

TestSlide: Fluent Python Testing

TestSlide makes writing tests fluid and easy. Whether you prefer classic unit testing [https://docs.python.org/3/library/unittest.html], TDD [https://en.wikipedia.org/wiki/Test-driven_development] or BDD [https://en.wikipedia.org/wiki/Behavior-driven_development], it helps you be productive, with its easy to use well behaved mocks and its awesome test runner.

It is designed to work well with other test frameworks, so you can use it on top of existing unittest.TestCase without rewriting everything.

Quickstart

Install the package:

pip install TestSlide

Scaffold the code you want to test backup.py:

class Backup(object):
 def delete(self, path):
 pass

Write a test case backup_test.py describing the expected behavior:

import testslide, backup, storage

class TestBackupDelete(testslide.TestCase):
 def setUp(self):
 super().setUp()
 self.storage_mock = testslide.StrictMock(storage.Client)
 # Makes storage.Client(timeout=60) return self.storage_mock
 self.mock_constructor(storage, 'Client')\
 .for_call(timeout=60)\
 .to_return_value(self.storage_mock)

 def test_delete_from_storage(self):
 # Set behavior and assertion for the call at the mock
 self.mock_callable(self.storage_mock, 'delete')\
 .for_call('/file/to/delete')\
 .to_return_value(True)\
 .and_assert_called_once()
 backup.Backup().delete('/file/to/delete')

TestSlide’s StrictMock , mock_callable() and mock_constructor() are seamlessly integrated with Python’s TestCase.

Run the test and see the failure:

[image: Test failure]
TestSlide’s mocks failure messages guide you towards the solution, that you can now implement:

import storage

class Backup(object):
 def __init__(self):
 self.storage = storage.Client(timeout=60)

 def delete(self, path):
 self.storage.delete(path)

And watch the test go green:

[image: Test pass]
It is all about letting the failure messages guide you towards the solution. There’s a plethora of validation inside TestSlide’s mocks, so you can trust they will help you iterate quickly when writing code and also cover you when breaking changes are introduced.

Contents:

	Test Runner
	Multiple Failures Report

	Failing Fast

	Focus and Skip

	Stack Trace Simplification

	Shuffled Execution

	Slow Imports Profiler

	Tip: Automatic Test Execution

	StrictMock
	A Well Behaved Mock

	API Validations

	Magic Methods

	Naming

	Generic Mocks

	Extra Functionality

	mock_callable()
	Defining a Target

	Defining Accepted Calls

	Defining Call Behavior

	Defining Call Assertions

	Cheat Sheet

	Magic Methods

	Signature Validation

	Integration With Other Frameworks

	mock_constructor()
	Implementation Details

	Integration With Other Frameworks

	TestSlide’s DSL
	Contexts and Examples

	Sharing Contexts

	Context Hooks

	Context Attributes and Functions

	Skip and Focus

	unittest.TestCase Integration

	Code Snippets
	Atom

Test Runner

TestSlide has its own DSL that you can use to write tests, and so it comes with its own test runner. However, it can also execute tests written for Python’s unittest [https://docs.python.org/3/library/unittest.html], so you can have its benefits, without having to rewrite everything.

To use, simply give it a list of .py files containing the tests:

$ testslide calculator_test.py
calculator_test.TestCalculatorAdd
 test_add_negative: PASS
 test_add_positive: PASS
calculator_test.TestCalculatorSub
 test_sub_negative: PASS
 test_sub_positive: PASS

Finished 4 example(s) in 0.0s:
 Successful: 4

Note

For documentation simplicity, the output shown here is monochromatic and boring. When executing TestSlide from a terminal, it is colored, making it significantly easier to read. Eg: green for success, red for failure.

Whatever unittest.TestCase or DSL declared in the given files will be executed. You can even mix them in the same project or file.

Note

When using mock_callable() or mock_constructor() you must inherit your test class from testslide.TestCase to have access to those methods. The test runner does not require that, and is happy to run tests that inherit directly (or indirectly) from unittest.TestCase.

Note

Tests inheriting from testslide.TestCase can also be executed by Python’s unittest CLI [https://docs.python.org/3/library/unittest.html#command-line-interface].

Multiple Failures Report

When using TestSlide’s mock_callable() assertions, you can have a better signal on failures. For example, in this test we have two assertions:

def test_delete_from_storage(self):
 self.mock_callable(self.storage, 'delete')\
 .for_call('/file').to_return_value(True)\
 .and_assert_called_once()
 self.assertEqual(Backup().delete('/file'), True)

Normally when a test fails, you get only signal from the first failure. TestSlide’s Test Runner can understand what you meant, and give you a more comprehensive signal, telling about each failed assertion:

$ testslide backup_test.py
backup_test.TestBackupDelete
 test_delete_from_storage: AssertionError: <StrictMock 0x7F55C5159B38 template=storage.Client>, 'delete':

Failures:

1) backup_test.TestBackupDelete: test_delete_from_storage
 1) AssertionError: None != True
 File "backup_test.py", line 47, in test_delete
 self.assertEqual(Backup().delete('/file’), True)
 File "/opt/python3.6/unittest/case.py", line 829, in assertEqual
 assertion_func(first, second, msg=msg)
 File "/opt/python3.6/unittest/case.py", line 822, in _baseAssertEqual
 raise self.failureException(msg)
 2) AssertionError: <StrictMock 0x7F55C5159B38 template=storage.Client>, 'delete':
 expected: called exactly 1 time(s) with arguments:
 ('/file',)
 {}
 received: 0 call(s)
 File "/opt/python3.6/unittest/case.py", line 59, in testPartExecutor
 yield
 File "/opt/python3.6/unittest/case.py", line 646, in doCleanups
 function(*args, **kwargs)

Failing Fast

When you change something and too many tests break, it is useful to stop the execution at the first failure, so you can iterate easier. To do that, use the --fail-fast option.

Focus and Skip

TestSlide allows you to easily focus execution of a single test, by simply adding f to the name of the test function:

def ftest_sub_positive(self):
 self.assertEqual(
 Calc().sub(1, 1), 0
)

And then run your tests with --focus:

$ testslide calc_test.py
calc.TestCalcSub
 *ftest_sub_positive: PASS

Finished 1 example(s) in 0.0s:
 Successful: 1
 Not executed: 3

Only ftest tests will be executed. Note that it also tells you how many tests were not executed.

Similarly, you can skip a test with x:

def xtest_sub_positive(self):
 self.assertEqual(
 Calc().sub(1, 1), 0
)

And this test will be skipped:

$ testslide calc_test.py
calc.TestCalcAdd
 test_add_negative: PASS
 test_add_positive: PASS
calc.TestCalcSub
 test_sub_negative: PASS
 xtest_sub_positive: SKIP

Finished 4 example(s) in 0.0s:
 Successful: 3
 Skipped: 1

Stack Trace Simplification

Stack traces can be hard to read. By default, TestSlide trims the working directory from file names on stack traces, simplifying the output. You can tweak this behavior with --trim-strace-path-prefix.

Also, stack trace lines that are from TestSlide’s code base are hidden, as they are only useful when debugging TestSlide itself.

Shuffled Execution

Each test must be independent and isolated from each other. For example, if one test manipulates some module level object, that the next test depends on, we are leaking the context of one test to the next. To catch such cases, you can run your tests with --shuffle: tests will be executed in a random order every time. The test signal must always be the same, no matter in what order tests run. You can tweak the seed with --seed.

Slow Imports Profiler

As projects grow with more dependencies, running a test for a few lines of code can take several seconds. This is often cause by time spent on importing dependencies, rather that the tests themselves. If you run your tests with --import-profiler $MS, any imported module that took more that that the given amount of milliseconds will be reported in a nice and readable tree view. This helps you optimize your imports, so your unit tests can run faster. Frequently, the cause of slow imports is the construction of heavy objects at module level.

Tip: Automatic Test Execution

To help iterate even quicker, you can pair testslide execution with entr [http://www.entrproject.org/] (or any similar):

find . -name *.py | entr testslide tests/.py

This will automatically execute all your tests, whenever a file is saved. This is particularly useful when paired with focus and skip. This means you don’t have to leave your text editor, to iterate over your tests and code.

StrictMock

When unit testing, mocks are often used in place of a real dependency, so tests can run independently. Mocks must behave exactly like the real thing, by returning configured canned responses, but rejecting anything else. If this is not true, it is hard to trust your test results.

Let’s see a practical example of that:

In [1]: from unittest.mock import Mock

In [2]: class Calculator:
 ...: def is_odd(self, x):
 ...: return bool(x % 2)
 ...:

In [3]: mock = Mock(Calculator)

In [4]: mock.is_odd(2)
Out[4]: <Mock name='mock.is_odd()' id='140674180253512'>

In [5]: bool(mock.is_odd(2))
Out[5]: True

In [6]: mock.is_odd(2, 'invalid')
Out[6]: <Mock name='mock.is_odd()' id='140674180253512'>

The mock, right after being created, already has dangerous behavior. When is_odd() is called, another mock is returned. And it is unconditionally True. And this is wrong: 2 is not odd. When this happens in your test, it is hard to trust its results: it might go green, even with buggy code. Also note how the mock accepts calls with any arguments, even if they don’t match the original method signature.

A Well Behaved Mock

StrictMock is safe by default: it only has configure behavior:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
 ...: def is_odd(self, x):
 ...: return bool(x % 2)
 ...:

In [3]: mock = StrictMock(Calculator)

In [4]: mock.is_odd(2)
(...)
UndefinedBehavior: <StrictMock 0x7F290A3DD860 template=__main__.Calculator>:
 Attribute 'is_odd' has no behavior defined.
 You can define behavior by assigning a value to it.

Instead of guessing what is_odd should return, StrictMock clearly tells you it was not told what to do with it. In this case, the mock is clearly missing the behavior, that we can trivially add:

In [5]: mock.is_odd = lambda number: False

In [6]: mock.is_odd(2)
Out[6]: False

API Validations

StrictMock does a lot of validation under the hood, so you can trust its behavior, even when breaking changes are introduced.

Attribute Existence

You won’t be allowed to set an attribute to a StrictMock if the given template class does not have it:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
 ...: def is_odd(self, x):
 ...: return bool(x % 2)
 ...:

In [3]: mock = StrictMock(Calculator)

In [4]: mock.invalid = 'whatever'
(...)
NoSuchAttribute: <StrictMock 0x7F7821920780 template=__main__.Calculator>:
 No such attribute 'invalid'.
 Can not set attribute invalid that is neither part of template class Calculator or runtime_attrs=[].

Dynamic Attributes

StrictMock will introspect at the template class code, to detect attributes that are dynamically defined:

In [1]: from testslide import StrictMock
 ...:

In [2]: class DynamicAttr(object):
 ...: def __init__(self):
 ...: self.dynamic = 'set from __init__'
 ...:

In [3]: mock = StrictMock(DynamicAttr)

In [4]: mock.dynamic = 'something else'

Note

This feature is not available in Python 2!

The detection mechanism can only detect attributes defined from __init__. If you have attributes defined at other places, you will need to inform them explicitly:

StrictMock(TemplateClass, runtime_attrs=['attr_name'])

Method Signatures

StrictMock also ensures that method signatures match the ones from the template class:

In [1]: from testslide import StrictMock

In [2]: class Calculator:
 ...: def is_odd(self, x):
 ...: return bool(x % 2)
 ...:

In [3]: mock = StrictMock(Calculator)

In [4]: mock.is_odd = lambda number, invalid: False

In [5]: mock.is_odd(2, 'invalid')
(...)
TypeError: too many positional arguments

Magic Methods

Defining behavior for magic methods works out of the box:

In [1]: from testslide import StrictMock

In [2]: mock = StrictMock()

In [3]: mock.__str__ = lambda: 'mocked str'

In [4]: str(mock)
Out[4]: 'mocked str'

Naming

You can optionally name your mock, to make it easier to identify:

In [1]: from testslide import StrictMock

In [2]: str(StrictMock())
Out[2]: '<StrictMock 0x7F7A30FC0748>'

In [3]: str(StrictMock(name='whatever'))
Out[3]: "<StrictMock 0x7F7A30FDFF60 name='whatever'>"

Generic Mocks

It is recommended to use StrictMock giving it a template class, so you can leverage its API validation. There are situations however, that any “generic mock” is good enough. You can still use StrictMock, although you’ll loose most validations:

In [1]: from testslide import StrictMock

In [2]: mock = StrictMock()

In [3]: mock.whatever
(...)
UndefinedBehavior: <StrictMock 0x7FED1C724C18>:
 Attribute 'whatever' has no behavior defined.
 You can define behavior by assigning a value to it.

In [4]: mock.whatever = 'something'

In [5]: mock.whatever
Out[5]: 'something'

It will accept setting any attributes, with any values.

Extra Functionality

	copy.copy() and copy.deepcopy() works, and give back another StrictMock, with the same behavior.

	Template classes that use __slots__ are supported.

	If the template class is a context manager, the StrictMock instance will also define __enter__, yielding itself, and an empty __exit__.

mock_callable()

While StrictMock specializes in creating mocks that behave like some real object, mock_callable() focuses on mocking functions and instance/static/class methods. In a single shot, it allows you to:

	Create a callable mock.

	Define what call to accept.

	Define call behavior.

	Patch the callable mock somewhere.

	Define a call assertion (optional).

Sounds complicated, but it is not:

import os
from testslide import TestCase

def rm(path):
 os.remove(path)

class TestRm(TestCase):
 def test_remove_from_filesystem(self):
 path = '/some/file'
 self.mock_callable(os, 'remove')\
 .for_call(path)\
 .to_return_value(None)\
 .and_assert_called_once()
 rm(path)

This test will only pass if os.remove was called once with path. It will fail if os.remove:

	Is not called.

	Is called more than once.

	Is called with any other argument.

For example, if the code is broken and does os.remove('/wrong/file'):

$ testslide rm_test.py
rm_test.TestRm
 test_remove_from_filesystem: AggregatedExceptions: 2 failures.

Failures:

 1) rm_test.TestRm: test_remove_from_filesystem
 1) UnexpectedCallArguments: <module 'os' from '/opt/python/lib/python3.6/os.py'>, 'remove':
 Received call:
 ('/wrong/file',)
 {}
 But no behavior was defined for it.
 These are the registered calls:
 ('/some/file',)
 {}

 File "rm_test.py", line 14, in test_remove_from_filesystem
 rm(path)
 File "rm_test.py", line 5, in rm
 os.remove('/wrong/file')
 File "/opt/python/lib/python3.6/unittest/mock.py", line 939, in __call__
 return _mock_self._mock_call(*args, **kwargs)
 File "/opt/python/lib/python3.6/unittest/mock.py", line 1005, in _mock_call
 ret_val = effect(*args, **kwargs)
 2) AssertionError: calls did not match assertion.
 <module 'os' from '/opt/python/lib/python3.6/os.py'>, 'remove':
 expected: called at least 1 time(s) with arguments:
 ('/some/file',)
 {}
 received: 0 call(s)
 File "/opt/python/lib/python3.6/unittest/case.py", line 59, in testPartExecutor
 yield
 File "/opt/python/lib/python3.6/unittest/case.py", line 646, in doCleanups
 function(*args, **kwargs)

Finished 1 example(s) in 0.0s:
 Failed: 1

Note how you get two failed assertions, instead of just one:

	The mock was called with something unexpected.

	The expected call did not happen.

It is now pretty clear what is broken, and why it is broken.

Defining a Target

You always start mock_callable with:

self.mock_callable(target, 'attribute_name')

target can be:

	A StrictMock.

	A module.

	The module can be given as a reference (eg: time) or as a string (eg: "time"). The latter allows you to avoid importing the module at the same file you use mock_callable.

	A Class

	Any object.

attribute_name is the name of the function / method you want to mock.

Note

You can mock instance methods at instances of classes but not at the class. This is by design, as mocking instance methods at the class affects every instance of that class, not just what’s needed for the test, making it easy to introduce bugs. Assertions can be ambiguous: .and_assert_called_twice() means one instance called twice, or two instances called once each?

Defining Accepted Calls

By default, mock_callable accepts all call arguments:

self.mock_callable(os, 'remove')\
 .to_return_value(None)
for n in range(3):
 os.remove(str(n)) # => None

You can define precisely what arguments to accept:

self.mock_callable(os, 'remove')\
 .for_call('/some/file')\
 .to_return_value(None)
os.remove('/some/file') # => None
os.remove('/some/other/file') # => raises UnexpectedCallArguments

Note how it is safe by default: once for_call is used, other calls will not be accepted.

Composition

You can use mock_callable for the same target as many times as needed, so you can compose the behavior you need:

self.mock_callable(os, 'remove')\
 .to_raise(FileNotFoundError)
self.mock_callable(os, 'remove')\
 .for_call('/some/file')\
 .to_return_value(None)
self.mock_callable(os, 'remove')\
 .for_call('/some/other/file')\
 .to_return_value(None)
os.remove('/some/file') # => None
os.remove('/some/other/file') # => None
os.remove('/anything/else') # => raises FileNotFoundError

mock_callable scans the list of registered calls from last to first, until it finds a match (UnexpectedCallArguments is raised if there’s no match). In this example, FileNotFoundError essentially became the default behavior. This is particularly powerful when you configure it at the setUp() phase of your tests, then specialize the behavior inside each test function, for specific arguments.

Defining Call Behavior

The safe by default rational spans to call behavior. There’s no default, and you are required to define what happens when the call is made.

Returning a value

Always return the same value:

self.mock_callable(os, 'remove')\
 .for_call('/some/file')\
 .to_return_value(None)

Returning a series of values

Return each value from a list until exhausted:

self.mock_callable(time, 'time')\
 .to_return_values([1.0, 2.0, 3.0])
time.time() => 1.0
time.time() => 2.0
time.time() => 3.0
time.time() => raises UndefinedBehaviorForCall

Yielding values

You can return a generator with:

self.mock_callable(some_object, 'some_method_name')\
 .to_yield_values([1, 2, 3])
for each_value in some_object.some_method_name():
 print(each_value) # => 1, 2, 3

Raising exceptions

You can raise exceptions by either giving an exception class itself or an instance of it:

self.mock_callable(some_object, 'some_method_name')\
 .to_raise(RuntimeError)
some_object.some_method_name() # => raise RuntimeError

Replacing the original implementation

Replace the original implementation with something else:

def func():
 return 33

self.mock_callable(some_object, 'some_method_name')\
 .with_implementation(func)
some_object.some_method_name() # => 33

Note

func can be any callable (eg: a lambda).

Wrapping the original implementation

When the target is a real object (not a mock), it can be useful to still call the original method, process its return perhaps, and return something else:

def trim_query(original_callable):
 return original_callable()[0:5]

self.mock_callable(some_service, 'big_query')\
 .with_wrapper(trim_query)
some_service.big_query() # => returns trimmed list

Calling the original implementation

Sometimes it is useful to mock only cherry picked calls for real targets and allow all other calls through:

self.mock_callable(some_object, 'some_method')\
 .to_call_original()
self.mock_callable(some_object, 'some_method')\
 .for_args('specific call')\
 .to_return_value('specific response')
some_object.some_method('any call') # => returns whatever some_object.some_method() returns
some_object.some_method('specific call') # => 'specific response'

You can achieve the opposite (specific call goes through, mocked general case) with:

self.mock_callable(some_object, 'some_method_name')\
 .to_return_value('general case')
self.mock_callable(some_object, 'some_method_name')\
 .for_args('specific case')\
 .to_call_original()
some_object.some_method_name('whatever') # => 'general case'
some_object.some_method_name('specific case') # => Calls the original callable, and return the value

Defining Call Assertions

When dealing with external dependencies, it is useful to assert on calls to them when they have side-effects. mock_callable allows you to do this:

self.mock_callable(os, 'remove')\
 .for_call(path)\
 .to_return_value(None)\
 .and_assert_called_once()

Here’s a list of all assertions you can define:

.and_assert_called_exactly(times)
.and_assert_called_once()
.and_assert_called_twice()
.and_assert_called_at_least(times)
.and_assert_called_at_most(times)
.and_assert_called()
.and_assert_not_called()

Within the same test, you can define as many assertions as needed.

Cheat Sheet

It is a good idea to keep this at hand when using mock_callable:

self.mock_callable(target, 'callable_name')\
 # Call to accept
 .for_call(*args, **kwargs)\
 # Behavior
 .to_return_value(value)\
 .to_return_values(values_list)\
 .to_yield_values(values_list)\
 .to_raise(exception)\
 .with_implementation(func)\
 .with_wrapper(func)\
 .to_call_original()\
 # Assertion (optional)
 .and_assert_called_exactly(times)
 .and_assert_called_once()
 .and_assert_called_twice()
 .and_assert_called_at_least(times)
 .and_assert_called_at_most(times)
 .and_assert_called()
 .and_assert_not_called()

Magic Methods

Mocking magic methods (eg: __str__) for an instance can be quite tricky, as str(obj) requires the mock to be made at type(obj). mock_callable implements the complicated mechanics required to make it work, so you can easily mock directly at instances:

import time
from testslide import TestCase

class A:
 def __str__(self):
 return 'original'

class TestMagicMethodMocking(TestCase):
 def test_str(self):
 a = A()
 other_a = A()
 self.assertEqual(str(a), 'original')
 self.mock_callable(a, '__str__')\
 .to_return_value('mocked')
 self.assertEqual(str(a), 'mocked')
 self.assertEqual(str(other_a), 'original')

The mock works for the target instance, but does not affect other instances.

Signature Validation

mock_callable implements signature validation. When you use it, the mock will raise TypeError if it is called with a signature that does not match the original method:

import time
from testslide import TestCase

class A:
 def one_arg(self, arg):
 return 'original'

class TestSignature(TestCase):
 def test_signature(self):
 a = A()
 self.mock_callable(a, 'one_arg')\
 .to_return_value('mocked')
 self.assertEqual(a.one_arg('one'), 'mocked')
 with self.assertRaises(TypeError):
 a.one_arg('one', 'invalid')

This is particularly helpful when changes are introduced to the code: if a mocked method changes the signature, even when mocked, mock_callable will give you the signal that there’s something broken.

Integration With Other Frameworks

mock_callable comes out of the box with support for Python`s unittest (via testslide.TestCase) and TestSlide’s DSL. You can easily integrate it with any other test framework you prefer:

	mock_callable calls testslide.mock_callable.register_assertion passing a callable object whenever an assertion is defined. You must set it to a function that will execute the assertion after the test code finishes. Eg: for Python’s unittest: testslide.mock_callable.register_assertion = lambda assertion: self.addCleanup(assertion).

	After each test execution, you must unconditionally call testslide.mock_callable.unpatch_all_callable_mocks. This will undo all patches, so the next test is not affected by them. Eg: for Python’s unittest: self.addCleanup(testslide.mock_callable.unpatch_all_callable_mocks).

	You can then call testslide.mock_callable.mock_callable directly from your tests.

mock_constructor()

Let’s say we wan to unit test the Backup.delete method:

import storage

class Backup(object):
 def __init__(self):
 self.storage = storage.Client(timeout=60)

 def delete(self, path):
 self.storage.delete(path)

We want to ensure that when Backup.delete is called, it actually deletes path from the storage as well, by calling storage.Client.delete. We can leverage StrictMock and mock_callable() for that:

self.storage_mock = StrictMock(storage.Client)
self.mock_callable(self.storage_mock, 'delete')\
 .for_call('/file/to/delete')\
 .to_return_value(True)\
 .and_assert_called_once()
Backup().delete('/file/to/delete')

The question now is: how to put self.storage_mock inside Backup.__init__? This is where mock_constructor jumps in:

from testslide import TestCase, StrictMock, mock_callable
import storage
from backup import Backup

class TestBackupDelete(TestCase):
 def setUp(self):
 super().setUp()
 self.storage_mock = StrictMock(storage.Client)
 self.mock_constructor(storage, 'Client')\
 .for_call(timeout=60)\
 .to_return_value(self.storage_mock)

 def test_delete_from_storage(self):
 self.mock_callable(self.storage_mock, 'delete')\
 .for_call('/file/to/delete')\
 .to_return_value(True)\
 .and_assert_called_once()
 Backup().delete('/file/to/delete')

mock_constructor makes storage.Client(timeout=60) return self.storage_mock. It is similar to mock_callable(), accepting the same call, behavior and assertion definitions. Similarly, it will also fail if storage.Client() (missing timeout) is called.

Note how by using mock_constructor, not only you get all safe by default goodies, but also totally decouples your test from the code. This means that, no matter how Backup is refactored, the test remains the same.

Implementation Details

In principle, doing:

self.mock_callable(SomeClass, '__new__')\
 .for_call()\
 .to_return_value(some_class_mock)

Should be all you need. However, as of October 2018, Python 3 has a bug https://bugs.python.org/issue25731 that prevents this from working (it works in Python 2).

mock_callable is a way to not only solve this for Python 3, but also provide the same interface for both.

Internally, mock_callable will:

	Patch the class at its module with a subclass of it, that is dynamically created.

	__new__ of this dynamic subclass is handled by mock_callable.

Integration With Other Frameworks

mock_constructor comes out of the box with support for Python`s unittest (via testslide.TestCase) and TestSlide’s DSL. You can easily integrate it with any other test framework you prefer:

	Integrate mock_callable() (used by mock_constructor under the hook).

	After each test execution, you must unconditionally call testslide.mock_constructor.unpatch_all_callable_mocks. This will undo all patches, so the next test is not affected by them. Eg: for Python’s unittest: self.addCleanup(testslide.mock_constructor.unpatch_all_callable_mocks).

	You can then call testslide.mock_constructor.mock_constructor directly from your tests.

TestSlide’s DSL

When testing complex scenarios with lots of variations, or when doing BDD [https://en.wikipedia.org/wiki/Behavior-driven_development], TestSlide’s DSL helps you break down your test cases close to spoken language. Composition of test scenarios enables covering more ground with less effort. Think of it as unittest.TestCase on steroids.

Let’s say we want to test this class:

import storage

class Backup:
 def __init__(self):
 self.storage = storage.Client(timeout=60)

 def delete(self, path):
 self.storage.delete(path)

We can test use it with:

from testslide.dsl import context
from testslide import StrictMock
import storage
import backup

@context
def Backup(context):

 context.memoize("backup", lambda self: backup.Backup())

 context.memoize("storage_mock", lambda self: StrictMock(storage.Client))

 @context.before
 def mock_storage_Client(self):
 self.mock_constructor(storage, 'Client')\
 .for_call(timeout=60)\
 .to_return_value(self.storage_mock)

 @context.sub_context
 def delete(context):
 context.memoize("path", lambda self: '/some/file')

 @context.after
 def call_backup_delete(self):
 self.backup.delete(self.path)

 @context.example
 def it_deletes_from_storage_backend(self):
 self.mock_callable(self.storage_mock, 'delete')\
 .for_call(self.path)\
 .to_return_value(True)\
 .and_assert_called_once()

And when we run it:

$ testslide backup_test.py
Backup
 delete
 it deletes from storage backend

Finished 1 example(s) in 0.0s:
 Successful: 1

As you can see, we can declare contexts for testing, and keep building on top of them:

	The top Backup context contains the object we want to test, and the common mocks needed.

	The nested delete context always calls Backup.delete after each example.

	The it_deletes_from_storage_backend example defines only the assertion needed for it.

As the Backup class grows, it is easy to nest new contexts, and reuse what’s already defined.

Contents:

	Contexts and Examples
	Sub Examples

	Explicit names

	Sharing Contexts
	Parameterized shared contexts

	Context Hooks
	Before

	After

	Around

	Context Attributes and Functions
	Attributes

	Memoized Attributes

	Functions

	Skip and Focus
	Focus

	Skip

	unittest.TestCase Integration
	Assertions

	Reusing existing unittest.TestCase setUp

Contexts and Examples

Within TestSlide’s DSL language, a single test is called an example. All examples are declared inside a context. Contexts can be arbitrarily nested.

Contexts hold code that sets up and tear down the environment for each particular scenario. Things like instantiating objects and setting up mocks are usually part of the context.

Examples hold only code required to test the particular case.

Let’s see it in action:

from testslide.dsl import context

@context
def calculator(context):

 @context.sub_context
 def addition(context):

 @context.example
 def sums_given_numbers(self):
 pass

 @context.sub_context
 def subtract(context):

 @context.example
 def subtracts_given_numbers(self):
 pass

This describes the basic behavior of a calculator class. Here’s what you get when you run it:

calculator
 addition
 sums given numbers: PASS
 subtraction
 subtracts given numbers: PASS

Finished 2 examples in 0.0s:
 Successful: 2

Note how TestSlide parses the Python code, and yields a close to spoken language wersion of it.

Sub Examples

Sometimes, within the same example, you want to exercise your code multiple times for the same data. Sub examples allow you to do just that:

from testslide.dsl import context

@context
def Sub_examples(context):

 @context.example
 def shows_individual_failures(self):
 for i in range(5):
 with self.sub_example():
 if i %2:
 raise AssertionError('{} failed'.format(i))
 raise RuntimeError('Last Failure')

When executed, TestSlide understands all cases, and report them properly:

Sub examples
 shows individual failures: AggregatedExceptions: 3 failures.

Failures:

 1) Sub examples: shows individual failures
 1) RuntimeError: Last Failure
 File "sub_examples_test.py", line 12, in shows_individual_failures
 raise RuntimeError('Last Failure')
 2) AssertionError: 1 failed
 File "sub_examples_test.py", line 11, in shows_individual_failures
 raise AssertionError('{} failed'.format(i))
 3) AssertionError: 3 failed
 File "sub_examples_test.py", line 11, in shows_individual_failures
 raise AssertionError('{} failed'.format(i))

Finished 1 example(s) in 0.0s:
 Failed: 1

Explicit names

TestSlide extracts the name for contexts and examples from the function name, just swapping _ for a space. If you need special characters at your context or example names, you can do it like this:

from testslide.dsl import context

@context('Top-level context name')
def top(context):
 @context.sub_context('sub-context name')
 def sub(context):
 @context.example('example with weird-looking name')
 def ex(self):
 pass

Note

When explicitly naming, the function name is irrelevant, just make sure there’s no name collision.

Sharing Contexts

You can use shared contexts to avoid code duplication, and share common logic applicable to multiple contexts:

from testslide.dsl import context

@context
def Sharing_contexts(context):

 # This context will not be evaluated immediately, and can be reused later
 @context.shared_context
 def Shared_context(context):

 @context.example
 def shared_example(self):
 pass

 @context.sub_context
 def Merging_shared_contexts(context):
 # The shared context will me merged into current context
 context.merge_context('Shared context')

 @context.sub_context
 def Nesting_shared_contexts(context):
 # The shared context will be nested below the current context
 context.nest_context('Shared context')

And when we execute them:

Sharing contexts
 Merging shared contexts
 shared example: PASS
 Nesting shared contexts
 Shared context
 shared example: PASS

Finished 2 examples in 0.0s:
 Successful: 2

Note the difference between merging and nesting a shared context: when you merge, no new sub context is created, when you nest, a new sub context will be created below where it was nested.

Parameterized shared contexts

Your shared contexts can accept optional arguments, that can be used to control its declarations:

from testslide.dsl import context

@context
def Sharing_contexts(context):

 # This context will not be evaluated immediately, and can be reused later
 @context.shared_context
 def Shared_context(context, extra_example=False):

 @context.example
 def shared_example(self):
 pass

 if extra_example:

 @context.example
 def extra_shared_example(self):
 pass

 @context.sub_context
 def With_extra_example(context):
 context.merge_context('Shared context', extra_example=True)

 @context.sub_context
 def Without_extra_example(context):
 context.nest_context('Shared context')

Note

It is an anti-pattern to reference shared context arguments inside hooks or examples, as there’s chance of leaking context from one example to the next.

Context Hooks

Contexts must prepare the test scenario according to its description. To do that, you can configure hooks to run before, after or around individual examples.

Before

Before hooks are executed in the order defined, before each example:

from testslide.dsl import context

@context
def before_hooks(context):

 @context.before
 def define_list(self):
 self.value = []

 @context.before
 def append_one(self):
 self.value.append(1)

 def append_two(self):
 self.value.append(2)

 @context.example
 def before_hooks_are_executed_in_order(self):
 self.assertEqual(self.value, [1, 2])

Note

The name of the before functions does not matter. It is however useful to give them meaningful names, so they are easier to debug.

If code at a before hook fails (raises), test execution stops with a failure.

Typically, before hooks are used to:

	Setup the object being tested.

	Setup any dependencies, including mocks.

You can alternatively use lambdas as well:

@context
def before_hooks(context):

 context.before(lambda self: self.value = [])

After

The after hook is pretty much the opposite of before hooks: they are called after each example, in the opposite order defined:

from testslide.dsl import context
import os

@context
def After_hooks(context):

 @context.after
 def do_call(self):
 os.remove('/tmp/something')

 @context.example
 def passes(self):
 self.mock_callable(os, 'remove')\
 .for_call('/tmp/something')\
 .to_return_value(None)\
 .and_assert_called_once()

 @context.example
 def falis(self):
 self.mock_callable(os, 'remove')\
 .for_call('/tmp/WRONG')\
 .to_return_value(None)\
 .and_assert_called_once()

After hooks are typically used for:

	Executing things common to all examples (eg: calling the code that is being tested).

	Doing assertions common to all examples.

	Doing cleanup logic (eg: closing file descriptors).

You can also define after hooks from within examples:

@context.example
def can_define_after_hook(self):
 do_first_thing()

 @self.after
 def run_after_example_finishes():
 do_something_after_last_thing()

 do_last_thing()

Will run do_first_thing, do_last_thing then do_something_after_last_thing.

Aggregated failures

One important behavior of after hooks, is that they are always executed, regardless of any other failures in the test. This means, we get detailed result of each after hook failure:

from testslide.dsl import context

@context
def Show_aggregated_failures(context):

 @context.example
 def example_with_after_hooks(self):
 @self.after
 def assert_something(self):
 assert 1 == 2

 @self.after
 def assert_other_thing(self):
 assert 1 == 3

And its output:

Show aggregated failures
 example with after hooks: FAIL: AggregatedExceptions: empty example

Failures:

 1) Show aggregated failures: example with after hooks
 1) AssertionError:
 (...)
 2) AssertionError:
 (...)

Finished 1 examples in 0.0s:
 Failed: 1

Around

Around hooks execute around all before hooks, example code and all after hooks:

from testslide.dsl import context
import os, tempfile

@context
def Around_hooks(context):

 @context.around
 def inside_tmp_dir(self, example):
 with tempfile.TemporaryDirectory() as path:
 self.path = path
 original_path = os.getcwd()
 try:
 os.chdir(path)
 example()
 finally:
 os.chdir(original_path)

 @context.example
 def code_inside_temporary_dir(self):
 assert os.getcwd() == self.path

In this example, every example in the context will run inside a temporary directory.

If you declare multiple around hooks, the first around hook wraps the next one and so on.

Typical use for around hooks are similar to when context manager would be useful:

	Rolling back DB transactions after each test.

	Closing open file descriptors.

	Removing temporary files.

Context Attributes and Functions

Other than Context Hooks, you can also configure contexts with any attributes or functions.

Attributes

You can set any arbitrary attribute from within any hook:

@context.before
def before(self):
 self.calculator = Calculator()

and refer it later on:

@context.example
def is_a_calculaor(self):
 assert type(self.calculator) == Calculator

Memoized Attributes

Memoized attributes allow for lazy construction of attributes needed during a test. The attribute value will be constructed and remembered only at the first attribute access:

@context
def Memoized_attributes(context):

 # This function will be used to lazily set a memoized attribute with the same name
 @context.memoize
 def memoized_value(self):
 return []

 # Lambdas are also OK
 context.memoize('another_memoized_value', lambda self: [])

 # Or in bulk
 context.memoize(
 yet_another=lambda self: 'one',
 and_one_more=lambda self: 'attr',
)

 @context.example
 def can_access_memoized_attributes(self):
 # memoized_value
 assert len(self.memoized_value) == 0
 self.memoized_value.append(True)
 assert len(self.memoized_value) == 1

 # another_memoized_value
 assert len(self.another_memoized_value) == 0
 self.another_memoized_value.append(True)
 assert len(self.another_memoized_value) == 1

 # these were declared in bulk
 assert self.yet_anoter == 'one'
 assert self.and_one_more == 'attr'

Note in the example that the list built by memoized_value(), is memoized, and is the same object for every access.

Another option is to force memoization to happen at a before hook, instead of at the moment the attribute is accessed:

@context.memoize_before
def attribute_name(self):
 return []

In this case, the attribute will be set, regardless if it is used or not.

Composition

The big value of using memoized attributes as opposed to a regular attribute, is that you can easily do composition:

from testslide.dsl import context
from testslide import StrictMock

@context
def Composition(context):

 context.memoize('attr_value', lambda self: 'default value')

 @context.memoize
 def mock(self):
 mock = StrictMock()
 mock.attr = self.attr_value
 return mock

 @context.example
 def sees_default_value(self):
 self.assertEqual(self.mock.attr, 'default value')

 @context.sub_context
 def With_different_value(context):

 context.memoize('attr_value', lambda self: 'different value')

 @context.example
 def sees_different_value(self):
 self.assertEqual(self.mock.attr, 'different value')

Functions

You can define arbitrary functions that can be called from test code with the @context.function decorator:

@context
def Arbitrary_helper_functions(context):

 @context.memoize
 def some_list(self):
 return []

 # You can define arbitrary functions to call later
 @context.function
 def my_helper_function(self):
 self.some_list.append('item')
 return "I'm helping!"

 @context.example
 def can_call_helper_function(self):
 assert "I'm helping!" == self.my_helper_function()
 assert ['item'] == self.some_list

Skip and Focus

The Test Runner supports focusing and skipping examples. Let’s see how to do it with TestSlide’s DSL.

Focus

You can focus either the top level context, sub contexts or examples by prefixing their declaration with a f:

from testslide.dsl import context, fcontext, xcontext

@context
def Focusing(context):

 @context.example
 def not_focused_example(self):
 pass

 @context.fexample
 def focused_example(self):
 pass

 @context.sub_context
 def Not_focused_subcontext(context):

 @context.example
 def not_focused_example(self):
 pass

 @context.fsub_context
 def Focused_context(context):

 @context.example
 def inherits_focus_from_context(self):
 pass

And when run with --focus:

Focusing
 *focused example: PASS
 *Focused context
 *inherits focus from context: PASS

Finished 2 example(s) in 0.0s:
 Successful: 2
 Not executed: 2

Skip

Skipping works just the same, but you have to use a x:

from testslide.dsl import context, fcontext, xcontext

@context
def Skipping(context):

 @context.example
 def not_skipped_example(self):
 pass

 @context.xexample
 def skipped_example(self):
 pass

 @context.sub_context
 def Not_skipped_subcontext(context):

 @context.example
 def not_skipped_example(self):
 pass

 @context.xsub_context
 def Skipped_context(context):

 @context.example
 def inherits_skip_from_context(self):
 pass

Skipping
 not skipped example: PASS
 skipped example: SKIP
 Not skipped subcontext
 not skipped example: PASS
 Focused context
 inherits focus from context: SKIP

Finished 4 example(s) in 0.0s:
 Successful: 2
 Skipped: 2

unittest.TestCase Integration

TestSlide’s DSL builtin integration with Python’s unittest [https://docs.python.org/3/library/unittest.html].

Assertions

TestSlide (currently) has on assertion framework. It comes however, with all self.assert* methods that you find at unittest.TestCase (see the docs [https://docs.python.org/3/library/unittest.html#assert-methods]):

@context
def unittest_assert_methods(context):

 @context.example
 def has_assert_true(self):
 self.assertTrue(True)

Reusing existing unittest.TestCase setUp

You can leverage existing unittest.TestCase classes, and use their setup logic to with TestSlide’s DSL:

@context
def merging_test_cases(context):

 context.merge_test_case(SomePreExistingTestCase, 'legacy_test_case')

 @context.example
 def can_access_the_test_case(self):
 self.legacy_test_case # => SomePreExistingTestCase instance

merge_test_case will call all SomePreExistingTestCase test hooks (setUp, tearDown etc) for each example.

From each example (or hooks), you will have access to the TestCase instance, so you can access any of its methods or attributes.

Note

Only hooks are executed, no existing tests will be imported!

Code Snippets

Here are code snippets, to save you time when writing tests.

Atom

Please refer Atom’s documentation [http://flight-manual.atom.io/using-atom/sections/snippets/] on how to use these.

'.source.python':
 ##
 ## TestSlide
 ##

 # Context
 '@context':
 'prefix': 'cont'
 'body': '@context\ndef ${1:context_description}(context):\n ${2:pass}'
 '@fcontext':
 'prefix': 'fcont'
 'body': '@fcontext\ndef ${1:context_description}(context):\n ${2:pass}'
 '@xcontext':
 'prefix': 'xcont'
 'body': '@xcontext\ndef ${1:context_description}(context):\n ${2:pass}'
 '@context.sub_context':
 'prefix': 'scont'
 'body': '@context.sub_context\ndef ${1:context_description}(context):\n ${2:pass}'
 '@context.fsub_context':
 'prefix': 'fscont'
 'body': '@context.fsub_context\ndef ${1:context_description}(context):\n ${2:pass}'
 '@context.xsub_context':
 'prefix': 'xscont'
 'body': '@context.xsub_context\ndef ${1:context_description}(context):\n ${2:pass}'
 '@context.shared_context':
 'prefix': 'shacont'
 'body': '@context.shared_context\ndef ${1:shared_context_description}(context):\n ${2:pass}'

 # Example
 '@context.example':
 'prefix': 'exp'
 'body': '@context.example\ndef ${1:example_description}(self):\n ${2:pass}'
 '@context.fexample':
 'prefix': 'fexp'
 'body': '@context.fexample\ndef ${1:example_description}(self):\n ${2:pass}'
 '@context.xexample':
 'prefix': 'xexp'
 'body': '@context.xexample\ndef ${1:example_description}(self):\n ${2:pass}'

 # Hooks
 '@context.before':
 'prefix': 'befo'
 'body': '@context.before\ndef ${1:before}(self):\n ${2:pass}'
 '@context.after':
 'prefix': 'aft'
 'body': '@context.after\ndef ${1:after}(self):\n ${2:pass}'
 '@context.around':
 'prefix': 'aro'
 'body': '@context.around\ndef ${1:around}(self, bef_aft_example):\n ${2:pass # before example}\n bef_aft_example()\n ${3:pass # after example}'

 # Attributes
 '@context.memoize':
 'prefix': 'memo'
 'body': '@context.memoize\ndef ${1:attribute_name}(self):\n ${2:pass}'
 '@context.function':
 'prefix': 'cfunc'
 'body': '@context.function\ndef ${1:function_name}(self):\n ${2:pass}'

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 TestSlide: Fluent Python Testing

 		
 Test Runner

 		
 Multiple Failures Report

 		
 Failing Fast

 		
 Focus and Skip

 		
 Stack Trace Simplification

 		
 Shuffled Execution

 		
 Slow Imports Profiler

 		
 Tip: Automatic Test Execution

 		
 StrictMock

 		
 A Well Behaved Mock

 		
 API Validations

 		
 Attribute Existence

 		
 Method Signatures

 		
 Magic Methods

 		
 Naming

 		
 Generic Mocks

 		
 Extra Functionality

 		
 mock_callable()

 		
 Defining a Target

 		
 Defining Accepted Calls

 		
 Composition

 		
 Defining Call Behavior

 		
 Returning a value

 		
 Returning a series of values

 		
 Yielding values

 		
 Raising exceptions

 		
 Replacing the original implementation

 		
 Wrapping the original implementation

 		
 Calling the original implementation

 		
 Defining Call Assertions

 		
 Cheat Sheet

 		
 Magic Methods

 		
 Signature Validation

 		
 Integration With Other Frameworks

 		
 mock_constructor()

 		
 Implementation Details

 		
 Integration With Other Frameworks

 		
 TestSlide’s DSL

 		
 Contexts and Examples

 		
 Sub Examples

 		
 Explicit names

 		
 Sharing Contexts

 		
 Parameterized shared contexts

 		
 Context Hooks

 		
 Before

 		
 After

 		
 Around

 		
 Context Attributes and Functions

 		
 Attributes

 		
 Memoized Attributes

 		
 Functions

 		
 Skip and Focus

 		
 Focus

 		
 Skip

 		
 unittest.TestCase Integration

 		
 Assertions

 		
 Reusing existing unittest.TestCase setUp

 		
 Code Snippets

 		
 Atom

_images/test_pass.png
$ testslide backup_test.py
backup_test.TestBackupDelete
test_delete_from_storage

Finished 1 example(s) in 0.0s:
Successful: 1

_static/ajax-loader.gif

_images/test_fail.png
$ testslide backup_test.py
backup_test.TestBackupDelete
test_delete_from_storage: AssertionError: calls did not match assertion.

Failures:

1) backup_test.TestBackupDelete: test_delete_from_storage
1) AssertionError: calls did not match assertion.
<StrictMock ©x7F6E88070F98 template=storage.Client>, 'delete’:
expected: called exactly 1 time(s) with arguments:
('/file/to/delete’,)
{
received: 0 call(s)
File "/opt/python/lib/python3.6/unittest/case.py”, line 59, in testPartExecutor
yield
File "/opt/python/lib/python3.6/unittest/case.py", line 646, in doCleanups
function(*args, **kwargs)

Finished 1 example(s) in 0.0s:
Failed: 1

