) application.

256 Chapter 1. Contents

https://www.djangoproject.com
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://en.wikipedia.org/wiki/Web_Server_Gateway_Interface

Tethys Platform Documentation, Release 1.4.0

Model View Controller

The dynamic templating feature is only one aspect of what web frameworks offer. Many web frameworks use a
software development pattern called Model View Controller (MVC). MVC is used to organize the code that is used to
develop user interfaces into conceptual components. A brief explanation of each components is provided:

Model The model represents the code that is used to store and retrieve data that is used in the web application. Most
websites use SQL databases for persistent data storage, so the model is usually made up of a database model.

View Views are used to represent the data to the end user. In a web applications views are the HTML pages that
are generated. Views are typically generic, reusable, and oblivious to the origins of the data that fills them. This is
possible because of templating languages that allow coders to create dynamic HTML web pages.

Controller Controllers are used to orchestrate the interaction between the view and the model. They contain the
logic for retrieving data from the database and transforming it into a format that is consumable by the view, because
the model and the view never communicate directly. Controllers also handle the input from the user.

3

Figure 1.3: A typical collaboration of MVC components (courtesy of Cake PHP Docs)

When a user submits a request, the web application (dispatcher in the Figure above) looks up the controller that is
mapped to the URL and executes it. The controller may perform change or lookup data from the model after which it
returns this data and a template to render. This is handed off to a template rendering utility that processes the template
and generates HTML. The HTML is rendered for the user’s viewing pleasure in the web browser or other client. The
user sends another request, and the process repeats.

URL Design and REST Paradigm

The URL takes on a different meaning in dynamic websites than it does in a static website. In a static website, the
URL maps to directories and files on the server. In a dynamic website, there are no static files (or at least very few)
to map to. The web framework simply maps the URL to a controller and returns the result. Although the developer is
free to use URL’s in whatever manner they would like, it is recommended that some type of URL pattern should be
used to make the website more maintainable.

1.11. Supplementary 257

http://en.wikipedia.org/wiki/Model\T1\textendash view\T1\textendash controller?oldformat=true
http://book.cakephp.org/2.0/en/cakephp-overview/understanding-model-view-controller.html

Tethys Platform Documentation, Release 1.4.0

We recommend developers use some form of the Representational State Transfer (REST) abstraction for creating
meaningful URLs for apps. In a REST architecture for a website, the data of the website is referred to as resources. The
current state of resources is presented to the user through some representation, for example, an HTML document. The
user can interact with the resources through the actions of the controller. Examples of common actions on resources
are create, read (view), update (edit), and delete, often referred to as CRUD. In true REST implementations, the CRUD
operations are mapped to specific HTTP methods: POST, GET, PUT, and DELETE, respectively (see HTTP Verbs).
In practice HTML only supports the POST and GET HTTP methods, so a pseudo-REST implementation is achieved
via URL patterns.

For example, consider an app that is meant to provide information about a stream gages. In this case, the resources
of the website may be stream gage records in a database. A potential URL for a page that shows a summary about a
single stream gage record would be:

www.example.com/gages/1/show

The number “1” in the URL represents the stream gage record ID in the database. To show a page with the repre-
sentation of another stream gage, the ID number could be changed. A generalization of this URL pattern could be
represented as:

/gages/{id}/{action}

In this URL pattern, variables are represented using curly braces. The { 1d} variable in the URL represents the ID of a
stream gage resource in our database and the {action} variable represents the action to perform on the stream gage
resource. The {action} variable is used instead of HTTP methods to indicate which CRUD operation to perform

on the resource. In the first example, the action “show” is used to perform the read operation. Often, the show action
is the default action, so the URL could be shortened to:

www.example.com/gages/1

Similarly, a URL for a page the represents all of the stream gages in the database in a list could be represented by
omitting the ID:

www.example.com/gages

URLS for each of the CRUD operations on the steram gage database could look like this:

Create
www.example.com/gages/new

Read One
www.example.com/gages/1

Read All
www.example.com/gages

Update
www.example.com/gages/1/edit

Delete
www.example.com/gages/1/delete

Before you dive into writing your app, you should take some time to design the URLs for the app. Define the resources
for your app and the URLSs that will be used to perform the CRUD operations on the resources.

Caution: The examples above used integer IDs for simplicity. However, using integer IDs in URLs is not
recommended, because they are often incremented consecutively and can be easily guessed. For example, it would
be very easy for an attacker to write a script that would increment through integer IDs and call the delete method
on all your resources. A better option would be to use randomly assigned IDs such as a UUID.

258 Chapter 1. Contents

http://en.wikipedia.org/wiki/Universally_unique_identifier?oldformat=true

Tethys Platform Documentation, Release 1.4.0

HTTP Verbs

Anytime you type a URL into an address bar you are performing what is called a GET request. All of the above URLs
are examples of implementing REST using only GET requests. GET is an example of an HTTP verb or method. There
are quite a few HTTP verbs, but the other verbs pertinent to REST are POST, PUT, and DELETE. A truely RESTful
design would make use of these HTTP verbs to implement the CRUD for the resources instead of using different key
word actions. Consider our example from above. To read or view a dog resource, we use a GET request as before:

HTTP GET
www.example.com/dogs/1

However, to implement the create action for a dog resource, now we use the POST verb with the same url that we used
for the read action:

HTTP POST
www.example.com/dogs/1

Similarly, to delete the dog resource we use the same URL as before but this time use the DELETE verb and to update
or edit a dog resource, we use the PUT verb. Using this pattern, the URL becomes a unique resource identifier (URI)
and the HTTP verbs dictate what action we will perform on the data. Unfortunately, HTML (which is the interface of
HTTP) does not implement PUT or DELETE verbs in forms. In practice many RESTful sites use the “action” pattern
for interacting with resources, because not all of the HTTP verbs are supported.

App Project Structure

Last Updated: November 17, 2014

The source code for a Tethys app project is organized in a specific file structure. Figure 1 illustrates the key components
of a Tethys app project called “my_first_app”. The top level package is called the release package and it contains the
app package for the app and other files that are needed to distribute the app. The key components of the release
package and the app package will be explained in this article.

Release Package

As the name suggests, the release package is the package that you will use to release and develop your app. The entire
release package should be provided when you share your app with others.

The name of a release package follows a specific naming convention.The name of the directory should always start
with “tethysapp-" followed by a unique name for the app. The name of the app may not have spaces, dashes, or other
special characters (however, underscores are allowed). For example, Figure 1 shows the project structure for an app
with name “my_first_app” and the name of the release package is “tethysapp-my_first_app”.

The release package must contain a setup script (setup.py) and tethysapp namespace package at a minimum.
This directory would also be a good place to put any accessory files for the app such as a README file or LICENSE
file. No code that is required by the app to run should be in this directory.

The setup script to install your app and its dependencies. A basic setup script is generated as part of the scaffolding
for a new app project. For more information on writing setup scripts refer to the Distributing Apps tutorial and this
article: Writing the Setup Script.

The tethysapp package is a Python namespace package. It provides a way to mimic the production environ-
ment during development of the app (i.e.: when the app is installed, it will reside in a namespace package called
tethysapp). This package contains the app package, which has the same name as your app name by convention.

1.11. Supplementary 259

http://docs.python.org/2/distutils/setupscript.html
http://docs.python.org/2/tutorial/classes.html#python-scopes-and-namespaces

Tethys Platform Documentation, Release 1.4.0

—
-I Release Package ;

tethysapp-my_first_app

setup.py
tethysapp
_____________ T T 77— 'i
my_first_app | App Package :
b e e e e —
-

I
: app.py |
|
: MyFirstApp |
|

|
| controllers.py :

|
I init_stores. py :

|
|
: model .py |
|
: utilities.py |
|

|
| public :

|
| css :

I
|
: |
|
: is |
|
I

I main.js :
' |
| |
| |
| |
| |
| |
' |
' |
' |
' |
' |
' |
' |

images

templates

my_first_app

base.html

Figure 1.4: Figure 1. An example of a Tethys app project for an app named “my_first_app”.

260 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Caution: When you generate a new app project using the command line tool, you will notice that many of
the directories contain a __init__ .py file, many of which are empty. These are omitted in the diagram for
simplicity. DO NOT DELETE THE __init__ .py FILES. These files indicate to Python that the directories
containing them are Python packages. Your app will not work properly withoutthe __init__ .py files.

The App Package

The app package contains all of the source code and resources that are needed by the Tethys Platform to run your app.
The model.py, templates, and controllers.py modules and directories correspond with the Model View
Controller approach that is used to build apps.

The data structures, classes, and methods that are used to define the data model model.py module. The
templates directory contains all the Django HTML templates that are used to generate the views of the app. The
controllers.py module contains Python files for each controller of the app. The public directory is used for
static resources such as images, JavaScript and CSS files. The app . py file contains all the configuration parameters
for the app.

To learn how to work with the files in the app package, see the Getting Started tutorial.

Naming Conventions

There are a few naming conventions that need to be followed to avoid conflicts with other apps. The more obvious one
is the app package name. Like all Python modules, app package names must be unique.

All templates should be contained in a directory that shares the same name as the app package within the templates
directory (see Figure 1). This ensures that when your app calls for a template like home . html it finds the correct one
and not an home . html from another app.

Terminal Quick Guide

Last Updated: November 18, 2014

To install and use Tethys Platform, you will need to be familiar with using the command line/terminal. This guide
provides tips and explanations of the most common features of command line that you will need to know to work with
Tethys. For a more exhaustive reference, please review this excellent tutorial: Learn the Bash Command Line.

$

The “$” in code blocks means “run this in the terminal”. This is usually done by typing the command or copying and
pasting it into the terminal. When copying, don’t copy the “$”. Copy lines one at a time and press enter after each
one to execute it. Note that some commands may prompt you for input.

The “~ is short hand for your Home directory. You will see this symbol most often in paths that extend from your
Home directory. The shorthand is used because the path to the Home directory varies depending on your user name.
For example, if your user name was “john”, then the absolute path to your home directory would be something like
/home/ john.

1.11. Supplementary 261

http://docs.python.org/2/tutorial/modules.html#packages
http://ryanstutorials.net/linuxtutorial/

Tethys Platform Documentation, Release 1.4.0

sudo

Some operations on the commandline require authorization by a superuser or administrator. The sudo command
is used to grant permission. This is done by prepending any command with sudo. You will be prompted for your
password before you can continue.

sudo apt-get moo

Note: When you type passwords into the command line, the characters are not printed to the screen for security
reasons. This can be unsettling, but type with faith and press enter.

cd

This command is used to change working directories on the command line. This is the equivalent of moving in and
out of folders on a file browser.

mkdir

This command is used to make new directories.

chown

This command is used to change the owner of files or directories.

Copy and Paste

The keyboard shortcuts CTRL—-C and CTRL-V do not do preform copy and paste in the terminal. Instead, use the
shortcuts CTRL-SHIFT-C and CTRL-SHIFT-V to copy and paste.

Ubuntu Installation

Last Updated: November 17, 2014

Ubuntu Desktop can be downloaded at the Download Ubuntu page. There are three ways you can install Ubuntu on
your computer. The first option is to overwrite whatever operating system you are running with Ubuntu.This can be
done using either a USB or DVD. Use the Install Ubuntu instructions to do so (Note: these instructions are for Ubuntu
14.04, but they should work for Ubuntu 12.04 as well). This method is not usually preferable or recommended, because
most users still want to retain use of their Windows or Mac operating systems. The next two options accomodate this
need.

The second options is to install Ubuntu in a dual boot configuration. This will let you choose to either run Ubuntu or
Windows/Mac OSX when you start your computer. Follow the instructions provided by Ubuntu for Windows Dual
Boot if on a Windows computer or the Intel Mac Dual Boot if on a Mac computer.

The third option is to install Ubuntu as a virtual machine using virtualization software such as VirtualBox. If you are
running Mac OSX you can also use VMWare or Parallels. Follow the instructions for creating a new Ubuntu virtual
machine for the software you are running.

After installing Ubuntu, be sure to install any updates using the Update Manager and restart.

262 Chapter 1. Contents

http://www.ubuntu.com/desktop
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
https://help.ubuntu.com/community/WindowsDualBoot
https://help.ubuntu.com/community/WindowsDualBoot
https://help.ubuntu.com/community/MactelSupportTeam/AppleIntelInstallation
https://www.virtualbox.org/
https://www.vmware.com/
http://www.parallels.com/

Tethys Platform Documentation, Release 1.4.0

Test Docker Containers

If you would like, you may perform the following tests to ensure the containers are working properly.

Activate the virtual environment if you have not done so already and use the following Tethys command to start the
Docker containers:

$. /usr/lib/tethys/bin/activate
$ tethys docker start

Note: Although each Docker container seem to start instantaneously, it may take several minutes for the started
containers to be fully up and running.

Use the following command in the terminal to obtain the ports that each software is running on:
$ tethys docker ip
You will be able to access each software on 1ocalhost at the appropriate port. For example, GeoServer and 52 North

WPS both have web administrative interfaces. In a web browser, enter the following URLSs replacing the <port> with
the appropriate port number from the previous command:

GeoServer
http://localhost:<port>/geoserver

52 North WPS
http://localhost:<port>/wps

With some luck, you should see the administrative page for each. Feel free to explore. You can login to the 52 North
WPS admin site using the username and password you specified during installation or the defaults if you accepted
those which are:

Default 52 North WPS Admin
* Username: wps
» Password: wps

You are not given the option of specifying a custom username and password for GeoServer, because it can only be
done through the web interface. You may log into your GeoServer using the default username and password:

Default GeoServer Admin
¢ Username: admin
» Password: geoserver

The PostgreSQL database is installed with the database users and databases required by Tethys Platform:
tethys_default, tethys_db_manager, and tethys_super. You set the passwords for each user during installation
of the container. You can test the database by installing the PGAdmin III desktop client for PostgreSQL and using the
credentials of the tethys_super database user to connect to it. For more detailed instructions on how to do this, see
the PGAdmin Il Tutorial.

PGAdmin lll Tutorial

Last Updated: November 20, 2014

All of the SQL databases used in Tethys Platform are PostregSQL databases. An excellent graphical client for Post-
greSQL. It is available for Windows, OSX, and many Linux distributions. Please visit the Download page to learn
how to install it for your particular operating system. After it is installed, you can connect to your Tethys Platform
databases by using the credentials for the tethys_super database user you defined during installation.

1.11. Supplementary 263

http://www.pgadmin.org/
http://www.postgresql.org/
http://www.pgadmin.org/download/index.php

Tethys Platform Documentation, Release 1.4.0

To create a new connection to your PostgreSQL database using PGAdmin:

1. Open PGAdmin III and click on the Add New Connection button.

0 pgAdmin Il
ﬁ (&% - &
Object ey .

i, e L Properties | Statistics | Dependencies = Dependents

g %er Groups -
Properties
Mo properties are available for the current selection
Add New prop
Connection
S0OL pane =
Ready. 0Secs

Figure 1.5: Figure 1. Click the Add New Connection button.

2. In the New Server Registration dialog that appears, fill out the form with the appropriate credentials. Provide a
meaningful name for the connection like “tethys”. If you have installed PostgreSQL with the Docker containers,
the host will be either 1ocalhost if you are on Linux or 192.168.59.103 if you are on Mac or Windows.
Use the tethys docker ip command to get the port for PostgreSQL (PostGIS). Fill in the username as
tethys_super and enter the password you gave the user during installation. Click OK to close the window.

3. To connect to the PostgreSQL database server, double-click on the “tethys” connection listed under the
Servers dropdown menu. You will see a list of the databases on the server. Expand the menus to view
each database. The tables will be located under Schemas > public > Tables.

264 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

o

& server Groups New Server Registration

Properties | SSL | SSHTunnel | Advanced

Name tethys

Host localhost

Port 5432

Service

Maintenance DB |postgres =
Username tethys_super

Password oo

Store password (&

Colour
Group Servers v
%
Help [OK J Cancel
Ready. 0Secs

Figure 1.6: Figure 2. Fill out the New Server Registration dialog.

1.11. Supplementary 265

Tethys Platform Documentation, Release 1.4.0

pgAdmin 111

Object browser =

Al

J Properties] Statistics] Dependencies] Dependents]
= [server Groups

5 [servers (1) Table owner Comment
5 [tethys (localhost:5432 spatial_ref_sys tethys_super
ethys (localhost:) stream_gages tethys_db_manager

B |5 Databases (5)
= [l my_first_app_stream_gage_db
& catalogs (2)
I Event Triggers (0)
& Extensions (2)
2 & schemas (1)
2 € public
¥ Collations (0)
% Domains (0)
&> FTS Configurations (0)
lill FTs Dictionaries (0)
FTS Parsers (0)
[z3 FTS Templates (0)

@ Functions (1049)

% sequences (1)
spatial_ref_sys 5L pane 3
stream_gages

& Trigger Functions (2)

[views (4)

41 slony Replication (0)
[C] postgres
[3 tethys_db_manager
[38 tethys_default
[38 tethys_super
' Tablespaces (2)
Retrieving details on tables... Done. 0.00 secs

Figure 1.7: Figure 3. Browse the databases using the graphical interface.

266 Chapter 1. Contents

Tethys Platform Documentation, Release 1.4.0

Summary of References

Last Updated: November 17, 2014
This page is provides a list of all the external resources referred too during the documentation for convenience.
Ubuntu

* Download Ubuntu

* Dual Boot Ubuntu with Windows PC

e Learn the Bash Command Line
Docker

* Docker virtualization container
Virtualization Options

* VMWare

e Parallels

* VirtualBox
Django

e Writing Views

* Django Template Language

* Django template Variables

* Django Filter Reference

* Django Tag Reference

* Django Template Inheritance

* Django static tag

* Cross Site Forgery protection
CKAN

¢ Install CKAN 2.2 from Source

* CKAN instances around the world

* FileStore Setup

* DataStore Setup

¢ Install on Other Operating Systems

e Actions API
IDEs

* How to Install Aptana on Ubuntu 12.04
SQLAIchemy

* SQLAIchemy

* Object Relational Tutorial

GeoAlchemy

1.12. Summary of References 267

http://www.ubuntu.com/desktop
https://help.ubuntu.com/community/WindowsDualBoot
http://ryanstutorials.net/linuxtutorial/
https://www.docker.io/
https://www.vmware.com/
http://www.parallels.com/
https://www.virtualbox.org/
https://docs.djangoproject.com/en/1.7/topics/http/views/
https://docs.djangoproject.com/en/1.7/topics/templates/
https://docs.djangoproject.com/en/1.7/topics/templates/#variables
https://docs.djangoproject.com/en/1.7/ref/templates/builtins/#ref-templates-builtins-filters
https://docs.djangoproject.com/en/1.7/ref/templates/builtins/#ref-templates-builtins-tags
https://docs.djangoproject.com/en/1.7/topics/templates/#template-inheritance
https://docs.djangoproject.com/en/1.7/ref/contrib/staticfiles/#static
https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/
http://docs.ckan.org/en/ckan-2.2/install-from-source.html
http://ckan.org/instances/
http://docs.ckan.org/en/ckan-2.2/filestore.html?highlight=filestore
http://docs.ckan.org/en/ckan-2.2/datastore.html
https://github.com/ckan/ckan/wiki/How-to-Install-CKAN
http://ckan.readthedocs.org/en/ckan-2.2/api.html#action-api-reference
http://www.samclarke.com/2012/04/how-to-install-aptana-studio-3-on-ubuntu-12-04-lts-precise-pangolin/
http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html

Tethys Platform Documentation, Release 1.4.0

* GeoAlchemy?2
* GeoAlchemy ORM
e Well Known Text
Database Clients
* PGAdmin III
PostGIS
* PostGIS
* Geometry Function Reference
 Raster Function Reference
Google
* Obtaining an API Key
Python
e PyPI
* Setuptools Documentation
» Writing Setup Script
* Namespace
Production Installation
* WSGI
e modwsgi
* Deployment Checklist
* Deployment Checklist: STATIC_ROOT
* Deployment Checklist: SECRET_KEY
* Deployment Checklist: ALLOWED_HOSTS
* Deployment Checklist: STATIC_ROOT
* How to deploy with WSGI
Miscellaneous
* Universally unique identifier

¢ The Definitive Guide to GET vs POST

Glossary

Last Updated: November 18, 2014

app class A class defined in the app configuration file that inherits from the TethysAppBase class provided by
the Tethys Platform. For more details on the app class, see App Base Class API.

app configuration file A file located in the app package and called app . py by convention. This file contains the
app class that is used to configure apps. For more details on the app configuration file, see App Base Class API.

268 Chapter 1. Contents

https://geoalchemy-2.readthedocs.org/en/latest/index.html
https://geoalchemy-2.readthedocs.org/en/latest/orm_tutorial.html
http://en.wikipedia.org/wiki/Well-known_text
http://www.pgadmin.org
http://postgis.net/
http://postgis.net/docs/reference.html
http://postgis.net/docs/RT_reference.html
https://developers.google.com/maps/documentation/javascript/tutorial#api_key
https://pypi.python.org/pypi
https://pythonhosted.org/setuptools/setuptools.html
http://docs.python.org/2/distutils/setupscript.html
http://docs.python.org/2/tutorial/classes.html#python-scopes-and-namespaces
http://www.wsgi.org/
https://code.google.com/p/modwsgi/
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#static-root-and-static-url
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#secret-key
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#allowed-hosts
https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/#static-root-and-static-url
https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/
http://en.wikipedia.org/wiki/Universally_unique_identifier
http://blog.teamtreehouse.com/the-definitive-guide-to-get-vs-post

Tethys Platform Documentation, Release 1.4.0

app harvester An instance of the SingletonAppHarvester class. The app harvester collects information about
each app and uses it to load Tethys apps.

app instance, app instances An instance of an app class.

app package, app packages A Python namespace package of a Tethys app project that contains all of the source
code for an app. The app package is named the same as the app by convention. Refer to Figure 1 of App Project
Structure for more information.

app project All of the source code for a Tethys app including the release package and the app package.
dataset, datasets A dataset is a container for one or more resources that are stored in a dataset service.

dataset service, dataset services A dataset service is a web service external to Tethys Platform that can be used to
store and publish file-based datasets (e.g.: text files, Excel files, zip archives, other model files). See the Dataset
Services API for more information.

Debian Debian is a type of Linux operating system and many Linux distributions are based on it including Ubuntu.
See Linux Distributions for more information.

Gizmo, Gizmos Reusable view elements that can be inserted into a template using a single line of code. Examples
include common GUI elements like buttons, toggle switches, and input fields as well as more complex elements
like maps and plots. For more information on Gizmos, see Template Gizmos API.

Model View Controller The development pattern used to develop Tethys apps. The Model represents the data of the
app, the View is composed of the representation of the data, and the Controller consists of the logic needed to
prepare the data from the Model for the View and any other logic your app needs.

persistent store, persistent stores A persistent store is a database that can be automatically created for an app. See
The Model and Persistent Stores tutorial and the Persistent Stores API for more information about persistent
stores.

release package The top level Python namespace package of an app project. The release package contains the setup
script and all the source for an app including the app package. Refer to Figure 1 of App Project Structure for
more information.

resource, resources A resource is a file or other object and the associated metadata that is stored in a dataset service.

setup script A file located in the release package and called setup . py by convention. The setup script is used to
automate the installation of apps. For more details see Distributing Apps.

spatial dataset, spatial datasets A spatial dataset is a file-based dataset that stores spatial data (e.g.: shapefiles,
GeoTiff, ArcGrid, GRASS ASCII Grid).

virtual environment, Python virtual environment An isolated Python installation. Many operating systems use
the system Python installation to perform maintenance operations. Installing Tethys Platform in a virtual envi-
ronment prevents potential dependency conflicts.

wps service, wps services A WPS Service provides processes/geoprocesses as web services using the Open Geospa-
tial Consortium Web Processing Service (WPS) standard.

1.13. Glossary 269

http://en.wikipedia.org/wiki/Linux_distribution#Examples

Tethys Platform Documentation, Release 1.4.0

270 Chapter 1. Contents

CHAPTER 2

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1135482

271

Tethys Platform Documentation, Release 1.4.0

272 Chapter 2. Acknowledgements

CHAPTER 3

Indices and tables

* genindex

e search

273

Tethys Platform Documentation, Release 1.4.0

274 Chapter 3. Indices and tables

Index

A

add_table_to_postgis_store()

Button (class in tethys_sdk.gizmos), 96
ButtonGroup (class in tethys_sdk.gizmos), 97

(tethys_dataset_services.engines.GeoServerSpatiaPBHeRe (@gtgaGroup attribute), 97

method), 167
affirmative_attributes (MessageBox attribute), 107
affirmative_button (MessageBox attribute), 107
app (HandoffManager attribute), 211
app class, 268
app configuration file, 268
app harvester, 269
app instance, 269
app instances, 269
app package, 269
app packages, 269
app project, 269
append (TextInput attribute), 103
AreaRange (class in tethys_sdk.gizmos), 118
attributes (Button attribute), 96
attributes (ButtonGroup attribute), 97
attributes (DatePicker attribute), 99
attributes (GoogleMapView attribute), 137
attributes (JobsTable attribute), 140
attributes (MapView attribute), 123
attributes (MessageBox attribute), 107
attributes (RangeSlider attribute), 101
attributes (SelectInput attribute), 102
attributes (TableView attribute), 108
attributes (TextInput attribute), 104
attributes (ToggleSwitch attribute), 105
autoclose (DatePicker attribute), 98
axis_title (BarPlot attribute), 116
axis_units (BarPlot attribute), 116

B

BarPlot (class in tethys_sdk.gizmos), 115

basemap (MapView attribute), 122

BasicJob (class in tethys_compute.models), 196
BasicJobTemplate (class in tethys_sdk.jobs), 196, 204
bordered (JobsTable attribute), 139

bordered (TableView attribute), 108

C

calendar_weeks (DatePicker attribute), 98

categories (BarPlot attribute), 116

categories (PolarPlot attribute), 114

center (MV View attribute), 131

CkanDatasetEngine (class in
tethys_dataset_services.engines), 152

classes (Button attribute), 96

classes (ButtonGroup attribute), 97

classes (DatePicker attribute), 99

classes (GoogleMapView attribute), 137

classes (JobsTable attribute), 140

classes (MapView attribute), 123

classes (MessageBox attribute), 107

classes (RangeSlider attribute), 101

classes (SelectInput attribute), 102

classes (TableView attribute), 108

classes (TextInput attribute), 104

classes (ToggleSwitch attribute), 105

clear() (tethys_apps.base.TethysWorkspace method), 206

clear_button (DatePicker attribute), 98

color (TethysAppBase attribute), 74

column_fields (JobsTable attribute), 139

column_names (TableView attribute), 107

condensed (JobsTable attribute), 139

condensed (TableView attribute), 108

CondorJob (class in tethys_compute.models), 197

CondorJobTemplate (class in tethys_sdk.jobs), 197, 204

CondorWorkflow (class in tethys_compute.models), 200

CondorWorkflowJobNode (class in
tethys_compute.models), 200

CondorWorkflowJobTemplate (class in tethys_sdk.jobs),
200

CondorWorkflowTemplate (class in tethys_sdk.jobs), 200

controls (MapView attribute), 122

controls (MVDraw attribute), 130

275

Tethys Platform Documentation, Release 1.4.0

create_coverage_resource() days_of_week_disabled (DatePicker attribute), 98
(tethys_dataset_services.engines.GeoServerSpatialRitesetEaZine
method), 167 delete_btn (JobsTable attribute), 139
create_dataset() (tethys_dataset_services.base.DatasetEnginelelete_dataset() (tethys_dataset_services.base.DatasetEngine
method), 150 method), 152
create_dataset() (tethys_dataset_services.engines.CkanDatasttEnginataset() (tethys_dataset_services.engines.CkanDatasetEngine
method), 152 method), 153
create_dataset() (tethys_dataset_services.engines.HydroShaddDatasdtfareinie (tethys_dataset_services.engines.HydroShareDatasetEnginc
method), 157 method), 157
create_job() (tethys_compute.job_manager.JobManager delete_layer() (tethys_dataset_services.base.SpatialDatasetEngine
method), 203 method), 167
create_layer() (tethys_dataset_services.base.SpatialDatasetEaglite_layer() (tethys_dataset_services.engines.GeoServerSpatialDatasetEn
method), 165 method), 172
create_layer_group() (tethys_dataset_services.engines.GeoSdeletS asiet Datanpifi gty s_dataset_services.engines.GeoServerSpatialDal
method), 168 method), 172
create_persistent_store() (tethys_apps.base.app_base.Tethysdgipidasesource() (tethys_dataset_services.base.DatasetEngine
class method), 74 method), 152
create_persistent_store() (tethys_sdk.base.TethysAppBase delete_resource() (tethys_dataset_services.base.SpatialDatasetEngine
class method), 145 method), 166
create_postgis_feature_resource() delete_resource() (tethys_dataset_services.engines.CkanDatasetEngine
(tethys_dataset_services.engines.GeoServerSpatialDatasetEngitieod), 153
method), 169 delete_resource() (tethys_dataset_services.engines.GeoServerSpatialDatase
create_resource() (tethys_dataset_services.base.DatasetEngine method), 173
method), 150 delete_resource() (tethys_dataset_services.engines.HydroShareDatasetEngi
create_resource() (tethys_dataset_services.base.SpatialDatasetEngine method), 157
method), 165 delete_store() (tethys_dataset_services.engines.GeoServerSpatialDatasetEn,;
create_resource() (tethys_dataset_services.engines.CkanDatasetEnginenethod), 173
method), 153 delete_style() (tethys_dataset_services.engines.GeoServerSpatialDatasetEn;
create_resource() (tethys_dataset_services.engines.HydroShareDatasethethiod), 174
method), 157 delete_workspace() (tethys_dataset_services.engines.GeoServerSpatialData
create_scheduler() (in module tethys_sdk.compute), 193 method), 174
create_shapefile_resource() description (Permission attribute), 213
(tethys_dataset_services.engines.GeoServerSpatiatiostastibngihethys AppBase attribute), 74
method), 169 destroy_persistent_store()
create_sql_view() (tethys_dataset_services.engines.GeoServerSpatial [DtatsgsEagpscbase.app_base. TethysAppBase
method), 170 class method), 74
create_style() (tethys_dataset_services.engines.GeoServerS phtsatDatasetFegristent_stores_for_app()
method), 171 (tethys_apps.base.testing. TethysTestCase
create_test_persistent_stores_for_app() static method), 222
(tethys_apps.base.testing. TethysTestCase directories() (tethys_apps.base.TethysWorkspace
static method), 221 method), 206
create_test_superuser() (tethys_apps.base.testing. TethysTest@iaable_basemap (MapView attribute), 123
static method), 222 disabled (Button attribute), 96
create_test_user() (tethys_apps.base.testing. TethysTestCase disabled (DatePicker attribute), 99
static method), 222 disabled (RangeSlider attribute), 100
create_workspace() (tethys_dataset_services.engines.GeoSerhsabiedi(SPlatetdebirtgitteibute), 102
method), 172 disabled (TextInput attribute), 104
disabled (ToggleSwitch attribute), 105
D dismiss_button (MessageBox attribute), 106
dataset, 269 display_text (Button attribute), 96
dataset service, 269 display_text (DatePicker attribute), 98
dataset services, 269 display_text (RangeSlider attribute), 100
datasets, 269 display_text (Selectlnput attribute), 101
DatePicker (class in tethys_sdk.gizmos), 98 display_text (TextInput attribute), 103

276 Index

Tethys Platform Documentation, Release 1.4.0

display_text (ToggleSwitch attribute), 105

get_dataset() (tethys_dataset_services.engines.HydroShareDatasetEngine

download_dataset() (tethys_dataset_services.engines.CkanDatasetEngmethod), 158

method), 153

get_handler() (tethys_apps.base.handoff. HandoffManager

download_resouce() (tethys_dataset_services.engines.CkanDatasetEngnethod), 211

method), 154

get_handoff_manager() (tethys_apps.base.app_base.TethysAppBase

download_resource() (tethys_dataset_services.engines.CkanDatasetEndass method), 75

method), 154
draw (MapView attribute), 123
drawing_types_enabled (GoogleMapView attribute), 136

E

editable_columns (TableView attribute), 108
enable_feedback (TethysAppBase attribute), 74
end_date (DatePicker attribute), 98

engine (AreaRange attribute), 119

engine (BarPlot attribute), 116

engine (LinePlot attribute), 109

engine (PiePlot attribute), 115

engine (PolarPlot attribute), 113

engine (ScatterPlot attribute), 111

engine (TimeSeries attribute), 117

error (DatePicker attribute), 99

error (RangeSlider attribute), 101

error (SelectInput attribute), 102

error (TextInput attribute), 104

error (ToggleSwitch attribute), 105

F

feature_selection (MapView attribute), 123
feature_selection (MVLayer attribute), 126
feedback_emails (TethysAppBase attribute), 74

files() (tethys_apps.base.TethysWorkspace method), 206
fill (MVLegendClass attribute), 129

format (DatePicker attribute), 98

G

geometry_attribute (MVLayer attribute), 126

geoserver_url (MVLegendGeoServerImageClass at-
tribute), 130

GeoServerSpatialDatasetEngine (class in
tethys_dataset_services.engines), 167

(tethys_compute.job_manager.JobManager

method), 203

get_job_manager() (tethys_apps.base.app_base.TethysAppBase
class method), 75

get_job_status_callback_url()
(tethys_compute.job_manager.JobManager
method), 203

get_layer() (tethys_dataset_services.base.SpatialDatasetEngine
method), 166

get_layer() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngin
method), 174

get_layer_group() (tethys_dataset_services.engines.GeoServerSpatialDatasc
method), 175

get_persistent_store_engine()
(tethys_apps.base.app_base.TethysAppBase
class method), 75

get_persistent_store_engine()
(tethys_sdk.base.TethysAppBase
method), 145

get_resource() (tethys_dataset_services.base.DatasetEngine
method), 151

get_resource() (tethys_dataset_services.base.SpatialDatasetEngine
method), 166

get_resource() (tethys_dataset_services.engines.CkanDatasetEngine
method), 155

get_resource() (tethys_dataset_services.engines.GeoServerSpatialDatasetEr
method), 175

get_resource() (tethys_dataset_services.engines.HydroShareDatasetEngine
method), 158

get_scheduler() (in module tethys_sdk.compute), 193

get_store() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngin
method), 175

get_style() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngin
method), 176

get_test_client() (tethys_apps.base.testing. TethysTestCase

static method), 222

get_job()

class

get_app_workspace() (tethys_apps.base.app_base.TethysAprase

class method), 75
get_app_workspace() (tethys_apps.base.TethysAppBase
class method), 204

get_capabilities() (tethys_apps.base.handoff.HandoffManager

method), 211
get_cluster_manager() (in module tethys_sdk.compute),
192

get_dataset() (tethys_dataset_services.base.DatasetEngine

method), 150

ct_user_workspace() (tethys_apps.base.app_base.TethysAppBase

class method), 75

get_user_workspace() (tethys_apps.base.TethysAppBase
class method), 205

get_workspace() (tethys_dataset_services.engines.GeoServerSpatialDataset
method), 176

Gizmo, 269

Gizmos, 269

GoogleMapView (class in tethys_sdk.gizmos), 136

get_dataset() (tethys_dataset_services.engines.CkanDatasetF..ngine

method), 154

handlers (HandoffManager attribute), 211

Index

277

Tethys Platform Documentation, Release 1.4.0

handoff() (tethys_apps.base.handoff. HandoffManager legend_extent_projection (MVLayer attribute), 126

method), 211 legend_title (MVLayer attribute), 126
handoff_handlers() (tethys_apps.base.app_base.TethysAppBlaseePlot (class in tethys_sdk.gizmos), 109
method), 76 link_sqlalchemy_db_to_geoserver()
HandoffManager (class in tethys_apps.base.handoff), 211 (tethys_dataset_services.engines.GeoServerSpatialDatasetEngine
has_permission() (tethys_sdk.permissions static method), method), 176
214 list_datasets() (tethys_dataset_services.base.DatasetEngine
height (AreaRange attribute), 118 method), 151
height (BarPlot attribute), 115 list_datasets() (tethys_dataset_services.engines.CkanDatasetEngine
height (GoogleMapView attribute), 136 method), 155
height (LinePlot attribute), 109 list_datasets() (tethys_dataset_services.engines.HydroShareDatasetEngine
height (MapView attribute), 122 method), 158
height (MVLegendGeoServerImageClass attribute), 130 list_jobs() (tethys_compute.job_manager.JobManager
height (PiePlot attribute), 114 method), 203
height (PolarPlot attribute), 113 list_layer_groups() (tethys_dataset_services.engines.GeoServerSpatialDatas
height (ScatterPlot attribute), 111 method), 177
height (TimeSeries attribute), 117 list_layers() (tethys_dataset_services.base.SpatialDatasetEngine
horizontal (BarPlot attribute), 116 method), 166
hover (JobsTable attribute), 139 list_layers() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngi
hover (TableView attribute), 108 method), 177
href (Button attribute), 96 list_persistent_stores() (tethys_apps.base.app_base.TethysAppBase
HydroShareDatasetEngine (class in class method), 77
tethys_dataset_services.engines), 157 list_persistent_stores() (tethys_sdk.base.TethysAppBase

class method), 146
I list_resources() (tethys_dataset_services.base.SpatialDatasetEngine

icon (Button attribute), 96 method), 166
icon (TethysAppBase attribute), 73 list_resources() (tethys_dataset_services.engines.GeoServerSpatialDatasetE
icon_append (TextInput attribute), 104 method), 177
icon_prepend (TextInput attribute), 103 list_schedulers() (in module tethys_sdk.compute), 192
image_url (MVLegendImageClass attribute), 129 list_stores() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngii
index (TethysAppBase attribute), 73 method), 178
initial (DatePicker attribute), 99 list_styles() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngi
initial (MVDraw attribute), 130 method), 178
initial (RangeSlider attribute), 100 list_workspaces() (tethys_dataset_services.engines.GeoServerSpatialDatase
initial (SelectInput attribute), 102 method), 178
initial (TextInput attribute), 103
initial (ToggleSwitch attribute), 105 M
initial_drawing_mode (GoogleMapView attribute), 136 maps_api_key (GoogleMapView attribute), 136
input_overlays (GoogleMap View attribute), 136 MapView (class in tethys_sdk.gizmos), 122

max (RangeSlider attribute), 100
J maxZoom (MV View attribute), 131
job_templates() (tethys_apps.base.app_base.TethysAppBasemessage (MessageBox attribute), 106

method), 76 MessageBox (class in tethys_sdk.gizmos), 106

JobManager (class in tethys_compute.job_manager), 203 min (RangeSlider attribute), 100
jobs (JobsTable attribute), 139 min_view_mode (DatePicker attribute), 98
JobsTable (class in tethys_sdk.gizmos), 139 minZoom (MV View attribute), 131
JobTemplate (class in tethys_sdk.jobs), 203 Model View Controller, 269

multidate (DatePicker attribute), 99
L multiple (SelectInput attribute), 102
layer (MVLegendGeoServerlmageClass attribute), 130 MVDraw (class in tethys_sdk.gizmos), 130
layer_options (MVLayer attribute), 126 MVLayer (class in tethys_sdk.gizmos), 126
layers (MapView attribute), 123 MVLegendClass (class in tethys_sdk.gizmos), 129
legend_classes (MVLayer attribute), 126 MVLegendGeoServerlmageClass (class in
legend_extent (MVLayer attribute), 126 tethys_sdk.gizmos), 129

278 Index

Tethys Platform Documentation, Release 1.4.0

MVLegendImageClass (class in tethys_sdk.gizmos), 129
MV View (class in tethys_sdk.gizmos), 131

N

name (Button attribute), 96

name (DatePicker attribute), 98

name (MessageBox attribute), 106
name (Permission attribute), 213

name (PermissionGroup attribute), 213
name (RangeSlider attribute), 100
name (SelectInput attribute), 102
name (TethysAppBase attribute), 73
name (TextInput attribute), 103

name (ToggleSwitch attribute), 105

O

off label (ToggleSwitch attribute), 105
off_style (ToggleSwitch attribute), 105
on_label (ToggleSwitch attribute), 105
on_style (ToggleSwitch attribute), 105

options (MVLayer attribute), 126

options (SelectInput attribute), 102

original (SelectInput attribute), 102
output_format (GoogleMapView attribute), 136
output_format (MVDraw attribute), 130

P

package (TethysAppBase attribute), 73

path (TethysWorkspace attribute), 206

Permission (class in tethys_sdk.permissions), 213

permission_required() (tethys_sdk.permissions
method), 214

PermissionGroup (class in tethys_sdk.permissions), 213

permissions (PermissionGroup attribute), 213

permissions() (tethys_apps.base.app_base.TethysAppBase
method), 77

permissions() (tethys_sdk.base.TethysAppBase method),
212

persistent store, 269

persistent stores, 269

static

persistent_store_exists() (tethys_apps.base.app_base.TethysAgipBjaée

class method), 78
persistent_store_exists() (tethys_sdk.base.TethysAppBase
class method), 146

Python virtual environment, 269

R

ramp (MVLegendClass attribute), 129

RangeSlider (class in tethys_sdk.gizmos), 100

reference_kml_action (GoogleMapView attribute), 136

refresh_interval (JobsTable attribute), 140

release package, 269

remove() (tethys_apps.base.TethysWorkspace method),
207

resource, 269

resources, 269

results_url (JobsTable attribute), 139

root_url (TethysAppBase attribute), 74

row_ids (TableView attribute), 108

rows (TableView attribute), 107

run_btn (JobsTable attribute), 139

S

ScatterPlot (class in tethys_sdk.gizmos), 111

search_datasets() (tethys_dataset_services.base.DatasetEngine
method), 151

search_datasets() (tethys_dataset_services.engines.CkanDatasetEngine
method), 155

search_datasets() (tethys_dataset_services.engines.HydroShareDatasetEngi
method), 158

search_resources() (tethys_dataset_services.base.DatasetEngine
method), 151

search_resources() (tethys_dataset_services.engines.CkanDatasetEngine
method), 155

search_resources() (tethys_dataset_services.engines.HydroShareDatasetEng
method), 159

SelectInput (class in tethys_sdk.gizmos), 101

series (AreaRange attribute), 118

series (BarPlot attribute), 115

series (LinePlot attribute), 109

series (PiePlot attribute), 114

series (PolarPlot attribute), 113

series (ScatterPlot attribute), 111

series (TimeSeries attribute), 117

(tethys_apps.base.testing. TethysTestCase

method), 222

setup script, 269

size (ToggleSwitch attribute), 105

persistent_stores() (tethys_apps.base.app_base.TethysAppBasairce (MVLayer attribute), 126

method), 78
persistent_stores()
method), 145
PersistentStore (class in tethys_sdk.stores), 146
PiePlot (class in tethys_sdk.gizmos), 114
placeholder (TextInput attribute), 103
PolarPlot (class in tethys_sdk.gizmos), 113
prepend (TextInput attribute), 103
projection (MV View attribute), 131

(tethys_sdk.base.TethysAppBase

spatial dataset, 269

spatial datasets, 269

spline (LinePlot attribute), 110

spline (ScatterPlot attribute), 111
start_date (DatePicker attribute), 99
start_view (DatePicker attribute), 99
status_actions (JobsTable attribute), 139
step (RangeSlider attribute), 100

stoke (MVLegendClass attribute), 129

Index

279

Tethys Platform Documentation, Release 1.4.0

striped (JobsTable attribute), 139 update_resource() (tethys_dataset_services.base.DatasetEngine
striped (TableView attribute), 108 method), 152
style (Button attribute), 96 update_resource() (tethys_dataset_services.base.SpatialDatasetEngine
style (M VLegendGeoServerImageClass attribute), 130 method), 166
submit (Button attribute), 96 update_resource() (tethys_dataset_services.engines.CkanDatasetEngine
subtitle (AreaRange attribute), 119 method), 156
subtitle (BarPlot attribute), 116 update_resource() (tethys_dataset_services.engines.GeoServerSpatialDatasc
subtitle (LinePlot attribute), 110 method), 180
subtitle (PiePlot attribute), 115 update_resource() (tethys_dataset_services.engines.HydroShareDatasetEng
subtitle (PolarPlot attribute), 113 method), 159
subtitle (ScatterPlot attribute), 111 url_maps() (tethys_apps.base.app_base.TethysAppBase
subtitle (TimeSeries attribute), 117 method), 78
T Vv
TableView (class in tethys_sdk.gizmos), 107 valid_handlers (HandoffManager attribute), 211
tear_down() (tethys_apps.base.testing. TethysTestCase validate() (tethys_dataset_services.engines.CkanDatasetEngine
method), 222 method), 156
TethysAppBase (class in tethys_apps.base.app_base), 73 validate() (tethys_dataset_services.engines.GeoServerSpatialDatasetEngine
TethysTestCase (class in tethys_apps.base.testing), 221 method), 180
TethysWorkspace (class in tethys_apps.base), 206 value (MVLegendClass attribute), 129
TextInput (class in tethys_sdk.gizmos), 103 value (MVLegendGeoServerImageClass attribute), 129
TimeSeries (class in tethys_sdk.gizmos), 117 value (MVLegendImageClass attribute), 129
title (AreaRange attribute), 119 vertical (ButtonGroup attribute), 97
title (BarPlot attribute), 116 view (MapView attribute), 122
title (LinePlot attribute), 109 virtual environment, 269
title (MessageBox attribute), 106
title (PiePlot attribute), 115 W
title (PolarPlot attribute), 113 week_start (DatePicker attribute), 99
title (ScatterPlot attribute), 111 width (AreaRange attribute), 119
title (TimeSeries attribute), 117 width (BarPlot attribute), 115
today_button (DatePicker attribute), 99 width (GoogleMapView attribute), 136
today_highlight (DatePicker attribute), 99 width (LinePlot attribute), 109
ToggleSwitch (class in tethys_sdk.gizmos), 104 width (MapView attribute), 122
type (MVLegendClass attribute), 129 width (MessageBox attribute), 107
type (tethys_dataset_services.engines.CkanDatasetEngine width (MVLegendGeoServerImageClass attribute), 130
attribute), 156 width (PiePlot attribute), 114
type (tethys_dataset_services.engines.GeoServerSpatialDatasdtlthghwelarPlot attribute), 113
attribute), 179 width (ScatterPlot attribute), 111
type (tethys_dataset_services.engines.HydroShareDatasetEngid¢h (TimeSeries attribute), 117
attribute), 159 wps service, 269
wps services, 269
U
update_dataset() (tethys_dataset_services.base.DatasetEngiI)e(
method), 151 x_axis_title (LinePlot attribute), 110
update_dataset() (tethys_dataset_services.engines.CkanDatasetBagititle (ScatterPlot attribute), 111
method), 156 x_axis_units (LinePlot attribute), 110

update_dataset() (tethys_dataset_services.engines.HydroShaxe BritnisetifisgibeatterPlot attribute), 112
method), 159
update_layer() (tethys_dataset_services.base.SpatialDatasetI%gine
method), 166 y_axis_title (AreaRange attribute), 119
update_layer() (tethys_dataset_services.engines.GeoServerSpasixlditdsetEmgiPlot attribute), 110
method), 179 y_axis_title (ScatterPlot attribute), 112
update_layer_group() (tethys_dataset_services.engines.GeoServeisS pilialDatasSttiegintribute), 117
method), 179 y_axis_units (AreaRange attribute), 119

280 Index

Tethys Platform Documentation, Release 1.4.0

y_axis_units (LinePlot attribute), 110
y_axis_units (ScatterPlot attribute), 112
y_axis_units (TimeSeries attribute), 117

Z

zoom (MV View attribute), 131

Index

281

	Contents
	Features
	What's New
	Installation
	Tutorials
	Software Suite
	Software Development Kit
	Tethys Portal
	Production Installation
	Source Code
	Contribute
	Supplementary
	Summary of References
	Glossary

	Acknowledgements
	Indices and tables

