

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-oscar 1.3 documentation

 [image: _images/oscar.png]

Oscar

Domain-driven e-commerce for Django

Oscar is an e-commerce framework for building domain-driven applications. It
has flexibility baked into its core so that complicated requirements can be
elegantly captured. You can tame a spaghetti domain without writing spaghetti
code.

Years of e-commerce hard-earned experience informs Oscar’s design.

Oscar is “domain-driven” in the sense that the core business objects can be
customised to suit the domain at hand. In this way, your application can
accurately capture the subtleties of its domain, making feature development and
maintenance much easier.

Features:

	Any product type can be handled including downloadable products,
subscriptions, child products (e.g., a T-shirt in different sizes and colours).

	Customisable products, such as T-shirts with personalised messages.

	Large catalogue support - Oscar is used in production by sites with
more than 20 million products.

	Multiple fulfillment partners for the same product.

	A range of merchandising blocks for promoting products throughout your site.

	Sophisticated offers that support virtually any kind of offer you can think
of - multi-buys, bundles, buy X get 50% off Y etc

	Vouchers (built on top of the offers framework)

	Comprehensive dashboard that replaces the Django admin completely

	Support for complex order processing such split payment orders, multi-batch
shipping, order status pipelines.

	Extension libraries available for many payment gateways, including PayPal [https://github.com/django-oscar/django-oscar-paypal],
GoCardless [https://github.com/django-oscar/django-oscar-gocardless], DataCash [https://github.com/django-oscar/django-oscar-datacash] and more.

Oscar is a good choice if your domain has non-trivial business logic. Oscar’s
flexibility means it’s straightforward to implement business rules that would be
difficult to apply in other frameworks.

Example requirements that Oscar projects already handle:

	Paying for an order with multiple payment sources (e.g., using a bankcard,
voucher, gift card and points account).

	Complex access control rules governing who can view and order what.

	Supporting a hierarchy of customers, sales reps and sales directors - each
being able to “masquerade” as their subordinates.

	Multi-lingual products and categories.

	Digital products.

	Dynamically priced products (eg where the price is provided by an external
service).

Oscar is used in production in several applications to sell everything from beer
mats to iPads. The source is on GitHub [https://github.com/django-oscar/django-oscar] - contributions are always welcome.

First steps

	Sample Oscar projects

	Building your own shop

	Building an e-commerce site: the key questions

	Modelling your catalogue

	Getting help

	Glossary

Using Oscar

All you need to start developing an Oscar project.

	Customising Oscar

	Dynamic class loading explained

	Prices and availability

	Deploying Oscar

	Translation

	Upgrading

	Forking an app

Reference:

	Core functionality

	Oscar’s apps

	Recipes

	Oscar settings

	Signals

	Template tags

The Oscar open-source project

Learn about the ideas behind Oscar and how you can contribute.

	Oscar design decisions

	Release notes

	Contributing to Oscar

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Sample Oscar projects

Oscar ships with one sample project: a ‘sandbox’ site, which is a vanilla
install of Oscar using the default templates and styles.

The sandbox site

The sandbox site is a minimal implementation of Oscar where everything is left
in its default state. It is useful for exploring Oscar’s functionality
and developing new features.

It only has one notable customisation on top of Oscar’s core:

	A profile class is specified which defines a few simple fields. This is to
demonstrate the account section of Oscar, which introspects the profile class
to build a combined User and Profile form.

Note that some things are deliberately not implemented within core Oscar as they
are domain-specific. For instance:

	All tax is set to zero.

	No shipping methods are specified. The default is free shipping which will
be automatically selected during checkout (as it’s the only option).

	No payment is required to submit an order as part of the checkout process.

The sandbox is, in effect, the blank canvas upon which you can build your site.

Browse the external sandbox site

An instance of the sandbox site is built hourly from master branch and made
available at http://latest.oscarcommerce.com

Warning

It is possible for users to access the dashboard and edit the site content.
Hence, the data can get quite messy. It is periodically cleaned up.

Run the sandbox locally

It’s pretty straightforward to get the sandbox site running locally so you can
play around with Oscar.

Warning

While installing Oscar is straightforward, some of Oscar’s dependencies
don’t support Windows and are tricky to be properly installed, and therefore
you might encounter some errors that prevent a successful installation.

Install Oscar and its dependencies within a virtualenv:

$ git clone https://github.com/django-oscar/django-oscar.git
$ cd django-oscar
$ mkvirtualenv oscar # needs virtualenvwrapper
(oscar) $ make sandbox
(oscar) $ sites/sandbox/manage.py runserver

Warning

Note, these instructions will install the head of Oscar’s ‘master’ branch,
not an official release. Occasionally the sandbox installation process
breaks while support for a new version of Django is being added (often due
dependency conflicts with 3rd party libraries). Please ask on the mailing
list if you have problems.

If you do not have mkvirtualenv, then replace that line with:

$ virtualenv oscar
$ source ./oscar/bin/activate
(oscar) $

The sandbox site (initialised with a sample set of products) will be available
at: http://localhost:8000. A sample superuser is installed with credentials:

username: superuser
email: superuser@example.com
password: testing

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Building your own shop

For simplicity, let’s assume you’re building a new e-commerce project from
scratch and have decided to use Oscar. Let’s call this shop ‘frobshop’

Tip

You can always review the set-up of the
Sandbox site in case you have trouble with
the below instructions.

Install Oscar and its dependencies

Install Oscar (which will install Django as a dependency), then create the
project:

$ mkvirtualenv oscar
$ pip install django-oscar
$ django-admin.py startproject frobshop

If you do not have mkvirtualenv, then replace that line with:

$ virtualenv oscar
$. ./oscar/bin/activate
(oscar) $

This will create a folder frobshop for your project. It is highly
recommended to install Oscar in a virtualenv.

Attention

Please ensure that pillow, a fork of the the Python Imaging Library
(PIL), gets installed with JPEG support. Supported formats are printed
when pillow is first installed.
Instructions [http://www.google.com/search?q=install+pil+with+jpeg+support] on how to get JPEG support are highly platform specific,
but guides for PIL should work for pillow as well. Generally
speaking, you need to ensure that libjpeg-dev is installed and found
during installation.

Django settings

First, edit your settings file frobshop.frobshop.settings.py to import all of Oscar’s default settings.

from oscar.defaults import *

Now modify your TEMPLATES to include the main Oscar template directory and add the extra
context processors.

from oscar import OSCAR_MAIN_TEMPLATE_DIR

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [
 os.path.join(BASE_DIR, 'templates'),
 OSCAR_MAIN_TEMPLATE_DIR
],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',

 'oscar.apps.search.context_processors.search_form',
 'oscar.apps.promotions.context_processors.promotions',
 'oscar.apps.checkout.context_processors.checkout',
 'oscar.apps.customer.notifications.context_processors.notifications',
 'oscar.core.context_processors.metadata',
],
 },
 },
]

Attention

Before Django 1.8 this setting was split between
TEMPLATE_CONTEXT_PROCESSORS and TEMPLATE_DIRS.

Next, modify INSTALLED_APPS to be a list, add django.contrib.sites,
django.contrib.flatpages, and widget_tweaks and append
Oscar’s core apps. Also set SITE_ID:

from oscar import get_core_apps

INSTALLED_APPS = [
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'django.contrib.flatpages',
 ...
 'compressor',
 'widget_tweaks',
] + get_core_apps()

SITE_ID = 1

Note that Oscar requires django.contrib.flatpages which isn’t
included by default. flatpages also requires django.contrib.sites,
which won’t be enabled by default when using Django 1.6 or upwards.
More info about installing flatpages is in the Django docs [https://docs.djangoproject.com/en/dev/ref/contrib/flatpages/#installation].

Tip

Oscar’s default templates use django-compressor [https://github.com/jezdez/django_compressor] and django-widget-tweaks [https://github.com/kmike/django-widget-tweaks]
but it’s optional really. You may decide to use your own templates that
don’t use either. Hence why they are not in the ‘core apps’.

Next, add oscar.apps.basket.middleware.BasketMiddleware and
django.contrib.flatpages.middleware.FlatpageFallbackMiddleware to
your MIDDLEWARE_CLASSES setting.

MIDDLEWARE_CLASSES = (
 ...
 'oscar.apps.basket.middleware.BasketMiddleware',
 'django.contrib.flatpages.middleware.FlatpageFallbackMiddleware',
)

Set your auth backends to:

AUTHENTICATION_BACKENDS = (
 'oscar.apps.customer.auth_backends.EmailBackend',
 'django.contrib.auth.backends.ModelBackend',
)

to allow customers to sign in using an email address rather than a username.

Ensure that your media and static files are configured correctly [https://docs.djangoproject.com/en/1.7/howto/static-files/]. This means
at the least setting MEDIA_URL and STATIC_URL. If you’re serving files
locally, you’ll also need to set MEDIA_ROOT and STATIC_ROOT.
Check out the sandbox settings [https://github.com/django-oscar/django-oscar/blob/3a5160a86c9b14c940c76a224a28cd37dd29f7f1/sites/sandbox/settings.py#L99] for a working example. If you’re serving
files from a remote storage (e.g. Amazon S3), you must manually copy a
“Image not found” image into MEDIA_ROOT.

URLs

Alter your frobshop/urls.py to include Oscar’s URLs. You can also include
the Django admin for debugging purposes. But please note that Oscar makes no
attempts at having that be a workable interface; admin integration exists
to ease the life of developers.

If you have more than one language set your Django settings for LANGUAGES,
you will also need to include Django’s i18n URLs:

from django.conf.urls import include, url
from django.contrib import admin
from oscar.app import application

urlpatterns = [
 url(r'^i18n/', include('django.conf.urls.i18n')),

 # The Django admin is not officially supported; expect breakage.
 # Nonetheless, it's often useful for debugging.
 url(r'^admin/', include(admin.site.urls)),

 url(r'', include(application.urls)),
]

Search backend

If you’re happy with basic search for now, you can just use Haystack’s simple
backend:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.simple_backend.SimpleEngine',
 },
}

Oscar uses Haystack to abstract away from different search backends.
Unfortunately, writing backend-agnostic code is nonetheless hard and
Apache Solr is currently the only supported production-grade backend. Your
Haystack config could look something like this:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.solr_backend.SolrEngine',
 'URL': 'http://127.0.0.1:8983/solr',
 'INCLUDE_SPELLING': True,
 },
}

Oscar includes a sample schema to get started with Solr. More information can
be found in the
recipe on getting Solr up and running.

Database

Check your database settings. A quick way to get started is to use SQLite:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'db.sqlite3',
 'USER': '',
 'PASSWORD': '',
 'HOST': '',
 'PORT': '',
 'ATOMIC_REQUESTS': True,
 }
}

Note that we recommend using ATOMIC_REQUESTS to tie transactions to
requests.

Create database

Oscar ships with migrations. Django’s migration framework will detect them
automatically and will do the right thing.
Create the database and the shop should be browsable:

$ python manage.py migrate
$ python manage.py runserver

You should now have an empty, but running Oscar install that you can browse at
http://localhost:8000.

Initial data

The default checkout process requires a shipping address with a country. Oscar
uses a model for countries with flags that indicate which are valid shipping
countries and so the country database table must be populated before
a customer can check out.

The easiest way to achieve this is to use country data from the pycountry [https://pypi.python.org/pypi/pycountry]
package. Oscar ships with a management command to parse that data:

$ pip install pycountry
[...]
$ python manage.py oscar_populate_countries

By default, this command will mark all countries as a shipping country. Call
it with the --no-shipping option to prevent that. You then need to
manually mark at least one country as a shipping country.

Creating product classes and fulfillment partners

Every Oscar deployment needs at least one
product class
and one
fulfillment partner.
These aren’t created automatically as they’re highly specific to the shop you
want to build.

When managing your catalogue you should always use the Oscar dashboard, which
provides the necessary functionality. Use your Django superuser email and password to login to:
http://127.0.0.1:8000/dashboard/ and create instances of both there.

It is important to note that the Django admin site is not supported. It may
or may not work and is only included in the sandbox for developer’s
convenience.

For a deployment setup, we recommend creating product classes
as data migration [http://codeinthehole.com/writing/prefer-data-migrations-to-initial-data/].

Defining the order pipeline

The order management in Oscar relies on the order pipeline that
defines all the statuses an order can have and the possible transitions
for any given status. Statuses in Oscar are not just used for an order
but are handled on the line level as well to be able to handle partial
shipping of an order.

The order status pipeline is different for every shop which means that
changing it is fairly straightforward in Oscar. The pipeline is defined in
your settings.py file using the OSCAR_ORDER_STATUS_PIPELINE setting.
You also need to specify the initial status for an order and a line item in
OSCAR_INITIAL_ORDER_STATUS and OSCAR_INITIAL_LINE_STATUS
respectively.

To give you an idea of what an order pipeline might look like take a look
at the Oscar sandbox settings:

OSCAR_INITIAL_ORDER_STATUS = 'Pending'
OSCAR_INITIAL_LINE_STATUS = 'Pending'
OSCAR_ORDER_STATUS_PIPELINE = {
 'Pending': ('Being processed', 'Cancelled',),
 'Being processed': ('Processed', 'Cancelled',),
 'Cancelled': (),
}

Defining the order status pipeline is simply a dictionary of where each
status is given as a key. Possible transitions into other statuses can be
specified as an iterable of status names. An empty iterable defines an
end point in the pipeline.

With these three settings defined in your project you’ll be able to see
the different statuses in the order management dashboard.

Next steps

The next step is to implement the business logic of your domain on top of
Oscar. The fun part.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Building an e-commerce site: the key questions

When building an e-commerce site, there are several components whose
implementation is strongly domain-specific. That is, every site will have
different requirements for how such a component should operate. As such, these
components cannot easily be modeled using a generic system - no configurable
system will be able to accurately capture all the domain-specific behaviour
required.

The design philosophy of Oscar is to not make a decision for you here, but to
provide the foundations upon which any domain logic can be implemented, no matter how
complex.

This document lists the components which will require implementation according
to the domain at hand. These are the key questions to answer when building your
application. Much of Oscar’s documentation is in the form of “recipes” that
explain how to solve the questions listed here - each question links to the
relevant recipes.

Catalogue

What are your product types?

Are you selling books, DVDs, clothing, downloads, or fruit and vegetables? You will
need to capture the attributes of your product types within your models. Oscar
divides products into ‘product classes’ which each have their own set of
attributes. Modelling the catalogue on the backend is explained in
Modelling your catalogue

How is your catalogue organised?

How are products organised on the front end? A common pattern is to have a
single category tree where each product belongs to one category which sits
within a tree structure of other categories. However, there are lots of other
options such as having several separate taxonomy trees (e.g., split by brand, by
theme, by product type). Other questions to consider:

	Can a product belong to more than one category?

	Can a category sit in more than one place within the tree? (e.g., a “children’s fiction” category
might sit beneath “children’s books” and “fiction”).

How are products managed?

Is the catalogue managed by a admin using a dashboard, or though an automated
process, such as processing feeds from a fulfillment system? Where are your
product images going to be served from?

	How to disable an app’s URLs

Pricing, stock and availability

How is tax calculated?

Taxes vary widely between countries. Even the way that prices are displayed
varies between countries. For instance, in the UK and Europe prices are shown inclusive of
VAT whereas in the US, taxes are often not shown until the final stage of checkout.

Furthermore, the amount of tax charged can vary depending on a number of
factors, including:

	The products being bought (eg in the UK, certain products have pay no VAT).

	Who the customer is. For instance, sales reps will often not pay tax whereas
regular customers will.

	The shipping address of the order.

	The payment method used.

Recipes:
* How to handle US taxes

What availability messages are shown to customers?

Based on the stock information from a fulfillment partner, what messaging should be
displayed on the site?

	How to configure stock messaging

Do you allow pre- and back-orders

A pre-order is where you allow a product to be bought before it has been
published, while a back-order is where you allow a product to be bought that is
currently out of stock.

Shipping

How are shipping charges calculated?

There are lots of options and variations here. Shipping methods and their
associated charges can take a variety of forms, including:

	A charge based on the weight of the basket

	Charging a pre-order and pre-item charge

	Having free shipping for orders above a given threshold

Recipes:

	How to configure shipping

Which shipping methods are available?

There’s often also an issue of which shipping methods are available, as
this can depend on:

	The shipping address (e.g., overseas orders have higher charges)

	The contents of the basket (e.g., free shipping for downloadable products)

	Who the user is (e.g., sales reps get free shipping)

Oscar provides classes for free shipping, fixed charge shipping, pre-order and
per-product item charges and weight-based charges. It is provides a mechanism
for determining which shipping methods are available to the user.

Recipes:

	How to configure shipping

Payment

How are customers going to pay for orders?

Often a shop will have a single mechanism for taking payment, such
as integrating with a payment gateway or using PayPal. However more
complicated projects will allow users to combine several different payment
sources such as bankcards, business accounts and gift cards.

Possible payment sources include:

	Bankcard

	Google checkout

	PayPal

	Business account

	Managed budget

	Gift card

	No upfront payment but send invoices later

The checkout app within django-oscar is suitably flexible that all of these
methods (and in any combination) is supported. However, you will need to
implement the logic for your domain by subclassing the relevant view/util
classes.

Domain logic is often required to:

	Determine which payment methods are available to an order;

	Determine if payment can be split across sources and in which combinations;

	Determine the order in which to take payment;

	Determine how to handle failing payments (this can get complicated when using
multiple payment sources to pay for an order).

When will payment be taken?

A common pattern is to ‘pre-auth’ a bankcard at the point of checkout then
‘settle’ for the appropriate amounts when the items actually ship. However,
sometimes payment is taken up front. Often you won’t have a choice due to
limitations of the payment partner you need to integrate with, or legal
restrictions of the country you are operating in.

	Will the customer be debited at point of checkout, or when the items are dispatched?

	If charging after checkout, when are shipping charges collected?

	What happens if an order is cancelled after partial payment?

Order processing

How will orders be processed?

Orders can be processed in many ways, including:

	Manual process. For instance, a worker in a warehouse may download a picking
slip from the dashboard and mark products as shipped when they have been put in the van.

	Fully automated process, where files are transferred between the merchant and
the fulfillment partner to indicate shipping statuses.

Recipes:

	How to set up order processing

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Modelling your catalogue

Oscar gives you several layers of modelling your products.

Note that this document is merely concerned with how to model products in your
database. How you display them in your front-end, e.g. in a category tree,
is out of scope.

Product classes

Typical examples for product classes would be: T-shirts, Books,
Downloadable products.

Each product is assigned to exactly one product class.

Settings on a product class decide whether stock levels are
tracked
for the associated products, and whether they
require shipping.

Furthermore, they govern what kind of product attributes can be stored on the products.
We’ll get to attributes in a bit, but think T-shirt sizes, colour,
number of pages, etc.

Typically stores will have between 1 and maybe 5 product classes.

Product attributes

Product attributes let you set additional data on a product without having
to customise the underlying Django models. There’s different types of
attributes, e.g. ones for just associating text (type text or richtext),
for related images and files (type image and file), etc.

The available product attributes for a product are set when creating the
product’s class. The sandbox comes with a product class for T-shirts, and
they have a size attribute:

> shirt = Product.objects.filter(product_class__slug='t-shirt').first()
> shirt.attr.size
<AttributeOption: Large>

You can assign option s to your product. For example you want a Language attribute
to your product, and a couple of options to choose from, for example English and
Croatian. You’d first create an AttributeOptionGroup that would contain all the
AttributeOption s you want to have available:

> language = AttributeOptionGroup.objects.create(name='Language')

Assign a couple of options to the Language options group:

> AttributeOption.objects.create(
> group=language,
> option='English'
>)
> AttributeOption.objects.create(
> group=language,
> option='Croatian'
>)

Finally assign the Language options group to your product as an attribute:

> klass = ProductClass.objects.create(name='foo', slug='bar')
> ProductAttribute.objects.create(
> product_class=klass,
> name='Language',
> code='language',
> type='option',
> option_group=language
>)

You can go as far as associating arbitrary models with it. Use the entity
type:

> klass = ProductClass.objects.create(name='foo', slug='bar')
> ProductAttribute.objects.create(
 product_class=klass, name='admin user', code='admin_user', type='entity')
<ProductAttribute: admin user>
> p = Product(product_class=klass)

> p.attr.admin_user = User.objects.first()
> p.save()
> p.attr.admin_user
<User: superuser>

All attribute types apart from entity can be edited in the product
dashboard. The latter is too dependent on your use case and you will need to
decide yourself how you want to set and display it.

Parent and child products

Often there’s an overarching product, which groups other products. In that
case, you can create a parent product, and then set the parent field on the
child products. By default, only parent products (or products without children)
get their own URL.
Child products inherit their product class from the parent, and only child
products can have stock records (read: pricing information) on them.

Going further

Oscar’s modelling options don’t stop there. If the existing framework does not
suit your need, you can always customise
any involved models. E.g. the Product model is often customised!

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Getting help

If you’re stuck with a problem, try checking the Google Groups archive [https://groups.google.com/forum/?fromgroups#!forum/django-oscar] to see if
someone has encountered it before. If not, then try asking on the mailing list
django-oscar@googlegroups.com. If it’s a common question, then we’ll write up
the solution as a recipe.

If you think you found a bug, please read
Reporting bugs and report it
in the GitHub issue tracker [https://github.com/django-oscar/django-oscar/issues].

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Glossary

This is a work-in-progress list of commonly used terms when discussing Oscar.

	Partner
Fulfillment partner

	An individual or company who can fulfil products. E.g. for physical
goods, somebody with a warehouse and means of delivery.

See also

Related model: oscar.apps.partner.abstract_models.AbstractPartner

	Product Category

	Categories and subcategories are used to semantically organise your
catalogue. They’re merely used for navigational purposes; no business
logic in Oscar considers a product’s category.
For instance, if you’re a book shop, you could have categories such as
fiction, romance, and children’s books. If you’d sell both books and
e-books, they could be of a different Product Class, but in the
same category.

	Product Class

	Product classes are an important concept in Oscar. Each product is
assigned to exactly one product class. For instance, product classes
could be Books, DVDs, and Toys.

Settings on a product class decide whether stock levels are
tracked
for the associated products, and whether they
require shipping.
So if you have products that require shipping and ones which don’t,
you’ll need at least two product classes.

Used for defining
options
and
attributes
for a subset of products.

	Product Options

	Options are values that can be associated with a item when it is added
to a customer’s basket. This could be something like a personalised
message to be printed on a T-shirt.

	Product Range

	A range is a subset of the product catalogue. It’s another way of
defining groups of products other than categories and product classes.

An example would be a book shop which might define a range of “Booker
Prize winners”. Each product will belong to different categories within
the site so ranges allow them to be grouped together.

Ranges can then be used in offers (eg 10% off all booker prize winners).
At some point, ranges will be expanded to have their own detail pages
within Oscar too.​

	SKU
Stock-keeping unit.

	A partner‘s way of tracking her products. Uniquely identifies a
product in the partner’s warehouse. Can be identical to the products
UPC. It’s stored as an attribute of
StockRecord

See also

Wikipedia: Stock-keeping unit [http://en.wikipedia.org/wiki/Stock-keeping_unit]

	UPC
Universal Product Code

	A code uniquely identifying a product worldwide.

See also

Wikipedia: Universal Product Code [http://en.wikipedia.org/wiki/Universal_Product_Code]

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Customising Oscar

Many parts of Oscar can be adapted to your needs like any other Django
application:

	Many settings control Oscar’s behavior

	The looks can be controlled by extending or overriding the
templates

But as Oscar is built as a highly customisable and extendable framework, it
doesn’t stop there. The behaviour of all Oscar apps can heavily be altered
by injecting your own code.

To extend the behavior of an Oscar core app, it needs to be forked, which is
achieved with a simple management command. Afterwards, you should
generally be able to override any class/model/view by just dropping it
in the right place and giving it the same name.

In some cases, customising is slightly more involved. The following how-tos
give plenty of examples for specific use cases:

	How to customise models

	How to add views or change URLs or permissions

	How to customise an existing view

For a deeper understanding of customising Oscar, the following documents are
recommended:

	Oscar design decisions

	Dynamic class loading

	Forking an app

Fork the Oscar app

If this is the first time you’re forking an Oscar app, you’ll need to create
a root module under which all your forked apps will live:

$ mkdir yourappsfolder
$ touch yourappsfolder/__init__.py

Now you call the helper management command which creates some basic files for
you. It is explained in detail in Forking an app. Run it like this:

$./manage.py oscar_fork_app order yourappsfolder/
Creating folder apps/order
Creating __init__.py and admin.py
Creating models.py and copying migrations from [...] to [...]

Note

For forking app in project root directory, call oscar_fork_app with . (dot) instead of yourproject/ path.

Example:

Calling ./manage.py oscar_fork_app order yourproject/ order app will be placed in project_root/yourproject/ directory.
Calling ./manage.py oscar_fork_app order . order app will be placed in project_root/ directory.

Replace Oscar’s app with your own in INSTALLED_APPS

You will need to let Django know that you replaced one of Oscar’s core
apps. You can do that by supplying an extra argument to
get_core_apps function:

settings.py

from oscar import get_core_apps
...
INSTALLED_APPS = [
 # all your non-Oscar apps
] + get_core_apps(['yourappsfolder.order'])

get_core_apps([]) will return a list of Oscar core apps. If you supply a
list of additional apps, they will be used to replace the Oscar core apps.
In the above example, yourproject.order will be returned instead of
oscar.apps.order.

Start customising!

You can now override every class (that is
dynamically loaded, which is
almost every class) in the app you’ve replaced. That means forms,
views, strategies, etc. All you usually need to do is give it the same name
and place it in a module with the same name.

Suppose you want to alter the way order numbers are generated. By default,
the class oscar.apps.order.utils.OrderNumberGenerator is used. So just
create a class within your order app which
matches the module path from oscar: order.utils.OrderNumberGenerator. This
could subclass the class from Oscar or not:

yourproject/order/utils.py

from oscar.apps.order.utils import OrderNumberGenerator as CoreOrderNumberGenerator

class OrderNumberGenerator(CoreOrderNumberGenerator):

 def order_number(self, basket=None):
 num = super(OrderNumberGenerator, self).order_number(basket)
 return "SHOP-%s" % num

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Dynamic class loading explained

Dynamic class loading is the foundation for making Oscar extensively
customisable. It is hence worth understanding how it works, because most
customisations depend on it.

It is achieved by oscar.core.loading.get_classes() and it’s
single-class cousin get_class(). Wherever feasible,
Oscar’s codebase uses get_classes instead of a regular import statement:

from oscar.apps.shipping.repository import Repository

is replaced by:

from oscar.core.loading import get_class

Repository = get_class('shipping.repository', 'Repository')

Note

This is done for almost all classes: views, models, Application
instances, etc. Every class imported by get_class can be
overridden.

Why?

This structure enables a project to create a local shipping.repository
module, and optionally subclass the class from
oscar.app.shipping.repository. When Oscar tries to load the
Repository class, it will load the one from your local project.

This way, most classes can be overridden with minimal duplication, as only
the to-be-changed classes have to be altered. They can optionally inherit from
Oscar’s implementation, which often amounts to little more than a few lines of
custom code for changes to core behaviour.

Seen on a bigger scale, this structures enables Oscar to ship with classes with
minimal assumptions about the domain, and make it easy to modify behaviour as
needed.

How it works

The get_class function looks through your INSTALLED_APPS for a matching
app and will attempt to load the custom class from the specified module. If the
app isn’t overridden or the custom module doesn’t define the class, it will
fall back to the default Oscar class.

In practice

For get_class to pick up the customised class, the Oscar apps need to be
forked. The process is detailed and illustrated with examples in
Customising Oscar. It is usually enough to call oscar_fork_app
and replace the app in INSTALLED_APPS.

Using get_class in your own code

Generally, there is no need for get_class in your own code as the location
of the module for the class is known. Some Oscar developers nonetheless
use get_class when importing classes from Oscar. This means that if someday
the class is overridden, it will not require code changes. Care should be taken
when doing this, as this is a tricky trade-off between maintainability and
added complexity.
Please note that we cannot recommend ever using get_model in your own code.
Especially pre-Django 1.7, model initialisation is a tricky process and it’s
easy to run into circular import issues.

Testing

You can test whether your overriding worked by trying to get a class from your
module:

>>> from oscar.core.loading import get_class
>>> get_class('shipping.repository', 'Repository')
yourproject.shipping.repository.Repository # it worked!

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Prices and availability

This page explains how prices and availability are determined in Oscar. In
short, it seems quite complicated at first as there are several parts to it, but what
this buys is flexibility: buckets of it.

Overview

Simpler e-commerce frameworks often tie prices to the product model directly:

>>> product = Product.objects.get(id=1)
>>> product.price
Decimal('17.99')

Oscar, on the other hand, distinguishes products from stockrecords and provides
a swappable ‘strategy’ component for selecting the appropriate stockrecord,
calculating prices and availability information.

>>> product = Product.objects.get(id=1)
>>> info = strategy.fetch_for_product(product)

Availability information
>>> info.availability.is_available_to_buy
True
>>> msg = info.availability.message
>>> unicode(msg)
u"In stock (58 available)"
>>> info.availability.is_purchase_permitted(59)
(False, u"A maximum of 58 can be bought")

Price information
>>> info.price.excl_tax
Decimal('17.99')
>>> info.price.is_tax_known
True
>>> info.price.incl_tax
Decimal('21.59')
>>> info.price.tax
Decimal('3.60')
>>> info.price.currency
'GBP'

The product model captures the core data about the product (title, description,
images) while a stockrecord represents fulfillment information for one
particular partner (number in stock, base price). A product can have multiple
stockrecords although only one is selected by the strategy to determine pricing and
availability.

By using your own custom strategy class, a wide range of pricing, tax and
availability problems can be easily solved.

The strategy class

Oscar uses a ‘strategy’ object to determine product availability and pricing. A
new strategy instance is assigned to the request by the basket middleware. A
Selector
class determines the appropriate strategy for the
request. By modifying the
Selector
class, it’s possible to return
different strategies for different customers.

Given a product, the strategy class is responsible for:

	Selecting a “pricing policy”, an object detailing the prices of the product and whether tax is known.

	Selecting an “availability policy”, an object responsible for
availability logic (ie is the product available to buy) and customer
messaging.

	Selecting the appropriate stockrecord to use for fulfillment. If a product
can be fulfilled by several fulfilment partners, then each will have their
own stockrecord.

These three entities are wrapped up in a PurchaseInfo object, which is a
simple named tuple. The strategy class provides fetch_for_product and
fetch_for_parent methods which takes a product and returns a PurchaseInfo
instance:

The strategy class is accessed in several places in Oscar’s codebase. In templates, a
purchase_info_for_product template tag is used to load the price and availability
information into the template context:

{% load purchase_info_tags %}
{% load currency_filters %}

{% purchase_info_for_product request product as session %}

<p>
{% if session.price.is_tax_known %}
 Price is {{ session.price.incl_tax|currency:session.price.currency }}
{% else %}
 Price is {{ session.price.excl_tax|currency:session.price.currency }} +
 tax
{% endif %}
</p>

Note that the currency template tag accepts a currency parameter from the
pricing policy.

Also, basket instances have a strategy instance assigned so they can calculate
prices including taxes. This is done automatically in the basket middleware.

This seems quite complicated...

While this probably seems like quite an involved way of looking up a product’s
price, it gives the developer an immense amount of flexibility. Here’s a few
examples of things you can do with a strategy class:

	Transact in multiple currencies. The strategy
class can use the customer’s location to select a stockrecord from a local
distribution partner which will be in the local currency of the customer.

	Elegantly handle different tax models. A strategy can return prices including
tax for a UK or European visitor, but without tax for US
visitors where tax is only determined once shipping details are confirmed.

	Charge different prices to different customers. A strategy can return a
different pricing policy depending on the user/session.

	Use a chain of preferred partners for fulfillment. A site could have many
stockrecords for the same product, each from a different fulfillment partner.
The strategy class could select the partner with the best margin and stock
available. When stock runs out with that partner, the strategy could
seamlessly switch to the next best partner.

These are the kinds of problems that other e-commerce frameworks would struggle
with.

API

All strategies subclass a common Base class:

	
class oscar.apps.partner.strategy.Base(request=None)[source]

	The base strategy class

Given a product, strategies are responsible for returning a
PurchaseInfo instance which contains:

	The appropriate stockrecord for this customer

	A pricing policy instance

	An availability policy instance

	
fetch_for_line(line, stockrecord=None)[source]

	Given a basket line instance, fetch a PurchaseInfo instance.

This method is provided to allow purchase info to be determined using a
basket line’s attributes. For instance, “bundle” products often use
basket line attributes to store SKUs of contained products. For such
products, we need to look at the availability of each contained product
to determine overall availability.

	
fetch_for_parent(product)[source]

	Given a parent product, fetch a StockInfo instance

	
fetch_for_product(product, stockrecord=None)[source]

	Given a product, return a PurchaseInfo instance.

The PurchaseInfo class is a named tuple with attributes:

	price: a pricing policy object.

	availability: an availability policy object.

	stockrecord: the stockrecord that is being used

If a stockrecord is passed, return the appropriate PurchaseInfo
instance for that product and stockrecord is returned.

Oscar also provides a “structured” strategy class which provides overridable
methods for selecting the stockrecord, and determining pricing and availability
policies:

	
class oscar.apps.partner.strategy.Structured(request=None)[source]

	A strategy class which provides separate, overridable methods for
determining the 3 things that a PurchaseInfo instance requires:

	A stockrecord

	A pricing policy

	An availability policy

	
availability_policy(product, stockrecord)[source]

	Return the appropriate availability policy

	
fetch_for_product(product, stockrecord=None)[source]

	Return the appropriate PurchaseInfo instance.

This method is not intended to be overridden.

	
pricing_policy(product, stockrecord)[source]

	Return the appropriate pricing policy

	
select_children_stockrecords(product)[source]

	Select appropriate stock record for all children of a product

	
select_stockrecord(product)[source]

	Select the appropriate stockrecord

For most projects, subclassing and overriding the Structured base class
should be sufficient. However, Oscar also provides mixins to easily compose the
appropriate strategy class for your domain.

Loading a strategy

Strategy instances are determined by the Selector class:

	
class oscar.apps.partner.strategy.Selector[source]

	Responsible for returning the appropriate strategy class for a given
user/session.

This can be called in three ways:

	Passing a request and user. This is for determining
prices/availability for a normal user browsing the site.

	Passing just the user. This is for offline processes that don’t
have a request instance but do know which user to determine prices for.

	Passing nothing. This is for offline processes that don’t
correspond to a specific user. Eg, determining a price to store in
a search index.

	
strategy(request=None, user=None, **kwargs)[source]

	Return an instanticated strategy instance

It’s common to override this class so a custom strategy class can be returned.

Pricing policies

A pricing policy is a simple class with several properties Its job is to
contain all price and tax information about a product.

There is a base class that defines the interface a pricing policy should have:

	
class oscar.apps.partner.prices.Base[source]

	The interface that any pricing policy must support

	
currency = None

	Price currency (3 char code)

	
excl_tax = None

	Price excluding tax

	
exists = False

	Whether any prices exist

	
incl_tax = None

	Price including tax

	
is_tax_known = False

	Whether tax is known

	
retail = None

	Retail price

	
tax = None

	Price tax

There are also several policies that accommodate common scenarios:

	
class oscar.apps.partner.prices.Unavailable[source]

	This should be used as a pricing policy when a product is unavailable and
no prices are known.

	
class oscar.apps.partner.prices.FixedPrice(currency, excl_tax, tax=None)[source]

	This should be used for when the price of a product is known in advance.

It can work for when tax isn’t known (like in the US).

Note that this price class uses the tax-exclusive price for offers, even if
the tax is known. This may not be what you want. Use the
TaxInclusiveFixedPrice class if you want offers to use tax-inclusive
prices.

Availability policies

Like pricing policies, availability policies are simple classes with several
properties and methods. The job of an availability policy is to provide
availability messaging to show to the customer as well as methods to determine
if the product is available to buy.

The base class defines the interface:

	
class oscar.apps.partner.availability.Base[source]

	Base availability policy.

	
code = ''

	Availability code. This is used for HTML classes

	
dispatch_date = None

	When this item should be dispatched

	
is_available_to_buy

	Test if this product is available to be bought. This is used for
validation when a product is added to a user’s basket.

	
is_purchase_permitted(quantity)[source]

	Test whether a proposed purchase is allowed

Should return a boolean and a reason

	
message = ''

	A description of the availability of a product. This is shown on the
product detail page. Eg “In stock”, “Out of stock” etc

	
short_message

	A shorter version of the availability message, suitable for showing on
browsing pages.

There are also several pre-defined availability policies:

	
class oscar.apps.partner.availability.Unavailable[source]

	Policy for when a product is unavailable

	
class oscar.apps.partner.availability.Available[source]

	For when a product is always available, irrespective of stock level.

This might be appropriate for digital products where stock doesn’t need to
be tracked and the product is always available to buy.

	
class oscar.apps.partner.availability.StockRequired(num_available)[source]

	Allow a product to be bought while there is stock. This policy is
instantiated with a stock number (num_available). It ensures that the
product is only available to buy while there is stock available.

This is suitable for physical products where back orders (eg allowing
purchases when there isn’t stock available) are not permitted.

Strategy mixins

Oscar also ships with several mixins which implement one method of the
Structured strategy. These allow strategies to be easily
composed from re-usable parts:

	
class oscar.apps.partner.strategy.UseFirstStockRecord[source]

	Stockrecord selection mixin for use with the Structured base strategy.
This mixin picks the first (normally only) stockrecord to fulfil a product.

This is backwards compatible with Oscar<0.6 where only one stockrecord per
product was permitted.

	
class oscar.apps.partner.strategy.StockRequired[source]

	Availability policy mixin for use with the Structured base strategy.
This mixin ensures that a product can only be bought if it has stock
available (if stock is being tracked).

	
class oscar.apps.partner.strategy.NoTax[source]

	Pricing policy mixin for use with the Structured base strategy.
This mixin specifies zero tax and uses the price_excl_tax from the
stockrecord.

	
class oscar.apps.partner.strategy.FixedRateTax[source]

	Pricing policy mixin for use with the Structured base strategy. This
mixin applies a fixed rate tax to the base price from the product’s
stockrecord. The price_incl_tax is quantized to two decimal places.
Rounding behaviour is Decimal’s default

	
get_exponent(stockrecord)[source]

	This method serves as hook to be able to plug in support for a varying exponent
based on the currency.

TODO: Needs tests.

	
get_rate(product, stockrecord)[source]

	This method serves as hook to be able to plug in support for varying tax rates
based on the product.

TODO: Needs tests.

	
class oscar.apps.partner.strategy.DeferredTax[source]

	Pricing policy mixin for use with the Structured base strategy.
This mixin does not specify the product tax and is suitable to territories
where tax isn’t known until late in the checkout process.

Default strategy

Oscar’s default Selector class returns a Default strategy built from
the strategy mixins:

class Default(UseFirstStockRecord, StockRequired, NoTax, Structured):
 pass

The behaviour of this strategy is:

	Always picks the first stockrecord (this is backwards compatible with
Oscar<0.6 where a product could only have one stockrecord).

	Charge no tax.

	Only allow purchases where there is appropriate stock (eg no back-orders).

How to use

There’s lots of ways to use strategies, pricing and availability policies to
handle your domain’s requirements.

The normal first step is provide your own Selector class which returns a custom
strategy class. Your custom strategy class can be composed of the above mixins
or your own custom logic.

Example 1: UK VAT

Here’s an example strategy.py module which is used to charge VAT on prices.

myproject/partner/strategy.py

from oscar.apps.partner import strategy, prices

class Selector(object):
 """
 Custom selector to return a UK-specific strategy that charges VAT
 """

 def strategy(self, request=None, user=None, **kwargs):
 return UKStrategy()

class IncludingVAT(strategy.FixedRateTax):
 """
 Price policy to charge VAT on the base price
 """
 # We can simply override the tax rate on the core FixedRateTax. Note
 # this is a simplification: in reality, you might want to store tax
 # rates and the date ranges they apply in a database table. Your
 # pricing policy could simply look up the appropriate rate.
 rate = D('0.20')

class UKStrategy(strategy.UseFirstStockRecord, IncludingVAT,
 strategy.StockRequired, strategy.Structured):
 """
 Typical UK strategy for physical goods.

 - There's only one warehouse/partner so we use the first and only stockrecord
 - Enforce stock level. Don't allow purchases when we don't have stock.
 - Charge UK VAT on prices. Assume everything is standard-rated.
 """

Example 2: US sales tax

Here’s an example strategy.py module which is suitable for use in the US
where taxes can’t be calculated until the shipping address is known. You
normally need to use a 3rd party service to determine taxes - details omitted
here.

from oscar.apps.partner import strategy, prices

class Selector(object):
 """
 Custom selector class to returns a US strategy
 """

 def strategy(self, request=None, user=None, **kwargs):
 return USStrategy()

class USStrategy(strategy.UseFirstStockRecord, strategy.DeferredTax,
 strategy.StockRequired, strategy.Structured):
 """
 Typical US strategy for physical goods. Note we use the ``DeferredTax``
 mixin to ensure prices are returned without tax.

 - Use first stockrecord
 - Enforce stock level
 - Taxes aren't known for prices at this stage
 """

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Deploying Oscar

Oscar is a just a set of Django apps - it doesn’t have any special deployment
requirements. That means the excellent Django docs for deployment [https://docs.djangoproject.com/en/dev/howto/deployment/]
should be your first stop. This page then only distills some of the experience
gained from running Oscar projects.

Performance

Setting up caching is crucial for a good performance. Oscar’s templates are
split into many partials, hence it is recommended to use the
cached template loader [https://docs.djangoproject.com/en/dev/ref/templates/api/#django.template.loaders.cached.Loader]. Sorl also will hit your database hard if you run it
without a cache backend.

If your memory constraints are tight and you can only run one Python worker,
LocMemCache will usually outperform external cache backends due to the lower
overhead. But once you can scale beyond one worker, it might make good sense to
switch to something like memcached or redis.

Blocking in views should be avoided if possible. That is especially true for
external API calls and sending emails. Django’s pluggable email backends allow
for switching out the blocking SMTP backend to a custom non-blocking solution.
Possible options are storing emails in a database or cache for later consumption
or triggering an external worker, e.g. via django-celery [http://www.celeryproject.org/].
django_post-office [https://github.com/ui/django-post_office] works nicely.

For backwards-compatibility reasons, Django doesn’t enable database connection
pooling by default. Performance is likely to improve when enabled.

Security

Oscar relies on the Django framework for security measures and therefore no
Oscar specific configurations with regard to security are in place. See
Django’s guidelines for security [https://docs.djangoproject.com/en/dev/topics/security/] for more information.

django-secure [https://pypi.python.org/pypi/django-secure] is a nice app that comes with a few sanity checks for
deployments behind SSL.

Search Engine Optimisation

A basic example of what a sitemap for Oscar could look like has been added
to the sandbox site. Have a look at sites/sandbox/urls.py for inspiration.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Translation

All Oscar translation work is done on Transifex [https://www.transifex.com/projects/p/django-oscar/]. If you’d like to contribute,
just apply for a language and go ahead!
The source strings in Transifex are updated after every commit on Oscar’s
master branch on GitHub. We only pull the translation strings back into Oscar’s
repository when preparing for a release. That means your most recent
translations will always be on Transifex, not in the repo!

Translating Oscar within your project

If Oscar does not provide translations for your language, or if you want to
provide your own, do the following.

Within your project, create a locale folder and a symlink to Oscar so that
./manage.py makemessages finds Oscar’s translatable strings:

mkdir locale i18n
ln -s $PATH_TO_OSCAR i18n/oscar
./manage.py makemessages --symlinks --locale=de

This will create the message files that you can now translate.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Upgrading

This document explains some of the issues that can be encountered whilst
upgrading Oscar.

Migrations

Oscar provides migrations for its apps. But since Oscar allows
an app to be overridden and its models extended, handling migrations can be
tricky when upgrading.

Suppose a new version of Oscar changes the models of the ‘shipping’ app and
includes the corresponding migrations. There are two scenarios to be aware of:

Migrating uncustomised apps

Apps that you aren’t customising will upgrade trivially as your project
will pick up the new migrations from Oscar directly.

For instance, if you have oscar.apps.core.shipping in your
INSTALLED_APPS then you can simply run:

./manage.py makemigrations shipping

to migrate your shipping app.

Migrating customised apps (models unchanged)

If you have customised an app, but have not touched the models nor migrations,
you’re best off copying the migrations from Oscar. This approach has the
advantage of pulling in any data migrations.
Find the updated(!) Oscar in your virtualenv or clone the Oscar repo at the
correct version tag. Then find the migrations, copy them across, and migrate as
usual. You will have to adapt paths, but something akin to this will work:

$ cdsitepackages oscar/apps/shipping/migrations
$ copy *.py <your_project>/myshop/shipping/migrations/

Migrating customised apps (models changed)

At this point, you have essentially forked away from Oscar’s migrations. Read
the release notes carefully and see if it includes data migrations. If not,
it’s as easy as:

./manage.py makemigrations shipping

to create the appropriate migration.

But if there is data migrations, you will need to look into what they do, and
likely will have to imitate what they’re doing. You can copy across the
data migration, but you have to manually update the dependencies.

If there’s no schema migrations, you should set the data migration to depend
on your last migration for that app. If there is a schema migration, you
will have to imitate the dependency order of Oscar.

Feel free to get in touch on the mailing list if you run into any problems.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Forking an app

This guide explains how to fork an app in Oscar.

Note

The following steps are now automated by the oscar_fork_app management
command. They’re explained in detail so you get an idea of what’s going on.
But there’s no need to do this manually anymore! More information is available in /topics/customisation#fork-the-oscar-app.

Create Python module with same label

You need to create a Python module with the same “app label” as the Oscar app
you want to extend. E.g., to create a local version of oscar.apps.order,
do the following:

$ mkdir yourproject/order
$ touch yourproject/order/__init__.py

Reference Oscar’s models

If the original Oscar app has a models.py, you’ll need to create a
models.py file in your local app. It should import all models from
the Oscar app being overridden:

yourproject/order/models.py

your custom models go here

from oscar.apps.order.models import *

If two models with the same name are declared within an app, Django will only
use the first one. That means that if you wish to customise Oscar’s models, you
must declare your custom ones before importing Oscar’s models for that app.

You have to copy the migrations directory from oscar/apps/order and put
it into your order app. Detailed instructions are available in
How to customise models.

Get the Django admin working

When you replace one of Oscar’s apps with a local one, Django admin integration
is lost. If you’d like to use it, you need to create an admin.py and import
the core app’s admin.py (which will run the register code):

yourproject/order/admin.py
import oscar.apps.order.admin

This isn’t great but we haven’t found a better way as of yet.

Django 1.7+: Use supplied app config

Oscar ships with an app config for each app, which sets app labels and
runs startup code. You need to make sure that happens.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Core functionality

This page details the core classes and functions that Oscar uses. These aren’t
specific to one particular app, but are used throughout Oscar’s codebase.

Dynamic class loading

The key to Oscar’s flexibility is dynamically loading classes. This allows
projects to provide their own versions of classes that extend and override the
core functionality.

	
oscar.core.loading.get_classes(module_label, classnames, module_prefix='oscar.apps')[source]

	Dynamically import a list of classes from the given module.

This works by looping over INSTALLED_APPS and looking for a match
against the passed module label. If the requested class can’t be found in
the matching module, then we attempt to import it from the corresponding
core app.

This is very similar to django.db.models.get_model function for
dynamically loading models. This function is more general though as it can
load any class from the matching app, not just a model.

	Parameters:	
	module_label (str) – Module label comprising the app label and the
module name, separated by a dot. For example, ‘catalogue.forms’.

	classname (str) – Name of the class to be imported.

	Returns:	The requested class object or None if it can’t be found

Examples

Load a single class:

>>> get_class('dashboard.catalogue.forms', 'ProductForm')
oscar.apps.dashboard.catalogue.forms.ProductForm

Load a list of classes:

>>> get_classes('dashboard.catalogue.forms',
... ['ProductForm', 'StockRecordForm'])
[oscar.apps.dashboard.catalogue.forms.ProductForm,
 oscar.apps.dashboard.catalogue.forms.StockRecordForm]

	Raises:	
	AppNotFoundError – If no app is found in INSTALLED_APPS that matches
the passed module label.

	ImportError – If the attempted import of a class raises an
ImportError, it is re-raised

	
oscar.core.loading.get_class(module_label, classname, module_prefix='oscar.apps')[source]

	Dynamically import a single class from the given module.

This is a simple wrapper around get_classes for the case of loading a
single class.

	Parameters:	
	module_label (str) – Module label comprising the app label and the
module name, separated by a dot. For example, ‘catalogue.forms’.

	classname (str) – Name of the class to be imported.

	Returns:	The requested class object or None if it can’t be found

URL patterns and views

Oscar’s app organise their URLs and associated views using a “Application”
class instance. This works in a similar way to Django’s admin app, and allows
Oscar projects to subclass and customised URLs and views.

	
class oscar.core.application.Application(app_name=None, **kwargs)[source]

	Base application class.

This is subclassed by each app to provide a customisable container for an
app’s views and permissions.

	
default_permissions = None

	Default permission for any view not in permissions_map

	
get_permissions(url)[source]

	Return a list of permissions for a given URL name

	Parameters:	url (str) – A URL name (eg basket.basket)

	Returns:	A list of permission strings.

	Return type:	list

	
get_url_decorator(pattern)[source]

	Return the appropriate decorator for the view function with the passed
URL name. Mainly used for access-protecting views.

It’s possible to specify:

	no permissions necessary: use None

	a set of permissions: use a list

	two set of permissions (or): use a two-tuple of lists

See permissions_required decorator for details

	
get_urls()[source]

	Return the url patterns for this app.

	
hidable_feature_name = None

	A name that allows the functionality within this app to be disabled

	
name = None

	Namespace name

	
permissions_map = {}

	Maps view names to lists of permissions. We expect tuples of
lists as dictionary values. A list is a set of permissions that all
needto be fulfilled (AND). Only one set of permissions has to be
fulfilled (OR).
If there’s only one set of permissions, as a shortcut, you can also
just define one list.

	
post_process_urls(urlpatterns)[source]

	Customise URL patterns.

This method allows decorators to be wrapped around an apps URL
patterns.

By default, this only allows custom decorators to be specified, but you
could override this method to do anything you want.

	Parameters:	urlpatterns (list) – A list of URL patterns

Prices

Oscar uses a custom price object for easier tax handling.

	
class oscar.core.prices.Price(currency, excl_tax, incl_tax=None, tax=None)[source]

	Simple price class that encapsulates a price and its tax information

	
incl_tax

	Decimal – Price including taxes

	
excl_tax

	Decimal – Price excluding taxes

	
tax

	Decimal – Tax amount

	
is_tax_known

	bool – Whether tax is known

	
currency

	str – 3 character currency code

Custom model fields

Oscar uses a few custom model fields.

	
class oscar.models.fields.NullCharField(*args, **kwargs)[source]

	CharField that stores ‘’ as None and returns None as ‘’
Useful when using unique=True and forms. Implies null==blank==True.

When a ModelForm with a CharField with null=True gets saved, the field will
be set to ‘’: https://code.djangoproject.com/ticket/9590
This breaks usage with unique=True, as ‘’ is considered equal to another
field set to ‘’.

	
deconstruct()[source]

	deconstruct() is needed by Django’s migration framework

	
class oscar.models.fields.PhoneNumberField(*args, **kwargs)[source]

	An international phone number.

	Validates a wide range of phone number formats

	Displays it nicely formatted

Notes

This field is based on work in django-phonenumber-field
https://github.com/maikhoepfel/django-phonenumber-field/

See oscar/core/phonenumber.py for the relevant copyright and
permission notice.

	
deconstruct()[source]

	deconstruct() is needed by Django’s migration framework.

	
get_prep_value(value)[source]

	Returns field’s value prepared for saving into a database.

	
value_to_string(obj)[source]

	Used when the field is serialized. See Django docs.

	
class oscar.models.fields.PositiveDecimalField(verbose_name=None, name=None, max_digits=None, decimal_places=None, **kwargs)[source]

	A simple subclass of django.db.models.fields.DecimalField that
restricts values to be non-negative.

	
class oscar.models.fields.UppercaseCharField(*args, **kwargs)[source]

	A simple subclass of django.db.models.fields.CharField that
restricts all text to be uppercase.

Defined with the with_metaclass helper so that to_python is called
https://docs.djangoproject.com/en/1.6/howto/custom-model-fields/#the-subfieldbase-metaclass # NOQA

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Oscar Core Apps explained

Oscar is split up in multiple, mostly independent apps.

	Address

	Analytics

	Basket

	Catalogue

	Checkout

	Customer

	Dashboard

	Offers

	Order

	Partner

	Payment

	Promotions

	Search

	Shipping

	Voucher

	Wishlists

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Address

The address app provides core address models - it doesn’t provide any views or
other functionality. Of the 5 abstract models, only 2 have a non-abstract
version in oscar.apps.address.models - the others are used by the order app
to provide shipping and billing address models.

Abstract models

	
class oscar.apps.address.abstract_models.AbstractAddress(*args, **kwargs)[source]

	Bases: django.db.models.base.Model

Superclass address object

This is subclassed and extended to provide models for
user, shipping and billing addresses.

	
active_address_fields(include_salutation=True)[source]

	Return the non-empty components of the address, but merging the
title, first_name and last_name into a single line.

	
ensure_postcode_is_valid_for_country()[source]

	Validate postcode given the country

	
generate_hash()[source]

	Returns a hash of the address summary

	
join_fields(fields, separator=u', ')[source]

	Join a sequence of fields using the specified separator

	
populate_alternative_model(address_model)[source]

	For populating an address model using the matching fields
from this one.

This is used to convert a user address to a shipping address
as part of the checkout process.

	
salutation

	Name (including title)

	
search_text = None

	A field only used for searching addresses - this contains all the
relevant fields. This is effectively a poor man’s Solr text field.

	
summary

	Returns a single string summary of the address,
separating fields using commas.

	
class oscar.apps.address.abstract_models.AbstractCountry(*args, **kwargs)[source]

	Bases: django.db.models.base.Model

International Organization for Standardization (ISO) 3166-1 Country list.

The field names are a bit awkward, but kept for backwards compatibility.
pycountry’s syntax of alpha2, alpha3, name and official_name seems sane.

	
code

	Shorthand for the ISO 3166 Alpha-2 code

	
name = None

	The full official name of a country
e.g. ‘United Kingdom of Great Britain and Northern Ireland’

	
numeric_code

	Shorthand for the ISO 3166 numeric code.

iso_3166_1_numeric used to wrongly be a integer field, but has to be
padded with leading zeroes. It’s since been converted to a char field,
but the database might still contain non-padded strings. That’s why
the padding is kept.

	
printable_name = None

	The commonly used name; e.g. ‘United Kingdom’

	
class oscar.apps.address.abstract_models.AbstractPartnerAddress(*args, **kwargs)[source]

	Bases: oscar.apps.address.abstract_models.AbstractAddress

A partner can have one or more addresses. This can be useful e.g. when
determining US tax which depends on the origin of the shipment.

	
class oscar.apps.address.abstract_models.AbstractShippingAddress(*args, **kwargs)[source]

	Bases: oscar.apps.address.abstract_models.AbstractAddress

A shipping address.

A shipping address should not be edited once the order has been placed -
it should be read-only after that.

NOTE:
ShippingAddress is a model of the order app. But moving it there is tricky
due to circular import issues that are amplified by get_model/get_class
calls pre-Django 1.7 to register receivers. So...
TODO: Once Django 1.6 support is dropped, move AbstractBillingAddress and
AbstractShippingAddress to the order app, and move
PartnerAddress to the partner app.

	
order

	Return the order linked to this shipping address

	
class oscar.apps.address.abstract_models.AbstractUserAddress(*args, **kwargs)[source]

	Bases: oscar.apps.address.abstract_models.AbstractShippingAddress

A user’s address. A user can have many of these and together they form an
‘address book’ of sorts for the user.

We use a separate model for shipping and billing (even though there will be
some data duplication) because we don’t want shipping/billing addresses
changed or deleted once an order has been placed. By having a separate
model, we allow users the ability to add/edit/delete from their address
book without affecting orders already placed.

	
hash = None

	A hash is kept to try and avoid duplicate addresses being added
to the address book.

	
is_default_for_billing = None

	Whether this address should be the default for billing.

	
is_default_for_shipping = None

	Whether this address is the default for shipping

	
num_orders = None

	We keep track of the number of times an address has been used
as a shipping address so we can show the most popular ones
first at the checkout.

	
save(*args, **kwargs)[source]

	Save a hash of the address fields

Views

None.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Analytics

The oscar.analytics module provides a few simple models for gathering analytics data
on products and users. It listens for signals from other apps, and creates/updates simple
models which aggregate this data.

Such data is useful for auto-merchandising, calculating product scores for search and
for personalised marketing for customers.

Abstract models

	
class oscar.apps.analytics.abstract_models.AbstractProductRecord(*args, **kwargs)[source]

	A record of a how popular a product is.

This used be auto-merchandising to display the most popular
products.

	
class oscar.apps.analytics.abstract_models.AbstractUserRecord(*args, **kwargs)[source]

	A record of a user’s activity.

Views

None.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Basket

The basket app handles shopping baskets, which essentially are a collection of
products that hopefully end up being ordered.

Abstract models

	
class oscar.apps.basket.abstract_models.AbstractBasket(*args, **kwargs)[source]

	Basket object

	
add(product, quantity=1, options=None)

	Add a product to the basket

‘stock_info’ is the price and availability data returned from
a partner strategy class.

The ‘options’ list should contains dicts with keys ‘option’ and ‘value’
which link the relevant product.Option model and string value
respectively.

	Returns (line, created).

	line: the matching basket line
created: whether the line was created or updated

	
add_product(product, quantity=1, options=None)[source]

	Add a product to the basket

‘stock_info’ is the price and availability data returned from
a partner strategy class.

The ‘options’ list should contains dicts with keys ‘option’ and ‘value’
which link the relevant product.Option model and string value
respectively.

	Returns (line, created).

	line: the matching basket line
created: whether the line was created or updated

	
all_lines()[source]

	Return a cached set of basket lines.

This is important for offers as they alter the line models and you
don’t want to reload them from the DB as that information would be
lost.

	
applied_offers()[source]

	Return a dict of offers successfully applied to the basket.

This is used to compare offers before and after a basket change to see
if there is a difference.

	
can_be_edited

	Test if a basket can be edited

	
contains_voucher(code)[source]

	Test whether the basket contains a voucher with a given code

	
flush()[source]

	Remove all lines from basket.

	
freeze()[source]

	Freezes the basket so it cannot be modified.

	
grouped_voucher_discounts

	Return discounts from vouchers but grouped so that a voucher which
links to multiple offers is aggregated into one object.

	
is_empty

	Test if this basket is empty

	
is_quantity_allowed(qty)[source]

	Test whether the passed quantity of items can be added to the basket

	
is_shipping_required()[source]

	Test whether the basket contains physical products that require
shipping.

	
is_tax_known

	Test if tax values are known for this basket

	
line_quantity(product, stockrecord, options=None)[source]

	Return the current quantity of a specific product and options

	
merge(basket, add_quantities=True)[source]

	Merges another basket with this one.

	Basket:	The basket to merge into this one.

	Add_quantities:	Whether to add line quantities when they are merged.

	
merge_line(line, add_quantities=True)[source]

	For transferring a line from another basket to this one.

This is used with the “Saved” basket functionality.

	
num_items

	Return number of items

	
num_lines

	Return number of lines

	
offer_discounts

	Return basket discounts from non-voucher sources. Does not include
shipping discounts.

	
post_order_actions

	Return discounts from vouchers

	
product_quantity(product)[source]

	Return the quantity of a product in the basket

The basket can contain multiple lines with the same product, but
different options and stockrecords. Those quantities are summed up.

	
reset_offer_applications()[source]

	Remove any discounts so they get recalculated

	
set_as_submitted()

	Mark this basket as submitted

	
shipping_discounts

	Return discounts from vouchers

	
submit()[source]

	Mark this basket as submitted

	
thaw()[source]

	Unfreezes a basket so it can be modified again

	
total_excl_tax

	Return total line price excluding tax

	
total_excl_tax_excl_discounts

	Return total price excluding tax and discounts

	
total_incl_tax

	Return total price inclusive of tax and discounts

	
total_incl_tax_excl_discounts

	Return total price inclusive of tax but exclusive discounts

	
total_tax

	Return total tax for a line

	
voucher_discounts

	Return discounts from vouchers

	
class oscar.apps.basket.abstract_models.AbstractLine(*args, **kwargs)[source]

	A line of a basket (product and a quantity)

Common approaches on ordering basket lines:
a) First added at top. That’s the history-like approach; new items are

added to the bottom of the list. Changing quantities doesn’t impact
position.
Oscar does this by default. It just sorts by Line.pk, which is
guaranteed to increment after each creation.

	Last modified at top. That means items move to the top when you add
another one, and new items are added to the top as well.
Amazon mostly does this, but doesn’t change the position when you
update the quantity in the basket view.
To get this behaviour, add a date_updated field, change
Meta.ordering and optionally do something similar on wishlist lines.
Order lines should already be created in the order of the basket lines,
and are sorted by their primary key, so no changes should be necessary
there.

	
clear_discount()[source]

	Remove any discounts from this line.

	
consume(quantity)[source]

	Mark all or part of the line as ‘consumed’

Consumed items are no longer available to be used in offers.

	
discount(discount_value, affected_quantity, incl_tax=True)[source]

	Apply a discount to this line

	
get_price_breakdown()[source]

	Return a breakdown of line prices after discounts have been applied.

Returns a list of (unit_price_incl_tax, unit_price_excl_tax, quantity)
tuples.

	
get_warning()[source]

	Return a warning message about this basket line if one is applicable

This could be things like the price has changed

	
purchase_info

	Return the stock/price info

	
unit_effective_price

	The price to use for offer calculations

	
class oscar.apps.basket.abstract_models.AbstractLineAttribute(*args, **kwargs)[source]

	An attribute of a basket line

Views

	
class oscar.apps.basket.views.BasketAddView(**kwargs)[source]

	Handles the add-to-basket submissions, which are triggered from various
parts of the site. The add-to-basket form is loaded into templates using
a templatetag from module basket_tags.py.

	
product_model

	alias of Product

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Catalogue

This is an essential Oscar app which exposes functionality to manage your
product catalogue.
oscar.apps.catalogue.abstract_models.AbstractProduct
is its main model.
The catalogue app also includes views specific to viewing a list or
individual products.

Abstract models

	
class oscar.apps.catalogue.abstract_models.AbstractAttributeOption(*args, **kwargs)[source]

	Provides an option within an option group for an attribute type
Examples: In a Language group, English, Greek, French

	
class oscar.apps.catalogue.abstract_models.AbstractAttributeOptionGroup(*args, **kwargs)[source]

	Defines a group of options that collectively may be used as an
attribute type

For example, Language

	
class oscar.apps.catalogue.abstract_models.AbstractCategory(*args, **kwargs)[source]

	A product category. Merely used for navigational purposes; has no
effects on business logic.

Uses django-treebeard.

	
ensure_slug_uniqueness()[source]

	Ensures that the category’s slug is unique amongst it’s siblings.
This is inefficient and probably not thread-safe.

	
full_name

	Returns a string representation of the category and it’s ancestors,
e.g. ‘Books > Non-fiction > Essential programming’.

It’s rarely used in Oscar’s codebase, but used to be stored as a
CharField and is hence kept for backwards compatibility. It’s also
sufficiently useful to keep around.

	
full_slug

	Returns a string of this category’s slug concatenated with the slugs
of it’s ancestors, e.g. ‘books/non-fiction/essential-programming’.

Oscar used to store this as in the ‘slug’ model field, but this field
has been re-purposed to only store this category’s slug and to not
include it’s ancestors’ slugs.

	
generate_slug()[source]

	Generates a slug for a category. This makes no attempt at generating
a unique slug.

	
get_absolute_url()[source]

	Our URL scheme means we have to look up the category’s ancestors. As
that is a bit more expensive, we cache the generated URL. That is
safe even for a stale cache, as the default implementation of
ProductCategoryView does the lookup via primary key anyway. But if
you change that logic, you’ll have to reconsider the caching
approach.

	
get_ancestors_and_self()[source]

	Gets ancestors and includes itself. Use treebeard’s get_ancestors
if you don’t want to include the category itself. It’s a separate
function as it’s commonly used in templates.

	
get_descendants_and_self()[source]

	Gets descendants and includes itself. Use treebeard’s get_descendants
if you don’t want to include the category itself. It’s a separate
function as it’s commonly used in templates.

	
save(*args, **kwargs)[source]

	Oscar traditionally auto-generated slugs from names. As that is
often convenient, we still do so if a slug is not supplied through
other means. If you want to control slug creation, just create
instances with a slug already set, or expose a field on the
appropriate forms.

	
class oscar.apps.catalogue.abstract_models.AbstractOption(*args, **kwargs)[source]

	An option that can be selected for a particular item when the product
is added to the basket.

For example, a list ID for an SMS message send, or a personalised message
to print on a T-shirt.

This is not the same as an ‘attribute’ as options do not have a fixed value
for a particular item. Instead, option need to be specified by a customer
when they add the item to their basket.

	
class oscar.apps.catalogue.abstract_models.AbstractProduct(*args, **kwargs)[source]

	The base product object

There’s three kinds of products; they’re distinguished by the structure
field.

	A stand alone product. Regular product that lives by itself.

	A child product. All child products have a parent product. They’re a
specific version of the parent.

	A parent product. It essentially represents a set of products.

An example could be a yoga course, which is a parent product. The different
times/locations of the courses would be associated with the child products.

	
attribute_summary

	Return a string of all of a product’s attributes

	
calculate_rating()[source]

	Calculate rating value

	
can_be_parent(give_reason=False)[source]

	Helps decide if a the product can be turned into a parent product.

	
clean()[source]

	Validate a product. Those are the rules:

	
	stand alone
	parent
	child

	title
	required
	required
	optional

	product class
	required
	required
	must be None

	parent
	forbidden
	forbidden
	required

	stockrecords
	0 or more
	forbidden
	0 or more

	categories
	1 or more
	1 or more
	forbidden

	attributes
	optional
	optional
	optional

	rec. products
	optional
	optional
	unsupported

	options
	optional
	optional
	forbidden

Because the validation logic is quite complex, validation is delegated
to the sub method appropriate for the product’s structure.

	
get_absolute_url()[source]

	Return a product’s absolute url

	
get_categories()[source]

	Return a product’s categories or parent’s if there is a parent product.

	
get_is_discountable()[source]

	At the moment, is_discountable can’t be set individually for child
products; they inherit it from their parent.

	
get_missing_image()[source]

	Returns a missing image object.

	
get_product_class()[source]

	Return a product’s item class. Child products inherit their parent’s.

	
get_title()[source]

	Return a product’s title or it’s parent’s title if it has no title

	
has_stockrecords

	Test if this product has any stockrecords

	
is_discountable = None

	Determines if a product may be used in an offer. It is illegal to
discount some types of product (e.g. ebooks) and this field helps
merchants from avoiding discounting such products
Note that this flag is ignored for child products; they inherit from
the parent product.

	
is_review_permitted(user)[source]

	Determines whether a user may add a review on this product.

Default implementation respects OSCAR_ALLOW_ANON_REVIEWS and only
allows leaving one review per user and product.

Override this if you want to alter the default behaviour; e.g. enforce
that a user purchased the product to be allowed to leave a review.

	
options

	Returns a set of all valid options for this product.
It’s possible to have options product class-wide, and per product.

	
primary_image()[source]

	Returns the primary image for a product. Usually used when one can
only display one product image, e.g. in a list of products.

	
product_class

	“Kind” of product, e.g. T-Shirt, Book, etc.
None for child products, they inherit their parent’s product class

	
product_options

	It’s possible to have options product class-wide, and per product.

	
update_rating()[source]

	Recalculate rating field

	
class oscar.apps.catalogue.abstract_models.AbstractProductAttribute(*args, **kwargs)[source]

	Defines an attribute for a product class. (For example, number_of_pages for
a ‘book’ class)

	
class oscar.apps.catalogue.abstract_models.AbstractProductAttributeValue(*args, **kwargs)[source]

	The “through” model for the m2m relationship between catalogue.Product and
catalogue.ProductAttribute. This specifies the value of the attribute for
a particular product

For example: number_of_pages = 295

	
summary()[source]

	Gets a string representation of both the attribute and it’s value,
used e.g in product summaries.

	
value_as_html

	Returns a HTML representation of the attribute’s value. To customise
e.g. image attribute values, declare a _image_as_html property and
return e.g. an tag. Defaults to the _as_text representation.

	
value_as_text

	Returns a string representation of the attribute’s value. To customise
e.g. image attribute values, declare a _image_as_text property and
return something appropriate.

	
class oscar.apps.catalogue.abstract_models.AbstractProductCategory(*args, **kwargs)[source]

	Joining model between products and categories. Exists to allow customising.

	
class oscar.apps.catalogue.abstract_models.AbstractProductClass(*args, **kwargs)[source]

	Used for defining options and attributes for a subset of products.
E.g. Books, DVDs and Toys. A product can only belong to one product class.

At least one product class must be created when setting up a new
Oscar deployment.

Not necessarily equivalent to top-level categories but usually will be.

	
options

	These are the options (set by the user when they add to basket) for this
item class. For instance, a product class of “SMS message” would always
require a message to be specified before it could be bought.
Note that you can also set options on a per-product level.

	
requires_shipping = None

	Some product type don’t require shipping (eg digital products) - we use
this field to take some shortcuts in the checkout.

	
track_stock = None

	Digital products generally don’t require their stock levels to be
tracked.

	
class oscar.apps.catalogue.abstract_models.AbstractProductImage(*args, **kwargs)[source]

	An image of a product

	
delete(*args, **kwargs)[source]

	Always keep the display_order as consecutive integers. This avoids
issue #855.

	
display_order = None

	Use display_order to determine which is the “primary” image

	
is_primary()[source]

	Return bool if image display order is 0

	
class oscar.apps.catalogue.abstract_models.AbstractProductRecommendation(*args, **kwargs)[source]

	‘Through’ model for product recommendations

	
class oscar.apps.catalogue.abstract_models.MissingProductImage(name=None)[source]

	Mimics a Django file field by having a name property.

sorl-thumbnail requires all it’s images to be in MEDIA_ROOT. This class
tries symlinking the default “missing image” image in STATIC_ROOT
into MEDIA_ROOT for convenience, as that is necessary every time an Oscar
project is setup. This avoids the less helpful NotFound IOError that would
be raised when sorl-thumbnail tries to access it.

	
class oscar.apps.catalogue.abstract_models.ProductAttributesContainer(product)[source]

	Stolen liberally from django-eav, but simplified to be product-specific

To set attributes on a product, use the attr attribute:

product.attr.weight = 125

Views

	
class oscar.apps.catalogue.views.CatalogueView(**kwargs)[source]

	Browse all products in the catalogue

	
class oscar.apps.catalogue.views.ProductCategoryView(**kwargs)[source]

	Browse products in a given category

	
get_categories()[source]

	Return a list of the current category and its ancestors

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Checkout

Flow

The checkout process comprises the following steps:

	Gateway - Anonymous users are offered the choice of logging in, registering,
or checking out anonymously. Signed in users will be automatically redirected to the next
step.

	Shipping address - Enter or choose a shipping address.

	Shipping method - Choose a shipping method. If only one shipping method is available
then it is automatically chosen and the user is redirected onto the next step.

	Payment method - Choose the method of payment plus any allocations if payment is to be
split across multiple sources. If only one method is available, then the user is
redirected onto the next step.

	Preview - The prospective order can be previewed.

	Payment details - If any sensitive payment details are required (e.g., bankcard number),
then a form is presented within this step. This has to be the last step before submission
so that sensitive details don’t have to be stored in the session.

	Submission - The order is placed.

	Thank you - A summary of the order with any relevant tracking information.

Abstract models

None.

Views and mixins

	
class oscar.apps.checkout.views.IndexView(**kwargs)[source]

	First page of the checkout. We prompt user to either sign in, or
to proceed as a guest (where we still collect their email address).

	
class oscar.apps.checkout.views.PaymentDetailsView(**kwargs)[source]

	For taking the details of payment and creating the order.

This view class is used by two separate URLs: ‘payment-details’ and
‘preview’. The preview class attribute is used to distinguish which is
being used. Chronologically, payment-details (preview=False) comes before
preview (preview=True).

If sensitive details are required (eg a bankcard), then the payment details
view should submit to the preview URL and a custom implementation of
validate_payment_submission should be provided.

	If the form data is valid, then the preview template can be rendered with
the payment-details forms re-rendered within a hidden div so they can be
re-submitted when the ‘place order’ button is clicked. This avoids having
to write sensitive data to disk anywhere during the process. This can be
done by calling render_preview, passing in the extra template context
vars.

	If the form data is invalid, then the payment details templates needs to
be re-rendered with the relevant error messages. This can be done by
calling render_payment_details, passing in the form instances to pass
to the templates.

The class is deliberately split into fine-grained methods, responsible for
only one thing. This is to make it easier to subclass and override just
one component of functionality.

All projects will need to subclass and customise this class as no payment
is taken by default.

	
get_default_billing_address()[source]

	Return default billing address for user

This is useful when the payment details view includes a billing address
form - you can use this helper method to prepopulate the form.

Note, this isn’t used in core oscar as there is no billing address form
by default.

	
handle_payment_details_submission(request)[source]

	Handle a request to submit payment details.

This method will need to be overridden by projects that require forms
to be submitted on the payment details view. The new version of this
method should validate the submitted form data and:

	If the form data is valid, show the preview view with the forms
re-rendered in the page

	If the form data is invalid, show the payment details view with
the form errors showing.

	
handle_place_order_submission(request)[source]

	Handle a request to place an order.

This method is normally called after the customer has clicked “place
order” on the preview page. It’s responsible for (re-)validating any
form information then building the submission dict to pass to the
submit method.

If forms are submitted on your payment details view, you should
override this method to ensure they are valid before extracting their
data into the submission dict and passing it onto submit.

	
render_payment_details(request, **kwargs)[source]

	Show the payment details page

This method is useful if the submission from the payment details view
is invalid and needs to be re-rendered with form errors showing.

	
render_preview(request, **kwargs)[source]

	Show a preview of the order.

If sensitive data was submitted on the payment details page, you will
need to pass it back to the view here so it can be stored in hidden
form inputs. This avoids ever writing the sensitive data to disk.

	
submit(user, basket, shipping_address, shipping_method, shipping_charge, billing_address, order_total, payment_kwargs=None, order_kwargs=None)[source]

	Submit a basket for order placement.

The process runs as follows:

	Generate an order number

	Freeze the basket so it cannot be modified any more (important when
redirecting the user to another site for payment as it prevents the
basket being manipulated during the payment process).

	Attempt to take payment for the order
- If payment is successful, place the order
- If a redirect is required (eg PayPal, 3DSecure), redirect
- If payment is unsuccessful, show an appropriate error message

	Basket:	The basket to submit.

	Payment_kwargs:	Additional kwargs to pass to the handle_payment
method. It normally makes sense to pass form
instances (rather than model instances) so that the
forms can be re-rendered correctly if payment fails.

	Order_kwargs:	Additional kwargs to pass to the place_order method

	
class oscar.apps.checkout.views.PaymentMethodView(**kwargs)[source]

	View for a user to choose which payment method(s) they want to use.

This would include setting allocations if payment is to be split
between multiple sources. It’s not the place for entering sensitive details
like bankcard numbers though - that belongs on the payment details view.

	
class oscar.apps.checkout.views.ShippingAddressView(**kwargs)[source]

	Determine the shipping address for the order.

The default behaviour is to display a list of addresses from the users’s
address book, from which the user can choose one to be their shipping
address. They can add/edit/delete these USER addresses. This address will
be automatically converted into a SHIPPING address when the user checks
out.

Alternatively, the user can enter a SHIPPING address directly which will be
saved in the session and later saved as ShippingAddress model when the
order is successfully submitted.

	
class oscar.apps.checkout.views.ShippingMethodView(**kwargs)[source]

	View for allowing a user to choose a shipping method.

Shipping methods are largely domain-specific and so this view
will commonly need to be subclassed and customised.

The default behaviour is to load all the available shipping methods
using the shipping Repository. If there is only 1, then it is
automatically selected. Otherwise, a page is rendered where
the user can choose the appropriate one.

	
get_available_shipping_methods()[source]

	Returns all applicable shipping method objects for a given basket.

	
class oscar.apps.checkout.views.ThankYouView(**kwargs)[source]

	Displays the ‘thank you’ page which summarises the order just submitted.

	
class oscar.apps.checkout.views.UserAddressDeleteView(**kwargs)[source]

	Delete an address from a user’s address book.

	
class oscar.apps.checkout.views.UserAddressUpdateView(**kwargs)[source]

	Update a user address

	
class oscar.apps.checkout.mixins.OrderPlacementMixin[source]

	Mixin which provides functionality for placing orders.

Any view class which needs to place an order should use this mixin.

	
add_payment_event(event_type_name, amount, reference='')[source]

	Record a payment event for creation once the order is placed

	
add_payment_source(source)[source]

	Record a payment source for this order

	
create_billing_address(billing_address=None, shipping_address=None, **kwargs)[source]

	Saves any relevant billing data (eg a billing address).

	
create_shipping_address(user, shipping_address)[source]

	Create and return the shipping address for the current order.

Compared to self.get_shipping_address(), ShippingAddress is saved and
makes sure that appropriate UserAddress exists.

	
freeze_basket(basket)[source]

	Freeze the basket so it can no longer be modified

	
generate_order_number(basket)[source]

	Return a new order number

	
handle_order_placement(order_number, user, basket, shipping_address, shipping_method, shipping_charge, billing_address, order_total, **kwargs)[source]

	Write out the order models and return the appropriate HTTP response

We deliberately pass the basket in here as the one tied to the request
isn’t necessarily the correct one to use in placing the order. This
can happen when a basket gets frozen.

	
handle_payment(order_number, total, **kwargs)[source]

	Handle any payment processing and record payment sources and events.

This method is designed to be overridden within your project. The
default is to do nothing as payment is domain-specific.

This method is responsible for handling payment and recording the
payment sources (using the add_payment_source method) and payment
events (using add_payment_event) so they can be
linked to the order when it is saved later on.

	
handle_successful_order(order)[source]

	Handle the various steps required after an order has been successfully
placed.

Override this view if you want to perform custom actions when an
order is submitted.

	
place_order(order_number, user, basket, shipping_address, shipping_method, shipping_charge, order_total, billing_address=None, **kwargs)[source]

	Writes the order out to the DB including the payment models

	
restore_frozen_basket()[source]

	Restores a frozen basket as the sole OPEN basket. Note that this also
merges in any new products that have been added to a basket that has
been created while payment.

	
save_payment_details(order)[source]

	Saves all payment-related details. This could include a billing
address, payment sources and any order payment events.

	
save_payment_events(order)[source]

	Saves any relevant payment events for this order

	
save_payment_sources(order)[source]

	Saves any payment sources used in this order.

When the payment sources are created, the order model does not exist
and so they need to have it set before saving.

	
update_address_book(user, shipping_addr)[source]

	Update the user’s address book based on the new shipping address

	
class oscar.apps.checkout.session.CheckoutSessionMixin[source]

	Mixin to provide common functionality shared between checkout views.

All checkout views subclass this mixin. It ensures that all relevant
checkout information is available in the template context.

	
build_submission(**kwargs)[source]

	Return a dict of data that contains everything required for an order
submission. This includes payment details (if any).

This can be the right place to perform tax lookups and apply them to
the basket.

	
check_basket_is_valid(request)[source]

	Check that the basket is permitted to be submitted as an order. That
is, all the basket lines are available to buy - nothing has gone out of
stock since it was added to the basket.

	
get_billing_address(shipping_address)[source]

	Return an unsaved instance of the billing address (if one exists)

This method only returns a billing address if the session has been used
to store billing address information. It’s also possible to capture
billing address information as part of the payment details forms, which
never get stored in the session. In that circumstance, the billing
address can be set directly in the build_submission dict.

	
get_order_totals(basket, shipping_charge, **kwargs)[source]

	Returns the total for the order with and without tax

	
get_pre_conditions(request)[source]

	Return the pre-condition method names to run for this view

	
get_shipping_address(basket)[source]

	Return the (unsaved) shipping address for this checkout session.

If the shipping address was entered manually, then we instantiate a
ShippingAddress model with the appropriate form data (which is
saved in the session).

If the shipping address was selected from the user’s address book,
then we convert the UserAddress to a ShippingAddress.

The ShippingAddress instance is not saved as sometimes you need a
shipping address instance before the order is placed. For example, if
you are submitting fraud information as part of a payment request.

The OrderPlacementMixin.create_shipping_address method is
responsible for saving a shipping address when an order is placed.

	
get_shipping_method(basket, shipping_address=None, **kwargs)[source]

	Return the selected shipping method instance from this checkout session

The shipping address is passed as we need to check that the method
stored in the session is still valid for the shipping address.

	
get_skip_conditions(request)[source]

	Return the skip-condition method names to run for this view

Forms

Utils

	
class oscar.apps.checkout.calculators.OrderTotalCalculator(request=None)[source]

	Calculator class for calculating the order total.

	
class oscar.apps.checkout.utils.CheckoutSessionData(request)[source]

	Responsible for marshalling all the checkout session data

Multi-stage checkouts often require several forms to be submitted and their
data persisted until the final order is placed. This class helps store and
organise checkout form data until it is required to write out the final
order.

	
bill_to_new_address(address_fields)[source]

	Store address fields for a billing address.

	
bill_to_shipping_address()[source]

	Record fact that the billing address is to be the same as
the shipping address.

	
bill_to_user_address(address)[source]

	Set an address from a user’s address book as the billing address

	Address:	The address object

	
billing_address_same_as_shipping()

	Record fact that the billing address is to be the same as
the shipping address.

	
billing_user_address_id()[source]

	Return the ID of the user address being used for billing

	
flush()[source]

	Flush all session data

	
is_billing_address_set()[source]

	Test whether a billing address has been stored in the session.

This can be from a new address or re-using an existing address.

	
is_shipping_address_set()[source]

	Test whether a shipping address has been stored in the session.

This can be from a new address or re-using an existing address.

	
is_shipping_method_set(basket)[source]

	Test if a valid shipping method is stored in the session

	
new_billing_address_fields()[source]

	Return fields for a billing address

	
new_shipping_address_fields()[source]

	Return shipping address fields

	
ship_to_new_address(address_fields)[source]

	Use a manually entered address as the shipping address

	
ship_to_user_address(address)[source]

	Use an user address (from an address book) as the shipping address.

	
shipping_method_code(basket)[source]

	Return the shipping method code

	
shipping_user_address_id()[source]

	Return user address id

	
use_free_shipping()[source]

	Set “free shipping” code to session

	
use_shipping_method(code)[source]

	Set shipping method code to session

	
user_address_id()

	Return user address id

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Customer

The customer app bundles communication with customers. This includes models
to record product alerts and sent emails. It also contains the views that
allow a customer to manage their data (profile information, shipping addresses,
etc.)

Abstract models

	
class oscar.apps.customer.abstract_models.AbstractCommunicationEventType(*args, **kwargs)[source]

	A ‘type’ of communication. Like an order confirmation email.

	
code = None

	Code used for looking up this event programmatically.

	
get_messages(ctx=None)[source]

	Return a dict of templates with the context merged in

We look first at the field templates but fail over to
a set of file templates that follow a conventional path.

	
name = None

	Name is the friendly description of an event for use in the admin

	
class oscar.apps.customer.abstract_models.AbstractEmail(*args, **kwargs)[source]

	This is a record of all emails sent to a customer.
Normally, we only record order-related emails.

	
class oscar.apps.customer.abstract_models.AbstractProductAlert(*args, **kwargs)[source]

	An alert for when a product comes back in stock

	
get_random_key()[source]

	Get a random generated key based on SHA-1 and email address

	
class oscar.apps.customer.abstract_models.AbstractUser(*args, **kwargs)[source]

	An abstract base user suitable for use in Oscar projects.

This is basically a copy of the core AbstractUser model but without a
username field

Forms

	
class oscar.apps.customer.forms.ConfirmPasswordForm(user, *args, **kwargs)[source]

	Extends the standard django AuthenticationForm, to support 75 character
usernames. 75 character usernames are needed to support the EmailOrUsername
auth backend.

	
class oscar.apps.customer.forms.EmailAuthenticationForm(host, *args, **kwargs)[source]

	Extends the standard django AuthenticationForm, to support 75 character
usernames. 75 character usernames are needed to support the EmailOrUsername
auth backend.

	
class oscar.apps.customer.forms.PasswordResetForm(data=None, files=None, auto_id=u'id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, field_order=None)[source]

	This form takes the same structure as its parent from django.contrib.auth

	
save(domain_override=None, use_https=False, request=None, **kwargs)[source]

	Generates a one-use only link for resetting password and sends to the
user.

Views

	
class oscar.apps.customer.views.AccountAuthView(**kwargs)[source]

	This is actually a slightly odd double form view that allows a customer to
either login or register.

	
login_form_class

	alias of EmailAuthenticationForm

	
class oscar.apps.customer.views.AccountSummaryView(**kwargs)[source]

	View that exists for legacy reasons and customisability. It commonly gets
called when the user clicks on “Account” in the navbar.

Oscar defaults to just redirecting to the profile summary page (and
that redirect can be configured via OSCAR_ACCOUNT_REDIRECT_URL), but
it’s also likely you want to display an ‘account overview’ page or
such like. The presence of this view allows just that, without
having to change a lot of templates.

	
class oscar.apps.customer.views.AddressChangeStatusView(**kwargs)[source]

	Sets an address as default_for_(billing|shipping)

	
class oscar.apps.customer.views.AddressListView(**kwargs)[source]

	Customer address book

	
get_queryset()[source]

	Return customer’s addresses

	
class oscar.apps.customer.views.EmailDetailView(**kwargs)[source]

	Customer email

	
get_page_title()[source]

	Append email subject to page title

	
class oscar.apps.customer.views.OrderHistoryView(**kwargs)[source]

	Customer order history

	
model

	alias of Order

	
class oscar.apps.customer.views.OrderLineView(**kwargs)[source]

	Customer order line

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Dashboard

The dashboard is the backend interface for managing the store. That includes the
product catalogue, orders and stock, offers etc. It is intended as a
complete replacement of the Django admin interface.
The app itself only contains a view that serves as a kind of homepage, and
some logic for managing the navigation (in nav.py). There’s several sub-apps
that are responsible for managing the different parts of the Oscar store.

Permission-based dashboard

Staff users (users with is_staff==True) get access to all views in the
dashboard. To better support Oscar’s use for marketplace scenarios, the
permission-based dashboard has been introduced. If a non-staff user has
the partner.dashboard_access permission set, they are given access to a subset
of views, and their access to products and orders is limited.

AbstractPartner instances
have a users field.
Prior to Oscar 0.6, this field was not used. Since Oscar 0.6, it is used solely
for modelling dashboard access.

If a non-staff user with the partner.dashboard_access permission is in
users, they can:

	Create products. It is enforced that at least one stock record’s partner has
the current user in users.

	Update products. At least one stock record must have the user in the stock
record’s partner’s users.

	Delete and list products. Limited to products the user is allowed to update.

	Managing orders. Similar to products, a user get access if one of an order’s
lines is associated with a matching partner.

For many marketplace scenarios, it will make sense to ensure at checkout that
a basket only contains lines from one partner.
Please note that the dashboard currently ignores any other permissions,
including Django’s default permissions [https://docs.djangoproject.com/en/dev/topics/auth/default/#default-permissions].

Note

The permission-based dashboard currently does not support parent or child
products. Supporting this requires a modelling change. If you require this,
please get in touch so we can first learn about your use case.

Abstract models

None.

Views

	
class oscar.apps.dashboard.views.IndexView(**kwargs)[source]

	An overview view which displays several reports about the shop.

Supports the permission-based dashboard. It is recommended to add a
index_nonstaff.html template because Oscar’s default template will
display potentially sensitive store information.

	
get_active_site_offers()[source]

	Return active conditional offers of type “site offer”. The returned
Queryset of site offers is filtered by end date greater then
the current date.

	
get_active_vouchers()[source]

	Get all active vouchers. The returned Queryset of vouchers
is filtered by end date greater then the current date.

	
get_hourly_report(hours=24, segments=10)[source]

	Get report of order revenue split up in hourly chunks. A report is
generated for the last hours (default=24) from the current time.
The report provides max_revenue of the hourly order revenue sum,
y-range as the labeling for the y-axis in a template and
order_total_hourly, a list of properties for hourly chunks.
segments defines the number of labeling segments used for the y-axis
when generating the y-axis labels (default=10).

	
get_number_of_promotions(abstract_base=<class 'oscar.apps.promotions.models.AbstractPromotion'>)[source]

	Get the number of promotions for all promotions derived from
abstract_base. All subclasses of abstract_base are queried
and if another abstract base class is found this method is executed
recursively.

	
get_open_baskets(filters=None)[source]

	Get all open baskets. If filters dictionary is provided they will
be applied on all open baskets and return only filtered results.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Offers

Oscar ships with a powerful and flexible offers engine which is contained in the
offers app. It is based around the concept of ‘conditional offers’ - that is,
a basket must satisfy some condition in order to qualify for a benefit.

Oscar’s dashboard can be used to administer offers.

Structure

A conditional offer is composed of several components:

	Customer-facing information - this is the name and description of an offer.
These will be visible on offer-browsing pages as well as within the basket and
checkout pages.

	Availability - this determines when an offer is available.

	Condition - this determines when a customer qualifies for the offer (eg spend
£20 on DVDs). There are various condition types available.

	Benefit - this determines the discount a customer receives. The discount can
be against the basket cost or the shipping for an order.

Availability

An offer’s availability can be controlled by several settings which can be used
in isolation or combination:

	Date range - a date can be set, outside of which the offer is unavailable.

	Max global applications - the number of times an offer can be used can be capped.
Note that an offer can be used multiple times within the same order so this
isn’t the same as limiting the number of orders that can use an offer.

	Max user applications - the number of times a particular user can use an
offer. This makes most sense to use in sites that don’t allow anonymous
checkout as it could be circumvented by submitting multiple anonymous orders.

	Max basket applications - the number of times an offer can be used for a
single basket/order.

	Max discount - the maximum amount of discount an offer can give across all
orders. For instance, you might have a marketing budget of £10000 and so you
could set the max discount to this value to ensure that once £10000 worth of
benefit had been awarded, the offer would no longer be available. Note that
the total discount would exceed £10000 as it would have to cross this
threshold to disable the offer.

Conditions

There are 3 built-in condition types that can be created via the dashboard.
Each needs to be linked with a range object, which is subset of the product
catalogue. Ranges are created independently in the dashboard.

	Count-based - ie a customer must buy X products from the condition range

	Coverge-based - ie a customer must buy X DISTINCT products from the condition range. This can be used to
create “bundle” offers.

	Value-based - ie a customer must spend X on products from the condition range

It is also possible to create custom conditions in Python and register these so they
are available to be selected within the dashboard. For instance, you could
create a condition that specifies that the user must have been registered for
over a year to qualify for the offer.

Under the hood, conditions are defined by 3 attributes: a range, a type
and a value.

Benefits

There are several types of built-in benefit, which fall into one of two
categories: benefits that give a basket discount, and those that give a shipping
discount.

Basket benefits:

	Fixed discount - ie get £5 off DVDs

	Percentage discount - ie get 25% off books

	Fixed price - ie get any DVD for £8

	Multibuy - ie get the cheapest product that meets the condition for free

Shipping benefits (these largely mirror the basket benefits):

	Fixed discount - ie £5 off shipping

	Percentage discount - ie get 25% off shipping

	Fixed price - ie get shipping for £8

Like conditions, it is possible to create a custom benefit. An example might be
to allow customers to earn extra credits/points when they qualify for some
offer. For example, spend £100 on perfume, get 500 credits (note credits don’t
exist in core Oscar but can be implemented using the ‘accounts’ plugin).

Under the hood, benefits are modelled by 4 attributes: a range, a type, a value
and a setting for the maximum number of basket items that can be affected by a
benefit. This last settings is useful for limiting the scope of an offer. For
instance, you can create a benefit that gives 40% off ONE products from a given
range by setting the max affected items to 1. Without this setting, the benefit
would give 40% off ALL products from the range.

Benefits are slightly tricky in that some types don’t require a range and ignore
the value of the max items setting.

Examples

Here’s some example offers:

	3 for 2 on books

	
	Create a range for all books.

	Use a count-based condition that links to this range with a value of 3.

	Use a multibuy benefit with no value (the value is implicitly 1)

	Spend £20 on DVDs, get 25% off

	
	Create a range for all DVDs.

	Use a value-based condition that links to this range with a value of 20.

	Use a percentage discount benefit that links to this range and has a
value of 25.

	Buy 2 Lonely Planet books, get £5 off a Lonely Planet DVD

	
	Create a range for Lonely Planet books and another for Lonely Planet DVDs

	Use a count-based condition linking to the book range with a value of 2

	Use a fixed discount benefit that links to the DVD range and has a value of 5.

More to come...

Abstract models

	
class oscar.apps.offer.abstract_models.AbstractCondition(*args, **kwargs)[source]

	A condition for an offer to be applied. You can either specify a custom
proxy class, or need to specify a type, range and value.

	
can_apply_condition(line)[source]

	Determines whether the condition can be applied to a given basket line

	
description

	A description of the condition.
Defaults to the name. May contain HTML.

	
get_applicable_lines(offer, basket, most_expensive_first=True)[source]

	Return line data for the lines that can be consumed by this condition

	
is_partially_satisfied(offer, basket)[source]

	Determine if the basket partially meets the condition. This is useful
for up-selling messages to entice customers to buy something more in
order to qualify for an offer.

	
is_satisfied(offer, basket)[source]

	Determines whether a given basket meets this condition. This is
stubbed in this top-class object. The subclassing proxies are
responsible for implementing it correctly.

	
name

	A plaintext description of the condition. Every proxy class has to
implement it.

This is used in the dropdowns within the offer dashboard.

	
proxy()[source]

	Return the proxy model

	
class oscar.apps.offer.abstract_models.AbstractConditionalOffer(*args, **kwargs)[source]

	A conditional offer (eg buy 1, get 10% off)

	
apply_benefit(basket)[source]

	Applies the benefit to the given basket and returns the discount.

	
apply_deferred_benefit(basket, order, application)[source]

	Applies any deferred benefits. These are things like adding loyalty
points to somone’s account.

	
availability_description()[source]

	Return a description of when this offer is available

	
get_max_applications(user=None)[source]

	Return the number of times this offer can be applied to a basket for a
given user.

	
is_available(user=None, test_date=None)[source]

	Test whether this offer is available to be used

	
products()[source]

	Return a queryset of products in this offer

	
class oscar.apps.offer.abstract_models.AbstractRange(*args, **kwargs)[source]

	Represents a range of products that can be used within an offer.

Ranges only support adding parent or stand-alone products. Offers will
consider child products automatically.

	
add_product(product, display_order=None)[source]

	Add product to the range

When adding product that is already in the range, prevent re-adding it.
If display_order is specified, update it.

Default display_order for a new product in the range is 0; this puts
the product at the top of the list.

	
all_products()[source]

	Return a queryset containing all the products in the range

This includes included_products plus the products contained in the
included classes and categories, minus the products in
excluded_products.

	
contains(product)

	Check whether the passed product is part of this range.

	
contains_product(product)[source]

	Check whether the passed product is part of this range.

	
is_editable

	Test whether this product can be edited in the dashboard

	
remove_product(product)[source]

	Remove product from range. To save on queries, this function does not
check if the product is in fact in the range.

	
class oscar.apps.offer.abstract_models.AbstractRangeProduct(*args, **kwargs)[source]

	Allow ordering products inside ranges
Exists to allow customising.

Models

	
class oscar.apps.offer.models.BasketDiscount(amount)[source]

	For when an offer application leads to a simple discount off the basket’s
total

	
class oscar.apps.offer.models.ShippingDiscount[source]

	For when an offer application leads to a discount from the shipping cost

	
class oscar.apps.offer.models.PostOrderAction(description)[source]

	For when an offer condition is met but the benefit is deferred until after
the order has been placed. Eg buy 2 books and get 100 loyalty points.

	
class oscar.apps.offer.models.ConditionalOffer(id, name, slug, description, offer_type, status, condition, benefit, priority, start_datetime, end_datetime, max_global_applications, max_user_applications, max_basket_applications, max_discount, total_discount, num_applications, num_orders, redirect_url, date_created)[source]

	

	
class oscar.apps.offer.models.Benefit(id, range, type, value, max_affected_items, proxy_class)[source]

	

	
class oscar.apps.offer.models.Condition(id, range, type, value, proxy_class)[source]

	

	
class oscar.apps.offer.models.Range(id, name, slug, description, is_public, includes_all_products, proxy_class, date_created)[source]

	

	
class oscar.apps.offer.models.RangeProduct(id, range, product, display_order)[source]

	

	
class oscar.apps.offer.models.RangeProductFileUpload(id, range, filepath, size, uploaded_by, date_uploaded, status, error_message, date_processed, num_new_skus, num_unknown_skus, num_duplicate_skus)[source]

	

	
class oscar.apps.offer.models.PercentageDiscountBenefit(*args, **kwargs)[source]

	An offer benefit that gives a percentage discount

	
class oscar.apps.offer.models.AbsoluteDiscountBenefit(*args, **kwargs)[source]

	An offer benefit that gives an absolute discount

	
class oscar.apps.offer.models.FixedPriceBenefit(*args, **kwargs)[source]

	An offer benefit that gives the items in the condition for a
fixed price. This is useful for “bundle” offers.

Note that we ignore the benefit range here and only give a fixed price
for the products in the condition range. The condition cannot be a value
condition.

We also ignore the max_affected_items setting.

	
class oscar.apps.offer.models.ShippingBenefit(id, range, type, value, max_affected_items, proxy_class)[source]

	

	
class oscar.apps.offer.models.MultibuyDiscountBenefit(id, range, type, value, max_affected_items, proxy_class)[source]

	

	
class oscar.apps.offer.models.ShippingAbsoluteDiscountBenefit(id, range, type, value, max_affected_items, proxy_class)[source]

	

	
class oscar.apps.offer.models.ShippingFixedPriceBenefit(id, range, type, value, max_affected_items, proxy_class)[source]

	

	
class oscar.apps.offer.models.ShippingPercentageDiscountBenefit(id, range, type, value, max_affected_items, proxy_class)[source]

	

	
class oscar.apps.offer.models.CountCondition(*args, **kwargs)[source]

	An offer condition dependent on the NUMBER of matching items from the
basket.

	
consume_items(offer, basket, affected_lines)[source]

	Marks items within the basket lines as consumed so they
can’t be reused in other offers.

	Basket:	The basket

	Affected_lines:	The lines that have been affected by the discount.
This should be list of tuples (line, discount, qty)

	
is_satisfied(offer, basket)[source]

	Determines whether a given basket meets this condition

	
class oscar.apps.offer.models.CoverageCondition(*args, **kwargs)[source]

	An offer condition dependent on the number of DISTINCT matching items from
the basket.

	
consume_items(offer, basket, affected_lines)[source]

	Marks items within the basket lines as consumed so they
can’t be reused in other offers.

	
is_satisfied(offer, basket)[source]

	Determines whether a given basket meets this condition

	
class oscar.apps.offer.models.ValueCondition(*args, **kwargs)[source]

	An offer condition dependent on the VALUE of matching items from the
basket.

	
consume_items(offer, basket, affected_lines)[source]

	Marks items within the basket lines as consumed so they
can’t be reused in other offers.

We allow lines to be passed in as sometimes we want them sorted
in a specific order.

	
is_satisfied(offer, basket)[source]

	Determine whether a given basket meets this condition

Views

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Order

The order app handles processing of orders.

Abstract models

	
class oscar.apps.order.abstract_models.AbstractCommunicationEvent(*args, **kwargs)[source]

	An order-level event involving a communication to the customer, such
as an confirmation email being sent.

	
class oscar.apps.order.abstract_models.AbstractLine(*args, **kwargs)[source]

	An order line

	
classmethod all_statuses()[source]

	Return all possible statuses for an order line

	
available_statuses()[source]

	Return all possible statuses that this order line can move to

	
category

	Used by Google analytics tracking

	
description

	Returns a description of this line including details of any
line attributes.

	
get_event_quantity(event)[source]

	Fetches the ShippingEventQuantity instance for this line

Exists as a separate method so it can be overridden to avoid
the DB query that’s caused by get().

	
has_shipping_event_occurred(event_type, quantity=None)[source]

	Test whether this line has passed a given shipping event

	
is_available_to_reorder(basket, strategy)[source]

	Test if this line can be re-ordered using the passed strategy and
basket

	
is_payment_event_permitted(event_type, quantity)[source]

	Test whether a payment event with the given quantity is permitted.

Allow each payment event type to occur only once per quantity.

	
is_shipping_event_permitted(event_type, quantity)[source]

	Test whether a shipping event with the given quantity is permitted

This method should normally be overriden to ensure that the
prerequisite shipping events have been passed for this line.

	
payment_event_quantity(event_type)[source]

	Return the quantity of this line that has been involved in a payment
event of the passed type.

	
pipeline = {}

	Order status pipeline. This should be a dict where each (key, value)
corresponds to a status and the possible statuses that can follow that
one.

	
set_status(new_status)[source]

	Set a new status for this line

If the requested status is not valid, then InvalidLineStatus is
raised.

	
shipping_event_breakdown

	Returns a dict of shipping events that this line has been through

	
shipping_event_quantity(event_type)[source]

	Return the quantity of this line that has been involved in a shipping
event of the passed type.

	
shipping_status

	Returns a string summary of the shipping status of this line

	
class oscar.apps.order.abstract_models.AbstractLineAttribute(*args, **kwargs)[source]

	An attribute of a line

	
class oscar.apps.order.abstract_models.AbstractLinePrice(*args, **kwargs)[source]

	For tracking the prices paid for each unit within a line.

This is necessary as offers can lead to units within a line
having different prices. For example, one product may be sold at
50% off as it’s part of an offer while the remainder are full price.

	
class oscar.apps.order.abstract_models.AbstractOrder(*args, **kwargs)[source]

	The main order model

	
classmethod all_statuses()[source]

	Return all possible statuses for an order

	
available_statuses()[source]

	Return all possible statuses that this order can move to

	
basket_total_before_discounts_excl_tax

	Return basket total excluding tax but before discounts are applied

	
basket_total_before_discounts_incl_tax

	Return basket total including tax but before discounts are applied

	
basket_total_excl_tax

	Return basket total excluding tax

	
basket_total_incl_tax

	Return basket total including tax

	
cascade = {'Cancelled': 'Cancelled', 'Complete': 'Shipped', 'Being processed': 'Being processed'}

	Order status cascade pipeline. This should be a dict where each (key,
value) pair corresponds to an order status and the corresponding
line status that needs to be set when the order is set to the new
status

	
num_items

	Returns the number of items in this order.

	
pipeline = {'Cancelled': (), 'Being processed': ('Complete', 'Cancelled'), 'Pending': ('Being processed', 'Cancelled'), 'Complete': ()}

	Order status pipeline. This should be a dict where each (key, value) # – corresponds to a status and a list of possible statuses that can follow
that one.

	
set_status(new_status)[source]

	Set a new status for this order.

If the requested status is not valid, then InvalidOrderStatus is
raised.

	
shipping_status

	Return the last complete shipping event for this order.

	
total_discount_incl_tax

	The amount of discount this order received

	
class oscar.apps.order.abstract_models.AbstractOrderDiscount(*args, **kwargs)[source]

	A discount against an order.

Normally only used for display purposes so an order can be listed with
discounts displayed separately even though in reality, the discounts are
applied at the line level.

This has evolved to be a slightly misleading class name as this really
track benefit applications which aren’t necessarily discounts.

	
class oscar.apps.order.abstract_models.AbstractOrderNote(*args, **kwargs)[source]

	A note against an order.

This are often used for audit purposes too. IE, whenever an admin
makes a change to an order, we create a note to record what happened.

	
class oscar.apps.order.abstract_models.AbstractPaymentEvent(*args, **kwargs)[source]

	A payment event for an order

For example:

	All lines have been paid for

	2 lines have been refunded

	
class oscar.apps.order.abstract_models.AbstractPaymentEventType(*args, **kwargs)[source]

	Payment event types are things like ‘Paid’, ‘Failed’, ‘Refunded’.

These are effectively the transaction types.

	
class oscar.apps.order.abstract_models.AbstractShippingEvent(*args, **kwargs)[source]

	An event is something which happens to a group of lines such as
1 item being dispatched.

	
class oscar.apps.order.abstract_models.AbstractShippingEventType(*args, **kwargs)[source]

	A type of shipping/fulfillment event

Eg: ‘Shipped’, ‘Cancelled’, ‘Returned’

	
class oscar.apps.order.abstract_models.PaymentEventQuantity(*args, **kwargs)[source]

	A “through” model linking lines to payment events

	
class oscar.apps.order.abstract_models.ShippingEventQuantity(*args, **kwargs)[source]

	A “through” model linking lines to shipping events.

This exists to track the quantity of a line that is involved in a
particular shipping event.

Order processing

	
class oscar.apps.order.processing.EventHandler(user=None)[source]

	Handle requested order events.

This is an important class: it houses the core logic of your shop’s order
processing pipeline.

	
are_stock_allocations_available(lines, line_quantities)[source]

	Check whether stock records still have enough stock to honour the
requested allocations.

	
calculate_payment_event_subtotal(event_type, lines, line_quantities)[source]

	Calculate the total charge for the passed event type, lines and line
quantities.

This takes into account the previous prices that have been charged for
this event.

Note that shipping is not including in this subtotal. You need to
subclass and extend this method if you want to include shipping costs.

	
cancel_stock_allocations(order, lines, line_quantities)[source]

	Cancel the stock allocations for the passed lines

	
consume_stock_allocations(order, lines, line_quantities)[source]

	Consume the stock allocations for the passed lines

	
handle_order_status_change(order, new_status, note_msg=None)[source]

	Handle a requested order status change

This method is not normally called directly by client code. The main
use-case is when an order is cancelled, which in some ways could be
viewed as a shipping event affecting all lines.

	
handle_payment_event(order, event_type, amount, lines=None, line_quantities=None, **kwargs)[source]

	Handle a payment event for a given order.

These should normally be called as part of handling a shipping event.
It is rare to call to this method directly. It does make sense for
refunds though where the payment event may be unrelated to a particular
shipping event and doesn’t directly correspond to a set of lines.

	
handle_shipping_event(order, event_type, lines, line_quantities, **kwargs)[source]

	Handle a shipping event for a given order.

This is most common entry point to this class - most of your order
processing should be modelled around shipping events. Shipping events
can be used to trigger payment and communication events.

You will generally want to override this method to implement the
specifics of you order processing pipeline.

	
have_lines_passed_shipping_event(order, lines, line_quantities, event_type)[source]

	Test whether the passed lines and quantities have been through the
specified shipping event.

This is useful for validating if certain shipping events are allowed
(ie you can’t return something before it has shipped).

	
validate_shipping_event(order, event_type, lines, line_quantities, **kwargs)[source]

	Test if the requested shipping event is permitted.

If not, raise InvalidShippingEvent

Utils

	
class oscar.apps.order.utils.OrderCreator[source]

	Places the order by writing out the various models

	
create_additional_line_models(order, order_line, basket_line)[source]

	Empty method designed to be overridden.

Some applications require additional information about lines, this
method provides a clean place to create additional models that
relate to a given line.

	
create_discount_model(order, discount)[source]

	Create an order discount model for each offer application attached to
the basket.

	
create_line_attributes(order, order_line, basket_line)[source]

	Creates the batch line attributes.

	
create_line_models(order, basket_line, extra_line_fields=None)[source]

	Create the batch line model.

You can set extra fields by passing a dictionary as the
extra_line_fields value

	
create_line_price_models(order, order_line, basket_line)[source]

	Creates the batch line price models

	
create_order_model(user, basket, shipping_address, shipping_method, shipping_charge, billing_address, total, order_number, status, **extra_order_fields)[source]

	Create an order model.

	
place_order(basket, total, shipping_method, shipping_charge, user=None, shipping_address=None, billing_address=None, order_number=None, status=None, **kwargs)[source]

	Placing an order involves creating all the relevant models based on the
basket and session data.

	
record_voucher_usage(order, voucher, user)[source]

	Updates the models that care about this voucher.

	
update_stock_records(line)[source]

	Update any relevant stock records for this order line

	
class oscar.apps.order.utils.OrderNumberGenerator[source]

	Simple object for generating order numbers.

We need this as the order number is often required for payment
which takes place before the order model has been created.

	
order_number(basket)[source]

	Return an order number for a given basket

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Partner

The partner app mostly provides three abstract models.
oscar.apps.partner.abstract_models.AbstractPartner and
oscar.apps.partner.abstract_models.AbstractStockRecord are essential
parts of Oscar’s catalogue management.

Abstract models

	
class oscar.apps.partner.abstract_models.AbstractPartner(*args, **kwargs)[source]

	A fulfillment partner. An individual or company who can fulfil products.
E.g. for physical goods, somebody with a warehouse and means of delivery.

Creating one or more instances of the Partner model is a required step in
setting up an Oscar deployment. Many Oscar deployments will only have one
fulfillment partner.

	
get_address_for_stockrecord(stockrecord)[source]

	Stock might be coming from different warehouses. Overriding this
function allows selecting the correct PartnerAddress for the record.
That can be useful when determining tax.

	
primary_address

	Returns a partners primary address. Usually that will be the
headquarters or similar.

This is a rudimentary implementation that raises an error if there’s
more than one address. If you actually want to support multiple
addresses, you will likely need to extend PartnerAddress to have some
field or flag to base your decision on.

	
users

	A partner can have users assigned to it. This is used
for access modelling in the permission-based dashboard

	
class oscar.apps.partner.abstract_models.AbstractStockAlert(*args, **kwargs)[source]

	A stock alert. E.g. used to notify users when a product is ‘back in stock’.

	
class oscar.apps.partner.abstract_models.AbstractStockRecord(*args, **kwargs)[source]

	A stock record.

This records information about a product from a fulfilment partner, such as
their SKU, the number they have in stock and price information.

Stockrecords are used by ‘strategies’ to determine availability and pricing
information for the customer.

	
allocate(quantity)[source]

	Record a stock allocation.

This normally happens when a product is bought at checkout. When the
product is actually shipped, then we ‘consume’ the allocation.

	
consume_allocation(quantity)[source]

	Consume a previous allocation

This is used when an item is shipped. We remove the original
allocation and adjust the number in stock accordingly

	
cost_price = None

	Cost price is the price charged by the fulfilment partner. It is not
used (by default) in any price calculations but is often used in
reporting so merchants can report on their profit margin.

	
is_allocation_consumption_possible(quantity)[source]

	Test if a proposed stock consumption is permitted

	
low_stock_threshold = None

	Threshold for low-stock alerts. When stock goes beneath this threshold,
an alert is triggered so warehouse managers can order more.

	
net_stock_level

	The effective number in stock (eg available to buy).

This is correct property to show the customer, not the num_in_stock
field as that doesn’t account for allocations. This can be negative in
some unusual circumstances

	
num_allocated = None

	The amount of stock allocated to orders but not fed back to the master
stock system. A typical stock update process will set the num_in_stock
variable to a new value and reset num_allocated to zero

	
num_in_stock = None

	Number of items in stock

	
partner_sku = None

	The fulfilment partner will often have their own SKU for a product,
which we store here. This will sometimes be the same the product’s UPC
but not always. It should be unique per partner.
See also http://en.wikipedia.org/wiki/Stock-keeping_unit

	
price_retail = None

	Retail price for this item. This is simply the recommended price from
the manufacturer. If this is used, it is for display purposes only.
This prices is the NOT the price charged to the customer.

Strategy classes

	
class oscar.apps.partner.strategy.Base(request=None)[source]

	The base strategy class

Given a product, strategies are responsible for returning a
PurchaseInfo instance which contains:

	The appropriate stockrecord for this customer

	A pricing policy instance

	An availability policy instance

	
fetch_for_line(line, stockrecord=None)[source]

	Given a basket line instance, fetch a PurchaseInfo instance.

This method is provided to allow purchase info to be determined using a
basket line’s attributes. For instance, “bundle” products often use
basket line attributes to store SKUs of contained products. For such
products, we need to look at the availability of each contained product
to determine overall availability.

	
fetch_for_parent(product)[source]

	Given a parent product, fetch a StockInfo instance

	
fetch_for_product(product, stockrecord=None)[source]

	Given a product, return a PurchaseInfo instance.

The PurchaseInfo class is a named tuple with attributes:

	price: a pricing policy object.

	availability: an availability policy object.

	stockrecord: the stockrecord that is being used

If a stockrecord is passed, return the appropriate PurchaseInfo
instance for that product and stockrecord is returned.

	
class oscar.apps.partner.strategy.Default(request=None)[source]

	Default stock/price strategy that uses the first found stockrecord for a
product, ensures that stock is available (unless the product class
indicates that we don’t need to track stock) and charges zero tax.

	
class oscar.apps.partner.strategy.DeferredTax[source]

	Pricing policy mixin for use with the Structured base strategy.
This mixin does not specify the product tax and is suitable to territories
where tax isn’t known until late in the checkout process.

	
class oscar.apps.partner.strategy.FixedRateTax[source]

	Pricing policy mixin for use with the Structured base strategy. This
mixin applies a fixed rate tax to the base price from the product’s
stockrecord. The price_incl_tax is quantized to two decimal places.
Rounding behaviour is Decimal’s default

	
get_exponent(stockrecord)[source]

	This method serves as hook to be able to plug in support for a varying exponent
based on the currency.

TODO: Needs tests.

	
get_rate(product, stockrecord)[source]

	This method serves as hook to be able to plug in support for varying tax rates
based on the product.

TODO: Needs tests.

	
class oscar.apps.partner.strategy.NoTax[source]

	Pricing policy mixin for use with the Structured base strategy.
This mixin specifies zero tax and uses the price_excl_tax from the
stockrecord.

	
class oscar.apps.partner.strategy.PurchaseInfo(price, availability, stockrecord)

	
	
availability

	Alias for field number 1

	
price

	Alias for field number 0

	
stockrecord

	Alias for field number 2

	
class oscar.apps.partner.strategy.Selector[source]

	Responsible for returning the appropriate strategy class for a given
user/session.

This can be called in three ways:

	Passing a request and user. This is for determining
prices/availability for a normal user browsing the site.

	Passing just the user. This is for offline processes that don’t
have a request instance but do know which user to determine prices for.

	Passing nothing. This is for offline processes that don’t
correspond to a specific user. Eg, determining a price to store in
a search index.

	
strategy(request=None, user=None, **kwargs)[source]

	Return an instanticated strategy instance

	
class oscar.apps.partner.strategy.StockRequired[source]

	Availability policy mixin for use with the Structured base strategy.
This mixin ensures that a product can only be bought if it has stock
available (if stock is being tracked).

	
class oscar.apps.partner.strategy.Structured(request=None)[source]

	A strategy class which provides separate, overridable methods for
determining the 3 things that a PurchaseInfo instance requires:

	A stockrecord

	A pricing policy

	An availability policy

	
availability_policy(product, stockrecord)[source]

	Return the appropriate availability policy

	
fetch_for_product(product, stockrecord=None)[source]

	Return the appropriate PurchaseInfo instance.

This method is not intended to be overridden.

	
pricing_policy(product, stockrecord)[source]

	Return the appropriate pricing policy

	
select_children_stockrecords(product)[source]

	Select appropriate stock record for all children of a product

	
select_stockrecord(product)[source]

	Select the appropriate stockrecord

	
class oscar.apps.partner.strategy.UK(request=None)[source]

	Sample strategy for the UK that:

	
	uses the first stockrecord for each product (effectively assuming

	there is only one).

	requires that a product has stock available to be bought

	applies a fixed rate of tax on all products

This is just a sample strategy used for internal development. It is not
recommended to be used in production, especially as the tax rate is
hard-coded.

	
class oscar.apps.partner.strategy.US(request=None)[source]

	Sample strategy for the US.

	uses the first stockrecord for each product (effectively assuming
there is only one).

	requires that a product has stock available to be bought

	doesn’t apply a tax to product prices (normally this will be done
after the shipping address is entered).

This is just a sample one used for internal development. It is not
recommended to be used in production.

	
class oscar.apps.partner.strategy.UseFirstStockRecord[source]

	Stockrecord selection mixin for use with the Structured base strategy.
This mixin picks the first (normally only) stockrecord to fulfil a product.

This is backwards compatible with Oscar<0.6 where only one stockrecord per
product was permitted.

Pricing policies

	
class oscar.apps.partner.prices.Base[source]

	The interface that any pricing policy must support

	
currency = None

	Price currency (3 char code)

	
excl_tax = None

	Price excluding tax

	
exists = False

	Whether any prices exist

	
incl_tax = None

	Price including tax

	
is_tax_known = False

	Whether tax is known

	
retail = None

	Retail price

	
tax = None

	Price tax

	
class oscar.apps.partner.prices.FixedPrice(currency, excl_tax, tax=None)[source]

	This should be used for when the price of a product is known in advance.

It can work for when tax isn’t known (like in the US).

Note that this price class uses the tax-exclusive price for offers, even if
the tax is known. This may not be what you want. Use the
TaxInclusiveFixedPrice class if you want offers to use tax-inclusive
prices.

	
class oscar.apps.partner.prices.TaxInclusiveFixedPrice(currency, excl_tax, tax)[source]

	Specialised version of FixedPrice that must have tax passed. It also
specifies that offers should use the tax-inclusive price (which is the norm
in the UK).

	
class oscar.apps.partner.prices.Unavailable[source]

	This should be used as a pricing policy when a product is unavailable and
no prices are known.

Availability policies

	
class oscar.apps.partner.availability.Available[source]

	For when a product is always available, irrespective of stock level.

This might be appropriate for digital products where stock doesn’t need to
be tracked and the product is always available to buy.

	
class oscar.apps.partner.availability.Base[source]

	Base availability policy.

	
code = ''

	Availability code. This is used for HTML classes

	
dispatch_date = None

	When this item should be dispatched

	
is_available_to_buy

	Test if this product is available to be bought. This is used for
validation when a product is added to a user’s basket.

	
is_purchase_permitted(quantity)[source]

	Test whether a proposed purchase is allowed

Should return a boolean and a reason

	
message = ''

	A description of the availability of a product. This is shown on the
product detail page. Eg “In stock”, “Out of stock” etc

	
short_message

	A shorter version of the availability message, suitable for showing on
browsing pages.

	
class oscar.apps.partner.availability.StockRequired(num_available)[source]

	Allow a product to be bought while there is stock. This policy is
instantiated with a stock number (num_available). It ensures that the
product is only available to buy while there is stock available.

This is suitable for physical products where back orders (eg allowing
purchases when there isn’t stock available) are not permitted.

	
class oscar.apps.partner.availability.Unavailable[source]

	Policy for when a product is unavailable

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Payment

The payment app contains models that capture how orders are paid for. It does
not have any views.

Abstract models

	
class oscar.apps.payment.abstract_models.AbstractBankcard(*args, **kwargs)[source]

	Model representing a user’s bankcard. This is used for two purposes:

	The bankcard form will return an instance of this model that can be
used with payment gateways. In this scenario, the instance will
have additional attributes (start_date, issue_number, ccv) that
payment gateways need but that we don’t save.

	To keep a record of a user’s bankcards and allow them to be
re-used. This is normally done using the ‘partner reference’.

Warning

Some of the fields of this model (name, expiry_date) are considered
“cardholder data” under PCI DSS v2. Hence, if you use this model and
store those fields then the requirements for PCI compliance will be
more stringent.

	
class oscar.apps.payment.abstract_models.AbstractSource(*args, **kwargs)[source]

	A source of payment for an order.

This is normally a credit card which has been pre-authed for the order
amount, but some applications will allow orders to be paid for using
multiple sources such as cheque, credit accounts, gift cards. Each payment
source will have its own entry.

This source object tracks how much money has been authorised, debited and
refunded, which is useful when payment takes place in multiple stages.

	
allocate(amount, reference='', status='')[source]

	Convenience method for ring-fencing money against this source

	
amount_available_for_refund

	Return the amount available to be refunded

	
balance

	Return the balance of this source

	
create_deferred_transaction(txn_type, amount, reference=None, status=None)[source]

	Register the data for a transaction that can’t be created yet due to FK
constraints. This happens at checkout where create an payment source
and a transaction but can’t save them until the order model exists.

	
debit(amount=None, reference='', status='')[source]

	Convenience method for recording debits against this source

	
refund(amount, reference='', status='')[source]

	Convenience method for recording refunds against this source

	
class oscar.apps.payment.abstract_models.AbstractSourceType(*args, **kwargs)[source]

	A type of payment source.

This could be an external partner like PayPal or DataCash,
or an internal source such as a managed account.

	
class oscar.apps.payment.abstract_models.AbstractTransaction(*args, **kwargs)[source]

	A transaction for a particular payment source.

These are similar to the payment events within the order app but model a
slightly different aspect of payment. Crucially, payment sources and
transactions have nothing to do with the lines of the order while payment
events do.

For example:
* A ‘pre-auth’ with a bankcard gateway
* A ‘settle’ with a credit provider (see django-oscar-accounts)

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Promotions

Promotions are small blocks of content that can link through to other parts of this site.
Examples include:

	A banner image shown on at the top of the homepage that links through to a new offer page

	A “pod” image shown in the right-hand sidebar of a page, linking through to newly merchandised
page.

	A biography of an author (featuring an image and a block of HTML) shown at the top of the search
results page when the search query includes the author’s surname.

These are modeled using a base promotion model, which contains image fields, the link
destination, and two “linking” models which link promotions to either a page URL or a particular keyword.

Models

	
class oscar.apps.promotions.models.AbstractProductList(*args, **kwargs)[source]

	Abstract superclass for promotions which are essentially a list
of products.

	
class oscar.apps.promotions.models.AbstractPromotion(*args, **kwargs)[source]

	Abstract base promotion that defines the interface
that subclasses must implement.

	
template_name()[source]

	Returns the template to use to render this promotion.

	
class oscar.apps.promotions.models.AutomaticProductList(id, name, description, link_url, link_text, date_created, method, num_products)[source]

	

	
class oscar.apps.promotions.models.HandPickedProductList(*args, **kwargs)[source]

	A hand-picked product list is a list of manually selected
products.

	
class oscar.apps.promotions.models.Image(*args, **kwargs)[source]

	An image promotion is simply a named image which has an optional
link to another part of the site (or another site).

This can be used to model both banners and pods.

	
class oscar.apps.promotions.models.KeywordPromotion(*args, **kwargs)[source]

	A promotion linked to a specific keyword.

This can be used on a search results page to show promotions
linked to a particular keyword.

	
class oscar.apps.promotions.models.MultiImage(*args, **kwargs)[source]

	A multi-image promotion is simply a collection of image promotions
that are rendered in a specific way. This models things like
rotating banners.

	
class oscar.apps.promotions.models.OrderedProduct(id, list, product, display_order)[source]

	

	
class oscar.apps.promotions.models.OrderedProductList(id, name, description, link_url, link_text, date_created, handpickedproductlist_ptr, tabbed_block, display_order)[source]

	

	
class oscar.apps.promotions.models.PagePromotion(*args, **kwargs)[source]

	A promotion embedded on a particular page.

	
class oscar.apps.promotions.models.RawHTML(*args, **kwargs)[source]

	Simple promotion - just raw HTML

	
class oscar.apps.promotions.models.SingleProduct(id, name, product, description, date_created)[source]

	

	
class oscar.apps.promotions.models.TabbedBlock(id, name, date_created)[source]

	

Views

	
class oscar.apps.promotions.views.HomeView(**kwargs)[source]

	This is the home page and will typically live at /

	
class oscar.apps.promotions.views.RecordClickView(**kwargs)[source]

	Simple RedirectView that helps recording clicks made on promotions

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Search

Oscar provides a search view that extends Haystack’s FacetedSearchView to
provide better support for faceting.

	Facets are configured using the OSCAR_SEARCH_FACETS setting, which is
used to configure the SearchQuerySet instance within the search
application class.

	A simple search form is injected into each template context using a context
processor oscar.apps.search.context_processors.search_form.

Views

	
class oscar.apps.search.views.FacetedSearchView(*args, **kwargs)[source]

	A modified version of Haystack’s FacetedSearchView

Note that facets are configured when the SearchQuerySet is initialised.
This takes place in the search application class.

See https://django-haystack.readthedocs.io/en/v2.1.0/views_and_forms.html#facetedsearchform # noqa

Forms

	
class oscar.apps.search.forms.BrowseCategoryForm(*args, **kwargs)[source]

	Variant of SearchForm that returns all products (instead of none) if no
query is specified.

	
class oscar.apps.search.forms.SearchForm(*args, **kwargs)[source]

	In Haystack, the search form is used for interpreting
and sub-filtering the SQS.

	
selected_multi_facets

	Validate and return the selected facets

	
class oscar.apps.search.forms.SearchInput(attrs=None)[source]

	Defining a search type widget

This is an HTML5 thing and works nicely with Safari, other browsers default
back to using the default “text” type

Utils

	
oscar.apps.search.facets.base_sqs()[source]

	Return the base SearchQuerySet for Haystack searches.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Shipping

See How to configure shipping for details on how shipping works
in Oscar.

Methods

	
class oscar.apps.shipping.methods.Base[source]

	Shipping method interface class

This is the superclass to the classes in methods.py, and a de-facto
superclass to the classes in models.py. This allows using all
shipping methods interchangeably (aka polymorphism).

The interface is all properties.

	
calculate(basket)[source]

	Return the shipping charge for the given basket

	
code = '__default__'

	Used to store this method in the session. Each shipping method should

	
description = ''

	A more detailed description of the shipping method shown to the customer

	
discount(basket)[source]

	Return the discount on the standard shipping charge

	
is_discounted = False

	Whether the charge includes a discount

	
name = 'Default shipping'

	The name of the shipping method, shown to the customer during checkout

	
class oscar.apps.shipping.methods.FixedPrice(charge_excl_tax=None, charge_incl_tax=None)[source]

	This shipping method indicates that shipping costs a fixed price and
requires no special calculation.

	
class oscar.apps.shipping.methods.Free[source]

	This shipping method specifies that shipping is free.

	
class oscar.apps.shipping.methods.NoShippingRequired[source]

	This is a special shipping method that indicates that no shipping is
actually required (eg for digital goods).

	
class oscar.apps.shipping.methods.OfferDiscount(method, offer)[source]

	Wrapper class that applies a discount to an existing shipping
method’s charges.

	
class oscar.apps.shipping.methods.TaxExclusiveOfferDiscount(method, offer)[source]

	Wrapper class which extends OfferDiscount to be exclusive of tax.

	
class oscar.apps.shipping.methods.TaxInclusiveOfferDiscount(method, offer)[source]

	Wrapper class which extends OfferDiscount to be inclusive of tax.

	
calculate_excl_tax(base_charge, incl_tax)[source]

	Return the charge excluding tax (but including discount).

Models

	
class oscar.apps.shipping.models.OrderAndItemCharges(id, code, name, description, price_per_order, price_per_item, free_shipping_threshold)[source]

	

	
class oscar.apps.shipping.models.WeightBased(id, code, name, description, default_weight)[source]

	

	
class oscar.apps.shipping.models.WeightBand(id, method, upper_limit, charge)[source]

	

Repository

	
class oscar.apps.shipping.repository.Repository[source]

	Repository class responsible for returning ShippingMethod
objects for a given user, basket etc

	
apply_shipping_offer(basket, method, offer)[source]

	Wrap a shipping method with an offer discount wrapper (as long as the
shipping charge is non-zero).

	
apply_shipping_offers(basket, methods)[source]

	Apply shipping offers to the passed set of methods

	
get_available_shipping_methods(basket, shipping_addr=None, **kwargs)[source]

	Return a list of all applicable shipping method instances for a given
basket, address etc. This method is intended to be overridden.

	
get_default_shipping_method(basket, shipping_addr=None, **kwargs)[source]

	Return a ‘default’ shipping method to show on the basket page to give
the customer an indication of what their order will cost.

	
get_shipping_methods(basket, shipping_addr=None, **kwargs)[source]

	Return a list of all applicable shipping method instances for a given
basket, address etc.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Voucher

Oscar ships with broad support for vouchers, which are handled by this app.

Abstract models

	
class oscar.apps.voucher.abstract_models.AbstractVoucher(*args, **kwargs)[source]

	A voucher. This is simply a link to a collection of offers.

Note that there are three possible “usage” modes:
(a) Single use
(b) Multi-use
(c) Once per customer

Oscar enforces those modes by creating VoucherApplication
instances when a voucher is used for an order.

	
benefit

	Returns the first offer’s benefit instance.

A voucher is commonly only linked to one offer. In that case,
this helper can be used for convenience.

	
is_active(test_datetime=None)[source]

	Test whether this voucher is currently active.

	
is_available_to_user(user=None)[source]

	Test whether this voucher is available to the passed user.

Returns a tuple of a boolean for whether it is successful, and a
availability message.

	
is_expired()[source]

	Test whether this voucher has passed its expiration date

	
record_discount(discount)[source]

	Record a discount that this offer has given

	
record_usage(order, user)[source]

	Records a usage of this voucher in an order.

	
class oscar.apps.voucher.abstract_models.AbstractVoucherApplication(*args, **kwargs)[source]

	For tracking how often a voucher has been used in an order.

This is used to enforce the voucher usage mode in
Voucher.is_available_to_user, and created in Voucher.record_usage.

Views

None.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Oscar Core Apps explained

Wishlists

The wishlists app allows signed-in users to create one or more wishlists. A
user can add a product to their wishlist from the product detail page and manage
their lists in the account section.

The wishlists app is wired up as a subapp of Customer.

Note

Please note that currently only private wishlists are supported. The hooks
and fields for public (as in general public) and shared (as in access via an
obfuscated link) are there, but the UI hasn’t been designed yet.

Abstract models

	
class oscar.apps.wishlists.abstract_models.AbstractLine(*args, **kwargs)[source]

	One entry in a wish list. Similar to order lines or basket lines.

	
title = None

	Store the title in case product gets deleted

	
class oscar.apps.wishlists.abstract_models.AbstractWishList(*args, **kwargs)[source]

	Represents a user’s wish lists of products.

A user can have multiple wish lists, move products between them, etc.

	
add(product)[source]

	Add a product to this wishlist

	
key = None

	This key acts as primary key and is used instead of an int to make it
harder to guess

	
classmethod random_key(length=6)[source]

	Get a unique random generated key based on SHA-1 and owner

Views

	
class oscar.apps.customer.wishlists.views.LineMixin[source]

	Handles fetching both a wish list and a product
Views using this mixin must be passed two keyword arguments:

	key: The key of a wish list

	line_pk: The primary key of the wish list line

or

	product_pk: The primary key of the product

	
class oscar.apps.customer.wishlists.views.WishListAddProduct(**kwargs)[source]

	Adds a product to a wish list.

	If the user doesn’t already have a wishlist then it will be created for
them.

	If the product is already in the wish list, its quantity is increased.

	
class oscar.apps.customer.wishlists.views.WishListCreateView(**kwargs)[source]

	Create a new wishlist

If a product ID is assed as a kwargs, then this product will be added to
the wishlist.

	
model

	alias of WishList

	
class oscar.apps.customer.wishlists.views.WishListCreateWithProductView(**kwargs)[source]

	Create a wish list and immediately add a product to it

	
class oscar.apps.customer.wishlists.views.WishListDetailView(**kwargs)[source]

	This view acts as a DetailView for a wish list and allows updating the
quantities of products.

It is implemented as FormView because it’s easier to adapt a FormView to
display a product then adapt a DetailView to handle form validation.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Recipes

Recipes are simple guides to solving common problems that occur when creating
e-commerce projects.

Customisation

	How to customise models

	How to customise templates

	How to disable an app’s URLs

	How to add views or change URLs or permissions

	How to customise an existing view

	How to configure the dashboard navigation

	Customising Oscar’s communications

Customers

	How to use a custom user model

Catalogue

	How to create categories

	Importing a catalogue

Pricing, stock and availability

	How to enforce stock rules

	How to configure stock messaging

Payment

	How to integrate payment

	How to handle US taxes

Shipping

	How to configure shipping

Order processing

	How to set up order processing

Offers

	How to create a custom range

	How to create a custom offer condition

	How to create a custom benefit

Appearance

	How to change Oscar’s appearance

Deployment and setup

	How to setup Solr with Oscar

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to customise models

This How-to describes how to replace Oscar models with your own. This allows you
to add fields and custom methods. It builds upon the steps described in
Customising Oscar. Please read it first and ensure that you’ve:

	Created a Python module with the the same app label

	Added it as Django app to INSTALLED_APPS

	Added a models.py and admin.py

Example

Suppose you want to add a video_url field to the core product model. This means
that you want your application to use a subclass of
oscar.apps.catalogue.abstract_models.AbstractProduct which has an additional field.

The first step is to create a local version of the “catalogue” app. At a minimum, this
involves creating catalogue/models.py within your project and changing INSTALLED_APPS
to point to your local version rather than Oscar’s.

Next, you can modify the Product model through subclassing:

yourproject/catalogue/models.py

from django.db import models

from oscar.apps.catalogue.abstract_models import AbstractProduct

class Product(AbstractProduct):
 video_url = models.URLField()

from oscar.apps.catalogue.models import *

Make sure to import the remaining Oscar models at the bottom of your file.

Tip

Using from ... import * is strange isn’t it? Yes it is, but it needs to
be done at the bottom of the module due to the way Django registers models.
The order that model classes are imported makes a difference, with only the
first one for a given class name being registered.

The last thing you need to do now is make Django update the database schema and
create a new column in the product table. We recommend using South migrations
for this (internally Oscar already does this) so all you need to do is create a
new schema migration.

It is possible to simply create a new catalogue migration (using ./manage.py
schemamigration catalogue --auto) but this isn’t recommended as any
dependencies between migrations will need to be applied manually (by adding a
depends_on attribute to the migration class).

The recommended way to handle migrations is to copy the migrations directory
from oscar/apps/catalogue into your new catalogue app. Then you can
create a new (additional) schemamigration using the schemamigration
management command:

./manage.py schemamigration catalogue --auto

which will pick up any customisations to the product model.

To apply the migration you just created, all you have to do is run
./manage.py migrate catalogue and the new column is added to the product
table in the database.

Customising Products

You should inherit from AbstractProduct as above to alter behaviour for all
your products. Further subclassing is not recommended, because using methods
and attributes of concrete subclasses of Product are not available unless
explicitly casted to that class.
To model different classes of products, use ProductClass and
ProductAttribute instead.

Model customisations are not picked up

It’s a common problem that you’re trying to customise one of Oscar’s models,
but your new fields don’t seem to get picked up. That is usually caused by
Oscar’s models being imported before your customised ones. Django’s model
registration disregards all further model declarations.

In your overriding models.py, ensure that you import Oscar’s models after
your custom ones have been defined. If that doesn’t help, you have an import
from oscar.apps.*.models somewhere that is being executed before your models
are parsed. One trick for finding that import: put assert False in the relevant
Oscar’s models.py, and the stack trace will show you the importing module.

If other modules need to import your models, then import from your local module,
not from Oscar directly.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to customise templates

Assuming you want to use Oscar’s templates in your project, there are two
options. You don’t have to though - you could write all your own templates if
you like. If you do this, it’s probably best to start with a straight copy of
all of Oscar’s templates so you know all the files that you need to
re-implement.

Anyway - here are the two options for customising.

Method 1 - Forking

One option is always just to fork the template into your local project so that
it comes first in the include path.

Say you want to customise base.html. First you need a project-specific
templates directory that comes first in the include path. You can set this up
as so:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
 'django.template.loaders.eggs.Loader',
)

import os
location = lambda x: os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', x)
TEMPLATE_DIRS = (
 location('templates'),
)

Next copy Oscar’s base.html into your templates directory and customise it
to suit your needs.

The downsides of this method are that it involves duplicating the file from
Oscar in a way that breaks the link with upstream. Hence, changes to Oscar’s
base.html won’t be picked up by your project as you will have your own
version.

Method 2 - Subclass parent but use same template path

There is a trick you can perform whereby Oscar’s templates can be accessed via
two paths. This is outlined in the Django wiki [https://code.djangoproject.com/wiki/ExtendingTemplates].

This basically means you can have a base.html in your local templates folder
that extends Oscar’s base.html but only customises the blocks that it needs
to.

Oscar provides a helper variable to make this easy. First, set up your
template configuration as so:

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
)

import os
location = lambda x: os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', x)
from oscar import OSCAR_MAIN_TEMPLATE_DIR
TEMPLATE_DIRS = (
 location('templates'),
 OSCAR_MAIN_TEMPLATE_DIR,
)

The OSCAR_MAIN_TEMPLATE_DIR points to the directory above Oscar’s normal
templates directory. This means that path/to/oscar/template.html can also
be reached via templates/path/to/oscar/template.html.

Hence to customise base.html, you can have an implementation like:

base.html
{% extends 'oscar/base.html' %}

...

No real downsides to this one other than getting your front-end people to
understand it.

Overriding individual products partials

Apart from overriding catalogue/partials/product.html to change the looks
for all products, you can also override it for individual products by placing
templates in catalogue/partials/product/upc-%s.html or
catalogue/partials/product/class-%s.html, where %s is the product’s UPC
or class’s slug, respectively.

Example: Changing the analytics package

Suppose you want to use an alternative analytics package to Google analytics.
We can achieve this by overriding templates where the analytics urchin is loaded
and called.

The main template base.html has a ‘tracking’ block which includes a Google
Analytics partial. We want to replace this with our own code. To do this,
create a new base.html in your project that subclasses the original:

yourproject/templates/base.html
{% extends 'oscar/base.html' %}

{% block tracking %}
<script type="javascript">
 ... [custom analytics here] ...
</script>
{% endblock %}

Doing this will mean all templates that inherit from base.html will include
your custom tracking.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to disable an app’s URLs

Suppose you don’t want to use Oscar’s dashboard but use your own. The way to do
this is to modify the URLs config to exclude the URLs from the app in question.

You need to use your own root ‘application’ instance which gives you control
over the URLs structure. So your root urls.py should have:

urls.py
from myproject.app import application

urlpatterns = [
 ...
 url(r'', include(application.urls)),
]

where application is a subclass of oscar.app.Shop which overrides the
link to the dashboard app:

myproject/app.py
from oscar.app import Shop
from oscar.core.application import Application

class MyShop(Shop):

 # Override the core dashboard_app instance to use a blank application
 # instance. This means no dashboard URLs are included.
 dashboard_app = Application()

The only remaining task is to ensure your templates don’t reference any
dashboard URLs.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to add views or change URLs or permissions

Oscar has many views and associated URLs. Often you want to customise these
URLs for your domain, or add additional views to an app.

This how-to describes how to do just that.
It builds upon the steps described in Customising Oscar. Please
read it first and ensure that you’ve:

	Created a Python module with the the same label

	Added it as Django app to INSTALLED_APPS

	Added a models.py and admin.py

The application class

Each Oscar app comes with an application instance which inherits from
oscar.core.application.Application. They’re mainly used to gather
URLs (with the correct permissions) for each Oscar app. This structure makes
Oscar apps more modular as each app is responsible for its own URLs. And as
it is a class, it can be overridden like any other Oscar class; hence making
it straightforward to change URLs or add new views.
Each app instance exposes a urls property, which is used to access the
list of URLs of an app.

The application tree

Oscar’s app instances are organised in a tree structure. The root application
illustrates this nicely:

oscar/app.py
class Shop(Application):
 name = None

 catalogue_app = get_class('catalogue.app', 'application')
 basket_app = get_class('basket.app', 'application')
 # ...

 def get_urls(self):
 urls = [
 url(r'^catalogue/', include(self.catalogue_app.urls)),
 url(r'^basket/', include(self.basket_app.urls)),
 # ...
]

The root app pulls in the URLs from its children. That means to add
all Oscar URLs to your Django project, you only need to include the urls
property from the root app:

urls.py
from oscar.app import application

urlpatterns = [
 # Your other URLs
 url(r'', include(application.urls)),
]

Changing sub app

Sub-apps such as the catalogue app are loaded dynamically, just as most
other classes in Oscar:

oscar/app.py
class Shop(Application):
 name = None

 catalogue_app = get_class('catalogue.app', 'application')
 customer_app = get_class('customer.app', 'application')
 # ...

That means you just need to create another
application instance. It will usually inherit from Oscar’s version. Say
you’d want to add another view to the promotions app. You only need to
create a class called PromotionsApplication (and usually inherit from
Oscar’s version) and add your view:

yourproject/promotions/app.py

from oscar.apps.promotions.app import PromotionsApplication as CorePromotionsApplication
from .views import MyExtraView

class PromotionsApplication(CorePromotionsApplication):
 extra_view = MyExtraView

application = PromotionsApplication()

Changing the root app

If you want to e.g. change the URL for the catalogue app from /catalogue
to /catalog, you need to use a custom root app instance
instead of Oscar’s default instance. Hence, create a subclass of Oscar’s main
Application class and override the get_urls method:

myproject/app.py
from oscar import app

class MyShop(app.Shop):
 # Override get_urls method
 def get_urls(self):
 urlpatterns = [
 url(r'^catalog/', include(self.catalogue_app.urls)),
 # all the remaining URLs, removed for simplicity
 # ...
]
 return urlpatterns

application = MyShop()

As the root app is hardcoded in your project’s urls.py, you need to modify
it to use your new application instance instead of Oscar’s default:

urls.py
from myproject.app import application

urlpatterns = [
 # Your other URLs
 url(r'', include(application.urls)),
]

All URLs containing catalogue previously are now displayed as catalog.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to customise an existing view

Oscar has many views. This How-to describes how to customise one of them for
your project. It builds upon the steps described in
Customising Oscar. Please read it first and ensure that you’ve:

	Created a Python module with the the same label

	Added it as Django app to INSTALLED_APPS

	Added a models.py and admin.py

Example

Create a new homepage view class in myproject.promotions.views - you can
subclass Oscar’s view if you like:

from oscar.apps.promotions.views import HomeView as CoreHomeView

class HomeView(CoreHomeView):
 template_name = 'promotions/new-homeview.html'

In this example, we set a new template location but it’s possible to customise
the view in any imaginable way.
As long as the view has the same name as the view you’re replacing, and is in
an app with the same name, it will get picked up automatically by Oscar.

If you want to change the template, create the alternative template
new-homeview.html. This could either be
in a project-level templates folder that is added to your TEMPLATE_DIRS
settings, or a app-level templates folder within your ‘promotions’ app. For
now, put something simple in there, such as:

<html>
 <body>
 <p>You have successfully overridden the homepage template.</p>
 </body>
</html>

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to configure the dashboard navigation

Oscar comes with a pre-configured dashboard navigation that gives you access
to its individual pages. If you have your own dashboard app that you would like
to show up in the dashboard navigation or want to arrange it differently,
that’s very easy. All you have to do is override the
OSCAR_DASHBOARD_NAVIGATION setting in you settings file.

Add your own dashboard menu item

Assuming that you just want to append a new menu item to the dashboard, all
you have to do is open up your settings file and somewhere below the import
of the Oscar default settings:

from oscar.defaults import *

add your custom dashboard configuration. Let’s assume you would like to add
a new item “Store Manager” with a submenu item “Stores”. The way you would
do that is:

OSCAR_DASHBOARD_NAVIGATION += [
 {
 'label': _('Store manager'),
 'children': [
 {
 'label': _('Stores'),
 'url_name': 'your-reverse-url-lookup-name',
 },
]
 },
]

That’s it. You should now have Store manager > Stores in you dashboard
menu.

Add an icon to your dashboard menu

Although you have your menu in the dashboard now, it doesn’t look as
nice as the other menu items that have icons displayed next to them. So
you probably want to add an icon to your heading.

Oscar uses Font Awesome [http://fortawesome.github.com/Font-Awesome/] for its icons which makes it very simple to add
an icon to your dashboard menu. All you need to do is find the right icon
for your menu item. Check out the icon list [http://fortawesome.github.com/Font-Awesome/#icons-web-app] to find one.

Now that you have decided for an icon to use, all you need to do add the
icon class for the icon to your menu heading:

OSCAR_DASHBOARD_NAVIGATION += [
 {
 'label': _('Store manager'),
 'icon': 'icon-map-marker',
 'children': [
 {
 'label': _('Stores'),
 'url_name': 'your-reverse-url-lookup-name',
 },
]
 },
]

You are not restricted to use Font Awesome [http://fortawesome.github.com/Font-Awesome/] icons for you menu heading. Other
web fonts will work as well as long as they support the same markup:

<i class="icon-map-marker"></i>

The class is of the <i> is defined by the icon setting in the
configuration of your dashboard navigation above.

Controlling visibility per user

By setting 'access_fn' for a node, you can specify a function that will
get called with the current user. The node will only be displayed if that
function returns True.
If no 'access_fn' is specified, OSCAR_DASHBOARD_DEFAULT_ACCESS_FUNCTION
is used.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

Customising Oscar’s communications

Oscar provides the ability to customise the emails sent out to customers.

There are two main ways this can be achieved, either in code (via template
files) or in the database (via Dashboard > Content > Email templates).

Communications API

First, it’s important to understand a little about how the Communications API
works.

Oscar has a model called a CommunicationEventType. When preparing an email
to send out to a customer, the client code will do something like this:

commtype_code = 'SOME_EVENT'
context = {'customer': customer, 'something_else': 'Some more context.'}

try:
 event_type = CommunicationEventType.objects.get(code=commtype_code)
except CommunicationEventType.DoesNotExist:
 messages = CommunicationEventType.objects.get_and_render(commtype_code, ctx)
else:
 messages = event_type.get_messages(ctx)

What’s happening here is:

	The code defines an arbitrary communication type code to be treated as the
reference for this particular type of communication. For example, the
communication type code used when sending an order email confirmation is
'ORDER_PLACED'.

	The database is checked for a CommunicationEventType with this
communication type code. If it does, it renders the messages using that model
instance, passing in some context.

	Otherwise, it uses the get_and_render() method to render the messages,
which uses templates instead.

So, your first step when customising the emails sent out is to work out what
communication type code is being used to send out the email. The easiest way to
work this out is usually to look through the email templates in
templates/oscar/customer/emails: if the email template is called, say,
commtype_order_placed_body.html, then the code will be 'ORDER_PLACED'.
See ‘Customising through code’ below.

Customising through code

Customising emails through code uses Django’s standard template inheritance.

The first step is to locate the template for the particular email, which is
usually in templates/oscar/customer/emails. Then, in a template directory that
takes precedence over the oscar templates directory, copy the file and customise
it. For example, to override the
templates/oscar/customer/emails/commtype_order_placed_body.html template,
create the file customer/emails/commtype_order_placed_body.html in your
template directory.

Note that usually emails have three template files associated with them: the
email subject line (commtype_CODE_subject.txt), the html version
(commtype_CODE_body.html) and the text version (commtype_CODE_body.txt).
Usually you will want to make sure you override BOTH the html and the text
version.

Customising through code will not work if there is a template defined in the
database instead (see below).

Customising through the database

Oscar provides a dashboard interface to allow admins to customise the emails.

To enable this for a particular communication event type, log in to the admin
site and create a new CommunicationEventType. The code you use is the
important thing: it needs to match the communication event code used when
rendering the messages. For example, to override the order confirmation email,
you need to create a CommunicationEventType with a code 'ORDER_PLACED'.

Once you have created the CommunicationEventType, you can edit it using the
(much better) dashboard interface at Dashboard > Content > Email templates.

If you have an email template defined in the database it will override any
template files.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to use a custom user model

If you are using Django 1.5 or later, then you can specify a custom user model
in your settings. Oscar will dynamically adjust the profile summary view and
profile editing form to use the fields from your custom model.

Before Django 1.5, the recommended technique for adding fields to users was to
use a one-to-one “profile” model specified in the AUTH_PROFILE_MODULE. As
of Django 1.5, this setting is deprecated and will be removed [https://docs.djangoproject.com/en/1.5/internals/deprecation/#id4] in Django 1.7.
Nevertheless, Oscar continues to support this setting and will add relevant
fields to the profile form. Hence profiles can be used in combination with
custom user models. That doesn’t mean it’s a good idea.

Restrictions

Oscar does have some requirements on what fields a user model has. For
instance, the auth backend requires a user to have an ‘email’ and ‘password’
field.

Oscar 0.6 ships with its own abstract user model that supports the minimum
fields and methods required for Oscar to work correctly. New Oscar projects
are encouraged to subclass this User model.

Migrations

It has previously been suggested to set db_table of the model to
auth_user to avoid the migrations from breaking. This issue has been fixed
and migrations are now using AUTH_USER_MODEL and AUTH_USER_MODEL_NAME
which will use db_table name of the user model provided by
get_user_model().

This works in the instances where you are using the default auth.User model
or when you use a custom user model from the start. Switching over from
auth.User to a custom model after having applied previous migration of
Oscar will most likely require renaming the auth_user table to the new user
table in a manual schemamigration.

Example

If you want to use oscar.apps.customer.abstract_model.AbstractUser
which has email as an index, and want to customize some of the methods on
User model, say, get_full_name for Asian names, a simple approach is
to create your own user module:

file: your-project/apps/user/models.py
from django.db import models

from oscar.apps.customer.abstract_models import AbstractUser

class User(AbstractUser):

 def get_full_name(self):
 full_name = '%s %s' % (self.last_name.upper(), self.first_name)
 return full_name.strip()

Then adding this user app to the INSTALLED_APPS list. Beside that we
need to tell django to use our customized user model instead of the
default one as the authentication model [1]:

use our own user model
AUTH_USER_MODEL = "user.User"

After the migration, a database table called user_user will be created based
on the schema defined inside of
oscar.apps.customer.abstract_models.AbstractUser.

	[1]	https://docs.djangoproject.com/en/1.6/ref/settings/#auth-user-model

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to create categories

The simplest way is to use a string which represents the breadcrumbs:

from oscar.apps.catalogue.categories import create_from_breadcrumbs

categories = (
 'Food > Cheese',
 'Food > Meat',
 'Clothes > Man > Jackets',
 'Clothes > Woman > Skirts',
)
for breadcrumbs in categories:
 create_from_breadcrumbs(breadcrumbs)

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

Importing a catalogue

Warning

Handling imports works in Oscar, but the code quality of the importer is
low as it is only used to populate the sandbox site, and not meant for
general usage. So proceed at your own risk!

Importing a catalogue is pretty straightforward, and can be done in two easy
steps:

	Reading the catalogue CSV file, line by line, using UnicodeCSVReader.
oscar.core.compat.UnicodeCSVReader is a Unicode compatible wrapper for
CSV reader and writer that abstracts away differences between Python 2 and 3.

	Using the info of each line, start by creating a Product object using the
standard Django ORM, set the product attributes, save it, and finally set its
ProductCategory, Partner, and StockRecord.

Example

An example of that is the CatalogueImporter used to import catalogues for
the sandbox site. The class is available under
oscar.apps.partner.importers.

Let’s take a closer look at CatalogueImporter:

class CatalogueImporter(object):
 def __init__(self, logger):
 self.logger = logger

 @atomic
 def _import(self, file_path=None):

 def _import_row(self, row_number, row, stats):

The two steps procedure we talked about are obvious in this example, and are
implemented in _import and _import_row functions, respectively.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to enforce stock rules

You can enforce stock validation rules using signals. You just need to register a listener to
the BasketLine pre_save signal that checks the line is valid. For example:

@receiver(pre_save, sender=Line)
def handle_line_save(sender, **kwargs):
 if 'instance' in kwargs:
 quantity = int(kwargs['instance'].quantity)
 if quantity > 4:
 raise InvalidBasketLineError("You are only allowed to purchase a maximum of 4 of these")

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to configure stock messaging

Stock messaging is controlled by an
availability policy
which is loaded by the strategy class.

To set custom availability messaging, use your own strategy class to return the
appropriate availability policy. It’s possible to return different availability
policies depending on the user, request and product in question.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to integrate payment

Oscar is designed to be very flexible around payment. It supports paying for an
order with multiple payment sources and settling these sources at different
times.

Models

The payment app provides several models to track payments:

	SourceType - This is the type of payment source used (eg PayPal, DataCash). As part of setting up
a new Oscar site you would create a SourceType for each of the payment
gateways you are using.

	Source - A source of payment for a single order. This tracks how an order
was paid for. The source object distinguishes between allocations, debits and
refunds to allow for two-phase payment model. When an order is paid for by
multiple methods, you create multiple sources for the order.

	Transaction - A transaction against a source. These models provide better
audit for all the individual transactions associated with an order.

Example

Consider a simple situation where all orders are paid for by PayPal using their
‘SALE’ mode where the money is settled immediately (one-phase payment model).
The project would have a ‘PayPal’ SourceType and, for each order, create a new
Source instance where the amount_debited would be the order total. A
Transaction model with txn_type=Transaction.DEBIT would normally also be
created (although this is optional).

This situation is implemented within the sandbox site for the
django-oscar-paypal [https://github.com/django-oscar/django-oscar-paypal/tree/master/sandbox] extension. Please use that as a reference.

See also the sandbox for django-oscar-datacash [https://github.com/django-oscar/django-oscar-datacash/tree/master/sandbox] which follows a similar pattern.

Integration into checkout

By default, Oscar’s checkout does not provide any payment integration as it is
domain-specific. However, the core checkout classes provide methods for
communicating with payment gateways and creating the appropriate payment models.

Payment logic is normally implemented by using a customised version of
PaymentDetailsView, where the handle_payment method is overridden. This
method will be given the order number and order total plus any custom keyword
arguments initially passed to submit (as payment_kwargs). If payment is
successful, then nothing needs to be returned. However, Oscar defines a few
common exceptions which can occur:

	oscar.apps.payment.exceptions.RedirectRequired For payment integrations
that require redirecting the user to a 3rd-party site. This exception class
has a url attribute that needs to be set.

	oscar.apps.payment.exceptions.UnableToTakePayment For anticipated payment
problems such as invalid bankcard number, not enough funds in account - that kind
of thing.

	oscar.apps.payment.exceptions.UserCancelled During many payment flows,
the user is able to cancel the process. This should often be treated
differently from a payment error, e.g. it might not be appropriate to offer
to retry the payment.

	oscar.apps.payment.exceptions.PaymentError For unanticipated payment
errors such as the payment gateway not responding or being badly configured.

When payment has completed, there’s a few things to do:

	Create the appropriate oscar.apps.payment.models.Source instance and pass
it to add_payment_source. The instance is passed unsaved as it requires a
valid order instance to foreign key to. Once the order is placed (and an
order instance is created), the payment source instances will be saved.

	Record a ‘payment event’ so your application can track which lines have been
paid for. The add_payment_event method assumes all lines are paid for by
the passed event type, as this is the normal situation when placing an order.
Note that payment events don’t distinguish between different sources.

For example:

from oscar.apps.checkout import views
from oscar.apps.payment import models

Subclass the core Oscar view so we can customise
class PaymentDetailsView(views.PaymentDetailsView):

 def handle_payment(self, order_number, total, **kwargs):
 # Talk to payment gateway. If unsuccessful/error, raise a
 # PaymentError exception which we allow to percolate up to be caught
 # and handled by the core PaymentDetailsView.
 reference = gateway.pre_auth(order_number, total.incl_tax, kwargs['bankcard'])

 # Payment successful! Record payment source
 source_type, __ = models.SourceType.objects.get_or_create(
 name="SomeGateway")
 source = models.Source(
 source_type=source_type,
 amount_allocated=total.incl_tax,
 reference=reference)
 self.add_payment_source(source)

 # Record payment event
 self.add_payment_event('pre-auth', total.incl_tax)

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to handle US taxes

When trading in the US, taxes aren’t known until the customer’s shipping
address has been entered. This scenario requires two changes from core Oscar.

Ensure your site strategy returns prices without taxes applied

First, the site strategy should return all prices without tax when the customer
is based in the US. Oscar provides a US
strategy class that uses the DeferredTax
mixin to indicate that prices don’t include taxes.

See the documentation on strategies
for further guidance on how to replace strategies.

Adjust checkout views to apply taxes once they are known

Second, the CheckoutSessionMixin
should be overridden within your project to apply taxes
to the submission.

from oscar.apps.checkout import session

from . import tax

class CheckoutSessionMixin(session.CheckoutSessionMixin):

 def build_submission(self, **kwargs):
 submission = super(CheckoutSessionMixin, self).build_submission(
 **kwargs)

 if submission['shipping_address'] and submission['shipping_method']:
 tax.apply_to(submission)

 # Recalculate order total to ensure we have a tax-inclusive total
 submission['order_total'] = self.get_order_totals(
 submission['basket'],
 submission['shipping_charge'])

 return submission

An example implementation of the tax.py module is:

from decimal import Decimal as D

def apply_to(submission):
 # Assume 7% sales tax on sales to New Jersey You could instead use an
 # external service like Avalara to look up the appropriates taxes.
 STATE_TAX_RATES = {
 'NJ': D('0.07')
 }
 shipping_address = submission['shipping_address']
 rate = STATE_TAX_RATES.get(
 shipping_address.state, D('0.00'))
 for line in submission['basket'].all_lines():
 line_tax = calculate_tax(
 line.line_price_excl_tax_incl_discounts, rate)
 unit_tax = (line_tax / line.quantity).quantize(D('0.01'))
 line.purchase_info.price.tax = unit_tax

 # Note, we change the submission in place - we don't need to
 # return anything from this function
 shipping_charge = submission['shipping_charge']
 if shipping_charge is not None:
 shipping_charge.tax = calculate_tax(
 shipping_charge.excl_tax, rate)

def calculate_tax(price, rate):
 tax = price * rate
 return tax.quantize(D('0.01'))

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to configure shipping

Shipping can be very complicated. Depending on the domain, a wide variety of
shipping scenarios are found in the wild. For instance, calculation of
shipping costs can depend on:

	Shipping method (e.g., standard, courier)

	Shipping address

	Time of day of order (e.g., if requesting next-day delivery)

	Weight of items in basket

	Customer type (e.g., business accounts get discounted shipping rates)

	Offers and vouchers that give free or discounted shipping

Further complications can arise such as:

	Only making certain shipping methods available to certain customers

	Tax is only applicable in certain situations

Oscar can handle all of these shipping scenarios.

Shipping in Oscar

Configuring shipping charges requires overriding Oscar’s core ‘shipping’ app
and providing your own Repository class (see Customising Oscar) that
returns your chosen shipping method instances.

The primary responsibility of the
Repository class is to provide the available shipping methods for a
particular scenario. This is done via the
get_shipping_methods() method,
which returns the shipping methods available to the customer.

This method is called in several places:

	To look up a “default” shipping method so that sample shipping charges can be
shown on the basket detail page.

	To list the available shipping methods on the checkout shipping method page.

	To check the selected shipping method is still available when an order is
submitted.

The get_shipping_methods method takes the basket, user, shipping address
and request as parameters. These can be used to provide different sets of
shipping methods depending on the circumstances. For instance, you could use
the shipping address to provide international shipping rates if the address is
overseas.

The default behaviour is to return a single free shipping method.

Note

Oscar’s checkout process includes a page for choosing your shipping method.
If there is only one method available for your basket (as is the default)
then it will be chosen automatically and the user immediately redirected to
the next step.

Custom repositories

If the available shipping methods are the same for all customers and shipping
addresses, then override the methods property of the repository:

from oscar.apps.shipping import repository
from . import methods

class Repository(repository.Repository):
 methods = (methods.Standard(), methods.Express())

For more complex logic, override the get_available_shipping_methods method:

from oscar.apps.shipping import repository
from . import methods

class Repository(repository.Repository):

 def get_available_shipping_methods(
 self, basket, user=None, shipping_addr=None,
 request=None, **kwargs):
 methods = (methods.Standard())
 if shipping_addr and shipping_addr.country.code == 'GB':
 # Express is only available in the UK
 methods = (methods.Standard(), methods.Express())
 return methods

Note that the get_shipping_methods method wraps
get_available_shipping_methods in order to handle baskets that don’t
require shipping and to apply shipping discounts.

Shipping methods

Shipping methods need to implement a certain API. They need to have the
following properties which define the metadata about the shipping method:

	code - This is used as an identifier for the shipping method and so should
be unique amongst the shipping methods available in your shop.

	name - The name of the shipping method. This will be visible to the
customer during checkout.

	description - An optional description of the shipping method. This can
contain HTML.

Further, each method must implement a calculate method which accepts the
basket instance as a parameter and returns a Price instance. Most shipping
methods subclass
Base, which stubs this API.

Here’s an example:

from oscar.apps.shipping import methods
from oscar.core import prices

class Standard(methods.Base):
 code = 'standard'
 name = 'Standard shipping (free)'

 def calculate(self, basket):
 return prices.Price(
 currency=basket.currency,
 excl_tax=D('0.00'), incl_tax=D('0.00'))

Core shipping methods

Oscar ships with several re-usable shipping methods which can be used as-is, or
subclassed and customised:

	Free - no shipping charges

	FixedPrice - fixed-price shipping charges.
Example usage:

from oscar.apps.shipping import methods
from oscar.core import prices

class Standard(methods.Base):
 code = 'standard'
 name = 'Standard shipping'
 charge_excl_tax = D('5.00')

class Express(methods.Base):
 code = 'express'
 name = 'Express shipping'
 charge_excl_tax = D('10.00')

There is also a weight-based shipping method,
AbstractWeightBased
which determines a shipping charge by calculating the weight of a basket’s
contents and looking this up in a model-based set of weight bands.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to set up order processing

How orders are processed differs for every shop. Some shops will process orders
manually, using the dashboard to print picking slips and update orders once
items have shipped. Others will use automated processes to send order details
to fulfillment partners and pick up shipment and cancellation messages.

Oscar provides only a skeleton for building your order processing pipeline on
top of. This page details how it works and how to build your order processing
pipeline.

Structure

There are two relevant Oscar apps to order processing.

	The checkout app is responsible for collecting the required shipping and
payment information, taking payment in some sense and placing the order. It
is not normally used to process the order in any sense. If your orders can be
fulfilled immediately after being placed (eg digital products), it’s better to
use a separate process (like a cronjob or celery task). That way, if the
fulfilment work fails for some reason, it can be retried easily later. It’s
also a neater decoupling of responsibilities.

	The order app has a processing.py module which is intended to handle order
processing tasks, such as items being cancelled, shipped or returned. More
details below.

Modelling

Oscar models order processsing through events. There are three types to be
aware of:

	Shipping events. These correspond to some change in the location or
fulfilment status of the order items. For instance, when items are shipped,
returned or cancelled. For digital goods, this would cover when items are
downloaded.

	Payment events. These model each transaction that relates to an order. The
payment model allows order lines to be linked to the payment event.

	Communication events. These capture emails and other messages sent to the
customer about a particular order. These aren’t a core part of order
processing and are used more for audit and to ensure, for example, that only
one order confirmation email is sent to a customer.

Event handling

Most Oscar shops will want to customise the EventHandler class from the
order app. This class is intended to handle all events and perform the
appropriate actions. The main public API is

	
class oscar.apps.order.processing.EventHandler(user=None)[source]

	Handle requested order events.

This is an important class: it houses the core logic of your shop’s order
processing pipeline.

	
handle_order_status_change(order, new_status, note_msg=None)[source]

	Handle a requested order status change

This method is not normally called directly by client code. The main
use-case is when an order is cancelled, which in some ways could be
viewed as a shipping event affecting all lines.

	
handle_payment_event(order, event_type, amount, lines=None, line_quantities=None, **kwargs)[source]

	Handle a payment event for a given order.

These should normally be called as part of handling a shipping event.
It is rare to call to this method directly. It does make sense for
refunds though where the payment event may be unrelated to a particular
shipping event and doesn’t directly correspond to a set of lines.

	
handle_shipping_event(order, event_type, lines, line_quantities, **kwargs)[source]

	Handle a shipping event for a given order.

This is most common entry point to this class - most of your order
processing should be modelled around shipping events. Shipping events
can be used to trigger payment and communication events.

You will generally want to override this method to implement the
specifics of you order processing pipeline.

Many helper methods are also provided:

	
class oscar.apps.order.processing.EventHandler(user=None)[source]

	Handle requested order events.

This is an important class: it houses the core logic of your shop’s order
processing pipeline.

	
are_stock_allocations_available(lines, line_quantities)[source]

	Check whether stock records still have enough stock to honour the
requested allocations.

	
calculate_payment_event_subtotal(event_type, lines, line_quantities)[source]

	Calculate the total charge for the passed event type, lines and line
quantities.

This takes into account the previous prices that have been charged for
this event.

Note that shipping is not including in this subtotal. You need to
subclass and extend this method if you want to include shipping costs.

	
cancel_stock_allocations(order, lines, line_quantities)[source]

	Cancel the stock allocations for the passed lines

	
consume_stock_allocations(order, lines, line_quantities)[source]

	Consume the stock allocations for the passed lines

	
have_lines_passed_shipping_event(order, lines, line_quantities, event_type)[source]

	Test whether the passed lines and quantities have been through the
specified shipping event.

This is useful for validating if certain shipping events are allowed
(ie you can’t return something before it has shipped).

	
validate_shipping_event(order, event_type, lines, line_quantities, **kwargs)[source]

	Test if the requested shipping event is permitted.

If not, raise InvalidShippingEvent

Most shops can handle all their order processing through shipping events, which
may indirectly create payment events.

Customisation

Assuming your order processing involves an admin using the dashboard, then the
normal customisation steps are as follows:

	Ensure your orders are created with the right default status.

	Override the order dashboard’s views and templates to provide the right
interface for admins to update orders.

	Extend the EventHandler class to correctly handle shipping and payment
events that are called from the dashboard order detail view.

It can be useful to use order and line statuses too. Oscar provides some helper
methods to make this easier.

	
class oscar.apps.order.abstract_models.AbstractOrder(*args, **kwargs)[source]

	The main order model

	
classmethod all_statuses()[source]

	Return all possible statuses for an order

	
available_statuses()[source]

	Return all possible statuses that this order can move to

	
pipeline = {'Cancelled': (), 'Being processed': ('Complete', 'Cancelled'), 'Pending': ('Being processed', 'Cancelled'), 'Complete': ()}

	Order status pipeline. This should be a dict where each (key, value) # – corresponds to a status and a list of possible statuses that can follow
that one.

	
set_status(new_status)[source]

	Set a new status for this order.

If the requested status is not valid, then InvalidOrderStatus is
raised.

	
class oscar.apps.order.abstract_models.AbstractLine(*args, **kwargs)[source]

	An order line

	
classmethod all_statuses()[source]

	Return all possible statuses for an order line

	
available_statuses()[source]

	Return all possible statuses that this order line can move to

	
pipeline = {}

	Order status pipeline. This should be a dict where each (key, value)
corresponds to a status and the possible statuses that can follow that
one.

	
set_status(new_status)[source]

	Set a new status for this line

If the requested status is not valid, then InvalidLineStatus is
raised.

Example

Here is a reasonably common scenario for order processing. Note that some of
the functionality described here is not in Oscar. However, Oscar provides the
hook points to make implementing this workflow easy.

	An order is placed and the customer’s bankcard is pre-authed for the order
total. The new order has status ‘Pending’

	An admin logs into the dashboard and views all new orders. They select the new
order, retrieve the goods from the warehouse and get them ready to ship.

	When all items are retrieved, they select all the lines from the order and hit
a button saying ‘take payment’. This calls the handle_payment_event
method of the EventHandler class which performs the settle transaction
with the payment gateway and, if successful, creates a payment event against
the order.

	If payment is successful, the admin ships the goods and gets a tracking number
from the courier service. They then select the shipped lines for the order and
hit a button saying “mark as shipped”. This will show a form requesting a
shipping number for the event. When this is entered, the
handle_shipping_event method of the EventHandler class is called,
which will update stock allocations and create a shipping event.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to create a custom range

Oscar ships with a range model that represents a set of products from your
catalogue. Using the dashboard, this can be configured to be:

	The whole catalogue

	A subset of products selected by ID/SKU (CSV uploads can be used to do this)

	A subset of product categories

Often though, a shop may need merchant-specific ranges such as:

	All products subject to reduced-rate VAT

	All books by a Welsh author

	DVDs that have an exclamation mark in the title

These are contrived but you get the picture.

Custom range interface

A custom range must:

	have a name attribute

	have a contains_product method that takes a product instance and return a
boolean

	have a num_products method that returns the number of products in the
range or None if such a query would be too expensive.

	have an all_products method that returns a queryset of all products in the
range.

Example:

class ExclamatoryProducts(object):
 name = "Products including a '!'"

 def contains_product(self, product):
 return "!" in product.title

 def num_products(self):
 return self.all_products().count()

 def all_products(self):
 return Product.objects.filter(title__icontains="!")

Create range instance

To make this range available to be used in offers, do the following:

from oscar.apps.offer.custom import create_range

create_range(ExclamatoryProducts)

Now you should see this range in the dashboard for ranges and offers. Custom
ranges are not editable in the dashboard but can be deleted.

Deploying custom ranges

To avoid manual steps in each of your test/stage/production environments, use
South’s data migrations [https://south.readthedocs.io/en/latest/tutorial/part3.html#data-migrations] to create ranges.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to create a custom offer condition

Oscar ships with several condition models that can be used to build offers.
However, occasionally a custom condition can be useful. Oscar lets you build a
custom condition class and register it so that it is available for building
offers.

Custom condition interface

Custom condition classes must be proxy models, subclassing Oscar’s main
Condition class.

At a minimum, a custom condition must:

	have a description attribute which describes what needs to happen to
satisfy the condition (eg “basket must have 4 items”).

	have an is_satisfied method that takes a basket instance and an offer
instance and returns a boolean indicating if the condition is satisfied

It can also implement:

	a can_apply_condition method that takes a product instance and returns a
boolean depending on whether the condition is applicable to the product.

	a consume_items method that marks basket items as consumed once the
condition has been met.

	a get_upsell_message method that returns a message for the customer,
letting them know what they would need to do to qualify for this offer.

	a is_partially_satisfied method that tests to see if the customer’s basket
partially satisfies the condition (ie when you might want to show them an
upsell message)

Silly example:

from oscar.apps.offer import models

class BasketOwnerCalledBarry(models.Condition):
 name = "User must be called barry"

 class Meta:
 proxy = True

 def is_satisfied(self, offer, basket):
 if not basket.owner:
 return False
 return basket.owner.first_name.lower() == 'barry'

Create condition instance

To make this condition available to be used in offers, do the following:

from oscar.apps.offer.custom import create_condition

create_condition(BasketOwnerCalledBarry)

Now you should see this condition in the dashboard when creating/updating an offer.

Deploying custom conditions

To avoid manual steps in each of your test/stage/production environments, use
South’s data migrations [https://south.readthedocs.io/en/latest/tutorial/part3.html#data-migrations] to create conditions.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to create a custom benefit

Oscar ships with several offer benefits for building offers. There are three
types:

	Basket discounts. These lead to a discount off the price of items in your
basket.

	Shipping discounts.

	Post-order actions. These are benefits that don’t affect your order total but
trigger some action once the order is placed. For instance, if your site
supports loyalty points, you might create an offer that gives 200 points when
a certain product is bought.

Oscar also lets you create your own benefits for use in offers.

Custom benefits

A custom benefit can be used by creating a benefit class and registering it so
it is available to be used.

A benefit class must be a proxy class and have the following methods:

from oscar.apps.offer import models

class MyCustomBenefit(models.Benefit):

 class Meta:
 proxy = True

 @property
 def description(self):
 """
 Describe what the benefit does.

 This is used in the dashboard when selecting benefits for offers.
 """

 def apply(self, basket, condition, offer):
 """
 Apply the benefit to the passed basket and mark the appropriate
 items as consumed.

 The condition and offer are passed as these are sometimes required
 to implement the correct consumption behaviour.

 Should return an instance of
 ``oscar.apps.offer.models.ApplicationResult``
 """

 def apply_deferred(self, basket, order, application):
 """
 Perform a 'post-order action' if one is defined for this benefit

 Should return a message indicating what has happend. This will be
 stored with the order to provide audit of post-order benefits.
 """

As noted in the docstring, the apply method must return an instance of
oscar.apps.offer.models.ApplicationResult. There are three subtypes
provided:

	oscar.apps.offer.models.BasketDiscount. This takes an amount as it’s
constructor paramter.

	oscar.apps.offer.models.ShippingDiscount. This indicates that the
benefit affects the shipping charge.

	oscar.apps.offer.models.PostOrderAction. This indicates that the
benefit does nothing to the order total, but does fire an action once the
order has been placed. It takes a single description paramter to its
constructor which is a message that describes what action will be taken
once the order is placed.

Here’s an example of a post-order action benefit:

from oscar.apps.offer import models

class ChangesCustomersName(models.Benefit):

 class Meta:
 proxy = True

 description = "Changes customer's name"

 def apply(self, basket, condition, offer):
 # We need to mark all items from the matched condition as 'consumed'
 # so that they are unavailable to be used with other offers.
 condition.consume_items(basket, ())
 return models.PostOrderAction(
 "You will have your name changed to Barry!")

 def apply_deferred(self, basket, order, application):
 if basket.owner:
 basket.owner.first_name = "Barry"
 basket.owner.save()
 return "Your name has been changed to Barry!"
 return "We were unable to change your name as you are not signed in"

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to change Oscar’s appearance

This is a guide for Front-End Developers (FEDs) working on Oscar projects, not
on Oscar itself. It is written with Tangent’s FED team in mind but should be
more generally useful for anyone trying to customise Oscar and looking for the
right approach.

Overview

Oscar ships with a set of HTML templates and a collection of static files
(eg images, javascript). Oscar’s default CSS is generated from LESS
files.

Templates

Oscar’s default templates use the mark-up conventions from the Bootstrap
project. Classes for styling should be separate from classes used for
Javascript. The latter must be prefixed with js-, and using data attributes
is often preferable.

Frontend vs. Dashboard

The frontend and dashboard are intentionally kept very separate. They
incidentally both use Bootstrap, but may be updated individually.
The frontend is based on Bootstrap’s LESS files and ties it together with
Oscar-specific styling in styles.less.

On the other hand, dashboard.less just contains a few customisations that
are included alongside a copy of stock Bootstrap CSS - and at the time of
writing, using a different Bootstrap version.

LESS/CSS

By default, CSS files compiled from their LESS sources are used rather than the
LESS ones. To use Less directly, set USE_LESS = True in your settings file.
This will enable the on-the-fly pre-processor which lets you trial changes with
a page reload. If you want to commit your changes, use the make css Makefile
command, making sure you have the lessc binary available on your command line.
A few other CSS files are used to provide styles for javascript libraries.

Javascript

Oscar uses javascript for progressive enhancements. This guide used to document
exact versions, but quickly became outdated. It is recommended to inspect
layout.html and dashboard/layout.html for what is currently included.

Customisation

Customising templates

Oscar ships with a complete set of templates (in oscar/templates). These
will be available to an Oscar project but can be overridden or modified.

The templates use Bootstrap conventions for class names and mark-up.

There is a separate recipe on how to do this.

Customising statics

Oscar’s static files are stored in oscar/static. When a Django site is
deployed, the collectstatic command is run which collects static files from
all installed apps and puts them in a single location (called the
STATIC_ROOT). It is common for a separate HTTP server (like nginx) to be
used to serve these files, setting its document root to STATIC_ROOT.

For an individual project, you may want to override Oscar’s static files. The
best way to do this is to have a statics folder within your project and to add
it to the STATICFILES_DIRS setting. Then, any files which match the same
path as files in Oscar will be served from your local statics folder instead.
For instance, if you want to use a local version of oscar/css/styles.css,
your could create a file:

yourproject/
 static/
 oscar/
 css/
 styles.css

and this would override Oscar’s equivalent file.

To make things easier, Oscar ships with a management command for creating a copy
of all of its static files. This breaks the link with Oscar’s static files and
means everything is within the control of the project. Run it as follows:

./manage.py oscar_fork_statics

This is the recommended approach for non-trivial projects.

Another option is simply to ignore all of Oscar’s CSS and write your own from
scratch. To do this, you simply need to adjust the layout templates to include
your own CSS instead of Oscar’s. For instance, you might override base.html
and replace the ‘less’ block:

project/base.html

{% block less %}
 <link rel="stylesheet" type="text/less" href="{{ STATIC_URL }}myproject/less/styles.less" />
{% endblock %}

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Recipes

How to setup Solr with Oscar

Apache Solr [https://lucene.apache.org/solr/] is Oscar’s recommended production-grade search backend. This
how-to describes how to get Solr running, and integrated with Oscar. The
instructions below are tested on an Ubuntu machine, but should be applicable
for similar environments. A working Java or OpenJDK installation are necessary.

Starting Solr

You first need to fetch and extract Solr. The schema included with Oscar
is tested with Solr 4.7.2:

$ wget http://archive.apache.org/dist/lucene/solr/4.7.2/solr-4.7.2.tgz
$ tar xzf solr-4.7.2.tgz

Next, replace the example configuration with Oscar’s.

$ cd solr-4.7.2/example/solr/collection1
$ mv conf conf.original
$ ln -s <your_oscar_checkout>/sites/sandbox/deploy/solr conf

You should then be able to start Solr by running:

$ cd ../..
$ java -jar start.jar

Integrating with Haystack

Haystack provides an abstraction layer on top of different search backends and
integrates with Django. Your Haystack connection settings in your
settings.py for the config above should look like this:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.solr_backend.SolrEngine',
 'URL': 'http://127.0.0.1:8983/solr',
 'INCLUDE_SPELLING': True,
 },
}

If all is well, you should now be able to rebuild the search index.

$./manage.py rebuild_index --noinput
Removing all documents from your index because you said so.
All documents removed.
Indexing 201 Products
Indexing 201 Products

The products being indexed twice is caused by a low-priority bug in Oscar and
can be safely ignored. If the indexing succeeded, search in Oscar will be
working. Search for any term in the search box on your Oscar site, and you
should get results.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Oscar settings

This is a comprehensive list of all the settings Oscar provides. All settings
are optional.

Display settings

OSCAR_SHOP_NAME

Default: 'Oscar'

The name of your e-commerce shop site. This is shown as the main logo within
the default templates.

OSCAR_SHOP_TAGLINE

Default: ''

The tagline that is displayed next to the shop name and in the browser title.

OSCAR_HOMEPAGE

Default: reverse_lazy('promotions:home')

URL of home page of your site. This value is used for Home link in
navigation and redirection page after logout. Useful if you use a different app
to serve your homepage.

OSCAR_ACCOUNTS_REDIRECT_URL

Default: 'customer:profile-view'

Oscar has a view that gets called any time the user clicks on ‘My account’ or
similar. By default it’s a dumb redirect to the view configured with this
setting. But you could also override the view to display a more useful
account summary page or such like.

OSCAR_RECENTLY_VIEWED_PRODUCTS

Default: 20

The number of recently viewed products to store.

OSCAR_RECENTLY_VIEWED_COOKIE_LIFETIME

Default: 604800 (1 week in seconds)

The time to live for the cookie in seconds.

OSCAR_RECENTLY_VIEWED_COOKIE_NAME

Default: 'oscar_history'

The name of the cookie for showing recently viewed products.

Pagination

There are a number of settings that control pagination in Oscar’s views. They
all default to 20.

	OSCAR_PRODUCTS_PER_PAGE

	OSCAR_OFFERS_PER_PAGE

	OSCAR_REVIEWS_PER_PAGE

	OSCAR_NOTIFICATIONS_PER_PAGE

	OSCAR_EMAILS_PER_PAGE

	OSCAR_ORDERS_PER_PAGE

	OSCAR_ADDRESSES_PER_PAGE

	OSCAR_STOCK_ALERTS_PER_PAGE

	OSCAR_DASHBOARD_ITEMS_PER_PAGE

OSCAR_SEARCH_FACETS

A dictionary that specifies the facets to use with the search backend. It
needs to be a dict with keys fields and queries for field- and
query-type facets. The default is:

OSCAR_SEARCH_FACETS = {
 'fields': OrderedDict([
 ('product_class', {'name': _('Type'), 'field': 'product_class'}),
 ('rating', {'name': _('Rating'), 'field': 'rating'}),
]),
 'queries': OrderedDict([
 ('price_range',
 {
 'name': _('Price range'),
 'field': 'price',
 'queries': [
 # This is a list of (name, query) tuples where the name will
 # be displayed on the front-end.
 (_('0 to 20'), u'[0 TO 20]'),
 (_('20 to 40'), u'[20 TO 40]'),
 (_('40 to 60'), u'[40 TO 60]'),
 (_('60+'), u'[60 TO *]'),
]
 }),
]),
}

OSCAR_PRODUCT_SEARCH_HANDLER

The search handler to be used in the product list views. If None,
Oscar tries to guess the correct handler based on your Haystack settings.

Default:

None

OSCAR_PROMOTION_POSITIONS

Default:

OSCAR_PROMOTION_POSITIONS = (('page', 'Page'),
 ('right', 'Right-hand sidebar'),
 ('left', 'Left-hand sidebar'))

The choice of display locations available when editing a promotion. Only
useful when using a new set of templates.

OSCAR_PROMOTION_MERCHANDISING_BLOCK_TYPES

Default:

COUNTDOWN, LIST, SINGLE_PRODUCT, TABBED_BLOCK = (
 'Countdown', 'List', 'SingleProduct', 'TabbedBlock')
OSCAR_PROMOTION_MERCHANDISING_BLOCK_TYPES = (
 (COUNTDOWN, "Vertical list"),
 (LIST, "Horizontal list"),
 (TABBED_BLOCK, "Tabbed block"),
 (SINGLE_PRODUCT, "Single product"),
)

Defines the available promotion block types that can be used in Oscar.

OSCAR_DASHBOARD_NAVIGATION

Default: see oscar.defaults (too long to include here).

A list of dashboard navigation elements. Usage is explained in
How to configure the dashboard navigation.

OSCAR_DASHBOARD_DEFAULT_ACCESS_FUNCTION

Default: 'oscar.apps.dashboard.nav.default_access_fn'

OSCAR_DASHBOARD_NAVIGATION allows passing an access function for each node
which is used to determine whether to show the node for a specific user or not.
If no access function is defined, the function specified here is used.
The default function integrates with the permission-based dashboard and shows
the node if the user will be able to access it. That should be sufficient for
most cases.

Order settings

OSCAR_INITIAL_ORDER_STATUS

The initial status used when a new order is submitted. This has to be a status
that is defined in the OSCAR_ORDER_STATUS_PIPELINE.

OSCAR_INITIAL_LINE_STATUS

The status assigned to a line item when it is created as part of an new order. It
has to be a status defined in OSCAR_ORDER_STATUS_PIPELINE.

OSCAR_ORDER_STATUS_PIPELINE

Default: {}

The pipeline defines the statuses that an order or line item can have and what
transitions are allowed in any given status. The pipeline is defined as a
dictionary where the keys are the available statuses. Allowed transitions are
defined as iterable values for the corresponding status.

A sample pipeline (as used in the Oscar sandbox) might look like this:

OSCAR_INITIAL_ORDER_STATUS = 'Pending'
OSCAR_INITIAL_LINE_STATUS = 'Pending'
OSCAR_ORDER_STATUS_PIPELINE = {
 'Pending': ('Being processed', 'Cancelled',),
 'Being processed': ('Processed', 'Cancelled',),
 'Cancelled': (),
}

OSCAR_ORDER_STATUS_CASCADE

This defines a mapping of status changes for order lines which ‘cascade’ down
from an order status change.

For example:

OSCAR_ORDER_STATUS_CASCADE = {
 'Being processed': 'In progress'
}

With this mapping, when an order has it’s status set to ‘Being processed’, all
lines within it have their status set to ‘In progress’. In a sense, the status
change cascades down to the related objects.

Note that this cascade ignores restrictions from the
OSCAR_LINE_STATUS_PIPELINE.

OSCAR_LINE_STATUS_PIPELINE

Default: {}

Same as OSCAR_ORDER_STATUS_PIPELINE but for lines.

Checkout settings

OSCAR_ALLOW_ANON_CHECKOUT

Default: False

Specifies if an anonymous user can buy products without creating an account
first. If set to False users are required to authenticate before they can
checkout (using Oscar’s default checkout views).

OSCAR_REQUIRED_ADDRESS_FIELDS

Default: ('first_name', 'last_name', 'line1', 'city', 'postcode', 'country')

List of form fields that a user has to fill out to validate an address field.

Review settings

OSCAR_ALLOW_ANON_REVIEWS

Default: True

This setting defines whether an anonymous user can create a review for
a product without registering first. If it is set to True anonymous
users can create product reviews.

OSCAR_MODERATE_REVIEWS

Default: False

This defines whether reviews have to be moderated before they are publicly
available. If set to False a review created by a customer is immediately
visible on the product page.

Communication settings

OSCAR_EAGER_ALERTS

Default: True

This enables sending alert notifications/emails instantly when products get
back in stock by listening to stock record update signals this might impact
performance for large numbers stock record updates.
Alternatively, the management command oscar_send_alerts can be used to
run periodically, e.g. as a cronjob. In this case instant alerts should be
disabled.

OSCAR_SEND_REGISTRATION_EMAIL

Default: True

Sending out welcome messages to a user after they have registered on the
site can be enabled or disabled using this setting. Setting it to True
will send out emails on registration.

OSCAR_FROM_EMAIL

Default: oscar@example.com

The email address used as the sender for all communication events and emails
handled by Oscar.

OSCAR_STATIC_BASE_URL

Default: None

A URL which is passed into the templates for communication events. It is not
used in Oscar’s default templates but could be used to include static assets
(eg images) in a HTML email template.

Offer settings

OSCAR_OFFER_ROUNDING_FUNCTION

Default: Round down to the nearest hundredth of a unit using decimal.Decimal.quantize

A function responsible for rounding decimal amounts when offer discount
calculations don’t lead to legitimate currency values.

Basket settings

OSCAR_BASKET_COOKIE_LIFETIME

Default: 604800 (1 week in seconds)

The time to live for the basket cookie in seconds.

OSCAR_MAX_BASKET_QUANTITY_THRESHOLD

Default: None

The maximum number of products that can be added to a basket at once.

OSCAR_BASKET_COOKIE_OPEN

Default: 'oscar_open_basket'

The name of the cookie for the open basket.

Currency settings

OSCAR_DEFAULT_CURRENCY

Default: GBP

This should be the symbol of the currency you wish Oscar to use by default.
This will be used by the currency templatetag.

OSCAR_CURRENCY_FORMAT

Default: None

This can be used to customise currency formatting. The value will be passed to
the format_currency function from the Babel library [http://babel.pocoo.org/docs/api/numbers/#babel.numbers.format_currency].

Upload/media settings

OSCAR_IMAGE_FOLDER

Default: images/products/%Y/%m/

The location within the MEDIA_ROOT folder that is used to store product images.
The folder name can contain date format strings as described in the Django Docs [https://docs.djangoproject.com/en/dev/ref/models/fields/#filefield].

OSCAR_DELETE_IMAGE_FILES

Default: True

If enabled, a post_delete hook will attempt to delete any image files and
created thumbnails when a model with an ImageField is deleted. This is
usually desired, but might not be what you want when using a remote storage.

OSCAR_PROMOTION_FOLDER

Default: images/promotions/

The folder within MEDIA_ROOT used for uploaded promotion images.

OSCAR_MISSING_IMAGE_URL

Default: image_not_found.jpg

Copy this image from oscar/static/img to your MEDIA_ROOT folder. It needs to
be there so Sorl can resize it.

OSCAR_UPLOAD_ROOT

Default: /tmp

The folder is used to temporarily hold uploaded files until they are processed.
Such files should always be deleted afterwards.

Slug settings

OSCAR_SLUG_MAP

Default: {}

A dictionary to map strings to more readable versions for including in URL
slugs. This mapping is appled before the slugify function.
This is useful when names contain characters which would normally be
stripped. For instance:

OSCAR_SLUG_MAP = {
 'c++': 'cpp',
 'f#': 'fsharp',
}

OSCAR_SLUG_FUNCTION

Default: 'oscar.core.utils.default_slugifier'

The slugify function to use. Note that is used within Oscar’s slugify wrapper
(in oscar.core.utils) which applies the custom map and blacklist. String
notation is recommended, but specifying a callable is supported for
backwards-compatibility.

Example:

in myproject.utils
def some_slugify(value):
 return value

in settings.py
OSCAR_SLUG_FUNCTION = 'myproject.utils.some_slugify'

OSCAR_SLUG_BLACKLIST

Default: []

A list of words to exclude from slugs.

Example:

OSCAR_SLUG_BLACKLIST = ['the', 'a', 'but']

OSCAR_SLUG_ALLOW_UNICODE

Default: False

Allows to disable unicode to ASCII conversion and enable allow_unicode option
for AutoSlugField, which is supported by SlugField in Django>=1.9
(https://docs.djangoproject.com/es/1.9/ref/models/fields/#django.db.models.SlugField.allow_unicode).
This will allow to have
automatically generated unicode-containing slugs.

Misc settings

OSCAR_COOKIES_DELETE_ON_LOGOUT

Default: ['oscar_recently_viewed_products',]

Which cookies to delete automatically when the user logs out.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Signals

Oscar implements a number of custom signals that provide useful hook-points for
adding functionality.

product_viewed

	
class oscar.apps.catalogue.signals.product_viewed

	Raised when a product detail page is viewed.

Arguments sent with this signal:

	
product

	The product being viewed

	
user

	The user in question

	
request

	The request instance

	
response

	The response instance

product_search

	
class oscar.apps.catalogue.signals.product_search

	Raised when a search is performed.

Arguments sent with this signal:

	
query

	The search term

	
user

	The user in question

user_registered

	
class oscar.apps.customer.signals.user_registered

	Raised when a user registers

Arguments sent with this signal:

	
request

	The request instance

	
user

	The user in question

basket_addition

	
class oscar.apps.basket.signals.basket_addition

	Raised when a product is added to a basket

Arguments sent with this signal:

	
request

	The request instance

	
product

	The product being added

	
user

	The user in question

voucher_addition

	
class oscar.apps.basket.signals.voucher_addition

	Raised when a valid voucher is added to a basket

Arguments sent with this signal:

	
basket

	The basket in question

	
voucher

	The voucher in question

start_checkout

	
class oscar.apps.checkout.signals.start_checkout

	Raised when the customer begins the checkout process

Arguments sent with this signal:

	
request

	The reuqest instance

pre_payment

	
class oscar.apps.checkout.signals.pre_payment

	Raised immediately before attempting to take payment in the checkout.

Arguments sent with this signal:

	
view

	The view class instance

post_payment

	
class oscar.apps.checkout.signals.post_payment

	Raised immediately after payment has been taken.

Arguments sent with this signal:

	
view

	The view class instance

order_placed

	
class oscar.apps.order.signals.order_placed

	Raised by the oscar.apps.order.utils.OrderCreator class when
creating an order.

Arguments sent with this signal:

	
order

	The order created

	
user

	The user creating the order (not necessarily the user linked to the order
instance!)

post_checkout

	
class oscar.apps.checkout.signals.post_checkout

	Raised by the oscar.apps.checkout.mixins.OrderPlacementMixin class
when a customer completes the checkout process

	
order

	The order created

	
user

	The user who completed the checkout

	
request

	The request instance

	
response

	The response instance

review_created

	
class oscar.apps.catalogue.reviews.signals.review_added

	Raised when a review is added.

Arguments sent with this signal:

	
review

	The review that was created

	
user

	The user performing the action

	
request

	The request instance

	
response

	The response instance

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Template tags

Shipping tags

Load these tags using {% load shipping_tags %}.

shipping_charge

Injects the shipping charge into the template context:

Usage:

{% shipping_charge shipping_method basket as name %}
Shipping charge is {{ name }}.

The arguments are:

	Argument
	Description

	shipping_method
	The shipping method instance

	basket
	The basket instance to calculate shipping charges for

	name
	The variable name to assign the charge to

shipping_charge_discount

Injects the shipping discount into the template context:

Usage:

{% shipping_discount shipping_method basket as name %}
Shipping discount is {{ charge }}.

The arguments are:

	Argument
	Description

	shipping_method
	The shipping method instance

	basket
	The basket instance to calculate shipping charges for

	name
	The variable name to assign the charge to

shipping_charge_excl_discount

Injects the shipping charges with no discounts applied into the template context:

Usage:

{% shipping_charge_excl_discount shipping_method basket as name %}
Shipping discount is {{ name }}.

The arguments are:

	Argument
	Description

	shipping_method
	The shipping method instance

	basket
	The basket instance to calculate shipping charges for

	name
	The variable name to assign the charge to

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Oscar design decisions

The central aim of Oscar is to provide a solid core of an e-commerce project that can be
extended and customised to suit the domain at hand. This is achieved in several ways:

Core models are abstract

Online shops can vary wildly, selling everything from turnips to concert
tickets. Trying to define a set of Django models capable for modeling all such
scenarios is impossible - customisation is what matters.

One way to model your domain is to have enormous models that have fields for
every possible variation; however, this is unwieldy and ugly.

Another is to use the Entity-Attribute-Value pattern to use add meta-data for each of
your models. However this is again ugly and mixes meta-data and data in your database (it’s
an SQL anti-pattern).

Oscar’s approach to this problem is to have minimal but abstract models
where all the fields are meaningful within any e-commerce domain. Oscar then
provides a mechanism for subclassing these models within your application so
domain-specific fields can be added.

Specifically, in many of Oscar’s apps, there is an abstract_models.py module which
defines these abstract classes. There is also an accompanying models.py which provides an
empty but concrete implementation of each abstract model.

Classes are loaded dynamically

The complexity of scenarios doesn’t stop with Django models; core parts of
Oscar need to be as customisable as possible. Hence almost all classes
(including views) are
dynamically loaded,
which results in a maintainable approach to customising behaviour.

URLs and permissions for apps are handled by Application instances

The oscar.core.application.Application class handles mapping URLs
to views and permissions at an per-app level. This makes Oscar’s apps more
modular, and makes it easy to customise this mapping as they can be overridden
just like any other class in Oscar.

Templates can be overridden

This is a common technique relying on the fact that the template loader can be
configured to look in your project first for templates, before it uses the defaults
from Oscar.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Release notes

Release notes for each version of Oscar published to PyPI.

1.3 release branch

	Oscar 1.3 release notes

1.2 release branch

	Oscar 1.2 release notes

	Oscar 1.2.1 release notes

	Oscar 1.2.2 release notes

1.1 release branch

	Oscar 1.1 release notes

	Oscar 1.1.1 release notes

1.0 release branch

	Oscar 1.0 release notes

	Oscar 1.0.1 release notes

	Oscar 1.0.2 release notes

0.7 release branch

	Oscar 0.7 release notes

	Oscar 0.7.1 release notes

	Oscar 0.7.2 release notes

	Oscar 0.7.3 release notes

0.6 release branch

	Oscar 0.6 release notes

	Oscar 0.6.1 release notes

	Oscar 0.6.2 release notes

	Oscar 0.6.3 release notes

	Oscar 0.6.4 release notes

	Oscar 0.6.5 release notes

0.5 release branch

	Oscar 0.5 release notes

	Oscar 0.5.1 release notes

	Oscar 0.5.2 release notes

	Oscar 0.5.3 release notes

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.3 release notes

Warning

Oscar 1.3 is still in development. This document is a work-in-progress.

	release:	TBD

Welcome to Oscar 1.3.

Table of contents:

	Compatibility

	What’s new in Oscar 1.3?

	Dependency changes

Compatibility

Oscar 1.3 is compatible with Django 1.8 and 1.9 as well as Python 2.7,
3.3, 3.4 and 3.5.

What’s new in Oscar 1.3?

Dependency changes

	
	The following packages are updated:

	
	django-haystack >= 2.5.0 (Django 1.9 support)

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.2 release notes

	release:	2016-03-18

Welcome to Oscar 1.2.

Table of contents:

	Compatibility

	What’s new in Oscar 1.2?

	Backwards incompatible changes in Oscar 1.2

	Dependency changes

Compatibility

Oscar 1.2 is compatible with Django 1.7 and 1.8 as well as Python 2.7,
3.3, 3.4 and 3.5.

What’s new in Oscar 1.2?

	django-compressor has been removed as a dependency, and as a way
of building less files for development. Removing or disabling it
was commonly required as it didn’t work well with deploying on PaaS
providers, and many current projects understandably prefer to use
Javascript build chains (gulp, grunt, etc.) for all their
statics.
But django-compressor was hard to remove on a per-project basis,
so the decision was made to remove it altogether.

For development, USE_LESS now enables the browser-based on-the-fly
pre-processor. make css continues to run a locally installed
LESS binary.

Minor changes

	Fix missing page_url field in the promotions form (#1816 [https://github.com/django-oscar/django-oscar/issues/1816])

	The order of basket, order and wishlist lines in now guaranteed
to be in the order of creation. Previously, this wasn’t guaranteed,
but still almost always the case.

	Partner instances got a default ordering by name.

	If a child product has no weight, we check if a parent’s product weight
is set before falling back to the default weight (`#1965`_).

	Address.active_address_fields now uses the saner common name of a country
instead of the official name (`#1964`_).

	Custom benefits now don’t enforce uniqueness on the proxy_class
field, making them more useful (#685 [https://github.com/django-oscar/django-oscar/issues/685]).

	Move logic to create basket messages to it’s own utility class
basket.utils.BasketMessageGenerator(). (#1930 [https://github.com/django-oscar/django-oscar/issues/1930])

	Fix a caching issue in Product.get_absolute_url() (#1925 [https://github.com/django-oscar/django-oscar/issues/1925])

	Update the recently_viewed_products templatetag to accept a
current_product attribute. (#1948 [https://github.com/django-oscar/django-oscar/issues/1948])

Backwards incompatible changes in Oscar 1.2

	The mainstyles template block was removed. It served as a wrapper
for the styles content black and was needed to be extensible while
still being able to compress CSS. As django-compressor has been
removed, it’s not needed any more. Just use styles instead if you
happened to use it.

	The keywords block is removed from the main template (#1799)

	The US and Demo sites were both removed from the repository as they
were not up-to-date anymore. These might return in the future as
separate repositories.

	The RecentReviewsManager, TopScoredReviewsManager and
TopVotedReviewsManager managers are removed from the reviews app
since they were broken and unused.

	A new unique index is added to catalogue.AbstractAttributeOption to make
sure that the group, option combination is unique (#1935)

Dependency changes

	
	The following packages are updated:

	
	django-treebeard >= 4.0 (Django 1.9 support)

	sorl.thumbnail >= 12.4a1 (Django 1.9 support)

	JQuery UI is no longer included in the dashboard (#1792 [https://github.com/django-oscar/django-oscar/issues/1792])

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.2.1 release notes

	release:	2016-03-23

This is Oscar 1.2.1, a bug fix release.

Minor changes

Change the babel requirement in setup.py to allow versions up to 3.0

Bug fixes

	#2019 [https://github.com/django-oscar/django-oscar/pull/2019]: Optimize ORM query on the offer detail page in the dashboard.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.2.2 release notes

	release:	2016-07-11

This is Oscar 1.2.2, a bug fix release.

Bug fixes

	#2030 [https://github.com/django-oscar/django-oscar/pull/2030]: Fix migration issues on Python 3.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.1 release notes

	release:	2015-06-20

Welcome to Oscar 1.1, or the “Bootstrap 3” release. We also squashed
many bugs that were reported in the last seven months, and managed to shed
a lot of compatibility helpers when Django 1.6 support was removed.

Table of contents:

	Compatibility

	What’s new in Oscar 1.1?

	Backwards incompatible changes in 1.1

	Dependency changes

Compatibility

Oscar 1.1 is compatible with Django 1.7 and 1.8 as well as Python 2.7,
3.3 and 3.4. Support for Django 1.6, and hence South for migrations, has been
removed.

What’s new in Oscar 1.1?

	The frontend and backend templates have been updated to use Bootstrap 3
instead of version 2 (#1576 [https://github.com/django-oscar/django-oscar/pull/1576]). The frontend and backend templates are now
also independent of each other.

	Category slug, name and URL handling has been refactored to make it easier to
translate categories, and to be able to edit slugs independent of names.

	The icon and caption of django-tables2 tables can be set directly on the Table object, if it
derives from DashboardTable. The caption can be localized
in singular and plural. (#1482 [https://github.com/django-oscar/django-oscar/pull/1482])

	Oscar now ships with basic ElasticSearch support.
OSCAR_PRODUCT_SEARCH_HANDLER has been introduced to more easily set the search backend.

	The offer models can now also be customised the same way as was already
possible for the other apps.

	The test suite is now run with the glorious py.test.

Minor changes

	The Order.date_placed field can now be set explicitly rather than using the
auto_now_add behaviour (#1558 [https://github.com/django-oscar/django-oscar/pull/1558]).

	The settings OSCAR_BASKET_COOKIE_SECURE and OSCAR_RECENTLY_VIEWED_COOKIE_SECURE
are introduced to set the secure flag on the relevant cookies.

	Previously, all views handled in Oscar’s Application class were decorated
with the permissions_required decorator. That decorator would not do
anything if used with an empty set of permissions. But it was raised as an
issue, and now views not requiring permissions are not decorated at all.

	Properly redirect users to the checkout page after a guest user created an
account.

	OSCAR_SEARCH_FACETS now accepts ordered dicts.

	Oscar now supports varying the tax rate per product.

	Product class options and attributes can now be edited in the dashboard.

	All modelforms now specify the fields meta attribute instead of the excludes list.

Backwards incompatible changes in 1.1

Categories refactor

The Category model contained two denormalisations to improve performance: it
stored the name of the category and it’s ancestors in full_name, and the
slug field did not just contain the category’s slug, but also the ones of
its ancestors.

This came with several drawbacks: it was fiddly to move and update categories,
as one had to ensure to update parts of the entire category tree. It also
made it trickier to add model-level translation to categories.

A refactoring removed the denormalisations leading to much simpler logic,
and a light sprinkle of caching for the URLs hopefully leads to a performance
net positive. But unfortunately it did come with some changes:

	Category slug handling is changed. Historically, Oscar always updated the
slug when the name changed. Now a slug is only created if no slug is given,
and an existing slug is never overridden. This means that you can freely
change the slugs, and a name change will not change the category’s URL.

	The full_name field has been removed and been replaced by a
full_name property. Accessing that property incurs one database query to
fetch the ancestors.

	Category.get_absolute_url is now naively cached, as it’s more costly to
generate the URL than before. But as ProductCategoryView, the view
returned in get_absolute_url only considers the primary key and not the
slug, even a stale cache should lead to the correct category page. But if
you have altered that logic, please be sure to investigate.

Those changes unfortunately do mean a data migration to update the slugs
which must be run. Please see the section on migrations below. Please also
ensure that, if you load your categories via fixtures, you update them
accordingly: remove the full_name field and remove the ancestor’s slugs
from the slug field.

Misc

	The AbstractWeightBased shipping
method now allows zero-weight baskets to have a non-zero shipping cost
(#1565 [https://github.com/django-oscar/django-oscar/pull/1565]). This means that sites that rely on zero-weight baskets having no
change will need to introduce a new weight band that covers this edge case.

	The methods :method:`~oscar.apps.offer.utils.Applicator.apply` and
:method:`~oscar.apps.offer.utils.Applicatior.get_offers` changed their
arguments to (basket, user=None, request=None). (#1677 [https://github.com/django-oscar/django-oscar/pull/1677])

Migrations

Migrations will get picked up automatically for apps you haven’t customised.
If you have customised any app, please consult the
detailed instructions on how to handle migrations.

Warning

This release contains a data migration for category slugs. If you have
forked it, it is critical you run a copy of that migration when upgrading.

Warning

This release doesn’t include any South migrations, as support for Django
1.6 has been dropped.

Note, the catalogue app contains a data migration 0003_data_migration_slugs.
If you have a forked catalogue app, copy this migration into your project so it
can be applied (or create a data migration that applies the same transformation).

Dependency changes

	Oscar now requires django-treebeard 3.0.

Deprecated features

The following features have been deprecated in this release:

	For backwards compatibility, one can access the ProductCategoryView
without specifying a category PK in the URL. Oscar itself does not
use this any more, and it will be removed with the next version of Oscar.

	ProductSearchHandler has been renamed to SolrProductSearchHandler.
The old name will be removed in the next version of Oscar.

Removal of deprecated features

These methods have been removed:

	oscar.core.compat.atomic_compat: Use django.db.transaction.atomic
instead.

	oscar.core.loading.import_string: Use
django.utils.module_loading.import_string instead.

	Product.variants: Use Product.children

	Product.is_top_level: Use Product.is_standalone or self.is_parent

	Product.is_group: Use Product.is_parent

	Product.is_variant: Use Product.is_child

	Product.min_variant_price_incl_tax: Refactor or use the deprecated
Product.min_child_price_incl_tax.

	Product.min_variant_price_excl_tax: Refactor or use the deprecated
Product.min_child_price_excl_tax.

	Strategy.fetch_for_group: Use Strategy.fetch_for_parent.

	Strategy.select_variant_stockrecords: Use
Strategy.select_children_stockrecords.

	Strategy.group_pricing_policy: Use Strategy.parent_pricing_policy.

	Strategy.group_availability_policy: Use
Strategy.parent_availability_policy.

These instances have been removed:

	oscar.app.shop: Use oscar.app.application instead.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.1.1 release notes

	release:	2015-08-05

This is Oscar 1.1.1, a bug fix release.

Bug fixes

	#1802 [https://github.com/django-oscar/django-oscar/issues/1802]: The glyphicons fonts were missing from the release. This could cause Django’s
collectstatic command to fail.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.0 release notes

	release:	2014-11-07

Welcome to Oscar 1.0! It’s been 7 months and some 800 commits since 0.7 and
lots of work has gone into 1.0. This release makes quite a few changes,
especially around supporting Django 1.7 with its app refactor and new migrations
support.

Also, as you might have seen [https://groups.google.com/forum/#!searchin/django-oscar/organisation/django-oscar/6H7ByzRAkRY/6055EDottBAJ], the repositories for Oscar and most of its
extensions have moved to a new Github organisation [https://github.com/django-oscar/django-oscar]. This marks a change for
Oscar from being a Tangent-sponsored project to a more community-driven one,
similar to Django itself. The core team is growing too to accommodate new
contributors from outside Tangent. This is an exciting change and we’re hopeful
that Oscar can continue to grow and prosper. To mark this departure, this
release has been renamed from 0.8 (under which we released three beta versions)
to 1.0.

Table of contents:

	Compatibility

	What’s new in Oscar 1.0?

	Backwards incompatible changes in 1.0

	Known issues

Compatibility

This release adds support for Django 1.7. Per our policy of always supporting
two versions of Django, support for Django 1.5 has been dropped.

This release also adds full Python 3.3 and 3.4 support.

If you’re using pysolr for search, you’ll need to upgrade to version 3.2 or
later.

What’s new in Oscar 1.0?

Explicit differentiation of child, parent and stand-alone products

In some edge cases, it was difficult to determine the ‘type’ of a product. For
example, whether a product is a parent (or “group”) product without children or
stand-alone product (which never has children). To make that distinction
easier, a structure field has been introduced on the AbstractProduct
class. In that process, naming for the three different product structures
has been altered to be:

	stand-alone product

	A regular product (like a book)

	parent product

	A product that represents a set of child products (eg a T-shirt, where the set is
the various color and size permutations). These were previously referred to
as “group” products.

	child product

	All child products have a parent product. They’re a specific version of the
parent. Previously known as product variant.

Some properties and method names have also been updated to the new naming. The
old ones will throw a deprecation warning.

Better handling of child products in product dashboard

Together with the changes above, the dashboard experience for child products
has been improved. The difference between a parent product and a stand-alone
product is hidden from the user; a user can now add and remove child products
on any suitable product. When the first child product is added, a stand-alone
product becomes a parent product; and vice versa.

In the front-end, the old name of “product variants” has been kept.

Customisation just got easier!

	Oscar’s views are now dynamically imported. This means that they can be
overridden like most other classes in Oscar; overriding the related
Application instance is not necessary any more which simplifies the process of
replacing or customising a view.

	A new management command, oscar_fork_app, has been introduced to make it
easy to fork an Oscar app in order to override one of its classes.

The documentation around Customising Oscar has been given an
overhaul to incorporate the changes.

Django 1.7 support

Oscar 1.0 comes with support for Django 1.7 out of the box. The app refactor
and the new migration framework are both great improvements to Django. Oscar
now ships with sets of migrations both for South and the new native
migrations framework.

Unfortunately, the changes in Django required a few breaking changes when
upgrading Oscar both for users staying on Django 1.6 and for users upgrading to
Django 1.7 at the same time. These are detailed in the section for
backwards-incompatible changes.

The changes in Django 1.7 meant quite a bit of effort to support both versions
of Django, so it’s very probable that Django 1.6 support will be removed in
the next release of Oscar. Django 1.7 has notable improvements, so with that
in mind, we can only recommend upgrading now.

Billing addresses explicitly passed around checkout

The build_submission method used in checkout now has a billing_address
key and the signatures for the submit and handle_order_placement methods
have been extended to include it as a keyword argument. While this change should
be backwards compatible, it’s worth being aware of the method signature changes
in case it affects your checkout implementation.

Dashboard for weight-based shipping methods

There is a new dashboard for weight-based shipping methods. It isn’t enabled by
default as weight-based shipping methods are themselves not enabled by default.
To add it to the dashboard menu, include this snippet in your
OSCAR_DASHBOARD_NAVIGATION setting:

OSCAR_DASHBOARD_NAVIGATION = [
 ...
 {
 'label': _('Shipping charges'),
 'url_name': 'dashboard:shipping-method-list',
 },
 ...
]

You’ll also need to modify your shipping repository class to return weight-based
shipping methods.

US demo site

To help developers building sites for the US, a new example Oscar site has been
included in the repo. This customises core Oscar to treat all prices as
excluding tax and then calculate and apply taxes once the shipping address is
known.

Faceting for category browsing

If Oscar is running with a Solr-powered search backend, the category browsing
now shows facets (e.g. filter by price range, or product type). This is
implemented via a new SearchHandler interface, which will eventually replace
the tight coupling between Haystack and Oscar. It therefore paves the way for
better support for other search engines.

Reworked shipping app

Several parts of the shipping app have been altered. The most important change
is a change to the API of shipping methods to avoid a potential thread safety
issue. Any existing Oscar sites with custom shipping methods will need to
adjust them to confirm to the new API. The new API and the other changes are
detailed below.

See the
backwards incompatible changes
for the shipping app and the
guide to configuring shipping
for more information.

Basket additions clean-up

The forms and views around adding things to your basket have been vigorously
reworked. This cleans up some very old code there and ensures variant products
are handled in a consistent way.

The changes do require changing the constructor signature of the
AddToBasketForm - the details are documented in the
Basket app changes.

Checkout improvements

The checkout process now skips payment if the order total is zero (e.g. when
ordering free products or using a voucher). As part of that, checkout views
now evaluate pre-conditions (as before) and newly introduced
skip conditions. This should make customising the checkout flow easier.

Out with the old, in with the new

Lots of methods deprecated in the 0.6 release have now been removed.
Specifically, the partner “wrapper” functionality is now gone. All price and
availability logic now needs to be handled with strategies.

Minor changes

	The OSCAR_CURRENCY_LOCALE setting has been removed. The locale is now
automatically determined from the current language. This ensures prices are
always shown in the correct format when switching languages.

	The login and registration view now redirects staff users to the dashboard
after logging in. It also employs flash messages to welcome returning and
newly registered users.

	The basket middleware now assigns a basket_hash attribute to the
request instance. This provides a hook for basket caching.

	The tracking pixel now also reports the Oscar version in use. This was
forgotten when adding tracking of the Python and Django version in 0.7.
Total information collected now is the versions of Django, Python and Oscar.

	The tracking pixel is now served by a server run by the new Oscar
organisation, rather than by Tangent.

	The OSCAR_SLUG_FUNCTION now accepts both string notation and a callable.

	The default templates now allow the order status to be changed on the
dashboard order detail page.

	The forms for the order dashboard views are now loaded dynamically so they
can be overridden.

	An OSCAR_DELETE_IMAGE_FILES setting has been introduced which makes deleting
image files and thumbnails after deleting a model with an ImageField
optional. It usually is desired behaviour, but can slow down an app when
using a remote storage.

	Oscar now ships with a oscar_populate_countries management command to
populate the country databases. It replaces the countries.json fixture.
The command relies on the pycountry library being installed.

	It is now possible to use product attributes to add a relation to arbitrary
model instances. There was some (presumably broken) support for it before,
but you should now be able to use product attributes of type entity as
expected. There’s currently no frontend or dashboard support for it, as there
is no good default behaviour.

	Payment extensions can now raise a UserCancelled payment exception to
differentiate between the intended user action and any other errors.

	Oscar has a new dependency, django-tables2 [https://django-tables2.readthedocs.io/en/latest/]. It’s a handy library that helps
when displaying tabular data, allowing sorting, etc. It also makes it easier
to adapt e.g. the product list view in the dashboard to additional fields.

	jquery-ui-datepicker has been replaced in the dashboard by
bootstrap-datetimepicker [http://www.malot.fr/bootstrap-datetimepicker/]. We still ship with jquery-ui-datepicker and
JQuery UI as it’s in use in the frontend.

	... and dozens of bugs fixed!

Backwards incompatible changes in 1.0

Product structure

Generally, backwards compatibility has been preserved. Be aware of the following
points though:

	You now need to explicitly set product structure when creating a product;
the default is a stand-alone product.

	The related_name for child products was altered from variants to
children. A variants property has been provided (and will throw a
deprecation warning), but if you used the old related name in a query lookup
(e.g. products.filter(variants__title='foo'), you will have to change it
to children.

	Template blocks and CSS classes have been renamed.

The following methods and properties have been deprecated:

	Product.is_parent - Use is_group instead.

	Product.is_variant - Use is_child instead.

	Product.is_top_level - Test for is_standalone and/or is_parent instead.

	Strategy.fetch_for_group - Use fetch_for_parent instead.

	Strategy.group_[pricing|availability]_policy - Use
parent_[pricing|availability]_policy instead.

	Strategy.select_variant_stockrecords - Use
select_children_stockrecords instead.

Furthermore, CSS classes and template blocks have been updated. Please follow
the following renaming pattern:

	variant-product becomes child-product

	product_variants becomes child_products

	variants becomes children

	variant becomes child

Product editing

The dashboard improvements for child products meant slight changes to both
ProductCreateUpdateView and ProductForm. Notably ProductForm now
gets a parent kwarg. Please review your customisations for compatibility
with the updated code.

Shipping

The shipping method API has been altered to avoid potential thread-safety
issues. Prior to v1.0, shipping methods had a set_basket method which
allowed a basket instance to be assigned. This was really a crutch to allow
templates to have easy access to shipping charges (as they could be read
straight off the shipping method instance). However, it was also a
design problem as shipping methods could be instantiated at compile-time
leading to a thread safety issue where multiple threads could assign a basket
to the same shipping method instance.

In Oscar 1.0, shipping methods are stateless services that have a method
calculate() that takes a basket and
returns a Price instance. New template tags are
provided that allow these shipping charges to be accessed from templates.

This API change does require quite a few changes as both the shipping method
and shipping charge now need to be passed around separately:

	Shipping methods no longer have charge_excl_tax,
charge_incl_tax and is_tax_known properties.

	The OrderCreator class now requires the
shipping_charge to be passed to place_order.

	The signature of the OrderTotalCalculator
class has changed to accept shipping_charge rather than a
shipping_method instance.

	The signature of the
get_order_totals()
method has changed to accept the shipping_charge rather than a
shipping_method instance.

Another key change is in the shipping repository object. The
get_shipping_methods method has been split in two to simplify the exercise
of providing new shipping methods. The best practice for Oscar 1.0 is to
override the methods attribute if the same set of shipping methods is
available to everyone:

from oscar.apps.shipping import repository, methods

class Standard(methods.FixedPrice):
 code = "standard"
 name = "Standard"
 charge_excl_tax = D('10.00')

class Express(methods.FixedPrice):
 code = "express"
 name = "Express"
 charge_excl_tax = D('20.00')

class Repository(repository.Repository):
 methods = [Standard(), Express()]

or to override get_available_shipping_methods if the available shipping
methods if only available conditionally:

from oscar.apps.shipping import repository

class Repository(repository.Repository):

 def get_available_shipping_methods(
 self, basket, shipping_addr=None, **kwargs):
 methods = [Standard()]
 if shipping_addr.country.code == 'US':
 # Express only available in the US
 methods.append(Express())
 return methods

Note that shipping address should be passed around as instances not classes.

Email address handling

In theory, the local part of an email is case-sensitive. In practice, many
users don’t know about this and most email servers don’t consider the
capitalisation. Because of this, Oscar now disregards capitalisation when
looking up emails (e.g. when a user logs in).
Storing behaviour is unaltered: When a user’s email address is stored (e.g.
when registering or checking out), the local part is unaltered and
the host portion is lowercased.

Warning

Those changes mean you might now have multiple users with email addresses
that Oscar considers identical. Please use the new
oscar_find_duplicate_emails management command to check your database
and deal with any conflicts accordingly.

Django 1.7 support

If you have any plans to upgrade to Django 1.7, more changes beyond
addressing migrations are necessary:

	You should be aware that Django 1.7 now enforces uniqueness of app labels.
Oscar dashboard apps now ship with app configs that set their app label
to {oldname}_dashboard.

	If you have forked any Oscar apps, you must add app configs to them, and
have them inherit from the Oscar one. See the appropriate section in
Forking an app for an example.

	Double-check that you address migrations as detailed below.

	Django now enforces that no calls happen to the model registry during
app startup. This mostly means that you should avoid module-level calls to
get_model, as that only works with a fully initialised model registry.

Basket line stockrecords

The basket line model got a reference to the stockrecord in Oscar 0.6. The
basket middleware since then updated basket lines to have stockrecords if
one was missing. If any lines are still missing a stockrecord, we’d expect them
to be from from submitted baskets or from old, abandoned baskets.
This updating of basket lines has been removed for 1.0 as it incurs additional
database queries. Oscar 1.0 now also enforces the stockrecord by making it
the stockrecord field of basket Line model no longer nullable.

There is a migration that makes the appropriate schema change but, before that
runs, you may need to clean up your basket_line table to ensure that all
existing null values are replaced or removed.

Here’s a simple script you could run before upgrading which should ensure there
are no nulls in your basket_line table:

from oscar.apps.basket import models
from oscar.apps.partner.strategy import Selector

strategy = Selector().strategy()

lines = models.Line.objects.filter(stockrecord__isnull=True):
for line in lines:
 info = strategy.fetch_for_product(line.product)
 if line.stockrecord:
 line.stockrecord = info.stockrecord
 line.save()
 else:
 line.delete()

	The reload_page_response method of
OrderDetailView
has been renamed to reload_page.

Basket app changes

	The basket:add URL now required the primary key of the “base” product to
be included. This allows the same form to be used for both GET and POST
requests for variant products.

	The ProductSelectionForm is no longer used and has been removed.

	The constructor of the AddToBasketForm has
been adjusted to take the basket and the purchase info tuple as parameters
instead of the request instance (c74f57bf [https://github.com/django-oscar/django-oscar/commit/c74f57bf434661877f4d2d2259e7e7eb18b34951#diff-d200ac8746274e0307f512af886e1f3eR148] and 8ba283e8 [https://github.com/django-oscar/django-oscar/commit/8ba283e8c4239e4eff95da5e8097a17ecfadf5f5]).

Misc

	The oscar_calculate_scores command has been rewritten [https://github.com/django-oscar/django-oscar/commit/d8b4dbfed17be90846ea4bc47b5f7b39ad944c24] to use the ORM
instead of raw SQL. That exposed a bug in the previous calculations,
where purchases got weighed less than any other event. When you upgrade,
your total scores will be change. If you rely on the old behaviour,
just extend the Calculator class and adjust the weights.

	Order.order_number now has unique=True set. If order numbers are
not unique in your database, you need to remedy that before migrating. By
default, Oscar creates unique order numbers.

	Product.score was just duplicating ProductRecord.score and has been
removed. Use Product.stats.score instead.

	Oscar has child products to model tightly coupled products, and
Product.recommended_products to model products that are loosely related
(e.g. used for upselling). Product.related_products was a
third option that sat somewhere in between, and which was not well supported.
We fear it adds confusion, and in the spirit of keeping Oscar core lean,
has been removed. If you’re using it, switch to
Product.recommended_products or just add the field back to your
custom Product instance and ProductForm when migrating.

	The basket_form template tag code has been greatly simplified. Because of
that, the syntax needed to change slightly.

Before: {% basket_form request product as basket_form single %}

After: {% basket_form request product 'single' as basket_form %}

	Product attribute validation has been cleaned up. As part of that, the
trivial ProductAttribute.get_validator and the unused
ProductAttribute.is_value_valid methods have been removed.

	The RangeProductFileUpload model has been moved from the ranges
dashboard app to the offers app. The migrations that have been naively
drop and re-create the model; any data is lost! This is probably not an
issue, as the model is only used while an range upload is in progress. If
you need to keep the data, ensure you migrate it across.

	oscar.core.loading.get_model now raises a LookupError instead of an
ImportError if a model can’t be found. That brings it more in line with
what Django does since the app refactor.

	CommunicationEventType.category was storing a localised string, which
breaks when switching locale. It now uses choices to map between the
value and a localised string. Unfortunately, if you’re using this feature
and not running an English locale, you will need to migrate the existing
data to the English values.

	Support for the OSCAR_OFFER_BLACKLIST_PRODUCT setting has been removed.
It was only partially supported: it prevented products from being
added to a range, but offers could be applied to the products nonetheless.
To prevent an offer being applied to a product, use is_discountable or
override get_is_discountable on your product instances.

	Category.get_ancestors used to return a list of ancestors and would
default to include itself. For consistency with get_descendants and to avoid
having to slice the results in templates, it now returns a queryset of the
ancestors; use Category.get_ancestors_and_self for the old behaviour.

	Weight based shipping methods used to have an upper_charge field which was
returned if no weight band matched. That doesn’t work very well in practice,
and has been removed. Instead, charges from bands are now added together to
match the weight of the basket.

	The OrderCreator class no longer defaults to
free shipping: a shipping method and charge have to be explicitly passed in.

	The Base shipping method class now lives in oscar.apps.shipping.methods.

	The find_by_code method of the shipping Repository class has been
removed as it is no longer used.

	The parameters for
oscar.apps.shipping.repository.Repository.get_shipping_methods()
have been re-ordered to reflect which are the most important.

	The legacy ShippingMethod name of the interface of the shipping app has
been removed. Inherit from shipping.base.Base for the class instead, and
inherit from shipping.abstract_models.AbstractBase for model-based
shipping methods.

	oscar.apps.shipping.Scales has been renamed and moved to
oscar.apps.shipping.scales.Scale, and is now overridable.

	The models of the shipping app now have abstract base classes, similar to
the rest of Oscar.

	The legacy ShippingMethod name of the interface of the shipping app has
been removed. Inherit from shipping.base.Base for the class instead, and
inherit from shipping.abstract_models.AbstractBase for model-based
shipping methods.

	Oscar’s models.py files now define __all__, and it’s dynamically
set to only expose unregistered models (which should be what you want) to
the namespace. This is important to keep the namespace clean while doing
star imports like from oscar.apps.catalogue.models import *. You will
have to check your imports to ensure you’re not accidentally relying on
e.g. a datetime import that’s pulled in via the star import. Any such
import errors will cause a loud failure and should be easy to spot and fix.

Migrations

	South is no longer a dependency. This means it won’t get installed
automatically when you install Oscar. If you are on Django 1.6 and want to
use South, you will need to explicitly install it and add it to your
requirements.

	Only South >= 1.0 is supported: South 1.0 is a backwards compatible release
explicitly released to help with the upgrade path to Django 1.7. Please make
sure you update accordingly if you intend to keep using South. Older versions
of South will look in the wrong directories and will break with this Oscar
release.

	Rename your South migrations directories. To avoid
clashes between Django’s and South’s migrations, you should rename
all your South migrations directories (including those of forked Oscar apps)
to south_migrations. South 1.0 will check those first before falling back
to migrations.

	If you’re upgrading to Django 1.7, you
will need to follow the instructions to upgrade from South [https://docs.djangoproject.com/en/1.7/topics/migrations/#upgrading-from-south] for your own
apps. For any forked Oscar apps, you will need to copy Oscar’s initial
migrations into your emptied migrations directory first, because Oscar’s
set of migrations depend on each other. You can then create migrations for
your changes by calling ./manage.py makemigrations. Django should
detect that the database layout already matches the state of migrations; so
a call to migrate should fake the migrations.

Warning

The catalogue app has a data migration to determine the product structure.
Please double-check it’s outcome and make sure to do something similar
if you have forked the catalogue app.

Note

The migration numbers below refer to the numbers of the South migrations.
Oscar 1.0 ships with a set of new initial migrations for Django’s new
native migrations framework. They include all the changes detailed below.

Note

Be sure to read the detailed instructions for
handling migrations.

	Address:

	0011 - AbstractAddress.search_text turned into a TextField.

	0012 - AbstractCountry: Removed two unused indexes & turns numeric code into CharField

	Catalogue:

	0021 - Add unique_together to ProductAttributeValue,
ProductRecommendation and ProductCategory

	0022 - Remove Product.score field.

	0023 - Drop Product.related_products.

	0024 - Change ProductAttributeValue.value_text to a TextField
and do entity attribute changes and model deletions.

	0025 & 0026 - Schema & data migration to determine and save Product structure.

	Offer:

	0033 - Use an AutoSlug field for Range models

	0034 - Add moved RangedProductFileUpload model.

	Order:

	0029 - Add unique_together to PaymentEventQuantity and ShippingEventQuantity

	0030 - Set unique=True for Order.order_number

	0031 - AbstractAddress.search_text turned into a TextField.

	Partner:

	0014 - AbstractAddress.search_text turned into a TextField.

	Promotions:

	0006 - Add unique_together to OrderedProduct

	Ranges dashboard:

	
	0003 - Drop RangeProductFileUpload from ranges app. This is

	a destructive change!

	Shipping:

	0007 - Change WeightBand.upper_limit from FloatField to DecimalField

	0008 - Drop WeightBased.upper_charge field.

Deprecated features

The following features have been deprecated in this release:

	Many attributes concerning product structure. Please see the
product structure changes for details.

Removal of deprecated features

These methods have been removed:

	oscar.apps.catalogue.abstract_models.AbstractProduct.has_stockrecord

	oscar.apps.catalogue.abstract_models.AbstractProduct.stockrecord

	oscar.apps.catalogue.abstract_models.AbstractProduct.is_available_to_buy

	oscar.apps.catalogue.abstract_models.AbstractProduct.is_purchase_permitted

	oscar.apps.catalogue.views.get_product_base_queryset

	oscar.apps.partner.abstract_models.AbstractStockRecord.is_available_to_buy

	oscar.apps.partner.abstract_models.AbstractStockRecord.is_purchase_permitted

	oscar.apps.partner.abstract_models.AbstractStockRecord.availability_code

	oscar.apps.partner.abstract_models.AbstractStockRecord.availability

	oscar.apps.partner.abstract_models.AbstractStockRecord.max_purchase_quantity

	oscar.apps.partner.abstract_models.AbstractStockRecord.dispatch_date

	oscar.apps.partner.abstract_models.AbstractStockRecord.lead_time

	oscar.apps.partner.abstract_models.AbstractStockRecord.price_incl_tax

	oscar.apps.partner.abstract_models.AbstractStockRecord.price_tax

	oscar.apps.payment.abstract_models.AbstractBankcard.card_number

These classes have been removed:

	oscar.apps.partner.prices.DelegateToStockRecord

	oscar.apps.partner.availability.DelegateToStockRecord

	oscar.apps.payment.utils.Bankcard

Known issues

	models.py dynamically sets __all__ to control what models are
importable through the star import. A bug in the models.py for the
partner app means you’ll have to explicitly import them. More info in
#1553 [https://github.com/django-oscar/django-oscar/issues/1553].

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.0.1 release notes

This is Oscar 1.0.1, a bug fix release.

Bug fixes

	#1553 [https://github.com/django-oscar/django-oscar/issues/1553]: from oscar.apps.partner.models import * could lead to the
wrong models being imported.

	#1556 [https://github.com/django-oscar/django-oscar/issues/1556]: Dashboard order table headers shifted

	#1557 [https://github.com/django-oscar/django-oscar/issues/1557]: Fixed an issue where Oscar wrongly used Django’s is_safe_url.
Hence some redirects might not have worked as expected. This change
unfortunately meant updating the notation of
oscar.core.utils.safe_referrer() and
oscar.core.utils.redirect_to_referrer() to accept the request instead
of request.META.

	#1577 [https://github.com/django-oscar/django-oscar/issues/1577]: The billing address was not being correctly passed through to the
place_order method.

	#1592 [https://github.com/django-oscar/django-oscar/issues/1592]: Product.min_child_price_[excl|incl]_tax were broken and
failing loudly. They are not recommended any more, but to ensure
backwards-compatibility, they have been fixed.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 1.0.2 release notes

This is Oscar 1.0.2, a bug fix release.

Bug fixes

	#1562 [https://github.com/django-oscar/django-oscar/issues/1562]: Correctly handle the update_fields kwarg on Category.save()

	#1672 [https://github.com/django-oscar/django-oscar/issues/1672]: Order.shipping_status was not guaranteed to return the correct status.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.7 release notes

	release:	2014-04-29

Welcome to Oscar 0.7!

These release notes cover the new features as well as
backwards incompatible changes that you’ll want to be aware of when
upgrading from Oscar 0.6 or earlier.

If you encounter any undocumented issues, please let us know on the mailing
list [https://groups.google.com/forum/?fromgroups#!forum/django-oscar].

Table of contents:

	Overview

	Compatibility

	What’s new in Oscar 0.7?

	Backwards incompatible changes in 0.7

Overview

Oscar 0.7 is largely a maintenance release, fixing minor issues, merging
long-standing pull requests and other housekeeping.

As part of the clean-up, we have removed a few unused models and model fields,
as well as removing null=True from a load of CharFields - so please read the
release notes carefully when upgrading as some schema migrations may need some
care.

Further, ensure you test your checkout implementation carefully after upgrading
as the core Oscar checkout view classes have been reorganised slightly. Any
upgrading work should be minor but be diligent.

Compatibility

Oscar 0.7 has experimental support for Python 3.

Support for Django 1.4 has been dropped, and support for Django 1.6 is
now considered stable.

What’s new in Oscar 0.7?

Search improvements

Several improvements have been made to Oscar’s default search functionality:

	Search results can be now be sorted.

	If your search backend supports it, spelling suggestions will be shown if
the original search term doesn’t lead to any results.

	Only products are returned by the core search view. Other content types in
your search index are filtered out (#370 [https://github.com/django-oscar/django-oscar/issues/370]).

Extended signals

Oscar’s signals have been improved and consolidated, making it easier to hook
into user journeys and extract analytics information.

Changes to existing signals include:

	The basket_addition signal now passes the request as an additional
kwarg.

	The user_registered signal now passes the request as an additional
kwarg.

New signals:

	A start_checkout signal is now raised when the customer begins the
checkout process.

See the signals docs for more details.

Checkout reorganisation

The checkout classes have been reworked to clean-up how pre-conditions are
enforced. Each view class now has a pre_conditions attribute which is an
iterable of method names (as strings). Each method is run within the
dispatch method of the view and will redirect the customer back to the
appropriate view if the check fails.

This change makes pre-conditions easier to customise and simplifies the core
checkout views. Consequently, the following methods are no longer required and
have been removed:

	PaymentDetails.get_error_response

	PaymentDetails.can_basket_be_submitted

Further, the PaymentDetailsView has been re-organised for extensibility.
For instance, several new methods have been introduced to allow
fine-grained overriding of functionality:

	handle_payment_details_submission() -
This is responsible for validating any forms submitted from the payment
URL

	handle_place_order_submission() -
This is responsible for placing an order after a submission from the preview
URL.

	render_payment_details() -
Render the payment details template.

The implementation of
submit() has been improved
to handle payment errors in a more customer friendly way. If an exception is
raised during payment, the payment details page is now loaded with the
original forms passed to the template (so form validation errors can be displayed).

Finally, the billing_address kwarg to
submit`() has been removed.
If you want to pass a billing address to be saved against the order, then pass
it as part of the order_kwargs option.

Minor changes

	Oscar’s LESS files now use Bootstrap 2.3.2 (Oscar 0.6 uses 2.1.1).

	The product model now has a
num_approved_reviews
property to avoid unnecessary SQL queries when rendering templates (#1299 [https://github.com/django-oscar/django-oscar/pull/1299])

	Customers can delete their profiles from within their account section.

	Customers are prevented from using short or common passwords when changing
their password in their account (#1202 [https://github.com/django-oscar/django-oscar/pull/1202])

	permissions_map now supports more than two
lists to evaluate permissions.

	Formset handling in
ProductCreateUpdateView has
been simplified and now easily allows adding further formsets.

	Increased required version of Django Haystack to 2.1

	The dashboard’s Bootstrap and the Bootstrap JS has been bumped to 2.3.2, the
latest release of version 2.

	The dashboard’s category handling now has the ability to directly create
child categories.

	Oscar’s error messages now have their own CSS class, error-block
(ef3ccf08a7 [https://github.com/django-oscar/django-oscar/commit/ef3ccf08a707ae1250cdb8d5f2dc6f721d020dc4]).

	It is now possible to disable the redirect that happens when a product or
category’s slug changed and an old URL is used (b920f8ba [https://github.com/django-oscar/django-oscar/commit/b920f8ba288cd2f19bb167db2a012479ba956397]).

	BankCardNumberField now allows specifying
accepted card types (32b7249 [https://github.com/django-oscar/django-oscar/commit/32b7249e44b40cb1b20d01226f77ae6777a20b91]).

	Several slug fields have been turned into the newly introduced
AutoSlugField to ensure that generated slugs
are unique.

	Widget initialisation can now be prevented with adding the no-widget-init
class. Issues around widget initialisation in the dashboard promotions have
been resolved.

	The access function used to determine dashboard’s menu entries’ visibility
is now settable via
OSCAR_DASHBOARD_DEFAULT_ACCESS_FUNCTION.

	Vouchers start and end times are now datetimes instead of dates; allowing
“lunch-time deals” etc.

	Product classes can now be added from the dashboard. Editing options and
attributes is not yet supported though.

	Experimental support for having a language prefix in the URL has been added,
and enabled for the sandbox. This can be achieved by using Django’s
i18n_patterns [https://docs.djangoproject.com/en/dev/topics/i18n/translation/#language-prefix-in-url-patterns] function in your urls.py. for the sandbox.
See sites/sandbox/urls.py for an example.

	A basic example for a multi-language sitemap has been added to the sandbox.

	Reasoning about e.g. when it is feasible to drop Python 2.6 or Django 1.5
support is hard without reliable data, hence the tracker pixel has been
extended to submit the Python and Django version in use.
Tracking is still easily disabled by setting OSCAR_TRACKING to False.

Bugfixes

	Addresses in non-shipping countries can no longer be selected as default shipping
address anymore (be04d46639 [https://github.com/django-oscar/django-oscar/commit/]).

	Suspended and consumed offers are no longer returned by the “active” offer
manager. (#1228 [https://github.com/django-oscar/django-oscar/issues/1228]).

	Products can now be removed from categories (#1289 [https://github.com/django-oscar/django-oscar/issues/1289]).

Backwards incompatible changes in 0.7

Warning

Fields and models have been removed from Oscar. If you used them, you must
ensure you create/extend the affected models appropriately.

	Oscar has dropped support for Django 1.4. However, if Oscar continues to
support the AUTH_PROFILE_MODULE setting so sites that use separate
profile models aren’t forced to convert to a single user model in order to
use Oscar 0.7.

	AbstractProduct.status was an unused CharField provided for convenience
as it’s a commonly required field. But a different field type was often
required, and as changing it is much harder than adding a field with the
desired type, the field has been removed.

	Contributor, ContributorRole, the through-model ProductContributor
and their abstract versions have been removed as they were unused and too
specific to the domain of book shops.

	ProductCategory.is_canonical was an unused BooleanField and has been
removed.

	Order.basket_id was a PositiveIntegerField containing the primary key of the
associated basket. It’s been refactored to be a nullable ForeignKey and
is now called “basket”.

	#1123 [https://github.com/django-oscar/django-oscar/pull/1123] - The URL structure of ProductCreateRedirectView has been changed to use
the product class’ slug instead of the primary key. It’s necessary to update
URLs pointing to that view.

	ProductListView has been removed as it wasn’t needed any more after the
search improvements. The old URL route still works.

	Accessing categories by just slug instead of primary key and slug had been
unofficially deprecated for 0.6, and is removed now.

	#1251 [https://github.com/django-oscar/django-oscar/pull/1251] - Form related templates have been refactored. If you’ve modified
them, your templates might need updating.

	django.conf.urls.i18n has been removed from Oscar’s default URLs. This is
because to get i18n_patterns working for Oscar, it needs to be defined
outside of the scope of it. If you use i18n, you need to explicitly add the
following line to your main urls.py:

(r'^i18n/', include('django.conf.urls.i18n')),

	jScrollPane, which was used to style the dashboard’s scroll bars, has been
removed.

	The methods get_error_response and can_basket_be_submitted have been
removed from the PaymentDetailsView view class in checkout

Removal of features deprecated in 0.6

	Django 1.4 support has been removed.

	In OrderPlacementMixin, the following methods
have been removed:
	create_shipping_address_from_form_fields - This is removed as checkout
now requires an unsaved shipping address instance to be passed in (rather
than having it created implicitly).

	create_user_address - This is replaced by
oscar.apps.checkout.mixin.OrderPlacementMixin.update_address_book().

	create_shipping_address_from_user_address

	The oscar.apps.checkout.session.CheckoutSessionData.shipping_method()
has been removed. Instead
oscar.apps.checkout.session.CheckoutSessionMixin.get_shipping_address()
provides the same functionality.

Migrations

Warning

The reviews app has not been under migration control so far. Please ensure
you follow South’s guidelines on how to convert an app [https://south.readthedocs.io/en/latest/convertinganapp.html]. Essentially,
you will have to run: $./manage.py migrate reviews 0001 --fake

Warning

A lot of Oscar apps have data migrations for CharFields before null=True
is removed in the following schema migration. If you have extended such an
app and use your own migrations, then you will need to first convert
affected None‘s to '' yourself; see the data migrations for our
approach.

Note

Be sure to read the detailed instructions for
handling migrations.

	Address:

	0008 - Forgotten migration for UserAddress.phone_number

	0009 & 0010 - Data and schema migration for removing null=True on CharFields

	Catalogue:

	0014 - Drops unused ProductCategory.is_canonical field.

	0015 - Turns a product’s UPC field into a oscar.models.fields.NullCharField

	0016 - AutoSlugField for AbstractProductClass and AbstractOption

	0017 - Removes Product.status, Contributor, ContributorRole and ProductContributor

	0018 - Set on_delete=models.PROTECT on Product.product_class

	0019 & 0020 - Data and schema migration for removing null=True on CharFields

	Customer:

	0006 - AutoSlugField and unique=True for AbstractCommunicationEventType

	0007 & 0008 - Data and schema migration for removing null=True on CharFields

	0009 - Migration caused by CommunicationEventType.code separator change

	Offer:

	0029 - AutoSlugField for ConditionalOffer

	0030 & 0031 - Data and schema migration for removing null=True on CharFields

	0032 - Changing proxy_class fields to NullCharField

	Order:

	0025 - AutoSlugField for AbstractPaymentEventType and AbstractShippingEventType``

	0026 - Allow null=True and blank=True for Line.partner_name

	0027 & 0028 - Data and schema migration for removing null=True on CharFields

	Partner:

	0011 - AutoSlugField for AbstractPartner

	0012 & 0013 - Data and schema migration for removing null=True on CharFields

	Payment:

	0003 - AutoSlugField and unique=True for AbstractSourceType

	Promotions:

	0004 & 0005 - Data and schema migration for removing null=True on CharFields

	Shipping:

	0006 - AutoSlugField for ShippingMethod

	Reviews:

	0001 - Initial migration for reviews application. Make sure to follow
South’s guidelines on how to convert an app [https://south.readthedocs.io/en/latest/convertinganapp.html].

	0002 & 0003 - Data and schema migration for removing null=True on CharFields

	Voucher:

	0002 and 0003 - Convert [start|end]_date to
[start|end]_datetime (includes data migration).

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.7.1 release notes

This is Oscar 0.7.1, a nano-release to squash one gremlin in 0.7 that affects
django-oscar-paypal [https://github.com/django-oscar/django-oscar-paypal].

Bug fixes

This release makes a change [https://github.com/django-oscar/django-oscar/commit/fbce17c] to the checkout session mixin which allows a basket
to be explicitly specified by subclasses of the checkout PaymentDetails
view class. This is required when a different basket to request.basket is
intended to be used in a preview (this is what django-oscar-paypal [https://github.com/django-oscar/django-oscar-paypal] needs to
do).

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.7.2 release notes

This is Oscar 0.7.2, a minor security release. If you rely on the
permissions_required decorator or the
Application.permissions_map and Application.default_permissions syntax,
you must upgrade.

Bug fixes

	The permissions_required decorator now handles both methods and
properties on the User model. Previously, it wasn’t supported, but a
docstring showed is_anonymous as an example, which is a
method.

	It fixes a syntax error in basket.views.BasketView when rendering an
error message. Previously, trying to save an item for later while not
being logged in would cause an Internal Server Error.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.7.3 release notes

This is Oscar 0.7.3, a tiny release to relax the dependency restrictions for
South and django-compressor:

	South 1.0 can now be used with Oscar 0.7.3. Previously it was capped at 0.9.

	django-compressor 1.4 can now be used with Oscar 0.7.3 when running Python 2.7
(Previously 1.3 was specified for Python 2.7, while 1.4a was specified for
Python 3).

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.6 release notes

	release:	2014-01-08

It took a while but it’s finally here: welcome to Oscar 0.6!

These release notes cover the new features as well as backwards incompatible changes
that you’ll want to be aware of when upgrading from Oscar 0.5 or
earlier. This release contains some major changes to core APIs which means
many old APIs are scheduled to be dropped - see the deprecation plan to avoid any
nasty surprises.

When upgrading your Oscar site, make sure you study both the backwards
incompatible changes and the deprecated features. If you encounter any
undocumented issues, please let us know on the mailing list [https://groups.google.com/forum/?fromgroups#!forum/django-oscar].

Table of contents:

	Overview

	What’s new in Oscar 0.6?

	Backwards incompatible changes in 0.6

	Features deprecated in 0.6

Overview

The biggest change in Oscar 0.6 is the reworking of pricing and availability, which
builds on top of the change to allow multiple stockrecords per product. The
change is largely backwards compatible with the old system of “partner
wrappers” but it is recommended to upgrade to the new system. Support for
partner wrappers will be removed for Oscar 0.7.

Oscar 0.6 also introduces better support for marketplace-like functionality
with the so-called permission-based dashboard. It is now possible to give
non-staff users access to a subset of the dashboard’s views (products and
orders) by setting the new dashboard_access permission.

Oscar now supports Django 1.5 and its custom user model. This has been only
tested in the context of starting a new Oscar project with a custom model.
Switching from a separate “profile” model to the new system is not recommended
at this point.

Oscar also supports Django 1.6 although this is considered experimental at this
stage. It’s possible there are still some incompatibilities that haven’t been
teased out just yet.

Other notable new features include:

	A feature-rich demo site that illustrates how Oscar can be customised. It
uses several of Oscar’s many extensions such as django-oscar-paypal [https://github.com/django-oscar/django-oscar-paypal],
django-oscar-datacash [https://github.com/django-oscar/django-oscar-datacash] and django-oscar-stores [https://github.com/django-oscar/django-oscar-stores]. It is intended as a
reference site for Oscar.

	Partners can now have addresses.

	Customer wishlists. Customers can how add products to wishlists and
manage them within their account section.

	New helper methods in the EventHandler class for order processing.

	Reworked search app with support for easy faceting.

Also, to help justify Tangent’s sponsorship of Oscar,
a simple tracking mechanism has been introduced to keep track of which sites
use Oscar.

What’s new in Oscar 0.6?

Multiple stockrecords per product

Products can now have multiple stockrecords rather than just one. This is a
key structural change that paves the way for many advanced features.

If a product can be fulfilled by multiple partners, a different stockrecord can
be created for each partner. This is a common requirement for large-scale
e-commerce sites selling millions of products that use many different
fulfillment partners.

It also allows better support for international sites as stockrecords can be
created for partners in different countries, who sell in different currencies.

See the documentation on pricing and availability for more details.

Warning

This changes means several APIs are deprecated as they assume there is only
one stockrecord per product.

Pricing and availability

When products can have many stockrecords, a process needs to be in place to
choose which one is selected for a given customer and product. To handle this,
a new “strategy” class has been introduced, responsible for selecting the appropriate
stockrecord for a given customer and product.

This change also paved the way for reworking how prices, taxes and availability
are handled. Instead of using “partner wrappers”, the strategy class is
responsible for returning availability details and prices for a particular
product. New classes known as pricing and availability policies are used to
cleanly encapsulate this information.

These changes allow Oscar to dynamically determine prices, partner and availability
for a given customer and product. This enables several advanced features such as:

	Fulfilling a product from the partner that offers the best margin.

	Fulfilling a product from the partner geographically closest to the customer.

	Automatically switching to a new partner when when stock runs out.

	Supporting transactions in multiple currencies on the same site.

	Supporting different tax treatments on the same site (eg UK VAT and US sales
tax)

	Having different pricing and availability policies for different customers.

More generally, it provides a structure for customising how pricing,
availability work on a per-customer basis. This gives a great deal of
flexibility.

See the guide to prices and availability
for more information.

Permission-based dashboard

Three changes were necessary to better support marketplace scenarios within
Oscar:

	Oscar’s core Application class now supports
specifying permissions on a per-view basis. This is done via a new default
decorator. Legacy behaviour is unchanged.

	The dashboard’s menus are now built dynamically. If the current user does
not have access to some views in OSCAR_DASHBOARD_NAVIGATION, they will
be omitted in the menu returned by
oscar.apps.dashboard.nav.create_menu().

	The index, catalogue and order dashboard views have been modified to allow
access to non-staff users. See the dashboard documentation for details.

	The relation oscar.apps.partner.abstract_models.AbstractPartner.users was not
used by core Oscar prior 0.6. It is now used to model access for the
permission-based dashboard.

Payment models have abstract versions

The models within the payment app have been split into abstract and
concrete versions. This brings them inline with other Oscar apps and allows
them to be customised in the normal way.

Wishlists

Wishlist functionality has finally landed. Signed in customers are now able to
create multiple named wishlists and add products to them. There is a new
section in the customer’s account where wishlists can be managed.

[image: ../_images/wishlist-button.png]
The add-to-wishlist button.

[image: ../_images/wishlist-detail.png]
Editing a wishlist

See the wishlist documentation for more details.

Partner dashboard & addresses

Partners can now have addresses. These are useful for US sales tax where tax
calculations need to know the origin of a product being shipped.

A dashboard to handle partners, their users and addresses has been added.

Checkout

The PaymentDetailsView checkout view has
been restructured for flexibility. There is a new
build_submission() method
which is responsible for building a dict of all data for passing to the
submit method. This includes the shipping address and shipping method
which were previously loaded indirectly within the submit method.

Warning

While not major, the changes to checkout are backwards incompatible. See the
backwards compatibility notes for more details.

Demo site

Oscar now ships with a demo site along side the sandbox site. While the sandbox
is a minimal Django project that uses Oscar with all its defaults, the demo site
is a more realistic example of an Oscar project. It has a custom skin and makes
many alterations to the default Oscar behaviour.

It’s features include:

	A range of different product types: books, downloads, clothing

	PayPal Express integration using django-oscar-paypal [https://github.com/django-oscar/django-oscar-paypal]

	Datacash integration using django-oscar-datacash [https://github.com/django-oscar/django-oscar-datacash]

See the sandbox and demo site documentation for more details. A publicly accessible version of the demo site
is available at http://demo.oscarcommerce.com.

Django 1.5, 1.6 and custom user model support

Oscar now supports Django 1.5 and, experimentally, 1.6.

Specifically, Oscar supports custom user models [https://docs.djangoproject.com/en/dev/topics/auth/customizing/#specifying-a-custom-user-model], the headline new feature in Django
1.5. These can be used standalone or with a one-to-one profile model: Oscar’s
account forms inspect the model fields to dynamically pick up the fields for
editing and display.

There are some restrictions on what fields a custom user model must have. For
instance, Oscar’s default auth backend requires the user model to have an email
and password field. New Oscar projects are encouraged to use the provided
abstract user model as the base for their users.

Support for Django 1.6 is considered experimental at the moment as there hasn’t
been time to run thorough tests for all possible incompatibilities.

Further reading:

	How to use a custom user model.

Accounts

The views and templates of the accounts section have been reworked to be clearer
and easier to extend. There is no longer a generic frontpage for the accounts
section - instead, each subsection has its own page. The navigation has also
moved to the left-hand side.

[image: ../_images/account.png]
The new-look account section with navigation on the left-hand side.

Bootstrap-WYSIHTML5 replaced by TinyMCE

TinyMCE 4.0 [http://www.tinymce.com/] is now used in the dashboard for all textareas with class
wysiwyg. This has better browser support and is easier to customise than
bootstrap-wysihtml5 (which has now been removed).

It is easy to configure or replace with the HTML editor of your choice.

[image: ../_images/tinymce.png]
Textarea with class ``wysiwyg`` now use TinyMCE.

Improved address fields

The postcode and phone number fields have been improved.

	The postcode field is now validated in the model’s
clean() method to
ensure it is valid for the selected country.

	The phone number field now uses a specialist
PhoneNumberField field class
which validates and cleans the phone number.

Better bankcard handling

In 0.5, there were two classes that representing a bankcard. These have been
merged - the new version is
AbstractBankcard.

An instance of this model is returned by the bankcard property.

Customer-facing range pages

Ranges can now be flagged as public which means they get a customer-facing
detail page which shows a range description and allows its products to be
browsed.

In the dashboard, the display order of the range’s products can be controlled.

To this end, the core Range model has been
extended with a HTML description field.

[image: ../_images/range_detail.png]
A customer-facing range page

Reworked search app

Oscar’s search app has been reviewed and simplified. The main view class
(now FacetedSearchView)
has been reworked to provide better support for faceting, which can be easily
specified using the OSCAR_SEARCH_FACETS setting.

The SuggestionsView has been removed as it wasn’t being used. A later
version of Oscar will include a replacement.

See the search app documentation for more details.

Order processing changes

The core EventHandler class has been
extended.

	The handle_shipping_event method now validates a proposed shipping event
before saving it.

	The handle_payment_event method now validates a proposed payment event
before saving it.

See the EventHandler for the available
methods.

Tracking Oscar sites

Oscar’s dashboard now serves a single pixel image from one of Tangent’s
servers. This is included to gather information on which sites use Oscar,
which is an important metric for Tangent, who sponsor Oscar’s development.

It can easily be disabled by setting OSCAR_TRACKING=False. If you do opt
out, please email the mailing list with any production Oscar sites you are
running. This will help to ensure investment in Oscar’s future.

Minor changes

	detox [https://pypi.python.org/pypi/detox] is a new dependency, which allows running tox tests in parallel.

	OSCAR_ALLOW_ANON_REVIEWS has been a documented setting since Oscar 0.4.
But there’s never been any code to support this, which has been rectified with
this release. Things should now work as expected.

	Oscar uses a cookie to display recently displayed products. This cookie never
expired and wasn’t a HttpOnly cookie. It is now a HttpOnly cookie and expires
after 7 days. Additionally, two settings have been introduced to configure
it analogues to the basket cookies:
OSCAR_RECENTLY_VIEWED_COOKIE_LIFETIME and
OSCAR_RECENTLY_VIEWED_COOKIE_NAME.

Backwards incompatible changes in 0.6

There were quite a few backwards incompatible changes in Oscar 0.6. There
shouldn’t be quite as many in future Oscar releases as we approach 1.0.

Additional apps

Four new apps are required in your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'oscar.apps.wishlists',
 'oscar.apps.dashboard.pages',
 'oscar.apps.dashboard.partners',
 'oscar.apps.dashboard.reviews',
 ...
)

If you are using the get_core_apps helper function, then these new apps
will be added automatically. The new wishlists app contains database migrations,
so you will need to run the migrate management command.

Checkout app

Several changes have been made to the checkout in the name of simplification
and making things easier to customise.

The PaymentDetailsView has been adjusted to explicitly pass variables
around rather than relying on methods that load them on demand. This makes
customisation easier and everything more explicit (a good thing).

	The submit method in
PaymentDetailsView has a new signature.
It now accepts the user, shipping address, shipping method and order total as
required parameters The intention is that the build_submission methods
returns a dict of kwargs for submit so that it can be called like:

submission = self.build_submission()
return self.submit(**submission)

If your payment or order submission process requires additional parameters (eg
a bankcard instance), override the build_submission method to provide them. The
dict returned from the new build_submission method is also passed to the
template.

	The handle_payment method in
PaymentDetailsView now accepts a
Price instance instead of a Decimal for the order
total.

	The handle_order_placement method in
OrderPlacementMixin
now accepts the user, shipping address and shipping method in a
different order consistent with the submit method from
PaymentDetailsView.

	The place_order method in
OrderPlacementMixin
has a new signature. The parameters have been reordered and the shipping
address, shipping method and billing address must be passed in explicitly (as
unsaved instances).

	The create_shipping_address method in
OrderPlacementMixin has changed
signature. Instead of being passed a basket, it is now passed the user and
an unsaved shipping address instance.

	The create_billing_address method in
OrderPlacementMixin has changed
signature. It is now passed an unsaved billing address instance as well as
a shipping address instance.

	The get_shipping_method (from
CheckoutSessionMixin) no longer
defaults to returning free shipping if no shipping method can be looked up.

	The OrderTotalCalculator now
returns a Price instance from a new calculate
method. The old methods order_total_incl_tax and
order_total_excl_tax have been removed.

Other changes:

	The checkout gateway page has a new option “Register and continue” which allows a customer
to register before checking out. As part of this change, the option value new in
GatewayForm has changed to guest as new option is used for this feature.

	The checkout decorators basket_required and prev_steps_must_be_complete have been removed as they were
no longer used.

Shipping app changes

The default implementation of the
Repository class
has been adjusted to avoid thread-safety issues. If you define your own
shipping Repository class, ensure that your shipping methods are
instantiated per-request and not at compile time.

For example, avoid this:

from oscar.apps.shipping import repository

class Repository(repository.Repository)
 # Don't instantiate at compile time!
 methods = [SomeMethod(), AnotherMethod()]

Instead, instantiate the methods within get_shipping_methods:

from oscar.apps.shipping import repository

class Repository(repository.Repository)
 # Note, methods are not instantiated. The get_shipping_methods
 # method will instantiate them.
 methods = [SomeMethod, AnotherMethod]

Warning

Beware of shipping methods that are configured via constructor parameters, like
FixedPrice. If you are using methods
that work this way, ensure you instantiate them at runtime.

Shipping methods will be reworked for Oscar 0.7 to avoid these issues.

Address model changes

	The UserAddress.salutation and UserAddress.name methods are now
properties.

	The Country model’s is_highlighted column has been renamed to
display_order and is now an integer field to allow fine-grained country
selection.

Basket app changes

Several properties of the basket Line model have been renamed:

	Line.line_price_excl_tax_and_discounts has been renamed to
Line.line_price_excl_tax_incl_discounts.

	Line.line_price_incl_tax_and_discounts has been renamed to
Line.line_price_incl_tax_incl_discounts.

The basket_form() templatetag has been
altered to take the request as the first parameter, not request.basket.

Catalogue app changes

3 properties have been removed from
oscar.apps.catalogue.abstract_models.AbstractProductImage as they
were unused: resized_image_url, fullsize_url and thumbnail_url.
Thumbnailing is instead achieved in templates with Sorl.

	The function add_category_from_breadcrumbs was not used and has been
removed.

	Alternative product class templates now use slug field instead of
name.lower() to determine their filename. If you have templates for
specific product classes, please update your filenames accordingly

Customer app changes

The oscar.apps.customer.forms.EmailAuthenticationForm form now needs to
be instantated with a host name so prevent redirects to external sites.

Offer app changes

The ManyToManyField included_product of the
Range model was changed to use through
relationship:

	Use Range.add_product(product) instead of
Range.included_product.add(product).

	Use Range.remove_product(product) instead of
Range.included_product.remove(product).

When adding a product into a range, position in the range can be specified
with display_order parameter:
Range.add_product(product, display_order=3)

Payment app changes

The balance method on the
AbstractSource model is now a property, not a method.

Reviews app changes

The two product review forms, SignedInUserProductReviewForm and
AnonymousUserProductReviewForm, have been replaced by a new
oscar.apps.catalogue.reviews.forms.ProductReviewForm.

Search app changes

Some of the names have been simplified.

	The MultiFacetedSearchView and SuggestionsView view classes have been
removed. The MultiFacetedSeachView class is replaced by FacetedSearchView.

	The MultiFacetedSearchForm has been removed in favour of
SearchForm.

Loading baskets

Now that products can have multiple stockrecords, several changes have been made
to baskets to allow the appropriate stockrecord to be tracked for each basket
line. The basket line model has a new field that links to the selected
stockrecord and the basket itself requires an instance of the strategy class so
that prices can be calculated for each line. Hence, if you loading baskets
and manipulating baskets directly, you need to assign a strategy class in order
for prices to calculate correctly:

from oscar.apps.basket import models

basket = models.Basket.objects.get(id=1)
basket.strategy = request.strategy

Without an assigned strategy class, a basket will raise a RuntimeError when
attempting to calculate totals.

Renamed templates

Some templates have been renamed for greater consistency. If you are overriding
these templates, ensure you rename your corresponding project templates.

Many of the profile templates have been reorganised:

	customer/address_list.html is renamed to
customer/address/address_list.html

	customer/address_form.html is renamed to
customer/address/address_form.html

	customer/address_delete.html is renamed to
customer/address/address_delete.html

	customer/email.html is renamed to
customer/email/email_detail.html

	customer/email_list.html is renamed to
customer/email/email_list.html

	customer/order.html is renamed to
customer/order/order_detail.html

	customer/order_list.html is renamed to
customer/order/order_list.html

	customer/profile.html is renamed to
customer/profile/profile.html

	customer/profile_form.html is renamed to
customer/profile/profile_form.html

	customer/change_password_form.html is renamed to
customer/profile/change_password_form.html

	partials/nav_profile.html has been removed.

Template block changes

	The template dashboard/orders/order_detail.html has been reorganised. The
tab_transactions block has been renamed to payment_transactions.

	In checkout/checkout.html, the checkout-nav block has been renamed
checkout_nav.

Changes to Partner permissions

The following permissions on the
AbstractPartner model were not
used in Oscar and have been removed to avoid confusion with the newly
introduced permission-based dashboard:

	can_edit_stock_records

	can_view_stock_records

	can_edit_product_range

	can_view_product_range

	can_edit_order_lines

	can_view_order_lines

The permission-based dashboard introduced a new permission:

	dashboard_access

Migrations

There are rather a lot of new migrations in Oscar 0.6. They are all detailed
below.

If you are upgrading and your project overrides one of these apps with
new migrations, then ensure you pick up the schema changes in a new migration
within your app. You can generally do this using manage.py schemamigration
$APP --auto but check the corresponding core migration to ensure there aren’t
any subtleties that are being overlooked.

Some of these migrations rename fields for consistency, while others ensure
CharField fields are not nullable.

	Address:

	0003: A new field display_order is added to the Country
model. This is the first of 3 migrations that replace the
boolean is_highlighted field with an integer field that allows
fine-grained control of the order of countries in dropdowns.

	0004: A data migration to ensure highlighted countries have a display
order of 1.

	0005: Remove the is_highlighted field from the Country model
as it is no longer necessary.

	0006: Add a uniqueness constraint across user_id and hash for
the UserAddress model to prevent duplicate addresses.

	0007: Use a custom field for address postcodes.

	Basket:

	0004: Add stockrecord field to the Line model to track which
stockrecord has been selected to fulfill a particular line.

	0005: Add price_currency field to the Line model.

	Catalogue:

	0011: Larger max_length on FileFields and ImageFields

	0012: Use NullBooleanField for the value_boolean field of
the ProductAttributeValue model.

	0013: Add value_file and value_image fields to the
ProductAttributeValue model to support file and image attributes.

	Customer:

	0005: Don’t allow sms_template field of
CommunicationEventType model to be nullable.

	Dashboard:

	0002: Don’t allow error_message field of
RangeProductFileUpload model to be nullable.

	Offer app:

	0020: Data migration to set null offer descriptions to empty string.

	0021: Don’t allow null offer descriptions or benefit types.

	0022: Add a slug field to the Range model.

	0023: A data migration to populate the new range slug field.

	0024: Add a is_public field to the Range model.

	0025: Add a description field to the Range model.

	0026: Add a applies_to_tax_exclusive_price field to
ConditionalOffer model to try and handle offers that apply in bothe
the US and UK (this field is later removed).

	0027: Create a joining table for the new M2M relationship between
ranges and products.

	0028: Remove applies_to_tax_exclusive_price field.

	Order app:

	0010: Allow postcodes for shipping- and billing addresses to be
nullable.

	0011: Rename date field on CommunicationEvent,
ShippingEvent and PaymentEvent models to be date_created.

	0012: Add reference field to PaymentEvent model.

	0013: Add a foreign key to ShippingEvent from PaymentEvent
model.

	0014: Change postcode field on ShippingAddress and
BillingAddress models to use UppercaseCharField field.

	0015: Remove is_required and sequence_number fields from
ShippingEventType and PaymentEventType models.

	0016: Add currency field to Order model. Add a foreign key
to the StockRecord model from the Line model.

	0017: Add a shipping_code field to the Order model.

	0018: ShippingAddress‘s phone_number is now a PhoneNumberField
to allow better validation.

	Partner app:

	0008: Remove unnecessary partner_abstractstockalert table.

	0009: Create table for new PartnerAddress model.

	0010: Remove uniqueness constraint on product_id for the
StockRecord model. This allows a product to have more than one
stockrecord.

	Payment app:

	0002: Ensure all CharField fields are not nullable. This
migration handles both the data- and schema-migration in one.

	Promotions app:

	0002: Ensure all CharField fields are not nullable.

	0003: Extend the max_length of the image field.

	Wishlist app:

	0001: Initial table creation

Features deprecated in 0.6

Accessing a product’s stockrecords

Several properties and methods of the core
AbstractProduct class have been
deprecated following the change to allow multiple stockrecords per product.

	The has_stockrecord property
no longer makes sense when there can be more than one stockrecord. It is
replaced by
has_stockrecords

	The stockrecord property is
deprecated since it presumes there is only one stockrecord per product.
Choosing the appropriate stockrecord is now the responsibility of the
strategy class. A backward compatible version has
been kept in place that selects the first stockrecord for a product. This
will continue to work for sites that only have one stockrecord per product.

All availability logic has been moved to availability policies
which are determined by the strategy class.

	The is_available_to_buy property
is deprecated. The functionality is now part of availability policies.

	The is_purchase_permitted() method
is deprecated. The functionality is now part of availability policies.

Checkout session manager

The shipping_method method of the
CheckoutSessionData is now deprecated in
favour of using shipping_method_code. It is being removed as the
CheckoutSessionData class should only be responsible for retrieving data
from the session, not loading shipping method instances.

Checkout order placement mixin

The following methods within
OrderPlacementMixin are deprecated as the
flow of placing an order has been changed.

	create_shipping_address_from_form_fields()

	create_shipping_address_from_user_address()

	create_user_address()

Bankcard model

The card_number
is deprecated in favour of using
number.

“Partner wrappers”

Before Oscar 0.6, availability and pricing logic was encapsulated in “partner
wrappers”. A partner wrapper was a class that provided availability and price
information for a particular partner, as specified by the
OSCAR_PARTNER_WRAPPERS setting. The stockrecord model had several
properties and methods
which delegated to the appropriate wrapper for the record’s partner.

This functionality is now deprecated in favour of using strategy classes.
How prices and taxes are determined is not generally a function of the partner,
and so this system was not a good model. Strategy classes are much more
flexible and allow better modelling of taxes and availability.

The following properties and methods from StockRecord
are deprecated and will be removed for Oscar 0.7. These are all convenience
properties and methods that delegate to the appropriate partner wrapper.

	AbstractStockRecord.is_available_to_buy

	AbstractStockRecord.is_purchase_permitted

	AbstractStockRecord.availability_code

	AbstractStockRecord.availability

	AbstractStockRecord.max_purchase_quantity

	AbstractStockRecord.dispatch_date

	AbstractStockRecord.lead_time

	AbstractStockRecord.price_incl_tax

	AbstractStockRecord.price_tax

All the above properties and methods have effectively been moved to the availability and pricing
policies that a strategy class is responsible for loading. To upgrade your
codebase, replace your partner wrapper classes with equivalent
availability and pricing policies.

Test support extension brought back into core

The Oscar test support library [https://github.com/django-oscar/django-oscar-testsupport] has been ported back into Oscar core. This
simplifies things and avoids circular dependency issues. If your project is
using this extension, you should remove it as a dependency and use the
analogous functionality from oscar/test/.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.6.1 release notes

This is Oscar 0.6.1. It fixes one potentially serious data loss issue and a
few minor bugs.

Possible data loss from deleted users

Before this release, the foreign key from the
Order model to the User model
did not specify an on_delete behaviour. The default is for deletes to
cascade to related objects, even if the field is nullable. Hence, deleting a
user would also delete any orders they had placed.

As of 0.6.1, the foreign keys to user, shipping address and billing address on
the Order model specify on_delete=SET_NULL to avoid orders being
deleted accidentally.

See Django’s docs [https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey.on_delete] for more info on on_delete options.

Missing translations

The 0.6 release failed to include several translations from Transifex due to a
problem in the way we updated translation files before release. This
release rectifies that and includes the latest translation files.

Known issues

	Django 1.4 only: The changes in #1127 [https://github.com/django-oscar/django-oscar/issues/1127] mean you explicitly need to register
a call to migrate_alerts_to_users when the post_save signal is
emitted for a User model.

Bug fixes

The following bugs were fixed:

	#1109 [https://github.com/django-oscar/django-oscar/issues/1109] - Workaround for a bug in Bootstrap regarding the collapsing of the
navigation bar.

	#1121 [https://github.com/django-oscar/django-oscar/issues/1121] - Added a confirmation view to removing products from wish lists
because one can’t POST to it in all cases.

	#1127 [https://github.com/django-oscar/django-oscar/issues/1127] required that the migrate_alerts_to_user function is now
explicitly called in Oscar’s base User class. It previously was wired up as
a post_save signal receiver on the User model, which does not work in
Django 1.5+.

	#1128 [https://github.com/django-oscar/django-oscar/issues/1128] - Calls to Source.debit without an amount argument were
failing as balance was being called as a method instead of a property.

	#1130 [https://github.com/django-oscar/django-oscar/issues/1130] - Variant products were not fetching the product class instance
correctly within is_shipping_required.

	#1132 [https://github.com/django-oscar/django-oscar/issues/1132] and #1149 [https://github.com/django-oscar/django-oscar/issues/1149] - Rich text attributes were not supported. Should be
displayed correctly now. Also introduced hooks for adding support for e.g.
file and image types.

	#1133 [https://github.com/django-oscar/django-oscar/issues/1133] - The order detail page for anonymous checkouts failed to render if
reviews were disabled.

	#1134 [https://github.com/django-oscar/django-oscar/issues/1134] - Fixed a bug caused where unicode characters in child products’
titles were incorrectly handled.

	#1138 [https://github.com/django-oscar/django-oscar/issues/1138] - Adjust the
OrderAndItemCharges shipping method to
not count lines that don’t require shipping.

	#1146 [https://github.com/django-oscar/django-oscar/issues/1146] - Various templates were adjusted to gracefully handle deleted
products.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.6.2 release notes

This is Oscar 0.6.2. It fixes an unfortunate regression introduced in 0.6.1 as well
as a couple of bugs.

Overriding models

Commit fa1f8403 [https://github.com/django-oscar/django-oscar/commit/fa1f8403fb43af693766acafc520d10932a7f5b0] changed the way signal receivers were registered. While
this helped work around issues with the latest debug toolbar, it also broke the
way custom models were imported. This happened as the relocated receiver
imports caused core models to be imported before local ones.

This is fixed in 0.6.2 by reverting the original commit [https://github.com/django-oscar/django-oscar/commit/ec950cf9de16c68858bc095d980e478be8146f79]. Users of the debug
toolbar are recommended to follow the explicit installation instructions [https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#explicit-setup] to
avoid any circular import issues that fa1f8403 [https://github.com/django-oscar/django-oscar/commit/fa1f8403fb43af693766acafc520d10932a7f5b0] was introduced to solve..

See #1159 [https://github.com/django-oscar/django-oscar/issues/1159] for more details.

Bug fixes

The following bugs were fixed:

	#1157 [https://github.com/django-oscar/django-oscar/issues/1157] - Ensure group products have a price submitted to the search backend
when indexing.

	#1127 [https://github.com/django-oscar/django-oscar/issues/1127] - Remove a circular dependency bug around importing the StockAlert
model when indexing.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.6.3 release notes

This is Oscar 0.6.3. It fixes a few issues that have been discovered since the
latest release.

Known issues

	Django 1.4 only: The changes in #1127 [https://github.com/django-oscar/django-oscar/issues/1127] mean you explicitly need to register
a call to migrate_alerts_to_users when the post_save signal is
emitted for a User model.

Bug fixes

The following issues were fixed:

	Several strings have been marked translatable.

	#1167 [https://github.com/django-oscar/django-oscar/issues/1167] - Offers without ranges can be created correctly.

	#1166 [https://github.com/django-oscar/django-oscar/issues/1166], #1176 [https://github.com/django-oscar/django-oscar/issues/1176] - Migrations work again with custom User model.

	#1186 [https://github.com/django-oscar/django-oscar/issues/1186] - Fix bug with dashboard order search

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.6.4 release notes

This is Oscar 0.6.4. This is a minor release which addresses a few niggles,
mainly around how partner users are handled in the dashboard.

Bug fixes

The following issues were fixed:

	Editing variant products didn’t correctly look up the parent product class.

	#1177 [https://github.com/django-oscar/django-oscar/issues/1177] - Fix a regression in get_classes that prevented overridden
dashboard apps being loaded correctly.

	#1273 [https://github.com/django-oscar/django-oscar/issues/1273] - Dashboard partner views now allow user forms to be dynamically
loaded (and hence overridden).

	#1275 [https://github.com/django-oscar/django-oscar/issues/1275] - Dashboard partner user form now checks that the right fields are
picked up from the user model (see also #1282 [https://github.com/django-oscar/django-oscar/issues/1282], #1283 [https://github.com/django-oscar/django-oscar/issues/1283])

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.6.5 release notes

This is Oscar 0.6.5, a minor security release. If you rely on the
permissions_required decorator or the
Application.permissions_map and Application.default_permissions syntax,
you must upgrade.

Bug fixes

	The permissions_required decorator now handles both methods and
properties on the User model. Previously, it wasn’t supported, but a
docstring showed is_anonymous as an example, which is a
method.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.5 release notes

Welcome to Oscar 0.5!

These release notes cover the new features as well as upgrading advice.

Overview

The main aim of this release was to add functionality to offers but scope
expanded over time to include many fixes and improvements. Whilst there aren’t
that many new features from a customer perspective, a great deal of work has
gone into reworking Oscar’s structure to be more extensible.

Thanks to all the contributors who helped with this release.

What’s new in Oscar 0.5?

Offers++

Most of the new features in 0.5 are around offers.

	It is now possible to create custom ranges, conditions and benefits that can
be used to create flexible offers. These ranges are created as Python classes
conforming to a set interface which are registered at compile time to make
them available in the dashboard.

	Offer benefits can now apply to the shipping charge for an order. Previously,
all benefits were applied against the basket lines. There are three shipping
benefits ready to use:

	Fixed discount off shipping (eg get £5 off your shipping costs)

	Percentage discount off shipping (eg get 25% off your shipping costs)

	Fixed price shipping (eg your shipping charge will be £5)

	Offer benefits can now be deferred. That is, they don’t affect either the
basket lines nor the shipping charge. This is useful for creating benefits
such as awarding loyalty points.

	Several new ways of restricting an offer’s availability have been introduced:

	An offer’s lifetime can now be controlled to the second rather to the day
(ie the relevant model fields are datetimes rather than dates). This makes
it possibly to run offers for a small amount of time (eg for a single
lunchtime).

	An offer can be restricted to a max number of applications per
basket/order. For example, an offer can configured so that it can
only be used once in a single order.

	An offer can be restricted to a max number of applications per user.

	An offer can be restricted to a max number of global applications.

	An offer can be restricted to give a maximum total discount. After this
amount of discount has been awarded, the offer becomes unavailable.

[image: ../_images/offer-restrictions.png]
The restrictions editing page for an offer within the dashboard.

	Offers can now be suspended and reinstated.

	The offers dashboard has been rewritten.

	There is now an offers homepage that lists all active offers.

New dashboard skin

The design of the dashboard has been reworked, offering a better user experience
throughout the dashboard. This work is still ongoing, further improvements in
how the dashboard pages are laid out will appear in 0.6.

[image: ../_images/dashboard-nav.png]
The new dashboard navigation.

Internationalisation

Oscar now uses Transifex [https://www.transifex.com/projects/p/django-oscar/] to manage its translation files. Since 0.4, a
considerable number of new languages are now supported (although many have
partial coverage).

[image: ../_images/transifex.png]
A snippet from the Oscar Transifex page.

Oscar’s default templates also now support a simple language picker.

New settings have been introduced to control how slugs are generated. By
default, the unidecode package is used to gracefully handle non-ASCII chars in
slugs.

Minor features

There are several noteworthy smaller improvements

	The basket page now updates using AJAX rather than page reloads.

	Oscar’s documentation has been reorganised and improved. This is part of an
ongoing effort to improve it. Watch this space.

	Oscar’s template now use django-compressor [https://django-compressor.readthedocs.io/en/latest/] to compress CSS and JS assets.

	Products can now be deleted using the catalogue dashboard.

	Warnings emails are sent to customers when their password or email address is
changed.

	Flash messages can now contain HTML.

Minor improvements

Several improvements have been made to ease development of Oscar (and Oscar
projects):

	The sandbox can be configured to compile the LESS files directly. This is
useful for developing Oscar’s CSS/LESS files.

	A new management command oscar_fork_statics has been added to help with
setting up static files for a new Oscar project.

	Alternative templates can now be used for different product classes in product
browsing views.

	jQuery upgraded to 1.9.1

	Bootstrap upgraded to 2.3.1

	The test runner can now be run with tox [http://testrun.org/tox/latest/].

	Oscar ships with profiling tools. There is a decorator and middleware
available in oscar.profiling that can be used to help profile Oscar sites.

	Customers are notified if changes to their basket lead to new offers being
applied (or if previously applied offers are no longer available).

[image: ../_images/html_flash_msg.png]
A flash message indicating that the customer’s basket has now qualified for
a new offer.

	Some testing utilities have been extracted into a new package,
django-oscar-testsupport [https://github.com/django-oscar/django-oscar-testsupport], so they can be used by Oscar extensions.

	A Vagrant [http://www.vagrantup.com/] manifest is provided for testing Oscar against different database
vendors.

	Oscar’s javascript has been rewritten to be cleaner and more extensible.

	Coverage data is now submitted to coveralls.io [https://coveralls.io/r/django-oscar/django-oscar]

Upgrading

This section describes changes in core Oscar that you need to be aware of if you
are upgrading from 0.4. See the upgrading guidelines
for further details on the steps you need to take.

Migrations

There are new migrations in the following apps to be aware of.

	Address:

	0002: Make postcode nullable on the Address model

	Catalogue:

	0009: Add a rating field to the product model

	0010: Populate the new rating field

Note

Note, if you are using a customised version of the catalogue app, then you
should create a similar data migration to 0010 in your own project.

	Offer:

	0007: Add max_global_appliations field to ConditionalOffer model

	0008: Add num_applications field to ConditionalOffer model

	0009: Rename max_applications field to max_basket_applications

	0010: Add max_user_applications field to ConditionalOffer model

	0011: Add proxy_class field to Range model

	0012: Add proxy_class field to Condition model and make
range, type and value nullable.

	0013: Add unique index on proxy_class for the Range model

	0014: Empty migration after branch merge

	0015: Add max_discount field to ConditionalOffer model

	0016: Add status field to ConditionalOffer model

	0017: Change start_date and end_date to datetimes.

	0018: Rename start_date and end_date to start_datetime and
end_datetime respectively.

	0019: Add proxy_class field to Benefit model and make
range, type and value nullable.

	Order:

	0007: Add frequency field to OrderDiscount model

	0008: Add category field to OrderDiscount model

	0009: Add message field to OrderDiscount model

	Partner:

	0004: Add code field to Partner model

	0005: Populate the new code field

	0006: Add unique index on code field

	0007: Remove unique index from name field and make nullable

Note

Note, if you are using a customised version of the partner app, then you
should create a similar data migration to 0005 in your own project.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.5.1 release notes

This is a bugfix release for Oscar 0.5, backporting a few issues discovered
during development of Oscar’s demo site and fixing a couple of other bugs.

This release contains fixes for the following issues:

	The is_available_to_buy method was failing for variant products where the
product class is defined on the parent product. Fixed in 7fd62f2af0 [https://github.com/django-oscar/django-oscar/commit/7fd62f2af078f950eeb278b97d01153b90b08e73] and …
80384a4007 [https://github.com/django-oscar/django-oscar/commit/80384a40079590e1fb09d57f26095fa4e030fb27].

	The stockrecord partial catalogue/partials/stock_record.html incorrectly
handled group products. Fixed in 5594bcccd6 [https://github.com/django-oscar/django-oscar/commit/5594bcccd67bfca6ec052ee635f0f0cbddc5dce5].

	The checkout thank-you template checkout/thank_you.html incorrectly looked
up the line product URL. Fixed in cc5f63d827 [https://github.com/django-oscar/django-oscar/commit/cc5f63d827ce943e0ba1e7daa509cbd37b284c64].

	The basket URL used for AJAX requests is no longer hard-coded. Fixed in …
fd256b63b1 [https://github.com/django-oscar/django-oscar/commit/fd256b63b184e08e33aa2802136a68d47bf4636e].

	The dashboard voucher form now correctly validates when no start- or end-dates
are entered. Fixed in 02b3644e3c [https://github.com/django-oscar/django-oscar/commit/02b3644e3c1f02959c3316d4291ec1c819c2baf7]

	The AbstractStockRecord model was not declared abstract. A migration has
been added that cleans up the unnecessary database table. Fixed in …
610de82eb2 [https://github.com/django-oscar/django-oscar/commit/610de82eb25d00871ab1b30d01817c94d08bb96a]

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.5.2 release notes

This is Oscar 0.5.2, a security release for Oscar 0.5.

Insecure use of SECRET_KEY in basket cookie

For anonymous users, the basket ID is stored in a cookie. Previously, the
value was signed using a simples CRC32 hash using the SECRET_KEY.
However, a good rule of thumb is to never roll your own encryption, and it is
possible that this method weakens the security of the SECRET_KEY.

The fix [https://github.com/django-oscar/django-oscar/commit/876f723] uses Django’s cryptographic signing functionality to sign the cookie
in a more secure manner.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Release notes

Oscar 0.5.3 release notes

This is Oscar 0.5.3, a bug-fix release for Oscar 0.5.

The only change from 0.5.2 is to pin the dependency on Haystack to version 2.0.0 [https://github.com/django-oscar/django-oscar/commit/40ab98b].
Previously, setup.py specified 2.0.0-beta but this beta release has now
been removed from PyPi, stopping Oscar from installing correctly.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

Contributing to Oscar

You’re thinking of helping out. That’s brilliant - thank you for your time! You
can contribute in many ways:

	Join the django-oscar [http://groups.google.com/group/django-oscar] mailing list and answer questions.

	Report bugs in our ticket tracker [https://github.com/django-oscar/django-oscar/issues].

	Submit pull requests for new and/or
fixed behavior.

	Improve the documentation.

	Write tests.

	Translations can be contributed using Transifex [https://www.transifex.com/projects/p/django-oscar/]. Just apply for a language
and go ahead!

Overview

	Setting up the development environment

	Reporting bugs and requesting features

	Coding Style

	Submitting pull requests

	Test suite

	Writing documentation

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Contributing to Oscar

Setting up the development environment

Fork the repo and run:

$ git clone git@github.com:<username>/django-oscar.git
$ cd django-oscar
$ mkvirtualenv oscar # needs virtualenvwrapper
$ make install

If using Ubuntu, the python-dev package is required for some packages to
compile.

The sandbox site can be used to examine changes
locally. It is easily created by running:

$ make sandbox

JPEG Support

On Ubuntu, you need to install a few libraries to get JPEG support with
Pillow:

$ sudo apt-get install python-dev libjpeg-dev libfreetype6-dev zlib1g-dev

If you already installed PIL (you did if you ran make install previously),
reinstall it:

$ pip uninstall Pillow
$ pip install Pillow

Creating migrations

As the sandbox is a vanilla Oscar site, it is what we use to build migrations
against:

$ make sandbox
$ sites/sandbox/manage.py schemamigration $YOURAPP --auto

Writing LESS/CSS

Oscar’s CSS files are built using LESS [http://lesscss.org/]. However, the sandbox defaults to
serving CSS files directly, bypassing LESS compilation.

If you want to develop the LESS files, set:

USE_LESS = True

in sites/sandbox/settings_local.py. This will include the on-the-fly
less pre-processor. That will allow you to see changes to the LESS
files after a page reload.

You can manually compile the CSS files by running:

make css

For this to work, you will need to ensure that the pre-processor binary
lessc is installed. Using npm, install LESS using:

npm install less

Warning

If you do submit a pull request that changes the LESS files. Please also
recompile the CSS files and include them in your pull request.

Testing migrations against MySQL and Postgres

To test the migrations against MySQL and Postgres you will need to set
up an environment with both installed and do the following:

	Change to sandbox folder and activate your virtualenv

	Run helper script:

./test_migrations.sh

This will recreate the Oscar database in both MySQL and Postgres and rebuild
it using ``migrate``.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Contributing to Oscar

Reporting bugs and requesting features

Before reporting a bug or requesting a new feature, please consider these
general points:

	Be aware that Windows and the Django admin interface are unsupported; any
tickets regarding that will get closed.

	Check that someone hasn’t already filed the bug or feature request by
searching in the ticket tracker.

	Don’t use the ticket system to ask support questions. Use the
django-oscar [http://groups.google.com/group/django-oscar] mailing list for that.

	Don’t use the ticket tracker for lengthy discussions, because they’re
likely to get lost. If a particular ticket is controversial, please move the
discussion to django-oscar [http://groups.google.com/group/django-oscar].

All bugs are reported on our GitHub issue tracker [https://github.com/django-oscar/django-oscar/issues].

Reporting security issues

Security is paramount for e-commerce software like Oscar. Hence, we have
adopted a policy which allows for responsible resporting and disclosure of
security related issues.

If you believe you have found something in Oscar (or one of its extensions)
which has security implications, please report is via email to
oscar.security@tangentlabs.co.uk. Someone from the core team will
acknowledge your report and take appropriate action.

Reporting bugs

Well-written bug reports are incredibly helpful. However, there’s a certain
amount of overhead involved in working with any bug tracking system so your
help in keeping our ticket tracker as useful as possible is appreciated. In
particular:

	Do ask on django-oscar [http://groups.google.com/group/django-oscar] first if you’re not sure if
what you’re seeing is a bug.

	Do write complete, reproducible, specific bug reports. You must
include a clear, concise description of the problem, and a set of
instructions for replicating it. Add as much debug information as you can:
code snippets, test cases, exception backtraces, screenshots, etc. A nice
small test case is the best way to report a bug, as it gives us an easy
way to confirm the bug quickly.

Reporting user interface bugs and features

If your bug or feature request touches on anything visual in nature, there
are a few additional guidelines to follow:

	Include screenshots in your ticket which are the visual equivalent of a
minimal testcase. Show off the issue, not the crazy customizations
you’ve made to your browser.

	If you’re offering a pull request which changes the look or behavior of
Oscar’s UI, please attach before and after screenshots/screencasts.

	Screenshots don’t absolve you of other good reporting practices. Make sure
to include URLs, code snippets, and step-by-step instructions on how to
reproduce the behavior visible in the screenshots.

Requesting features

We’re always trying to make Oscar better, and your feature requests are a key
part of that. Here are some tips on how to make a request most effectively:

	First request the feature on the django-oscar [http://groups.google.com/group/django-oscar] list, not in the
ticket tracker. It’ll get read more closely if it’s on the mailing list.
This is even more important for large-scale feature requests. We like to
discuss any big changes to Oscar’s core on the mailing list before
actually working on them.

	Describe clearly and concisely what the missing feature is and how you’d
like to see it implemented. Include example code (non-functional is OK)
if possible.

	Explain why you’d like the feature, because sometimes it isn’t obvious
why the feature would be useful.

As with most open-source projects, code talks. If you are willing to write the
code for the feature yourself or, even better, if you’ve already written it,
it’s much more likely to be accepted. Just fork Oscar on GitHub, create a
feature branch, and show us your work!

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Contributing to Oscar

Coding Style

General

Please follow these conventions while remaining sensible:

	PEP8 – Style Guide for Python Code [http://www.python.org/dev/peps/pep-0008/]

	PEP257 – Docstring Conventions [http://www.python.org/dev/peps/pep-0257/]

	Django Coding Style [http://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/]

Code Like a Pythonista [http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html] is recommended reading.

URLs

	List pages should use plurals; e.g. /products/, /notifications/

	Detail pages should simply be a PK/slug on top of the list page; e.g.
/products/the-bible/, /notifications/1/

	Create pages should have ‘create’ as the final path segment; e.g.
/dashboard/notifications/create/

	URL names use dashes not underscores.

	Update pages are sometimes the same as detail pages (i.e., when in the
dashboard). In those cases, just use the detail convention, eg
/dashboard/notifications/3/. If there is a distinction between the detail
page and the update page, use /dashboard/notifications/3/update/.

	Delete pages; e.g., /dashboard/notifications/3/delete/

View class names

Classes should be named according to:

'%s%sView' % (class_name, verb)

For example, ProductUpdateView, OfferCreateView and
PromotionDeleteView. This doesn’t fit all situations, but it’s a good basis.

Referencing managers

Use _default_manager rather than objects. This allows projects to
override the default manager to provide domain-specific behaviour.

HTML

Please indent with four spaces.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Contributing to Oscar

Submitting pull requests

	To avoid disappointment, new features should be discussed on the mailing list
(django-oscar@googlegroups.com) before serious work starts.

	Write tests! Pull requests will be rejected if sufficient tests aren’t
provided.

	Write docs! Please update the documentation when altering behaviour or introducing new features.

	Write good commit messages: see Tim Pope’s excellent note [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Make pull requests against Oscar’s master branch unless instructed otherwise.

	Always submit pull requests from a custom branch. Don’t submit from your
master branch.

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar 1.3 documentation

 	Contributing to Oscar

Test suite

Running tests

Oscar uses pytest [http://pytest.org/latest/] to run the tests, which can be invoked using:

$./runtests.py

You can run a subset of the tests by passing a path:

$./runtests.py tests/unit/offer/availability_tests.py

To run an individual test class, use:

$./runtests.py tests/unit/offer/availability_tests.py::TestASuspendedOffer

(Note the ‘::’.)

To run an individual test, use:

$./runtests.py tests/unit/offer/availability_tests.py::TestASuspendedOffer::test_is_unavailable

You can also run tests which match an expression via:

$./runtests.py tests/unit/offer/availability_tests.py -k is_unavailable

Testing against different setups

To run all tests against multiple versions of Django and Python, use detox [https://pypi.python.org/pypi/detox]:

$ detox

You need to have all Python interpreters to test against installed on your
system. All other requirements are downloaded automatically.
detox [https://pypi.python.org/pypi/detox] is a wrapper around tox [https://tox.readthedocs.io/en/latest/], creating the environments and running the tests
in parallel. This greatly speeds up the process.

Kinds of tests

Tests are split into 3 folders:

	unit - These are for tests that exercise a single unit of functionality, like
a single model. Ideally, these should not write to the database at all - all
operations should be in memory.

	integration - These are for tests that exercise a collection or chain of
units, like testing a template tag.

	functional - These should be as close to “end-to-end” as possible. Most of
these tests should use WebTest to simulate the behaviour of a user browsing
the site.

Naming tests

When running a subset of tests, Oscar uses the spec [https://pypi.python.org/pypi/pytest-spec] plugin. It is a good
practice to name your test cases and methods so that the spec output reads well.
For example:

$ py.test tests/integration/catalogue/product_tests.py --spec
============================== test session starts ==============================
platform darwin -- Python 2.7.9 -- py-1.4.26 -- pytest-2.7.0
rootdir: /Users/mvantellingen/projects/django-oscar, inifile: setup.cfg
plugins: cache, cov, django, spec, xdist
collected 15 items

tests/integration/catalogue/product_tests.py::ProductCreationTests
 [PASS] Allow two products without upc
 [PASS] Create products with attributes
 [PASS] None upc is represented as empty string
 [PASS] Upc uniqueness enforced

tests/integration/catalogue/product_tests.py::TopLevelProductTests
 [PASS] Top level products are part of browsable set
 [PASS] Top level products must have product class
 [PASS] Top level products must have titles

tests/integration/catalogue/product_tests.py::ChildProductTests
 [PASS] Child products are not part of browsable set
 [PASS] Child products dont need a product class
 [PASS] Child products dont need titles
 [PASS] Child products inherit fields
 [PASS] Have a minimum price

tests/integration/catalogue/product_tests.py::TestAChildProduct
 [PASS] Delegates requires shipping logic

tests/integration/catalogue/product_tests.py::ProductAttributeCreationTests
 [PASS] Entity attributes
 [PASS] Validating option attribute

=========================== 15 passed in 1.64 seconds ===========================

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-oscar 1.3 documentation

 	Contributing to Oscar

Writing documentation

Directory Structure

The docs are built by calling make docs from your Oscar directory.
They live in /docs/source. This directory structure is a
simplified version of what Django does.

	internals/ contains everything related to Oscar itself, e.g. contributing
guidelines or design philosophies.

	ref/ is the reference documentation, esp. consisting of

	ref/apps/ which should be a guide to each Oscar core app, explaining it’s
function, the main models, how it relates to the other apps, etc.

	topics/ will contain “meta” articles, explaining how things tie together
over several apps, or how Oscar can be combined with other solutions.

	howto/ contains tutorial-style descriptions on how to solve a certain
problem.

/index.rst is designed as the entry point, and diverges from above
structure to make the documentation more approachable. Other index.rst
files should only be created if there’s too many files to list them all.
E.g. /index.rst directly links to all files in topics/ and
internals/, but there’s an index.rst both for the files in howto/
and ref/apps/.

Style guides

Oscar currently does not have it’s own style guide for writing documentation.
Please carefully review style guides for Python [http://docs.python.org/devguide/documenting.html#style-guide] and Django [https://docs.djangoproject.com/en/dev/internals/contributing/writing-documentation/].
Please use gender-neutral language [https://alexgaynor.net/2013/nov/30/gender-neutral-language-faq/].

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	django-oscar 1.3 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 oscar	

 	
 	
 oscar.apps.address.abstract_models	

 	
 	
 oscar.apps.analytics.abstract_models	

 	
 	
 oscar.apps.basket.abstract_models	

 	
 	
 oscar.apps.basket.views	

 	
 	
 oscar.apps.catalogue.abstract_models	

 	
 	
 oscar.apps.catalogue.views	

 	
 	
 oscar.apps.checkout.calculators	

 	
 	
 oscar.apps.checkout.forms	

 	
 	
 oscar.apps.checkout.mixins	

 	
 	
 oscar.apps.checkout.session	

 	
 	
 oscar.apps.checkout.utils	

 	
 	
 oscar.apps.checkout.views	

 	
 	
 oscar.apps.customer.abstract_models	

 	
 	
 oscar.apps.customer.forms	

 	
 	
 oscar.apps.customer.views	

 	
 	
 oscar.apps.customer.wishlists.views	

 	
 	
 oscar.apps.dashboard.views	

 	
 	
 oscar.apps.offer.abstract_models	

 	
 	
 oscar.apps.offer.models	

 	
 	
 oscar.apps.offer.views	

 	
 	
 oscar.apps.order.processing	

 	
 	
 oscar.apps.order.utils	

 	
 	
 oscar.apps.partner.abstract_models	

 	
 	
 oscar.apps.partner.availability	

 	
 	
 oscar.apps.partner.prices	

 	
 	
 oscar.apps.partner.strategy	

 	
 	
 oscar.apps.payment.abstract_models	

 	
 	
 oscar.apps.promotions.models	

 	
 	
 oscar.apps.promotions.views	

 	
 	
 oscar.apps.search.facets	

 	
 	
 oscar.apps.search.forms	

 	
 	
 oscar.apps.search.views	

 	
 	
 oscar.apps.shipping.methods	

 	
 	
 oscar.apps.shipping.models	

 	
 	
 oscar.apps.shipping.repository	

 	
 	
 oscar.apps.voucher.abstract_models	

 	
 	
 oscar.apps.wishlists.abstract_models	

 	
 	
 oscar.core.application	

 	
 	
 oscar.core.loading	

 	
 	
 oscar.core.prices	

 	
 	
 oscar.models.fields	

 Copyright .
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	django-oscar 1.3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	AbsoluteDiscountBenefit (class in oscar.apps.offer.models)

 	AbstractAddress (class in oscar.apps.address.abstract_models)

 	AbstractAttributeOption (class in oscar.apps.catalogue.abstract_models)

 	AbstractAttributeOptionGroup (class in oscar.apps.catalogue.abstract_models)

 	AbstractBankcard (class in oscar.apps.payment.abstract_models)

 	AbstractBasket (class in oscar.apps.basket.abstract_models)

 	AbstractCategory (class in oscar.apps.catalogue.abstract_models)

 	AbstractCommunicationEventType (class in oscar.apps.customer.abstract_models)

 	AbstractCondition (class in oscar.apps.offer.abstract_models)

 	AbstractConditionalOffer (class in oscar.apps.offer.abstract_models)

 	AbstractCountry (class in oscar.apps.address.abstract_models)

 	AbstractEmail (class in oscar.apps.customer.abstract_models)

 	AbstractLine (class in oscar.apps.basket.abstract_models)

 	

 	(class in oscar.apps.wishlists.abstract_models)

 	AbstractLineAttribute (class in oscar.apps.basket.abstract_models)

 	AbstractOption (class in oscar.apps.catalogue.abstract_models)

 	AbstractPartner (class in oscar.apps.partner.abstract_models)

 	AbstractPartnerAddress (class in oscar.apps.address.abstract_models)

 	AbstractProduct (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductAlert (class in oscar.apps.customer.abstract_models)

 	AbstractProductAttribute (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductAttributeValue (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductCategory (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductClass (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductImage (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductList (class in oscar.apps.promotions.models)

 	AbstractProductRecommendation (class in oscar.apps.catalogue.abstract_models)

 	AbstractProductRecord (class in oscar.apps.analytics.abstract_models)

 	AbstractPromotion (class in oscar.apps.promotions.models)

 	AbstractRange (class in oscar.apps.offer.abstract_models)

 	AbstractRangeProduct (class in oscar.apps.offer.abstract_models)

 	AbstractShippingAddress (class in oscar.apps.address.abstract_models)

 	AbstractSource (class in oscar.apps.payment.abstract_models)

 	AbstractSourceType (class in oscar.apps.payment.abstract_models)

 	AbstractStockAlert (class in oscar.apps.partner.abstract_models)

 	

 	AbstractStockRecord (class in oscar.apps.partner.abstract_models)

 	AbstractTransaction (class in oscar.apps.payment.abstract_models)

 	AbstractUser (class in oscar.apps.customer.abstract_models)

 	AbstractUserAddress (class in oscar.apps.address.abstract_models)

 	AbstractUserRecord (class in oscar.apps.analytics.abstract_models)

 	AbstractVoucher (class in oscar.apps.voucher.abstract_models)

 	AbstractVoucherApplication (class in oscar.apps.voucher.abstract_models)

 	AbstractWishList (class in oscar.apps.wishlists.abstract_models)

 	AccountAuthView (class in oscar.apps.customer.views)

 	AccountSummaryView (class in oscar.apps.customer.views)

 	active_address_fields() (oscar.apps.address.abstract_models.AbstractAddress method)

 	add() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	

 	(oscar.apps.wishlists.abstract_models.AbstractWishList method)

 	add_payment_event() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	add_payment_source() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	add_product() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	

 	(oscar.apps.offer.abstract_models.AbstractRange method)

 	AddressChangeStatusView (class in oscar.apps.customer.views)

 	AddressListView (class in oscar.apps.customer.views)

 	all_lines() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	all_products() (oscar.apps.offer.abstract_models.AbstractRange method)

 	allocate() (oscar.apps.partner.abstract_models.AbstractStockRecord method)

 	

 	(oscar.apps.payment.abstract_models.AbstractSource method)

 	amount_available_for_refund (oscar.apps.payment.abstract_models.AbstractSource attribute)

 	Application (class in oscar.core.application)

 	applied_offers() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	apply_benefit() (oscar.apps.offer.abstract_models.AbstractConditionalOffer method)

 	apply_deferred_benefit() (oscar.apps.offer.abstract_models.AbstractConditionalOffer method)

 	apply_shipping_offer() (oscar.apps.shipping.repository.Repository method)

 	apply_shipping_offers() (oscar.apps.shipping.repository.Repository method)

 	are_stock_allocations_available() (oscar.apps.order.processing.EventHandler method)

 	attribute_summary (oscar.apps.catalogue.abstract_models.AbstractProduct attribute)

 	AutomaticProductList (class in oscar.apps.promotions.models)

 	availability (oscar.apps.partner.strategy.PurchaseInfo attribute)

 	availability_description() (oscar.apps.offer.abstract_models.AbstractConditionalOffer method)

 	availability_policy() (oscar.apps.partner.strategy.Structured method)

 	Available (class in oscar.apps.partner.availability)

B

 	

 	balance (oscar.apps.payment.abstract_models.AbstractSource attribute)

 	Base (class in oscar.apps.partner.availability)

 	

 	(class in oscar.apps.partner.prices)

 	(class in oscar.apps.partner.strategy)

 	(class in oscar.apps.shipping.methods)

 	base_sqs() (in module oscar.apps.search.facets)

 	basket

 	BasketAddView (class in oscar.apps.basket.views)

 	BasketDiscount (class in oscar.apps.offer.models)

 	Benefit (class in oscar.apps.offer.models)

 	benefit (oscar.apps.voucher.abstract_models.AbstractVoucher attribute)

 	

 	bill_to_new_address() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	bill_to_shipping_address() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	bill_to_user_address() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	billing_address_same_as_shipping() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	billing_user_address_id() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	BrowseCategoryForm (class in oscar.apps.search.forms)

 	build_submission() (oscar.apps.checkout.session.CheckoutSessionMixin method)

C

 	

 	calculate() (oscar.apps.shipping.methods.Base method)

 	calculate_excl_tax() (oscar.apps.shipping.methods.TaxInclusiveOfferDiscount method)

 	calculate_payment_event_subtotal() (oscar.apps.order.processing.EventHandler method)

 	calculate_rating() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	can_apply_condition() (oscar.apps.offer.abstract_models.AbstractCondition method)

 	can_be_edited (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	can_be_parent() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	cancel_stock_allocations() (oscar.apps.order.processing.EventHandler method)

 	CatalogueView (class in oscar.apps.catalogue.views)

 	check_basket_is_valid() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	CheckoutSessionData (class in oscar.apps.checkout.utils)

 	CheckoutSessionMixin (class in oscar.apps.checkout.session)

 	clean() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	clear_discount() (oscar.apps.basket.abstract_models.AbstractLine method)

 	code (oscar.apps.address.abstract_models.AbstractCountry attribute)

 	

 	(oscar.apps.customer.abstract_models.AbstractCommunicationEventType attribute)

 	(oscar.apps.partner.availability.Base attribute)

 	(oscar.apps.shipping.methods.Base attribute)

 	Condition (class in oscar.apps.offer.models)

 	ConditionalOffer (class in oscar.apps.offer.models)

 	ConfirmPasswordForm (class in oscar.apps.customer.forms)

 	consume() (oscar.apps.basket.abstract_models.AbstractLine method)

 	

 	consume_allocation() (oscar.apps.partner.abstract_models.AbstractStockRecord method)

 	consume_items() (oscar.apps.offer.models.CountCondition method)

 	

 	(oscar.apps.offer.models.CoverageCondition method)

 	(oscar.apps.offer.models.ValueCondition method)

 	consume_stock_allocations() (oscar.apps.order.processing.EventHandler method)

 	contains() (oscar.apps.offer.abstract_models.AbstractRange method)

 	contains_product() (oscar.apps.offer.abstract_models.AbstractRange method)

 	contains_voucher() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	cost_price (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

 	CountCondition (class in oscar.apps.offer.models)

 	CoverageCondition (class in oscar.apps.offer.models)

 	create_additional_line_models() (oscar.apps.order.utils.OrderCreator method)

 	create_billing_address() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	create_deferred_transaction() (oscar.apps.payment.abstract_models.AbstractSource method)

 	create_discount_model() (oscar.apps.order.utils.OrderCreator method)

 	create_line_attributes() (oscar.apps.order.utils.OrderCreator method)

 	create_line_models() (oscar.apps.order.utils.OrderCreator method)

 	create_line_price_models() (oscar.apps.order.utils.OrderCreator method)

 	create_order_model() (oscar.apps.order.utils.OrderCreator method)

 	create_shipping_address() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	currency (oscar.apps.partner.prices.Base attribute)

 	

 	(oscar.core.prices.Price attribute)

D

 	

 	debit() (oscar.apps.payment.abstract_models.AbstractSource method)

 	deconstruct() (oscar.models.fields.NullCharField method)

 	

 	(oscar.models.fields.PhoneNumberField method)

 	Default (class in oscar.apps.partner.strategy)

 	default_permissions (oscar.core.application.Application attribute)

 	DeferredTax (class in oscar.apps.partner.strategy)

 	

 	delete() (oscar.apps.catalogue.abstract_models.AbstractProductImage method)

 	description (oscar.apps.offer.abstract_models.AbstractCondition attribute)

 	

 	(oscar.apps.shipping.methods.Base attribute)

 	discount() (oscar.apps.basket.abstract_models.AbstractLine method)

 	

 	(oscar.apps.shipping.methods.Base method)

 	dispatch_date (oscar.apps.partner.availability.Base attribute)

 	display_order (oscar.apps.catalogue.abstract_models.AbstractProductImage attribute)

E

 	

 	EmailAuthenticationForm (class in oscar.apps.customer.forms)

 	EmailDetailView (class in oscar.apps.customer.views)

 	ensure_postcode_is_valid_for_country() (oscar.apps.address.abstract_models.AbstractAddress method)

 	ensure_slug_uniqueness() (oscar.apps.catalogue.abstract_models.AbstractCategory method)

 	

 	EventHandler (class in oscar.apps.order.processing)

 	excl_tax (oscar.apps.partner.prices.Base attribute)

 	

 	(oscar.core.prices.Price attribute)

 	exists (oscar.apps.partner.prices.Base attribute)

F

 	

 	FacetedSearchView (class in oscar.apps.search.views)

 	fetch_for_line() (oscar.apps.partner.strategy.Base method)

 	fetch_for_parent() (oscar.apps.partner.strategy.Base method)

 	fetch_for_product() (oscar.apps.partner.strategy.Base method)

 	

 	(oscar.apps.partner.strategy.Structured method)

 	FixedPrice (class in oscar.apps.partner.prices)

 	

 	(class in oscar.apps.shipping.methods)

 	FixedPriceBenefit (class in oscar.apps.offer.models)

 	FixedRateTax (class in oscar.apps.partner.strategy)

 	

 	flush() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	

 	(oscar.apps.checkout.utils.CheckoutSessionData method)

 	Free (class in oscar.apps.shipping.methods)

 	freeze() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	freeze_basket() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	Fulfillment partner

 	full_name (oscar.apps.catalogue.abstract_models.AbstractCategory attribute)

 	full_slug (oscar.apps.catalogue.abstract_models.AbstractCategory attribute)

G

 	

 	generate_hash() (oscar.apps.address.abstract_models.AbstractAddress method)

 	generate_order_number() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	generate_slug() (oscar.apps.catalogue.abstract_models.AbstractCategory method)

 	get_absolute_url() (oscar.apps.catalogue.abstract_models.AbstractCategory method)

 	

 	(oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	get_active_site_offers() (oscar.apps.dashboard.views.IndexView method)

 	get_active_vouchers() (oscar.apps.dashboard.views.IndexView method)

 	get_address_for_stockrecord() (oscar.apps.partner.abstract_models.AbstractPartner method)

 	get_ancestors_and_self() (oscar.apps.catalogue.abstract_models.AbstractCategory method)

 	get_applicable_lines() (oscar.apps.offer.abstract_models.AbstractCondition method)

 	get_available_shipping_methods() (oscar.apps.checkout.views.ShippingMethodView method)

 	

 	(oscar.apps.shipping.repository.Repository method)

 	get_billing_address() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	get_categories() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	

 	(oscar.apps.catalogue.views.ProductCategoryView method)

 	get_class() (in module oscar.core.loading)

 	get_classes() (in module oscar.core.loading)

 	get_default_billing_address() (oscar.apps.checkout.views.PaymentDetailsView method)

 	get_default_shipping_method() (oscar.apps.shipping.repository.Repository method)

 	get_descendants_and_self() (oscar.apps.catalogue.abstract_models.AbstractCategory method)

 	get_exponent() (oscar.apps.partner.strategy.FixedRateTax method)

 	get_hourly_report() (oscar.apps.dashboard.views.IndexView method)

 	get_is_discountable() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	get_max_applications() (oscar.apps.offer.abstract_models.AbstractConditionalOffer method)

 	get_messages() (oscar.apps.customer.abstract_models.AbstractCommunicationEventType method)

 	

 	get_missing_image() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	get_number_of_promotions() (oscar.apps.dashboard.views.IndexView method)

 	get_open_baskets() (oscar.apps.dashboard.views.IndexView method)

 	get_order_totals() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	get_page_title() (oscar.apps.customer.views.EmailDetailView method)

 	get_permissions() (oscar.core.application.Application method)

 	get_pre_conditions() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	get_prep_value() (oscar.models.fields.PhoneNumberField method)

 	get_price_breakdown() (oscar.apps.basket.abstract_models.AbstractLine method)

 	get_product_class() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	get_queryset() (oscar.apps.customer.views.AddressListView method)

 	get_random_key() (oscar.apps.customer.abstract_models.AbstractProductAlert method)

 	get_rate() (oscar.apps.partner.strategy.FixedRateTax method)

 	get_shipping_address() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	get_shipping_method() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	get_shipping_methods() (oscar.apps.shipping.repository.Repository method)

 	get_skip_conditions() (oscar.apps.checkout.session.CheckoutSessionMixin method)

 	get_title() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	get_url_decorator() (oscar.core.application.Application method)

 	get_urls() (oscar.core.application.Application method)

 	get_warning() (oscar.apps.basket.abstract_models.AbstractLine method)

 	grouped_voucher_discounts (oscar.apps.basket.abstract_models.AbstractBasket attribute)

H

 	

 	handle_order_placement() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	handle_order_status_change() (oscar.apps.order.processing.EventHandler method)

 	handle_payment() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	handle_payment_details_submission() (oscar.apps.checkout.views.PaymentDetailsView method)

 	handle_payment_event() (oscar.apps.order.processing.EventHandler method)

 	handle_place_order_submission() (oscar.apps.checkout.views.PaymentDetailsView method)

 	handle_shipping_event() (oscar.apps.order.processing.EventHandler method)

 	

 	handle_successful_order() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	HandPickedProductList (class in oscar.apps.promotions.models)

 	has_stockrecords (oscar.apps.catalogue.abstract_models.AbstractProduct attribute)

 	hash (oscar.apps.address.abstract_models.AbstractUserAddress attribute)

 	have_lines_passed_shipping_event() (oscar.apps.order.processing.EventHandler method)

 	hidable_feature_name (oscar.core.application.Application attribute)

 	HomeView (class in oscar.apps.promotions.views)

I

 	

 	Image (class in oscar.apps.promotions.models)

 	incl_tax (oscar.apps.partner.prices.Base attribute)

 	

 	(oscar.core.prices.Price attribute)

 	IndexView (class in oscar.apps.checkout.views)

 	

 	(class in oscar.apps.dashboard.views)

 	is_active() (oscar.apps.voucher.abstract_models.AbstractVoucher method)

 	is_allocation_consumption_possible() (oscar.apps.partner.abstract_models.AbstractStockRecord method)

 	is_available() (oscar.apps.offer.abstract_models.AbstractConditionalOffer method)

 	is_available_to_buy (oscar.apps.partner.availability.Base attribute)

 	is_available_to_user() (oscar.apps.voucher.abstract_models.AbstractVoucher method)

 	is_billing_address_set() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	is_default_for_billing (oscar.apps.address.abstract_models.AbstractUserAddress attribute)

 	is_default_for_shipping (oscar.apps.address.abstract_models.AbstractUserAddress attribute)

 	is_discountable (oscar.apps.catalogue.abstract_models.AbstractProduct attribute)

 	is_discounted (oscar.apps.shipping.methods.Base attribute)

 	

 	is_editable (oscar.apps.offer.abstract_models.AbstractRange attribute)

 	is_empty (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	is_expired() (oscar.apps.voucher.abstract_models.AbstractVoucher method)

 	is_partially_satisfied() (oscar.apps.offer.abstract_models.AbstractCondition method)

 	is_primary() (oscar.apps.catalogue.abstract_models.AbstractProductImage method)

 	is_purchase_permitted() (oscar.apps.partner.availability.Base method)

 	is_quantity_allowed() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	is_review_permitted() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	is_satisfied() (oscar.apps.offer.abstract_models.AbstractCondition method)

 	

 	(oscar.apps.offer.models.CountCondition method)

 	(oscar.apps.offer.models.CoverageCondition method)

 	(oscar.apps.offer.models.ValueCondition method)

 	is_shipping_address_set() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	is_shipping_method_set() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	is_shipping_required() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	is_tax_known (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	

 	(oscar.apps.partner.prices.Base attribute)

 	(oscar.core.prices.Price attribute)

J

 	

 	join_fields() (oscar.apps.address.abstract_models.AbstractAddress method)

K

 	

 	key (oscar.apps.wishlists.abstract_models.AbstractWishList attribute)

 	

 	KeywordPromotion (class in oscar.apps.promotions.models)

L

 	

 	line_quantity() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	LineMixin (class in oscar.apps.customer.wishlists.views)

 	

 	login_form_class (oscar.apps.customer.views.AccountAuthView attribute)

 	low_stock_threshold (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

M

 	

 	merge() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	merge_line() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	message (oscar.apps.partner.availability.Base attribute)

 	MissingProductImage (class in oscar.apps.catalogue.abstract_models)

 	

 	model (oscar.apps.customer.views.OrderHistoryView attribute)

 	

 	(oscar.apps.customer.wishlists.views.WishListCreateView attribute)

 	MultibuyDiscountBenefit (class in oscar.apps.offer.models)

 	MultiImage (class in oscar.apps.promotions.models)

N

 	

 	name (oscar.apps.address.abstract_models.AbstractCountry attribute)

 	

 	(oscar.apps.customer.abstract_models.AbstractCommunicationEventType attribute)

 	(oscar.apps.offer.abstract_models.AbstractCondition attribute)

 	(oscar.apps.shipping.methods.Base attribute)

 	(oscar.core.application.Application attribute)

 	net_stock_level (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

 	new_billing_address_fields() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	new_shipping_address_fields() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	NoShippingRequired (class in oscar.apps.shipping.methods)

 	NoTax (class in oscar.apps.partner.strategy)

 	NullCharField (class in oscar.models.fields)

 	

 	num_allocated (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

 	num_in_stock (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

 	num_items (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	num_lines (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	num_orders (oscar.apps.address.abstract_models.AbstractUserAddress attribute)

 	numeric_code (oscar.apps.address.abstract_models.AbstractCountry attribute)

O

 	

 	offer_discounts (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	OfferDiscount (class in oscar.apps.shipping.methods)

 	options (oscar.apps.catalogue.abstract_models.AbstractProduct attribute)

 	

 	(oscar.apps.catalogue.abstract_models.AbstractProductClass attribute)

 	order, [1]

 	

 	(oscar.apps.address.abstract_models.AbstractShippingAddress attribute)

 	order_number() (oscar.apps.order.utils.OrderNumberGenerator method)

 	OrderAndItemCharges (class in oscar.apps.shipping.models)

 	OrderCreator (class in oscar.apps.order.utils)

 	OrderedProduct (class in oscar.apps.promotions.models)

 	OrderedProductList (class in oscar.apps.promotions.models)

 	OrderHistoryView (class in oscar.apps.customer.views)

 	OrderLineView (class in oscar.apps.customer.views)

 	OrderNumberGenerator (class in oscar.apps.order.utils)

 	OrderPlacementMixin (class in oscar.apps.checkout.mixins)

 	OrderTotalCalculator (class in oscar.apps.checkout.calculators)

 	oscar.apps.address.abstract_models (module)

 	oscar.apps.analytics.abstract_models (module)

 	oscar.apps.basket.abstract_models (module)

 	oscar.apps.basket.signals.basket_addition (built-in class)

 	oscar.apps.basket.signals.voucher_addition (built-in class)

 	oscar.apps.basket.views (module)

 	oscar.apps.catalogue.abstract_models (module)

 	oscar.apps.catalogue.reviews.signals.review_added (built-in class)

 	oscar.apps.catalogue.signals.product_search (built-in class)

 	oscar.apps.catalogue.signals.product_viewed (built-in class)

 	oscar.apps.catalogue.views (module)

 	oscar.apps.checkout.calculators (module)

 	oscar.apps.checkout.forms (module)

 	oscar.apps.checkout.mixins (module)

 	oscar.apps.checkout.session (module)

 	oscar.apps.checkout.signals.post_checkout (built-in class)

 	oscar.apps.checkout.signals.post_payment (built-in class)

 	oscar.apps.checkout.signals.pre_payment (built-in class)

 	oscar.apps.checkout.signals.start_checkout (built-in class)

 	

 	oscar.apps.checkout.utils (module)

 	oscar.apps.checkout.views (module)

 	oscar.apps.customer.abstract_models (module)

 	oscar.apps.customer.forms (module)

 	oscar.apps.customer.signals.user_registered (built-in class)

 	oscar.apps.customer.views (module)

 	oscar.apps.customer.wishlists.views (module)

 	oscar.apps.dashboard.views (module)

 	oscar.apps.offer.abstract_models (module)

 	oscar.apps.offer.models (module)

 	oscar.apps.offer.views (module)

 	oscar.apps.order.processing (module)

 	oscar.apps.order.signals.order_placed (built-in class)

 	oscar.apps.order.utils (module)

 	oscar.apps.partner.abstract_models (module)

 	oscar.apps.partner.availability (module)

 	oscar.apps.partner.prices (module)

 	oscar.apps.partner.strategy (module)

 	oscar.apps.payment.abstract_models (module)

 	oscar.apps.promotions.models (module)

 	oscar.apps.promotions.views (module)

 	oscar.apps.search.facets (module)

 	oscar.apps.search.forms (module)

 	oscar.apps.search.views (module)

 	oscar.apps.shipping.methods (module)

 	oscar.apps.shipping.models (module)

 	oscar.apps.shipping.repository (module)

 	oscar.apps.voucher.abstract_models (module)

 	oscar.apps.wishlists.abstract_models (module)

 	oscar.core.application (module)

 	oscar.core.loading (module)

 	oscar.core.prices (module)

 	oscar.models.fields (module)

P

 	

 	PagePromotion (class in oscar.apps.promotions.models)

 	Partner

 	partner_sku (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

 	PasswordResetForm (class in oscar.apps.customer.forms)

 	PaymentDetailsView (class in oscar.apps.checkout.views)

 	PaymentMethodView (class in oscar.apps.checkout.views)

 	PercentageDiscountBenefit (class in oscar.apps.offer.models)

 	permissions_map (oscar.core.application.Application attribute)

 	PhoneNumberField (class in oscar.models.fields)

 	place_order() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	

 	(oscar.apps.order.utils.OrderCreator method)

 	populate_alternative_model() (oscar.apps.address.abstract_models.AbstractAddress method)

 	PositiveDecimalField (class in oscar.models.fields)

 	post_order_actions (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	post_process_urls() (oscar.core.application.Application method)

 	PostOrderAction (class in oscar.apps.offer.models)

 	Price (class in oscar.core.prices)

 	price (oscar.apps.partner.strategy.PurchaseInfo attribute)

 	price_retail (oscar.apps.partner.abstract_models.AbstractStockRecord attribute)

 	pricing_policy() (oscar.apps.partner.strategy.Structured method)

 	

 	primary_address (oscar.apps.partner.abstract_models.AbstractPartner attribute)

 	primary_image() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	printable_name (oscar.apps.address.abstract_models.AbstractCountry attribute)

 	product, [1]

 	Product Category

 	Product Class

 	Product Options

 	Product Range

 	product_class (oscar.apps.catalogue.abstract_models.AbstractProduct attribute)

 	product_model (oscar.apps.basket.views.BasketAddView attribute)

 	product_options (oscar.apps.catalogue.abstract_models.AbstractProduct attribute)

 	product_quantity() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	ProductAttributesContainer (class in oscar.apps.catalogue.abstract_models)

 	ProductCategoryView (class in oscar.apps.catalogue.views)

 	products() (oscar.apps.offer.abstract_models.AbstractConditionalOffer method)

 	proxy() (oscar.apps.offer.abstract_models.AbstractCondition method)

 	purchase_info (oscar.apps.basket.abstract_models.AbstractLine attribute)

 	PurchaseInfo (class in oscar.apps.partner.strategy)

Q

 	

 	query

R

 	

 	random_key() (oscar.apps.wishlists.abstract_models.AbstractWishList class method)

 	Range (class in oscar.apps.offer.models)

 	RangeProduct (class in oscar.apps.offer.models)

 	RangeProductFileUpload (class in oscar.apps.offer.models)

 	RawHTML (class in oscar.apps.promotions.models)

 	record_discount() (oscar.apps.voucher.abstract_models.AbstractVoucher method)

 	record_usage() (oscar.apps.voucher.abstract_models.AbstractVoucher method)

 	record_voucher_usage() (oscar.apps.order.utils.OrderCreator method)

 	RecordClickView (class in oscar.apps.promotions.views)

 	refund() (oscar.apps.payment.abstract_models.AbstractSource method)

 	remove_product() (oscar.apps.offer.abstract_models.AbstractRange method)

 	

 	render_payment_details() (oscar.apps.checkout.views.PaymentDetailsView method)

 	render_preview() (oscar.apps.checkout.views.PaymentDetailsView method)

 	Repository (class in oscar.apps.shipping.repository)

 	request, [1], [2], [3], [4], [5]

 	requires_shipping (oscar.apps.catalogue.abstract_models.AbstractProductClass attribute)

 	reset_offer_applications() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	response, [1], [2]

 	restore_frozen_basket() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	retail (oscar.apps.partner.prices.Base attribute)

 	review

S

 	

 	salutation (oscar.apps.address.abstract_models.AbstractAddress attribute)

 	save() (oscar.apps.address.abstract_models.AbstractUserAddress method)

 	

 	(oscar.apps.catalogue.abstract_models.AbstractCategory method)

 	(oscar.apps.customer.forms.PasswordResetForm method)

 	save_payment_details() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	save_payment_events() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	save_payment_sources() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	search_text (oscar.apps.address.abstract_models.AbstractAddress attribute)

 	SearchForm (class in oscar.apps.search.forms)

 	SearchInput (class in oscar.apps.search.forms)

 	select_children_stockrecords() (oscar.apps.partner.strategy.Structured method)

 	select_stockrecord() (oscar.apps.partner.strategy.Structured method)

 	selected_multi_facets (oscar.apps.search.forms.SearchForm attribute)

 	Selector (class in oscar.apps.partner.strategy)

 	set_as_submitted() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	ship_to_new_address() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	ship_to_user_address() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	shipping_discounts (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	shipping_method_code() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	shipping_user_address_id() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	

 	ShippingAbsoluteDiscountBenefit (class in oscar.apps.offer.models)

 	ShippingAddressView (class in oscar.apps.checkout.views)

 	ShippingBenefit (class in oscar.apps.offer.models)

 	ShippingDiscount (class in oscar.apps.offer.models)

 	ShippingFixedPriceBenefit (class in oscar.apps.offer.models)

 	ShippingMethodView (class in oscar.apps.checkout.views)

 	ShippingPercentageDiscountBenefit (class in oscar.apps.offer.models)

 	short_message (oscar.apps.partner.availability.Base attribute)

 	SingleProduct (class in oscar.apps.promotions.models)

 	SKU

 	Stock-keeping unit.

 	stockrecord (oscar.apps.partner.strategy.PurchaseInfo attribute)

 	StockRequired (class in oscar.apps.partner.availability)

 	

 	(class in oscar.apps.partner.strategy)

 	strategy() (oscar.apps.partner.strategy.Selector method)

 	Structured (class in oscar.apps.partner.strategy)

 	submit() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	

 	(oscar.apps.checkout.views.PaymentDetailsView method)

 	summary (oscar.apps.address.abstract_models.AbstractAddress attribute)

 	summary() (oscar.apps.catalogue.abstract_models.AbstractProductAttributeValue method)

T

 	

 	TabbedBlock (class in oscar.apps.promotions.models)

 	tax (oscar.apps.partner.prices.Base attribute)

 	

 	(oscar.core.prices.Price attribute)

 	TaxExclusiveOfferDiscount (class in oscar.apps.shipping.methods)

 	TaxInclusiveFixedPrice (class in oscar.apps.partner.prices)

 	TaxInclusiveOfferDiscount (class in oscar.apps.shipping.methods)

 	template_name() (oscar.apps.promotions.models.AbstractPromotion method)

 	ThankYouView (class in oscar.apps.checkout.views)

 	thaw() (oscar.apps.basket.abstract_models.AbstractBasket method)

 	

 	title (oscar.apps.wishlists.abstract_models.AbstractLine attribute)

 	total_excl_tax (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	total_excl_tax_excl_discounts (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	total_incl_tax (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	total_incl_tax_excl_discounts (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	total_tax (oscar.apps.basket.abstract_models.AbstractBasket attribute)

 	track_stock (oscar.apps.catalogue.abstract_models.AbstractProductClass attribute)

U

 	

 	UK (class in oscar.apps.partner.strategy)

 	Unavailable (class in oscar.apps.partner.availability)

 	

 	(class in oscar.apps.partner.prices)

 	unit_effective_price (oscar.apps.basket.abstract_models.AbstractLine attribute)

 	Universal Product Code

 	UPC

 	update_address_book() (oscar.apps.checkout.mixins.OrderPlacementMixin method)

 	update_rating() (oscar.apps.catalogue.abstract_models.AbstractProduct method)

 	update_stock_records() (oscar.apps.order.utils.OrderCreator method)

 	UppercaseCharField (class in oscar.models.fields)

 	

 	US (class in oscar.apps.partner.strategy)

 	use_free_shipping() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	use_shipping_method() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	UseFirstStockRecord (class in oscar.apps.partner.strategy)

 	user, [1], [2], [3], [4], [5], [6]

 	user_address_id() (oscar.apps.checkout.utils.CheckoutSessionData method)

 	UserAddressDeleteView (class in oscar.apps.checkout.views)

 	UserAddressUpdateView (class in oscar.apps.checkout.views)

 	users (oscar.apps.partner.abstract_models.AbstractPartner attribute)

V

 	

 	validate_shipping_event() (oscar.apps.order.processing.EventHandler method)

 	value_as_html (oscar.apps.catalogue.abstract_models.AbstractProductAttributeValue attribute)

 	value_as_text (oscar.apps.catalogue.abstract_models.AbstractProductAttributeValue attribute)

 	value_to_string() (oscar.models.fields.PhoneNumberField method)

 	

 	ValueCondition (class in oscar.apps.offer.models)

 	view, [1]

 	voucher

 	voucher_discounts (oscar.apps.basket.abstract_models.AbstractBasket attribute)

W

 	

 	WeightBand (class in oscar.apps.shipping.models)

 	WeightBased (class in oscar.apps.shipping.models)

 	WishListAddProduct (class in oscar.apps.customer.wishlists.views)

 	

 	WishListCreateView (class in oscar.apps.customer.wishlists.views)

 	WishListCreateWithProductView (class in oscar.apps.customer.wishlists.views)

 	WishListDetailView (class in oscar.apps.customer.wishlists.views)

 Copyright .
 Created using Sphinx 1.3.3.

 _modules/oscar/apps/analytics/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.analytics.abstract_models

from decimal import Decimal

from django.db import models
from django.utils.encoding import python_2_unicode_compatible
from django.utils.translation import ugettext_lazy as _

from oscar.core.compat import AUTH_USER_MODEL

@python_2_unicode_compatible
[docs]class AbstractProductRecord(models.Model):
 """
 A record of a how popular a product is.

 This used be auto-merchandising to display the most popular
 products.
 """

 product = models.OneToOneField(
 'catalogue.Product', verbose_name=_("Product"),
 related_name='stats', on_delete=models.CASCADE)

 # Data used for generating a score
 num_views = models.PositiveIntegerField(_('Views'), default=0)
 num_basket_additions = models.PositiveIntegerField(
 _('Basket Additions'), default=0)
 num_purchases = models.PositiveIntegerField(
 _('Purchases'), default=0, db_index=True)

 # Product score - used within search
 score = models.FloatField(_('Score'), default=0.00)

 class Meta:
 abstract = True
 app_label = 'analytics'
 ordering = ['-num_purchases']
 verbose_name = _('Product record')
 verbose_name_plural = _('Product records')

 def __str__(self):
 return _("Record for '%s'") % self.product

[docs]class AbstractUserRecord(models.Model):
 """
 A record of a user's activity.
 """

 user = models.OneToOneField(AUTH_USER_MODEL, verbose_name=_("User"),
 on_delete=models.CASCADE)

 # Browsing stats
 num_product_views = models.PositiveIntegerField(
 _('Product Views'), default=0)
 num_basket_additions = models.PositiveIntegerField(
 _('Basket Additions'), default=0)

 # Order stats
 num_orders = models.PositiveIntegerField(
 _('Orders'), default=0, db_index=True)
 num_order_lines = models.PositiveIntegerField(
 _('Order Lines'), default=0, db_index=True)
 num_order_items = models.PositiveIntegerField(
 _('Order Items'), default=0, db_index=True)
 total_spent = models.DecimalField(_('Total Spent'), decimal_places=2,
 max_digits=12, default=Decimal('0.00'))
 date_last_order = models.DateTimeField(
 _('Last Order Date'), blank=True, null=True)

 class Meta:
 abstract = True
 app_label = 'analytics'
 verbose_name = _('User record')
 verbose_name_plural = _('User records')

@python_2_unicode_compatible
class AbstractUserProductView(models.Model):

 user = models.ForeignKey(AUTH_USER_MODEL, verbose_name=_("User"))
 product = models.ForeignKey('catalogue.Product', verbose_name=_("Product"))
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'analytics'
 verbose_name = _('User product view')
 verbose_name_plural = _('User product views')

 def __str__(self):
 return _("%(user)s viewed '%(product)s'") % {
 'user': self.user, 'product': self.product}

@python_2_unicode_compatible
class AbstractUserSearch(models.Model):

 user = models.ForeignKey(AUTH_USER_MODEL, verbose_name=_("User"))
 query = models.CharField(_("Search term"), max_length=255, db_index=True)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'analytics'
 verbose_name = _("User search query")
 verbose_name_plural = _("User search queries")

 def __str__(self):
 return _("%(user)s searched for '%(query)s'") % {
 'user': self.user,
 'query': self.query}

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/dashboard/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.dashboard.views

from datetime import timedelta
from decimal import Decimal as D
from decimal import ROUND_UP

from django.db.models import Avg, Count, Sum
from django.utils.timezone import now
from django.views.generic import TemplateView

from oscar.apps.promotions.models import AbstractPromotion
from oscar.core.compat import get_user_model
from oscar.core.loading import get_model

ConditionalOffer = get_model('offer', 'ConditionalOffer')
Voucher = get_model('voucher', 'Voucher')
Basket = get_model('basket', 'Basket')
StockAlert = get_model('partner', 'StockAlert')
Product = get_model('catalogue', 'Product')
Order = get_model('order', 'Order')
Line = get_model('order', 'Line')
User = get_user_model()

[docs]class IndexView(TemplateView):
 """
 An overview view which displays several reports about the shop.

 Supports the permission-based dashboard. It is recommended to add a
 index_nonstaff.html template because Oscar's default template will
 display potentially sensitive store information.
 """

 def get_template_names(self):
 if self.request.user.is_staff:
 return ['dashboard/index.html',]
 else:
 return ['dashboard/index_nonstaff.html', 'dashboard/index.html']

 def get_context_data(self, **kwargs):
 ctx = super(IndexView, self).get_context_data(**kwargs)
 ctx.update(self.get_stats())
 return ctx

[docs] def get_active_site_offers(self):
 """
 Return active conditional offers of type "site offer". The returned
 ``Queryset`` of site offers is filtered by end date greater then
 the current date.
 """
 return ConditionalOffer.objects.filter(
 end_datetime__gt=now(), offer_type=ConditionalOffer.SITE)

[docs] def get_active_vouchers(self):
 """
 Get all active vouchers. The returned ``Queryset`` of vouchers
 is filtered by end date greater then the current date.
 """
 return Voucher.objects.filter(end_datetime__gt=now())

[docs] def get_number_of_promotions(self, abstract_base=AbstractPromotion):
 """
 Get the number of promotions for all promotions derived from
 abstract_base. All subclasses of *abstract_base* are queried
 and if another abstract base class is found this method is executed
 recursively.
 """
 total = 0
 for cls in abstract_base.__subclasses__():
 if cls._meta.abstract:
 total += self.get_number_of_promotions(cls)
 else:
 total += cls.objects.count()
 return total

[docs] def get_open_baskets(self, filters=None):
 """
 Get all open baskets. If *filters* dictionary is provided they will
 be applied on all open baskets and return only filtered results.
 """
 if filters is None:
 filters = {}
 filters['status'] = Basket.OPEN
 return Basket.objects.filter(**filters)

[docs] def get_hourly_report(self, hours=24, segments=10):
 """
 Get report of order revenue split up in hourly chunks. A report is
 generated for the last *hours* (default=24) from the current time.
 The report provides ``max_revenue`` of the hourly order revenue sum,
 ``y-range`` as the labeling for the y-axis in a template and
 ``order_total_hourly``, a list of properties for hourly chunks.
 segments defines the number of labeling segments used for the y-axis
 when generating the y-axis labels (default=10).
 """
 # Get datetime for 24 hours agao
 time_now = now().replace(minute=0, second=0)
 start_time = time_now - timedelta(hours=hours - 1)

 orders_last_day = Order.objects.filter(date_placed__gt=start_time)

 order_total_hourly = []
 for hour in range(0, hours, 2):
 end_time = start_time + timedelta(hours=2)
 hourly_orders = orders_last_day.filter(date_placed__gt=start_time,
 date_placed__lt=end_time)
 total = hourly_orders.aggregate(
 Sum('total_incl_tax')
)['total_incl_tax__sum'] or D('0.0')
 order_total_hourly.append({
 'end_time': end_time,
 'total_incl_tax': total
 })
 start_time = end_time

 max_value = max([x['total_incl_tax'] for x in order_total_hourly])
 divisor = 1
 while divisor < max_value / 50:
 divisor *= 10
 max_value = (max_value / divisor).quantize(D('1'), rounding=ROUND_UP)
 max_value *= divisor
 if max_value:
 segment_size = (max_value) / D('100.0')
 for item in order_total_hourly:
 item['percentage'] = int(item['total_incl_tax'] / segment_size)

 y_range = []
 y_axis_steps = max_value / D(str(segments))
 for idx in reversed(range(segments + 1)):
 y_range.append(idx * y_axis_steps)
 else:
 y_range = []
 for item in order_total_hourly:
 item['percentage'] = 0

 ctx = {
 'order_total_hourly': order_total_hourly,
 'max_revenue': max_value,
 'y_range': y_range,
 }
 return ctx

 def get_stats(self):
 datetime_24hrs_ago = now() - timedelta(hours=24)

 orders = Order.objects.all()
 orders_last_day = orders.filter(date_placed__gt=datetime_24hrs_ago)

 open_alerts = StockAlert.objects.filter(status=StockAlert.OPEN)
 closed_alerts = StockAlert.objects.filter(status=StockAlert.CLOSED)

 total_lines_last_day = Line.objects.filter(
 order__in=orders_last_day).count()
 stats = {
 'total_orders_last_day': orders_last_day.count(),
 'total_lines_last_day': total_lines_last_day,

 'average_order_costs': orders_last_day.aggregate(
 Avg('total_incl_tax')
)['total_incl_tax__avg'] or D('0.00'),

 'total_revenue_last_day': orders_last_day.aggregate(
 Sum('total_incl_tax')
)['total_incl_tax__sum'] or D('0.00'),

 'hourly_report_dict': self.get_hourly_report(hours=24),
 'total_customers_last_day': User.objects.filter(
 date_joined__gt=datetime_24hrs_ago,
).count(),

 'total_open_baskets_last_day': self.get_open_baskets({
 'date_created__gt': datetime_24hrs_ago
 }).count(),

 'total_products': Product.objects.count(),
 'total_open_stock_alerts': open_alerts.count(),
 'total_closed_stock_alerts': closed_alerts.count(),

 'total_site_offers': self.get_active_site_offers().count(),
 'total_vouchers': self.get_active_vouchers().count(),
 'total_promotions': self.get_number_of_promotions(),

 'total_customers': User.objects.count(),
 'total_open_baskets': self.get_open_baskets().count(),
 'total_orders': orders.count(),
 'total_lines': Line.objects.count(),
 'total_revenue': orders.aggregate(
 Sum('total_incl_tax')
)['total_incl_tax__sum'] or D('0.00'),

 'order_status_breakdown': orders.order_by(
 'status'
).values('status').annotate(freq=Count('id'))
 }
 return stats

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/search/forms.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.search.forms

from collections import defaultdict

from django import forms
from django.conf import settings
from django.forms.widgets import Input
from django.utils.translation import ugettext_lazy as _
from haystack.forms import FacetedSearchForm

from oscar.core.loading import get_class

is_solr_supported = get_class('search.features', 'is_solr_supported')

[docs]class SearchInput(Input):
 """
 Defining a search type widget

 This is an HTML5 thing and works nicely with Safari, other browsers default
 back to using the default "text" type
 """
 input_type = 'search'

Build a dict of valid queries
VALID_FACET_QUERIES = defaultdict(list)
for facet in settings.OSCAR_SEARCH_FACETS['queries'].values():
 field_name = "%s_exact" % facet['field']
 queries = [t[1] for t in facet['queries']]
 VALID_FACET_QUERIES[field_name].extend(queries)

[docs]class SearchForm(FacetedSearchForm):
 """
 In Haystack, the search form is used for interpreting
 and sub-filtering the SQS.
 """
 # Use a tabindex of 1 so that users can hit tab on any page and it will
 # focus on the search widget.
 q = forms.CharField(
 required=False, label=_('Search'),
 widget=SearchInput({
 "placeholder": _('Search'),
 "tabindex": "1",
 "class": "form-control"
 }))

 # Search
 RELEVANCY = "relevancy"
 TOP_RATED = "rating"
 NEWEST = "newest"
 PRICE_HIGH_TO_LOW = "price-desc"
 PRICE_LOW_TO_HIGH = "price-asc"
 TITLE_A_TO_Z = "title-asc"
 TITLE_Z_TO_A = "title-desc"

 SORT_BY_CHOICES = [
 (RELEVANCY, _("Relevancy")),
 (TOP_RATED, _("Customer rating")),
 (NEWEST, _("Newest")),
 (PRICE_HIGH_TO_LOW, _("Price high to low")),
 (PRICE_LOW_TO_HIGH, _("Price low to high")),
 (TITLE_A_TO_Z, _("Title A to Z")),
 (TITLE_Z_TO_A, _("Title Z to A")),
]

 # Map query params to sorting fields. Note relevancy isn't included here
 # as we assume results are returned in relevancy order in the absence of an
 # explicit sort field being passed to the search backend.
 SORT_BY_MAP = {
 TOP_RATED: '-rating',
 NEWEST: '-date_created',
 PRICE_HIGH_TO_LOW: '-price',
 PRICE_LOW_TO_HIGH: 'price',
 TITLE_A_TO_Z: 'title_s',
 TITLE_Z_TO_A: '-title_s',
 }
 # Non Solr backends don't support dynamic fields so we just sort on title
 if not is_solr_supported():
 SORT_BY_MAP[TITLE_A_TO_Z] = 'title'
 SORT_BY_MAP[TITLE_Z_TO_A] = '-title'

 sort_by = forms.ChoiceField(
 label=_("Sort by"), choices=SORT_BY_CHOICES,
 widget=forms.Select(), required=False)

 @property
 def selected_multi_facets(self):
 """
 Validate and return the selected facets
 """
 # Process selected facets into a dict(field->[*values]) to handle
 # multi-faceting
 selected_multi_facets = defaultdict(list)

 for facet_kv in self.selected_facets:
 if ":" not in facet_kv:
 continue
 field_name, value = facet_kv.split(':', 1)

 # Validate query facets as they as passed unescaped to Solr
 if field_name in VALID_FACET_QUERIES:
 if value not in VALID_FACET_QUERIES[field_name]:
 # Invalid query value
 continue

 selected_multi_facets[field_name].append(value)

 return selected_multi_facets

 def search(self):
 # We replace the 'search' method from FacetedSearchForm, so that we can
 # handle range queries
 # Note, we call super on a parent class as the default faceted view
 # escapes everything (which doesn't work for price range queries)
 sqs = super(FacetedSearchForm, self).search()

 # We need to process each facet to ensure that the field name and the
 # value are quoted correctly and separately:
 for field, values in self.selected_multi_facets.items():
 if not values:
 continue
 if field in VALID_FACET_QUERIES:
 # Query facet - don't wrap value in speech marks and don't
 # clean value. Query values should have been validated by this
 # point and so we don't need to escape them.
 sqs = sqs.narrow(u'%s:(%s)' % (
 field, " OR ".join(values)))
 else:
 # Field facet - clean and quote the values
 clean_values = [
 '"%s"' % sqs.query.clean(val) for val in values]
 sqs = sqs.narrow(u'%s:(%s)' % (
 field, " OR ".join(clean_values)))

 if self.is_valid() and 'sort_by' in self.cleaned_data:
 sort_field = self.SORT_BY_MAP.get(
 self.cleaned_data['sort_by'], None)
 if sort_field:
 sqs = sqs.order_by(sort_field)

 return sqs

[docs]class BrowseCategoryForm(SearchForm):
 """
 Variant of SearchForm that returns all products (instead of none) if no
 query is specified.
 """

 def no_query_found(self):
 return self.searchqueryset

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/search/facets.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.search.facets

from collections import OrderedDict

from django.conf import settings
from haystack.query import SearchQuerySet
from purl import URL

[docs]def base_sqs():
 """
 Return the base SearchQuerySet for Haystack searches.
 """
 sqs = SearchQuerySet()
 for facet in settings.OSCAR_SEARCH_FACETS['fields'].values():
 options = facet.get('options', {})
 sqs = sqs.facet(facet['field'], **options)
 for facet in settings.OSCAR_SEARCH_FACETS['queries'].values():
 for query in facet['queries']:
 sqs = sqs.query_facet(facet['field'], query[1])
 return sqs

class FacetMunger(object):

 def __init__(self, path, selected_multi_facets, facet_counts):
 self.base_url = URL(path)
 self.selected_facets = selected_multi_facets
 self.facet_counts = facet_counts

 def facet_data(self):
 facet_data = OrderedDict()
 # Haystack can return an empty dict for facet_counts when e.g. Solr
 # isn't running. Skip facet munging in that case.
 if self.facet_counts:
 self.munge_field_facets(facet_data)
 self.munge_query_facets(facet_data)
 return facet_data

 def munge_field_facets(self, clean_data):
 for key, facet in settings.OSCAR_SEARCH_FACETS['fields'].items():
 self.munge_field_facet(key, facet, clean_data)

 def munge_field_facet(self, key, facet, clean_data):
 clean_data[key] = {
 'name': facet['name'],
 'results': []}
 for field_value, count in self.facet_counts['fields'][key]:
 field_name = '%s_exact' % facet['field']
 is_faceted_already = field_name in self.selected_facets
 datum = {
 'name': field_value,
 'count': count,
 # We don't show facet counts if a this field is already being
 # faceted (as we don't know them)
 'show_count': not is_faceted_already,
 'disabled': count == 0 and not is_faceted_already,
 'selected': False
 }
 if field_value in self.selected_facets.get(field_name, []):
 # This filter is selected - build the 'deselect' URL
 datum['selected'] = True
 url = self.base_url.remove_query_param(
 'selected_facets', '%s:%s' % (
 field_name, field_value))
 datum['deselect_url'] = self.strip_pagination(url)
 else:
 # This filter is not selected - built the 'select' URL
 url = self.base_url.append_query_param(
 'selected_facets', '%s:%s' % (
 field_name, field_value))
 datum['select_url'] = self.strip_pagination(url)

 clean_data[key]['results'].append(datum)

 def munge_query_facets(self, clean_data):
 for key, facet in settings.OSCAR_SEARCH_FACETS['queries'].items():
 self.munge_query_facet(key, facet, clean_data)

 def munge_query_facet(self, key, facet, clean_data):
 clean_data[key] = {
 'name': facet['name'],
 'results': []}
 # Loop over the queries in OSCAR_SEARCH_FACETS rather than the returned
 # facet information from the search backend.
 for field_value, query in facet['queries']:
 field_name = '%s_exact' % facet['field']
 is_faceted_already = field_name in self.selected_facets

 match = '%s:%s' % (field_name, query)
 if match not in self.facet_counts['queries']:
 # This query was not returned
 datum = {
 'name': field_value,
 'count': 0,
 'show_count': True,
 'disabled': True,
 }
 else:
 count = self.facet_counts['queries'][match]
 datum = {
 'name': field_value,
 'count': count,
 'show_count': not is_faceted_already,
 'disabled': count == 0 and not is_faceted_already,
 'selected': False,
 }
 if query in self.selected_facets.get(field_name, []):
 # Selected
 datum['selected'] = True
 datum['show_count'] = True
 url = self.base_url.remove_query_param(
 'selected_facets', match)
 datum['deselect_url'] = self.strip_pagination(url)
 else:
 url = self.base_url.append_query_param(
 'selected_facets', match)
 datum['select_url'] = self.strip_pagination(url)
 clean_data[key]['results'].append(datum)

 def strip_pagination(self, url):
 if url.has_query_param('page'):
 url = url.remove_query_param('page')
 return url.as_string()

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/django/db/models/fields/related_descriptors.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for django.db.models.fields.related_descriptors

"""
Accessors for related objects.

When a field defines a relation between two models, each model class provides
an attribute to access related instances of the other model class (unless the
reverse accessor has been disabled with related_name='+').

Accessors are implemented as descriptors in order to customize access and
assignment. This module defines the descriptor classes.

Forward accessors follow foreign keys. Reverse accessors trace them back. For
example, with the following models::

 class Parent(Model):
 pass

 class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

 ``child.parent`` is a forward many-to-one relation. ``parent.children`` is a
reverse many-to-one relation.

There are three types of relations (many-to-one, one-to-one, and many-to-many)
and two directions (forward and reverse) for a total of six combinations.

1. Related instance on the forward side of a many-to-one or one-to-one
 relation: ``ForwardManyToOneDescriptor``.

 Uniqueness of foreign key values is irrelevant to accessing the related
 instance, making the many-to-one and one-to-one cases identical as far as
 the descriptor is concerned. The constraint is checked upstream (unicity
 validation in forms) or downstream (unique indexes in the database).

 If you're looking for ``ForwardOneToOneDescriptor``, use
 ``ForwardManyToOneDescriptor`` instead.

2. Related instance on the reverse side of a one-to-one relation:
 ``ReverseOneToOneDescriptor``.

 One-to-one relations are asymmetrical, despite the apparent symmetry of the
 name, because they're implemented in the database with a foreign key from
 one table to another. As a consequence ``ReverseOneToOneDescriptor`` is
 slightly different from ``ForwardManyToOneDescriptor``.

3. Related objects manager for related instances on the reverse side of a
 many-to-one relation: ``ReverseManyToOneDescriptor``.

 Unlike the previous two classes, this one provides access to a collection
 of objects. It returns a manager rather than an instance.

4. Related objects manager for related instances on the forward or reverse
 sides of a many-to-many relation: ``ManyToManyDescriptor``.

 Many-to-many relations are symmetrical. The syntax of Django models
 requires declaring them on one side but that's an implementation detail.
 They could be declared on the other side without any change in behavior.
 Therefore the forward and reverse descriptors can be the same.

 If you're looking for ``ForwardManyToManyDescriptor`` or
 ``ReverseManyToManyDescriptor``, use ``ManyToManyDescriptor`` instead.
"""

from __future__ import unicode_literals

from operator import attrgetter

from django.db import connections, router, transaction
from django.db.models import Q, signals
from django.db.models.query import QuerySet
from django.utils.functional import cached_property

class ForwardManyToOneDescriptor(object):
 """
 Accessor to the related object on the forward side of a many-to-one or
 one-to-one relation.

 In the example::

 class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

 ``child.parent`` is a ``ForwardManyToOneDescriptor`` instance.
 """

 def __init__(self, field_with_rel):
 self.field = field_with_rel
 self.cache_name = self.field.get_cache_name()

 @cached_property
 def RelatedObjectDoesNotExist(self):
 # The exception can't be created at initialization time since the
 # related model might not be resolved yet; `rel.model` might still be
 # a string model reference.
 return type(
 str('RelatedObjectDoesNotExist'),
 (self.field.remote_field.model.DoesNotExist, AttributeError),
 {}
)

 def is_cached(self, instance):
 return hasattr(instance, self.cache_name)

 def get_queryset(self, **hints):
 manager = self.field.remote_field.model._default_manager
 # If the related manager indicates that it should be used for
 # related fields, respect that.
 if not getattr(manager, 'use_for_related_fields', False):
 manager = self.field.remote_field.model._base_manager
 return manager.db_manager(hints=hints).all()

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = self.get_queryset()
 queryset._add_hints(instance=instances[0])

 rel_obj_attr = self.field.get_foreign_related_value
 instance_attr = self.field.get_local_related_value
 instances_dict = {instance_attr(inst): inst for inst in instances}
 related_field = self.field.foreign_related_fields[0]

 # FIXME: This will need to be revisited when we introduce support for
 # composite fields. In the meantime we take this practical approach to
 # solve a regression on 1.6 when the reverse manager in hidden
 # (related_name ends with a '+'). Refs #21410.
 # The check for len(...) == 1 is a special case that allows the query
 # to be join-less and smaller. Refs #21760.
 if self.field.remote_field.is_hidden() or len(self.field.foreign_related_fields) == 1:
 query = {'%s__in' % related_field.name: set(instance_attr(inst)[0] for inst in instances)}
 else:
 query = {'%s__in' % self.field.related_query_name(): instances}
 queryset = queryset.filter(**query)

 # Since we're going to assign directly in the cache,
 # we must manage the reverse relation cache manually.
 if not self.field.remote_field.multiple:
 rel_obj_cache_name = self.field.remote_field.get_cache_name()
 for rel_obj in queryset:
 instance = instances_dict[rel_obj_attr(rel_obj)]
 setattr(rel_obj, rel_obj_cache_name, instance)
 return queryset, rel_obj_attr, instance_attr, True, self.cache_name

 def __get__(self, instance, instance_type=None):
 """
 Get the related instance through the forward relation.

 With the example above, when getting ``child.parent``:

 - ``self`` is the descriptor managing the ``parent`` attribute
 - ``instance`` is the ``child`` instance
 - ``instance_type`` in the ``Child`` class (we don't need it)
 """
 if instance is None:
 return self

 # The related instance is loaded from the database and then cached in
 # the attribute defined in self.cache_name. It can also be pre-cached
 # by the reverse accessor (ReverseOneToOneDescriptor).
 try:
 rel_obj = getattr(instance, self.cache_name)
 except AttributeError:
 val = self.field.get_local_related_value(instance)
 if None in val:
 rel_obj = None
 else:
 qs = self.get_queryset(instance=instance)
 qs = qs.filter(self.field.get_reverse_related_filter(instance))
 # Assuming the database enforces foreign keys, this won't fail.
 rel_obj = qs.get()
 # If this is a one-to-one relation, set the reverse accessor
 # cache on the related object to the current instance to avoid
 # an extra SQL query if it's accessed later on.
 if not self.field.remote_field.multiple:
 setattr(rel_obj, self.field.remote_field.get_cache_name(), instance)
 setattr(instance, self.cache_name, rel_obj)

 if rel_obj is None and not self.field.null:
 raise self.RelatedObjectDoesNotExist(
 "%s has no %s." % (self.field.model.__name__, self.field.name)
)
 else:
 return rel_obj

 def __set__(self, instance, value):
 """
 Set the related instance through the forward relation.

 With the example above, when setting ``child.parent = parent``:

 - ``self`` is the descriptor managing the ``parent`` attribute
 - ``instance`` is the ``child`` instance
 - ``value`` in the ``parent`` instance on the right of the equal sign
 """
 # If null=True, we can assign null here, but otherwise the value needs
 # to be an instance of the related class.
 if value is None and self.field.null is False:
 raise ValueError(
 'Cannot assign None: "%s.%s" does not allow null values.' %
 (instance._meta.object_name, self.field.name)
)
 elif value is not None and not isinstance(value, self.field.remote_field.model):
 raise ValueError(
 'Cannot assign "%r": "%s.%s" must be a "%s" instance.' % (
 value,
 instance._meta.object_name,
 self.field.name,
 self.field.remote_field.model._meta.object_name,
)
)
 elif value is not None:
 if instance._state.db is None:
 instance._state.db = router.db_for_write(instance.__class__, instance=value)
 elif value._state.db is None:
 value._state.db = router.db_for_write(value.__class__, instance=instance)
 elif value._state.db is not None and instance._state.db is not None:
 if not router.allow_relation(value, instance):
 raise ValueError('Cannot assign "%r": the current database router prevents this relation.' % value)

 # If we're setting the value of a OneToOneField to None, we need to clear
 # out the cache on any old related object. Otherwise, deleting the
 # previously-related object will also cause this object to be deleted,
 # which is wrong.
 if value is None:
 # Look up the previously-related object, which may still be available
 # since we've not yet cleared out the related field.
 # Use the cache directly, instead of the accessor; if we haven't
 # populated the cache, then we don't care - we're only accessing
 # the object to invalidate the accessor cache, so there's no
 # need to populate the cache just to expire it again.
 related = getattr(instance, self.cache_name, None)

 # If we've got an old related object, we need to clear out its
 # cache. This cache also might not exist if the related object
 # hasn't been accessed yet.
 if related is not None:
 setattr(related, self.field.remote_field.get_cache_name(), None)

 for lh_field, rh_field in self.field.related_fields:
 setattr(instance, lh_field.attname, None)

 # Set the values of the related field.
 else:
 for lh_field, rh_field in self.field.related_fields:
 setattr(instance, lh_field.attname, getattr(value, rh_field.attname))

 # Set the related instance cache used by __get__ to avoid an SQL query
 # when accessing the attribute we just set.
 setattr(instance, self.cache_name, value)

 # If this is a one-to-one relation, set the reverse accessor cache on
 # the related object to the current instance to avoid an extra SQL
 # query if it's accessed later on.
 if value is not None and not self.field.remote_field.multiple:
 setattr(value, self.field.remote_field.get_cache_name(), instance)

class ReverseOneToOneDescriptor(object):
 """
 Accessor to the related object on the reverse side of a one-to-one
 relation.

 In the example::

 class Restaurant(Model):
 place = OneToOneField(Place, related_name='restaurant')

 ``place.restaurant`` is a ``ReverseOneToOneDescriptor`` instance.
 """

 def __init__(self, related):
 self.related = related
 self.cache_name = related.get_cache_name()

 @cached_property
 def RelatedObjectDoesNotExist(self):
 # The exception isn't created at initialization time for the sake of
 # consistency with `ForwardManyToOneDescriptor`.
 return type(
 str('RelatedObjectDoesNotExist'),
 (self.related.related_model.DoesNotExist, AttributeError),
 {}
)

 def is_cached(self, instance):
 return hasattr(instance, self.cache_name)

 def get_queryset(self, **hints):
 manager = self.related.related_model._default_manager
 # If the related manager indicates that it should be used for
 # related fields, respect that.
 if not getattr(manager, 'use_for_related_fields', False):
 manager = self.related.related_model._base_manager
 return manager.db_manager(hints=hints).all()

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = self.get_queryset()
 queryset._add_hints(instance=instances[0])

 rel_obj_attr = attrgetter(self.related.field.attname)
 instance_attr = lambda obj: obj._get_pk_val()
 instances_dict = {instance_attr(inst): inst for inst in instances}
 query = {'%s__in' % self.related.field.name: instances}
 queryset = queryset.filter(**query)

 # Since we're going to assign directly in the cache,
 # we must manage the reverse relation cache manually.
 rel_obj_cache_name = self.related.field.get_cache_name()
 for rel_obj in queryset:
 instance = instances_dict[rel_obj_attr(rel_obj)]
 setattr(rel_obj, rel_obj_cache_name, instance)
 return queryset, rel_obj_attr, instance_attr, True, self.cache_name

 def __get__(self, instance, instance_type=None):
 """
 Get the related instance through the reverse relation.

 With the example above, when getting ``place.restaurant``:

 - ``self`` is the descriptor managing the ``restaurant`` attribute
 - ``instance`` is the ``place`` instance
 - ``instance_type`` in the ``Place`` class (we don't need it)

 Keep in mind that ``Restaurant`` holds the foreign key to ``Place``.
 """
 if instance is None:
 return self

 # The related instance is loaded from the database and then cached in
 # the attribute defined in self.cache_name. It can also be pre-cached
 # by the forward accessor (ForwardManyToOneDescriptor).
 try:
 rel_obj = getattr(instance, self.cache_name)
 except AttributeError:
 related_pk = instance._get_pk_val()
 if related_pk is None:
 rel_obj = None
 else:
 filter_args = self.related.field.get_forward_related_filter(instance)
 try:
 rel_obj = self.get_queryset(instance=instance).get(**filter_args)
 except self.related.related_model.DoesNotExist:
 rel_obj = None
 else:
 # Set the forward accessor cache on the related object to
 # the current instance to avoid an extra SQL query if it's
 # accessed later on.
 setattr(rel_obj, self.related.field.get_cache_name(), instance)
 setattr(instance, self.cache_name, rel_obj)

 if rel_obj is None:
 raise self.RelatedObjectDoesNotExist(
 "%s has no %s." % (
 instance.__class__.__name__,
 self.related.get_accessor_name()
)
)
 else:
 return rel_obj

 def __set__(self, instance, value):
 """
 Set the related instance through the reverse relation.

 With the example above, when setting ``place.restaurant = restaurant``:

 - ``self`` is the descriptor managing the ``restaurant`` attribute
 - ``instance`` is the ``place`` instance
 - ``value`` in the ``restaurant`` instance on the right of the equal sign

 Keep in mind that ``Restaurant`` holds the foreign key to ``Place``.
 """
 # The similarity of the code below to the code in
 # ForwardManyToOneDescriptor is annoying, but there's a bunch
 # of small differences that would make a common base class convoluted.

 # If null=True, we can assign null here, but otherwise the value needs
 # to be an instance of the related class.
 if value is None:
 if self.related.field.null:
 # Update the cached related instance (if any) & clear the cache.
 try:
 rel_obj = getattr(instance, self.cache_name)
 except AttributeError:
 pass
 else:
 delattr(instance, self.cache_name)
 setattr(rel_obj, self.related.field.name, None)
 else:
 raise ValueError(
 'Cannot assign None: "%s.%s" does not allow null values.' % (
 instance._meta.object_name,
 self.related.get_accessor_name(),
)
)
 elif not isinstance(value, self.related.related_model):
 raise ValueError(
 'Cannot assign "%r": "%s.%s" must be a "%s" instance.' % (
 value,
 instance._meta.object_name,
 self.related.get_accessor_name(),
 self.related.related_model._meta.object_name,
)
)
 else:
 if instance._state.db is None:
 instance._state.db = router.db_for_write(instance.__class__, instance=value)
 elif value._state.db is None:
 value._state.db = router.db_for_write(value.__class__, instance=instance)
 elif value._state.db is not None and instance._state.db is not None:
 if not router.allow_relation(value, instance):
 raise ValueError('Cannot assign "%r": the current database router prevents this relation.' % value)

 related_pk = tuple(getattr(instance, field.attname) for field in self.related.field.foreign_related_fields)
 # Set the value of the related field to the value of the related object's related field
 for index, field in enumerate(self.related.field.local_related_fields):
 setattr(value, field.attname, related_pk[index])

 # Set the related instance cache used by __get__ to avoid an SQL query
 # when accessing the attribute we just set.
 setattr(instance, self.cache_name, value)

 # Set the forward accessor cache on the related object to the current
 # instance to avoid an extra SQL query if it's accessed later on.
 setattr(value, self.related.field.get_cache_name(), instance)

class ReverseManyToOneDescriptor(object):
 """
 Accessor to the related objects manager on the reverse side of a
 many-to-one relation.

 In the example::

 class Child(Model):
 parent = ForeignKey(Parent, related_name='children')

 ``parent.children`` is a ``ReverseManyToOneDescriptor`` instance.

 Most of the implementation is delegated to a dynamically defined manager
 class built by ``create_forward_many_to_many_manager()`` defined below.
 """

 def __init__(self, rel):
 self.rel = rel
 self.field = rel.field

 @cached_property
 def related_manager_cls(self):
 return create_reverse_many_to_one_manager(
 self.rel.related_model._default_manager.__class__,
 self.rel,
)

 def __get__(self, instance, instance_type=None):
 """
 Get the related objects through the reverse relation.

 With the example above, when getting ``parent.children``:

 - ``self`` is the descriptor managing the ``children`` attribute
 - ``instance`` is the ``parent`` instance
 - ``instance_type`` in the ``Parent`` class (we don't need it)
 """
 if instance is None:
 return self

 return self.related_manager_cls(instance)

 def __set__(self, instance, value):
 """
 Set the related objects through the reverse relation.

 With the example above, when setting ``parent.children = children``:

 - ``self`` is the descriptor managing the ``children`` attribute
 - ``instance`` is the ``parent`` instance
 - ``value`` in the ``children`` sequence on the right of the equal sign
 """
 manager = self.__get__(instance)
 manager.set(value)

def create_reverse_many_to_one_manager(superclass, rel):
 """
 Create a manager for the reverse side of a many-to-one relation.

 This manager subclasses another manager, generally the default manager of
 the related model, and adds behaviors specific to many-to-one relations.
 """

 class RelatedManager(superclass):
 def __init__(self, instance):
 super(RelatedManager, self).__init__()

 self.instance = instance
 self.model = rel.related_model
 self.field = rel.field

 self.core_filters = {self.field.name: instance}

 def __call__(self, **kwargs):
 # We use **kwargs rather than a kwarg argument to enforce the
 # `manager='manager_name'` syntax.
 manager = getattr(self.model, kwargs.pop('manager'))
 manager_class = create_reverse_many_to_one_manager(manager.__class__, rel)
 return manager_class(self.instance)
 do_not_call_in_templates = True

 def get_queryset(self):
 try:
 return self.instance._prefetched_objects_cache[self.field.related_query_name()]
 except (AttributeError, KeyError):
 db = self._db or router.db_for_read(self.model, instance=self.instance)
 empty_strings_as_null = connections[db].features.interprets_empty_strings_as_nulls
 qs = super(RelatedManager, self).get_queryset()
 qs._add_hints(instance=self.instance)
 if self._db:
 qs = qs.using(self._db)
 qs = qs.filter(**self.core_filters)
 for field in self.field.foreign_related_fields:
 val = getattr(self.instance, field.attname)
 if val is None or (val == '' and empty_strings_as_null):
 return qs.none()
 qs._known_related_objects = {self.field: {self.instance.pk: self.instance}}
 return qs

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = super(RelatedManager, self).get_queryset()

 queryset._add_hints(instance=instances[0])
 queryset = queryset.using(queryset._db or self._db)

 rel_obj_attr = self.field.get_local_related_value
 instance_attr = self.field.get_foreign_related_value
 instances_dict = {instance_attr(inst): inst for inst in instances}
 query = {'%s__in' % self.field.name: instances}
 queryset = queryset.filter(**query)

 # Since we just bypassed this class' get_queryset(), we must manage
 # the reverse relation manually.
 for rel_obj in queryset:
 instance = instances_dict[rel_obj_attr(rel_obj)]
 setattr(rel_obj, self.field.name, instance)
 cache_name = self.field.related_query_name()
 return queryset, rel_obj_attr, instance_attr, False, cache_name

 def add(self, *objs, **kwargs):
 bulk = kwargs.pop('bulk', True)
 objs = list(objs)
 db = router.db_for_write(self.model, instance=self.instance)

 def check_and_update_obj(obj):
 if not isinstance(obj, self.model):
 raise TypeError("'%s' instance expected, got %r" % (
 self.model._meta.object_name, obj,
))
 setattr(obj, self.field.name, self.instance)

 if bulk:
 pks = []
 for obj in objs:
 check_and_update_obj(obj)
 if obj._state.adding or obj._state.db != db:
 raise ValueError(
 "%r instance isn't saved. Use bulk=False or save "
 "the object first." % obj
)
 pks.append(obj.pk)
 self.model._base_manager.using(db).filter(pk__in=pks).update(**{
 self.field.name: self.instance,
 })
 else:
 with transaction.atomic(using=db, savepoint=False):
 for obj in objs:
 check_and_update_obj(obj)
 obj.save()
 add.alters_data = True

 def create(self, **kwargs):
 kwargs[self.field.name] = self.instance
 db = router.db_for_write(self.model, instance=self.instance)
 return super(RelatedManager, self.db_manager(db)).create(**kwargs)
 create.alters_data = True

 def get_or_create(self, **kwargs):
 kwargs[self.field.name] = self.instance
 db = router.db_for_write(self.model, instance=self.instance)
 return super(RelatedManager, self.db_manager(db)).get_or_create(**kwargs)
 get_or_create.alters_data = True

 def update_or_create(self, **kwargs):
 kwargs[self.field.name] = self.instance
 db = router.db_for_write(self.model, instance=self.instance)
 return super(RelatedManager, self.db_manager(db)).update_or_create(**kwargs)
 update_or_create.alters_data = True

 # remove() and clear() are only provided if the ForeignKey can have a value of null.
 if rel.field.null:
 def remove(self, *objs, **kwargs):
 if not objs:
 return
 bulk = kwargs.pop('bulk', True)
 val = self.field.get_foreign_related_value(self.instance)
 old_ids = set()
 for obj in objs:
 # Is obj actually part of this descriptor set?
 if self.field.get_local_related_value(obj) == val:
 old_ids.add(obj.pk)
 else:
 raise self.field.remote_field.model.DoesNotExist(
 "%r is not related to %r." % (obj, self.instance)
)
 self._clear(self.filter(pk__in=old_ids), bulk)
 remove.alters_data = True

 def clear(self, **kwargs):
 bulk = kwargs.pop('bulk', True)
 self._clear(self, bulk)
 clear.alters_data = True

 def _clear(self, queryset, bulk):
 db = router.db_for_write(self.model, instance=self.instance)
 queryset = queryset.using(db)
 if bulk:
 # `QuerySet.update()` is intrinsically atomic.
 queryset.update(**{self.field.name: None})
 else:
 with transaction.atomic(using=db, savepoint=False):
 for obj in queryset:
 setattr(obj, self.field.name, None)
 obj.save(update_fields=[self.field.name])
 _clear.alters_data = True

 def set(self, objs, **kwargs):
 # Force evaluation of `objs` in case it's a queryset whose value
 # could be affected by `manager.clear()`. Refs #19816.
 objs = tuple(objs)

 bulk = kwargs.pop('bulk', True)
 clear = kwargs.pop('clear', False)

 if self.field.null:
 db = router.db_for_write(self.model, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 if clear:
 self.clear()
 self.add(*objs, bulk=bulk)
 else:
 old_objs = set(self.using(db).all())
 new_objs = []
 for obj in objs:
 if obj in old_objs:
 old_objs.remove(obj)
 else:
 new_objs.append(obj)

 self.remove(*old_objs, bulk=bulk)
 self.add(*new_objs, bulk=bulk)
 else:
 self.add(*objs, bulk=bulk)
 set.alters_data = True

 return RelatedManager

class ManyToManyDescriptor(ReverseManyToOneDescriptor):
 """
 Accessor to the related objects manager on the forward and reverse sides of
 a many-to-many relation.

 In the example::

 class Pizza(Model):
 toppings = ManyToManyField(Topping, related_name='pizzas')

 ``pizza.toppings`` and ``topping.pizzas`` are ``ManyToManyDescriptor``
 instances.

 Most of the implementation is delegated to a dynamically defined manager
 class built by ``create_forward_many_to_many_manager()`` defined below.
 """

 def __init__(self, rel, reverse=False):
 super(ManyToManyDescriptor, self).__init__(rel)

 self.reverse = reverse

 @property
 def through(self):
 # through is provided so that you have easy access to the through
 # model (Book.authors.through) for inlines, etc. This is done as
 # a property to ensure that the fully resolved value is returned.
 return self.rel.through

 @cached_property
 def related_manager_cls(self):
 model = self.rel.related_model if self.reverse else self.rel.model
 return create_forward_many_to_many_manager(
 model._default_manager.__class__,
 self.rel,
 reverse=self.reverse,
)

def create_forward_many_to_many_manager(superclass, rel, reverse):
 """
 Create a manager for the either side of a many-to-many relation.

 This manager subclasses another manager, generally the default manager of
 the related model, and adds behaviors specific to many-to-many relations.
 """

 class ManyRelatedManager(superclass):
 def __init__(self, instance=None):
 super(ManyRelatedManager, self).__init__()

 self.instance = instance

 if not reverse:
 self.model = rel.model
 self.query_field_name = rel.field.related_query_name()
 self.prefetch_cache_name = rel.field.name
 self.source_field_name = rel.field.m2m_field_name()
 self.target_field_name = rel.field.m2m_reverse_field_name()
 self.symmetrical = rel.symmetrical
 else:
 self.model = rel.related_model
 self.query_field_name = rel.field.name
 self.prefetch_cache_name = rel.field.related_query_name()
 self.source_field_name = rel.field.m2m_reverse_field_name()
 self.target_field_name = rel.field.m2m_field_name()
 self.symmetrical = False

 self.through = rel.through
 self.reverse = reverse

 self.source_field = self.through._meta.get_field(self.source_field_name)
 self.target_field = self.through._meta.get_field(self.target_field_name)

 self.core_filters = {}
 for lh_field, rh_field in self.source_field.related_fields:
 core_filter_key = '%s__%s' % (self.query_field_name, rh_field.name)
 self.core_filters[core_filter_key] = getattr(instance, rh_field.attname)

 self.related_val = self.source_field.get_foreign_related_value(instance)
 if None in self.related_val:
 raise ValueError('"%r" needs to have a value for field "%s" before '
 'this many-to-many relationship can be used.' %
 (instance, self.source_field_name))
 # Even if this relation is not to pk, we require still pk value.
 # The wish is that the instance has been already saved to DB,
 # although having a pk value isn't a guarantee of that.
 if instance.pk is None:
 raise ValueError("%r instance needs to have a primary key value before "
 "a many-to-many relationship can be used." %
 instance.__class__.__name__)

 def __call__(self, **kwargs):
 # We use **kwargs rather than a kwarg argument to enforce the
 # `manager='manager_name'` syntax.
 manager = getattr(self.model, kwargs.pop('manager'))
 manager_class = create_forward_many_to_many_manager(manager.__class__, rel, reverse)
 return manager_class(instance=self.instance)
 do_not_call_in_templates = True

 def _build_remove_filters(self, removed_vals):
 filters = Q(**{self.source_field_name: self.related_val})
 # No need to add a subquery condition if removed_vals is a QuerySet without
 # filters.
 removed_vals_filters = (not isinstance(removed_vals, QuerySet) or
 removed_vals._has_filters())
 if removed_vals_filters:
 filters &= Q(**{'%s__in' % self.target_field_name: removed_vals})
 if self.symmetrical:
 symmetrical_filters = Q(**{self.target_field_name: self.related_val})
 if removed_vals_filters:
 symmetrical_filters &= Q(
 **{'%s__in' % self.source_field_name: removed_vals})
 filters |= symmetrical_filters
 return filters

 def get_queryset(self):
 try:
 return self.instance._prefetched_objects_cache[self.prefetch_cache_name]
 except (AttributeError, KeyError):
 qs = super(ManyRelatedManager, self).get_queryset()
 qs._add_hints(instance=self.instance)
 if self._db:
 qs = qs.using(self._db)
 return qs._next_is_sticky().filter(**self.core_filters)

 def get_prefetch_queryset(self, instances, queryset=None):
 if queryset is None:
 queryset = super(ManyRelatedManager, self).get_queryset()

 queryset._add_hints(instance=instances[0])
 queryset = queryset.using(queryset._db or self._db)

 query = {'%s__in' % self.query_field_name: instances}
 queryset = queryset._next_is_sticky().filter(**query)

 # M2M: need to annotate the query in order to get the primary model
 # that the secondary model was actually related to. We know that
 # there will already be a join on the join table, so we can just add
 # the select.

 # For non-autocreated 'through' models, can't assume we are
 # dealing with PK values.
 fk = self.through._meta.get_field(self.source_field_name)
 join_table = self.through._meta.db_table
 connection = connections[queryset.db]
 qn = connection.ops.quote_name
 queryset = queryset.extra(select={
 '_prefetch_related_val_%s' % f.attname:
 '%s.%s' % (qn(join_table), qn(f.column)) for f in fk.local_related_fields})
 return (
 queryset,
 lambda result: tuple(
 getattr(result, '_prefetch_related_val_%s' % f.attname)
 for f in fk.local_related_fields
),
 lambda inst: tuple(
 f.get_db_prep_value(getattr(inst, f.attname), connection)
 for f in fk.foreign_related_fields
),
 False,
 self.prefetch_cache_name,
)

 def add(self, *objs):
 if not rel.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot use add() on a ManyToManyField which specifies an "
 "intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)

 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 self._add_items(self.source_field_name, self.target_field_name, *objs)

 # If this is a symmetrical m2m relation to self, add the mirror entry in the m2m table
 if self.symmetrical:
 self._add_items(self.target_field_name, self.source_field_name, *objs)
 add.alters_data = True

 def remove(self, *objs):
 if not rel.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot use remove() on a ManyToManyField which specifies "
 "an intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)
 self._remove_items(self.source_field_name, self.target_field_name, *objs)
 remove.alters_data = True

 def clear(self):
 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 signals.m2m_changed.send(sender=self.through, action="pre_clear",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=None, using=db)

 filters = self._build_remove_filters(super(ManyRelatedManager, self).get_queryset().using(db))
 self.through._default_manager.using(db).filter(filters).delete()

 signals.m2m_changed.send(sender=self.through, action="post_clear",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=None, using=db)
 clear.alters_data = True

 def set(self, objs, **kwargs):
 if not rel.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot set values on a ManyToManyField which specifies an "
 "intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)

 # Force evaluation of `objs` in case it's a queryset whose value
 # could be affected by `manager.clear()`. Refs #19816.
 objs = tuple(objs)

 clear = kwargs.pop('clear', False)

 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 if clear:
 self.clear()
 self.add(*objs)
 else:
 old_ids = set(self.using(db).values_list(self.target_field.target_field.attname, flat=True))

 new_objs = []
 for obj in objs:
 fk_val = (self.target_field.get_foreign_related_value(obj)[0]
 if isinstance(obj, self.model) else obj)

 if fk_val in old_ids:
 old_ids.remove(fk_val)
 else:
 new_objs.append(obj)

 self.remove(*old_ids)
 self.add(*new_objs)
 set.alters_data = True

 def create(self, **kwargs):
 # This check needs to be done here, since we can't later remove this
 # from the method lookup table, as we do with add and remove.
 if not self.through._meta.auto_created:
 opts = self.through._meta
 raise AttributeError(
 "Cannot use create() on a ManyToManyField which specifies "
 "an intermediary model. Use %s.%s's Manager instead." %
 (opts.app_label, opts.object_name)
)
 db = router.db_for_write(self.instance.__class__, instance=self.instance)
 new_obj = super(ManyRelatedManager, self.db_manager(db)).create(**kwargs)
 self.add(new_obj)
 return new_obj
 create.alters_data = True

 def get_or_create(self, **kwargs):
 db = router.db_for_write(self.instance.__class__, instance=self.instance)
 obj, created = super(ManyRelatedManager, self.db_manager(db)).get_or_create(**kwargs)
 # We only need to add() if created because if we got an object back
 # from get() then the relationship already exists.
 if created:
 self.add(obj)
 return obj, created
 get_or_create.alters_data = True

 def update_or_create(self, **kwargs):
 db = router.db_for_write(self.instance.__class__, instance=self.instance)
 obj, created = super(ManyRelatedManager, self.db_manager(db)).update_or_create(**kwargs)
 # We only need to add() if created because if we got an object back
 # from get() then the relationship already exists.
 if created:
 self.add(obj)
 return obj, created
 update_or_create.alters_data = True

 def _add_items(self, source_field_name, target_field_name, *objs):
 # source_field_name: the PK fieldname in join table for the source object
 # target_field_name: the PK fieldname in join table for the target object
 # *objs - objects to add. Either object instances, or primary keys of object instances.

 # If there aren't any objects, there is nothing to do.
 from django.db.models import Model
 if objs:
 new_ids = set()
 for obj in objs:
 if isinstance(obj, self.model):
 if not router.allow_relation(obj, self.instance):
 raise ValueError(
 'Cannot add "%r": instance is on database "%s", value is on database "%s"' %
 (obj, self.instance._state.db, obj._state.db)
)
 fk_val = self.through._meta.get_field(
 target_field_name).get_foreign_related_value(obj)[0]
 if fk_val is None:
 raise ValueError(
 'Cannot add "%r": the value for field "%s" is None' %
 (obj, target_field_name)
)
 new_ids.add(fk_val)
 elif isinstance(obj, Model):
 raise TypeError(
 "'%s' instance expected, got %r" %
 (self.model._meta.object_name, obj)
)
 else:
 new_ids.add(obj)

 db = router.db_for_write(self.through, instance=self.instance)
 vals = (self.through._default_manager.using(db)
 .values_list(target_field_name, flat=True)
 .filter(**{
 source_field_name: self.related_val[0],
 '%s__in' % target_field_name: new_ids,
 }))
 new_ids = new_ids - set(vals)

 with transaction.atomic(using=db, savepoint=False):
 if self.reverse or source_field_name == self.source_field_name:
 # Don't send the signal when we are inserting the
 # duplicate data row for symmetrical reverse entries.
 signals.m2m_changed.send(sender=self.through, action='pre_add',
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=new_ids, using=db)

 # Add the ones that aren't there already
 self.through._default_manager.using(db).bulk_create([
 self.through(**{
 '%s_id' % source_field_name: self.related_val[0],
 '%s_id' % target_field_name: obj_id,
 })
 for obj_id in new_ids
])

 if self.reverse or source_field_name == self.source_field_name:
 # Don't send the signal when we are inserting the
 # duplicate data row for symmetrical reverse entries.
 signals.m2m_changed.send(sender=self.through, action='post_add',
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=new_ids, using=db)

 def _remove_items(self, source_field_name, target_field_name, *objs):
 # source_field_name: the PK colname in join table for the source object
 # target_field_name: the PK colname in join table for the target object
 # *objs - objects to remove
 if not objs:
 return

 # Check that all the objects are of the right type
 old_ids = set()
 for obj in objs:
 if isinstance(obj, self.model):
 fk_val = self.target_field.get_foreign_related_value(obj)[0]
 old_ids.add(fk_val)
 else:
 old_ids.add(obj)

 db = router.db_for_write(self.through, instance=self.instance)
 with transaction.atomic(using=db, savepoint=False):
 # Send a signal to the other end if need be.
 signals.m2m_changed.send(sender=self.through, action="pre_remove",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=old_ids, using=db)
 target_model_qs = super(ManyRelatedManager, self).get_queryset()
 if target_model_qs._has_filters():
 old_vals = target_model_qs.using(db).filter(**{
 '%s__in' % self.target_field.target_field.attname: old_ids})
 else:
 old_vals = old_ids
 filters = self._build_remove_filters(old_vals)
 self.through._default_manager.using(db).filter(filters).delete()

 signals.m2m_changed.send(sender=self.through, action="post_remove",
 instance=self.instance, reverse=self.reverse,
 model=self.model, pk_set=old_ids, using=db)

 return ManyRelatedManager

 © Copyright .
 Created using Sphinx 1.3.3.

_images/html_flash_msg.png
Knocked Out By My Nunga-Nungas has been added to your basket.

Your basket now qualifies for the Shipping offer offer.

Basket total now £6.99.

_modules/oscar/apps/partner/availability.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.partner.availability

from django.utils.translation import ugettext_lazy as _

[docs]class Base(object):
 """
 Base availability policy.
 """

 #: Availability code. This is used for HTML classes
 code = ''

 #: A description of the availability of a product. This is shown on the
 #: product detail page. Eg "In stock", "Out of stock" etc
 message = ''

 #: When this item should be dispatched
 dispatch_date = None

 @property
 def short_message(self):
 """
 A shorter version of the availability message, suitable for showing on
 browsing pages.
 """
 return self.message

 @property
 def is_available_to_buy(self):
 """
 Test if this product is available to be bought. This is used for
 validation when a product is added to a user's basket.
 """
 # We test a purchase of a single item
 return self.is_purchase_permitted(1)[0]

[docs] def is_purchase_permitted(self, quantity):
 """
 Test whether a proposed purchase is allowed

 Should return a boolean and a reason
 """
 return False, _("unavailable")

Common availability policies

[docs]class Unavailable(Base):
 """
 Policy for when a product is unavailable
 """
 code = 'unavailable'
 message = _("Unavailable")

[docs]class Available(Base):
 """
 For when a product is always available, irrespective of stock level.

 This might be appropriate for digital products where stock doesn't need to
 be tracked and the product is always available to buy.
 """
 code = 'available'
 message = _("Available")

 def is_purchase_permitted(self, quantity):
 return True, ""

[docs]class StockRequired(Base):
 """
 Allow a product to be bought while there is stock. This policy is
 instantiated with a stock number (``num_available``). It ensures that the
 product is only available to buy while there is stock available.

 This is suitable for physical products where back orders (eg allowing
 purchases when there isn't stock available) are not permitted.
 """
 CODE_IN_STOCK = 'instock'
 CODE_OUT_OF_STOCK = 'outofstock'

 def __init__(self, num_available):
 self.num_available = num_available

 def is_purchase_permitted(self, quantity):
 if self.num_available <= 0:
 return False, _("no stock available")
 if quantity > self.num_available:
 msg = _("a maximum of %(max)d can be bought") % {
 'max': self.num_available}
 return False, msg
 return True, ""

 @property
 def code(self):
 if self.num_available > 0:
 return self.CODE_IN_STOCK
 return self.CODE_OUT_OF_STOCK

 @property
 def short_message(self):
 if self.num_available > 0:
 return _("In stock")
 return _("Unavailable")

 @property
 def message(self):
 if self.num_available > 0:
 return _("In stock (%d available)") % self.num_available
 return _("Unavailable")

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/search/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.search.views

from haystack import views

from oscar.core.loading import get_class, get_model

from . import signals

Product = get_model('catalogue', 'Product')
FacetMunger = get_class('search.facets', 'FacetMunger')

[docs]class FacetedSearchView(views.FacetedSearchView):
 """
 A modified version of Haystack's FacetedSearchView

 Note that facets are configured when the ``SearchQuerySet`` is initialised.
 This takes place in the search application class.

 See https://django-haystack.readthedocs.io/en/v2.1.0/views_and_forms.html#facetedsearchform # noqa
 """

 # Haystack uses a different class attribute to CBVs
 template = "search/results.html"
 search_signal = signals.user_search

 def __call__(self, request):
 response = super(FacetedSearchView, self).__call__(request)

 # Raise a signal for other apps to hook into for analytics
 self.search_signal.send(
 sender=self, session=self.request.session,
 user=self.request.user, query=self.query)

 return response

 # Override this method to add the spelling suggestion to the context and to
 # convert Haystack's default facet data into a more useful structure so we
 # have to do less work in the template.
 def extra_context(self):
 extra = super(FacetedSearchView, self).extra_context()

 # Show suggestion no matter what. Haystack 2.1 only shows a suggestion
 # if there are some results, which seems a bit weird to me.
 if self.results.query.backend.include_spelling:
 # Note, this triggers an extra call to the search backend
 suggestion = self.form.get_suggestion()
 if suggestion != self.query:
 extra['suggestion'] = suggestion

 # Convert facet data into a more useful data structure
 if 'fields' in extra['facets']:
 munger = FacetMunger(
 self.request.get_full_path(),
 self.form.selected_multi_facets,
 self.results.facet_counts())
 extra['facet_data'] = munger.facet_data()
 has_facets = any([len(data['results']) for
 data in extra['facet_data'].values()])
 extra['has_facets'] = has_facets

 # Pass list of selected facets so they can be included in the sorting
 # form.
 extra['selected_facets'] = self.request.GET.getlist('selected_facets')

 return extra

 def get_results(self):
 # We're only interested in products (there might be other content types
 # in the Solr index).
 return super(FacetedSearchView, self).get_results().models(Product)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/partner/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.partner.abstract_models

from django.db import models
from django.utils.encoding import python_2_unicode_compatible
from django.utils.timezone import now
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import pgettext_lazy

from oscar.apps.partner.exceptions import InvalidStockAdjustment
from oscar.core.compat import AUTH_USER_MODEL
from oscar.core.utils import get_default_currency
from oscar.models.fields import AutoSlugField

@python_2_unicode_compatible
[docs]class AbstractPartner(models.Model):
 """
 A fulfillment partner. An individual or company who can fulfil products.
 E.g. for physical goods, somebody with a warehouse and means of delivery.

 Creating one or more instances of the Partner model is a required step in
 setting up an Oscar deployment. Many Oscar deployments will only have one
 fulfillment partner.
 """
 code = AutoSlugField(_("Code"), max_length=128, unique=True,
 populate_from='name')
 name = models.CharField(
 pgettext_lazy(u"Partner's name", u"Name"), max_length=128, blank=True)

 #: A partner can have users assigned to it. This is used
 #: for access modelling in the permission-based dashboard
 users = models.ManyToManyField(
 AUTH_USER_MODEL, related_name="partners",
 blank=True, verbose_name=_("Users"))

 @property
 def display_name(self):
 return self.name or self.code

 @property
 def primary_address(self):
 """
 Returns a partners primary address. Usually that will be the
 headquarters or similar.

 This is a rudimentary implementation that raises an error if there's
 more than one address. If you actually want to support multiple
 addresses, you will likely need to extend PartnerAddress to have some
 field or flag to base your decision on.
 """
 addresses = self.addresses.all()
 if len(addresses) == 0: # intentionally using len() to save queries
 return None
 elif len(addresses) == 1:
 return addresses[0]
 else:
 raise NotImplementedError(
 "Oscar's default implementation of primary_address only "
 "supports one PartnerAddress. You need to override the "
 "primary_address to look up the right address")

[docs] def get_address_for_stockrecord(self, stockrecord):
 """
 Stock might be coming from different warehouses. Overriding this
 function allows selecting the correct PartnerAddress for the record.
 That can be useful when determining tax.
 """
 return self.primary_address

 class Meta:
 abstract = True
 app_label = 'partner'
 ordering = ('name', 'code')
 permissions = (('dashboard_access', 'Can access dashboard'),)
 verbose_name = _('Fulfillment partner')
 verbose_name_plural = _('Fulfillment partners')

 def __str__(self):
 return self.display_name

@python_2_unicode_compatible
[docs]class AbstractStockRecord(models.Model):
 """
 A stock record.

 This records information about a product from a fulfilment partner, such as
 their SKU, the number they have in stock and price information.

 Stockrecords are used by 'strategies' to determine availability and pricing
 information for the customer.
 """
 product = models.ForeignKey(
 'catalogue.Product', related_name="stockrecords",
 verbose_name=_("Product"))
 partner = models.ForeignKey(
 'partner.Partner', verbose_name=_("Partner"),
 related_name='stockrecords')

 #: The fulfilment partner will often have their own SKU for a product,
 #: which we store here. This will sometimes be the same the product's UPC
 #: but not always. It should be unique per partner.
 #: See also http://en.wikipedia.org/wiki/Stock-keeping_unit
 partner_sku = models.CharField(_("Partner SKU"), max_length=128)

 # Price info:
 price_currency = models.CharField(
 _("Currency"), max_length=12, default=get_default_currency)

 # This is the base price for calculations - tax should be applied by the
 # appropriate method. We don't store tax here as its calculation is highly
 # domain-specific. It is NULLable because some items don't have a fixed
 # price but require a runtime calculation (possible from an external
 # service).
 price_excl_tax = models.DecimalField(
 _("Price (excl. tax)"), decimal_places=2, max_digits=12,
 blank=True, null=True)

 #: Retail price for this item. This is simply the recommended price from
 #: the manufacturer. If this is used, it is for display purposes only.
 #: This prices is the NOT the price charged to the customer.
 price_retail = models.DecimalField(
 _("Price (retail)"), decimal_places=2, max_digits=12,
 blank=True, null=True)

 #: Cost price is the price charged by the fulfilment partner. It is not
 #: used (by default) in any price calculations but is often used in
 #: reporting so merchants can report on their profit margin.
 cost_price = models.DecimalField(
 _("Cost Price"), decimal_places=2, max_digits=12,
 blank=True, null=True)

 #: Number of items in stock
 num_in_stock = models.PositiveIntegerField(
 _("Number in stock"), blank=True, null=True)

 #: The amount of stock allocated to orders but not fed back to the master
 #: stock system. A typical stock update process will set the num_in_stock
 #: variable to a new value and reset num_allocated to zero
 num_allocated = models.IntegerField(
 _("Number allocated"), blank=True, null=True)

 #: Threshold for low-stock alerts. When stock goes beneath this threshold,
 #: an alert is triggered so warehouse managers can order more.
 low_stock_threshold = models.PositiveIntegerField(
 _("Low Stock Threshold"), blank=True, null=True)

 # Date information
 date_created = models.DateTimeField(_("Date created"), auto_now_add=True)
 date_updated = models.DateTimeField(_("Date updated"), auto_now=True,
 db_index=True)

 def __str__(self):
 msg = u"Partner: %s, product: %s" % (
 self.partner.display_name, self.product,)
 if self.partner_sku:
 msg = u"%s (%s)" % (msg, self.partner_sku)
 return msg

 class Meta:
 abstract = True
 app_label = 'partner'
 unique_together = ('partner', 'partner_sku')
 verbose_name = _("Stock record")
 verbose_name_plural = _("Stock records")

 @property
 def net_stock_level(self):
 """
 The effective number in stock (eg available to buy).

 This is correct property to show the customer, not the num_in_stock
 field as that doesn't account for allocations. This can be negative in
 some unusual circumstances
 """
 if self.num_in_stock is None:
 return 0
 if self.num_allocated is None:
 return self.num_in_stock
 return self.num_in_stock - self.num_allocated

 # 2-stage stock management model

[docs] def allocate(self, quantity):
 """
 Record a stock allocation.

 This normally happens when a product is bought at checkout. When the
 product is actually shipped, then we 'consume' the allocation.
 """
 if self.num_allocated is None:
 self.num_allocated = 0
 self.num_allocated += quantity
 self.save()

 allocate.alters_data = True

[docs] def is_allocation_consumption_possible(self, quantity):
 """
 Test if a proposed stock consumption is permitted
 """
 return quantity <= min(self.num_allocated, self.num_in_stock)

[docs] def consume_allocation(self, quantity):
 """
 Consume a previous allocation

 This is used when an item is shipped. We remove the original
 allocation and adjust the number in stock accordingly
 """
 if not self.is_allocation_consumption_possible(quantity):
 raise InvalidStockAdjustment(
 _('Invalid stock consumption request'))
 self.num_allocated -= quantity
 self.num_in_stock -= quantity
 self.save()

 consume_allocation.alters_data = True

 def cancel_allocation(self, quantity):
 # We ignore requests that request a cancellation of more than the
 # amount already allocated.
 self.num_allocated -= min(self.num_allocated, quantity)
 self.save()
 cancel_allocation.alters_data = True

 @property
 def is_below_threshold(self):
 if self.low_stock_threshold is None:
 return False
 return self.net_stock_level < self.low_stock_threshold

@python_2_unicode_compatible
[docs]class AbstractStockAlert(models.Model):
 """
 A stock alert. E.g. used to notify users when a product is 'back in stock'.
 """
 stockrecord = models.ForeignKey(
 'partner.StockRecord', related_name='alerts',
 verbose_name=_("Stock Record"))
 threshold = models.PositiveIntegerField(_("Threshold"))
 OPEN, CLOSED = "Open", "Closed"
 status_choices = (
 (OPEN, _("Open")),
 (CLOSED, _("Closed")),
)
 status = models.CharField(_("Status"), max_length=128, default=OPEN,
 choices=status_choices)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)
 date_closed = models.DateTimeField(_("Date Closed"), blank=True, null=True)

 def close(self):
 self.status = self.CLOSED
 self.date_closed = now()
 self.save()
 close.alters_data = True

 def __str__(self):
 return _('<stockalert for "%(stock)s" status %(status)s>') \
 % {'stock': self.stockrecord, 'status': self.status}

 class Meta:
 abstract = True
 app_label = 'partner'
 ordering = ('-date_created',)
 verbose_name = _('Stock alert')
 verbose_name_plural = _('Stock alerts')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/partner/strategy.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.partner.strategy

from collections import namedtuple
from decimal import Decimal as D

from . import availability, prices

A container for policies
PurchaseInfo = namedtuple(
 'PurchaseInfo', ['price', 'availability', 'stockrecord'])

[docs]class Selector(object):
 """
 Responsible for returning the appropriate strategy class for a given
 user/session.

 This can be called in three ways:

 #) Passing a request and user. This is for determining
 prices/availability for a normal user browsing the site.

 #) Passing just the user. This is for offline processes that don't
 have a request instance but do know which user to determine prices for.

 #) Passing nothing. This is for offline processes that don't
 correspond to a specific user. Eg, determining a price to store in
 a search index.

 """

[docs] def strategy(self, request=None, user=None, **kwargs):
 """
 Return an instanticated strategy instance
 """
 # Default to the backwards-compatible strategy of picking the first
 # stockrecord but charging zero tax.
 return Default(request)

[docs]class Base(object):
 """
 The base strategy class

 Given a product, strategies are responsible for returning a
 ``PurchaseInfo`` instance which contains:

 - The appropriate stockrecord for this customer
 - A pricing policy instance
 - An availability policy instance
 """

 def __init__(self, request=None):
 self.request = request
 self.user = None
 if request and request.user.is_authenticated():
 self.user = request.user

[docs] def fetch_for_product(self, product, stockrecord=None):
 """
 Given a product, return a ``PurchaseInfo`` instance.

 The ``PurchaseInfo`` class is a named tuple with attributes:

 - ``price``: a pricing policy object.
 - ``availability``: an availability policy object.
 - ``stockrecord``: the stockrecord that is being used

 If a stockrecord is passed, return the appropriate ``PurchaseInfo``
 instance for that product and stockrecord is returned.
 """
 raise NotImplementedError(
 "A strategy class must define a fetch_for_product method "
 "for returning the availability and pricing "
 "information."
)

[docs] def fetch_for_parent(self, product):
 """
 Given a parent product, fetch a ``StockInfo`` instance
 """
 raise NotImplementedError(
 "A strategy class must define a fetch_for_parent method "
 "for returning the availability and pricing "
 "information."
)

[docs] def fetch_for_line(self, line, stockrecord=None):
 """
 Given a basket line instance, fetch a ``PurchaseInfo`` instance.

 This method is provided to allow purchase info to be determined using a
 basket line's attributes. For instance, "bundle" products often use
 basket line attributes to store SKUs of contained products. For such
 products, we need to look at the availability of each contained product
 to determine overall availability.
 """
 # Default to ignoring any basket line options as we don't know what to
 # do with them within Oscar - that's up to your project to implement.
 return self.fetch_for_product(line.product)

[docs]class Structured(Base):
 """
 A strategy class which provides separate, overridable methods for
 determining the 3 things that a ``PurchaseInfo`` instance requires:

 #) A stockrecord
 #) A pricing policy
 #) An availability policy
 """

[docs] def fetch_for_product(self, product, stockrecord=None):
 """
 Return the appropriate ``PurchaseInfo`` instance.

 This method is not intended to be overridden.
 """
 if stockrecord is None:
 stockrecord = self.select_stockrecord(product)
 return PurchaseInfo(
 price=self.pricing_policy(product, stockrecord),
 availability=self.availability_policy(product, stockrecord),
 stockrecord=stockrecord)

 def fetch_for_parent(self, product):
 # Select children and associated stockrecords
 children_stock = self.select_children_stockrecords(product)
 return PurchaseInfo(
 price=self.parent_pricing_policy(product, children_stock),
 availability=self.parent_availability_policy(
 product, children_stock),
 stockrecord=None)

[docs] def select_stockrecord(self, product):
 """
 Select the appropriate stockrecord
 """
 raise NotImplementedError(
 "A structured strategy class must define a "
 "'select_stockrecord' method")

[docs] def select_children_stockrecords(self, product):
 """
 Select appropriate stock record for all children of a product
 """
 records = []
 for child in product.children.all():
 # Use tuples of (child product, stockrecord)
 records.append((child, self.select_stockrecord(child)))
 return records

[docs] def pricing_policy(self, product, stockrecord):
 """
 Return the appropriate pricing policy
 """
 raise NotImplementedError(
 "A structured strategy class must define a "
 "'pricing_policy' method")

 def parent_pricing_policy(self, product, children_stock):
 raise NotImplementedError(
 "A structured strategy class must define a "
 "'parent_pricing_policy' method")

[docs] def availability_policy(self, product, stockrecord):
 """
 Return the appropriate availability policy
 """
 raise NotImplementedError(
 "A structured strategy class must define a "
 "'availability_policy' method")

 def parent_availability_policy(self, product, children_stock):
 raise NotImplementedError(
 "A structured strategy class must define a "
 "'parent_availability_policy' method")

Mixins - these can be used to construct the appropriate strategy class

[docs]class UseFirstStockRecord(object):
 """
 Stockrecord selection mixin for use with the ``Structured`` base strategy.
 This mixin picks the first (normally only) stockrecord to fulfil a product.

 This is backwards compatible with Oscar<0.6 where only one stockrecord per
 product was permitted.
 """

 def select_stockrecord(self, product):
 try:
 return product.stockrecords.all()[0]
 except IndexError:
 return None

[docs]class StockRequired(object):
 """
 Availability policy mixin for use with the ``Structured`` base strategy.
 This mixin ensures that a product can only be bought if it has stock
 available (if stock is being tracked).
 """

 def availability_policy(self, product, stockrecord):
 if not stockrecord:
 return availability.Unavailable()
 if not product.get_product_class().track_stock:
 return availability.Available()
 else:
 return availability.StockRequired(
 stockrecord.net_stock_level)

 def parent_availability_policy(self, product, children_stock):
 # A parent product is available if one of its children is
 for child, stockrecord in children_stock:
 policy = self.availability_policy(product, stockrecord)
 if policy.is_available_to_buy:
 return availability.Available()
 return availability.Unavailable()

[docs]class NoTax(object):
 """
 Pricing policy mixin for use with the ``Structured`` base strategy.
 This mixin specifies zero tax and uses the ``price_excl_tax`` from the
 stockrecord.
 """

 def pricing_policy(self, product, stockrecord):
 # Check stockrecord has the appropriate data
 if not stockrecord or stockrecord.price_excl_tax is None:
 return prices.Unavailable()
 return prices.FixedPrice(
 currency=stockrecord.price_currency,
 excl_tax=stockrecord.price_excl_tax,
 tax=D('0.00'))

 def parent_pricing_policy(self, product, children_stock):
 stockrecords = [x[1] for x in children_stock if x[1] is not None]
 if not stockrecords:
 return prices.Unavailable()
 # We take price from first record
 stockrecord = stockrecords[0]
 return prices.FixedPrice(
 currency=stockrecord.price_currency,
 excl_tax=stockrecord.price_excl_tax,
 tax=D('0.00'))

[docs]class FixedRateTax(object):
 """
 Pricing policy mixin for use with the ``Structured`` base strategy. This
 mixin applies a fixed rate tax to the base price from the product's
 stockrecord. The price_incl_tax is quantized to two decimal places.
 Rounding behaviour is Decimal's default
 """
 rate = D('0') # Subclass and specify the correct rate
 exponent = D('0.01') # Default to two decimal places

 def pricing_policy(self, product, stockrecord):
 if not stockrecord:
 return prices.Unavailable()
 rate = self.get_rate(product, stockrecord)
 exponent = self.get_exponent(stockrecord)
 tax = (stockrecord.price_excl_tax * rate).quantize(exponent)
 return prices.TaxInclusiveFixedPrice(
 currency=stockrecord.price_currency,
 excl_tax=stockrecord.price_excl_tax,
 tax=tax)

 def parent_pricing_policy(self, product, children_stock):
 stockrecords = [x[1] for x in children_stock if x[1] is not None]
 if not stockrecords:
 return prices.Unavailable()

 # We take price from first record
 stockrecord = stockrecords[0]
 rate = self.get_rate(product, stockrecord)
 exponent = self.get_exponent(stockrecord)
 tax = (stockrecord.price_excl_tax * rate).quantize(exponent)

 return prices.FixedPrice(
 currency=stockrecord.price_currency,
 excl_tax=stockrecord.price_excl_tax,
 tax=tax)

[docs] def get_rate(self, product, stockrecord):
 """
 This method serves as hook to be able to plug in support for varying tax rates
 based on the product.

 TODO: Needs tests.
 """
 return self.rate

[docs] def get_exponent(self, stockrecord):
 """
 This method serves as hook to be able to plug in support for a varying exponent
 based on the currency.

 TODO: Needs tests.
 """
 return self.exponent

[docs]class DeferredTax(object):
 """
 Pricing policy mixin for use with the ``Structured`` base strategy.
 This mixin does not specify the product tax and is suitable to territories
 where tax isn't known until late in the checkout process.
 """

 def pricing_policy(self, product, stockrecord):
 if not stockrecord:
 return prices.Unavailable()
 return prices.FixedPrice(
 currency=stockrecord.price_currency,
 excl_tax=stockrecord.price_excl_tax)

 def parent_pricing_policy(self, product, children_stock):
 stockrecords = [x[1] for x in children_stock if x[1] is not None]
 if not stockrecords:
 return prices.Unavailable()

 # We take price from first record
 stockrecord = stockrecords[0]

 return prices.FixedPrice(
 currency=stockrecord.price_currency,
 excl_tax=stockrecord.price_excl_tax)

Example strategy composed of above mixins. For real projects, it's likely
you'll want to use a different pricing mixin as you'll probably want to
charge tax!

[docs]class Default(UseFirstStockRecord, StockRequired, NoTax, Structured):
 """
 Default stock/price strategy that uses the first found stockrecord for a
 product, ensures that stock is available (unless the product class
 indicates that we don't need to track stock) and charges zero tax.
 """

[docs]class UK(UseFirstStockRecord, StockRequired, FixedRateTax, Structured):
 """
 Sample strategy for the UK that:

 - uses the first stockrecord for each product (effectively assuming
 there is only one).
 - requires that a product has stock available to be bought
 - applies a fixed rate of tax on all products

 This is just a sample strategy used for internal development. It is not
 recommended to be used in production, especially as the tax rate is
 hard-coded.
 """
 # Use UK VAT rate (as of December 2013)
 rate = D('0.20')

[docs]class US(UseFirstStockRecord, StockRequired, DeferredTax, Structured):
 """
 Sample strategy for the US.

 - uses the first stockrecord for each product (effectively assuming
 there is only one).
 - requires that a product has stock available to be bought
 - doesn't apply a tax to product prices (normally this will be done
 after the shipping address is entered).

 This is just a sample one used for internal development. It is not
 recommended to be used in production.
 """

 © Copyright .
 Created using Sphinx 1.3.3.

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_modules/oscar/core/application.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.core.application

from oscar.core.loading import feature_hidden
from oscar.views.decorators import permissions_required

[docs]class Application(object):
 """
 Base application class.

 This is subclassed by each app to provide a customisable container for an
 app's views and permissions.
 """
 #: Namespace name
 name = None

 #: A name that allows the functionality within this app to be disabled
 hidable_feature_name = None

 #: Maps view names to lists of permissions. We expect tuples of
 #: lists as dictionary values. A list is a set of permissions that all
 #: needto be fulfilled (AND). Only one set of permissions has to be
 #: fulfilled (OR).
 #: If there's only one set of permissions, as a shortcut, you can also
 #: just define one list.
 permissions_map = {}

 #: Default permission for any view not in permissions_map
 default_permissions = None

 def __init__(self, app_name=None, **kwargs):
 self.app_name = app_name
 # Set all kwargs as object attributes
 for key, value in kwargs.items():
 setattr(self, key, value)

[docs] def get_urls(self):
 """
 Return the url patterns for this app.
 """
 return []

[docs] def post_process_urls(self, urlpatterns):
 """
 Customise URL patterns.

 This method allows decorators to be wrapped around an apps URL
 patterns.

 By default, this only allows custom decorators to be specified, but you
 could override this method to do anything you want.

 Args:
 urlpatterns (list): A list of URL patterns

 """
 # Test if this the URLs in the Application instance should be
 # available. If the feature is hidden then we don't include the URLs.
 if feature_hidden(self.hidable_feature_name):
 return []

 for pattern in urlpatterns:
 if hasattr(pattern, 'url_patterns'):
 self.post_process_urls(pattern.url_patterns)
 if not hasattr(pattern, '_callback'):
 continue
 # Look for a custom decorator
 decorator = self.get_url_decorator(pattern)
 if decorator:
 # Nasty way of modifying a RegexURLPattern
 pattern._callback = decorator(pattern._callback)
 return urlpatterns

[docs] def get_permissions(self, url):
 """
 Return a list of permissions for a given URL name

 Args:
 url (str): A URL name (eg ``basket.basket``)

 Returns:
 list: A list of permission strings.
 """
 # url namespaced?
 if url is not None and ':' in url:
 view_name = url.split(':')[1]
 else:
 view_name = url
 return self.permissions_map.get(view_name, self.default_permissions)

[docs] def get_url_decorator(self, pattern):
 """
 Return the appropriate decorator for the view function with the passed
 URL name. Mainly used for access-protecting views.

 It's possible to specify:

 - no permissions necessary: use None
 - a set of permissions: use a list
 - two set of permissions (`or`): use a two-tuple of lists

 See permissions_required decorator for details
 """
 permissions = self.get_permissions(pattern.name)
 if permissions:
 return permissions_required(permissions)

 @property
 def urls(self):
 # We set the application and instance namespace here
 return self.get_urls(), self.app_name, self.name

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/core/prices.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.core.prices

class TaxNotKnown(Exception):
 """
 Exception for when a tax-inclusive price is requested but we don't know
 what the tax applicable is (yet).
 """

[docs]class Price(object):
 """
 Simple price class that encapsulates a price and its tax information

 Attributes:
 incl_tax (Decimal): Price including taxes
 excl_tax (Decimal): Price excluding taxes
 tax (Decimal): Tax amount
 is_tax_known (bool): Whether tax is known
 currency (str): 3 character currency code
 """

 def __init__(self, currency, excl_tax, incl_tax=None, tax=None):
 self.currency = currency
 self.excl_tax = excl_tax
 if incl_tax is not None:
 self.incl_tax = incl_tax
 self.is_tax_known = True
 elif tax is not None:
 self.incl_tax = excl_tax + tax
 self.is_tax_known = True
 else:
 self.incl_tax = None
 self.is_tax_known = False

 def _get_tax(self):
 return self.incl_tax - self.excl_tax

 def _set_tax(self, value):
 self.incl_tax = self.excl_tax + value
 self.is_tax_known = True

 tax = property(_get_tax, _set_tax)

 def __repr__(self):
 if self.is_tax_known:
 return "%s(currency=%r, excl_tax=%r, incl_tax=%r, tax=%r)" % (
 self.__class__.__name__, self.currency, self.excl_tax,
 self.incl_tax, self.tax)
 return "%s(currency=%r, excl_tax=%r)" % (
 self.__class__.__name__, self.currency, self.excl_tax)

 def __eq__(self, other):
 """
 Two price objects are equal if currency, price.excl_tax and tax match.
 """
 return (self.currency == other.currency and
 self.excl_tax == other.excl_tax and
 self.incl_tax == other.incl_tax)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 All modules for which code is available

		django.db.models.fields.related_descriptors

		oscar.apps.address.abstract_models

		oscar.apps.analytics.abstract_models

		oscar.apps.basket.abstract_models

		oscar.apps.basket.views

		oscar.apps.catalogue.abstract_models

		oscar.apps.catalogue.models

		oscar.apps.catalogue.views

		oscar.apps.checkout.calculators

		oscar.apps.checkout.mixins

		oscar.apps.checkout.session

		oscar.apps.checkout.utils

		oscar.apps.checkout.views

		oscar.apps.customer.abstract_models

		oscar.apps.customer.forms

		oscar.apps.customer.views

		oscar.apps.customer.wishlists.views

		oscar.apps.dashboard.views

		oscar.apps.offer.abstract_models

		oscar.apps.offer.benefits

		oscar.apps.offer.conditions

		oscar.apps.offer.models

		oscar.apps.offer.results

		oscar.apps.order.abstract_models

		oscar.apps.order.models

		oscar.apps.order.processing

		oscar.apps.order.utils

		oscar.apps.partner.abstract_models

		oscar.apps.partner.availability

		oscar.apps.partner.prices

		oscar.apps.partner.strategy

		oscar.apps.payment.abstract_models

		oscar.apps.promotions.models

		oscar.apps.promotions.views

		oscar.apps.search.facets

		oscar.apps.search.forms

		oscar.apps.search.views

		oscar.apps.shipping.methods

		oscar.apps.shipping.models

		oscar.apps.shipping.repository

		oscar.apps.voucher.abstract_models

		oscar.apps.wishlists.abstract_models

		oscar.apps.wishlists.models

		oscar.core.application

		oscar.core.loading

		oscar.core.prices

		oscar.models.fields

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/catalogue/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.catalogue.views

import warnings

from django.contrib import messages
from django.core.paginator import InvalidPage
from django.http import Http404, HttpResponsePermanentRedirect
from django.shortcuts import get_object_or_404, redirect
from django.utils.http import urlquote
from django.utils.translation import ugettext_lazy as _
from django.views.generic import DetailView, TemplateView

from oscar.apps.catalogue.signals import product_viewed
from oscar.core.loading import get_class, get_model

Product = get_model('catalogue', 'product')
Category = get_model('catalogue', 'category')
ProductAlert = get_model('customer', 'ProductAlert')
ProductAlertForm = get_class('customer.forms', 'ProductAlertForm')
get_product_search_handler_class = get_class(
 'catalogue.search_handlers', 'get_product_search_handler_class')

class ProductDetailView(DetailView):
 context_object_name = 'product'
 model = Product
 view_signal = product_viewed
 template_folder = "catalogue"

 # Whether to redirect to the URL with the right path
 enforce_paths = True

 # Whether to redirect child products to their parent's URL
 enforce_parent = True

 def get(self, request, **kwargs):
 """
 Ensures that the correct URL is used before rendering a response
 """
 self.object = product = self.get_object()

 redirect = self.redirect_if_necessary(request.path, product)
 if redirect is not None:
 return redirect

 response = super(ProductDetailView, self).get(request, **kwargs)
 self.send_signal(request, response, product)
 return response

 def get_object(self, queryset=None):
 # Check if self.object is already set to prevent unnecessary DB calls
 if hasattr(self, 'object'):
 return self.object
 else:
 return super(ProductDetailView, self).get_object(queryset)

 def redirect_if_necessary(self, current_path, product):
 if self.enforce_parent and product.is_child:
 return HttpResponsePermanentRedirect(
 product.parent.get_absolute_url())

 if self.enforce_paths:
 expected_path = product.get_absolute_url()
 if expected_path != urlquote(current_path):
 return HttpResponsePermanentRedirect(expected_path)

 def get_context_data(self, **kwargs):
 ctx = super(ProductDetailView, self).get_context_data(**kwargs)
 ctx['alert_form'] = self.get_alert_form()
 ctx['has_active_alert'] = self.get_alert_status()
 return ctx

 def get_alert_status(self):
 # Check if this user already have an alert for this product
 has_alert = False
 if self.request.user.is_authenticated():
 alerts = ProductAlert.objects.filter(
 product=self.object, user=self.request.user,
 status=ProductAlert.ACTIVE)
 has_alert = alerts.exists()
 return has_alert

 def get_alert_form(self):
 return ProductAlertForm(
 user=self.request.user, product=self.object)

 def send_signal(self, request, response, product):
 self.view_signal.send(
 sender=self, product=product, user=request.user, request=request,
 response=response)

 def get_template_names(self):
 """
 Return a list of possible templates.

 If an overriding class sets a template name, we use that. Otherwise,
 we try 2 options before defaulting to catalogue/detail.html:
 1). detail-for-upc-<upc>.html
 2). detail-for-class-<classname>.html

 This allows alternative templates to be provided for a per-product
 and a per-item-class basis.
 """
 if self.template_name:
 return [self.template_name]

 return [
 '%s/detail-for-upc-%s.html' % (
 self.template_folder, self.object.upc),
 '%s/detail-for-class-%s.html' % (
 self.template_folder, self.object.get_product_class().slug),
 '%s/detail.html' % (self.template_folder)]

[docs]class CatalogueView(TemplateView):
 """
 Browse all products in the catalogue
 """
 context_object_name = "products"
 template_name = 'catalogue/browse.html'

 def get(self, request, *args, **kwargs):
 try:
 self.search_handler = self.get_search_handler(
 self.request.GET, request.get_full_path(), [])
 except InvalidPage:
 # Redirect to page one.
 messages.error(request, _('The given page number was invalid.'))
 return redirect('catalogue:index')
 return super(CatalogueView, self).get(request, *args, **kwargs)

 def get_search_handler(self, *args, **kwargs):
 return get_product_search_handler_class()(*args, **kwargs)

 def get_context_data(self, **kwargs):
 ctx = {}
 ctx['summary'] = _("All products")
 search_context = self.search_handler.get_search_context_data(
 self.context_object_name)
 ctx.update(search_context)
 return ctx

[docs]class ProductCategoryView(TemplateView):
 """
 Browse products in a given category
 """
 context_object_name = "products"
 template_name = 'catalogue/category.html'
 enforce_paths = True

 def get(self, request, *args, **kwargs):
 # Fetch the category; return 404 or redirect as needed
 self.category = self.get_category()
 potential_redirect = self.redirect_if_necessary(
 request.path, self.category)
 if potential_redirect is not None:
 return potential_redirect

 try:
 self.search_handler = self.get_search_handler(
 request.GET, request.get_full_path(), self.get_categories())
 except InvalidPage:
 messages.error(request, _('The given page number was invalid.'))
 return redirect(self.category.get_absolute_url())

 return super(ProductCategoryView, self).get(request, *args, **kwargs)

 def get_category(self):
 if 'pk' in self.kwargs:
 # Usual way to reach a category page. We just look at the primary
 # key, which is easy on the database. If the slug changed, get()
 # will redirect appropriately.
 # WARNING: Category.get_absolute_url needs to look up it's parents
 # to compute the URL. As this is slightly expensive, Oscar's
 # default implementation caches the method. That's pretty safe
 # as ProductCategoryView does the lookup by primary key, which
 # will work even if the cache is stale. But if you override this
 # logic, consider if that still holds true.
 return get_object_or_404(Category, pk=self.kwargs['pk'])
 elif 'category_slug' in self.kwargs:
 # DEPRECATED. TODO: Remove in Oscar 1.2.
 # For SEO and legacy reasons, we allow chopping off the primary
 # key from the URL. In that case, we have the target category slug
 # and it's ancestors' slugs concatenated together.
 # To save on queries, we pick the last slug, look up all matching
 # categories and only then compare.
 # Note that currently we enforce uniqueness of slugs, but as that
 # might feasibly change soon, it makes sense to be forgiving here.
 concatenated_slugs = self.kwargs['category_slug']
 slugs = concatenated_slugs.split(Category._slug_separator)
 try:
 last_slug = slugs[-1]
 except IndexError:
 raise Http404
 else:
 for category in Category.objects.filter(slug=last_slug):
 if category.full_slug == concatenated_slugs:
 message = (
 "Accessing categories without a primary key"
 " is deprecated will be removed in Oscar 1.2.")
 warnings.warn(message, DeprecationWarning)

 return category

 raise Http404

 def redirect_if_necessary(self, current_path, category):
 if self.enforce_paths:
 # Categories are fetched by primary key to allow slug changes.
 # If the slug has changed, issue a redirect.
 expected_path = category.get_absolute_url()
 if expected_path != urlquote(current_path):
 return HttpResponsePermanentRedirect(expected_path)

 def get_search_handler(self, *args, **kwargs):
 return get_product_search_handler_class()(*args, **kwargs)

[docs] def get_categories(self):
 """
 Return a list of the current category and its ancestors
 """
 return self.category.get_descendants_and_self()

 def get_context_data(self, **kwargs):
 context = super(ProductCategoryView, self).get_context_data(**kwargs)
 context['category'] = self.category
 search_context = self.search_handler.get_search_context_data(
 self.context_object_name)
 context.update(search_context)
 return context

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/catalogue/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.catalogue.abstract_models

import logging
import os
from datetime import date, datetime

from django.conf import settings
from django.contrib.contenttypes.fields import GenericForeignKey
from django.contrib.contenttypes.models import ContentType
from django.contrib.staticfiles.finders import find
from django.core.cache import cache
from django.core.exceptions import ImproperlyConfigured, ValidationError
from django.core.files.base import File
from django.core.urlresolvers import reverse
from django.core.validators import RegexValidator
from django.db import models
from django.db.models import Count, Sum
from django.utils import six
from django.utils.encoding import python_2_unicode_compatible
from django.utils.functional import cached_property
from django.utils.html import strip_tags
from django.utils.safestring import mark_safe
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import get_language, pgettext_lazy

from treebeard.mp_tree import MP_Node

from oscar.core.decorators import deprecated
from oscar.core.loading import get_class, get_classes, get_model
from oscar.core.utils import slugify
from oscar.core.validators import non_python_keyword
from oscar.models.fields import AutoSlugField, NullCharField
from oscar.models.fields.slugfield import SlugField

ProductManager, BrowsableProductManager = get_classes(
 'catalogue.managers', ['ProductManager', 'BrowsableProductManager'])

Selector = get_class('partner.strategy', 'Selector')

@python_2_unicode_compatible
[docs]class AbstractProductClass(models.Model):
 """
 Used for defining options and attributes for a subset of products.
 E.g. Books, DVDs and Toys. A product can only belong to one product class.

 At least one product class must be created when setting up a new
 Oscar deployment.

 Not necessarily equivalent to top-level categories but usually will be.
 """
 name = models.CharField(_('Name'), max_length=128)
 slug = AutoSlugField(_('Slug'), max_length=128, unique=True,
 populate_from='name')

 #: Some product type don't require shipping (eg digital products) - we use
 #: this field to take some shortcuts in the checkout.
 requires_shipping = models.BooleanField(_("Requires shipping?"),
 default=True)

 #: Digital products generally don't require their stock levels to be
 #: tracked.
 track_stock = models.BooleanField(_("Track stock levels?"), default=True)

 #: These are the options (set by the user when they add to basket) for this
 #: item class. For instance, a product class of "SMS message" would always
 #: require a message to be specified before it could be bought.
 #: Note that you can also set options on a per-product level.
 options = models.ManyToManyField(
 'catalogue.Option', blank=True, verbose_name=_("Options"))

 class Meta:
 abstract = True
 app_label = 'catalogue'
 ordering = ['name']
 verbose_name = _("Product class")
 verbose_name_plural = _("Product classes")

 def __str__(self):
 return self.name

 @property
 def has_attributes(self):
 return self.attributes.exists()

@python_2_unicode_compatible
[docs]class AbstractCategory(MP_Node):
 """
 A product category. Merely used for navigational purposes; has no
 effects on business logic.

 Uses django-treebeard.
 """
 name = models.CharField(_('Name'), max_length=255, db_index=True)
 description = models.TextField(_('Description'), blank=True)
 image = models.ImageField(_('Image'), upload_to='categories', blank=True,
 null=True, max_length=255)
 slug = SlugField(_('Slug'), max_length=255, db_index=True)

 _slug_separator = '/'
 _full_name_separator = ' > '

 def __str__(self):
 return self.full_name

 @property
 def full_name(self):
 """
 Returns a string representation of the category and it's ancestors,
 e.g. 'Books > Non-fiction > Essential programming'.

 It's rarely used in Oscar's codebase, but used to be stored as a
 CharField and is hence kept for backwards compatibility. It's also
 sufficiently useful to keep around.
 """
 names = [category.name for category in self.get_ancestors_and_self()]
 return self._full_name_separator.join(names)

 @property
 def full_slug(self):
 """
 Returns a string of this category's slug concatenated with the slugs
 of it's ancestors, e.g. 'books/non-fiction/essential-programming'.

 Oscar used to store this as in the 'slug' model field, but this field
 has been re-purposed to only store this category's slug and to not
 include it's ancestors' slugs.
 """
 slugs = [category.slug for category in self.get_ancestors_and_self()]
 return self._slug_separator.join(slugs)

[docs] def generate_slug(self):
 """
 Generates a slug for a category. This makes no attempt at generating
 a unique slug.
 """
 return slugify(self.name)

[docs] def ensure_slug_uniqueness(self):
 """
 Ensures that the category's slug is unique amongst it's siblings.
 This is inefficient and probably not thread-safe.
 """
 unique_slug = self.slug
 siblings = self.get_siblings().exclude(pk=self.pk)
 next_num = 2
 while siblings.filter(slug=unique_slug).exists():
 unique_slug = '{slug}_{end}'.format(slug=self.slug, end=next_num)
 next_num += 1

 if unique_slug != self.slug:
 self.slug = unique_slug
 self.save()

[docs] def save(self, *args, **kwargs):
 """
 Oscar traditionally auto-generated slugs from names. As that is
 often convenient, we still do so if a slug is not supplied through
 other means. If you want to control slug creation, just create
 instances with a slug already set, or expose a field on the
 appropriate forms.
 """
 if self.slug:
 # Slug was supplied. Hands off!
 super(AbstractCategory, self).save(*args, **kwargs)
 else:
 self.slug = self.generate_slug()
 super(AbstractCategory, self).save(*args, **kwargs)
 # We auto-generated a slug, so we need to make sure that it's
 # unique. As we need to be able to inspect the category's siblings
 # for that, we need to wait until the instance is saved. We
 # update the slug and save again if necessary.
 self.ensure_slug_uniqueness()

[docs] def get_ancestors_and_self(self):
 """
 Gets ancestors and includes itself. Use treebeard's get_ancestors
 if you don't want to include the category itself. It's a separate
 function as it's commonly used in templates.
 """
 return list(self.get_ancestors()) + [self]

[docs] def get_descendants_and_self(self):
 """
 Gets descendants and includes itself. Use treebeard's get_descendants
 if you don't want to include the category itself. It's a separate
 function as it's commonly used in templates.
 """
 return list(self.get_descendants()) + [self]

[docs] def get_absolute_url(self):
 """
 Our URL scheme means we have to look up the category's ancestors. As
 that is a bit more expensive, we cache the generated URL. That is
 safe even for a stale cache, as the default implementation of
 ProductCategoryView does the lookup via primary key anyway. But if
 you change that logic, you'll have to reconsider the caching
 approach.
 """
 current_locale = get_language()
 cache_key = 'CATEGORY_URL_%s_%s' % (current_locale, self.pk)
 url = cache.get(cache_key)
 if not url:
 url = reverse(
 'catalogue:category',
 kwargs={'category_slug': self.full_slug, 'pk': self.pk})
 cache.set(cache_key, url)
 return url

 class Meta:
 abstract = True
 app_label = 'catalogue'
 ordering = ['path']
 verbose_name = _('Category')
 verbose_name_plural = _('Categories')

 def has_children(self):
 return self.get_num_children() > 0

 def get_num_children(self):
 return self.get_children().count()

@python_2_unicode_compatible
[docs]class AbstractProductCategory(models.Model):
 """
 Joining model between products and categories. Exists to allow customising.
 """
 product = models.ForeignKey('catalogue.Product', verbose_name=_("Product"))
 category = models.ForeignKey('catalogue.Category',
 verbose_name=_("Category"))

 class Meta:
 abstract = True
 app_label = 'catalogue'
 ordering = ['product', 'category']
 unique_together = ('product', 'category')
 verbose_name = _('Product category')
 verbose_name_plural = _('Product categories')

 def __str__(self):
 return u"<productcategory for product '%s'>" % self.product

@python_2_unicode_compatible
[docs]class AbstractProduct(models.Model):
 """
 The base product object

 There's three kinds of products; they're distinguished by the structure
 field.

 - A stand alone product. Regular product that lives by itself.
 - A child product. All child products have a parent product. They're a
 specific version of the parent.
 - A parent product. It essentially represents a set of products.

 An example could be a yoga course, which is a parent product. The different
 times/locations of the courses would be associated with the child products.
 """
 STANDALONE, PARENT, CHILD = 'standalone', 'parent', 'child'
 STRUCTURE_CHOICES = (
 (STANDALONE, _('Stand-alone product')),
 (PARENT, _('Parent product')),
 (CHILD, _('Child product'))
)
 structure = models.CharField(
 _("Product structure"), max_length=10, choices=STRUCTURE_CHOICES,
 default=STANDALONE)

 upc = NullCharField(
 _("UPC"), max_length=64, blank=True, null=True, unique=True,
 help_text=_("Universal Product Code (UPC) is an identifier for "
 "a product which is not specific to a particular "
 " supplier. Eg an ISBN for a book."))

 parent = models.ForeignKey(
 'self', null=True, blank=True, related_name='children',
 verbose_name=_("Parent product"),
 help_text=_("Only choose a parent product if you're creating a child "
 "product. For example if this is a size "
 "4 of a particular t-shirt. Leave blank if this is a "
 "stand-alone product (i.e. there is only one version of"
 " this product)."))

 # Title is mandatory for canonical products but optional for child products
 title = models.CharField(pgettext_lazy(u'Product title', u'Title'),
 max_length=255, blank=True)
 slug = models.SlugField(_('Slug'), max_length=255, unique=False)
 description = models.TextField(_('Description'), blank=True)

 #: "Kind" of product, e.g. T-Shirt, Book, etc.
 #: None for child products, they inherit their parent's product class
 product_class = models.ForeignKey(
 'catalogue.ProductClass', null=True, blank=True, on_delete=models.PROTECT,
 verbose_name=_('Product type'), related_name="products",
 help_text=_("Choose what type of product this is"))
 attributes = models.ManyToManyField(
 'catalogue.ProductAttribute',
 through='ProductAttributeValue',
 verbose_name=_("Attributes"),
 help_text=_("A product attribute is something that this product may "
 "have, such as a size, as specified by its class"))
 #: It's possible to have options product class-wide, and per product.
 product_options = models.ManyToManyField(
 'catalogue.Option', blank=True, verbose_name=_("Product options"),
 help_text=_("Options are values that can be associated with a item "
 "when it is added to a customer's basket. This could be "
 "something like a personalised message to be printed on "
 "a T-shirt."))

 recommended_products = models.ManyToManyField(
 'catalogue.Product', through='ProductRecommendation', blank=True,
 verbose_name=_("Recommended products"),
 help_text=_("These are products that are recommended to accompany the "
 "main product."))

 # Denormalised product rating - used by reviews app.
 # Product has no ratings if rating is None
 rating = models.FloatField(_('Rating'), null=True, editable=False)

 date_created = models.DateTimeField(_("Date created"), auto_now_add=True)

 # This field is used by Haystack to reindex search
 date_updated = models.DateTimeField(
 _("Date updated"), auto_now=True, db_index=True)

 categories = models.ManyToManyField(
 'catalogue.Category', through='ProductCategory',
 verbose_name=_("Categories"))

 #: Determines if a product may be used in an offer. It is illegal to
 #: discount some types of product (e.g. ebooks) and this field helps
 #: merchants from avoiding discounting such products
 #: Note that this flag is ignored for child products; they inherit from
 #: the parent product.
 is_discountable = models.BooleanField(
 _("Is discountable?"), default=True, help_text=_(
 "This flag indicates if this product can be used in an offer "
 "or not"))

 objects = ProductManager()
 browsable = BrowsableProductManager()

 class Meta:
 abstract = True
 app_label = 'catalogue'
 ordering = ['-date_created']
 verbose_name = _('Product')
 verbose_name_plural = _('Products')

 def __init__(self, *args, **kwargs):
 super(AbstractProduct, self).__init__(*args, **kwargs)
 self.attr = ProductAttributesContainer(product=self)

 def __str__(self):
 if self.title:
 return self.title
 if self.attribute_summary:
 return u"%s (%s)" % (self.get_title(), self.attribute_summary)
 else:
 return self.get_title()

[docs] def get_absolute_url(self):
 """
 Return a product's absolute url
 """
 return reverse('catalogue:detail',
 kwargs={'product_slug': self.slug, 'pk': self.id})

[docs] def clean(self):
 """
 Validate a product. Those are the rules:

 +---------------+-------------+--------------+--------------+
 | | stand alone | parent | child |
 +---------------+-------------+--------------+--------------+
 | title | required | required | optional |
 +---------------+-------------+--------------+--------------+
 | product class | required | required | must be None |
 +---------------+-------------+--------------+--------------+
 | parent | forbidden | forbidden | required |
 +---------------+-------------+--------------+--------------+
 | stockrecords | 0 or more | forbidden | 0 or more |
 +---------------+-------------+--------------+--------------+
 | categories | 1 or more | 1 or more | forbidden |
 +---------------+-------------+--------------+--------------+
 | attributes | optional | optional | optional |
 +---------------+-------------+--------------+--------------+
 | rec. products | optional | optional | unsupported |
 +---------------+-------------+--------------+--------------+
 | options | optional | optional | forbidden |
 +---------------+-------------+--------------+--------------+

 Because the validation logic is quite complex, validation is delegated
 to the sub method appropriate for the product's structure.
 """
 getattr(self, '_clean_%s' % self.structure)()
 if not self.is_parent:
 self.attr.validate_attributes()

 def _clean_standalone(self):
 """
 Validates a stand-alone product
 """
 if not self.title:
 raise ValidationError(_("Your product must have a title."))
 if not self.product_class:
 raise ValidationError(_("Your product must have a product class."))
 if self.parent_id:
 raise ValidationError(_("Only child products can have a parent."))

 def _clean_child(self):
 """
 Validates a child product
 """
 if not self.parent_id:
 raise ValidationError(_("A child product needs a parent."))
 if self.parent_id and not self.parent.is_parent:
 raise ValidationError(
 _("You can only assign child products to parent products."))
 if self.product_class:
 raise ValidationError(
 _("A child product can't have a product class."))
 if self.pk and self.categories.exists():
 raise ValidationError(
 _("A child product can't have a category assigned."))
 # Note that we only forbid options on product level
 if self.pk and self.product_options.exists():
 raise ValidationError(
 _("A child product can't have options."))

 def _clean_parent(self):
 """
 Validates a parent product.
 """
 self._clean_standalone()
 if self.has_stockrecords:
 raise ValidationError(
 _("A parent product can't have stockrecords."))

 def save(self, *args, **kwargs):
 if not self.slug:
 self.slug = slugify(self.get_title())
 super(AbstractProduct, self).save(*args, **kwargs)
 self.attr.save()

 # Properties

 @property
 def is_standalone(self):
 return self.structure == self.STANDALONE

 @property
 def is_parent(self):
 return self.structure == self.PARENT

 @property
 def is_child(self):
 return self.structure == self.CHILD

[docs] def can_be_parent(self, give_reason=False):
 """
 Helps decide if a the product can be turned into a parent product.
 """
 reason = None
 if self.is_child:
 reason = _('The specified parent product is a child product.')
 if self.has_stockrecords:
 reason = _(
 "One can't add a child product to a product with stock"
 " records.")
 is_valid = reason is None
 if give_reason:
 return is_valid, reason
 else:
 return is_valid

 @property
 def options(self):
 """
 Returns a set of all valid options for this product.
 It's possible to have options product class-wide, and per product.
 """
 pclass_options = self.get_product_class().options.all()
 return set(pclass_options) or set(self.product_options.all())

 @property
 def is_shipping_required(self):
 return self.get_product_class().requires_shipping

 @property
 def has_stockrecords(self):
 """
 Test if this product has any stockrecords
 """
 return self.stockrecords.exists()

 @property
 def num_stockrecords(self):
 return self.stockrecords.count()

 @property
 def attribute_summary(self):
 """
 Return a string of all of a product's attributes
 """
 attributes = self.attribute_values.all()
 pairs = [attribute.summary() for attribute in attributes]
 return ", ".join(pairs)

 # The two properties below are deprecated because determining minimum
 # price is not as trivial as it sounds considering multiple stockrecords,
 # currencies, tax, etc.
 # The current implementation is very naive and only works for a limited
 # set of use cases.
 # At the very least, we should pass in the request and
 # user. Hence, it's best done as an extension to a Strategy class.
 # Once that is accomplished, these properties should be removed.

 @property
 @deprecated
 def min_child_price_incl_tax(self):
 """
 Return minimum child product price including tax.
 """
 return self._min_child_price('incl_tax')

 @property
 @deprecated
 def min_child_price_excl_tax(self):
 """
 Return minimum child product price excluding tax.

 This is a very naive approach; see the deprecation notice above. And
 only use it for display purposes (e.g. "new Oscar shirt, prices
 starting from $9.50").
 """
 return self._min_child_price('excl_tax')

 def _min_child_price(self, prop):
 """
 Return minimum child product price.

 This is for visual purposes only. It ignores currencies, most of the
 Strategy logic for selecting stockrecords, knows nothing about the
 current user or request, etc. It's only here to ensure
 backwards-compatibility; the previous implementation wasn't any
 better.
 """
 strategy = Selector().strategy()

 children_stock = strategy.select_children_stockrecords(self)
 prices = [
 strategy.pricing_policy(child, stockrecord)
 for child, stockrecord in children_stock]
 raw_prices = sorted([getattr(price, prop) for price in prices])
 return raw_prices[0] if raw_prices else None

 # Wrappers for child products

[docs] def get_title(self):
 """
 Return a product's title or it's parent's title if it has no title
 """
 title = self.title
 if not title and self.parent_id:
 title = self.parent.title
 return title

 get_title.short_description = pgettext_lazy(u"Product title", u"Title")

[docs] def get_product_class(self):
 """
 Return a product's item class. Child products inherit their parent's.
 """
 if self.is_child:
 return self.parent.product_class
 else:
 return self.product_class

 get_product_class.short_description = _("Product class")

[docs] def get_is_discountable(self):
 """
 At the moment, is_discountable can't be set individually for child
 products; they inherit it from their parent.
 """
 if self.is_child:
 return self.parent.is_discountable
 else:
 return self.is_discountable

[docs] def get_categories(self):
 """
 Return a product's categories or parent's if there is a parent product.
 """
 if self.is_child:
 return self.parent.categories
 else:
 return self.categories

 get_categories.short_description = _("Categories")

 # Images

[docs] def get_missing_image(self):
 """
 Returns a missing image object.
 """
 # This class should have a 'name' property so it mimics the Django file
 # field.
 return MissingProductImage()

[docs] def primary_image(self):
 """
 Returns the primary image for a product. Usually used when one can
 only display one product image, e.g. in a list of products.
 """
 images = self.images.all()
 ordering = self.images.model.Meta.ordering
 if not ordering or ordering[0] != 'display_order':
 # Only apply order_by() if a custom model doesn't use default
 # ordering. Applying order_by() busts the prefetch cache of
 # the ProductManager
 images = images.order_by('display_order')
 try:
 return images[0]
 except IndexError:
 # We return a dict with fields that mirror the key properties of
 # the ProductImage class so this missing image can be used
 # interchangeably in templates. Strategy pattern ftw!
 return {
 'original': self.get_missing_image(),
 'caption': '',
 'is_missing': True}

 # Updating methods

[docs] def update_rating(self):
 """
 Recalculate rating field
 """
 self.rating = self.calculate_rating()
 self.save()

 update_rating.alters_data = True

[docs] def calculate_rating(self):
 """
 Calculate rating value
 """
 result = self.reviews.filter(
 status=self.reviews.model.APPROVED
).aggregate(
 sum=Sum('score'), count=Count('id'))
 reviews_sum = result['sum'] or 0
 reviews_count = result['count'] or 0
 rating = None
 if reviews_count > 0:
 rating = float(reviews_sum) / reviews_count
 return rating

 def has_review_by(self, user):
 if user.is_anonymous():
 return False
 return self.reviews.filter(user=user).exists()

[docs] def is_review_permitted(self, user):
 """
 Determines whether a user may add a review on this product.

 Default implementation respects OSCAR_ALLOW_ANON_REVIEWS and only
 allows leaving one review per user and product.

 Override this if you want to alter the default behaviour; e.g. enforce
 that a user purchased the product to be allowed to leave a review.
 """
 if user.is_authenticated() or settings.OSCAR_ALLOW_ANON_REVIEWS:
 return not self.has_review_by(user)
 else:
 return False

 @cached_property
 def num_approved_reviews(self):
 return self.reviews.filter(
 status=self.reviews.model.APPROVED).count()

[docs]class AbstractProductRecommendation(models.Model):
 """
 'Through' model for product recommendations
 """
 primary = models.ForeignKey(
 'catalogue.Product', related_name='primary_recommendations',
 verbose_name=_("Primary product"))
 recommendation = models.ForeignKey(
 'catalogue.Product', verbose_name=_("Recommended product"))
 ranking = models.PositiveSmallIntegerField(
 _('Ranking'), default=0,
 help_text=_('Determines order of the products. A product with a higher'
 ' value will appear before one with a lower ranking.'))

 class Meta:
 abstract = True
 app_label = 'catalogue'
 ordering = ['primary', '-ranking']
 unique_together = ('primary', 'recommendation')
 verbose_name = _('Product recommendation')
 verbose_name_plural = _('Product recomendations')

[docs]class ProductAttributesContainer(object):
 """
 Stolen liberally from django-eav, but simplified to be product-specific

 To set attributes on a product, use the `attr` attribute:

 product.attr.weight = 125
 """

 def __setstate__(self, state):
 self.__dict__ = state
 self.initialised = False

 def __init__(self, product):
 self.product = product
 self.initialised = False

 def __getattr__(self, name):
 if not name.startswith('_') and not self.initialised:
 values = self.get_values().select_related('attribute')
 for v in values:
 setattr(self, v.attribute.code, v.value)
 self.initialised = True
 return getattr(self, name)
 raise AttributeError(
 _("%(obj)s has no attribute named '%(attr)s'") % {
 'obj': self.product.get_product_class(), 'attr': name})

 def validate_attributes(self):
 for attribute in self.get_all_attributes():
 value = getattr(self, attribute.code, None)
 if value is None:
 if attribute.required:
 raise ValidationError(
 _("%(attr)s attribute cannot be blank") %
 {'attr': attribute.code})
 else:
 try:
 attribute.validate_value(value)
 except ValidationError as e:
 raise ValidationError(
 _("%(attr)s attribute %(err)s") %
 {'attr': attribute.code, 'err': e})

 def get_values(self):
 return self.product.attribute_values.all()

 def get_value_by_attribute(self, attribute):
 return self.get_values().get(attribute=attribute)

 def get_all_attributes(self):
 return self.product.get_product_class().attributes.all()

 def get_attribute_by_code(self, code):
 return self.get_all_attributes().get(code=code)

 def __iter__(self):
 return iter(self.get_values())

 def save(self):
 for attribute in self.get_all_attributes():
 if hasattr(self, attribute.code):
 value = getattr(self, attribute.code)
 attribute.save_value(self.product, value)

@python_2_unicode_compatible
[docs]class AbstractProductAttribute(models.Model):
 """
 Defines an attribute for a product class. (For example, number_of_pages for
 a 'book' class)
 """
 product_class = models.ForeignKey(
 'catalogue.ProductClass', related_name='attributes', blank=True,
 null=True, verbose_name=_("Product type"))
 name = models.CharField(_('Name'), max_length=128)
 code = models.SlugField(
 _('Code'), max_length=128,
 validators=[
 RegexValidator(
 regex=r'^[a-zA-Z_][0-9a-zA-Z_]*$',
 message=_(
 "Code can only contain the letters a-z, A-Z, digits, "
 "and underscores, and can't start with a digit.")),
 non_python_keyword
])

 # Attribute types
 TEXT = "text"
 INTEGER = "integer"
 BOOLEAN = "boolean"
 FLOAT = "float"
 RICHTEXT = "richtext"
 DATE = "date"
 OPTION = "option"
 ENTITY = "entity"
 FILE = "file"
 IMAGE = "image"
 TYPE_CHOICES = (
 (TEXT, _("Text")),
 (INTEGER, _("Integer")),
 (BOOLEAN, _("True / False")),
 (FLOAT, _("Float")),
 (RICHTEXT, _("Rich Text")),
 (DATE, _("Date")),
 (OPTION, _("Option")),
 (ENTITY, _("Entity")),
 (FILE, _("File")),
 (IMAGE, _("Image")),
)
 type = models.CharField(
 choices=TYPE_CHOICES, default=TYPE_CHOICES[0][0],
 max_length=20, verbose_name=_("Type"))

 option_group = models.ForeignKey(
 'catalogue.AttributeOptionGroup', blank=True, null=True,
 verbose_name=_("Option Group"),
 help_text=_('Select an option group if using type "Option"'))
 required = models.BooleanField(_('Required'), default=False)

 class Meta:
 abstract = True
 app_label = 'catalogue'
 ordering = ['code']
 verbose_name = _('Product attribute')
 verbose_name_plural = _('Product attributes')

 @property
 def is_option(self):
 return self.type == self.OPTION

 @property
 def is_file(self):
 return self.type in [self.FILE, self.IMAGE]

 def __str__(self):
 return self.name

 def save_value(self, product, value):
 ProductAttributeValue = get_model('catalogue', 'ProductAttributeValue')
 try:
 value_obj = product.attribute_values.get(attribute=self)
 except ProductAttributeValue.DoesNotExist:
 # FileField uses False for announcing deletion of the file
 # not creating a new value
 delete_file = self.is_file and value is False
 if value is None or value == '' or delete_file:
 return
 value_obj = ProductAttributeValue.objects.create(
 product=product, attribute=self)

 if self.is_file:
 # File fields in Django are treated differently, see
 # django.db.models.fields.FileField and method save_form_data
 if value is None:
 # No change
 return
 elif value is False:
 # Delete file
 value_obj.delete()
 else:
 # New uploaded file
 value_obj.value = value
 value_obj.save()
 else:
 if value is None or value == '':
 value_obj.delete()
 return
 if value != value_obj.value:
 value_obj.value = value
 value_obj.save()

 def validate_value(self, value):
 validator = getattr(self, '_validate_%s' % self.type)
 validator(value)

 # Validators

 def _validate_text(self, value):
 if not isinstance(value, six.string_types):
 raise ValidationError(_("Must be str or unicode"))
 _validate_richtext = _validate_text

 def _validate_float(self, value):
 try:
 float(value)
 except ValueError:
 raise ValidationError(_("Must be a float"))

 def _validate_integer(self, value):
 try:
 int(value)
 except ValueError:
 raise ValidationError(_("Must be an integer"))

 def _validate_date(self, value):
 if not (isinstance(value, datetime) or isinstance(value, date)):
 raise ValidationError(_("Must be a date or datetime"))

 def _validate_boolean(self, value):
 if not type(value) == bool:
 raise ValidationError(_("Must be a boolean"))

 def _validate_entity(self, value):
 if not isinstance(value, models.Model):
 raise ValidationError(_("Must be a model instance"))

 def _validate_option(self, value):
 if not isinstance(value, get_model('catalogue', 'AttributeOption')):
 raise ValidationError(
 _("Must be an AttributeOption model object instance"))
 if not value.pk:
 raise ValidationError(_("AttributeOption has not been saved yet"))
 valid_values = self.option_group.options.values_list(
 'option', flat=True)
 if value.option not in valid_values:
 raise ValidationError(
 _("%(enum)s is not a valid choice for %(attr)s") %
 {'enum': value, 'attr': self})

 def _validate_file(self, value):
 if value and not isinstance(value, File):
 raise ValidationError(_("Must be a file field"))
 _validate_image = _validate_file

@python_2_unicode_compatible
[docs]class AbstractProductAttributeValue(models.Model):
 """
 The "through" model for the m2m relationship between catalogue.Product and
 catalogue.ProductAttribute. This specifies the value of the attribute for
 a particular product

 For example: number_of_pages = 295
 """
 attribute = models.ForeignKey(
 'catalogue.ProductAttribute', verbose_name=_("Attribute"))
 product = models.ForeignKey(
 'catalogue.Product', related_name='attribute_values',
 verbose_name=_("Product"))

 value_text = models.TextField(_('Text'), blank=True, null=True)
 value_integer = models.IntegerField(_('Integer'), blank=True, null=True)
 value_boolean = models.NullBooleanField(_('Boolean'), blank=True)
 value_float = models.FloatField(_('Float'), blank=True, null=True)
 value_richtext = models.TextField(_('Richtext'), blank=True, null=True)
 value_date = models.DateField(_('Date'), blank=True, null=True)
 value_option = models.ForeignKey(
 'catalogue.AttributeOption', blank=True, null=True,
 verbose_name=_("Value option"))
 value_file = models.FileField(
 upload_to=settings.OSCAR_IMAGE_FOLDER, max_length=255,
 blank=True, null=True)
 value_image = models.ImageField(
 upload_to=settings.OSCAR_IMAGE_FOLDER, max_length=255,
 blank=True, null=True)
 value_entity = GenericForeignKey(
 'entity_content_type', 'entity_object_id')

 entity_content_type = models.ForeignKey(
 ContentType, null=True, blank=True, editable=False)
 entity_object_id = models.PositiveIntegerField(
 null=True, blank=True, editable=False)

 def _get_value(self):
 return getattr(self, 'value_%s' % self.attribute.type)

 def _set_value(self, new_value):
 if self.attribute.is_option and isinstance(new_value, six.string_types):
 # Need to look up instance of AttributeOption
 new_value = self.attribute.option_group.options.get(
 option=new_value)
 setattr(self, 'value_%s' % self.attribute.type, new_value)

 value = property(_get_value, _set_value)

 class Meta:
 abstract = True
 app_label = 'catalogue'
 unique_together = ('attribute', 'product')
 verbose_name = _('Product attribute value')
 verbose_name_plural = _('Product attribute values')

 def __str__(self):
 return self.summary()

[docs] def summary(self):
 """
 Gets a string representation of both the attribute and it's value,
 used e.g in product summaries.
 """
 return u"%s: %s" % (self.attribute.name, self.value_as_text)

 @property
 def value_as_text(self):
 """
 Returns a string representation of the attribute's value. To customise
 e.g. image attribute values, declare a _image_as_text property and
 return something appropriate.
 """
 property_name = '_%s_as_text' % self.attribute.type
 return getattr(self, property_name, self.value)

 @property
 def _richtext_as_text(self):
 return strip_tags(self.value)

 @property
 def _entity_as_text(self):
 """
 Returns the unicode representation of the related model. You likely
 want to customise this (and maybe _entity_as_html) if you use entities.
 """
 return six.text_type(self.value)

 @property
 def value_as_html(self):
 """
 Returns a HTML representation of the attribute's value. To customise
 e.g. image attribute values, declare a _image_as_html property and
 return e.g. an tag. Defaults to the _as_text representation.
 """
 property_name = '_%s_as_html' % self.attribute.type
 return getattr(self, property_name, self.value_as_text)

 @property
 def _richtext_as_html(self):
 return mark_safe(self.value)

@python_2_unicode_compatible
[docs]class AbstractAttributeOptionGroup(models.Model):
 """
 Defines a group of options that collectively may be used as an
 attribute type

 For example, Language
 """
 name = models.CharField(_('Name'), max_length=128)

 def __str__(self):
 return self.name

 class Meta:
 abstract = True
 app_label = 'catalogue'
 verbose_name = _('Attribute option group')
 verbose_name_plural = _('Attribute option groups')

 @property
 def option_summary(self):
 options = [o.option for o in self.options.all()]
 return ", ".join(options)

@python_2_unicode_compatible
[docs]class AbstractAttributeOption(models.Model):
 """
 Provides an option within an option group for an attribute type
 Examples: In a Language group, English, Greek, French
 """
 group = models.ForeignKey(
 'catalogue.AttributeOptionGroup', related_name='options',
 verbose_name=_("Group"))
 option = models.CharField(_('Option'), max_length=255)

 def __str__(self):
 return self.option

 class Meta:
 abstract = True
 app_label = 'catalogue'
 unique_together = ('group', 'option')
 verbose_name = _('Attribute option')
 verbose_name_plural = _('Attribute options')

@python_2_unicode_compatible
[docs]class AbstractOption(models.Model):
 """
 An option that can be selected for a particular item when the product
 is added to the basket.

 For example, a list ID for an SMS message send, or a personalised message
 to print on a T-shirt.

 This is not the same as an 'attribute' as options do not have a fixed value
 for a particular item. Instead, option need to be specified by a customer
 when they add the item to their basket.
 """
 name = models.CharField(_("Name"), max_length=128)
 code = AutoSlugField(_("Code"), max_length=128, unique=True,
 populate_from='name')

 REQUIRED, OPTIONAL = ('Required', 'Optional')
 TYPE_CHOICES = (
 (REQUIRED, _("Required - a value for this option must be specified")),
 (OPTIONAL, _("Optional - a value for this option can be omitted")),
)
 type = models.CharField(_("Status"), max_length=128, default=REQUIRED,
 choices=TYPE_CHOICES)

 class Meta:
 abstract = True
 app_label = 'catalogue'
 verbose_name = _("Option")
 verbose_name_plural = _("Options")

 def __str__(self):
 return self.name

 @property
 def is_required(self):
 return self.type == self.REQUIRED

[docs]class MissingProductImage(object):

 """
 Mimics a Django file field by having a name property.

 sorl-thumbnail requires all it's images to be in MEDIA_ROOT. This class
 tries symlinking the default "missing image" image in STATIC_ROOT
 into MEDIA_ROOT for convenience, as that is necessary every time an Oscar
 project is setup. This avoids the less helpful NotFound IOError that would
 be raised when sorl-thumbnail tries to access it.
 """

 def __init__(self, name=None):
 self.name = name if name else settings.OSCAR_MISSING_IMAGE_URL
 media_file_path = os.path.join(settings.MEDIA_ROOT, self.name)
 # don't try to symlink if MEDIA_ROOT is not set (e.g. running tests)
 if settings.MEDIA_ROOT and not os.path.exists(media_file_path):
 self.symlink_missing_image(media_file_path)

 def symlink_missing_image(self, media_file_path):
 static_file_path = find('oscar/img/%s' % self.name)
 if static_file_path is not None:
 try:
 os.symlink(static_file_path, media_file_path)
 except OSError:
 raise ImproperlyConfigured((
 "Please copy/symlink the "
 "'missing image' image at %s into your MEDIA_ROOT at %s. "
 "This exception was raised because Oscar was unable to "
 "symlink it for you.") % (media_file_path,
 settings.MEDIA_ROOT))
 else:
 logging.info((
 "Symlinked the 'missing image' image at %s into your "
 "MEDIA_ROOT at %s") % (media_file_path,
 settings.MEDIA_ROOT))

@python_2_unicode_compatible
[docs]class AbstractProductImage(models.Model):
 """
 An image of a product
 """
 product = models.ForeignKey(
 'catalogue.Product', related_name='images', verbose_name=_("Product"))
 original = models.ImageField(
 _("Original"), upload_to=settings.OSCAR_IMAGE_FOLDER, max_length=255)
 caption = models.CharField(_("Caption"), max_length=200, blank=True)

 #: Use display_order to determine which is the "primary" image
 display_order = models.PositiveIntegerField(
 _("Display order"), default=0,
 help_text=_("An image with a display order of zero will be the primary"
 " image for a product"))
 date_created = models.DateTimeField(_("Date created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'catalogue'
 # Any custom models should ensure that this ordering is unchanged, or
 # your query count will explode. See AbstractProduct.primary_image.
 ordering = ["display_order"]
 unique_together = ("product", "display_order")
 verbose_name = _('Product image')
 verbose_name_plural = _('Product images')

 def __str__(self):
 return u"Image of '%s'" % self.product

[docs] def is_primary(self):
 """
 Return bool if image display order is 0
 """
 return self.display_order == 0

[docs] def delete(self, *args, **kwargs):
 """
 Always keep the display_order as consecutive integers. This avoids
 issue #855.
 """
 super(AbstractProductImage, self).delete(*args, **kwargs)
 for idx, image in enumerate(self.product.images.all()):
 image.display_order = idx
 image.save()

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/core/loading.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.core.loading

import sys
import traceback
from importlib import import_module

from django.apps import apps
from django.apps.config import MODELS_MODULE_NAME
from django.conf import settings
from django.core.exceptions import AppRegistryNotReady

from oscar.core.exceptions import (
 AppNotFoundError, ClassNotFoundError, ModuleNotFoundError)

[docs]def get_class(module_label, classname, module_prefix='oscar.apps'):
 """
 Dynamically import a single class from the given module.

 This is a simple wrapper around `get_classes` for the case of loading a
 single class.

 Args:
 module_label (str): Module label comprising the app label and the
 module name, separated by a dot. For example, 'catalogue.forms'.
 classname (str): Name of the class to be imported.

 Returns:
 The requested class object or `None` if it can't be found
 """
 return get_classes(module_label, [classname], module_prefix)[0]

[docs]def get_classes(module_label, classnames, module_prefix='oscar.apps'):
 """
 Dynamically import a list of classes from the given module.

 This works by looping over ``INSTALLED_APPS`` and looking for a match
 against the passed module label. If the requested class can't be found in
 the matching module, then we attempt to import it from the corresponding
 core app.

 This is very similar to ``django.db.models.get_model`` function for
 dynamically loading models. This function is more general though as it can
 load any class from the matching app, not just a model.

 Args:
 module_label (str): Module label comprising the app label and the
 module name, separated by a dot. For example, 'catalogue.forms'.
 classname (str): Name of the class to be imported.

 Returns:
 The requested class object or ``None`` if it can't be found

 Examples:

 Load a single class:

 >>> get_class('dashboard.catalogue.forms', 'ProductForm')
 oscar.apps.dashboard.catalogue.forms.ProductForm

 Load a list of classes:

 >>> get_classes('dashboard.catalogue.forms',
 ... ['ProductForm', 'StockRecordForm'])
 [oscar.apps.dashboard.catalogue.forms.ProductForm,
 oscar.apps.dashboard.catalogue.forms.StockRecordForm]

 Raises:

 AppNotFoundError: If no app is found in ``INSTALLED_APPS`` that matches
 the passed module label.

 ImportError: If the attempted import of a class raises an
 ``ImportError``, it is re-raised
 """
 if '.' not in module_label:
 # Importing from top-level modules is not supported, e.g.
 # get_class('shipping', 'Scale'). That should be easy to fix,
 # but @maikhoepfel had a stab and could not get it working reliably.
 # Overridable classes in a __init__.py might not be a good idea anyway.
 raise ValueError(
 "Importing from top-level modules is not supported")

 # import from Oscar package (should succeed in most cases)
 # e.g. 'oscar.apps.dashboard.catalogue.forms'
 oscar_module_label = "%s.%s" % (module_prefix, module_label)
 oscar_module = _import_module(oscar_module_label, classnames)

 # returns e.g. 'oscar.apps.dashboard.catalogue',
 # 'yourproject.apps.dashboard.catalogue' or 'dashboard.catalogue',
 # depending on what is set in INSTALLED_APPS
 installed_apps_entry, app_name = _find_installed_apps_entry(module_label)
 if installed_apps_entry.startswith('%s.' % module_prefix):
 # The entry is obviously an Oscar one, we don't import again
 local_module = None
 else:
 # Attempt to import the classes from the local module
 # e.g. 'yourproject.dashboard.catalogue.forms'
 sub_module = module_label.replace(app_name, '', 1)
 local_module_label = installed_apps_entry + sub_module
 local_module = _import_module(local_module_label, classnames)

 if oscar_module is local_module is None:
 # This intentionally doesn't raise an ImportError, because ImportError
 # can get masked in complex circular import scenarios.
 raise ModuleNotFoundError(
 "The module with label '%s' could not be imported. This either"
 "means that it indeed does not exist, or you might have a problem"
 " with a circular import." % module_label
)

 # return imported classes, giving preference to ones from the local package
 return _pluck_classes([local_module, oscar_module], classnames)

def _import_module(module_label, classnames):
 """
 Imports the module with the given name.
 Returns None if the module doesn't exist, but propagates any import errors.
 """
 try:
 return __import__(module_label, fromlist=classnames)
 except ImportError:
 # There are 2 reasons why there could be an ImportError:
 #
 # 1. Module does not exist. In that case, we ignore the import and
 # return None
 # 2. Module exists but another ImportError occurred when trying to
 # import the module. In that case, it is important to propagate the
 # error.
 #
 # ImportError does not provide easy way to distinguish those two cases.
 # Fortunately, the traceback of the ImportError starts at __import__
 # statement. If the traceback has more than one frame, it means that
 # application was found and ImportError originates within the local app
 __, __, exc_traceback = sys.exc_info()
 frames = traceback.extract_tb(exc_traceback)
 if len(frames) > 1:
 raise

def _pluck_classes(modules, classnames):
 """
 Gets a list of class names and a list of modules to pick from.
 For each class name, will return the class from the first module that has a
 matching class.
 """
 klasses = []
 for classname in classnames:
 klass = None
 for module in modules:
 if hasattr(module, classname):
 klass = getattr(module, classname)
 break
 if not klass:
 packages = [m.__name__ for m in modules if m is not None]
 raise ClassNotFoundError("No class '%s' found in %s" % (
 classname, ", ".join(packages)))
 klasses.append(klass)
 return klasses

def _get_installed_apps_entry(app_name):
 """
 Given an app name (e.g. 'catalogue'), walk through INSTALLED_APPS
 and return the first match, or None.
 This does depend on the order of INSTALLED_APPS and will break if
 e.g. 'dashboard.catalogue' comes before 'catalogue' in INSTALLED_APPS.
 """
 for installed_app in settings.INSTALLED_APPS:
 # match root-level apps ('catalogue') or apps with same name at end
 # ('shop.catalogue'), but don't match 'fancy_catalogue'
 if installed_app == app_name or installed_app.endswith('.' + app_name):
 return installed_app
 return None

def _find_installed_apps_entry(module_label):
 """
 Given a module label, finds the best matching INSTALLED_APPS entry.

 This is made trickier by the fact that we don't know what part of the
 module_label is part of the INSTALLED_APPS entry. So we try all possible
 combinations, trying the longer versions first. E.g. for
 'dashboard.catalogue.forms', 'dashboard.catalogue' is attempted before
 'dashboard'
 """
 modules = module_label.split('.')
 # if module_label is 'dashboard.catalogue.forms.widgets', combinations
 # will be ['dashboard.catalogue.forms', 'dashboard.catalogue', 'dashboard']
 combinations = [
 '.'.join(modules[:-count]) for count in range(1, len(modules))]
 for app_name in combinations:
 entry = _get_installed_apps_entry(app_name)
 if entry:
 return entry, app_name
 raise AppNotFoundError(
 "Couldn't find an app to import %s from" % module_label)

def get_profile_class():
 """
 Return the profile model class
 """
 # The AUTH_PROFILE_MODULE setting was deprecated in Django 1.5, but it
 # makes sense for Oscar to continue to use it. Projects built on Django
 # 1.4 are likely to have used a profile class and it's very difficult to
 # upgrade to a single user model. Hence, we should continue to support
 # having a separate profile class even if Django doesn't.
 setting = getattr(settings, 'AUTH_PROFILE_MODULE', None)
 if setting is None:
 return None
 app_label, model_name = settings.AUTH_PROFILE_MODULE.split('.')
 return get_model(app_label, model_name)

def feature_hidden(feature_name):
 """
 Test if a certain Oscar feature is disabled.
 """
 return (feature_name is not None and
 feature_name in settings.OSCAR_HIDDEN_FEATURES)

def get_model(app_label, model_name):
 """
 Fetches a Django model using the app registry.

 This doesn't require that an app with the given app label exists,
 which makes it safe to call when the registry is being populated.
 All other methods to access models might raise an exception about the
 registry not being ready yet.
 Raises LookupError if model isn't found.
 """
 try:
 return apps.get_model(app_label, model_name)
 except AppRegistryNotReady:
 if apps.apps_ready and not apps.models_ready:
 # If this function is called while `apps.populate()` is
 # loading models, ensure that the module that defines the
 # target model has been imported and try looking the model up
 # in the app registry. This effectively emulates
 # `from path.to.app.models import Model` where we use
 # `Model = get_model('app', 'Model')` instead.
 app_config = apps.get_app_config(app_label)
 # `app_config.import_models()` cannot be used here because it
 # would interfere with `apps.populate()`.
 import_module('%s.%s' % (app_config.name, MODELS_MODULE_NAME))
 # In order to account for case-insensitivity of model_name,
 # look up the model through a private API of the app registry.
 return apps.get_registered_model(app_label, model_name)
 else:
 # This must be a different case (e.g. the model really doesn't
 # exist). We just re-raise the exception.
 raise

def is_model_registered(app_label, model_name):
 """
 Checks whether a given model is registered. This is used to only
 register Oscar models if they aren't overridden by a forked app.
 """
 try:
 apps.get_registered_model(app_label, model_name)
 except LookupError:
 return False
 else:
 return True

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/models/fields.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.models.fields

from django.core.exceptions import ImproperlyConfigured
from django.db.models.fields import CharField, DecimalField
from django.db.models import SubfieldBase
from django.utils import six
from django.utils.translation import ugettext_lazy as _

from oscar.core import validators
from oscar.forms import fields

import oscar.core.phonenumber as phonenumber
allow importing as oscar.models.fields.AutoSlugField
from .autoslugfield import AutoSlugField
AutoSlugField = AutoSlugField

class ExtendedURLField(CharField):
 description = _("URL")

 def __init__(self, verbose_name=None, name=None,
 verify_exists=None, **kwargs):
 kwargs['max_length'] = kwargs.get('max_length', 200)
 CharField.__init__(self, verbose_name, name, **kwargs)
 # 'verify_exists' was deprecated in Django 1.4. To ensure backwards
 # compatibility, it is still accepted here, but only passed
 # on to the parent class if it was specified.
 self.verify_exists = verify_exists
 if verify_exists is not None:
 validator = validators.ExtendedURLValidator(
 verify_exists=verify_exists)
 else:
 validator = validators.ExtendedURLValidator()
 self.validators.append(validator)

 def formfield(self, **kwargs):
 # As with CharField, this will cause URL validation to be performed
 # twice.
 defaults = {
 'form_class': fields.ExtendedURLField,
 'verify_exists': self.verify_exists
 }
 defaults.update(kwargs)
 return super(ExtendedURLField, self).formfield(**defaults)

 def deconstruct(self):
 """
 deconstruct() is needed by Django's migration framework
 """
 name, path, args, kwargs = super(ExtendedURLField, self).deconstruct()
 # Add verify_exists to kwargs if it's not the default value.
 if self.verify_exists is not None:
 kwargs['verify_exists'] = self.verify_exists
 # We have a default value for max_length; remove it in that case
 if self.max_length == 200:
 del kwargs['max_length']
 return name, path, args, kwargs

[docs]class PositiveDecimalField(DecimalField):
 """
 A simple subclass of ``django.db.models.fields.DecimalField`` that
 restricts values to be non-negative.
 """
 def formfield(self, **kwargs):
 return super(PositiveDecimalField, self).formfield(min_value=0)

[docs]class UppercaseCharField(six.with_metaclass(SubfieldBase, CharField)):
 """
 A simple subclass of ``django.db.models.fields.CharField`` that
 restricts all text to be uppercase.

 Defined with the with_metaclass helper so that to_python is called
 https://docs.djangoproject.com/en/1.6/howto/custom-model-fields/#the-subfieldbase-metaclass # NOQA
 """

 def to_python(self, value):
 val = super(UppercaseCharField, self).to_python(value)
 if isinstance(val, six.string_types):
 return val.upper()
 else:
 return val

[docs]class NullCharField(six.with_metaclass(SubfieldBase, CharField)):
 """
 CharField that stores '' as None and returns None as ''
 Useful when using unique=True and forms. Implies null==blank==True.

 When a ModelForm with a CharField with null=True gets saved, the field will
 be set to '': https://code.djangoproject.com/ticket/9590
 This breaks usage with unique=True, as '' is considered equal to another
 field set to ''.
 """
 description = "CharField that stores '' as None and returns None as ''"

 def __init__(self, *args, **kwargs):
 if not kwargs.get('null', True) or not kwargs.get('blank', True):
 raise ImproperlyConfigured(
 "NullCharField implies null==blank==True")
 kwargs['null'] = kwargs['blank'] = True
 super(NullCharField, self).__init__(*args, **kwargs)

 def to_python(self, value):
 val = super(NullCharField, self).to_python(value)
 return val if val is not None else u''

 def get_prep_value(self, value):
 prepped = super(NullCharField, self).get_prep_value(value)
 return prepped if prepped != u"" else None

[docs] def deconstruct(self):
 """
 deconstruct() is needed by Django's migration framework
 """
 name, path, args, kwargs = super(NullCharField, self).deconstruct()
 del kwargs['null']
 del kwargs['blank']
 return name, path, args, kwargs

[docs]class PhoneNumberField(six.with_metaclass(SubfieldBase, CharField)):
 """
 An international phone number.

 * Validates a wide range of phone number formats
 * Displays it nicely formatted

 Notes

 This field is based on work in django-phonenumber-field
 https://github.com/maikhoepfel/django-phonenumber-field/

 See ``oscar/core/phonenumber.py`` for the relevant copyright and
 permission notice.
 """

 default_validators = [phonenumber.validate_international_phonenumber]

 description = _("Phone number")

 def __init__(self, *args, **kwargs):
 # There's no useful distinction between '' and None for a phone
 # number. To avoid running into issues that are similar to what
 # NullCharField tries to solve, we just forbid settings null=True.
 if kwargs.get('null', False):
 raise ImproperlyConfigured(
 "null=True is not supported on PhoneNumberField")
 # Set a default max_length.
 kwargs['max_length'] = kwargs.get('max_length', 128)
 super(PhoneNumberField, self).__init__(*args, **kwargs)

[docs] def get_prep_value(self, value):
 """
 Returns field's value prepared for saving into a database.
 """
 value = phonenumber.to_python(value)
 if value is None:
 return u''
 return value.as_e164 if value.is_valid() else value.raw_input

 def to_python(self, value):
 return phonenumber.to_python(value)

[docs] def value_to_string(self, obj):
 """
 Used when the field is serialized. See Django docs.
 """
 value = self._get_val_from_obj(obj)
 return self.get_prep_value(value)

[docs] def deconstruct(self):
 """
 deconstruct() is needed by Django's migration framework.
 """
 name, path, args, kwargs = super(PhoneNumberField, self).deconstruct()
 # Delete kwargs at default value.
 if self.max_length == 128:
 del kwargs['max_length']
 return name, path, args, kwargs

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/catalogue/models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.catalogue.models

"""
Vanilla product models
"""
from oscar.apps.catalogue.abstract_models import * # noqa
from oscar.core.loading import is_model_registered

__all__ = ['ProductAttributesContainer']

if not is_model_registered('catalogue', 'ProductClass'):
 class ProductClass(AbstractProductClass):
 pass

 __all__.append('ProductClass')

if not is_model_registered('catalogue', 'Category'):
 class Category(AbstractCategory):
 pass

 __all__.append('Category')

if not is_model_registered('catalogue', 'ProductCategory'):
 class ProductCategory(AbstractProductCategory):
 pass

 __all__.append('ProductCategory')

if not is_model_registered('catalogue', 'Product'):
 class Product(AbstractProduct):
 pass

 __all__.append('Product')

if not is_model_registered('catalogue', 'ProductRecommendation'):
 class ProductRecommendation(AbstractProductRecommendation):
 pass

 __all__.append('ProductRecommendation')

if not is_model_registered('catalogue', 'ProductAttribute'):
 class ProductAttribute(AbstractProductAttribute):
 pass

 __all__.append('ProductAttribute')

if not is_model_registered('catalogue', 'ProductAttributeValue'):
 class ProductAttributeValue(AbstractProductAttributeValue):
 pass

 __all__.append('ProductAttributeValue')

if not is_model_registered('catalogue', 'AttributeOptionGroup'):
 class AttributeOptionGroup(AbstractAttributeOptionGroup):
 pass

 __all__.append('AttributeOptionGroup')

if not is_model_registered('catalogue', 'AttributeOption'):
 class AttributeOption(AbstractAttributeOption):
 pass

 __all__.append('AttributeOption')

if not is_model_registered('catalogue', 'Option'):
 class Option(AbstractOption):
 pass

 __all__.append('Option')

if not is_model_registered('catalogue', 'ProductImage'):
 class ProductImage(AbstractProductImage):
 pass

 __all__.append('ProductImage')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/wishlists/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.wishlists.abstract_models

import hashlib
import random

from django.core.urlresolvers import reverse
from django.db import models
from django.utils import six
from django.utils.encoding import python_2_unicode_compatible
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import pgettext_lazy

from oscar.core.compat import AUTH_USER_MODEL

@python_2_unicode_compatible
[docs]class AbstractWishList(models.Model):
 """
 Represents a user's wish lists of products.

 A user can have multiple wish lists, move products between them, etc.
 """

 # Only authenticated users can have wishlists
 owner = models.ForeignKey(AUTH_USER_MODEL, related_name='wishlists',
 verbose_name=_('Owner'))
 name = models.CharField(verbose_name=_('Name'), default=_('Default'),
 max_length=255)

 #: This key acts as primary key and is used instead of an int to make it
 #: harder to guess
 key = models.CharField(_('Key'), max_length=6, db_index=True, unique=True,
 editable=False)

 # Oscar core does not support public or shared wishlists at the moment, but
 # all the right hooks should be there
 PUBLIC, PRIVATE, SHARED = ('Public', 'Private', 'Shared')
 VISIBILITY_CHOICES = (
 (PRIVATE, _('Private - Only the owner can see the wish list')),
 (SHARED, _('Shared - Only the owner and people with access to the'
 ' obfuscated link can see the wish list')),
 (PUBLIC, _('Public - Everybody can see the wish list')),
)
 visibility = models.CharField(_('Visibility'), max_length=20,
 default=PRIVATE, choices=VISIBILITY_CHOICES)

 # Convention: A user can have multiple wish lists. The last created wish
 # list for a user shall be their "default" wish list.
 # If an UI element only allows adding to wish list without
 # specifying which one , one shall use the default one.
 # That is a rare enough case to handle it by convention instead of a
 # BooleanField.
 date_created = models.DateTimeField(
 _('Date created'), auto_now_add=True, editable=False)

 def __str__(self):
 return u"%s's Wish List '%s'" % (self.owner, self.name)

 def save(self, *args, **kwargs):
 if not self.pk or kwargs.get('force_insert', False):
 self.key = self.__class__.random_key()
 super(AbstractWishList, self).save(*args, **kwargs)

 @classmethod
[docs] def random_key(cls, length=6):
 """
 Get a unique random generated key based on SHA-1 and owner
 """
 while True:
 rand = six.text_type(random.random()).encode('utf8')
 key = hashlib.sha1(rand).hexdigest()[:length]
 if not cls._default_manager.filter(key=key).exists():
 return key

 def is_allowed_to_see(self, user):
 if self.visibility in (self.PUBLIC, self.SHARED):
 return True
 else:
 return user == self.owner

 def is_allowed_to_edit(self, user):
 # currently only the owner can edit their wish list
 return user == self.owner

 class Meta:
 abstract = True
 app_label = 'wishlists'
 ordering = ('owner', 'date_created',)
 verbose_name = _('Wish List')

 def get_absolute_url(self):
 return reverse('customer:wishlists-detail', kwargs={
 'key': self.key})

[docs] def add(self, product):
 """
 Add a product to this wishlist
 """
 lines = self.lines.filter(product=product)
 if len(lines) == 0:
 self.lines.create(
 product=product, title=product.get_title())
 else:
 line = lines[0]
 line.quantity += 1
 line.save()

@python_2_unicode_compatible
[docs]class AbstractLine(models.Model):
 """
 One entry in a wish list. Similar to order lines or basket lines.
 """
 wishlist = models.ForeignKey('wishlists.WishList', related_name='lines',
 verbose_name=_('Wish List'))
 product = models.ForeignKey(
 'catalogue.Product', verbose_name=_('Product'),
 related_name='wishlists_lines', on_delete=models.SET_NULL,
 blank=True, null=True)
 quantity = models.PositiveIntegerField(_('Quantity'), default=1)
 #: Store the title in case product gets deleted
 title = models.CharField(
 pgettext_lazy(u"Product title", u"Title"), max_length=255)

 def __str__(self):
 return u'%sx %s on %s' % (self.quantity, self.title,
 self.wishlist.name)

 def get_title(self):
 if self.product:
 return self.product.get_title()
 else:
 return self.title

 class Meta:
 abstract = True
 app_label = 'wishlists'
 # Enforce sorting by order of creation.
 ordering = ['pk']
 unique_together = (('wishlist', 'product'),)
 verbose_name = _('Wish list line')

 © Copyright .
 Created using Sphinx 1.3.3.

_images/range_detail.png
Books for hackers | Oscar - Sandbox <

4 G & Account 1= Dashboard @ Logout

Oscar Sandbox Baskot totak 1500 view basiet =

Home

Books for hackers

Gty i sty Swone e VS | bl e sustanapl piad PSS N il s By rts y-nars A% pary
v o ruck, it raf e Merasinle-rigincoffnEsyTorshaycic.Fngestacne Poriand magna, axcepter ugh thentic Echo ek mustachecaim
Lama At oo ethcl ut 8 on Vi it 500 o GG havnt hard o fhm runc, el conacetur vt cla G untsngle-orgn cofee
sup Tuncercas.

s vt Cosy swester o991, 8079 300 o it swa ety YOLO . Vi OY Bushck s i massangr b 0
W maga o robaly haver N f Vi 3 ol moon mtape, b e conseciur 30, P A O 288 fxtarn, e thy 01 4t Ugh
outcher st chcha s Pop-up oo lignta mumtiacors prk ey, Do smal bt kg, chamoray itery Wes Ao ul unt -1 e O F s sow-car
YOLO wpscingcrft o Butcoe et ape 30 Thuncrts sy, O Fur sy oy s gt i o A ey paner orgnc

Hackers = Y
'HACKERS GIRL WHO
e TANIEES A ek,
THE HOREETS
L WEST e
S15s LgssoN
[=
Wockess Hackers & painters Kigoin The Cathedral & the We Are Anorymaus T Gir Who
. Kicked
£16.99 £9.99 £27.99 £10.99 £27.99 £15.99
 nsock Unavalatio instock sk stk sk

e st [roirotmsnt I o mser

_images/oscar.png

_images/tinymce.png
Description

|fomas~ | B 7 e = E &

_images/dashboard-nav.png
I8 Dashboard & Catalogue ~ W Fuffilment + B customers - « Offers ~ B Content ~ Reports.
T

_images/transifex.png
LANGUAGES <+ Createlanguage Ml Widgets @ Get TMX file

English (source language) S 100% © Mar22,03:37p.m.
Polish S 100% © Mar26, 0234p.m.
Portuguese (Brazil) O 7% © Mar27, 05:00p.m.
slovak E— 75% © Mar22,0337p.m.
spanish — 39% © Mar22,0337p.m.
Russian (Russia) — 38% © Mar22,0337p.m.
German —— 34% © Mar26, 11:23p.m.
French - 2% © Mar 25, 00:00p.m.
Japanese - % © Mar22,0337p.m.
Greek (Greece) [} % © Mar22,03:37p.m.

_modules/oscar/apps/checkout/utils.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.checkout.utils

[docs]class CheckoutSessionData(object):
 """
 Responsible for marshalling all the checkout session data

 Multi-stage checkouts often require several forms to be submitted and their
 data persisted until the final order is placed. This class helps store and
 organise checkout form data until it is required to write out the final
 order.
 """
 SESSION_KEY = 'checkout_data'

 def __init__(self, request):
 self.request = request
 if self.SESSION_KEY not in self.request.session:
 self.request.session[self.SESSION_KEY] = {}

 def _check_namespace(self, namespace):
 """
 Ensure a namespace within the session dict is initialised
 """
 if namespace not in self.request.session[self.SESSION_KEY]:
 self.request.session[self.SESSION_KEY][namespace] = {}

 def _get(self, namespace, key, default=None):
 """
 Return a value from within a namespace
 """
 self._check_namespace(namespace)
 if key in self.request.session[self.SESSION_KEY][namespace]:
 return self.request.session[self.SESSION_KEY][namespace][key]
 return default

 def _set(self, namespace, key, value):
 """
 Set a namespaced value
 """
 self._check_namespace(namespace)
 self.request.session[self.SESSION_KEY][namespace][key] = value
 self.request.session.modified = True

 def _unset(self, namespace, key):
 """
 Remove a namespaced value
 """
 self._check_namespace(namespace)
 if key in self.request.session[self.SESSION_KEY][namespace]:
 del self.request.session[self.SESSION_KEY][namespace][key]
 self.request.session.modified = True

 def _flush_namespace(self, namespace):
 """
 Flush a namespace
 """
 self.request.session[self.SESSION_KEY][namespace] = {}
 self.request.session.modified = True

[docs] def flush(self):
 """
 Flush all session data
 """
 self.request.session[self.SESSION_KEY] = {}

 # Guest checkout
 # ==============

 def set_guest_email(self, email):
 self._set('guest', 'email', email)

 def get_guest_email(self):
 return self._get('guest', 'email')

 # Shipping address
 # ================
 # Options:
 # 1. No shipping required (eg digital products)
 # 2. Ship to new address (entered in a form)
 # 3. Ship to an address book address (address chosen from list)

 def reset_shipping_data(self):
 self._flush_namespace('shipping')

[docs] def ship_to_user_address(self, address):
 """
 Use an user address (from an address book) as the shipping address.
 """
 self.reset_shipping_data()
 self._set('shipping', 'user_address_id', address.id)

[docs] def ship_to_new_address(self, address_fields):
 """
 Use a manually entered address as the shipping address
 """
 self._unset('shipping', 'new_address_fields')
 phone_number = address_fields.get('phone_number')
 if phone_number:
 # Phone number is stored as a PhoneNumber instance. As we store
 # strings in the session, we need to serialize it.
 address_fields = address_fields.copy()
 address_fields['phone_number'] = phone_number.as_international
 self._set('shipping', 'new_address_fields', address_fields)

[docs] def new_shipping_address_fields(self):
 """
 Return shipping address fields
 """
 return self._get('shipping', 'new_address_fields')

[docs] def shipping_user_address_id(self):
 """
 Return user address id
 """
 return self._get('shipping', 'user_address_id')

 # Legacy accessor
 user_address_id = shipping_user_address_id

[docs] def is_shipping_address_set(self):
 """
 Test whether a shipping address has been stored in the session.

 This can be from a new address or re-using an existing address.
 """
 new_fields = self.new_shipping_address_fields()
 has_new_address = new_fields is not None
 user_address_id = self.shipping_user_address_id()
 has_old_address = user_address_id is not None and user_address_id > 0
 return has_new_address or has_old_address

 # Shipping method
 # ===============

[docs] def use_free_shipping(self):
 """
 Set "free shipping" code to session
 """
 self._set('shipping', 'method_code', '__free__')

[docs] def use_shipping_method(self, code):
 """
 Set shipping method code to session
 """
 self._set('shipping', 'method_code', code)

[docs] def shipping_method_code(self, basket):
 """
 Return the shipping method code
 """
 return self._get('shipping', 'method_code')

[docs] def is_shipping_method_set(self, basket):
 """
 Test if a valid shipping method is stored in the session
 """
 return self.shipping_method_code(basket) is not None

 # Billing address fields
 # ======================
 #
 # There are 3 common options:
 # 1. Billing address is entered manually through a form
 # 2. Billing address is selected from address book
 # 3. Billing address is the same as the shipping address

[docs] def bill_to_new_address(self, address_fields):
 """
 Store address fields for a billing address.
 """
 self._flush_namespace('billing')
 self._set('billing', 'new_address_fields', address_fields)

[docs] def bill_to_user_address(self, address):
 """
 Set an address from a user's address book as the billing address

 :address: The address object
 """
 self._flush_namespace('billing')
 self._set('billing', 'user_address_id', address.id)

[docs] def bill_to_shipping_address(self):
 """
 Record fact that the billing address is to be the same as
 the shipping address.
 """
 self._flush_namespace('billing')
 self._set('billing', 'billing_address_same_as_shipping', True)

 # Legacy method name
 billing_address_same_as_shipping = bill_to_shipping_address

 def is_billing_address_same_as_shipping(self):
 return self._get('billing', 'billing_address_same_as_shipping', False)

[docs] def billing_user_address_id(self):
 """
 Return the ID of the user address being used for billing
 """
 return self._get('billing', 'user_address_id')

[docs] def new_billing_address_fields(self):
 """
 Return fields for a billing address
 """
 return self._get('billing', 'new_address_fields')

[docs] def is_billing_address_set(self):
 """
 Test whether a billing address has been stored in the session.

 This can be from a new address or re-using an existing address.
 """
 if self.is_billing_address_same_as_shipping():
 return True
 new_fields = self.new_billing_address_fields()
 has_new_address = new_fields is not None
 user_address_id = self.billing_user_address_id()
 has_old_address = user_address_id is not None and user_address_id > 0
 return has_new_address or has_old_address

 # Payment methods
 # ===============

 def pay_by(self, method):
 self._set('payment', 'method', method)

 def payment_method(self):
 return self._get('payment', 'method')

 # Submission methods
 # ==================

 def set_order_number(self, order_number):
 self._set('submission', 'order_number', order_number)

 def get_order_number(self):
 return self._get('submission', 'order_number')

 def set_submitted_basket(self, basket):
 self._set('submission', 'basket_id', basket.id)

 def get_submitted_basket_id(self):
 return self._get('submission', 'basket_id')

 © Copyright .
 Created using Sphinx 1.3.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/checkout/calculators.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.checkout.calculators

from oscar.core import prices

[docs]class OrderTotalCalculator(object):
 """
 Calculator class for calculating the order total.
 """

 def __init__(self, request=None):
 # We store a reference to the request as the total may
 # depend on the user or the other checkout data in the session.
 # Further, it is very likely that it will as shipping method
 # always changes the order total.
 self.request = request

 def calculate(self, basket, shipping_charge, **kwargs):
 excl_tax = basket.total_excl_tax + shipping_charge.excl_tax
 if basket.is_tax_known and shipping_charge.is_tax_known:
 incl_tax = basket.total_incl_tax + shipping_charge.incl_tax
 else:
 incl_tax = None
 return prices.Price(
 currency=basket.currency,
 excl_tax=excl_tax, incl_tax=incl_tax)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/checkout/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.checkout.views

import logging

from django import http
from django.contrib import messages
from django.contrib.auth import login
from django.core.urlresolvers import reverse, reverse_lazy
from django.shortcuts import redirect
from django.utils import six
from django.utils.http import urlquote
from django.utils.translation import ugettext as _
from django.views import generic

from oscar.apps.shipping.methods import NoShippingRequired
from oscar.core.loading import get_class, get_classes, get_model

from . import signals

ShippingAddressForm, ShippingMethodForm, GatewayForm \
 = get_classes('checkout.forms', ['ShippingAddressForm', 'ShippingMethodForm', 'GatewayForm'])
OrderCreator = get_class('order.utils', 'OrderCreator')
UserAddressForm = get_class('address.forms', 'UserAddressForm')
Repository = get_class('shipping.repository', 'Repository')
AccountAuthView = get_class('customer.views', 'AccountAuthView')
RedirectRequired, UnableToTakePayment, PaymentError \
 = get_classes('payment.exceptions', ['RedirectRequired',
 'UnableToTakePayment',
 'PaymentError'])
UnableToPlaceOrder = get_class('order.exceptions', 'UnableToPlaceOrder')
OrderPlacementMixin = get_class('checkout.mixins', 'OrderPlacementMixin')
CheckoutSessionMixin = get_class('checkout.session', 'CheckoutSessionMixin')
Order = get_model('order', 'Order')
ShippingAddress = get_model('order', 'ShippingAddress')
CommunicationEvent = get_model('order', 'CommunicationEvent')
PaymentEventType = get_model('order', 'PaymentEventType')
PaymentEvent = get_model('order', 'PaymentEvent')
UserAddress = get_model('address', 'UserAddress')
Basket = get_model('basket', 'Basket')
Email = get_model('customer', 'Email')
Country = get_model('address', 'Country')
CommunicationEventType = get_model('customer', 'CommunicationEventType')

Standard logger for checkout events
logger = logging.getLogger('oscar.checkout')

[docs]class IndexView(CheckoutSessionMixin, generic.FormView):
 """
 First page of the checkout. We prompt user to either sign in, or
 to proceed as a guest (where we still collect their email address).
 """
 template_name = 'checkout/gateway.html'
 form_class = GatewayForm
 success_url = reverse_lazy('checkout:shipping-address')
 pre_conditions = [
 'check_basket_is_not_empty',
 'check_basket_is_valid']

 def get(self, request, *args, **kwargs):
 # We redirect immediately to shipping address stage if the user is
 # signed in.
 if request.user.is_authenticated():
 # We raise a signal to indicate that the user has entered the
 # checkout process so analytics tools can track this event.
 signals.start_checkout.send_robust(
 sender=self, request=request)
 return self.get_success_response()
 return super(IndexView, self).get(request, *args, **kwargs)

 def get_form_kwargs(self):
 kwargs = super(IndexView, self).get_form_kwargs()
 email = self.checkout_session.get_guest_email()
 if email:
 kwargs['initial'] = {
 'username': email,
 }
 return kwargs

 def form_valid(self, form):
 if form.is_guest_checkout() or form.is_new_account_checkout():
 email = form.cleaned_data['username']
 self.checkout_session.set_guest_email(email)

 # We raise a signal to indicate that the user has entered the
 # checkout process by specifying an email address.
 signals.start_checkout.send_robust(
 sender=self, request=self.request, email=email)

 if form.is_new_account_checkout():
 messages.info(
 self.request,
 _("Create your account and then you will be redirected "
 "back to the checkout process"))
 self.success_url = "%s?next=%s&email=%s" % (
 reverse('customer:register'),
 reverse('checkout:shipping-address'),
 urlquote(email)
)
 else:
 user = form.get_user()
 login(self.request, user)

 # We raise a signal to indicate that the user has entered the
 # checkout process.
 signals.start_checkout.send_robust(
 sender=self, request=self.request)

 return redirect(self.get_success_url())

 def get_success_response(self):
 return redirect(self.get_success_url())

================
SHIPPING ADDRESS
================

[docs]class ShippingAddressView(CheckoutSessionMixin, generic.FormView):
 """
 Determine the shipping address for the order.

 The default behaviour is to display a list of addresses from the users's
 address book, from which the user can choose one to be their shipping
 address. They can add/edit/delete these USER addresses. This address will
 be automatically converted into a SHIPPING address when the user checks
 out.

 Alternatively, the user can enter a SHIPPING address directly which will be
 saved in the session and later saved as ShippingAddress model when the
 order is successfully submitted.
 """
 template_name = 'checkout/shipping_address.html'
 form_class = ShippingAddressForm
 success_url = reverse_lazy('checkout:shipping-method')
 pre_conditions = ['check_basket_is_not_empty',
 'check_basket_is_valid',
 'check_user_email_is_captured']
 skip_conditions = ['skip_unless_basket_requires_shipping']

 def get_initial(self):
 initial = self.checkout_session.new_shipping_address_fields()
 if initial:
 initial = initial.copy()
 # Convert the primary key stored in the session into a Country
 # instance
 try:
 initial['country'] = Country.objects.get(
 iso_3166_1_a2=initial.pop('country_id'))
 except Country.DoesNotExist:
 # Hmm, the previously selected Country no longer exists. We
 # ignore this.
 pass
 return initial

 def get_context_data(self, **kwargs):
 ctx = super(ShippingAddressView, self).get_context_data(**kwargs)
 if self.request.user.is_authenticated():
 # Look up address book data
 ctx['addresses'] = self.get_available_addresses()
 return ctx

 def get_available_addresses(self):
 # Include only addresses where the country is flagged as valid for
 # shipping. Also, use ordering to ensure the default address comes
 # first.
 return self.request.user.addresses.filter(
 country__is_shipping_country=True).order_by(
 '-is_default_for_shipping')

 def post(self, request, *args, **kwargs):
 # Check if a shipping address was selected directly (eg no form was
 # filled in)
 if self.request.user.is_authenticated() \
 and 'address_id' in self.request.POST:
 address = UserAddress._default_manager.get(
 pk=self.request.POST['address_id'], user=self.request.user)
 action = self.request.POST.get('action', None)
 if action == 'ship_to':
 # User has selected a previous address to ship to
 self.checkout_session.ship_to_user_address(address)
 return redirect(self.get_success_url())
 else:
 return http.HttpResponseBadRequest()
 else:
 return super(ShippingAddressView, self).post(
 request, *args, **kwargs)

 def form_valid(self, form):
 # Store the address details in the session and redirect to next step
 address_fields = dict(
 (k, v) for (k, v) in form.instance.__dict__.items()
 if not k.startswith('_'))
 self.checkout_session.ship_to_new_address(address_fields)
 return super(ShippingAddressView, self).form_valid(form)

[docs]class UserAddressUpdateView(CheckoutSessionMixin, generic.UpdateView):
 """
 Update a user address
 """
 template_name = 'checkout/user_address_form.html'
 form_class = UserAddressForm
 success_url = reverse_lazy('checkout:shipping-address')

 def get_queryset(self):
 return self.request.user.addresses.all()

 def get_form_kwargs(self):
 kwargs = super(UserAddressUpdateView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def get_success_url(self):
 messages.info(self.request, _("Address saved"))
 return super(UserAddressUpdateView, self).get_success_url()

[docs]class UserAddressDeleteView(CheckoutSessionMixin, generic.DeleteView):
 """
 Delete an address from a user's address book.
 """
 template_name = 'checkout/user_address_delete.html'
 success_url = reverse_lazy('checkout:shipping-address')

 def get_queryset(self):
 return self.request.user.addresses.all()

 def get_success_url(self):
 messages.info(self.request, _("Address deleted"))
 return super(UserAddressDeleteView, self).get_success_url()

===============
Shipping method
===============

[docs]class ShippingMethodView(CheckoutSessionMixin, generic.FormView):
 """
 View for allowing a user to choose a shipping method.

 Shipping methods are largely domain-specific and so this view
 will commonly need to be subclassed and customised.

 The default behaviour is to load all the available shipping methods
 using the shipping Repository. If there is only 1, then it is
 automatically selected. Otherwise, a page is rendered where
 the user can choose the appropriate one.
 """
 template_name = 'checkout/shipping_methods.html'
 form_class = ShippingMethodForm
 pre_conditions = ['check_basket_is_not_empty',
 'check_basket_is_valid',
 'check_user_email_is_captured']

 def post(self, request, *args, **kwargs):
 self._methods = self.get_available_shipping_methods()
 return super(ShippingMethodView, self).post(request, *args, **kwargs)

 def get(self, request, *args, **kwargs):
 # These pre-conditions can't easily be factored out into the normal
 # pre-conditions as they do more than run a test and then raise an
 # exception on failure.

 # Check that shipping is required at all
 if not request.basket.is_shipping_required():
 # No shipping required - we store a special code to indicate so.
 self.checkout_session.use_shipping_method(
 NoShippingRequired().code)
 return self.get_success_response()

 # Check that shipping address has been completed
 if not self.checkout_session.is_shipping_address_set():
 messages.error(request, _("Please choose a shipping address"))
 return redirect('checkout:shipping-address')

 # Save shipping methods as instance var as we need them both here
 # and when setting the context vars.
 self._methods = self.get_available_shipping_methods()
 if len(self._methods) == 0:
 # No shipping methods available for given address
 messages.warning(request, _(
 "Shipping is unavailable for your chosen address - please "
 "choose another"))
 return redirect('checkout:shipping-address')
 elif len(self._methods) == 1:
 # Only one shipping method - set this and redirect onto the next
 # step
 self.checkout_session.use_shipping_method(self._methods[0].code)
 return self.get_success_response()

 # Must be more than one available shipping method, we present them to
 # the user to make a choice.
 return super(ShippingMethodView, self).get(request, *args, **kwargs)

 def get_context_data(self, **kwargs):
 kwargs = super(ShippingMethodView, self).get_context_data(**kwargs)
 kwargs['methods'] = self._methods
 return kwargs

 def get_form_kwargs(self):
 kwargs = super(ShippingMethodView, self).get_form_kwargs()
 kwargs['methods'] = self._methods
 return kwargs

[docs] def get_available_shipping_methods(self):
 """
 Returns all applicable shipping method objects for a given basket.
 """
 # Shipping methods can depend on the user, the contents of the basket
 # and the shipping address (so we pass all these things to the
 # repository). I haven't come across a scenario that doesn't fit this
 # system.
 return Repository().get_shipping_methods(
 basket=self.request.basket, user=self.request.user,
 shipping_addr=self.get_shipping_address(self.request.basket),
 request=self.request)

 def form_valid(self, form):
 # Save the code for the chosen shipping method in the session
 # and continue to the next step.
 self.checkout_session.use_shipping_method(form.cleaned_data['method_code'])
 return self.get_success_response()

 def form_invalid(self, form):
 messages.error(self.request, _("Your submitted shipping method is not"
 " permitted"))
 return super(ShippingMethodView, self).form_invalid(form)

 def get_success_response(self):
 return redirect('checkout:payment-method')

==============
Payment method
==============

[docs]class PaymentMethodView(CheckoutSessionMixin, generic.TemplateView):
 """
 View for a user to choose which payment method(s) they want to use.

 This would include setting allocations if payment is to be split
 between multiple sources. It's not the place for entering sensitive details
 like bankcard numbers though - that belongs on the payment details view.
 """
 pre_conditions = [
 'check_basket_is_not_empty',
 'check_basket_is_valid',
 'check_user_email_is_captured',
 'check_shipping_data_is_captured']
 skip_conditions = ['skip_unless_payment_is_required']

 def get(self, request, *args, **kwargs):
 # By default we redirect straight onto the payment details view. Shops
 # that require a choice of payment method may want to override this
 # method to implement their specific logic.
 return self.get_success_response()

 def get_success_response(self):
 return redirect('checkout:payment-details')

================
Order submission
================

[docs]class PaymentDetailsView(OrderPlacementMixin, generic.TemplateView):
 """
 For taking the details of payment and creating the order.

 This view class is used by two separate URLs: 'payment-details' and
 'preview'. The `preview` class attribute is used to distinguish which is
 being used. Chronologically, `payment-details` (preview=False) comes before
 `preview` (preview=True).

 If sensitive details are required (eg a bankcard), then the payment details
 view should submit to the preview URL and a custom implementation of
 `validate_payment_submission` should be provided.

 - If the form data is valid, then the preview template can be rendered with
 the payment-details forms re-rendered within a hidden div so they can be
 re-submitted when the 'place order' button is clicked. This avoids having
 to write sensitive data to disk anywhere during the process. This can be
 done by calling `render_preview`, passing in the extra template context
 vars.

 - If the form data is invalid, then the payment details templates needs to
 be re-rendered with the relevant error messages. This can be done by
 calling `render_payment_details`, passing in the form instances to pass
 to the templates.

 The class is deliberately split into fine-grained methods, responsible for
 only one thing. This is to make it easier to subclass and override just
 one component of functionality.

 All projects will need to subclass and customise this class as no payment
 is taken by default.
 """
 template_name = 'checkout/payment_details.html'
 template_name_preview = 'checkout/preview.html'

 # These conditions are extended at runtime depending on whether we are in
 # 'preview' mode or not.
 pre_conditions = [
 'check_basket_is_not_empty',
 'check_basket_is_valid',
 'check_user_email_is_captured',
 'check_shipping_data_is_captured']

 # If preview=True, then we render a preview template that shows all order
 # details ready for submission.
 preview = False

 def get_pre_conditions(self, request):
 if self.preview:
 # The preview view needs to ensure payment information has been
 # correctly captured.
 return self.pre_conditions + ['check_payment_data_is_captured']
 return super(PaymentDetailsView, self).get_pre_conditions(request)

 def get_skip_conditions(self, request):
 if not self.preview:
 # Payment details should only be collected if necessary
 return ['skip_unless_payment_is_required']
 return super(PaymentDetailsView, self).get_skip_conditions(request)

 def post(self, request, *args, **kwargs):
 # Posting to payment-details isn't the right thing to do. Form
 # submissions should use the preview URL.
 if not self.preview:
 return http.HttpResponseBadRequest()

 # We use a custom parameter to indicate if this is an attempt to place
 # an order (normally from the preview page). Without this, we assume a
 # payment form is being submitted from the payment details view. In
 # this case, the form needs validating and the order preview shown.
 if request.POST.get('action', '') == 'place_order':
 return self.handle_place_order_submission(request)
 return self.handle_payment_details_submission(request)

[docs] def handle_place_order_submission(self, request):
 """
 Handle a request to place an order.

 This method is normally called after the customer has clicked "place
 order" on the preview page. It's responsible for (re-)validating any
 form information then building the submission dict to pass to the
 `submit` method.

 If forms are submitted on your payment details view, you should
 override this method to ensure they are valid before extracting their
 data into the submission dict and passing it onto `submit`.
 """
 return self.submit(**self.build_submission())

[docs] def handle_payment_details_submission(self, request):
 """
 Handle a request to submit payment details.

 This method will need to be overridden by projects that require forms
 to be submitted on the payment details view. The new version of this
 method should validate the submitted form data and:

 - If the form data is valid, show the preview view with the forms
 re-rendered in the page
 - If the form data is invalid, show the payment details view with
 the form errors showing.

 """
 # No form data to validate by default, so we simply render the preview
 # page. If validating form data and it's invalid, then call the
 # render_payment_details view.
 return self.render_preview(request)

[docs] def render_preview(self, request, **kwargs):
 """
 Show a preview of the order.

 If sensitive data was submitted on the payment details page, you will
 need to pass it back to the view here so it can be stored in hidden
 form inputs. This avoids ever writing the sensitive data to disk.
 """
 self.preview = True
 ctx = self.get_context_data(**kwargs)
 return self.render_to_response(ctx)

[docs] def render_payment_details(self, request, **kwargs):
 """
 Show the payment details page

 This method is useful if the submission from the payment details view
 is invalid and needs to be re-rendered with form errors showing.
 """
 self.preview = False
 ctx = self.get_context_data(**kwargs)
 return self.render_to_response(ctx)

[docs] def get_default_billing_address(self):
 """
 Return default billing address for user

 This is useful when the payment details view includes a billing address
 form - you can use this helper method to prepopulate the form.

 Note, this isn't used in core oscar as there is no billing address form
 by default.
 """
 if not self.request.user.is_authenticated():
 return None
 try:
 return self.request.user.addresses.get(is_default_for_billing=True)
 except UserAddress.DoesNotExist:
 return None

[docs] def submit(self, user, basket, shipping_address, shipping_method, # noqa (too complex (10))
 shipping_charge, billing_address, order_total,
 payment_kwargs=None, order_kwargs=None):
 """
 Submit a basket for order placement.

 The process runs as follows:

 * Generate an order number
 * Freeze the basket so it cannot be modified any more (important when
 redirecting the user to another site for payment as it prevents the
 basket being manipulated during the payment process).
 * Attempt to take payment for the order
 - If payment is successful, place the order
 - If a redirect is required (eg PayPal, 3DSecure), redirect
 - If payment is unsuccessful, show an appropriate error message

 :basket: The basket to submit.
 :payment_kwargs: Additional kwargs to pass to the handle_payment
 method. It normally makes sense to pass form
 instances (rather than model instances) so that the
 forms can be re-rendered correctly if payment fails.
 :order_kwargs: Additional kwargs to pass to the place_order method
 """
 if payment_kwargs is None:
 payment_kwargs = {}
 if order_kwargs is None:
 order_kwargs = {}

 # Taxes must be known at this point
 assert basket.is_tax_known, (
 "Basket tax must be set before a user can place an order")
 assert shipping_charge.is_tax_known, (
 "Shipping charge tax must be set before a user can place an order")

 # We generate the order number first as this will be used
 # in payment requests (ie before the order model has been
 # created). We also save it in the session for multi-stage
 # checkouts (eg where we redirect to a 3rd party site and place
 # the order on a different request).
 order_number = self.generate_order_number(basket)
 self.checkout_session.set_order_number(order_number)
 logger.info("Order #%s: beginning submission process for basket #%d",
 order_number, basket.id)

 # Freeze the basket so it cannot be manipulated while the customer is
 # completing payment on a 3rd party site. Also, store a reference to
 # the basket in the session so that we know which basket to thaw if we
 # get an unsuccessful payment response when redirecting to a 3rd party
 # site.
 self.freeze_basket(basket)
 self.checkout_session.set_submitted_basket(basket)

 # We define a general error message for when an unanticipated payment
 # error occurs.
 error_msg = _("A problem occurred while processing payment for this "
 "order - no payment has been taken. Please "
 "contact customer services if this problem persists")

 signals.pre_payment.send_robust(sender=self, view=self)

 try:
 self.handle_payment(order_number, order_total, **payment_kwargs)
 except RedirectRequired as e:
 # Redirect required (eg PayPal, 3DS)
 logger.info("Order #%s: redirecting to %s", order_number, e.url)
 return http.HttpResponseRedirect(e.url)
 except UnableToTakePayment as e:
 # Something went wrong with payment but in an anticipated way. Eg
 # their bankcard has expired, wrong card number - that kind of
 # thing. This type of exception is supposed to set a friendly error
 # message that makes sense to the customer.
 msg = six.text_type(e)
 logger.warning(
 "Order #%s: unable to take payment (%s) - restoring basket",
 order_number, msg)
 self.restore_frozen_basket()

 # We assume that the details submitted on the payment details view
 # were invalid (eg expired bankcard).
 return self.render_payment_details(
 self.request, error=msg, **payment_kwargs)
 except PaymentError as e:
 # A general payment error - Something went wrong which wasn't
 # anticipated. Eg, the payment gateway is down (it happens), your
 # credentials are wrong - that king of thing.
 # It makes sense to configure the checkout logger to
 # mail admins on an error as this issue warrants some further
 # investigation.
 msg = six.text_type(e)
 logger.error("Order #%s: payment error (%s)", order_number, msg,
 exc_info=True)
 self.restore_frozen_basket()
 return self.render_preview(
 self.request, error=error_msg, **payment_kwargs)
 except Exception as e:
 # Unhandled exception - hopefully, you will only ever see this in
 # development...
 logger.error(
 "Order #%s: unhandled exception while taking payment (%s)",
 order_number, e, exc_info=True)
 self.restore_frozen_basket()
 return self.render_preview(
 self.request, error=error_msg, **payment_kwargs)

 signals.post_payment.send_robust(sender=self, view=self)

 # If all is ok with payment, try and place order
 logger.info("Order #%s: payment successful, placing order",
 order_number)
 try:
 return self.handle_order_placement(
 order_number, user, basket, shipping_address, shipping_method,
 shipping_charge, billing_address, order_total, **order_kwargs)
 except UnableToPlaceOrder as e:
 # It's possible that something will go wrong while trying to
 # actually place an order. Not a good situation to be in as a
 # payment transaction may already have taken place, but needs
 # to be handled gracefully.
 msg = six.text_type(e)
 logger.error("Order #%s: unable to place order - %s",
 order_number, msg, exc_info=True)
 self.restore_frozen_basket()
 return self.render_preview(
 self.request, error=msg, **payment_kwargs)

 def get_template_names(self):
 return [self.template_name_preview] if self.preview else [
 self.template_name]

=========
Thank you
=========

[docs]class ThankYouView(generic.DetailView):
 """
 Displays the 'thank you' page which summarises the order just submitted.
 """
 template_name = 'checkout/thank_you.html'
 context_object_name = 'order'

 def get_object(self):
 # We allow superusers to force an order thank-you page for testing
 order = None
 if self.request.user.is_superuser:
 if 'order_number' in self.request.GET:
 order = Order._default_manager.get(
 number=self.request.GET['order_number'])
 elif 'order_id' in self.request.GET:
 order = Order._default_manager.get(
 id=self.request.GET['order_id'])

 if not order:
 if 'checkout_order_id' in self.request.session:
 order = Order._default_manager.get(
 pk=self.request.session['checkout_order_id'])
 else:
 raise http.Http404(_("No order found"))

 return order

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/checkout/mixins.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.checkout.mixins

import logging

from django.contrib.sites.models import Site
from django.contrib.sites.shortcuts import get_current_site
from django.core.exceptions import ObjectDoesNotExist
from django.core.urlresolvers import NoReverseMatch, reverse
from django.http import HttpResponseRedirect

from oscar.core.loading import get_class, get_model

OrderCreator = get_class('order.utils', 'OrderCreator')
Dispatcher = get_class('customer.utils', 'Dispatcher')
CheckoutSessionMixin = get_class('checkout.session', 'CheckoutSessionMixin')
ShippingAddress = get_model('order', 'ShippingAddress')
OrderNumberGenerator = get_class('order.utils', 'OrderNumberGenerator')
PaymentEventType = get_model('order', 'PaymentEventType')
PaymentEvent = get_model('order', 'PaymentEvent')
PaymentEventQuantity = get_model('order', 'PaymentEventQuantity')
UserAddress = get_model('address', 'UserAddress')
Basket = get_model('basket', 'Basket')
CommunicationEventType = get_model('customer', 'CommunicationEventType')
UnableToPlaceOrder = get_class('order.exceptions', 'UnableToPlaceOrder')

post_checkout = get_class('checkout.signals', 'post_checkout')

Standard logger for checkout events
logger = logging.getLogger('oscar.checkout')

[docs]class OrderPlacementMixin(CheckoutSessionMixin):
 """
 Mixin which provides functionality for placing orders.

 Any view class which needs to place an order should use this mixin.
 """
 # Any payment sources should be added to this list as part of the
 # handle_payment method. If the order is placed successfully, then
 # they will be persisted. We need to have the order instance before the
 # payment sources can be saved.
 _payment_sources = None

 # Any payment events should be added to this list as part of the
 # handle_payment method.
 _payment_events = None

 # Default code for the email to send after successful checkout
 communication_type_code = 'ORDER_PLACED'

 view_signal = post_checkout

 # Payment handling methods
 # ------------------------

[docs] def handle_payment(self, order_number, total, **kwargs):
 """
 Handle any payment processing and record payment sources and events.

 This method is designed to be overridden within your project. The
 default is to do nothing as payment is domain-specific.

 This method is responsible for handling payment and recording the
 payment sources (using the add_payment_source method) and payment
 events (using add_payment_event) so they can be
 linked to the order when it is saved later on.
 """
 pass

[docs] def add_payment_source(self, source):
 """
 Record a payment source for this order
 """
 if self._payment_sources is None:
 self._payment_sources = []
 self._payment_sources.append(source)

[docs] def add_payment_event(self, event_type_name, amount, reference=''):
 """
 Record a payment event for creation once the order is placed
 """
 event_type, __ = PaymentEventType.objects.get_or_create(
 name=event_type_name)
 # We keep a local cache of (unsaved) payment events
 if self._payment_events is None:
 self._payment_events = []
 event = PaymentEvent(
 event_type=event_type, amount=amount,
 reference=reference)
 self._payment_events.append(event)

 # Placing order methods
 # ---------------------

[docs] def generate_order_number(self, basket):
 """
 Return a new order number
 """
 return OrderNumberGenerator().order_number(basket)

[docs] def handle_order_placement(self, order_number, user, basket,
 shipping_address, shipping_method,
 shipping_charge, billing_address, order_total,
 **kwargs):
 """
 Write out the order models and return the appropriate HTTP response

 We deliberately pass the basket in here as the one tied to the request
 isn't necessarily the correct one to use in placing the order. This
 can happen when a basket gets frozen.
 """
 order = self.place_order(
 order_number=order_number, user=user, basket=basket,
 shipping_address=shipping_address, shipping_method=shipping_method,
 shipping_charge=shipping_charge, order_total=order_total,
 billing_address=billing_address, **kwargs)
 basket.submit()
 return self.handle_successful_order(order)

[docs] def place_order(self, order_number, user, basket, shipping_address,
 shipping_method, shipping_charge, order_total,
 billing_address=None, **kwargs):
 """
 Writes the order out to the DB including the payment models
 """
 # Create saved shipping address instance from passed in unsaved
 # instance
 shipping_address = self.create_shipping_address(user, shipping_address)

 # We pass the kwargs as they often include the billing address form
 # which will be needed to save a billing address.
 billing_address = self.create_billing_address(
 billing_address, shipping_address, **kwargs)

 if 'status' not in kwargs:
 status = self.get_initial_order_status(basket)
 else:
 status = kwargs.pop('status')

 order = OrderCreator().place_order(
 user=user,
 order_number=order_number,
 basket=basket,
 shipping_address=shipping_address,
 shipping_method=shipping_method,
 shipping_charge=shipping_charge,
 total=order_total,
 billing_address=billing_address,
 status=status, **kwargs)
 self.save_payment_details(order)
 return order

[docs] def create_shipping_address(self, user, shipping_address):
 """
 Create and return the shipping address for the current order.

 Compared to self.get_shipping_address(), ShippingAddress is saved and
 makes sure that appropriate UserAddress exists.
 """
 # For an order that only contains items that don't require shipping we
 # won't have a shipping address, so we have to check for it.
 if not shipping_address:
 return None
 shipping_address.save()
 if user.is_authenticated():
 self.update_address_book(user, shipping_address)
 return shipping_address

[docs] def update_address_book(self, user, shipping_addr):
 """
 Update the user's address book based on the new shipping address
 """
 try:
 user_addr = user.addresses.get(
 hash=shipping_addr.generate_hash())
 except ObjectDoesNotExist:
 # Create a new user address
 user_addr = UserAddress(user=user)
 shipping_addr.populate_alternative_model(user_addr)
 user_addr.num_orders += 1
 user_addr.save()

[docs] def create_billing_address(self, billing_address=None,
 shipping_address=None, **kwargs):
 """
 Saves any relevant billing data (eg a billing address).
 """
 if billing_address is not None:
 billing_address.save()
 return billing_address

[docs] def save_payment_details(self, order):
 """
 Saves all payment-related details. This could include a billing
 address, payment sources and any order payment events.
 """
 self.save_payment_events(order)
 self.save_payment_sources(order)

[docs] def save_payment_events(self, order):
 """
 Saves any relevant payment events for this order
 """
 if not self._payment_events:
 return
 for event in self._payment_events:
 event.order = order
 event.save()
 # We assume all lines are involved in the initial payment event
 for line in order.lines.all():
 PaymentEventQuantity.objects.create(
 event=event, line=line, quantity=line.quantity)

[docs] def save_payment_sources(self, order):
 """
 Saves any payment sources used in this order.

 When the payment sources are created, the order model does not exist
 and so they need to have it set before saving.
 """
 if not self._payment_sources:
 return
 for source in self._payment_sources:
 source.order = order
 source.save()

 def get_initial_order_status(self, basket):
 return None

 # Post-order methods
 # ------------------

[docs] def handle_successful_order(self, order):
 """
 Handle the various steps required after an order has been successfully
 placed.

 Override this view if you want to perform custom actions when an
 order is submitted.
 """
 # Send confirmation message (normally an email)
 self.send_confirmation_message(order, self.communication_type_code)

 # Flush all session data
 self.checkout_session.flush()

 # Save order id in session so thank-you page can load it
 self.request.session['checkout_order_id'] = order.id

 response = HttpResponseRedirect(self.get_success_url())
 self.send_signal(self.request, response, order)
 return response

 def send_signal(self, request, response, order):
 self.view_signal.send(
 sender=self, order=order, user=request.user,
 request=request, response=response)

 def get_success_url(self):
 return reverse('checkout:thank-you')

 def send_confirmation_message(self, order, code, **kwargs):
 ctx = self.get_message_context(order)
 try:
 event_type = CommunicationEventType.objects.get(code=code)
 except CommunicationEventType.DoesNotExist:
 # No event-type in database, attempt to find templates for this
 # type and render them immediately to get the messages. Since we
 # have not CommunicationEventType to link to, we can't create a
 # CommunicationEvent instance.
 messages = CommunicationEventType.objects.get_and_render(code, ctx)
 event_type = None
 else:
 messages = event_type.get_messages(ctx)

 if messages and messages['body']:
 logger.info("Order #%s - sending %s messages", order.number, code)
 dispatcher = Dispatcher(logger)
 dispatcher.dispatch_order_messages(order, messages,
 event_type, **kwargs)
 else:
 logger.warning("Order #%s - no %s communication event type",
 order.number, code)

 def get_message_context(self, order):
 ctx = {
 'user': self.request.user,
 'order': order,
 'site': get_current_site(self.request),
 'lines': order.lines.all()
 }

 if not self.request.user.is_authenticated():
 # Attempt to add the anon order status URL to the email template
 # ctx.
 try:
 path = reverse('customer:anon-order',
 kwargs={'order_number': order.number,
 'hash': order.verification_hash()})
 except NoReverseMatch:
 # We don't care that much if we can't resolve the URL
 pass
 else:
 site = Site.objects.get_current()
 ctx['status_url'] = 'http://%s%s' % (site.domain, path)
 return ctx

 # Basket helpers
 # --------------

 def get_submitted_basket(self):
 basket_id = self.checkout_session.get_submitted_basket_id()
 return Basket._default_manager.get(pk=basket_id)

[docs] def freeze_basket(self, basket):
 """
 Freeze the basket so it can no longer be modified
 """
 # We freeze the basket to prevent it being modified once the payment
 # process has started. If your payment fails, then the basket will
 # need to be "unfrozen". We also store the basket ID in the session
 # so the it can be retrieved by multistage checkout processes.
 basket.freeze()

[docs] def restore_frozen_basket(self):
 """
 Restores a frozen basket as the sole OPEN basket. Note that this also
 merges in any new products that have been added to a basket that has
 been created while payment.
 """
 try:
 fzn_basket = self.get_submitted_basket()
 except Basket.DoesNotExist:
 # Strange place. The previous basket stored in the session does
 # not exist.
 pass
 else:
 fzn_basket.thaw()
 if self.request.basket.id != fzn_basket.id:
 fzn_basket.merge(self.request.basket)
 # Use same strategy as current request basket
 fzn_basket.strategy = self.request.basket.strategy
 self.request.basket = fzn_basket

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/offer/conditions.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.offer.conditions

from decimal import Decimal as D
from decimal import ROUND_UP

from django.utils import six
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import ungettext

from oscar.apps.offer import utils
from oscar.core.loading import get_model
from oscar.templatetags.currency_filters import currency

Condition = get_model('offer', 'Condition')

__all__ = [
 'CountCondition', 'CoverageCondition', 'ValueCondition'
]

[docs]class CountCondition(Condition):
 """
 An offer condition dependent on the NUMBER of matching items from the
 basket.
 """
 _description = _("Basket includes %(count)d item(s) from %(range)s")

 @property
 def name(self):
 return self._description % {
 'count': self.value,
 'range': six.text_type(self.range).lower()}

 @property
 def description(self):
 return self._description % {
 'count': self.value,
 'range': utils.range_anchor(self.range)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Count condition")
 verbose_name_plural = _("Count conditions")

[docs] def is_satisfied(self, offer, basket):
 """
 Determines whether a given basket meets this condition
 """
 num_matches = 0
 for line in basket.all_lines():
 if (self.can_apply_condition(line)
 and line.quantity_without_discount > 0):
 num_matches += line.quantity_without_discount
 if num_matches >= self.value:
 return True
 return False

 def _get_num_matches(self, basket):
 if hasattr(self, '_num_matches'):
 return getattr(self, '_num_matches')
 num_matches = 0
 for line in basket.all_lines():
 if (self.can_apply_condition(line)
 and line.quantity_without_discount > 0):
 num_matches += line.quantity_without_discount
 self._num_matches = num_matches
 return num_matches

 def is_partially_satisfied(self, offer, basket):
 num_matches = self._get_num_matches(basket)
 return 0 < num_matches < self.value

 def get_upsell_message(self, offer, basket):
 num_matches = self._get_num_matches(basket)
 delta = self.value - num_matches
 return ungettext('Buy %(delta)d more product from %(range)s',
 'Buy %(delta)d more products from %(range)s', delta) \
 % {'delta': delta, 'range': self.range}

[docs] def consume_items(self, offer, basket, affected_lines):
 """
 Marks items within the basket lines as consumed so they
 can't be reused in other offers.

 :basket: The basket
 :affected_lines: The lines that have been affected by the discount.
 This should be list of tuples (line, discount, qty)
 """
 # We need to count how many items have already been consumed as part of
 # applying the benefit, so we don't consume too many items.
 num_consumed = 0
 for line, __, quantity in affected_lines:
 num_consumed += quantity
 to_consume = max(0, self.value - num_consumed)
 if to_consume == 0:
 return

 for __, line in self.get_applicable_lines(offer, basket,
 most_expensive_first=True):
 quantity_to_consume = min(line.quantity_without_discount,
 to_consume)
 line.consume(quantity_to_consume)
 to_consume -= quantity_to_consume
 if to_consume == 0:
 break

[docs]class CoverageCondition(Condition):
 """
 An offer condition dependent on the number of DISTINCT matching items from
 the basket.
 """
 _description = _("Basket includes %(count)d distinct item(s) from"
 " %(range)s")

 @property
 def name(self):
 return self._description % {
 'count': self.value,
 'range': six.text_type(self.range).lower()}

 @property
 def description(self):
 return self._description % {
 'count': self.value,
 'range': utils.range_anchor(self.range)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Coverage Condition")
 verbose_name_plural = _("Coverage Conditions")

[docs] def is_satisfied(self, offer, basket):
 """
 Determines whether a given basket meets this condition
 """
 covered_ids = []
 for line in basket.all_lines():
 if not line.is_available_for_discount:
 continue
 product = line.product
 if (self.can_apply_condition(line) and product.id not in
 covered_ids):
 covered_ids.append(product.id)
 if len(covered_ids) >= self.value:
 return True
 return False

 def _get_num_covered_products(self, basket):
 covered_ids = []
 for line in basket.all_lines():
 if not line.is_available_for_discount:
 continue
 product = line.product
 if (self.can_apply_condition(line) and product.id not in
 covered_ids):
 covered_ids.append(product.id)
 return len(covered_ids)

 def get_upsell_message(self, offer, basket):
 delta = self.value - self._get_num_covered_products(basket)
 return ungettext('Buy %(delta)d more product from %(range)s',
 'Buy %(delta)d more products from %(range)s', delta) \
 % {'delta': delta, 'range': self.range}

 def is_partially_satisfied(self, offer, basket):
 return 0 < self._get_num_covered_products(basket) < self.value

[docs] def consume_items(self, offer, basket, affected_lines):
 """
 Marks items within the basket lines as consumed so they
 can't be reused in other offers.
 """
 # Determine products that have already been consumed by applying the
 # benefit
 consumed_products = []
 for line, __, quantity in affected_lines:
 consumed_products.append(line.product)

 to_consume = max(0, self.value - len(consumed_products))
 if to_consume == 0:
 return

 for line in basket.all_lines():
 product = line.product
 if not self.can_apply_condition(line):
 continue
 if product in consumed_products:
 continue
 if not line.is_available_for_discount:
 continue
 # Only consume a quantity of 1 from each line
 line.consume(1)
 consumed_products.append(product)
 to_consume -= 1
 if to_consume == 0:
 break

 def get_value_of_satisfying_items(self, offer, basket):
 covered_ids = []
 value = D('0.00')
 for line in basket.all_lines():
 if (self.can_apply_condition(line) and line.product.id not in
 covered_ids):
 covered_ids.append(line.product.id)
 value += utils.unit_price(offer, line)
 if len(covered_ids) >= self.value:
 return value
 return value

[docs]class ValueCondition(Condition):
 """
 An offer condition dependent on the VALUE of matching items from the
 basket.
 """
 _description = _("Basket includes %(amount)s from %(range)s")

 @property
 def name(self):
 return self._description % {
 'amount': currency(self.value),
 'range': six.text_type(self.range).lower()}

 @property
 def description(self):
 return self._description % {
 'amount': currency(self.value),
 'range': utils.range_anchor(self.range)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Value condition")
 verbose_name_plural = _("Value conditions")

[docs] def is_satisfied(self, offer, basket):
 """
 Determine whether a given basket meets this condition
 """
 value_of_matches = D('0.00')
 for line in basket.all_lines():
 if (self.can_apply_condition(line) and
 line.quantity_without_discount > 0):
 price = utils.unit_price(offer, line)
 value_of_matches += price * int(line.quantity_without_discount)
 if value_of_matches >= self.value:
 return True
 return False

 def _get_value_of_matches(self, offer, basket):
 if hasattr(self, '_value_of_matches'):
 return getattr(self, '_value_of_matches')
 value_of_matches = D('0.00')
 for line in basket.all_lines():
 if (self.can_apply_condition(line) and
 line.quantity_without_discount > 0):
 price = utils.unit_price(offer, line)
 value_of_matches += price * int(line.quantity_without_discount)
 self._value_of_matches = value_of_matches
 return value_of_matches

 def is_partially_satisfied(self, offer, basket):
 value_of_matches = self._get_value_of_matches(offer, basket)
 return D('0.00') < value_of_matches < self.value

 def get_upsell_message(self, offer, basket):
 value_of_matches = self._get_value_of_matches(offer, basket)
 return _('Spend %(value)s more from %(range)s') % {
 'value': currency(self.value - value_of_matches),
 'range': self.range}

[docs] def consume_items(self, offer, basket, affected_lines):
 """
 Marks items within the basket lines as consumed so they
 can't be reused in other offers.

 We allow lines to be passed in as sometimes we want them sorted
 in a specific order.
 """
 # Determine value of items already consumed as part of discount
 value_consumed = D('0.00')
 for line, __, qty in affected_lines:
 price = utils.unit_price(offer, line)
 value_consumed += price * qty

 to_consume = max(0, self.value - value_consumed)
 if to_consume == 0:
 return

 for price, line in self.get_applicable_lines(
 offer, basket, most_expensive_first=True):
 quantity_to_consume = min(
 line.quantity_without_discount,
 (to_consume / price).quantize(D(1), ROUND_UP))
 line.consume(quantity_to_consume)
 to_consume -= price * quantity_to_consume
 if to_consume <= 0:
 break

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/offer/benefits.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.offer.benefits

from decimal import Decimal as D

from django.utils.translation import ugettext_lazy as _

from oscar.apps.offer import conditions, results, utils
from oscar.core.loading import get_model
from oscar.templatetags.currency_filters import currency

Benefit = get_model('offer', 'Benefit')

__all__ = [
 'PercentageDiscountBenefit', 'AbsoluteDiscountBenefit', 'FixedPriceBenefit',
 'ShippingBenefit', 'MultibuyDiscountBenefit',
 'ShippingAbsoluteDiscountBenefit', 'ShippingFixedPriceBenefit',
 'ShippingPercentageDiscountBenefit',
]

def apply_discount(line, discount, quantity):
 """
 Apply a given discount to the passed basket
 """
 line.discount(discount, quantity, incl_tax=False)

[docs]class PercentageDiscountBenefit(Benefit):
 """
 An offer benefit that gives a percentage discount
 """
 _description = _("%(value)s%% discount on %(range)s")

 @property
 def name(self):
 return self._description % {
 'value': self.value,
 'range': self.range.name}

 @property
 def description(self):
 return self._description % {
 'value': self.value,
 'range': utils.range_anchor(self.range)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Percentage discount benefit")
 verbose_name_plural = _("Percentage discount benefits")

 def apply(self, basket, condition, offer, discount_percent=None,
 max_total_discount=None):
 if discount_percent is None:
 discount_percent = self.value

 discount_amount_available = max_total_discount

 line_tuples = self.get_applicable_lines(offer, basket)
 discount_percent = min(discount_percent, D('100.0'))
 discount = D('0.00')
 affected_items = 0
 max_affected_items = self._effective_max_affected_items()
 affected_lines = []
 for price, line in line_tuples:
 if affected_items >= max_affected_items:
 break
 if discount_amount_available == 0:
 break

 quantity_affected = min(line.quantity_without_discount,
 max_affected_items - affected_items)
 line_discount = self.round(discount_percent / D('100.0') * price
 * int(quantity_affected))

 if discount_amount_available is not None:
 line_discount = min(line_discount, discount_amount_available)
 discount_amount_available -= line_discount

 apply_discount(line, line_discount, quantity_affected)

 affected_lines.append((line, line_discount, quantity_affected))
 affected_items += quantity_affected
 discount += line_discount

 if discount > 0:
 condition.consume_items(offer, basket, affected_lines)
 return results.BasketDiscount(discount)

[docs]class AbsoluteDiscountBenefit(Benefit):
 """
 An offer benefit that gives an absolute discount
 """
 _description = _("%(value)s discount on %(range)s")

 @property
 def name(self):
 return self._description % {
 'value': currency(self.value),
 'range': self.range.name.lower()}

 @property
 def description(self):
 return self._description % {
 'value': currency(self.value),
 'range': utils.range_anchor(self.range)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Absolute discount benefit")
 verbose_name_plural = _("Absolute discount benefits")

 def apply(self, basket, condition, offer, discount_amount=None,
 max_total_discount=None):
 if discount_amount is None:
 discount_amount = self.value

 # Fetch basket lines that are in the range and available to be used in
 # an offer.
 line_tuples = self.get_applicable_lines(offer, basket)

 # Determine which lines can have the discount applied to them
 max_affected_items = self._effective_max_affected_items()
 num_affected_items = 0
 affected_items_total = D('0.00')
 lines_to_discount = []
 for price, line in line_tuples:
 if num_affected_items >= max_affected_items:
 break
 qty = min(line.quantity_without_discount,
 max_affected_items - num_affected_items)
 lines_to_discount.append((line, price, qty))
 num_affected_items += qty
 affected_items_total += qty * price

 # Ensure we don't try to apply a discount larger than the total of the
 # matching items.
 discount = min(discount_amount, affected_items_total)
 if max_total_discount is not None:
 discount = min(discount, max_total_discount)

 if discount == 0:
 return results.ZERO_DISCOUNT

 # Apply discount equally amongst them
 affected_lines = []
 applied_discount = D('0.00')
 for i, (line, price, qty) in enumerate(lines_to_discount):
 if i == len(lines_to_discount) - 1:
 # If last line, then take the delta as the discount to ensure
 # the total discount is correct and doesn't mismatch due to
 # rounding.
 line_discount = discount - applied_discount
 else:
 # Calculate a weighted discount for the line
 line_discount = self.round(
 ((price * qty) / affected_items_total) * discount)
 apply_discount(line, line_discount, qty)
 affected_lines.append((line, line_discount, qty))
 applied_discount += line_discount

 condition.consume_items(offer, basket, affected_lines)

 return results.BasketDiscount(discount)

[docs]class FixedPriceBenefit(Benefit):
 """
 An offer benefit that gives the items in the condition for a
 fixed price. This is useful for "bundle" offers.

 Note that we ignore the benefit range here and only give a fixed price
 for the products in the condition range. The condition cannot be a value
 condition.

 We also ignore the max_affected_items setting.
 """
 _description = _("The products that meet the condition are sold "
 "for %(amount)s")

 @property
 def name(self):
 return self._description % {
 'amount': currency(self.value)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Fixed price benefit")
 verbose_name_plural = _("Fixed price benefits")

 def apply(self, basket, condition, offer): # noqa (too complex (10))
 if isinstance(condition, conditions.ValueCondition):
 return results.ZERO_DISCOUNT

 # Fetch basket lines that are in the range and available to be used in
 # an offer.
 line_tuples = self.get_applicable_lines(offer, basket,
 range=condition.range)
 if not line_tuples:
 return results.ZERO_DISCOUNT

 # Determine the lines to consume
 num_permitted = int(condition.value)
 num_affected = 0
 value_affected = D('0.00')
 covered_lines = []
 for price, line in line_tuples:
 if isinstance(condition, conditions.CoverageCondition):
 quantity_affected = 1
 else:
 quantity_affected = min(
 line.quantity_without_discount,
 num_permitted - num_affected)
 num_affected += quantity_affected
 value_affected += quantity_affected * price
 covered_lines.append((price, line, quantity_affected))
 if num_affected >= num_permitted:
 break
 discount = max(value_affected - self.value, D('0.00'))
 if not discount:
 return results.ZERO_DISCOUNT

 # Apply discount to the affected lines
 discount_applied = D('0.00')
 last_line = covered_lines[-1][1]
 for price, line, quantity in covered_lines:
 if line == last_line:
 # If last line, we just take the difference to ensure that
 # rounding doesn't lead to an off-by-one error
 line_discount = discount - discount_applied
 else:
 line_discount = self.round(
 discount * (price * quantity) / value_affected)
 apply_discount(line, line_discount, quantity)
 discount_applied += line_discount
 return results.BasketDiscount(discount)

[docs]class MultibuyDiscountBenefit(Benefit):
 _description = _("Cheapest product from %(range)s is free")

 @property
 def name(self):
 return self._description % {
 'range': self.range.name.lower()}

 @property
 def description(self):
 return self._description % {
 'range': utils.range_anchor(self.range)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Multibuy discount benefit")
 verbose_name_plural = _("Multibuy discount benefits")

 def apply(self, basket, condition, offer):
 line_tuples = self.get_applicable_lines(offer, basket)
 if not line_tuples:
 return results.ZERO_DISCOUNT

 # Cheapest line gives free product
 discount, line = line_tuples[0]
 apply_discount(line, discount, 1)

 affected_lines = [(line, discount, 1)]
 condition.consume_items(offer, basket, affected_lines)

 return results.BasketDiscount(discount)

=================
Shipping benefits
=================

[docs]class ShippingBenefit(Benefit):

 def apply(self, basket, condition, offer):
 condition.consume_items(offer, basket, affected_lines=())
 return results.SHIPPING_DISCOUNT

 class Meta:
 app_label = 'offer'
 proxy = True

[docs]class ShippingAbsoluteDiscountBenefit(ShippingBenefit):
 _description = _("%(amount)s off shipping cost")

 @property
 def name(self):
 return self._description % {
 'amount': currency(self.value)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Shipping absolute discount benefit")
 verbose_name_plural = _("Shipping absolute discount benefits")

 def shipping_discount(self, charge):
 return min(charge, self.value)

[docs]class ShippingFixedPriceBenefit(ShippingBenefit):
 _description = _("Get shipping for %(amount)s")

 @property
 def name(self):
 return self._description % {
 'amount': currency(self.value)}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Fixed price shipping benefit")
 verbose_name_plural = _("Fixed price shipping benefits")

 def shipping_discount(self, charge):
 if charge < self.value:
 return D('0.00')
 return charge - self.value

[docs]class ShippingPercentageDiscountBenefit(ShippingBenefit):
 _description = _("%(value)s%% off of shipping cost")

 @property
 def name(self):
 return self._description % {
 'value': self.value}

 class Meta:
 app_label = 'offer'
 proxy = True
 verbose_name = _("Shipping percentage discount benefit")
 verbose_name_plural = _("Shipping percentage discount benefits")

 def shipping_discount(self, charge):
 discount = charge * self.value / D('100.0')
 return discount.quantize(D('0.01'))

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/checkout/session.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.checkout.session

from decimal import Decimal as D

from django import http
from django.contrib import messages
from django.core.exceptions import ImproperlyConfigured
from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _

from oscar.core import prices
from oscar.core.loading import get_class, get_model

from . import exceptions

Repository = get_class('shipping.repository', 'Repository')
OrderTotalCalculator = get_class(
 'checkout.calculators', 'OrderTotalCalculator')
CheckoutSessionData = get_class(
 'checkout.utils', 'CheckoutSessionData')
ShippingAddress = get_model('order', 'ShippingAddress')
BillingAddress = get_model('order', 'BillingAddress')
UserAddress = get_model('address', 'UserAddress')

[docs]class CheckoutSessionMixin(object):
 """
 Mixin to provide common functionality shared between checkout views.

 All checkout views subclass this mixin. It ensures that all relevant
 checkout information is available in the template context.
 """

 # A pre-condition is a condition that MUST be met in order for a view
 # to be available. If it isn't then the customer should be redirected
 # to a view *earlier* in the chain.
 # pre_conditions is a list of method names that get executed before the
 # normal flow of the view. Each method should check some condition has been
 # met. If not, then an exception is raised that indicates the URL the
 # customer will be redirected to.

 pre_conditions = None

 # A *skip* condition is a condition that MUST NOT be met in order for a
 # view to be available. If the condition is met, this means the view MUST
 # be skipped and the customer should be redirected to a view *later* in
 # the chain.
 # Skip conditions work similar to pre-conditions, and get evaluated after
 # pre-conditions have been evaluated.
 skip_conditions = None

 def dispatch(self, request, *args, **kwargs):
 # Assign the checkout session manager so it's available in all checkout
 # views.
 self.checkout_session = CheckoutSessionData(request)

 # Enforce any pre-conditions for the view.
 try:
 self.check_pre_conditions(request)
 except exceptions.FailedPreCondition as e:
 for message in e.messages:
 messages.warning(request, message)
 return http.HttpResponseRedirect(e.url)

 # Check if this view should be skipped
 try:
 self.check_skip_conditions(request)
 except exceptions.PassedSkipCondition as e:
 return http.HttpResponseRedirect(e.url)

 return super(CheckoutSessionMixin, self).dispatch(
 request, *args, **kwargs)

 def check_pre_conditions(self, request):
 pre_conditions = self.get_pre_conditions(request)
 for method_name in pre_conditions:
 if not hasattr(self, method_name):
 raise ImproperlyConfigured(
 "There is no method '%s' to call as a pre-condition" % (
 method_name))
 getattr(self, method_name)(request)

[docs] def get_pre_conditions(self, request):
 """
 Return the pre-condition method names to run for this view
 """
 if self.pre_conditions is None:
 return []
 return self.pre_conditions

 def check_skip_conditions(self, request):
 skip_conditions = self.get_skip_conditions(request)
 for method_name in skip_conditions:
 if not hasattr(self, method_name):
 raise ImproperlyConfigured(
 "There is no method '%s' to call as a skip-condition" % (
 method_name))
 getattr(self, method_name)(request)

[docs] def get_skip_conditions(self, request):
 """
 Return the skip-condition method names to run for this view
 """
 if self.skip_conditions is None:
 return []
 return self.skip_conditions

 # Re-usable pre-condition validators

 def check_basket_is_not_empty(self, request):
 if request.basket.is_empty:
 raise exceptions.FailedPreCondition(
 url=reverse('basket:summary'),
 message=_(
 "You need to add some items to your basket to checkout")
)

[docs] def check_basket_is_valid(self, request):
 """
 Check that the basket is permitted to be submitted as an order. That
 is, all the basket lines are available to buy - nothing has gone out of
 stock since it was added to the basket.
 """
 messages = []
 strategy = request.strategy
 for line in request.basket.all_lines():
 result = strategy.fetch_for_line(line)
 is_permitted, reason = result.availability.is_purchase_permitted(
 line.quantity)
 if not is_permitted:
 # Create a more meaningful message to show on the basket page
 msg = _(
 "'%(title)s' is no longer available to buy (%(reason)s). "
 "Please adjust your basket to continue"
) % {
 'title': line.product.get_title(),
 'reason': reason}
 messages.append(msg)
 if messages:
 raise exceptions.FailedPreCondition(
 url=reverse('basket:summary'),
 messages=messages
)

 def check_user_email_is_captured(self, request):
 if not request.user.is_authenticated() \
 and not self.checkout_session.get_guest_email():
 raise exceptions.FailedPreCondition(
 url=reverse('checkout:index'),
 message=_(
 "Please either sign in or enter your email address")
)

 def check_shipping_data_is_captured(self, request):
 if not request.basket.is_shipping_required():
 # Even without shipping being required, we still need to check that
 # a shipping method code has been set.
 if not self.checkout_session.is_shipping_method_set(
 self.request.basket):
 raise exceptions.FailedPreCondition(
 url=reverse('checkout:shipping-method'),
)
 return

 # Basket requires shipping: check address and method are captured and
 # valid.
 self.check_a_valid_shipping_address_is_captured()
 self.check_a_valid_shipping_method_is_captured()

 def check_a_valid_shipping_address_is_captured(self):
 # Check that shipping address has been completed
 if not self.checkout_session.is_shipping_address_set():
 raise exceptions.FailedPreCondition(
 url=reverse('checkout:shipping-address'),
 message=_("Please choose a shipping address")
)

 # Check that the previously chosen shipping address is still valid
 shipping_address = self.get_shipping_address(
 basket=self.request.basket)
 if not shipping_address:
 raise exceptions.FailedPreCondition(
 url=reverse('checkout:shipping-address'),
 message=_("Your previously chosen shipping address is "
 "no longer valid. Please choose another one")
)

 def check_a_valid_shipping_method_is_captured(self):
 # Check that shipping method has been set
 if not self.checkout_session.is_shipping_method_set(
 self.request.basket):
 raise exceptions.FailedPreCondition(
 url=reverse('checkout:shipping-method'),
 message=_("Please choose a shipping method")
)

 # Check that a *valid* shipping method has been set
 shipping_address = self.get_shipping_address(
 basket=self.request.basket)
 shipping_method = self.get_shipping_method(
 basket=self.request.basket,
 shipping_address=shipping_address)
 if not shipping_method:
 raise exceptions.FailedPreCondition(
 url=reverse('checkout:shipping-method'),
 message=_("Your previously chosen shipping method is "
 "no longer valid. Please choose another one")
)

 def check_payment_data_is_captured(self, request):
 # We don't collect payment data by default so we don't have anything to
 # validate here. If your shop requires forms to be submitted on the
 # payment details page, then override this method to check that the
 # relevant data is available. Often just enforcing that the preview
 # view is only accessible from a POST request is sufficient.
 pass

 # Re-usable skip conditions

 def skip_unless_basket_requires_shipping(self, request):
 # Check to see that a shipping address is actually required. It may
 # not be if the basket is purely downloads
 if not request.basket.is_shipping_required():
 raise exceptions.PassedSkipCondition(
 url=reverse('checkout:shipping-method')
)

 def skip_unless_payment_is_required(self, request):
 # Check to see if payment is actually required for this order.
 shipping_address = self.get_shipping_address(request.basket)
 shipping_method = self.get_shipping_method(
 request.basket, shipping_address)
 if shipping_method:
 shipping_charge = shipping_method.calculate(request.basket)
 else:
 # It's unusual to get here as a shipping method should be set by
 # the time this skip-condition is called. In the absence of any
 # other evidence, we assume the shipping charge is zero.
 shipping_charge = prices.Price(
 currency=request.basket.currency, excl_tax=D('0.00'),
 tax=D('0.00')
)
 total = self.get_order_totals(request.basket, shipping_charge)
 if total.excl_tax == D('0.00'):
 raise exceptions.PassedSkipCondition(
 url=reverse('checkout:preview')
)

 # Helpers

 def get_context_data(self, **kwargs):
 # Use the proposed submission as template context data. Flatten the
 # order kwargs so they are easily available too.
 ctx = super(CheckoutSessionMixin, self).get_context_data()
 ctx.update(self.build_submission(**kwargs))
 ctx.update(kwargs)
 ctx.update(ctx['order_kwargs'])
 return ctx

[docs] def build_submission(self, **kwargs):
 """
 Return a dict of data that contains everything required for an order
 submission. This includes payment details (if any).

 This can be the right place to perform tax lookups and apply them to
 the basket.
 """
 basket = kwargs.get('basket', self.request.basket)
 shipping_address = self.get_shipping_address(basket)
 shipping_method = self.get_shipping_method(
 basket, shipping_address)
 billing_address = self.get_billing_address(shipping_address)
 if not shipping_method:
 total = shipping_charge = None
 else:
 shipping_charge = shipping_method.calculate(basket)
 total = self.get_order_totals(
 basket, shipping_charge=shipping_charge)
 submission = {
 'user': self.request.user,
 'basket': basket,
 'shipping_address': shipping_address,
 'shipping_method': shipping_method,
 'shipping_charge': shipping_charge,
 'billing_address': billing_address,
 'order_total': total,
 'order_kwargs': {},
 'payment_kwargs': {}}

 # If there is a billing address, add it to the payment kwargs as calls
 # to payment gateways generally require the billing address. Note, that
 # it normally makes sense to pass the form instance that captures the
 # billing address information. That way, if payment fails, you can
 # render bound forms in the template to make re-submission easier.
 if billing_address:
 submission['payment_kwargs']['billing_address'] = billing_address

 # Allow overrides to be passed in
 submission.update(kwargs)

 # Set guest email after overrides as we need to update the order_kwargs
 # entry.
 if (not submission['user'].is_authenticated() and
 'guest_email' not in submission['order_kwargs']):
 email = self.checkout_session.get_guest_email()
 submission['order_kwargs']['guest_email'] = email
 return submission

[docs] def get_shipping_address(self, basket):
 """
 Return the (unsaved) shipping address for this checkout session.

 If the shipping address was entered manually, then we instantiate a
 ``ShippingAddress`` model with the appropriate form data (which is
 saved in the session).

 If the shipping address was selected from the user's address book,
 then we convert the ``UserAddress`` to a ``ShippingAddress``.

 The ``ShippingAddress`` instance is not saved as sometimes you need a
 shipping address instance before the order is placed. For example, if
 you are submitting fraud information as part of a payment request.

 The ``OrderPlacementMixin.create_shipping_address`` method is
 responsible for saving a shipping address when an order is placed.
 """
 if not basket.is_shipping_required():
 return None

 addr_data = self.checkout_session.new_shipping_address_fields()
 if addr_data:
 # Load address data into a blank shipping address model
 return ShippingAddress(**addr_data)
 addr_id = self.checkout_session.shipping_user_address_id()
 if addr_id:
 try:
 address = UserAddress._default_manager.get(pk=addr_id)
 except UserAddress.DoesNotExist:
 # An address was selected but now it has disappeared. This can
 # happen if the customer flushes their address book midway
 # through checkout. No idea why they would do this but it can
 # happen. Checkouts are highly vulnerable to race conditions
 # like this.
 return None
 else:
 # Copy user address data into a blank shipping address instance
 shipping_addr = ShippingAddress()
 address.populate_alternative_model(shipping_addr)
 return shipping_addr

[docs] def get_shipping_method(self, basket, shipping_address=None, **kwargs):
 """
 Return the selected shipping method instance from this checkout session

 The shipping address is passed as we need to check that the method
 stored in the session is still valid for the shipping address.
 """
 code = self.checkout_session.shipping_method_code(basket)
 methods = Repository().get_shipping_methods(
 basket=basket, user=self.request.user,
 shipping_addr=shipping_address, request=self.request)
 for method in methods:
 if method.code == code:
 return method

[docs] def get_billing_address(self, shipping_address):
 """
 Return an unsaved instance of the billing address (if one exists)

 This method only returns a billing address if the session has been used
 to store billing address information. It's also possible to capture
 billing address information as part of the payment details forms, which
 never get stored in the session. In that circumstance, the billing
 address can be set directly in the build_submission dict.
 """
 if not self.checkout_session.is_billing_address_set():
 return None
 if self.checkout_session.is_billing_address_same_as_shipping():
 if shipping_address:
 address = BillingAddress()
 shipping_address.populate_alternative_model(address)
 return address

 addr_data = self.checkout_session.new_billing_address_fields()
 if addr_data:
 # A new billing address has been entered - load address data into a
 # blank billing address model.
 return BillingAddress(**addr_data)

 addr_id = self.checkout_session.billing_user_address_id()
 if addr_id:
 # An address from the user's address book has been selected as the
 # billing address - load it and convert it into a billing address
 # instance.
 try:
 user_address = UserAddress._default_manager.get(pk=addr_id)
 except UserAddress.DoesNotExist:
 # An address was selected but now it has disappeared. This can
 # happen if the customer flushes their address book midway
 # through checkout. No idea why they would do this but it can
 # happen. Checkouts are highly vulnerable to race conditions
 # like this.
 return None
 else:
 # Copy user address data into a blank shipping address instance
 billing_address = BillingAddress()
 user_address.populate_alternative_model(billing_address)
 return billing_address

[docs] def get_order_totals(self, basket, shipping_charge, **kwargs):
 """
 Returns the total for the order with and without tax
 """
 return OrderTotalCalculator(self.request).calculate(
 basket, shipping_charge, **kwargs)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/voucher/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.voucher.abstract_models

from decimal import Decimal

from django.core import exceptions
from django.db import models
from django.utils import timezone
from django.utils.encoding import python_2_unicode_compatible
from django.utils.translation import ugettext_lazy as _

from oscar.core.compat import AUTH_USER_MODEL

@python_2_unicode_compatible
[docs]class AbstractVoucher(models.Model):
 """
 A voucher. This is simply a link to a collection of offers.

 Note that there are three possible "usage" modes:
 (a) Single use
 (b) Multi-use
 (c) Once per customer

 Oscar enforces those modes by creating VoucherApplication
 instances when a voucher is used for an order.
 """
 name = models.CharField(_("Name"), max_length=128,
 help_text=_("This will be shown in the checkout"
 " and basket once the voucher is"
 " entered"))
 code = models.CharField(_("Code"), max_length=128, db_index=True,
 unique=True, help_text=_("Case insensitive / No"
 " spaces allowed"))
 offers = models.ManyToManyField(
 'offer.ConditionalOffer', related_name='vouchers',
 verbose_name=_("Offers"), limit_choices_to={'offer_type': "Voucher"})

 SINGLE_USE, MULTI_USE, ONCE_PER_CUSTOMER = (
 'Single use', 'Multi-use', 'Once per customer')
 USAGE_CHOICES = (
 (SINGLE_USE, _("Can be used once by one customer")),
 (MULTI_USE, _("Can be used multiple times by multiple customers")),
 (ONCE_PER_CUSTOMER, _("Can only be used once per customer")),
)
 usage = models.CharField(_("Usage"), max_length=128,
 choices=USAGE_CHOICES, default=MULTI_USE)

 start_datetime = models.DateTimeField(_('Start datetime'))
 end_datetime = models.DateTimeField(_('End datetime'))

 # Reporting information. Not used to enforce any consumption limits.
 num_basket_additions = models.PositiveIntegerField(
 _("Times added to basket"), default=0)
 num_orders = models.PositiveIntegerField(_("Times on orders"), default=0)
 total_discount = models.DecimalField(
 _("Total discount"), decimal_places=2, max_digits=12,
 default=Decimal('0.00'))

 date_created = models.DateField(auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'voucher'
 get_latest_by = 'date_created'
 verbose_name = _("Voucher")
 verbose_name_plural = _("Vouchers")

 def __str__(self):
 return self.name

 def clean(self):
 if all([self.start_datetime, self.end_datetime,
 self.start_datetime > self.end_datetime]):
 raise exceptions.ValidationError(
 _('End date should be later than start date'))

 def save(self, *args, **kwargs):
 self.code = self.code.upper()
 super(AbstractVoucher, self).save(*args, **kwargs)

[docs] def is_active(self, test_datetime=None):
 """
 Test whether this voucher is currently active.
 """
 test_datetime = test_datetime or timezone.now()
 return self.start_datetime <= test_datetime <= self.end_datetime

[docs] def is_expired(self):
 """
 Test whether this voucher has passed its expiration date
 """
 now = timezone.now()
 return self.end_datetime < now

[docs] def is_available_to_user(self, user=None):
 """
 Test whether this voucher is available to the passed user.

 Returns a tuple of a boolean for whether it is successful, and a
 availability message.
 """
 is_available, message = False, ''
 if self.usage == self.SINGLE_USE:
 is_available = not self.applications.exists()
 if not is_available:
 message = _("This voucher has already been used")
 elif self.usage == self.MULTI_USE:
 is_available = True
 elif self.usage == self.ONCE_PER_CUSTOMER:
 if not user.is_authenticated():
 is_available = False
 message = _(
 "This voucher is only available to signed in users")
 else:
 is_available = not self.applications.filter(
 voucher=self, user=user).exists()
 if not is_available:
 message = _("You have already used this voucher in "
 "a previous order")
 return is_available, message

[docs] def record_usage(self, order, user):
 """
 Records a usage of this voucher in an order.
 """
 if user.is_authenticated():
 self.applications.create(voucher=self, order=order, user=user)
 else:
 self.applications.create(voucher=self, order=order)
 self.num_orders += 1
 self.save()

 record_usage.alters_data = True

[docs] def record_discount(self, discount):
 """
 Record a discount that this offer has given
 """
 self.total_discount += discount['discount']
 self.save()

 record_discount.alters_data = True

 @property
 def benefit(self):
 """
 Returns the first offer's benefit instance.

 A voucher is commonly only linked to one offer. In that case,
 this helper can be used for convenience.
 """
 return self.offers.all()[0].benefit

@python_2_unicode_compatible
[docs]class AbstractVoucherApplication(models.Model):
 """
 For tracking how often a voucher has been used in an order.

 This is used to enforce the voucher usage mode in
 Voucher.is_available_to_user, and created in Voucher.record_usage.
 """
 voucher = models.ForeignKey(
 'voucher.Voucher', related_name="applications",
 verbose_name=_("Voucher"))

 # It is possible for an anonymous user to apply a voucher so we need to
 # allow the user to be nullable
 user = models.ForeignKey(AUTH_USER_MODEL, blank=True, null=True,
 verbose_name=_("User"))
 order = models.ForeignKey('order.Order', verbose_name=_("Order"))
 date_created = models.DateField(_("Date Created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'voucher'
 verbose_name = _("Voucher Application")
 verbose_name_plural = _("Voucher Applications")

 def __str__(self):
 return _("'%(voucher)s' used by '%(user)s'") % {
 'voucher': self.voucher,
 'user': self.user}

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/offer/results.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.offer.results

from decimal import Decimal as D

class OfferApplications(object):
 """
 A collection of offer applications and the discounts that they give.

 Each offer application is stored as a dict which has fields for:

 * The offer that led to the successful application
 * The result instance
 * The number of times the offer was successfully applied
 """
 def __init__(self):
 self.applications = {}

 def __iter__(self):
 return self.applications.values().__iter__()

 def __len__(self):
 return len(self.applications)

 def add(self, offer, result):
 if offer.id not in self.applications:
 self.applications[offer.id] = {
 'offer': offer,
 'result': result,
 'name': offer.name,
 'description': result.description,
 'voucher': offer.get_voucher(),
 'freq': 0,
 'discount': D('0.00')}
 self.applications[offer.id]['discount'] += result.discount
 self.applications[offer.id]['freq'] += 1

 @property
 def offer_discounts(self):
 """
 Return basket discounts from offers (but not voucher offers)
 """
 discounts = []
 for application in self.applications.values():
 if not application['voucher'] and application['discount'] > 0:
 discounts.append(application)
 return discounts

 @property
 def voucher_discounts(self):
 """
 Return basket discounts from vouchers.
 """
 discounts = []
 for application in self.applications.values():
 if application['voucher'] and application['discount'] > 0:
 discounts.append(application)
 return discounts

 @property
 def shipping_discounts(self):
 """
 Return shipping discounts
 """
 discounts = []
 for application in self.applications.values():
 if application['result'].affects_shipping:
 discounts.append(application)
 return discounts

 @property
 def grouped_voucher_discounts(self):
 """
 Return voucher discounts aggregated up to the voucher level.

 This is different to the voucher_discounts property as a voucher can
 have multiple offers associated with it.
 """
 voucher_discounts = {}
 for application in self.voucher_discounts:
 voucher = application['voucher']
 if voucher.code not in voucher_discounts:
 voucher_discounts[voucher.code] = {
 'voucher': voucher,
 'discount': application['discount'],
 }
 else:
 voucher_discounts[voucher.code] += application.discount
 return voucher_discounts.values()

 @property
 def post_order_actions(self):
 """
 Return successful offer applications which didn't lead to a discount
 """
 applications = []
 for application in self.applications.values():
 if application['result'].affects_post_order:
 applications.append(application)
 return applications

 @property
 def offers(self):
 """
 Return a dict of offers that were successfully applied
 """
 return dict([(a['offer'].id, a['offer']) for a in
 self.applications.values()])

class ApplicationResult(object):
 is_final = is_successful = False
 # Basket discount
 discount = D('0.00')
 description = None

 # Offer applications can affect 3 distinct things
 # (a) Give a discount off the BASKET total
 # (b) Give a discount off the SHIPPING total
 # (a) Trigger a post-order action
 BASKET, SHIPPING, POST_ORDER = 0, 1, 2
 affects = None

 @property
 def affects_basket(self):
 return self.affects == self.BASKET

 @property
 def affects_shipping(self):
 return self.affects == self.SHIPPING

 @property
 def affects_post_order(self):
 return self.affects == self.POST_ORDER

[docs]class BasketDiscount(ApplicationResult):
 """
 For when an offer application leads to a simple discount off the basket's
 total
 """
 affects = ApplicationResult.BASKET

 def __init__(self, amount):
 self.discount = amount

 @property
 def is_successful(self):
 return self.discount > 0

 def __str__(self):
 return '<Basket discount of %s>' % self.discount

 def __repr__(self):
 return '%s(%r)' % (self.__class__.__name__, self.discount)

Helper global as returning zero discount is quite common
ZERO_DISCOUNT = BasketDiscount(D('0.00'))

[docs]class ShippingDiscount(ApplicationResult):
 """
 For when an offer application leads to a discount from the shipping cost
 """
 is_successful = is_final = True
 affects = ApplicationResult.SHIPPING

SHIPPING_DISCOUNT = ShippingDiscount()

[docs]class PostOrderAction(ApplicationResult):
 """
 For when an offer condition is met but the benefit is deferred until after
 the order has been placed. Eg buy 2 books and get 100 loyalty points.
 """
 is_final = is_successful = True
 affects = ApplicationResult.POST_ORDER

 def __init__(self, description):
 self.description = description

 © Copyright .
 Created using Sphinx 1.3.3.

_images/wishlist-detail.png
Home / Account / Wish Lists

Profle
Order History
Address Book
EmailHistory
Product Alerts

Notifcations

Wish Lists

Defaut

Default

Product

‘Stand on Zanzibar

Action

View product

_images/offer-restrictions.png
600 Shipping offe

estrictions | Offer management | Dashboard | Oscar Sandbox - e-Commerce for Django. "

=

Dashboard / Offer management / Shipping offer

Shipping offer

Steps Restrictions Offer summary
1. Name and description
Fields marked with * are mandatory. Name: Edit
2. Incentive Start date Shppng offer
Description:
3. Condition 2013-03-12 0000 This gives a shipping discount
4.Restrictions, End date

Incentive: g
Get shipping for £1.99

Max basket applications.

Condition:

Edit
“The number of times ths offer can be applied to a basket (and order) Basketincludes 1 ftems)from

site
Max user applications

Restrictions: =0

“The number of times a single user can use this offer
o Available from March 12,2013

Maxglobal applications.

“The number of times this offer can be used before itis unavalable

Max discount

When an offer has given more discount to orders than this threshold, then the offer becomes
unavailable

cancel

_images/wishlist-button.png
@ Edit this product

Stand on Zanzibar
£7.99
« In stock (9 avallable) new button

Quantity *

1 6]
Add to basket Add to wish list

_images/account.png
800 Profile | Account | Oscar - Sandbox

Engisn 4| Go & Account = Dashboard @ Logout

Oscar Sandbox Basket total: £15.00 View basket |+

Home / Account

Profile

Order History
Address Book
Name -
Email History
Email address ‘superuser@example.com
Product Alerts
Noteatons Date registered 12Sep2012,6 pm.

_modules/oscar/apps/wishlists/models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.wishlists.models

-*- coding: utf-8 -*-
from oscar.core.loading import is_model_registered

from .abstract_models import * # noqa

__all__ = []

if not is_model_registered('wishlists', 'WishList'):
 class WishList(AbstractWishList):
 pass

 __all__.append('WishList')

if not is_model_registered('wishlists', 'Line'):
 class Line(AbstractLine):
 pass

 __all__.append('Line')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/payment/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.payment.abstract_models

from decimal import Decimal

from django.db import models
from django.utils.encoding import python_2_unicode_compatible
from django.utils.translation import ugettext_lazy as _

from oscar.core.compat import AUTH_USER_MODEL
from oscar.core.utils import get_default_currency
from oscar.models.fields import AutoSlugField
from oscar.templatetags.currency_filters import currency

from . import bankcards

@python_2_unicode_compatible
[docs]class AbstractTransaction(models.Model):
 """
 A transaction for a particular payment source.

 These are similar to the payment events within the order app but model a
 slightly different aspect of payment. Crucially, payment sources and
 transactions have nothing to do with the lines of the order while payment
 events do.

 For example:
 * A 'pre-auth' with a bankcard gateway
 * A 'settle' with a credit provider (see django-oscar-accounts)
 """
 source = models.ForeignKey(
 'payment.Source', related_name='transactions',
 verbose_name=_("Source"))

 # We define some sample types but don't constrain txn_type to be one of
 # these as there will be domain-specific ones that we can't anticipate
 # here.
 AUTHORISE, DEBIT, REFUND = 'Authorise', 'Debit', 'Refund'
 txn_type = models.CharField(_("Type"), max_length=128, blank=True)

 amount = models.DecimalField(_("Amount"), decimal_places=2, max_digits=12)
 reference = models.CharField(_("Reference"), max_length=128, blank=True)
 status = models.CharField(_("Status"), max_length=128, blank=True)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 def __str__(self):
 return _(u"%(type)s of %(amount).2f") % {
 'type': self.txn_type,
 'amount': self.amount}

 class Meta:
 abstract = True
 app_label = 'payment'
 ordering = ['-date_created']
 verbose_name = _("Transaction")
 verbose_name_plural = _("Transactions")

@python_2_unicode_compatible
[docs]class AbstractSource(models.Model):
 """
 A source of payment for an order.

 This is normally a credit card which has been pre-authed for the order
 amount, but some applications will allow orders to be paid for using
 multiple sources such as cheque, credit accounts, gift cards. Each payment
 source will have its own entry.

 This source object tracks how much money has been authorised, debited and
 refunded, which is useful when payment takes place in multiple stages.
 """
 order = models.ForeignKey(
 'order.Order', related_name='sources', verbose_name=_("Order"))
 source_type = models.ForeignKey(
 'payment.SourceType', verbose_name=_("Source Type"),
 related_name="sources")
 currency = models.CharField(
 _("Currency"), max_length=12, default=get_default_currency)

 # Track the various amounts associated with this source
 amount_allocated = models.DecimalField(
 _("Amount Allocated"), decimal_places=2, max_digits=12,
 default=Decimal('0.00'))
 amount_debited = models.DecimalField(
 _("Amount Debited"), decimal_places=2, max_digits=12,
 default=Decimal('0.00'))
 amount_refunded = models.DecimalField(
 _("Amount Refunded"), decimal_places=2, max_digits=12,
 default=Decimal('0.00'))

 # Reference number for this payment source. This is often used to look up
 # a transaction model for a particular payment partner.
 reference = models.CharField(_("Reference"), max_length=255, blank=True)

 # A customer-friendly label for the source, eg XXXX-XXXX-XXXX-1234
 label = models.CharField(_("Label"), max_length=128, blank=True)

 # A dictionary of submission data that is stored as part of the
 # checkout process, where we need to pass an instance of this class around
 submission_data = None

 # We keep a list of deferred transactions that are only actually saved when
 # the source is saved for the first time
 deferred_txns = None

 class Meta:
 abstract = True
 app_label = 'payment'
 verbose_name = _("Source")
 verbose_name_plural = _("Sources")

 def __str__(self):
 description = _("Allocation of %(amount)s from type %(type)s") % {
 'amount': currency(self.amount_allocated, self.currency),
 'type': self.source_type}
 if self.reference:
 description += _(" (reference: %s)") % self.reference
 return description

 def save(self, *args, **kwargs):
 super(AbstractSource, self).save(*args, **kwargs)
 if self.deferred_txns:
 for txn in self.deferred_txns:
 self._create_transaction(*txn)

[docs] def create_deferred_transaction(self, txn_type, amount, reference=None,
 status=None):
 """
 Register the data for a transaction that can't be created yet due to FK
 constraints. This happens at checkout where create an payment source
 and a transaction but can't save them until the order model exists.
 """
 if self.deferred_txns is None:
 self.deferred_txns = []
 self.deferred_txns.append((txn_type, amount, reference, status))

 def _create_transaction(self, txn_type, amount, reference='',
 status=''):
 self.transactions.create(
 txn_type=txn_type, amount=amount,
 reference=reference, status=status)

 # =======
 # Actions
 # =======

[docs] def allocate(self, amount, reference='', status=''):
 """
 Convenience method for ring-fencing money against this source
 """
 self.amount_allocated += amount
 self.save()
 self._create_transaction(
 AbstractTransaction.AUTHORISE, amount, reference, status)

 allocate.alters_data = True

[docs] def debit(self, amount=None, reference='', status=''):
 """
 Convenience method for recording debits against this source
 """
 if amount is None:
 amount = self.balance
 self.amount_debited += amount
 self.save()
 self._create_transaction(
 AbstractTransaction.DEBIT, amount, reference, status)

 debit.alters_data = True

[docs] def refund(self, amount, reference='', status=''):
 """
 Convenience method for recording refunds against this source
 """
 self.amount_refunded += amount
 self.save()
 self._create_transaction(
 AbstractTransaction.REFUND, amount, reference, status)

 refund.alters_data = True

 # ==========
 # Properties
 # ==========

 @property
 def balance(self):
 """
 Return the balance of this source
 """
 return (self.amount_allocated - self.amount_debited +
 self.amount_refunded)

 @property
 def amount_available_for_refund(self):
 """
 Return the amount available to be refunded
 """
 return self.amount_debited - self.amount_refunded

@python_2_unicode_compatible
[docs]class AbstractSourceType(models.Model):
 """
 A type of payment source.

 This could be an external partner like PayPal or DataCash,
 or an internal source such as a managed account.
 """
 name = models.CharField(_("Name"), max_length=128)
 code = AutoSlugField(
 _("Code"), max_length=128, populate_from='name', unique=True,
 help_text=_("This is used within forms to identify this source type"))

 class Meta:
 abstract = True
 app_label = 'payment'
 verbose_name = _("Source Type")
 verbose_name_plural = _("Source Types")

 def __str__(self):
 return self.name

@python_2_unicode_compatible
[docs]class AbstractBankcard(models.Model):
 """
 Model representing a user's bankcard. This is used for two purposes:

 1. The bankcard form will return an instance of this model that can be
 used with payment gateways. In this scenario, the instance will
 have additional attributes (start_date, issue_number, ccv) that
 payment gateways need but that we don't save.

 2. To keep a record of a user's bankcards and allow them to be
 re-used. This is normally done using the 'partner reference'.

 .. warning::

 Some of the fields of this model (name, expiry_date) are considered
 "cardholder data" under PCI DSS v2. Hence, if you use this model and
 store those fields then the requirements for PCI compliance will be
 more stringent.
 """
 user = models.ForeignKey(AUTH_USER_MODEL, related_name='bankcards',
 verbose_name=_("User"))
 card_type = models.CharField(_("Card Type"), max_length=128)

 # Often you don't actually need the name on the bankcard
 name = models.CharField(_("Name"), max_length=255, blank=True)

 # We store an obfuscated version of the card number, just showing the last
 # 4 digits.
 number = models.CharField(_("Number"), max_length=32)

 # We store a date even though only the month is visible. Bankcards are
 # valid until the last day of the month.
 expiry_date = models.DateField(_("Expiry Date"))

 # For payment partners who are storing the full card details for us
 partner_reference = models.CharField(
 _("Partner Reference"), max_length=255, blank=True)

 # Temporary data not persisted to the DB
 start_date = None
 issue_number = None
 ccv = None

 def __str__(self):
 return _(u"%(card_type)s %(number)s (Expires: %(expiry)s)") % {
 'card_type': self.card_type,
 'number': self.number,
 'expiry': self.expiry_month()}

 def __init__(self, *args, **kwargs):
 # Pop off the temporary data
 self.start_date = kwargs.pop('start_date', None)
 self.issue_number = kwargs.pop('issue_number', None)
 self.ccv = kwargs.pop('ccv', None)
 super(AbstractBankcard, self).__init__(*args, **kwargs)

 # Initialise the card-type
 if self.id is None:
 self.card_type = bankcards.bankcard_type(self.number)
 if self.card_type is None:
 self.card_type = 'Unknown card type'

 class Meta:
 abstract = True
 app_label = 'payment'
 verbose_name = _("Bankcard")
 verbose_name_plural = _("Bankcards")

 def save(self, *args, **kwargs):
 if not self.number.startswith('X'):
 self.prepare_for_save()
 super(AbstractBankcard, self).save(*args, **kwargs)

 def prepare_for_save(self):
 # This is the first time this card instance is being saved. We
 # remove all sensitive data
 self.number = u"XXXX-XXXX-XXXX-%s" % self.number[-4:]
 self.start_date = self.issue_number = self.ccv = None

 @property
 def cvv(self):
 return self.ccv

 @property
 def obfuscated_number(self):
 return u'XXXX-XXXX-XXXX-%s' % self.number[-4:]

 def start_month(self, format='%m/%y'):
 return self.start_date.strftime(format)

 def expiry_month(self, format='%m/%y'):
 return self.expiry_date.strftime(format)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/shipping/repository.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.shipping.repository

from decimal import Decimal as D

from django.core.exceptions import ImproperlyConfigured
from django.utils.translation import ugettext_lazy as _

from oscar.apps.shipping import methods as shipping_methods

[docs]class Repository(object):
 """
 Repository class responsible for returning ShippingMethod
 objects for a given user, basket etc
 """

 # We default to just free shipping. Customise this class and override this
 # property to add your own shipping methods. This should be a list of
 # instantiated shipping methods.
 methods = (shipping_methods.Free(),)

 # API

[docs] def get_shipping_methods(self, basket, shipping_addr=None, **kwargs):
 """
 Return a list of all applicable shipping method instances for a given
 basket, address etc.
 """
 if not basket.is_shipping_required():
 # Special case! Baskets that don't require shipping get a special
 # shipping method.
 return [shipping_methods.NoShippingRequired()]

 methods = self.get_available_shipping_methods(
 basket=basket, shipping_addr=shipping_addr, **kwargs)
 if basket.has_shipping_discounts:
 methods = self.apply_shipping_offers(basket, methods)
 return methods

[docs] def get_default_shipping_method(self, basket, shipping_addr=None,
 **kwargs):
 """
 Return a 'default' shipping method to show on the basket page to give
 the customer an indication of what their order will cost.
 """
 shipping_methods = self.get_shipping_methods(
 basket, shipping_addr=shipping_addr, **kwargs)
 if len(shipping_methods) == 0:
 raise ImproperlyConfigured(
 _("You need to define some shipping methods"))

 # Assume first returned method is default
 return shipping_methods[0]

 # Helpers

[docs] def get_available_shipping_methods(
 self, basket, shipping_addr=None, **kwargs):
 """
 Return a list of all applicable shipping method instances for a given
 basket, address etc. This method is intended to be overridden.
 """
 return self.methods

[docs] def apply_shipping_offers(self, basket, methods):
 """
 Apply shipping offers to the passed set of methods
 """
 # We default to only applying the first shipping discount.
 offer = basket.shipping_discounts[0]['offer']
 return [self.apply_shipping_offer(basket, method, offer)
 for method in methods]

[docs] def apply_shipping_offer(self, basket, method, offer):
 """
 Wrap a shipping method with an offer discount wrapper (as long as the
 shipping charge is non-zero).
 """
 # If the basket has qualified for shipping discount, wrap the shipping
 # method with a decorating class that applies the offer discount to the
 # shipping charge.
 charge = method.calculate(basket)
 if charge.excl_tax == D('0.00'):
 # No need to wrap zero shipping charges
 return method

 if charge.is_tax_known:
 return shipping_methods.TaxInclusiveOfferDiscount(
 method, offer)
 else:
 # When returning a tax exclusive discount, it is assumed
 # that this will be used to calculate taxes which will then
 # be assigned directly to the method instance.
 return shipping_methods.TaxExclusiveOfferDiscount(
 method, offer)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/basket/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.basket.views

import json

from django import shortcuts
from django.contrib import messages
from django.core.exceptions import ObjectDoesNotExist
from django.core.urlresolvers import reverse
from django.http import HttpResponse
from django.shortcuts import redirect
from django.template import RequestContext
from django.template.loader import render_to_string
from django.utils.http import is_safe_url
from django.utils.translation import ugettext_lazy as _
from django.views.generic import FormView, View
from extra_views import ModelFormSetView

from oscar.apps.basket import signals
from oscar.core import ajax
from oscar.core.loading import get_class, get_classes, get_model
from oscar.core.utils import redirect_to_referrer, safe_referrer

Applicator = get_class('offer.utils', 'Applicator')
(BasketLineFormSet, BasketLineForm, AddToBasketForm, BasketVoucherForm,
 SavedLineFormSet, SavedLineForm) \
 = get_classes('basket.forms', ('BasketLineFormSet', 'BasketLineForm',
 'AddToBasketForm', 'BasketVoucherForm',
 'SavedLineFormSet', 'SavedLineForm'))
Repository = get_class('shipping.repository', ('Repository'))
OrderTotalCalculator = get_class(
 'checkout.calculators', 'OrderTotalCalculator')
BasketMessageGenerator = get_class('basket.utils', 'BasketMessageGenerator')

class BasketView(ModelFormSetView):
 model = get_model('basket', 'Line')
 basket_model = get_model('basket', 'Basket')
 formset_class = BasketLineFormSet
 form_class = BasketLineForm
 extra = 0
 can_delete = True
 template_name = 'basket/basket.html'

 def get_formset_kwargs(self):
 kwargs = super(BasketView, self).get_formset_kwargs()
 kwargs['strategy'] = self.request.strategy
 return kwargs

 def get_queryset(self):
 return self.request.basket.all_lines()

 def get_shipping_methods(self, basket):
 return Repository().get_shipping_methods(
 basket=self.request.basket, user=self.request.user,
 request=self.request)

 def get_default_shipping_method(self, basket):
 return Repository().get_default_shipping_method(
 basket=self.request.basket, user=self.request.user,
 request=self.request)

 def get_basket_warnings(self, basket):
 """
 Return a list of warnings that apply to this basket
 """
 warnings = []
 for line in basket.all_lines():
 warning = line.get_warning()
 if warning:
 warnings.append(warning)
 return warnings

 def get_upsell_messages(self, basket):
 offers = Applicator().get_offers(basket, self.request.user,
 self.request)
 applied_offers = list(basket.offer_applications.offers.values())
 msgs = []
 for offer in offers:
 if offer.is_condition_partially_satisfied(basket) \
 and offer not in applied_offers:
 data = {
 'message': offer.get_upsell_message(basket),
 'offer': offer}
 msgs.append(data)
 return msgs

 def get_basket_voucher_form(self):
 """
 This is a separate method so that it's easy to e.g. not return a form
 if there are no vouchers available.
 """
 return BasketVoucherForm()

 def get_context_data(self, **kwargs):
 context = super(BasketView, self).get_context_data(**kwargs)
 context['voucher_form'] = self.get_basket_voucher_form()

 # Shipping information is included to give an idea of the total order
 # cost. It is also important for PayPal Express where the customer
 # gets redirected away from the basket page and needs to see what the
 # estimated order total is beforehand.
 context['shipping_methods'] = self.get_shipping_methods(
 self.request.basket)
 method = self.get_default_shipping_method(self.request.basket)
 context['shipping_method'] = method
 shipping_charge = method.calculate(self.request.basket)
 context['shipping_charge'] = shipping_charge
 if method.is_discounted:
 excl_discount = method.calculate_excl_discount(self.request.basket)
 context['shipping_charge_excl_discount'] = excl_discount

 context['order_total'] = OrderTotalCalculator().calculate(
 self.request.basket, shipping_charge)
 context['basket_warnings'] = self.get_basket_warnings(
 self.request.basket)
 context['upsell_messages'] = self.get_upsell_messages(
 self.request.basket)

 if self.request.user.is_authenticated():
 try:
 saved_basket = self.basket_model.saved.get(
 owner=self.request.user)
 except self.basket_model.DoesNotExist:
 pass
 else:
 saved_basket.strategy = self.request.basket.strategy
 if not saved_basket.is_empty:
 saved_queryset = saved_basket.all_lines()
 formset = SavedLineFormSet(strategy=self.request.strategy,
 basket=self.request.basket,
 queryset=saved_queryset,
 prefix='saved')
 context['saved_formset'] = formset
 return context

 def get_success_url(self):
 return safe_referrer(self.request, 'basket:summary')

 def formset_valid(self, formset):
 # Store offers before any changes are made so we can inform the user of
 # any changes
 offers_before = self.request.basket.applied_offers()
 save_for_later = False

 # Keep a list of messages - we don't immediately call
 # django.contrib.messages as we may be returning an AJAX response in
 # which case we pass the messages back in a JSON payload.
 flash_messages = ajax.FlashMessages()

 for form in formset:
 if (hasattr(form, 'cleaned_data') and
 form.cleaned_data['save_for_later']):
 line = form.instance
 if self.request.user.is_authenticated():
 self.move_line_to_saved_basket(line)

 msg = render_to_string(
 'basket/messages/line_saved.html',
 {'line': line})
 flash_messages.info(msg)

 save_for_later = True
 else:
 msg = _("You can't save an item for later if you're "
 "not logged in!")
 flash_messages.error(msg)
 return redirect(self.get_success_url())

 if save_for_later:
 # No need to call super if we're moving lines to the saved basket
 response = redirect(self.get_success_url())
 else:
 # Save changes to basket as per normal
 response = super(BasketView, self).formset_valid(formset)

 # If AJAX submission, don't redirect but reload the basket content HTML
 if self.request.is_ajax():
 # Reload basket and apply offers again
 self.request.basket = get_model('basket', 'Basket').objects.get(
 id=self.request.basket.id)
 self.request.basket.strategy = self.request.strategy
 Applicator().apply(self.request.basket, self.request.user,
 self.request)
 offers_after = self.request.basket.applied_offers()

 for level, msg in BasketMessageGenerator().get_messages(
 self.request.basket, offers_before, offers_after, include_buttons=False):
 flash_messages.add_message(level, msg)

 # Reload formset - we have to remove the POST fields from the
 # kwargs as, if they are left in, the formset won't construct
 # correctly as there will be a state mismatch between the
 # management form and the database.
 kwargs = self.get_formset_kwargs()
 del kwargs['data']
 del kwargs['files']
 if 'queryset' in kwargs:
 del kwargs['queryset']
 formset = self.get_formset()(queryset=self.get_queryset(),
 **kwargs)
 ctx = self.get_context_data(formset=formset,
 basket=self.request.basket)
 return self.json_response(ctx, flash_messages)

 BasketMessageGenerator().apply_messages(self.request, offers_before)

 return response

 def json_response(self, ctx, flash_messages):
 basket_html = render_to_string(
 'basket/partials/basket_content.html',
 RequestContext(self.request, ctx))
 payload = {
 'content_html': basket_html,
 'messages': flash_messages.as_dict()}
 return HttpResponse(json.dumps(payload),
 content_type="application/json")

 def move_line_to_saved_basket(self, line):
 saved_basket, _ = get_model('basket', 'basket').saved.get_or_create(
 owner=self.request.user)
 saved_basket.merge_line(line)

 def formset_invalid(self, formset):
 flash_messages = ajax.FlashMessages()
 flash_messages.warning(_(
 "Your basket couldn't be updated. "
 "Please correct any validation errors below."))

 if self.request.is_ajax():
 ctx = self.get_context_data(formset=formset,
 basket=self.request.basket)
 return self.json_response(ctx, flash_messages)

 flash_messages.apply_to_request(self.request)
 return super(BasketView, self).formset_invalid(formset)

[docs]class BasketAddView(FormView):
 """
 Handles the add-to-basket submissions, which are triggered from various
 parts of the site. The add-to-basket form is loaded into templates using
 a templatetag from module basket_tags.py.
 """
 form_class = AddToBasketForm
 product_model = get_model('catalogue', 'product')
 add_signal = signals.basket_addition
 http_method_names = ['post']

 def post(self, request, *args, **kwargs):
 self.product = shortcuts.get_object_or_404(
 self.product_model, pk=kwargs['pk'])
 return super(BasketAddView, self).post(request, *args, **kwargs)

 def get_form_kwargs(self):
 kwargs = super(BasketAddView, self).get_form_kwargs()
 kwargs['basket'] = self.request.basket
 kwargs['product'] = self.product
 return kwargs

 def form_invalid(self, form):
 msgs = []
 for error in form.errors.values():
 msgs.append(error.as_text())
 clean_msgs = [m.replace('* ', '') for m in msgs if m.startswith('* ')]
 messages.error(self.request, ",".join(clean_msgs))

 return redirect_to_referrer(self.request, 'basket:summary')

 def form_valid(self, form):
 offers_before = self.request.basket.applied_offers()

 self.request.basket.add_product(
 form.product, form.cleaned_data['quantity'],
 form.cleaned_options())

 messages.success(self.request, self.get_success_message(form),
 extra_tags='safe noicon')

 # Check for additional offer messages
 BasketMessageGenerator().apply_messages(self.request, offers_before)

 # Send signal for basket addition
 self.add_signal.send(
 sender=self, product=form.product, user=self.request.user,
 request=self.request)

 return super(BasketAddView, self).form_valid(form)

 def get_success_message(self, form):
 return render_to_string(
 'basket/messages/addition.html',
 {'product': form.product,
 'quantity': form.cleaned_data['quantity']})

 def get_success_url(self):
 post_url = self.request.POST.get('next')
 if post_url and is_safe_url(post_url, self.request.get_host()):
 return post_url
 return safe_referrer(self.request, 'basket:summary')

class VoucherAddView(FormView):
 form_class = BasketVoucherForm
 voucher_model = get_model('voucher', 'voucher')
 add_signal = signals.voucher_addition

 def get(self, request, *args, **kwargs):
 return redirect('basket:summary')

 def apply_voucher_to_basket(self, voucher):
 if voucher.is_expired():
 messages.error(
 self.request,
 _("The '%(code)s' voucher has expired") % {
 'code': voucher.code})
 return

 if not voucher.is_active():
 messages.error(
 self.request,
 _("The '%(code)s' voucher is not active") % {
 'code': voucher.code})
 return

 is_available, message = voucher.is_available_to_user(self.request.user)
 if not is_available:
 messages.error(self.request, message)
 return

 self.request.basket.vouchers.add(voucher)

 # Raise signal
 self.add_signal.send(
 sender=self, basket=self.request.basket, voucher=voucher)

 # Recalculate discounts to see if the voucher gives any
 Applicator().apply(self.request.basket, self.request.user,
 self.request)
 discounts_after = self.request.basket.offer_applications

 # Look for discounts from this new voucher
 found_discount = False
 for discount in discounts_after:
 if discount['voucher'] and discount['voucher'] == voucher:
 found_discount = True
 break
 if not found_discount:
 messages.warning(
 self.request,
 _("Your basket does not qualify for a voucher discount"))
 self.request.basket.vouchers.remove(voucher)
 else:
 messages.info(
 self.request,
 _("Voucher '%(code)s' added to basket") % {
 'code': voucher.code})

 def form_valid(self, form):
 code = form.cleaned_data['code']
 if not self.request.basket.id:
 return redirect_to_referrer(self.request, 'basket:summary')
 if self.request.basket.contains_voucher(code):
 messages.error(
 self.request,
 _("You have already added the '%(code)s' voucher to "
 "your basket") % {'code': code})
 else:
 try:
 voucher = self.voucher_model._default_manager.get(code=code)
 except self.voucher_model.DoesNotExist:
 messages.error(
 self.request,
 _("No voucher found with code '%(code)s'") % {
 'code': code})
 else:
 self.apply_voucher_to_basket(voucher)
 return redirect_to_referrer(self.request, 'basket:summary')

 def form_invalid(self, form):
 messages.error(self.request, _("Please enter a voucher code"))
 return redirect(reverse('basket:summary') + '#voucher')

class VoucherRemoveView(View):
 voucher_model = get_model('voucher', 'voucher')
 remove_signal = signals.voucher_removal
 http_method_names = ['post']

 def post(self, request, *args, **kwargs):
 response = redirect('basket:summary')

 voucher_id = kwargs['pk']
 if not request.basket.id:
 # Hacking attempt - the basket must be saved for it to have
 # a voucher in it.
 return response
 try:
 voucher = request.basket.vouchers.get(id=voucher_id)
 except ObjectDoesNotExist:
 messages.error(
 request, _("No voucher found with id '%d'") % voucher_id)
 else:
 request.basket.vouchers.remove(voucher)
 self.remove_signal.send(
 sender=self, basket=request.basket, voucher=voucher)
 messages.info(
 request, _("Voucher '%s' removed from basket") % voucher.code)

 return response

class SavedView(ModelFormSetView):
 model = get_model('basket', 'line')
 basket_model = get_model('basket', 'basket')
 formset_class = SavedLineFormSet
 form_class = SavedLineForm
 extra = 0
 can_delete = True

 def get(self, request, *args, **kwargs):
 return redirect('basket:summary')

 def get_queryset(self):
 try:
 saved_basket = self.basket_model.saved.get(owner=self.request.user)
 saved_basket.strategy = self.request.strategy
 return saved_basket.all_lines()
 except self.basket_model.DoesNotExist:
 return []

 def get_success_url(self):
 return safe_referrer(self.request, 'basket:summary')

 def get_formset_kwargs(self):
 kwargs = super(SavedView, self).get_formset_kwargs()
 kwargs['prefix'] = 'saved'
 kwargs['basket'] = self.request.basket
 kwargs['strategy'] = self.request.strategy
 return kwargs

 def formset_valid(self, formset):
 offers_before = self.request.basket.applied_offers()

 is_move = False
 for form in formset:
 if form.cleaned_data.get('move_to_basket', False):
 is_move = True
 msg = render_to_string(
 'basket/messages/line_restored.html',
 {'line': form.instance})
 messages.info(self.request, msg, extra_tags='safe noicon')
 real_basket = self.request.basket
 real_basket.merge_line(form.instance)

 if is_move:
 # As we're changing the basket, we need to check if it qualifies
 # for any new offers.
 BasketMessageGenerator().apply_messages(self.request, offers_before)
 response = redirect(self.get_success_url())
 else:
 response = super(SavedView, self).formset_valid(formset)
 return response

 def formset_invalid(self, formset):
 messages.error(
 self.request,
 '\n'.join(
 error for ed in formset.errors for el
 in ed.values() for error in el))
 return redirect_to_referrer(self.request, 'basket:summary')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/basket/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.basket.abstract_models

import zlib
from decimal import Decimal as D

from django.conf import settings
from django.core.exceptions import ObjectDoesNotExist, PermissionDenied
from django.db import models
from django.db.models import Sum
from django.utils.encoding import python_2_unicode_compatible, smart_text
from django.utils.timezone import now
from django.utils.translation import ugettext_lazy as _

from oscar.apps.basket.managers import OpenBasketManager, SavedBasketManager
from oscar.apps.offer import results
from oscar.apps.partner import availability
from oscar.core.compat import AUTH_USER_MODEL
from oscar.core.utils import get_default_currency
from oscar.models.fields.slugfield import SlugField
from oscar.templatetags.currency_filters import currency

@python_2_unicode_compatible
[docs]class AbstractBasket(models.Model):
 """
 Basket object
 """
 # Baskets can be anonymously owned - hence this field is nullable. When a
 # anon user signs in, their two baskets are merged.
 owner = models.ForeignKey(
 AUTH_USER_MODEL, related_name='baskets', null=True,
 verbose_name=_("Owner"))

 # Basket statuses
 # - Frozen is for when a basket is in the process of being submitted
 # and we need to prevent any changes to it.
 OPEN, MERGED, SAVED, FROZEN, SUBMITTED = (
 "Open", "Merged", "Saved", "Frozen", "Submitted")
 STATUS_CHOICES = (
 (OPEN, _("Open - currently active")),
 (MERGED, _("Merged - superceded by another basket")),
 (SAVED, _("Saved - for items to be purchased later")),
 (FROZEN, _("Frozen - the basket cannot be modified")),
 (SUBMITTED, _("Submitted - has been ordered at the checkout")),
)
 status = models.CharField(
 _("Status"), max_length=128, default=OPEN, choices=STATUS_CHOICES)

 # A basket can have many vouchers attached to it. However, it is common
 # for sites to only allow one voucher per basket - this will need to be
 # enforced in the project's codebase.
 vouchers = models.ManyToManyField(
 'voucher.Voucher', verbose_name=_("Vouchers"), blank=True)

 date_created = models.DateTimeField(_("Date created"), auto_now_add=True)
 date_merged = models.DateTimeField(_("Date merged"), null=True, blank=True)
 date_submitted = models.DateTimeField(_("Date submitted"), null=True,
 blank=True)

 # Only if a basket is in one of these statuses can it be edited
 editable_statuses = (OPEN, SAVED)

 class Meta:
 abstract = True
 app_label = 'basket'
 verbose_name = _('Basket')
 verbose_name_plural = _('Baskets')

 objects = models.Manager()
 open = OpenBasketManager()
 saved = SavedBasketManager()

 def __init__(self, *args, **kwargs):
 super(AbstractBasket, self).__init__(*args, **kwargs)

 # We keep a cached copy of the basket lines as we refer to them often
 # within the same request cycle. Also, applying offers will append
 # discount data to the basket lines which isn't persisted to the DB and
 # so we want to avoid reloading them as this would drop the discount
 # information.
 self._lines = None
 self.offer_applications = results.OfferApplications()

 def __str__(self):
 return _(
 u"%(status)s basket (owner: %(owner)s, lines: %(num_lines)d)") \
 % {'status': self.status,
 'owner': self.owner,
 'num_lines': self.num_lines}

 # ========
 # Strategy
 # ========

 @property
 def has_strategy(self):
 return hasattr(self, '_strategy')

 def _get_strategy(self):
 if not self.has_strategy:
 raise RuntimeError(
 "No strategy class has been assigned to this basket. "
 "This is normally assigned to the incoming request in "
 "oscar.apps.basket.middleware.BasketMiddleware. "
 "Since it is missing, you must be doing something different. "
 "Ensure that a strategy instance is assigned to the basket!"
)
 return self._strategy

 def _set_strategy(self, strategy):
 self._strategy = strategy

 strategy = property(_get_strategy, _set_strategy)

[docs] def all_lines(self):
 """
 Return a cached set of basket lines.

 This is important for offers as they alter the line models and you
 don't want to reload them from the DB as that information would be
 lost.
 """
 if self.id is None:
 return self.lines.none()
 if self._lines is None:
 self._lines = (
 self.lines
 .select_related('product', 'stockrecord')
 .prefetch_related(
 'attributes', 'product__images')
 .order_by(self._meta.pk.name))
 return self._lines

[docs] def is_quantity_allowed(self, qty):
 """
 Test whether the passed quantity of items can be added to the basket
 """
 # We enfore a max threshold to prevent a DOS attack via the offers
 # system.
 basket_threshold = settings.OSCAR_MAX_BASKET_QUANTITY_THRESHOLD
 if basket_threshold:
 total_basket_quantity = self.num_items
 max_allowed = basket_threshold - total_basket_quantity
 if qty > max_allowed:
 return False, _(
 "Due to technical limitations we are not able "
 "to ship more than %(threshold)d items in one order.") \
 % {'threshold': basket_threshold}
 return True, None

 # ============
 # Manipulation
 # ============

[docs] def flush(self):
 """
 Remove all lines from basket.
 """
 if self.status == self.FROZEN:
 raise PermissionDenied("A frozen basket cannot be flushed")
 self.lines.all().delete()
 self._lines = None

[docs] def add_product(self, product, quantity=1, options=None):
 """
 Add a product to the basket

 'stock_info' is the price and availability data returned from
 a partner strategy class.

 The 'options' list should contains dicts with keys 'option' and 'value'
 which link the relevant product.Option model and string value
 respectively.

 Returns (line, created).
 line: the matching basket line
 created: whether the line was created or updated

 """
 if options is None:
 options = []
 if not self.id:
 self.save()

 # Ensure that all lines are the same currency
 price_currency = self.currency
 stock_info = self.strategy.fetch_for_product(product)
 if price_currency and stock_info.price.currency != price_currency:
 raise ValueError((
 "Basket lines must all have the same currency. Proposed "
 "line has currency %s, while basket has currency %s")
 % (stock_info.price.currency, price_currency))

 if stock_info.stockrecord is None:
 raise ValueError((
 "Basket lines must all have stock records. Strategy hasn't "
 "found any stock record for product %s") % product)

 # Line reference is used to distinguish between variations of the same
 # product (eg T-shirts with different personalisations)
 line_ref = self._create_line_reference(
 product, stock_info.stockrecord, options)

 # Determine price to store (if one exists). It is only stored for
 # audit and sometimes caching.
 defaults = {
 'quantity': quantity,
 'price_excl_tax': stock_info.price.excl_tax,
 'price_currency': stock_info.price.currency,
 }
 if stock_info.price.is_tax_known:
 defaults['price_incl_tax'] = stock_info.price.incl_tax

 line, created = self.lines.get_or_create(
 line_reference=line_ref,
 product=product,
 stockrecord=stock_info.stockrecord,
 defaults=defaults)
 if created:
 for option_dict in options:
 line.attributes.create(option=option_dict['option'],
 value=option_dict['value'])
 else:
 line.quantity = max(0, line.quantity + quantity)
 line.save()
 self.reset_offer_applications()

 # Returning the line is useful when overriding this method.
 return line, created

 add_product.alters_data = True
 add = add_product

[docs] def applied_offers(self):
 """
 Return a dict of offers successfully applied to the basket.

 This is used to compare offers before and after a basket change to see
 if there is a difference.
 """
 return self.offer_applications.offers

[docs] def reset_offer_applications(self):
 """
 Remove any discounts so they get recalculated
 """
 self.offer_applications = results.OfferApplications()
 self._lines = None

[docs] def merge_line(self, line, add_quantities=True):
 """
 For transferring a line from another basket to this one.

 This is used with the "Saved" basket functionality.
 """
 try:
 existing_line = self.lines.get(line_reference=line.line_reference)
 except ObjectDoesNotExist:
 # Line does not already exist - reassign its basket
 line.basket = self
 line.save()
 else:
 # Line already exists - assume the max quantity is correct and
 # delete the old
 if add_quantities:
 existing_line.quantity += line.quantity
 else:
 existing_line.quantity = max(existing_line.quantity,
 line.quantity)
 existing_line.save()
 line.delete()
 finally:
 self._lines = None

 merge_line.alters_data = True

[docs] def merge(self, basket, add_quantities=True):
 """
 Merges another basket with this one.

 :basket: The basket to merge into this one.
 :add_quantities: Whether to add line quantities when they are merged.
 """
 # Use basket.lines.all instead of all_lines as this function is called
 # before a strategy has been assigned.
 for line_to_merge in basket.lines.all():
 self.merge_line(line_to_merge, add_quantities)
 basket.status = self.MERGED
 basket.date_merged = now()
 basket._lines = None
 basket.save()
 # Ensure all vouchers are moved to the new basket
 for voucher in basket.vouchers.all():
 basket.vouchers.remove(voucher)
 self.vouchers.add(voucher)

 merge.alters_data = True

[docs] def freeze(self):
 """
 Freezes the basket so it cannot be modified.
 """
 self.status = self.FROZEN
 self.save()

 freeze.alters_data = True

[docs] def thaw(self):
 """
 Unfreezes a basket so it can be modified again
 """
 self.status = self.OPEN
 self.save()

 thaw.alters_data = True

[docs] def submit(self):
 """
 Mark this basket as submitted
 """
 self.status = self.SUBMITTED
 self.date_submitted = now()
 self.save()

 submit.alters_data = True

 # Kept for backwards compatibility
 set_as_submitted = submit

[docs] def is_shipping_required(self):
 """
 Test whether the basket contains physical products that require
 shipping.
 """
 for line in self.all_lines():
 if line.product.is_shipping_required:
 return True
 return False

 # =======
 # Helpers
 # =======

 def _create_line_reference(self, product, stockrecord, options):
 """
 Returns a reference string for a line based on the item
 and its options.
 """
 base = '%s_%s' % (product.id, stockrecord.id)
 if not options:
 return base
 repr_options = [{'option': repr(option['option']),
 'value': repr(option['value'])} for option in options]
 return "%s_%s" % (base, zlib.crc32(repr(repr_options).encode('utf8')))

 def _get_total(self, property):
 """
 For executing a named method on each line of the basket
 and returning the total.
 """
 total = D('0.00')
 for line in self.all_lines():
 try:
 total += getattr(line, property)
 except ObjectDoesNotExist:
 # Handle situation where the product may have been deleted
 pass
 except TypeError:
 # Handle Unavailable products with no known price
 info = self.strategy.fetch_for_product(line.product)
 if info.availability.is_available_to_buy:
 raise
 pass
 return total

 # ==========
 # Properties
 # ==========

 @property
 def is_empty(self):
 """
 Test if this basket is empty
 """
 return self.id is None or self.num_lines == 0

 @property
 def is_tax_known(self):
 """
 Test if tax values are known for this basket
 """
 return all([line.is_tax_known for line in self.all_lines()])

 @property
 def total_excl_tax(self):
 """
 Return total line price excluding tax
 """
 return self._get_total('line_price_excl_tax_incl_discounts')

 @property
 def total_tax(self):
 """Return total tax for a line"""
 return self._get_total('line_tax')

 @property
 def total_incl_tax(self):
 """
 Return total price inclusive of tax and discounts
 """
 return self._get_total('line_price_incl_tax_incl_discounts')

 @property
 def total_incl_tax_excl_discounts(self):
 """
 Return total price inclusive of tax but exclusive discounts
 """
 return self._get_total('line_price_incl_tax')

 @property
 def total_discount(self):
 return self._get_total('discount_value')

 @property
 def offer_discounts(self):
 """
 Return basket discounts from non-voucher sources. Does not include
 shipping discounts.
 """
 return self.offer_applications.offer_discounts

 @property
 def voucher_discounts(self):
 """
 Return discounts from vouchers
 """
 return self.offer_applications.voucher_discounts

 @property
 def has_shipping_discounts(self):
 return len(self.shipping_discounts) > 0

 @property
 def shipping_discounts(self):
 """
 Return discounts from vouchers
 """
 return self.offer_applications.shipping_discounts

 @property
 def post_order_actions(self):
 """
 Return discounts from vouchers
 """
 return self.offer_applications.post_order_actions

 @property
 def grouped_voucher_discounts(self):
 """
 Return discounts from vouchers but grouped so that a voucher which
 links to multiple offers is aggregated into one object.
 """
 return self.offer_applications.grouped_voucher_discounts

 @property
 def total_excl_tax_excl_discounts(self):
 """
 Return total price excluding tax and discounts
 """
 return self._get_total('line_price_excl_tax')

 @property
 def num_lines(self):
 """Return number of lines"""
 return self.all_lines().count()

 @property
 def num_items(self):
 """Return number of items"""
 return sum(line.quantity for line in self.lines.all())

 @property
 def num_items_without_discount(self):
 num = 0
 for line in self.all_lines():
 num += line.quantity_without_discount
 return num

 @property
 def num_items_with_discount(self):
 num = 0
 for line in self.all_lines():
 num += line.quantity_with_discount
 return num

 @property
 def time_before_submit(self):
 if not self.date_submitted:
 return None
 return self.date_submitted - self.date_created

 @property
 def time_since_creation(self, test_datetime=None):
 if not test_datetime:
 test_datetime = now()
 return test_datetime - self.date_created

 @property
 def contains_a_voucher(self):
 if not self.id:
 return False
 return self.vouchers.exists()

 @property
 def is_submitted(self):
 return self.status == self.SUBMITTED

 @property
 def can_be_edited(self):
 """
 Test if a basket can be edited
 """
 return self.status in self.editable_statuses

 @property
 def currency(self):
 # Since all lines should have the same currency, return the currency of
 # the first one found.
 for line in self.all_lines():
 return line.price_currency

 # =============
 # Query methods
 # =============

[docs] def contains_voucher(self, code):
 """
 Test whether the basket contains a voucher with a given code
 """
 if self.id is None:
 return False
 try:
 self.vouchers.get(code=code)
 except ObjectDoesNotExist:
 return False
 else:
 return True

[docs] def product_quantity(self, product):
 """
 Return the quantity of a product in the basket

 The basket can contain multiple lines with the same product, but
 different options and stockrecords. Those quantities are summed up.
 """
 matching_lines = self.lines.filter(product=product)
 quantity = matching_lines.aggregate(Sum('quantity'))['quantity__sum']
 return quantity or 0

[docs] def line_quantity(self, product, stockrecord, options=None):
 """
 Return the current quantity of a specific product and options
 """
 ref = self._create_line_reference(product, stockrecord, options)
 try:
 return self.lines.get(line_reference=ref).quantity
 except ObjectDoesNotExist:
 return 0

@python_2_unicode_compatible
[docs]class AbstractLine(models.Model):
 """
 A line of a basket (product and a quantity)

 Common approaches on ordering basket lines:
 a) First added at top. That's the history-like approach; new items are
 added to the bottom of the list. Changing quantities doesn't impact
 position.
 Oscar does this by default. It just sorts by Line.pk, which is
 guaranteed to increment after each creation.
 b) Last modified at top. That means items move to the top when you add
 another one, and new items are added to the top as well.
 Amazon mostly does this, but doesn't change the position when you
 update the quantity in the basket view.
 To get this behaviour, add a date_updated field, change
 Meta.ordering and optionally do something similar on wishlist lines.
 Order lines should already be created in the order of the basket lines,
 and are sorted by their primary key, so no changes should be necessary
 there.
 """
 basket = models.ForeignKey('basket.Basket', related_name='lines',
 verbose_name=_("Basket"))

 # This is to determine which products belong to the same line
 # We can't just use product.id as you can have customised products
 # which should be treated as separate lines. Set as a
 # SlugField as it is included in the path for certain views.
 line_reference = SlugField(
 _("Line Reference"), max_length=128, db_index=True)

 product = models.ForeignKey(
 'catalogue.Product', related_name='basket_lines',
 verbose_name=_("Product"))

 # We store the stockrecord that should be used to fulfil this line.
 stockrecord = models.ForeignKey(
 'partner.StockRecord', related_name='basket_lines')

 quantity = models.PositiveIntegerField(_('Quantity'), default=1)

 # We store the unit price incl tax of the product when it is first added to
 # the basket. This allows us to tell if a product has changed price since
 # a person first added it to their basket.
 price_currency = models.CharField(
 _("Currency"), max_length=12, default=get_default_currency)
 price_excl_tax = models.DecimalField(
 _('Price excl. Tax'), decimal_places=2, max_digits=12,
 null=True)
 price_incl_tax = models.DecimalField(
 _('Price incl. Tax'), decimal_places=2, max_digits=12, null=True)

 # Track date of first addition
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 def __init__(self, *args, **kwargs):
 super(AbstractLine, self).__init__(*args, **kwargs)
 # Instance variables used to persist discount information
 self._discount_excl_tax = D('0.00')
 self._discount_incl_tax = D('0.00')
 self._affected_quantity = 0

 class Meta:
 abstract = True
 app_label = 'basket'
 # Enforce sorting by order of creation.
 ordering = ['date_created', 'pk']
 unique_together = ("basket", "line_reference")
 verbose_name = _('Basket line')
 verbose_name_plural = _('Basket lines')

 def __str__(self):
 return _(
 u"Basket #%(basket_id)d, Product #%(product_id)d, quantity"
 u" %(quantity)d") % {'basket_id': self.basket.pk,
 'product_id': self.product.pk,
 'quantity': self.quantity}

 def save(self, *args, **kwargs):
 if not self.basket.can_be_edited:
 raise PermissionDenied(
 _("You cannot modify a %s basket") % (
 self.basket.status.lower(),))
 return super(AbstractLine, self).save(*args, **kwargs)

 # =============
 # Offer methods
 # =============

[docs] def clear_discount(self):
 """
 Remove any discounts from this line.
 """
 self._discount_excl_tax = D('0.00')
 self._discount_incl_tax = D('0.00')
 self._affected_quantity = 0

[docs] def discount(self, discount_value, affected_quantity, incl_tax=True):
 """
 Apply a discount to this line
 """
 if incl_tax:
 if self._discount_excl_tax > 0:
 raise RuntimeError(
 "Attempting to discount the tax-inclusive price of a line "
 "when tax-exclusive discounts are already applied")
 self._discount_incl_tax += discount_value
 else:
 if self._discount_incl_tax > 0:
 raise RuntimeError(
 "Attempting to discount the tax-exclusive price of a line "
 "when tax-inclusive discounts are already applied")
 self._discount_excl_tax += discount_value
 self._affected_quantity += int(affected_quantity)

[docs] def consume(self, quantity):
 """
 Mark all or part of the line as 'consumed'

 Consumed items are no longer available to be used in offers.
 """
 if quantity > self.quantity - self._affected_quantity:
 inc = self.quantity - self._affected_quantity
 else:
 inc = quantity
 self._affected_quantity += int(inc)

[docs] def get_price_breakdown(self):
 """
 Return a breakdown of line prices after discounts have been applied.

 Returns a list of (unit_price_incl_tax, unit_price_excl_tax, quantity)
 tuples.
 """
 if not self.is_tax_known:
 raise RuntimeError("A price breakdown can only be determined "
 "when taxes are known")
 prices = []
 if not self.discount_value:
 prices.append((self.unit_price_incl_tax, self.unit_price_excl_tax,
 self.quantity))
 else:
 # Need to split the discount among the affected quantity
 # of products.
 item_incl_tax_discount = (
 self.discount_value / int(self._affected_quantity))
 item_excl_tax_discount = item_incl_tax_discount * self._tax_ratio
 item_excl_tax_discount = item_excl_tax_discount.quantize(D('0.01'))
 prices.append((self.unit_price_incl_tax - item_incl_tax_discount,
 self.unit_price_excl_tax - item_excl_tax_discount,
 self._affected_quantity))
 if self.quantity_without_discount:
 prices.append((self.unit_price_incl_tax,
 self.unit_price_excl_tax,
 self.quantity_without_discount))
 return prices

 # =======
 # Helpers
 # =======

 @property
 def _tax_ratio(self):
 if not self.unit_price_incl_tax:
 return 0
 return self.unit_price_excl_tax / self.unit_price_incl_tax

 # ==========
 # Properties
 # ==========

 @property
 def has_discount(self):
 return self.quantity > self.quantity_without_discount

 @property
 def quantity_with_discount(self):
 return self._affected_quantity

 @property
 def quantity_without_discount(self):
 return int(self.quantity - self._affected_quantity)

 @property
 def is_available_for_discount(self):
 return self.quantity_without_discount > 0

 @property
 def discount_value(self):
 # Only one of the incl- and excl- discounts should be non-zero
 return max(self._discount_incl_tax, self._discount_excl_tax)

 @property
 def purchase_info(self):
 """
 Return the stock/price info
 """
 if not hasattr(self, '_info'):
 # Cache the PurchaseInfo instance.
 self._info = self.basket.strategy.fetch_for_line(
 self, self.stockrecord)
 return self._info

 @property
 def is_tax_known(self):
 return self.purchase_info.price.is_tax_known

 @property
 def unit_effective_price(self):
 """
 The price to use for offer calculations
 """
 return self.purchase_info.price.effective_price

 @property
 def unit_price_excl_tax(self):
 return self.purchase_info.price.excl_tax

 @property
 def unit_price_incl_tax(self):
 return self.purchase_info.price.incl_tax

 @property
 def unit_tax(self):
 return self.purchase_info.price.tax

 @property
 def line_price_excl_tax(self):
 return self.quantity * self.unit_price_excl_tax

 @property
 def line_price_excl_tax_incl_discounts(self):
 if self._discount_excl_tax:
 return self.line_price_excl_tax - self._discount_excl_tax
 if self._discount_incl_tax:
 # This is a tricky situation. We know the discount as calculated
 # against tax inclusive prices but we need to guess how much of the
 # discount applies to tax-exclusive prices. We do this by
 # assuming a linear tax and scaling down the original discount.
 return self.line_price_excl_tax \
 - self._tax_ratio * self._discount_incl_tax
 return self.line_price_excl_tax

 @property
 def line_price_incl_tax_incl_discounts(self):
 # We use whichever discount value is set. If the discount value was
 # calculated against the tax-exclusive prices, then the line price
 # including tax
 return self.line_price_incl_tax - self.discount_value

 @property
 def line_tax(self):
 return self.quantity * self.unit_tax

 @property
 def line_price_incl_tax(self):
 return self.quantity * self.unit_price_incl_tax

 @property
 def description(self):
 d = smart_text(self.product)
 ops = []
 for attribute in self.attributes.all():
 ops.append("%s = '%s'" % (attribute.option.name, attribute.value))
 if ops:
 d = "%s (%s)" % (d, ", ".join(ops))
 return d

[docs] def get_warning(self):
 """
 Return a warning message about this basket line if one is applicable

 This could be things like the price has changed
 """
 if isinstance(self.purchase_info.availability, availability.Unavailable):
 msg = u"'%(product)s' is no longer available"
 return _(msg) % {'product': self.product.get_title()}

 if not self.price_incl_tax:
 return
 if not self.purchase_info.price.is_tax_known:
 return

 # Compare current price to price when added to basket
 current_price_incl_tax = self.purchase_info.price.incl_tax
 if current_price_incl_tax != self.price_incl_tax:
 product_prices = {
 'product': self.product.get_title(),
 'old_price': currency(self.price_incl_tax),
 'new_price': currency(current_price_incl_tax)
 }
 if current_price_incl_tax > self.price_incl_tax:
 warning = _("The price of '%(product)s' has increased from"
 " %(old_price)s to %(new_price)s since you added"
 " it to your basket")
 return warning % product_prices
 else:
 warning = _("The price of '%(product)s' has decreased from"
 " %(old_price)s to %(new_price)s since you added"
 " it to your basket")
 return warning % product_prices

[docs]class AbstractLineAttribute(models.Model):
 """
 An attribute of a basket line
 """
 line = models.ForeignKey('basket.Line', related_name='attributes',
 verbose_name=_("Line"))
 option = models.ForeignKey('catalogue.Option', verbose_name=_("Option"))
 value = models.CharField(_("Value"), max_length=255)

 class Meta:
 abstract = True
 app_label = 'basket'
 verbose_name = _('Line attribute')
 verbose_name_plural = _('Line attributes')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/promotions/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.promotions.views

from django.core.urlresolvers import reverse
from django.views.generic import RedirectView, TemplateView

[docs]class HomeView(TemplateView):
 """
 This is the home page and will typically live at /
 """
 template_name = 'promotions/home.html'

[docs]class RecordClickView(RedirectView):
 """
 Simple RedirectView that helps recording clicks made on promotions
 """
 permanent = False
 model = None

 def get_redirect_url(self, **kwargs):
 try:
 prom = self.model.objects.get(pk=kwargs['pk'])
 except self.model.DoesNotExist:
 return reverse('promotions:home')

 if prom.promotion.has_link:
 prom.record_click()
 return prom.link_url
 return reverse('promotions:home')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/promotions/models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.promotions.models

from django.conf import settings
from django.contrib.contenttypes import fields
from django.contrib.contenttypes.models import ContentType
from django.core.urlresolvers import reverse
from django.db import models
from django.utils.encoding import python_2_unicode_compatible
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import pgettext_lazy

from oscar.core.loading import get_model
from oscar.models.fields import ExtendedURLField

Linking models - these link promotions to content (eg pages, or keywords)

class LinkedPromotion(models.Model):

 # We use generic foreign key to link to a promotion model
 content_type = models.ForeignKey(ContentType)
 object_id = models.PositiveIntegerField()
 content_object = fields.GenericForeignKey('content_type', 'object_id')

 position = models.CharField(_("Position"), max_length=100,
 help_text="Position on page")
 display_order = models.PositiveIntegerField(_("Display Order"), default=0)
 clicks = models.PositiveIntegerField(_("Clicks"), default=0)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'promotions'
 ordering = ['-clicks']
 verbose_name = _("Linked Promotion")
 verbose_name_plural = _("Linked Promotions")

 def record_click(self):
 self.clicks += 1
 self.save()
 record_click.alters_data = True

@python_2_unicode_compatible
[docs]class PagePromotion(LinkedPromotion):
 """
 A promotion embedded on a particular page.
 """
 page_url = ExtendedURLField(
 _('Page URL'), max_length=128, db_index=True, verify_exists=True)

 def __str__(self):
 return u"%s on %s" % (self.content_object, self.page_url)

 def get_link(self):
 return reverse('promotions:page-click',
 kwargs={'page_promotion_id': self.id})

 class Meta(LinkedPromotion.Meta):
 verbose_name = _("Page Promotion")
 verbose_name_plural = _("Page Promotions")

[docs]class KeywordPromotion(LinkedPromotion):
 """
 A promotion linked to a specific keyword.

 This can be used on a search results page to show promotions
 linked to a particular keyword.
 """

 keyword = models.CharField(_("Keyword"), max_length=200)

 # We allow an additional filter which will let search query matches
 # be restricted to different parts of the site.
 filter = models.CharField(_("Filter"), max_length=200, blank=True)

 def get_link(self):
 return reverse('promotions:keyword-click',
 kwargs={'keyword_promotion_id': self.id})

 class Meta(LinkedPromotion.Meta):
 verbose_name = _("Keyword Promotion")
 verbose_name_plural = _("Keyword Promotions")

 # Different model types for each type of promotion

[docs]class AbstractPromotion(models.Model):
 """
 Abstract base promotion that defines the interface
 that subclasses must implement.
 """
 _type = 'Promotion'
 keywords = fields.GenericRelation(KeywordPromotion,
 verbose_name=_('Keywords'))
 pages = fields.GenericRelation(PagePromotion, verbose_name=_('Pages'))

 class Meta:
 abstract = True
 app_label = 'promotions'
 verbose_name = _("Promotion")
 verbose_name_plural = _("Promotions")

 @property
 def type(self):
 return _(self._type)

 @classmethod
 def classname(cls):
 return cls.__name__.lower()

 @property
 def code(self):
 return self.__class__.__name__.lower()

[docs] def template_name(self):
 """
 Returns the template to use to render this promotion.
 """
 return 'promotions/%s.html' % self.code

 def template_context(self, request):
 return {}

 @property
 def content_type(self):
 return ContentType.objects.get_for_model(self)

 @property
 def num_times_used(self):
 ctype = self.content_type
 page_count = PagePromotion.objects.filter(content_type=ctype,
 object_id=self.id).count()
 keyword_count \
 = KeywordPromotion.objects.filter(content_type=ctype,
 object_id=self.id).count()
 return page_count + keyword_count

@python_2_unicode_compatible
[docs]class RawHTML(AbstractPromotion):
 """
 Simple promotion - just raw HTML
 """
 _type = 'Raw HTML'
 name = models.CharField(_("Name"), max_length=128)

 # Used to determine how to render the promotion (eg
 # if a different width container is required). This isn't always
 # required.
 display_type = models.CharField(
 _("Display type"), max_length=128, blank=True,
 help_text=_("This can be used to have different types of HTML blocks"
 " (eg different widths)"))
 body = models.TextField(_("HTML"))
 date_created = models.DateTimeField(auto_now_add=True)

 class Meta:
 app_label = 'promotions'
 verbose_name = _('Raw HTML')
 verbose_name_plural = _('Raw HTML')

 def __str__(self):
 return self.name

@python_2_unicode_compatible
[docs]class Image(AbstractPromotion):
 """
 An image promotion is simply a named image which has an optional
 link to another part of the site (or another site).

 This can be used to model both banners and pods.
 """
 _type = 'Image'
 name = models.CharField(_("Name"), max_length=128)
 link_url = ExtendedURLField(
 _('Link URL'), blank=True,
 help_text=_('This is where this promotion links to'))
 image = models.ImageField(
 _('Image'), upload_to=settings.OSCAR_PROMOTION_FOLDER,
 max_length=255)
 date_created = models.DateTimeField(auto_now_add=True)

 def __str__(self):
 return self.name

 class Meta:
 app_label = 'promotions'
 verbose_name = _("Image")
 verbose_name_plural = _("Image")

@python_2_unicode_compatible
[docs]class MultiImage(AbstractPromotion):
 """
 A multi-image promotion is simply a collection of image promotions
 that are rendered in a specific way. This models things like
 rotating banners.
 """
 _type = 'Multi-image'
 name = models.CharField(_("Name"), max_length=128)
 images = models.ManyToManyField(
 'promotions.Image', blank=True,
 help_text=_(
 "Choose the Image content blocks that this block will use. "
 "(You may need to create some first)."))
 date_created = models.DateTimeField(auto_now_add=True)

 def __str__(self):
 return self.name

 class Meta:
 app_label = 'promotions'
 verbose_name = _("Multi Image")
 verbose_name_plural = _("Multi Images")

@python_2_unicode_compatible
[docs]class SingleProduct(AbstractPromotion):
 _type = 'Single product'
 name = models.CharField(_("Name"), max_length=128)
 product = models.ForeignKey('catalogue.Product')
 description = models.TextField(_("Description"), blank=True)
 date_created = models.DateTimeField(auto_now_add=True)

 def __str__(self):
 return self.name

 def template_context(self, request):
 return {'product': self.product}

 class Meta:
 app_label = 'promotions'
 verbose_name = _("Single product")
 verbose_name_plural = _("Single product")

@python_2_unicode_compatible
[docs]class AbstractProductList(AbstractPromotion):
 """
 Abstract superclass for promotions which are essentially a list
 of products.
 """
 name = models.CharField(
 pgettext_lazy(u"Promotion product list title", u"Title"),
 max_length=255)
 description = models.TextField(_("Description"), blank=True)
 link_url = ExtendedURLField(_('Link URL'), blank=True)
 link_text = models.CharField(_("Link text"), max_length=255, blank=True)
 date_created = models.DateTimeField(auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'promotions'
 verbose_name = _("Product list")
 verbose_name_plural = _("Product lists")

 def __str__(self):
 return self.name

 def template_context(self, request):
 return {'products': self.get_products()}

[docs]class HandPickedProductList(AbstractProductList):
 """
 A hand-picked product list is a list of manually selected
 products.
 """
 _type = 'Product list'
 products = models.ManyToManyField('catalogue.Product',
 through='OrderedProduct', blank=True,
 verbose_name=_("Products"))

 def get_queryset(self):
 return self.products.base_queryset()\
 .order_by('%s.display_order' % OrderedProduct._meta.db_table)

 def get_products(self):
 return self.get_queryset()

 class Meta:
 app_label = 'promotions'
 verbose_name = _("Hand Picked Product List")
 verbose_name_plural = _("Hand Picked Product Lists")

[docs]class OrderedProduct(models.Model):

 list = models.ForeignKey('promotions.HandPickedProductList',
 verbose_name=_("List"))
 product = models.ForeignKey('catalogue.Product', verbose_name=_("Product"))
 display_order = models.PositiveIntegerField(_('Display Order'), default=0)

 class Meta:
 app_label = 'promotions'
 ordering = ('display_order',)
 unique_together = ('list', 'product')
 verbose_name = _("Ordered product")
 verbose_name_plural = _("Ordered product")

[docs]class AutomaticProductList(AbstractProductList):

 _type = 'Auto-product list'
 BESTSELLING, RECENTLY_ADDED = ('Bestselling', 'RecentlyAdded')
 METHOD_CHOICES = (
 (BESTSELLING, _("Bestselling products")),
 (RECENTLY_ADDED, _("Recently added products")),
)
 method = models.CharField(_('Method'), max_length=128,
 choices=METHOD_CHOICES)
 num_products = models.PositiveSmallIntegerField(_('Number of Products'),
 default=4)

 def get_queryset(self):
 Product = get_model('catalogue', 'Product')
 qs = Product.browsable.base_queryset().select_related('stats')
 if self.method == self.BESTSELLING:
 return qs.order_by('-stats__score')
 return qs.order_by('-date_created')

 def get_products(self):
 return self.get_queryset()[:self.num_products]

 class Meta:
 app_label = 'promotions'
 verbose_name = _("Automatic product list")
 verbose_name_plural = _("Automatic product lists")

[docs]class OrderedProductList(HandPickedProductList):
 tabbed_block = models.ForeignKey('promotions.TabbedBlock',
 related_name='tabs',
 verbose_name=_("Tabbed Block"))
 display_order = models.PositiveIntegerField(_('Display Order'), default=0)

 class Meta:
 app_label = 'promotions'
 ordering = ('display_order',)
 verbose_name = _("Ordered Product List")
 verbose_name_plural = _("Ordered Product Lists")

[docs]class TabbedBlock(AbstractPromotion):

 _type = 'Tabbed block'
 name = models.CharField(
 pgettext_lazy(u"Tabbed block title", u"Title"), max_length=255)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 class Meta:
 app_label = 'promotions'
 verbose_name = _("Tabbed Block")
 verbose_name_plural = _("Tabbed Blocks")

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/shipping/methods.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.shipping.methods

from decimal import Decimal as D

from django.utils.translation import ugettext_lazy as _

from oscar.core import prices

[docs]class Base(object):
 """
 Shipping method interface class

 This is the superclass to the classes in methods.py, and a de-facto
 superclass to the classes in models.py. This allows using all
 shipping methods interchangeably (aka polymorphism).

 The interface is all properties.
 """

 #: Used to store this method in the session. Each shipping method should
 # have a unique code.
 code = '__default__'

 #: The name of the shipping method, shown to the customer during checkout
 name = 'Default shipping'

 #: A more detailed description of the shipping method shown to the customer
 # during checkout. Can contain HTML.
 description = ''

 #: Whether the charge includes a discount
 is_discounted = False

[docs] def calculate(self, basket):
 """
 Return the shipping charge for the given basket
 """
 raise NotImplemented()

[docs] def discount(self, basket):
 """
 Return the discount on the standard shipping charge
 """
 # The regular shipping methods don't add a default discount.
 # For offers and vouchers, the discount will be provided
 # by a wrapper that Repository.apply_shipping_offer() adds.
 return D('0.00')

[docs]class Free(Base):
 """
 This shipping method specifies that shipping is free.
 """
 code = 'free-shipping'
 name = _('Free shipping')

 def calculate(self, basket):
 # If the charge is free then tax must be free (musn't it?) and so we
 # immediately set the tax to zero
 return prices.Price(
 currency=basket.currency,
 excl_tax=D('0.00'), tax=D('0.00'))

[docs]class NoShippingRequired(Free):
 """
 This is a special shipping method that indicates that no shipping is
 actually required (eg for digital goods).
 """
 code = 'no-shipping-required'
 name = _('No shipping required')

[docs]class FixedPrice(Base):
 """
 This shipping method indicates that shipping costs a fixed price and
 requires no special calculation.
 """
 code = 'fixed-price-shipping'
 name = _('Fixed price shipping')

 # Charges can be either declared by subclassing and overriding the
 # class attributes or by passing them to the constructor
 charge_excl_tax = None
 charge_incl_tax = None

 def __init__(self, charge_excl_tax=None, charge_incl_tax=None):
 if charge_excl_tax is not None:
 self.charge_excl_tax = charge_excl_tax
 if charge_incl_tax is not None:
 self.charge_incl_tax = charge_incl_tax

 def calculate(self, basket):
 return prices.Price(
 currency=basket.currency,
 excl_tax=self.charge_excl_tax,
 incl_tax=self.charge_incl_tax)

[docs]class OfferDiscount(Base):
 """
 Wrapper class that applies a discount to an existing shipping
 method's charges.
 """
 is_discounted = True

 def __init__(self, method, offer):
 self.method = method
 self.offer = offer

 # Forwarded properties

 @property
 def code(self):
 return self.method.code

 @property
 def name(self):
 return self.method.name

 @property
 def discount_name(self):
 return self.offer.name

 @property
 def description(self):
 return self.method.description

 def calculate_excl_discount(self, basket):
 return self.method.calculate(basket)

[docs]class TaxExclusiveOfferDiscount(OfferDiscount):
 """
 Wrapper class which extends OfferDiscount to be exclusive of tax.
 """

 def calculate(self, basket):
 base_charge = self.method.calculate(basket)
 discount = self.offer.shipping_discount(base_charge.excl_tax)
 excl_tax = base_charge.excl_tax - discount
 return prices.Price(
 currency=base_charge.currency,
 excl_tax=excl_tax)

 def discount(self, basket):
 base_charge = self.method.calculate(basket)
 return self.offer.shipping_discount(base_charge.excl_tax)

[docs]class TaxInclusiveOfferDiscount(OfferDiscount):
 """
 Wrapper class which extends OfferDiscount to be inclusive of tax.
 """

 def calculate(self, basket):
 base_charge = self.method.calculate(basket)
 discount = self.offer.shipping_discount(base_charge.incl_tax)
 incl_tax = base_charge.incl_tax - discount
 excl_tax = self.calculate_excl_tax(base_charge, incl_tax)
 return prices.Price(
 currency=base_charge.currency,
 excl_tax=excl_tax, incl_tax=incl_tax)

[docs] def calculate_excl_tax(self, base_charge, incl_tax):
 """
 Return the charge excluding tax (but including discount).
 """
 if incl_tax == D('0.00'):
 return D('0.00')
 # We assume we can linearly scale down the excl tax price before
 # discount.
 excl_tax = base_charge.excl_tax * (
 incl_tax / base_charge.incl_tax)
 return excl_tax.quantize(D('0.01'))

 def discount(self, basket):
 base_charge = self.method.calculate(basket)
 return self.offer.shipping_discount(base_charge.incl_tax)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/shipping/models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.shipping.models

from oscar.apps.shipping import abstract_models
from oscar.core.loading import is_model_registered

__all__ = []

if not is_model_registered('shipping', 'OrderAndItemCharges'):
[docs] class OrderAndItemCharges(abstract_models.AbstractOrderAndItemCharges):
 pass

 __all__.append('OrderAndItemCharges')

if not is_model_registered('shipping', 'WeightBased'):
[docs] class WeightBased(abstract_models.AbstractWeightBased):
 pass

 __all__.append('WeightBased')

if not is_model_registered('shipping', 'WeightBand'):
[docs] class WeightBand(abstract_models.AbstractWeightBand):
 pass

 __all__.append('WeightBand')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/offer/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.offer.abstract_models

import itertools
import operator
import os
import re
from decimal import Decimal as D
from decimal import ROUND_DOWN

from django.conf import settings
from django.core import exceptions
from django.core.urlresolvers import reverse
from django.db import models
from django.db.models.query import Q
from django.template.defaultfilters import date as date_filter
from django.utils.encoding import python_2_unicode_compatible
from django.utils.functional import cached_property
from django.utils.timezone import get_current_timezone, now
from django.utils.translation import ugettext_lazy as _

from oscar.apps.offer import results, utils
from oscar.apps.offer.managers import ActiveOfferManager
from oscar.core.compat import AUTH_USER_MODEL
from oscar.core.loading import get_class, get_model
from oscar.models import fields
from oscar.templatetags.currency_filters import currency

BrowsableRangeManager = get_class('offer.managers', 'BrowsableRangeManager')

@python_2_unicode_compatible
[docs]class AbstractConditionalOffer(models.Model):
 """
 A conditional offer (eg buy 1, get 10% off)
 """
 name = models.CharField(
 _("Name"), max_length=128, unique=True,
 help_text=_("This is displayed within the customer's basket"))
 slug = fields.AutoSlugField(
 _("Slug"), max_length=128, unique=True, populate_from='name')
 description = models.TextField(_("Description"), blank=True,
 help_text=_("This is displayed on the offer"
 " browsing page"))

 # Offers come in a few different types:
 # (a) Offers that are available to all customers on the site. Eg a
 # 3-for-2 offer.
 # (b) Offers that are linked to a voucher, and only become available once
 # that voucher has been applied to the basket
 # (c) Offers that are linked to a user. Eg, all students get 10% off. The
 # code to apply this offer needs to be coded
 # (d) Session offers - these are temporarily available to a user after some
 # trigger event. Eg, users coming from some affiliate site get 10%
 # off.
 SITE, VOUCHER, USER, SESSION = ("Site", "Voucher", "User", "Session")
 TYPE_CHOICES = (
 (SITE, _("Site offer - available to all users")),
 (VOUCHER, _("Voucher offer - only available after entering "
 "the appropriate voucher code")),
 (USER, _("User offer - available to certain types of user")),
 (SESSION, _("Session offer - temporary offer, available for "
 "a user for the duration of their session")),
)
 offer_type = models.CharField(
 _("Type"), choices=TYPE_CHOICES, default=SITE, max_length=128)

 # We track a status variable so it's easier to load offers that are
 # 'available' in some sense.
 OPEN, SUSPENDED, CONSUMED = "Open", "Suspended", "Consumed"
 status = models.CharField(_("Status"), max_length=64, default=OPEN)

 condition = models.ForeignKey(
 'offer.Condition', verbose_name=_("Condition"))
 benefit = models.ForeignKey('offer.Benefit', verbose_name=_("Benefit"))

 # Some complicated situations require offers to be applied in a set order.
 priority = models.IntegerField(
 _("Priority"), default=0,
 help_text=_("The highest priority offers are applied first"))

 # AVAILABILITY

 # Range of availability. Note that if this is a voucher offer, then these
 # dates are ignored and only the dates from the voucher are used to
 # determine availability.
 start_datetime = models.DateTimeField(
 _("Start date"), blank=True, null=True)
 end_datetime = models.DateTimeField(
 _("End date"), blank=True, null=True,
 help_text=_("Offers are active until the end of the 'end date'"))

 # Use this field to limit the number of times this offer can be applied in
 # total. Note that a single order can apply an offer multiple times so
 # this is not necessarily the same as the number of orders that can use it.
 # Also see max_basket_applications.
 max_global_applications = models.PositiveIntegerField(
 _("Max global applications"),
 help_text=_("The number of times this offer can be used before it "
 "is unavailable"), blank=True, null=True)

 # Use this field to limit the number of times this offer can be used by a
 # single user. This only works for signed-in users - it doesn't really
 # make sense for sites that allow anonymous checkout.
 max_user_applications = models.PositiveIntegerField(
 _("Max user applications"),
 help_text=_("The number of times a single user can use this offer"),
 blank=True, null=True)

 # Use this field to limit the number of times this offer can be applied to
 # a basket (and hence a single order). Often, an offer should only be
 # usable once per basket/order, so this field will commonly be set to 1.
 max_basket_applications = models.PositiveIntegerField(
 _("Max basket applications"),
 blank=True, null=True,
 help_text=_("The number of times this offer can be applied to a "
 "basket (and order)"))

 # Use this field to limit the amount of discount an offer can lead to.
 # This can be helpful with budgeting.
 max_discount = models.DecimalField(
 _("Max discount"), decimal_places=2, max_digits=12, null=True,
 blank=True,
 help_text=_("When an offer has given more discount to orders "
 "than this threshold, then the offer becomes "
 "unavailable"))

 # TRACKING
 # These fields are used to enforce the limits set by the
 # max_* fields above.

 total_discount = models.DecimalField(
 _("Total Discount"), decimal_places=2, max_digits=12,
 default=D('0.00'))
 num_applications = models.PositiveIntegerField(
 _("Number of applications"), default=0)
 num_orders = models.PositiveIntegerField(
 _("Number of Orders"), default=0)

 redirect_url = fields.ExtendedURLField(
 _("URL redirect (optional)"), blank=True)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 objects = models.Manager()
 active = ActiveOfferManager()

 # We need to track the voucher that this offer came from (if it is a
 # voucher offer)
 _voucher = None

 class Meta:
 abstract = True
 app_label = 'offer'
 ordering = ['-priority']
 verbose_name = _("Conditional offer")
 verbose_name_plural = _("Conditional offers")

 def save(self, *args, **kwargs):
 # Check to see if consumption thresholds have been broken
 if not self.is_suspended:
 if self.get_max_applications() == 0:
 self.status = self.CONSUMED
 else:
 self.status = self.OPEN

 return super(AbstractConditionalOffer, self).save(*args, **kwargs)

 def get_absolute_url(self):
 return reverse('offer:detail', kwargs={'slug': self.slug})

 def __str__(self):
 return self.name

 def clean(self):
 if (self.start_datetime and self.end_datetime and
 self.start_datetime > self.end_datetime):
 raise exceptions.ValidationError(
 _('End date should be later than start date'))

 @property
 def is_open(self):
 return self.status == self.OPEN

 @property
 def is_suspended(self):
 return self.status == self.SUSPENDED

 def suspend(self):
 self.status = self.SUSPENDED
 self.save()
 suspend.alters_data = True

 def unsuspend(self):
 self.status = self.OPEN
 self.save()
 unsuspend.alters_data = True

[docs] def is_available(self, user=None, test_date=None):
 """
 Test whether this offer is available to be used
 """
 if self.is_suspended:
 return False
 if test_date is None:
 test_date = now()
 predicates = []
 if self.start_datetime:
 predicates.append(self.start_datetime > test_date)
 if self.end_datetime:
 predicates.append(test_date > self.end_datetime)
 if any(predicates):
 return False
 return self.get_max_applications(user) > 0

 def is_condition_satisfied(self, basket):
 return self.condition.proxy().is_satisfied(self, basket)

 def is_condition_partially_satisfied(self, basket):
 return self.condition.proxy().is_partially_satisfied(self, basket)

 def get_upsell_message(self, basket):
 return self.condition.proxy().get_upsell_message(self, basket)

[docs] def apply_benefit(self, basket):
 """
 Applies the benefit to the given basket and returns the discount.
 """
 if not self.is_condition_satisfied(basket):
 return results.ZERO_DISCOUNT
 return self.benefit.proxy().apply(
 basket, self.condition.proxy(), self)

[docs] def apply_deferred_benefit(self, basket, order, application):
 """
 Applies any deferred benefits. These are things like adding loyalty
 points to somone's account.
 """
 return self.benefit.proxy().apply_deferred(basket, order, application)

 def set_voucher(self, voucher):
 self._voucher = voucher

 def get_voucher(self):
 return self._voucher

[docs] def get_max_applications(self, user=None):
 """
 Return the number of times this offer can be applied to a basket for a
 given user.
 """
 if self.max_discount and self.total_discount >= self.max_discount:
 return 0

 # Hard-code a maximum value as we need some sensible upper limit for
 # when there are not other caps.
 limits = [10000]
 if self.max_user_applications and user:
 limits.append(max(0, self.max_user_applications -
 self.get_num_user_applications(user)))
 if self.max_basket_applications:
 limits.append(self.max_basket_applications)
 if self.max_global_applications:
 limits.append(
 max(0, self.max_global_applications - self.num_applications))
 return min(limits)

 def get_num_user_applications(self, user):
 OrderDiscount = get_model('order', 'OrderDiscount')
 aggregates = OrderDiscount.objects.filter(offer_id=self.id,
 order__user=user)\
 .aggregate(total=models.Sum('frequency'))
 return aggregates['total'] if aggregates['total'] is not None else 0

 def shipping_discount(self, charge):
 return self.benefit.proxy().shipping_discount(charge)

 def record_usage(self, discount):
 self.num_applications += discount['freq']
 self.total_discount += discount['discount']
 self.num_orders += 1
 self.save()
 record_usage.alters_data = True

[docs] def availability_description(self):
 """
 Return a description of when this offer is available
 """
 restrictions = self.availability_restrictions()
 descriptions = [r['description'] for r in restrictions]
 return "
".join(descriptions)

 def availability_restrictions(self): # noqa (too complex (15))
 restrictions = []
 if self.is_suspended:
 restrictions.append({
 'description': _("Offer is suspended"),
 'is_satisfied': False})

 if self.max_global_applications:
 remaining = self.max_global_applications - self.num_applications
 desc = _("Limited to %(total)d uses (%(remainder)d remaining)") \
 % {'total': self.max_global_applications,
 'remainder': remaining}
 restrictions.append({'description': desc,
 'is_satisfied': remaining > 0})

 if self.max_user_applications:
 if self.max_user_applications == 1:
 desc = _("Limited to 1 use per user")
 else:
 desc = _("Limited to %(total)d uses per user") \
 % {'total': self.max_user_applications}
 restrictions.append({'description': desc,
 'is_satisfied': True})

 if self.max_basket_applications:
 if self.max_user_applications == 1:
 desc = _("Limited to 1 use per basket")
 else:
 desc = _("Limited to %(total)d uses per basket") \
 % {'total': self.max_basket_applications}
 restrictions.append({
 'description': desc,
 'is_satisfied': True})

 def hide_time_if_zero(dt):
 # Only show hours/minutes if they have been specified
 if dt.tzinfo:
 localtime = dt.astimezone(get_current_timezone())
 else:
 localtime = dt
 if localtime.hour == 0 and localtime.minute == 0:
 return date_filter(localtime, settings.DATE_FORMAT)
 return date_filter(localtime, settings.DATETIME_FORMAT)

 if self.start_datetime or self.end_datetime:
 today = now()
 if self.start_datetime and self.end_datetime:
 desc = _("Available between %(start)s and %(end)s") \
 % {'start': hide_time_if_zero(self.start_datetime),
 'end': hide_time_if_zero(self.end_datetime)}
 is_satisfied \
 = self.start_datetime <= today <= self.end_datetime
 elif self.start_datetime:
 desc = _("Available from %(start)s") % {
 'start': hide_time_if_zero(self.start_datetime)}
 is_satisfied = today >= self.start_datetime
 elif self.end_datetime:
 desc = _("Available until %(end)s") % {
 'end': hide_time_if_zero(self.end_datetime)}
 is_satisfied = today <= self.end_datetime
 restrictions.append({
 'description': desc,
 'is_satisfied': is_satisfied})

 if self.max_discount:
 desc = _("Limited to a cost of %(max)s") % {
 'max': currency(self.max_discount)}
 restrictions.append({
 'description': desc,
 'is_satisfied': self.total_discount < self.max_discount})

 return restrictions

 @property
 def has_products(self):
 return self.condition.range is not None

[docs] def products(self):
 """
 Return a queryset of products in this offer
 """
 Product = get_model('catalogue', 'Product')
 if not self.has_products:
 return Product.objects.none()

 cond_range = self.condition.range
 if cond_range.includes_all_products:
 # Return ALL the products
 queryset = Product.browsable
 else:
 queryset = cond_range.all_products()
 return queryset.filter(is_discountable=True).exclude(
 structure=Product.CHILD)

@python_2_unicode_compatible
class AbstractBenefit(models.Model):
 range = models.ForeignKey(
 'offer.Range', null=True, blank=True, verbose_name=_("Range"))

 # Benefit types
 PERCENTAGE, FIXED, MULTIBUY, FIXED_PRICE = (
 "Percentage", "Absolute", "Multibuy", "Fixed price")
 SHIPPING_PERCENTAGE, SHIPPING_ABSOLUTE, SHIPPING_FIXED_PRICE = (
 'Shipping percentage', 'Shipping absolute', 'Shipping fixed price')
 TYPE_CHOICES = (
 (PERCENTAGE, _("Discount is a percentage off of the product's value")),
 (FIXED, _("Discount is a fixed amount off of the product's value")),
 (MULTIBUY, _("Discount is to give the cheapest product for free")),
 (FIXED_PRICE,
 _("Get the products that meet the condition for a fixed price")),
 (SHIPPING_ABSOLUTE,
 _("Discount is a fixed amount of the shipping cost")),
 (SHIPPING_FIXED_PRICE, _("Get shipping for a fixed price")),
 (SHIPPING_PERCENTAGE, _("Discount is a percentage off of the shipping"
 " cost")),
)
 type = models.CharField(
 _("Type"), max_length=128, choices=TYPE_CHOICES, blank=True)

 # The value to use with the designated type. This can be either an integer
 # (eg for multibuy) or a decimal (eg an amount) which is slightly
 # confusing.
 value = fields.PositiveDecimalField(
 _("Value"), decimal_places=2, max_digits=12, null=True, blank=True)

 # If this is not set, then there is no upper limit on how many products
 # can be discounted by this benefit.
 max_affected_items = models.PositiveIntegerField(
 _("Max Affected Items"), blank=True, null=True,
 help_text=_("Set this to prevent the discount consuming all items "
 "within the range that are in the basket."))

 # A custom benefit class can be used instead. This means the
 # type/value/max_affected_items fields should all be None.
 proxy_class = fields.NullCharField(
 _("Custom class"), max_length=255, default=None)

 class Meta:
 abstract = True
 app_label = 'offer'
 verbose_name = _("Benefit")
 verbose_name_plural = _("Benefits")

 def proxy(self):
 from oscar.apps.offer import benefits

 klassmap = {
 self.PERCENTAGE: benefits.PercentageDiscountBenefit,
 self.FIXED: benefits.AbsoluteDiscountBenefit,
 self.MULTIBUY: benefits.MultibuyDiscountBenefit,
 self.FIXED_PRICE: benefits.FixedPriceBenefit,
 self.SHIPPING_ABSOLUTE: benefits.ShippingAbsoluteDiscountBenefit,
 self.SHIPPING_FIXED_PRICE: benefits.ShippingFixedPriceBenefit,
 self.SHIPPING_PERCENTAGE: benefits.ShippingPercentageDiscountBenefit
 }
 # Short-circuit logic if current class is already a proxy class.
 if self.__class__ in klassmap.values():
 return self

 field_dict = dict(self.__dict__)
 for field in list(field_dict.keys()):
 if field.startswith('_'):
 del field_dict[field]

 if self.proxy_class:
 klass = utils.load_proxy(self.proxy_class)
 # Short-circuit again.
 if self.__class__ == klass:
 return self
 return klass(**field_dict)

 if self.type in klassmap:
 return klassmap[self.type](**field_dict)
 raise RuntimeError("Unrecognised benefit type (%s)" % self.type)

 def __str__(self):
 return self.name

 @property
 def name(self):
 """
 A plaintext description of the benefit. Every proxy class has to
 implement it.

 This is used in the dropdowns within the offer dashboard.
 """
 return self.proxy().name

 @property
 def description(self):
 """
 A description of the benefit.
 Defaults to the name. May contain HTML.
 """
 return self.name

 def apply(self, basket, condition, offer):
 return results.ZERO_DISCOUNT

 def apply_deferred(self, basket, order, application):
 return None

 def clean(self):
 if not self.type:
 return
 method_name = 'clean_%s' % self.type.lower().replace(' ', '_')
 if hasattr(self, method_name):
 getattr(self, method_name)()

 def clean_multibuy(self):
 if not self.range:
 raise exceptions.ValidationError(
 _("Multibuy benefits require a product range"))
 if self.value:
 raise exceptions.ValidationError(
 _("Multibuy benefits don't require a value"))
 if self.max_affected_items:
 raise exceptions.ValidationError(
 _("Multibuy benefits don't require a 'max affected items' "
 "attribute"))

 def clean_percentage(self):
 if not self.range:
 raise exceptions.ValidationError(
 _("Percentage benefits require a product range"))
 if self.value > 100:
 raise exceptions.ValidationError(
 _("Percentage discount cannot be greater than 100"))

 def clean_shipping_absolute(self):
 if not self.value:
 raise exceptions.ValidationError(
 _("A discount value is required"))
 if self.range:
 raise exceptions.ValidationError(
 _("No range should be selected as this benefit does not "
 "apply to products"))
 if self.max_affected_items:
 raise exceptions.ValidationError(
 _("Shipping discounts don't require a 'max affected items' "
 "attribute"))

 def clean_shipping_percentage(self):
 if self.value > 100:
 raise exceptions.ValidationError(
 _("Percentage discount cannot be greater than 100"))
 if self.range:
 raise exceptions.ValidationError(
 _("No range should be selected as this benefit does not "
 "apply to products"))
 if self.max_affected_items:
 raise exceptions.ValidationError(
 _("Shipping discounts don't require a 'max affected items' "
 "attribute"))

 def clean_shipping_fixed_price(self):
 if self.range:
 raise exceptions.ValidationError(
 _("No range should be selected as this benefit does not "
 "apply to products"))
 if self.max_affected_items:
 raise exceptions.ValidationError(
 _("Shipping discounts don't require a 'max affected items' "
 "attribute"))

 def clean_fixed_price(self):
 if self.range:
 raise exceptions.ValidationError(
 _("No range should be selected as the condition range will "
 "be used instead."))

 def clean_absolute(self):
 if not self.range:
 raise exceptions.ValidationError(
 _("Fixed discount benefits require a product range"))
 if not self.value:
 raise exceptions.ValidationError(
 _("Fixed discount benefits require a value"))

 def round(self, amount):
 """
 Apply rounding to discount amount
 """
 if hasattr(settings, 'OSCAR_OFFER_ROUNDING_FUNCTION'):
 return settings.OSCAR_OFFER_ROUNDING_FUNCTION(amount)
 return amount.quantize(D('.01'), ROUND_DOWN)

 def _effective_max_affected_items(self):
 """
 Return the maximum number of items that can have a discount applied
 during the application of this benefit
 """
 return self.max_affected_items if self.max_affected_items else 10000

 def can_apply_benefit(self, line):
 """
 Determines whether the benefit can be applied to a given basket line
 """
 return line.stockrecord and line.product.is_discountable

 def get_applicable_lines(self, offer, basket, range=None):
 """
 Return the basket lines that are available to be discounted

 :basket: The basket
 :range: The range of products to use for filtering. The fixed-price
 benefit ignores its range and uses the condition range
 """
 if range is None:
 range = self.range
 line_tuples = []
 for line in basket.all_lines():
 product = line.product

 if (not range.contains(product) or
 not self.can_apply_benefit(line)):
 continue

 price = utils.unit_price(offer, line)
 if not price:
 # Avoid zero price products
 continue
 if line.quantity_without_discount == 0:
 continue
 line_tuples.append((price, line))

 # We sort lines to be cheapest first to ensure consistent applications
 return sorted(line_tuples, key=operator.itemgetter(0))

 def shipping_discount(self, charge):
 return D('0.00')

@python_2_unicode_compatible
[docs]class AbstractCondition(models.Model):
 """
 A condition for an offer to be applied. You can either specify a custom
 proxy class, or need to specify a type, range and value.
 """
 COUNT, VALUE, COVERAGE = ("Count", "Value", "Coverage")
 TYPE_CHOICES = (
 (COUNT, _("Depends on number of items in basket that are in "
 "condition range")),
 (VALUE, _("Depends on value of items in basket that are in "
 "condition range")),
 (COVERAGE, _("Needs to contain a set number of DISTINCT items "
 "from the condition range")))
 range = models.ForeignKey(
 'offer.Range', verbose_name=_("Range"), null=True, blank=True)
 type = models.CharField(_('Type'), max_length=128, choices=TYPE_CHOICES,
 blank=True)
 value = fields.PositiveDecimalField(
 _('Value'), decimal_places=2, max_digits=12, null=True, blank=True)

 proxy_class = fields.NullCharField(
 _("Custom class"), max_length=255, unique=True, default=None)

 class Meta:
 abstract = True
 app_label = 'offer'
 verbose_name = _("Condition")
 verbose_name_plural = _("Conditions")

[docs] def proxy(self):
 """
 Return the proxy model
 """
 from oscar.apps.offer import conditions

 klassmap = {
 self.COUNT: conditions.CountCondition,
 self.VALUE: conditions.ValueCondition,
 self.COVERAGE: conditions.CoverageCondition
 }
 # Short-circuit logic if current class is already a proxy class.
 if self.__class__ in klassmap.values():
 return self

 field_dict = dict(self.__dict__)
 for field in list(field_dict.keys()):
 if field.startswith('_'):
 del field_dict[field]

 if self.proxy_class:
 klass = utils.load_proxy(self.proxy_class)
 # Short-circuit again.
 if self.__class__ == klass:
 return self
 return klass(**field_dict)
 if self.type in klassmap:
 return klassmap[self.type](**field_dict)
 raise RuntimeError("Unrecognised condition type (%s)" % self.type)

 def __str__(self):
 return self.name

 @property
 def name(self):
 """
 A plaintext description of the condition. Every proxy class has to
 implement it.

 This is used in the dropdowns within the offer dashboard.
 """
 return self.proxy().name

 @property
 def description(self):
 """
 A description of the condition.
 Defaults to the name. May contain HTML.
 """
 return self.name

 def consume_items(self, offer, basket, affected_lines):
 pass

[docs] def is_satisfied(self, offer, basket):
 """
 Determines whether a given basket meets this condition. This is
 stubbed in this top-class object. The subclassing proxies are
 responsible for implementing it correctly.
 """
 return False

[docs] def is_partially_satisfied(self, offer, basket):
 """
 Determine if the basket partially meets the condition. This is useful
 for up-selling messages to entice customers to buy something more in
 order to qualify for an offer.
 """
 return False

 def get_upsell_message(self, offer, basket):
 return None

[docs] def can_apply_condition(self, line):
 """
 Determines whether the condition can be applied to a given basket line
 """
 if not line.stockrecord_id:
 return False
 product = line.product
 return (self.range.contains_product(product)
 and product.get_is_discountable())

[docs] def get_applicable_lines(self, offer, basket, most_expensive_first=True):
 """
 Return line data for the lines that can be consumed by this condition
 """
 line_tuples = []
 for line in basket.all_lines():
 if not self.can_apply_condition(line):
 continue

 price = utils.unit_price(offer, line)
 if not price:
 continue
 line_tuples.append((price, line))
 key = operator.itemgetter(0)
 if most_expensive_first:
 return sorted(line_tuples, reverse=True, key=key)
 return sorted(line_tuples, key=key)

@python_2_unicode_compatible
[docs]class AbstractRange(models.Model):
 """
 Represents a range of products that can be used within an offer.

 Ranges only support adding parent or stand-alone products. Offers will
 consider child products automatically.
 """
 name = models.CharField(_("Name"), max_length=128, unique=True)
 slug = fields.AutoSlugField(
 _("Slug"), max_length=128, unique=True, populate_from="name")

 description = models.TextField(blank=True)

 # Whether this range is public
 is_public = models.BooleanField(
 _('Is public?'), default=False,
 help_text=_("Public ranges have a customer-facing page"))

 includes_all_products = models.BooleanField(
 _('Includes all products?'), default=False)

 included_products = models.ManyToManyField(
 'catalogue.Product', related_name='includes', blank=True,
 verbose_name=_("Included Products"), through='offer.RangeProduct')
 excluded_products = models.ManyToManyField(
 'catalogue.Product', related_name='excludes', blank=True,
 verbose_name=_("Excluded Products"))
 classes = models.ManyToManyField(
 'catalogue.ProductClass', related_name='classes', blank=True,
 verbose_name=_("Product Types"))
 included_categories = models.ManyToManyField(
 'catalogue.Category', related_name='includes', blank=True,
 verbose_name=_("Included Categories"))

 # Allow a custom range instance to be specified
 proxy_class = fields.NullCharField(
 _("Custom class"), max_length=255, default=None, unique=True)

 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 __included_product_ids = None
 __excluded_product_ids = None
 __class_ids = None
 __category_ids = None

 objects = models.Manager()
 browsable = BrowsableRangeManager()

 class Meta:
 abstract = True
 app_label = 'offer'
 verbose_name = _("Range")
 verbose_name_plural = _("Ranges")

 def __str__(self):
 return self.name

 def get_absolute_url(self):
 return reverse(
 'catalogue:range', kwargs={'slug': self.slug})

 @cached_property
 def proxy(self):
 if self.proxy_class:
 return utils.load_proxy(self.proxy_class)()

[docs] def add_product(self, product, display_order=None):
 """ Add product to the range

 When adding product that is already in the range, prevent re-adding it.
 If display_order is specified, update it.

 Default display_order for a new product in the range is 0; this puts
 the product at the top of the list.
 """

 initial_order = display_order or 0
 RangeProduct = get_model('offer', 'RangeProduct')
 relation, __ = RangeProduct.objects.get_or_create(
 range=self, product=product,
 defaults={'display_order': initial_order})

 if (display_order is not None and
 relation.display_order != display_order):
 relation.display_order = display_order
 relation.save()

[docs] def remove_product(self, product):
 """
 Remove product from range. To save on queries, this function does not
 check if the product is in fact in the range.
 """
 RangeProduct = get_model('offer', 'RangeProduct')
 RangeProduct.objects.filter(range=self, product=product).delete()

[docs] def contains_product(self, product): # noqa (too complex (12))
 """
 Check whether the passed product is part of this range.
 """

 # Delegate to a proxy class if one is provided
 if self.proxy:
 return self.proxy.contains_product(product)

 excluded_product_ids = self._excluded_product_ids()
 if product.id in excluded_product_ids:
 return False
 if self.includes_all_products:
 return True
 if product.get_product_class().id in self._class_ids():
 return True
 included_product_ids = self._included_product_ids()
 # If the product's parent is in the range, the child is automatically included as well
 if product.is_child and product.parent.id in included_product_ids:
 return True
 if product.id in included_product_ids:
 return True
 test_categories = self.included_categories.all()
 if test_categories:
 for category in product.get_categories().all():
 for test_category in test_categories:
 if category == test_category \
 or category.is_descendant_of(test_category):
 return True
 return False

 # Shorter alias
 contains = contains_product

 def __get_pks_and_child_pks(self, queryset):
 """
 Expects a product queryset; gets the primary keys of the passed
 products and their children.

 Verbose, but database and memory friendly.
 """
 # One query to get parent and children; [(4, None), (5, 10), (5, 11)]
 pk_tuples_iterable = queryset.values_list('pk', 'children__pk')
 # Flatten list without unpacking; [4, None, 5, 10, 5, 11]
 flat_iterable = itertools.chain.from_iterable(pk_tuples_iterable)
 # Ensure uniqueness and remove None; {4, 5, 10, 11}
 return set(flat_iterable) - {None}

 def _included_product_ids(self):
 if not self.id:
 return []
 if self.__included_product_ids is None:
 self.__included_product_ids = self.__get_pks_and_child_pks(
 self.included_products)
 return self.__included_product_ids

 def _excluded_product_ids(self):
 if not self.id:
 return []
 if self.__excluded_product_ids is None:
 self.__excluded_product_ids = self.__get_pks_and_child_pks(
 self.excluded_products)
 return self.__excluded_product_ids

 def _class_ids(self):
 if self.__class_ids is None:
 self.__class_ids = self.classes.values_list('pk', flat=True)
 return self.__class_ids

 def _category_ids(self):
 if self.__category_ids is None:
 category_ids_list = list(
 self.included_categories.values_list('pk', flat=True))
 for category in self.included_categories.all():
 children_ids = category.get_descendants().values_list(
 'pk', flat=True)
 category_ids_list.extend(list(children_ids))

 self.__category_ids = category_ids_list

 return self.__category_ids

 def num_products(self):
 # Delegate to a proxy class if one is provided
 if self.proxy:
 return self.proxy.num_products()
 if self.includes_all_products:
 return None
 return self.all_products().count()

[docs] def all_products(self):
 """
 Return a queryset containing all the products in the range

 This includes included_products plus the products contained in the
 included classes and categories, minus the products in
 excluded_products.
 """
 if self.proxy:
 return self.proxy.all_products()

 Product = get_model("catalogue", "Product")
 if self.includes_all_products:
 # Filter out child products
 return Product.browsable.all()

 return Product.objects.filter(
 Q(id__in=self._included_product_ids()) |
 Q(product_class_id__in=self._class_ids()) |
 Q(productcategory__category_id__in=self._category_ids())
).exclude(id__in=self._excluded_product_ids()).distinct()

 @property
 def is_editable(self):
 """
 Test whether this product can be edited in the dashboard
 """
 return not self.proxy_class

[docs]class AbstractRangeProduct(models.Model):
 """
 Allow ordering products inside ranges
 Exists to allow customising.
 """
 range = models.ForeignKey('offer.Range')
 product = models.ForeignKey('catalogue.Product')
 display_order = models.IntegerField(default=0)

 class Meta:
 abstract = True
 app_label = 'offer'
 unique_together = ('range', 'product')

class AbstractRangeProductFileUpload(models.Model):
 range = models.ForeignKey('offer.Range', related_name='file_uploads',
 verbose_name=_("Range"))
 filepath = models.CharField(_("File Path"), max_length=255)
 size = models.PositiveIntegerField(_("Size"))
 uploaded_by = models.ForeignKey(AUTH_USER_MODEL,
 verbose_name=_("Uploaded By"))
 date_uploaded = models.DateTimeField(_("Date Uploaded"), auto_now_add=True)

 PENDING, FAILED, PROCESSED = 'Pending', 'Failed', 'Processed'
 choices = (
 (PENDING, PENDING),
 (FAILED, FAILED),
 (PROCESSED, PROCESSED),
)
 status = models.CharField(_("Status"), max_length=32, choices=choices,
 default=PENDING)
 error_message = models.CharField(_("Error Message"), max_length=255,
 blank=True)

 # Post-processing audit fields
 date_processed = models.DateTimeField(_("Date Processed"), null=True)
 num_new_skus = models.PositiveIntegerField(_("Number of New SKUs"),
 null=True)
 num_unknown_skus = models.PositiveIntegerField(_("Number of Unknown SKUs"),
 null=True)
 num_duplicate_skus = models.PositiveIntegerField(
 _("Number of Duplicate SKUs"), null=True)

 class Meta:
 abstract = True
 app_label = 'offer'
 ordering = ('-date_uploaded',)
 verbose_name = _("Range Product Uploaded File")
 verbose_name_plural = _("Range Product Uploaded Files")

 @property
 def filename(self):
 return os.path.basename(self.filepath)

 def mark_as_failed(self, message=None):
 self.date_processed = now()
 self.error_message = message
 self.status = self.FAILED
 self.save()

 def mark_as_processed(self, num_new, num_unknown, num_duplicate):
 self.status = self.PROCESSED
 self.date_processed = now()
 self.num_new_skus = num_new
 self.num_unknown_skus = num_unknown
 self.num_duplicate_skus = num_duplicate
 self.save()

 def was_processing_successful(self):
 return self.status == self.PROCESSED

 def process(self):
 """
 Process the file upload and add products to the range
 """
 all_ids = set(self.extract_ids())
 products = self.range.all_products()
 existing_skus = products.values_list(
 'stockrecords__partner_sku', flat=True)
 existing_skus = set(filter(bool, existing_skus))
 existing_upcs = products.values_list('upc', flat=True)
 existing_upcs = set(filter(bool, existing_upcs))
 existing_ids = existing_skus.union(existing_upcs)
 new_ids = all_ids - existing_ids

 Product = models.get_model('catalogue', 'Product')
 products = Product._default_manager.filter(
 models.Q(stockrecords__partner_sku__in=new_ids) |
 models.Q(upc__in=new_ids))
 for product in products:
 self.range.add_product(product)

 # Processing stats
 found_skus = products.values_list(
 'stockrecords__partner_sku', flat=True)
 found_skus = set(filter(bool, found_skus))
 found_upcs = set(filter(bool, products.values_list('upc', flat=True)))
 found_ids = found_skus.union(found_upcs)
 missing_ids = new_ids - found_ids
 dupes = set(all_ids).intersection(existing_ids)

 self.mark_as_processed(products.count(), len(missing_ids), len(dupes))

 def extract_ids(self):
 """
 Extract all SKU- or UPC-like strings from the file
 """
 for line in open(self.filepath, 'r'):
 for id in re.split('[^\w:\.-]', line):
 if id:
 yield id

 def delete_file(self):
 os.unlink(self.filepath)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/offer/models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.offer.models

from oscar.apps.offer.abstract_models import (
 AbstractBenefit, AbstractCondition, AbstractConditionalOffer,
 AbstractRange, AbstractRangeProduct, AbstractRangeProductFileUpload)
from oscar.apps.offer.results import (
 SHIPPING_DISCOUNT, ZERO_DISCOUNT, BasketDiscount, PostOrderAction,
 ShippingDiscount)
from oscar.core.loading import is_model_registered

__all__ = [
 'BasketDiscount', 'ShippingDiscount', 'PostOrderAction',
 'SHIPPING_DISCOUNT', 'ZERO_DISCOUNT'
]

if not is_model_registered('offer', 'ConditionalOffer'):
[docs] class ConditionalOffer(AbstractConditionalOffer):
 pass

 __all__.append('ConditionalOffer')

if not is_model_registered('offer', 'Benefit'):
[docs] class Benefit(AbstractBenefit):
 pass

 __all__.append('Benefit')

if not is_model_registered('offer', 'Condition'):
[docs] class Condition(AbstractCondition):
 pass

 __all__.append('Condition')

if not is_model_registered('offer', 'Range'):
[docs] class Range(AbstractRange):
 pass

 __all__.append('Range')

if not is_model_registered('offer', 'RangeProduct'):
[docs] class RangeProduct(AbstractRangeProduct):
 pass

 __all__.append('RangeProduct')

if not is_model_registered('offer', 'RangeProductFileUpload'):
[docs] class RangeProductFileUpload(AbstractRangeProductFileUpload):
 pass

 __all__.append('RangeProductFileUpload')

Import the benefits and the conditions. Required after initializing the
parent models to allow overriding them

from oscar.apps.offer.benefits import * # noqa isort:skip
from oscar.apps.offer.conditions import * # noqa isort:skip

from oscar.apps.offer.benefits import __all__ as benefit_classes # noqa isort:skip
from oscar.apps.offer.conditions import __all__ as condition_classes # noqa isort:skip

__all__.extend(benefit_classes)
__all__.extend(condition_classes)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/customer/forms.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.customer.forms

import random
import string

from django import forms
from django.conf import settings
from django.contrib.auth import forms as auth_forms
from django.contrib.auth.forms import AuthenticationForm
from django.contrib.sites.shortcuts import get_current_site
from django.core.exceptions import ValidationError
from django.utils.http import is_safe_url
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import pgettext_lazy

from oscar.apps.customer.utils import get_password_reset_url, normalise_email
from oscar.core.compat import existing_user_fields, get_user_model
from oscar.core.loading import get_class, get_model, get_profile_class
from oscar.core.validators import password_validators
from oscar.forms import widgets

Dispatcher = get_class('customer.utils', 'Dispatcher')
CommunicationEventType = get_model('customer', 'communicationeventtype')
ProductAlert = get_model('customer', 'ProductAlert')
User = get_user_model()

def generate_username():
 # Python 3 uses ascii_letters. If not available, fallback to letters
 try:
 letters = string.ascii_letters
 except AttributeError:
 letters = string.letters
 uname = ''.join([random.choice(letters + string.digits + '_')
 for i in range(30)])
 try:
 User.objects.get(username=uname)
 return generate_username()
 except User.DoesNotExist:
 return uname

[docs]class PasswordResetForm(auth_forms.PasswordResetForm):
 """
 This form takes the same structure as its parent from django.contrib.auth
 """
 communication_type_code = "PASSWORD_RESET"

[docs] def save(self, domain_override=None, use_https=False, request=None,
 **kwargs):
 """
 Generates a one-use only link for resetting password and sends to the
 user.
 """
 site = get_current_site(request)
 if domain_override is not None:
 site.domain = site.name = domain_override
 email = self.cleaned_data['email']
 active_users = User._default_manager.filter(
 email__iexact=email, is_active=True)
 for user in active_users:
 reset_url = self.get_reset_url(site, request, user, use_https)
 ctx = {
 'user': user,
 'site': site,
 'reset_url': reset_url}
 messages = CommunicationEventType.objects.get_and_render(
 code=self.communication_type_code, context=ctx)
 Dispatcher().dispatch_user_messages(user, messages)

 def get_reset_url(self, site, request, user, use_https):
 # the request argument isn't used currently, but implementors might
 # need it to determine the correct subdomain
 reset_url = "%s://%s%s" % (
 'https' if use_https else 'http',
 site.domain,
 get_password_reset_url(user))

 return reset_url

class SetPasswordForm(auth_forms.SetPasswordForm):
 def __init__(self, *args, **kwargs):
 super(SetPasswordForm, self).__init__(*args, **kwargs)
 # Enforce password validations for the new password
 self.fields['new_password1'].validators += password_validators

class PasswordChangeForm(auth_forms.PasswordChangeForm):
 def __init__(self, *args, **kwargs):
 super(PasswordChangeForm, self).__init__(*args, **kwargs)
 # Enforce password validations for the new password
 self.fields['new_password1'].validators += password_validators

[docs]class EmailAuthenticationForm(AuthenticationForm):
 """
 Extends the standard django AuthenticationForm, to support 75 character
 usernames. 75 character usernames are needed to support the EmailOrUsername
 auth backend.
 """
 username = forms.EmailField(label=_('Email address'))
 redirect_url = forms.CharField(
 widget=forms.HiddenInput, required=False)

 def __init__(self, host, *args, **kwargs):
 self.host = host
 super(EmailAuthenticationForm, self).__init__(*args, **kwargs)

 def clean_redirect_url(self):
 url = self.cleaned_data['redirect_url'].strip()
 if url and is_safe_url(url, self.host):
 return url

[docs]class ConfirmPasswordForm(forms.Form):
 """
 Extends the standard django AuthenticationForm, to support 75 character
 usernames. 75 character usernames are needed to support the EmailOrUsername
 auth backend.
 """
 password = forms.CharField(label=_("Password"), widget=forms.PasswordInput)

 def __init__(self, user, *args, **kwargs):
 super(ConfirmPasswordForm, self).__init__(*args, **kwargs)
 self.user = user

 def clean_password(self):
 password = self.cleaned_data['password']
 if not self.user.check_password(password):
 raise forms.ValidationError(
 _("The entered password is not valid!"))
 return password

class EmailUserCreationForm(forms.ModelForm):
 email = forms.EmailField(label=_('Email address'))
 password1 = forms.CharField(
 label=_('Password'), widget=forms.PasswordInput,
 validators=password_validators)
 password2 = forms.CharField(
 label=_('Confirm password'), widget=forms.PasswordInput)
 redirect_url = forms.CharField(
 widget=forms.HiddenInput, required=False)

 class Meta:
 model = User
 fields = ('email',)

 def __init__(self, host=None, *args, **kwargs):
 self.host = host
 super(EmailUserCreationForm, self).__init__(*args, **kwargs)

 def clean_email(self):
 """
 Checks for existing users with the supplied email address.
 """
 email = normalise_email(self.cleaned_data['email'])
 if User._default_manager.filter(email__iexact=email).exists():
 raise forms.ValidationError(
 _("A user with that email address already exists"))
 return email

 def clean_password2(self):
 password1 = self.cleaned_data.get('password1', '')
 password2 = self.cleaned_data.get('password2', '')
 if password1 != password2:
 raise forms.ValidationError(
 _("The two password fields didn't match."))
 return password2

 def clean_redirect_url(self):
 url = self.cleaned_data['redirect_url'].strip()
 if url and is_safe_url(url, self.host):
 return url
 return settings.LOGIN_REDIRECT_URL

 def save(self, commit=True):
 user = super(EmailUserCreationForm, self).save(commit=False)
 user.set_password(self.cleaned_data['password1'])

 if 'username' in [f.name for f in User._meta.fields]:
 user.username = generate_username()
 if commit:
 user.save()
 return user

class OrderSearchForm(forms.Form):
 date_from = forms.DateField(
 required=False, label=pgettext_lazy("start date", "From"),
 widget=widgets.DatePickerInput())
 date_to = forms.DateField(
 required=False, label=pgettext_lazy("end date", "To"),
 widget=widgets.DatePickerInput())
 order_number = forms.CharField(required=False, label=_("Order number"))

 def clean(self):
 if self.is_valid() and not any([self.cleaned_data['date_from'],
 self.cleaned_data['date_to'],
 self.cleaned_data['order_number']]):
 raise forms.ValidationError(_("At least one field is required."))
 return super(OrderSearchForm, self).clean()

 def description(self):
 """
 Uses the form's data to build a useful description of what orders
 are listed.
 """
 if not self.is_bound or not self.is_valid():
 return _('All orders')
 else:
 date_from = self.cleaned_data['date_from']
 date_to = self.cleaned_data['date_to']
 order_number = self.cleaned_data['order_number']
 return self._orders_description(date_from, date_to, order_number)

 def _orders_description(self, date_from, date_to, order_number):
 if date_from and date_to:
 if order_number:
 desc = _('Orders placed between %(date_from)s and '
 '%(date_to)s and order number containing '
 '%(order_number)s')
 else:
 desc = _('Orders placed between %(date_from)s and '
 '%(date_to)s')
 elif date_from:
 if order_number:
 desc = _('Orders placed since %(date_from)s and '
 'order number containing %(order_number)s')
 else:
 desc = _('Orders placed since %(date_from)s')
 elif date_to:
 if order_number:
 desc = _('Orders placed until %(date_to)s and '
 'order number containing %(order_number)s')
 else:
 desc = _('Orders placed until %(date_to)s')
 elif order_number:
 desc = _('Orders with order number containing %(order_number)s')
 else:
 return None
 params = {
 'date_from': date_from,
 'date_to': date_to,
 'order_number': order_number,
 }
 return desc % params

 def get_filters(self):
 date_from = self.cleaned_data['date_from']
 date_to = self.cleaned_data['date_to']
 order_number = self.cleaned_data['order_number']
 kwargs = {}
 if date_from and date_to:
 kwargs['date_placed__range'] = [date_from, date_to]
 elif date_from and not date_to:
 kwargs['date_placed__gt'] = date_from
 elif not date_from and date_to:
 kwargs['date_placed__lt'] = date_to
 if order_number:
 kwargs['number__contains'] = order_number
 return kwargs

class UserForm(forms.ModelForm):

 def __init__(self, user, *args, **kwargs):
 self.user = user
 kwargs['instance'] = user
 super(UserForm, self).__init__(*args, **kwargs)
 if 'email' in self.fields:
 self.fields['email'].required = True

 def clean_email(self):
 """
 Make sure that the email address is aways unique as it is
 used instead of the username. This is necessary because the
 unique-ness of email addresses is *not* enforced on the model
 level in ``django.contrib.auth.models.User``.
 """
 email = normalise_email(self.cleaned_data['email'])
 if User._default_manager.filter(
 email__iexact=email).exclude(id=self.user.id).exists():
 raise ValidationError(
 _("A user with this email address already exists"))
 # Save the email unaltered
 return email

 class Meta:
 model = User
 fields = existing_user_fields(['first_name', 'last_name', 'email'])

Profile = get_profile_class()
if Profile: # noqa (too complex (12))

 class UserAndProfileForm(forms.ModelForm):

 def __init__(self, user, *args, **kwargs):
 try:
 instance = Profile.objects.get(user=user)
 except Profile.DoesNotExist:
 # User has no profile, try a blank one
 instance = Profile(user=user)
 kwargs['instance'] = instance

 super(UserAndProfileForm, self).__init__(*args, **kwargs)

 # Get profile field names to help with ordering later
 profile_field_names = list(self.fields.keys())

 # Get user field names (we look for core user fields first)
 core_field_names = set([f.name for f in User._meta.fields])
 user_field_names = ['email']
 for field_name in ('first_name', 'last_name'):
 if field_name in core_field_names:
 user_field_names.append(field_name)
 user_field_names.extend(User._meta.additional_fields)

 # Store user fields so we know what to save later
 self.user_field_names = user_field_names

 # Add additional user form fields
 additional_fields = forms.fields_for_model(
 User, fields=user_field_names)
 self.fields.update(additional_fields)

 # Ensure email is required and initialised correctly
 self.fields['email'].required = True

 # Set initial values
 for field_name in user_field_names:
 self.fields[field_name].initial = getattr(user, field_name)

 # Ensure order of fields is email, user fields then profile fields
 self.fields.keyOrder = user_field_names + profile_field_names

 class Meta:
 model = Profile
 exclude = ('user',)

 def clean_email(self):
 email = normalise_email(self.cleaned_data['email'])

 users_with_email = User._default_manager.filter(
 email__iexact=email).exclude(id=self.instance.user.id)
 if users_with_email.exists():
 raise ValidationError(
 _("A user with this email address already exists"))
 return email

 def save(self, *args, **kwargs):
 user = self.instance.user

 # Save user also
 for field_name in self.user_field_names:
 setattr(user, field_name, self.cleaned_data[field_name])
 user.save()

 return super(ProfileForm, self).save(*args, **kwargs)

 ProfileForm = UserAndProfileForm
else:
 ProfileForm = UserForm

class ProductAlertForm(forms.ModelForm):
 email = forms.EmailField(required=True, label=_(u'Send notification to'),
 widget=forms.TextInput(attrs={
 'placeholder': _('Enter your email')
 }))

 def __init__(self, user, product, *args, **kwargs):
 self.user = user
 self.product = product
 super(ProductAlertForm, self).__init__(*args, **kwargs)

 # Only show email field to unauthenticated users
 if user and user.is_authenticated():
 self.fields['email'].widget = forms.HiddenInput()
 self.fields['email'].required = False

 def save(self, commit=True):
 alert = super(ProductAlertForm, self).save(commit=False)
 if self.user.is_authenticated():
 alert.user = self.user
 alert.product = self.product
 if commit:
 alert.save()
 return alert

 def clean(self):
 cleaned_data = self.cleaned_data
 email = cleaned_data.get('email')
 if email:
 try:
 ProductAlert.objects.get(
 product=self.product, email__iexact=email,
 status=ProductAlert.ACTIVE)
 except ProductAlert.DoesNotExist:
 pass
 else:
 raise forms.ValidationError(_(
 "There is already an active stock alert for %s") % email)
 elif self.user.is_authenticated():
 try:
 ProductAlert.objects.get(product=self.product,
 user=self.user,
 status=ProductAlert.ACTIVE)
 except ProductAlert.DoesNotExist:
 pass
 else:
 raise forms.ValidationError(_(
 "You already have an active alert for this product"))
 return cleaned_data

 class Meta:
 model = ProductAlert
 fields = ['email']

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/customer/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.customer.abstract_models

import hashlib
import random

from django.conf import settings
from django.contrib.auth import models as auth_models
from django.core.urlresolvers import reverse
from django.core.validators import RegexValidator
from django.db import models
from django.template import Context, Template, TemplateDoesNotExist
from django.template.loader import get_template
from django.utils import six, timezone
from django.utils.encoding import python_2_unicode_compatible
from django.utils.translation import ugettext_lazy as _

from oscar.apps.customer.managers import CommunicationTypeManager
from oscar.core.compat import AUTH_USER_MODEL
from oscar.models.fields import AutoSlugField

class UserManager(auth_models.BaseUserManager):

 def create_user(self, email, password=None, **extra_fields):
 """
 Creates and saves a User with the given username, email and
 password.
 """
 now = timezone.now()
 if not email:
 raise ValueError('The given email must be set')
 email = UserManager.normalize_email(email)
 user = self.model(
 email=email, is_staff=False, is_active=True,
 is_superuser=False,
 last_login=now, date_joined=now, **extra_fields)

 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_superuser(self, email, password, **extra_fields):
 u = self.create_user(email, password, **extra_fields)
 u.is_staff = True
 u.is_active = True
 u.is_superuser = True
 u.save(using=self._db)
 return u

[docs]class AbstractUser(auth_models.AbstractBaseUser,
 auth_models.PermissionsMixin):
 """
 An abstract base user suitable for use in Oscar projects.

 This is basically a copy of the core AbstractUser model but without a
 username field
 """
 email = models.EmailField(_('email address'), unique=True)
 first_name = models.CharField(
 _('First name'), max_length=255, blank=True)
 last_name = models.CharField(
 _('Last name'), max_length=255, blank=True)
 is_staff = models.BooleanField(
 _('Staff status'), default=False,
 help_text=_('Designates whether the user can log into this admin '
 'site.'))
 is_active = models.BooleanField(
 _('Active'), default=True,
 help_text=_('Designates whether this user should be treated as '
 'active. Unselect this instead of deleting accounts.'))
 date_joined = models.DateTimeField(_('date joined'),
 default=timezone.now)

 objects = UserManager()

 USERNAME_FIELD = 'email'

 class Meta:
 abstract = True
 verbose_name = _('User')
 verbose_name_plural = _('Users')

 def get_full_name(self):
 full_name = '%s %s' % (self.first_name, self.last_name)
 return full_name.strip()

 def get_short_name(self):
 return self.first_name

 def _migrate_alerts_to_user(self):
 """
 Transfer any active alerts linked to a user's email address to the
 newly registered user.
 """
 ProductAlert = self.alerts.model
 alerts = ProductAlert.objects.filter(
 email=self.email, status=ProductAlert.ACTIVE)
 alerts.update(user=self, key='', email='')

 def save(self, *args, **kwargs):
 super(AbstractUser, self).save(*args, **kwargs)
 # Migrate any "anonymous" product alerts to the registered user
 # Ideally, this would be done via a post-save signal. But we can't
 # use get_user_model to wire up signals to custom user models
 # see Oscar ticket #1127, Django ticket #19218
 self._migrate_alerts_to_user()

@python_2_unicode_compatible
[docs]class AbstractEmail(models.Model):
 """
 This is a record of all emails sent to a customer.
 Normally, we only record order-related emails.
 """
 user = models.ForeignKey(AUTH_USER_MODEL, related_name='emails',
 verbose_name=_("User"))
 subject = models.TextField(_('Subject'), max_length=255)
 body_text = models.TextField(_("Body Text"))
 body_html = models.TextField(_("Body HTML"), blank=True)
 date_sent = models.DateTimeField(_("Date Sent"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'customer'
 verbose_name = _('Email')
 verbose_name_plural = _('Emails')

 def __str__(self):
 return _(u"Email to %(user)s with subject '%(subject)s'") % {
 'user': self.user.get_username(), 'subject': self.subject}

@python_2_unicode_compatible
[docs]class AbstractCommunicationEventType(models.Model):
 """
 A 'type' of communication. Like an order confirmation email.
 """

 #: Code used for looking up this event programmatically.
 # e.g. PASSWORD_RESET. AutoSlugField uppercases the code for us because
 # it's a useful convention that's been enforced in previous Oscar versions
 code = AutoSlugField(
 _('Code'), max_length=128, unique=True, populate_from='name',
 separator=six.u("_"), uppercase=True, editable=True,
 validators=[
 RegexValidator(
 regex=r'^[a-zA-Z_][0-9a-zA-Z_]*$',
 message=_(
 "Code can only contain the letters a-z, A-Z, digits, "
 "and underscores, and can't start with a digit."))],
 help_text=_("Code used for looking up this event programmatically"))

 #: Name is the friendly description of an event for use in the admin
 name = models.CharField(
 _('Name'), max_length=255,
 help_text=_("This is just used for organisational purposes"))

 # We allow communication types to be categorised
 # For backwards-compatibility, the choice values are quite verbose
 ORDER_RELATED = 'Order related'
 USER_RELATED = 'User related'
 CATEGORY_CHOICES = (
 (ORDER_RELATED, _('Order related')),
 (USER_RELATED, _('User related'))
)

 category = models.CharField(
 _('Category'), max_length=255, default=ORDER_RELATED,
 choices=CATEGORY_CHOICES)

 # Template content for emails
 # NOTE: There's an intentional distinction between None and ''. None
 # instructs Oscar to look for a file-based template, '' is just an empty
 # template.
 email_subject_template = models.CharField(
 _('Email Subject Template'), max_length=255, blank=True, null=True)
 email_body_template = models.TextField(
 _('Email Body Template'), blank=True, null=True)
 email_body_html_template = models.TextField(
 _('Email Body HTML Template'), blank=True, null=True,
 help_text=_("HTML template"))

 # Template content for SMS messages
 sms_template = models.CharField(_('SMS Template'), max_length=170,
 blank=True, null=True,
 help_text=_("SMS template"))

 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)
 date_updated = models.DateTimeField(_("Date Updated"), auto_now=True)

 objects = CommunicationTypeManager()

 # File templates
 email_subject_template_file = 'customer/emails/commtype_%s_subject.txt'
 email_body_template_file = 'customer/emails/commtype_%s_body.txt'
 email_body_html_template_file = 'customer/emails/commtype_%s_body.html'
 sms_template_file = 'customer/sms/commtype_%s_body.txt'

 class Meta:
 abstract = True
 app_label = 'customer'
 verbose_name = _("Communication event type")
 verbose_name_plural = _("Communication event types")

[docs] def get_messages(self, ctx=None):
 """
 Return a dict of templates with the context merged in

 We look first at the field templates but fail over to
 a set of file templates that follow a conventional path.
 """
 code = self.code.lower()

 # Build a dict of message name to Template instances
 templates = {'subject': 'email_subject_template',
 'body': 'email_body_template',
 'html': 'email_body_html_template',
 'sms': 'sms_template'}
 for name, attr_name in templates.items():
 field = getattr(self, attr_name, None)
 if field is not None:
 # Template content is in a model field
 templates[name] = Template(field)
 else:
 # Model field is empty - look for a file template
 template_name = getattr(self, "%s_file" % attr_name) % code
 try:
 templates[name] = get_template(template_name)
 except TemplateDoesNotExist:
 templates[name] = None

 # Pass base URL for serving images within HTML emails
 if ctx is None:
 ctx = {}
 ctx['static_base_url'] = getattr(
 settings, 'OSCAR_STATIC_BASE_URL', None)

 messages = {}
 for name, template in templates.items():
 messages[name] = template.render(Context(ctx)) if template else ''

 # Ensure the email subject doesn't contain any newlines
 messages['subject'] = messages['subject'].replace("\n", "")
 messages['subject'] = messages['subject'].replace("\r", "")

 return messages

 def __str__(self):
 return self.name

 def is_order_related(self):
 return self.category == self.ORDER_RELATED

 def is_user_related(self):
 return self.category == self.USER_RELATED

@python_2_unicode_compatible
class AbstractNotification(models.Model):
 recipient = models.ForeignKey(AUTH_USER_MODEL,
 related_name='notifications', db_index=True)

 # Not all notifications will have a sender.
 sender = models.ForeignKey(AUTH_USER_MODEL, null=True)

 # HTML is allowed in this field as it can contain links
 subject = models.CharField(max_length=255)
 body = models.TextField()

 # Some projects may want to categorise their notifications. You may want
 # to use this field to show a different icons next to the notification.
 category = models.CharField(max_length=255, blank=True)

 INBOX, ARCHIVE = 'Inbox', 'Archive'
 choices = (
 (INBOX, _('Inbox')),
 (ARCHIVE, _('Archive')))
 location = models.CharField(max_length=32, choices=choices,
 default=INBOX)

 date_sent = models.DateTimeField(auto_now_add=True)
 date_read = models.DateTimeField(blank=True, null=True)

 class Meta:
 abstract = True
 app_label = 'customer'
 ordering = ('-date_sent',)
 verbose_name = _('Notification')
 verbose_name_plural = _('Notifications')

 def __str__(self):
 return self.subject

 def archive(self):
 self.location = self.ARCHIVE
 self.save()
 archive.alters_data = True

 @property
 def is_read(self):
 return self.date_read is not None

[docs]class AbstractProductAlert(models.Model):
 """
 An alert for when a product comes back in stock
 """
 product = models.ForeignKey('catalogue.Product')

 # A user is only required if the notification is created by a
 # registered user, anonymous users will only have an email address
 # attached to the notification
 user = models.ForeignKey(AUTH_USER_MODEL, db_index=True, blank=True,
 null=True, related_name="alerts",
 verbose_name=_('User'))
 email = models.EmailField(_("Email"), db_index=True, blank=True)

 # This key are used to confirm and cancel alerts for anon users
 key = models.CharField(_("Key"), max_length=128, blank=True, db_index=True)

 # An alert can have two different statuses for authenticated
 # users ``ACTIVE`` and ``INACTIVE`` and anonymous users have an
 # additional status ``UNCONFIRMED``. For anonymous users a confirmation
 # and unsubscription key are generated when an instance is saved for
 # the first time and can be used to confirm and unsubscribe the
 # notifications.
 UNCONFIRMED, ACTIVE, CANCELLED, CLOSED = (
 'Unconfirmed', 'Active', 'Cancelled', 'Closed')
 STATUS_CHOICES = (
 (UNCONFIRMED, _('Not yet confirmed')),
 (ACTIVE, _('Active')),
 (CANCELLED, _('Cancelled')),
 (CLOSED, _('Closed')),
)
 status = models.CharField(_("Status"), max_length=20,
 choices=STATUS_CHOICES, default=ACTIVE)

 date_created = models.DateTimeField(_("Date created"), auto_now_add=True)
 date_confirmed = models.DateTimeField(_("Date confirmed"), blank=True,
 null=True)
 date_cancelled = models.DateTimeField(_("Date cancelled"), blank=True,
 null=True)
 date_closed = models.DateTimeField(_("Date closed"), blank=True, null=True)

 class Meta:
 abstract = True
 app_label = 'customer'
 verbose_name = _('Product alert')
 verbose_name_plural = _('Product alerts')

 @property
 def is_anonymous(self):
 return self.user is None

 @property
 def can_be_confirmed(self):
 return self.status == self.UNCONFIRMED

 @property
 def can_be_cancelled(self):
 return self.status == self.ACTIVE

 @property
 def is_cancelled(self):
 return self.status == self.CANCELLED

 @property
 def is_active(self):
 return self.status == self.ACTIVE

 def confirm(self):
 self.status = self.ACTIVE
 self.date_confirmed = timezone.now()
 self.save()
 confirm.alters_data = True

 def cancel(self):
 self.status = self.CANCELLED
 self.date_cancelled = timezone.now()
 self.save()
 cancel.alters_data = True

 def close(self):
 self.status = self.CLOSED
 self.date_closed = timezone.now()
 self.save()
 close.alters_data = True

 def get_email_address(self):
 if self.user:
 return self.user.email
 else:
 return self.email

 def save(self, *args, **kwargs):
 if not self.id and not self.user:
 self.key = self.get_random_key()
 self.status = self.UNCONFIRMED
 # Ensure date fields get updated when saving from modelform (which just
 # calls save, and doesn't call the methods cancel(), confirm() etc).
 if self.status == self.CANCELLED and self.date_cancelled is None:
 self.date_cancelled = timezone.now()
 if not self.user and self.status == self.ACTIVE \
 and self.date_confirmed is None:
 self.date_confirmed = timezone.now()
 if self.status == self.CLOSED and self.date_closed is None:
 self.date_closed = timezone.now()

 return super(AbstractProductAlert, self).save(*args, **kwargs)

[docs] def get_random_key(self):
 """
 Get a random generated key based on SHA-1 and email address
 """
 salt = hashlib.sha1(str(random.random()).encode('utf8')).hexdigest()
 return hashlib.sha1((salt + self.email).encode('utf8')).hexdigest()

 def get_confirm_url(self):
 return reverse('customer:alerts-confirm', kwargs={'key': self.key})

 def get_cancel_url(self):
 return reverse('customer:alerts-cancel-by-key', kwargs={'key':
 self.key})

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/order/models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.order.models

from oscar.apps.address.abstract_models import (
 AbstractBillingAddress, AbstractShippingAddress)
from oscar.apps.order.abstract_models import * # noqa
from oscar.core.loading import is_model_registered

__all__ = ['PaymentEventQuantity', 'ShippingEventQuantity']

if not is_model_registered('order', 'Order'):
 class Order(AbstractOrder):
 pass

 __all__.append('Order')

if not is_model_registered('order', 'OrderNote'):
 class OrderNote(AbstractOrderNote):
 pass

 __all__.append('OrderNote')

if not is_model_registered('order', 'CommunicationEvent'):
 class CommunicationEvent(AbstractCommunicationEvent):
 pass

 __all__.append('CommunicationEvent')

if not is_model_registered('order', 'ShippingAddress'):
 class ShippingAddress(AbstractShippingAddress):
 pass

 __all__.append('ShippingAddress')

if not is_model_registered('order', 'BillingAddress'):
 class BillingAddress(AbstractBillingAddress):
 pass

 __all__.append('BillingAddress')

if not is_model_registered('order', 'Line'):
 class Line(AbstractLine):
 pass

 __all__.append('Line')

if not is_model_registered('order', 'LinePrice'):
 class LinePrice(AbstractLinePrice):
 pass

 __all__.append('LinePrice')

if not is_model_registered('order', 'LineAttribute'):
 class LineAttribute(AbstractLineAttribute):
 pass

 __all__.append('LineAttribute')

if not is_model_registered('order', 'ShippingEvent'):
 class ShippingEvent(AbstractShippingEvent):
 pass

 __all__.append('ShippingEvent')

if not is_model_registered('order', 'ShippingEventType'):
 class ShippingEventType(AbstractShippingEventType):
 pass

 __all__.append('ShippingEventType')

if not is_model_registered('order', 'PaymentEvent'):
 class PaymentEvent(AbstractPaymentEvent):
 pass

 __all__.append('PaymentEvent')

if not is_model_registered('order', 'PaymentEventType'):
 class PaymentEventType(AbstractPaymentEventType):
 pass

 __all__.append('PaymentEventType')

if not is_model_registered('order', 'OrderDiscount'):
 class OrderDiscount(AbstractOrderDiscount):
 pass

 __all__.append('OrderDiscount')

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/customer/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.customer.views

from django import http
from django.conf import settings
from django.contrib import messages
from django.contrib.auth import login as auth_login
from django.contrib.auth import logout as auth_logout
from django.contrib.auth import update_session_auth_hash
from django.contrib.sites.shortcuts import get_current_site
from django.core.exceptions import ObjectDoesNotExist
from django.core.urlresolvers import reverse, reverse_lazy
from django.shortcuts import get_object_or_404, redirect
from django.utils.translation import ugettext_lazy as _
from django.views import generic

from oscar.apps.customer.utils import get_password_reset_url
from oscar.core.compat import get_user_model
from oscar.core.loading import (
 get_class, get_classes, get_model, get_profile_class)
from oscar.core.utils import safe_referrer
from oscar.views.generic import PostActionMixin

from . import signals

PageTitleMixin, RegisterUserMixin = get_classes(
 'customer.mixins', ['PageTitleMixin', 'RegisterUserMixin'])
Dispatcher = get_class('customer.utils', 'Dispatcher')
EmailAuthenticationForm, EmailUserCreationForm, OrderSearchForm = get_classes(
 'customer.forms', ['EmailAuthenticationForm', 'EmailUserCreationForm',
 'OrderSearchForm'])
PasswordChangeForm = get_class('customer.forms', 'PasswordChangeForm')
ProfileForm, ConfirmPasswordForm = get_classes(
 'customer.forms', ['ProfileForm', 'ConfirmPasswordForm'])
UserAddressForm = get_class('address.forms', 'UserAddressForm')
Order = get_model('order', 'Order')
Line = get_model('basket', 'Line')
Basket = get_model('basket', 'Basket')
UserAddress = get_model('address', 'UserAddress')
Email = get_model('customer', 'Email')
ProductAlert = get_model('customer', 'ProductAlert')
CommunicationEventType = get_model('customer', 'CommunicationEventType')

User = get_user_model()

=======
Account
=======

[docs]class AccountSummaryView(generic.RedirectView):
 """
 View that exists for legacy reasons and customisability. It commonly gets
 called when the user clicks on "Account" in the navbar.

 Oscar defaults to just redirecting to the profile summary page (and
 that redirect can be configured via OSCAR_ACCOUNT_REDIRECT_URL), but
 it's also likely you want to display an 'account overview' page or
 such like. The presence of this view allows just that, without
 having to change a lot of templates.
 """
 pattern_name = settings.OSCAR_ACCOUNTS_REDIRECT_URL

class AccountRegistrationView(RegisterUserMixin, generic.FormView):
 form_class = EmailUserCreationForm
 template_name = 'customer/registration.html'
 redirect_field_name = 'next'

 def get(self, request, *args, **kwargs):
 if request.user.is_authenticated():
 return redirect(settings.LOGIN_REDIRECT_URL)
 return super(AccountRegistrationView, self).get(
 request, *args, **kwargs)

 def get_logged_in_redirect(self):
 return reverse('customer:summary')

 def get_form_kwargs(self):
 kwargs = super(AccountRegistrationView, self).get_form_kwargs()
 kwargs['initial'] = {
 'email': self.request.GET.get('email', ''),
 'redirect_url': self.request.GET.get(self.redirect_field_name, '')
 }
 kwargs['host'] = self.request.get_host()
 return kwargs

 def get_context_data(self, *args, **kwargs):
 ctx = super(AccountRegistrationView, self).get_context_data(
 *args, **kwargs)
 ctx['cancel_url'] = safe_referrer(self.request, '')
 return ctx

 def form_valid(self, form):
 self.register_user(form)
 return redirect(form.cleaned_data['redirect_url'])

[docs]class AccountAuthView(RegisterUserMixin, generic.TemplateView):
 """
 This is actually a slightly odd double form view that allows a customer to
 either login or register.
 """
 template_name = 'customer/login_registration.html'
 login_prefix, registration_prefix = 'login', 'registration'
 login_form_class = EmailAuthenticationForm
 registration_form_class = EmailUserCreationForm
 redirect_field_name = 'next'

 def get(self, request, *args, **kwargs):
 if request.user.is_authenticated():
 return redirect(settings.LOGIN_REDIRECT_URL)
 return super(AccountAuthView, self).get(
 request, *args, **kwargs)

 def get_context_data(self, *args, **kwargs):
 ctx = super(AccountAuthView, self).get_context_data(*args, **kwargs)
 if 'login_form' not in kwargs:
 ctx['login_form'] = self.get_login_form()
 if 'registration_form' not in kwargs:
 ctx['registration_form'] = self.get_registration_form()
 return ctx

 def post(self, request, *args, **kwargs):
 # Use the name of the submit button to determine which form to validate
 if u'login_submit' in request.POST:
 return self.validate_login_form()
 elif u'registration_submit' in request.POST:
 return self.validate_registration_form()
 return http.HttpResponseBadRequest()

 # LOGIN

 def get_login_form(self, bind_data=False):
 return self.login_form_class(
 **self.get_login_form_kwargs(bind_data))

 def get_login_form_kwargs(self, bind_data=False):
 kwargs = {}
 kwargs['host'] = self.request.get_host()
 kwargs['prefix'] = self.login_prefix
 kwargs['initial'] = {
 'redirect_url': self.request.GET.get(self.redirect_field_name, ''),
 }
 if bind_data and self.request.method in ('POST', 'PUT'):
 kwargs.update({
 'data': self.request.POST,
 'files': self.request.FILES,
 })
 return kwargs

 def validate_login_form(self):
 form = self.get_login_form(bind_data=True)
 if form.is_valid():
 user = form.get_user()

 # Grab a reference to the session ID before logging in
 old_session_key = self.request.session.session_key

 auth_login(self.request, form.get_user())

 # Raise signal robustly (we don't want exceptions to crash the
 # request handling). We use a custom signal as we want to track the
 # session key before calling login (which cycles the session ID).
 signals.user_logged_in.send_robust(
 sender=self, request=self.request, user=user,
 old_session_key=old_session_key)

 msg = self.get_login_success_message(form)
 if msg:
 messages.success(self.request, msg)

 return redirect(self.get_login_success_url(form))

 ctx = self.get_context_data(login_form=form)
 return self.render_to_response(ctx)

 def get_login_success_message(self, form):
 return _("Welcome back")

 def get_login_success_url(self, form):
 redirect_url = form.cleaned_data['redirect_url']
 if redirect_url:
 return redirect_url

 # Redirect staff members to dashboard as that's the most likely place
 # they'll want to visit if they're logging in.
 if self.request.user.is_staff:
 return reverse('dashboard:index')

 return settings.LOGIN_REDIRECT_URL

 # REGISTRATION

 def get_registration_form(self, bind_data=False):
 return self.registration_form_class(
 **self.get_registration_form_kwargs(bind_data))

 def get_registration_form_kwargs(self, bind_data=False):
 kwargs = {}
 kwargs['host'] = self.request.get_host()
 kwargs['prefix'] = self.registration_prefix
 kwargs['initial'] = {
 'redirect_url': self.request.GET.get(self.redirect_field_name, ''),
 }
 if bind_data and self.request.method in ('POST', 'PUT'):
 kwargs.update({
 'data': self.request.POST,
 'files': self.request.FILES,
 })
 return kwargs

 def validate_registration_form(self):
 form = self.get_registration_form(bind_data=True)
 if form.is_valid():
 self.register_user(form)

 msg = self.get_registration_success_message(form)
 messages.success(self.request, msg)

 return redirect(self.get_registration_success_url(form))

 ctx = self.get_context_data(registration_form=form)
 return self.render_to_response(ctx)

 def get_registration_success_message(self, form):
 return _("Thanks for registering!")

 def get_registration_success_url(self, form):
 redirect_url = form.cleaned_data['redirect_url']
 if redirect_url:
 return redirect_url

 return settings.LOGIN_REDIRECT_URL

class LogoutView(generic.RedirectView):
 url = settings.OSCAR_HOMEPAGE
 permanent = False

 def get(self, request, *args, **kwargs):
 auth_logout(request)
 response = super(LogoutView, self).get(request, *args, **kwargs)

 for cookie in settings.OSCAR_COOKIES_DELETE_ON_LOGOUT:
 response.delete_cookie(cookie)

 return response

=============
Profile
=============

class ProfileView(PageTitleMixin, generic.TemplateView):
 template_name = 'customer/profile/profile.html'
 page_title = _('Profile')
 active_tab = 'profile'

 def get_context_data(self, **kwargs):
 ctx = super(ProfileView, self).get_context_data(**kwargs)
 ctx['profile_fields'] = self.get_profile_fields(self.request.user)
 return ctx

 def get_profile_fields(self, user):
 field_data = []

 # Check for custom user model
 for field_name in User._meta.additional_fields:
 field_data.append(
 self.get_model_field_data(user, field_name))

 # Check for profile class
 profile_class = get_profile_class()
 if profile_class:
 try:
 profile = profile_class.objects.get(user=user)
 except ObjectDoesNotExist:
 profile = profile_class(user=user)

 field_names = [f.name for f in profile._meta.local_fields]
 for field_name in field_names:
 if field_name in ('user', 'id'):
 continue
 field_data.append(
 self.get_model_field_data(profile, field_name))

 return field_data

 def get_model_field_data(self, model_class, field_name):
 """
 Extract the verbose name and value for a model's field value
 """
 field = model_class._meta.get_field(field_name)
 if field.choices:
 value = getattr(model_class, 'get_%s_display' % field_name)()
 else:
 value = getattr(model_class, field_name)
 return {
 'name': getattr(field, 'verbose_name'),
 'value': value,
 }

class ProfileUpdateView(PageTitleMixin, generic.FormView):
 form_class = ProfileForm
 template_name = 'customer/profile/profile_form.html'
 communication_type_code = 'EMAIL_CHANGED'
 page_title = _('Edit Profile')
 active_tab = 'profile'
 success_url = reverse_lazy('customer:profile-view')

 def get_form_kwargs(self):
 kwargs = super(ProfileUpdateView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def form_valid(self, form):
 # Grab current user instance before we save form. We may need this to
 # send a warning email if the email address is changed.
 try:
 old_user = User.objects.get(id=self.request.user.id)
 except User.DoesNotExist:
 old_user = None

 form.save()

 # We have to look up the email address from the form's
 # cleaned data because the object created by form.save() can
 # either be a user or profile instance depending whether a profile
 # class has been specified by the AUTH_PROFILE_MODULE setting.
 new_email = form.cleaned_data.get('email')
 if new_email and old_user and new_email != old_user.email:
 # Email address has changed - send a confirmation email to the old
 # address including a password reset link in case this is a
 # suspicious change.
 ctx = {
 'user': self.request.user,
 'site': get_current_site(self.request),
 'reset_url': get_password_reset_url(old_user),
 'new_email': new_email,
 }
 msgs = CommunicationEventType.objects.get_and_render(
 code=self.communication_type_code, context=ctx)
 Dispatcher().dispatch_user_messages(old_user, msgs)

 messages.success(self.request, _("Profile updated"))
 return redirect(self.get_success_url())

class ProfileDeleteView(PageTitleMixin, generic.FormView):
 form_class = ConfirmPasswordForm
 template_name = 'customer/profile/profile_delete.html'
 page_title = _('Delete profile')
 active_tab = 'profile'
 success_url = settings.OSCAR_HOMEPAGE

 def get_form_kwargs(self):
 kwargs = super(ProfileDeleteView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def form_valid(self, form):
 self.request.user.delete()
 messages.success(
 self.request,
 _("Your profile has now been deleted. Thanks for using the site."))
 return redirect(self.get_success_url())

class ChangePasswordView(PageTitleMixin, generic.FormView):
 form_class = PasswordChangeForm
 template_name = 'customer/profile/change_password_form.html'
 communication_type_code = 'PASSWORD_CHANGED'
 page_title = _('Change Password')
 active_tab = 'profile'
 success_url = reverse_lazy('customer:profile-view')

 def get_form_kwargs(self):
 kwargs = super(ChangePasswordView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def form_valid(self, form):
 form.save()
 update_session_auth_hash(self.request, self.request.user)
 messages.success(self.request, _("Password updated"))

 ctx = {
 'user': self.request.user,
 'site': get_current_site(self.request),
 'reset_url': get_password_reset_url(self.request.user),
 }
 msgs = CommunicationEventType.objects.get_and_render(
 code=self.communication_type_code, context=ctx)
 Dispatcher().dispatch_user_messages(self.request.user, msgs)

 return redirect(self.get_success_url())

=============
Email history
=============

class EmailHistoryView(PageTitleMixin, generic.ListView):
 context_object_name = "emails"
 template_name = 'customer/email/email_list.html'
 paginate_by = settings.OSCAR_EMAILS_PER_PAGE
 page_title = _('Email History')
 active_tab = 'emails'

 def get_queryset(self):
 return Email._default_manager.filter(user=self.request.user)

[docs]class EmailDetailView(PageTitleMixin, generic.DetailView):
 """Customer email"""
 template_name = "customer/email/email_detail.html"
 context_object_name = 'email'
 active_tab = 'emails'

 def get_object(self, queryset=None):
 return get_object_or_404(Email, user=self.request.user,
 id=self.kwargs['email_id'])

[docs] def get_page_title(self):
 """Append email subject to page title"""
 return u'%s: %s' % (_('Email'), self.object.subject)

=============
Order history
=============

[docs]class OrderHistoryView(PageTitleMixin, generic.ListView):
 """
 Customer order history
 """
 context_object_name = "orders"
 template_name = 'customer/order/order_list.html'
 paginate_by = settings.OSCAR_ORDERS_PER_PAGE
 model = Order
 form_class = OrderSearchForm
 page_title = _('Order History')
 active_tab = 'orders'

 def get(self, request, *args, **kwargs):
 if 'date_from' in request.GET:
 self.form = self.form_class(self.request.GET)
 if not self.form.is_valid():
 self.object_list = self.get_queryset()
 ctx = self.get_context_data(object_list=self.object_list)
 return self.render_to_response(ctx)
 data = self.form.cleaned_data

 # If the user has just entered an order number, try and look it up
 # and redirect immediately to the order detail page.
 if data['order_number'] and not (data['date_to'] or
 data['date_from']):
 try:
 order = Order.objects.get(
 number=data['order_number'], user=self.request.user)
 except Order.DoesNotExist:
 pass
 else:
 return redirect(
 'customer:order', order_number=order.number)
 else:
 self.form = self.form_class()
 return super(OrderHistoryView, self).get(request, *args, **kwargs)

 def get_queryset(self):
 qs = self.model._default_manager.filter(user=self.request.user)
 if self.form.is_bound and self.form.is_valid():
 qs = qs.filter(**self.form.get_filters())
 return qs

 def get_context_data(self, *args, **kwargs):
 ctx = super(OrderHistoryView, self).get_context_data(*args, **kwargs)
 ctx['form'] = self.form
 return ctx

class OrderDetailView(PageTitleMixin, PostActionMixin, generic.DetailView):
 model = Order
 active_tab = 'orders'

 def get_template_names(self):
 return ["customer/order/order_detail.html"]

 def get_page_title(self):
 """
 Order number as page title
 """
 return u'%s #%s' % (_('Order'), self.object.number)

 def get_object(self, queryset=None):
 return get_object_or_404(self.model, user=self.request.user,
 number=self.kwargs['order_number'])

 def do_reorder(self, order): # noqa (too complex (10))
 """
 'Re-order' a previous order.

 This puts the contents of the previous order into your basket
 """
 # Collect lines to be added to the basket and any warnings for lines
 # that are no longer available.
 basket = self.request.basket
 lines_to_add = []
 warnings = []
 for line in order.lines.all():
 is_available, reason = line.is_available_to_reorder(
 basket, self.request.strategy)
 if is_available:
 lines_to_add.append(line)
 else:
 warnings.append(reason)

 # Check whether the number of items in the basket won't exceed the
 # maximum.
 total_quantity = sum([line.quantity for line in lines_to_add])
 is_quantity_allowed, reason = basket.is_quantity_allowed(
 total_quantity)
 if not is_quantity_allowed:
 messages.warning(self.request, reason)
 self.response = redirect('customer:order-list')
 return

 # Add any warnings
 for warning in warnings:
 messages.warning(self.request, warning)

 for line in lines_to_add:
 options = []
 for attribute in line.attributes.all():
 if attribute.option:
 options.append({
 'option': attribute.option,
 'value': attribute.value})
 basket.add_product(line.product, line.quantity, options)

 if len(lines_to_add) > 0:
 self.response = redirect('basket:summary')
 messages.info(
 self.request,
 _("All available lines from order %(number)s "
 "have been added to your basket") % {'number': order.number})
 else:
 self.response = redirect('customer:order-list')
 messages.warning(
 self.request,
 _("It is not possible to re-order order %(number)s "
 "as none of its lines are available to purchase") %
 {'number': order.number})

[docs]class OrderLineView(PostActionMixin, generic.DetailView):
 """Customer order line"""

 def get_object(self, queryset=None):
 order = get_object_or_404(Order, user=self.request.user,
 number=self.kwargs['order_number'])
 return order.lines.get(id=self.kwargs['line_id'])

 def do_reorder(self, line):
 self.response = redirect('customer:order', self.kwargs['order_number'])
 basket = self.request.basket

 line_available_to_reorder, reason = line.is_available_to_reorder(
 basket, self.request.strategy)

 if not line_available_to_reorder:
 messages.warning(self.request, reason)
 return

 # We need to pass response to the get_or_create... method
 # as a new basket might need to be created
 self.response = redirect('basket:summary')

 # Convert line attributes into basket options
 options = []
 for attribute in line.attributes.all():
 if attribute.option:
 options.append({'option': attribute.option,
 'value': attribute.value})
 basket.add_product(line.product, line.quantity, options)

 if line.quantity > 1:
 msg = _("%(qty)d copies of '%(product)s' have been added to your"
 " basket") % {
 'qty': line.quantity, 'product': line.product}
 else:
 msg = _("'%s' has been added to your basket") % line.product

 messages.info(self.request, msg)

class AnonymousOrderDetailView(generic.DetailView):
 model = Order
 template_name = "customer/anon_order.html"

 def get_object(self, queryset=None):
 # Check URL hash matches that for order to prevent spoof attacks
 order = get_object_or_404(self.model, user=None,
 number=self.kwargs['order_number'])
 if self.kwargs['hash'] != order.verification_hash():
 raise http.Http404()
 return order

Address book

[docs]class AddressListView(PageTitleMixin, generic.ListView):
 """Customer address book"""
 context_object_name = "addresses"
 template_name = 'customer/address/address_list.html'
 paginate_by = settings.OSCAR_ADDRESSES_PER_PAGE
 active_tab = 'addresses'
 page_title = _('Address Book')

[docs] def get_queryset(self):
 """Return customer's addresses"""
 return UserAddress._default_manager.filter(user=self.request.user)

class AddressCreateView(PageTitleMixin, generic.CreateView):
 form_class = UserAddressForm
 model = UserAddress
 template_name = 'customer/address/address_form.html'
 active_tab = 'addresses'
 page_title = _('Add a new address')
 success_url = reverse_lazy('customer:address-list')

 def get_form_kwargs(self):
 kwargs = super(AddressCreateView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def get_context_data(self, **kwargs):
 ctx = super(AddressCreateView, self).get_context_data(**kwargs)
 ctx['title'] = _('Add a new address')
 return ctx

 def get_success_url(self):
 messages.success(self.request,
 _("Address '%s' created") % self.object.summary)
 return super(AddressCreateView, self).get_success_url()

class AddressUpdateView(PageTitleMixin, generic.UpdateView):
 form_class = UserAddressForm
 model = UserAddress
 template_name = 'customer/address/address_form.html'
 active_tab = 'addresses'
 page_title = _('Edit address')
 success_url = reverse_lazy('customer:address-list')

 def get_form_kwargs(self):
 kwargs = super(AddressUpdateView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def get_context_data(self, **kwargs):
 ctx = super(AddressUpdateView, self).get_context_data(**kwargs)
 ctx['title'] = _('Edit address')
 return ctx

 def get_queryset(self):
 return self.request.user.addresses.all()

 def get_success_url(self):
 messages.success(self.request,
 _("Address '%s' updated") % self.object.summary)
 return super(AddressUpdateView, self).get_success_url()

class AddressDeleteView(PageTitleMixin, generic.DeleteView):
 model = UserAddress
 template_name = "customer/address/address_delete.html"
 page_title = _('Delete address?')
 active_tab = 'addresses'
 context_object_name = 'address'
 success_url = reverse_lazy('customer:address-list')

 def get_queryset(self):
 return UserAddress._default_manager.filter(user=self.request.user)

 def get_success_url(self):
 messages.success(self.request,
 _("Address '%s' deleted") % self.object.summary)
 return super(AddressDeleteView, self).get_success_url()

[docs]class AddressChangeStatusView(generic.RedirectView):
 """
 Sets an address as default_for_(billing|shipping)
 """
 url = reverse_lazy('customer:address-list')
 permanent = False

 def get(self, request, pk=None, action=None, *args, **kwargs):
 address = get_object_or_404(UserAddress, user=self.request.user,
 pk=pk)
 # We don't want the user to set an address as the default shipping
 # address, though they should be able to set it as their billing
 # address.
 if address.country.is_shipping_country:
 setattr(address, 'is_%s' % action, True)
 elif action == 'default_for_billing':
 setattr(address, 'is_default_for_billing', True)
 else:
 messages.error(request, _('We do not ship to this country'))
 address.save()
 return super(AddressChangeStatusView, self).get(
 request, *args, **kwargs)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/partner/prices.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.partner.prices

from oscar.core import prices

[docs]class Base(object):
 """
 The interface that any pricing policy must support
 """

 #: Whether any prices exist
 exists = False

 #: Whether tax is known
 is_tax_known = False

 #: Price excluding tax
 excl_tax = None

 #: Price including tax
 incl_tax = None

 #: Price to use for offer calculations
 @property
 def effective_price(self):
 # Default to using the price excluding tax for calculations
 return self.excl_tax

 #: Price tax
 tax = None

 #: Retail price
 retail = None

 #: Price currency (3 char code)
 currency = None

 def __repr__(self):
 return "%s(%r)" % (self.__class__.__name__, self.__dict__)

[docs]class Unavailable(Base):
 """
 This should be used as a pricing policy when a product is unavailable and
 no prices are known.
 """

[docs]class FixedPrice(Base):
 """
 This should be used for when the price of a product is known in advance.

 It can work for when tax isn't known (like in the US).

 Note that this price class uses the tax-exclusive price for offers, even if
 the tax is known. This may not be what you want. Use the
 TaxInclusiveFixedPrice class if you want offers to use tax-inclusive
 prices.
 """
 exists = True

 def __init__(self, currency, excl_tax, tax=None):
 self.currency = currency
 self.excl_tax = excl_tax
 self.tax = tax

 @property
 def incl_tax(self):
 if self.is_tax_known:
 return self.excl_tax + self.tax
 raise prices.TaxNotKnown(
 "Can't calculate price.incl_tax as tax isn't known")

 @property
 def is_tax_known(self):
 return self.tax is not None

[docs]class TaxInclusiveFixedPrice(FixedPrice):
 """
 Specialised version of FixedPrice that must have tax passed. It also
 specifies that offers should use the tax-inclusive price (which is the norm
 in the UK).
 """
 exists = is_tax_known = True

 def __init__(self, currency, excl_tax, tax):
 self.currency = currency
 self.excl_tax = excl_tax
 self.tax = tax

 @property
 def incl_tax(self):
 return self.excl_tax + self.tax

 @property
 def effective_price(self):
 return self.incl_tax

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/customer/wishlists/views.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.customer.wishlists.views

-*- coding: utf-8 -*-
from django.contrib import messages
from django.core.exceptions import (
 MultipleObjectsReturned, ObjectDoesNotExist, PermissionDenied)
from django.core.urlresolvers import reverse
from django.http import Http404
from django.shortcuts import get_object_or_404, redirect
from django.utils.translation import ugettext_lazy as _
from django.views.generic import (
 CreateView, DeleteView, FormView, ListView, UpdateView, View)

from oscar.core.loading import get_class, get_classes, get_model
from oscar.core.utils import redirect_to_referrer, safe_referrer

WishList = get_model('wishlists', 'WishList')
Line = get_model('wishlists', 'Line')
Product = get_model('catalogue', 'Product')
WishListForm, LineFormset = get_classes('wishlists.forms',
 ['WishListForm', 'LineFormset'])
PageTitleMixin = get_class('customer.mixins', 'PageTitleMixin')

class WishListListView(PageTitleMixin, ListView):
 context_object_name = active_tab = "wishlists"
 template_name = 'customer/wishlists/wishlists_list.html'
 page_title = _('Wish Lists')

 def get_queryset(self):
 return self.request.user.wishlists.all()

[docs]class WishListDetailView(PageTitleMixin, FormView):
 """
 This view acts as a DetailView for a wish list and allows updating the
 quantities of products.

 It is implemented as FormView because it's easier to adapt a FormView to
 display a product then adapt a DetailView to handle form validation.
 """
 template_name = 'customer/wishlists/wishlists_detail.html'
 active_tab = "wishlists"
 form_class = LineFormset

 def dispatch(self, request, *args, **kwargs):
 self.object = self.get_wishlist_or_404(kwargs['key'], request.user)
 return super(WishListDetailView, self).dispatch(request, *args,
 **kwargs)

 def get_wishlist_or_404(self, key, user):
 wishlist = get_object_or_404(WishList, key=key)
 if wishlist.is_allowed_to_see(user):
 return wishlist
 else:
 raise Http404

 def get_page_title(self):
 return self.object.name

 def get_form_kwargs(self):
 kwargs = super(WishListDetailView, self).get_form_kwargs()
 kwargs['instance'] = self.object
 return kwargs

 def get_context_data(self, **kwargs):
 ctx = super(WishListDetailView, self).get_context_data(**kwargs)
 ctx['wishlist'] = self.object
 other_wishlists = self.request.user.wishlists.exclude(
 pk=self.object.pk)
 ctx['other_wishlists'] = other_wishlists
 return ctx

 def form_valid(self, form):
 for subform in form:
 if subform.cleaned_data['quantity'] <= 0:
 subform.instance.delete()
 else:
 subform.save()
 messages.success(self.request, _('Quantities updated.'))
 return redirect('customer:wishlists-detail', key=self.object.key)

[docs]class WishListCreateView(PageTitleMixin, CreateView):
 """
 Create a new wishlist

 If a product ID is assed as a kwargs, then this product will be added to
 the wishlist.
 """
 model = WishList
 template_name = 'customer/wishlists/wishlists_form.html'
 active_tab = "wishlists"
 page_title = _('Create a new wish list')
 form_class = WishListForm
 product = None

 def dispatch(self, request, *args, **kwargs):
 if 'product_pk' in kwargs:
 try:
 self.product = Product.objects.get(pk=kwargs['product_pk'])
 except ObjectDoesNotExist:
 messages.error(
 request, _("The requested product no longer exists"))
 return redirect('wishlists-create')
 return super(WishListCreateView, self).dispatch(
 request, *args, **kwargs)

 def get_context_data(self, **kwargs):
 ctx = super(WishListCreateView, self).get_context_data(**kwargs)
 ctx['product'] = self.product
 return ctx

 def get_form_kwargs(self):
 kwargs = super(WishListCreateView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def form_valid(self, form):
 wishlist = form.save()
 if self.product:
 wishlist.add(self.product)
 msg = _("Your wishlist has been created and '%(name)s "
 "has been added") \
 % {'name': self.product.get_title()}
 else:
 msg = _("Your wishlist has been created")
 messages.success(self.request, msg)
 return redirect(wishlist.get_absolute_url())

[docs]class WishListCreateWithProductView(View):
 """
 Create a wish list and immediately add a product to it
 """

 def post(self, request, *args, **kwargs):
 product = get_object_or_404(Product, pk=kwargs['product_pk'])
 wishlists = request.user.wishlists.all()
 if len(wishlists) == 0:
 wishlist = request.user.wishlists.create()
 else:
 # This shouldn't really happen but we default to using the first
 # wishlist for a user if one already exists when they make this
 # request.
 wishlist = wishlists[0]
 wishlist.add(product)
 messages.success(
 request, _("%(title)s has been added to your wishlist") % {
 'title': product.get_title()})
 return redirect_to_referrer(request, wishlist.get_absolute_url())

class WishListUpdateView(PageTitleMixin, UpdateView):
 model = WishList
 template_name = 'customer/wishlists/wishlists_form.html'
 active_tab = "wishlists"
 form_class = WishListForm
 context_object_name = 'wishlist'

 def get_page_title(self):
 return self.object.name

 def get_object(self, queryset=None):
 return get_object_or_404(WishList, owner=self.request.user,
 key=self.kwargs['key'])

 def get_form_kwargs(self):
 kwargs = super(WishListUpdateView, self).get_form_kwargs()
 kwargs['user'] = self.request.user
 return kwargs

 def get_success_url(self):
 messages.success(
 self.request, _("Your '%s' wishlist has been updated")
 % self.object.name)
 return reverse('customer:wishlists-list')

class WishListDeleteView(PageTitleMixin, DeleteView):
 model = WishList
 template_name = 'customer/wishlists/wishlists_delete.html'
 active_tab = "wishlists"

 def get_page_title(self):
 return _(u'Delete %s') % self.object.name

 def get_object(self, queryset=None):
 return get_object_or_404(WishList, owner=self.request.user,
 key=self.kwargs['key'])

 def get_success_url(self):
 messages.success(
 self.request, _("Your '%s' wish list has been deleted")
 % self.object.name)
 return reverse('customer:wishlists-list')

[docs]class WishListAddProduct(View):
 """
 Adds a product to a wish list.

 - If the user doesn't already have a wishlist then it will be created for
 them.
 - If the product is already in the wish list, its quantity is increased.
 """

 def dispatch(self, request, *args, **kwargs):
 self.product = get_object_or_404(Product, pk=kwargs['product_pk'])
 self.wishlist = self.get_or_create_wishlist(request, *args, **kwargs)
 return super(WishListAddProduct, self).dispatch(request)

 def get_or_create_wishlist(self, request, *args, **kwargs):
 if 'key' in kwargs:
 wishlist = get_object_or_404(
 WishList, key=kwargs['key'], owner=request.user)
 else:
 wishlists = request.user.wishlists.all()[:1]
 if not wishlists:
 return request.user.wishlists.create()
 wishlist = wishlists[0]

 if not wishlist.is_allowed_to_edit(request.user):
 raise PermissionDenied
 return wishlist

 def get(self, request, *args, **kwargs):
 # This is nasty as we shouldn't be performing write operations on a GET
 # request. It's only included as the UI of the product detail page
 # allows a wishlist to be selected from a dropdown.
 return self.add_product()

 def post(self, request, *args, **kwargs):
 return self.add_product()

 def add_product(self):
 self.wishlist.add(self.product)
 msg = _("'%s' was added to your wish list.") % self.product.get_title()
 messages.success(self.request, msg)
 return redirect_to_referrer(
 self.request, self.product.get_absolute_url())

[docs]class LineMixin(object):
 """
 Handles fetching both a wish list and a product
 Views using this mixin must be passed two keyword arguments:

 * key: The key of a wish list
 * line_pk: The primary key of the wish list line

 or

 * product_pk: The primary key of the product
 """

 def fetch_line(self, user, wishlist_key, line_pk=None, product_pk=None):
 self.wishlist = WishList._default_manager.get(
 owner=user, key=wishlist_key)
 if line_pk is not None:
 self.line = self.wishlist.lines.get(pk=line_pk)
 else:
 self.line = self.wishlist.lines.get(product_id=product_pk)
 self.product = self.line.product

class WishListRemoveProduct(LineMixin, PageTitleMixin, DeleteView):
 template_name = 'customer/wishlists/wishlists_delete_product.html'
 active_tab = "wishlists"

 def get_page_title(self):
 return _(u'Remove %s') % self.object.get_title()

 def get_object(self, queryset=None):
 self.fetch_line(
 self.request.user, self.kwargs['key'],
 self.kwargs.get('line_pk'), self.kwargs.get('product_pk'))
 return self.line

 def get_context_data(self, **kwargs):
 ctx = super(WishListRemoveProduct, self).get_context_data(**kwargs)
 ctx['wishlist'] = self.wishlist
 ctx['product'] = self.product
 return ctx

 def get_success_url(self):
 msg = _("'%(title)s' was removed from your '%(name)s' wish list") % {
 'title': self.line.get_title(),
 'name': self.wishlist.name}
 messages.success(self.request, msg)

 # We post directly to this view on product pages; and should send the
 # user back there if that was the case
 referrer = safe_referrer(self.request, '')
 if (referrer and self.product and
 self.product.get_absolute_url() in referrer):
 return referrer
 else:
 return reverse(
 'customer:wishlists-detail', kwargs={'key': self.wishlist.key})

class WishListMoveProductToAnotherWishList(LineMixin, View):

 def dispatch(self, request, *args, **kwargs):
 try:
 self.fetch_line(request.user, kwargs['key'],
 line_pk=kwargs['line_pk'])
 except (ObjectDoesNotExist, MultipleObjectsReturned):
 raise Http404
 return super(WishListMoveProductToAnotherWishList, self).dispatch(
 request, *args, **kwargs)

 def get(self, request, *args, **kwargs):
 to_wishlist = get_object_or_404(
 WishList, owner=request.user, key=kwargs['to_key'])
 self.line.wishlist = to_wishlist
 self.line.save()

 msg = _("'%(title)s' moved to '%(name)s' wishlist") % {
 'title': self.product.get_title(),
 'name': to_wishlist.name}
 messages.success(self.request, msg)

 default_url = reverse(
 'customer:wishlists-detail', kwargs={'key': self.wishlist.key})
 return redirect_to_referrer(self.request, default_url)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/address/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.address.abstract_models

import re
import zlib

from django.conf import settings
from django.core import exceptions
from django.db import models
from django.utils.encoding import python_2_unicode_compatible
from django.utils.six.moves import filter
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import pgettext_lazy

from oscar.core.compat import AUTH_USER_MODEL
from oscar.models.fields import PhoneNumberField, UppercaseCharField

@python_2_unicode_compatible
[docs]class AbstractAddress(models.Model):
 """
 Superclass address object

 This is subclassed and extended to provide models for
 user, shipping and billing addresses.
 """
 MR, MISS, MRS, MS, DR = ('Mr', 'Miss', 'Mrs', 'Ms', 'Dr')
 TITLE_CHOICES = (
 (MR, _("Mr")),
 (MISS, _("Miss")),
 (MRS, _("Mrs")),
 (MS, _("Ms")),
 (DR, _("Dr")),
)

 POSTCODE_REQUIRED = 'postcode' in settings.OSCAR_REQUIRED_ADDRESS_FIELDS

 # Regex for each country. Not listed countries don't use postcodes
 # Based on http://en.wikipedia.org/wiki/List_of_postal_codes
 POSTCODES_REGEX = {
 'AC': r'^[A-Z]{4}[0-9][A-Z]$',
 'AD': r'^AD[0-9]{3}$',
 'AF': r'^[0-9]{4}$',
 'AI': r'^AI-2640$',
 'AL': r'^[0-9]{4}$',
 'AM': r'^[0-9]{4}$',
 'AR': r'^([0-9]{4}|[A-Z][0-9]{4}[A-Z]{3})$',
 'AS': r'^[0-9]{5}(-[0-9]{4}|-[0-9]{6})?$',
 'AT': r'^[0-9]{4}$',
 'AU': r'^[0-9]{4}$',
 'AX': r'^[0-9]{5}$',
 'AZ': r'^AZ[0-9]{4}$',
 'BA': r'^[0-9]{5}$',
 'BB': r'^BB[0-9]{5}$',
 'BD': r'^[0-9]{4}$',
 'BE': r'^[0-9]{4}$',
 'BG': r'^[0-9]{4}$',
 'BH': r'^[0-9]{3,4}$',
 'BL': r'^[0-9]{5}$',
 'BM': r'^[A-Z]{2}([0-9]{2}|[A-Z]{2})',
 'BN': r'^[A-Z}{2}[0-9]]{4}$',
 'BO': r'^[0-9]{4}$',
 'BR': r'^[0-9]{5}(-[0-9]{3})?$',
 'BT': r'^[0-9]{3}$',
 'BY': r'^[0-9]{6}$',
 'CA': r'^[A-Z][0-9][A-Z][0-9][A-Z][0-9]$',
 'CC': r'^[0-9]{4}$',
 'CH': r'^[0-9]{4}$',
 'CL': r'^([0-9]{7}|[0-9]{3}-[0-9]{4})$',
 'CN': r'^[0-9]{6}$',
 'CO': r'^[0-9]{6}$',
 'CR': r'^[0-9]{4,5}$',
 'CU': r'^[0-9]{5}$',
 'CV': r'^[0-9]{4}$',
 'CX': r'^[0-9]{4}$',
 'CY': r'^[0-9]{4}$',
 'CZ': r'^[0-9]{5}$',
 'DE': r'^[0-9]{5}$',
 'DK': r'^[0-9]{4}$',
 'DO': r'^[0-9]{5}$',
 'DZ': r'^[0-9]{5}$',
 'EC': r'^EC[0-9]{6}$',
 'EE': r'^[0-9]{5}$',
 'EG': r'^[0-9]{5}$',
 'ES': r'^[0-9]{5}$',
 'ET': r'^[0-9]{4}$',
 'FI': r'^[0-9]{5}$',
 'FK': r'^[A-Z]{4}[0-9][A-Z]{2}$',
 'FM': r'^[0-9]{5}(-[0-9]{4})?$',
 'FO': r'^[0-9]{3}$',
 'FR': r'^[0-9]{5}$',
 'GA': r'^[0-9]{2}.*[0-9]{2}$',
 'GB': r'^[A-Z][A-Z0-9]{1,3}[0-9][A-Z]{2}$',
 'GE': r'^[0-9]{4}$',
 'GF': r'^[0-9]{5}$',
 'GG': r'^([A-Z]{2}[0-9]{2,3}[A-Z]{2})$',
 'GI': r'^GX111AA$',
 'GL': r'^[0-9]{4}$',
 'GP': r'^[0-9]{5}$',
 'GR': r'^[0-9]{5}$',
 'GS': r'^SIQQ1ZZ$',
 'GT': r'^[0-9]{5}$',
 'GU': r'^[0-9]{5}$',
 'GW': r'^[0-9]{4}$',
 'HM': r'^[0-9]{4}$',
 'HN': r'^[0-9]{5}$',
 'HR': r'^[0-9]{5}$',
 'HT': r'^[0-9]{4}$',
 'HU': r'^[0-9]{4}$',
 'ID': r'^[0-9]{5}$',
 'IL': r'^[0-9]{7}$',
 'IM': r'^IM[0-9]{2,3}[A-Z]{2}$$',
 'IN': r'^[0-9]{6}$',
 'IO': r'^[A-Z]{4}[0-9][A-Z]{2}$',
 'IQ': r'^[0-9]{5}$',
 'IR': r'^[0-9]{5}-[0-9]{5}$',
 'IS': r'^[0-9]{3}$',
 'IT': r'^[0-9]{5}$',
 'JE': r'^JE[0-9]{2}[A-Z]{2}$',
 'JM': r'^JM[A-Z]{3}[0-9]{2}$',
 'JO': r'^[0-9]{5}$',
 'JP': r'^[0-9]{3}-?[0-9]{4}$',
 'KE': r'^[0-9]{5}$',
 'KG': r'^[0-9]{6}$',
 'KH': r'^[0-9]{5}$',
 'KR': r'^[0-9]{5}$',
 'KY': r'^KY[0-9]-[0-9]{4}$',
 'KZ': r'^[0-9]{6}$',
 'LA': r'^[0-9]{5}$',
 'LB': r'^[0-9]{8}$',
 'LI': r'^[0-9]{4}$',
 'LK': r'^[0-9]{5}$',
 'LR': r'^[0-9]{4}$',
 'LS': r'^[0-9]{3}$',
 'LT': r'^(LT-)?[0-9]{5}$',
 'LU': r'^[0-9]{4}$',
 'LV': r'^LV-[0-9]{4}$',
 'LY': r'^[0-9]{5}$',
 'MA': r'^[0-9]{5}$',
 'MC': r'^980[0-9]{2}$',
 'MD': r'^MD-?[0-9]{4}$',
 'ME': r'^[0-9]{5}$',
 'MF': r'^[0-9]{5}$',
 'MG': r'^[0-9]{3}$',
 'MH': r'^[0-9]{5}$',
 'MK': r'^[0-9]{4}$',
 'MM': r'^[0-9]{5}$',
 'MN': r'^[0-9]{5}$',
 'MP': r'^[0-9]{5}$',
 'MQ': r'^[0-9]{5}$',
 'MT': r'^[A-Z]{3}[0-9]{4}$',
 'MV': r'^[0-9]{4,5}$',
 'MX': r'^[0-9]{5}$',
 'MY': r'^[0-9]{5}$',
 'MZ': r'^[0-9]{4}$',
 'NA': r'^[0-9]{5}$',
 'NC': r'^[0-9]{5}$',
 'NE': r'^[0-9]{4}$',
 'NF': r'^[0-9]{4}$',
 'NG': r'^[0-9]{6}$',
 'NI': r'^[0-9]{5}$',
 'NL': r'^[0-9]{4}[A-Z]{2}$',
 'NO': r'^[0-9]{4}$',
 'NP': r'^[0-9]{5}$',
 'NZ': r'^[0-9]{4}$',
 'OM': r'^[0-9]{3}$',
 'PA': r'^[0-9]{6}$',
 'PE': r'^[0-9]{5}$',
 'PF': r'^[0-9]{5}$',
 'PG': r'^[0-9]{3}$',
 'PH': r'^[0-9]{4}$',
 'PK': r'^[0-9]{5}$',
 'PL': r'^[0-9]{2}-?[0-9]{3}$',
 'PM': r'^[0-9]{5}$',
 'PN': r'^[A-Z]{4}[0-9][A-Z]{2}$',
 'PR': r'^[0-9]{5}$',
 'PT': r'^[0-9]{4}(-?[0-9]{3})?$',
 'PW': r'^[0-9]{5}$',
 'PY': r'^[0-9]{4}$',
 'RE': r'^[0-9]{5}$',
 'RO': r'^[0-9]{6}$',
 'RS': r'^[0-9]{5}$',
 'RU': r'^[0-9]{6}$',
 'SA': r'^[0-9]{5}$',
 'SD': r'^[0-9]{5}$',
 'SE': r'^[0-9]{5}$',
 'SG': r'^([0-9]{2}|[0-9]{4}|[0-9]{6})$',
 'SH': r'^(STHL1ZZ|TDCU1ZZ)$',
 'SI': r'^(SI-)?[0-9]{4}$',
 'SK': r'^[0-9]{5}$',
 'SM': r'^[0-9]{5}$',
 'SN': r'^[0-9]{5}$',
 'SV': r'^01101$',
 'SZ': r'^[A-Z][0-9]{3}$',
 'TC': r'^TKCA1ZZ$',
 'TD': r'^[0-9]{5}$',
 'TH': r'^[0-9]{5}$',
 'TJ': r'^[0-9]{6}$',
 'TM': r'^[0-9]{6}$',
 'TN': r'^[0-9]{4}$',
 'TR': r'^[0-9]{5}$',
 'TT': r'^[0-9]{6}$',
 'TW': r'^[0-9]{5}$',
 'UA': r'^[0-9]{5}$',
 'US': r'^[0-9]{5}(-[0-9]{4}|-[0-9]{6})?$',
 'UY': r'^[0-9]{5}$',
 'UZ': r'^[0-9]{6}$',
 'VA': r'^00120$',
 'VC': r'^VC[0-9]{4}',
 'VE': r'^[0-9]{4}[A-Z]?$',
 'VG': r'^VG[0-9]{4}$',
 'VI': r'^[0-9]{5}$',
 'VN': r'^[0-9]{6}$',
 'WF': r'^[0-9]{5}$',
 'XK': r'^[0-9]{5}$',
 'YT': r'^[0-9]{5}$',
 'ZA': r'^[0-9]{4}$',
 'ZM': r'^[0-9]{5}$',
 }

 title = models.CharField(
 pgettext_lazy(u"Treatment Pronouns for the customer", u"Title"),
 max_length=64, choices=TITLE_CHOICES, blank=True)
 first_name = models.CharField(_("First name"), max_length=255, blank=True)
 last_name = models.CharField(_("Last name"), max_length=255, blank=True)

 # We use quite a few lines of an address as they are often quite long and
 # it's easier to just hide the unnecessary ones than add extra ones.
 line1 = models.CharField(_("First line of address"), max_length=255)
 line2 = models.CharField(
 _("Second line of address"), max_length=255, blank=True)
 line3 = models.CharField(
 _("Third line of address"), max_length=255, blank=True)
 line4 = models.CharField(_("City"), max_length=255, blank=True)
 state = models.CharField(_("State/County"), max_length=255, blank=True)
 postcode = UppercaseCharField(
 _("Post/Zip-code"), max_length=64, blank=True)
 country = models.ForeignKey('address.Country', verbose_name=_("Country"))

 #: A field only used for searching addresses - this contains all the
 #: relevant fields. This is effectively a poor man's Solr text field.
 search_text = models.TextField(
 _("Search text - used only for searching addresses"), editable=False)

 def __str__(self):
 return self.summary

 class Meta:
 abstract = True
 verbose_name = _('Address')
 verbose_name_plural = _('Addresses')

 # Saving

 def save(self, *args, **kwargs):
 self._update_search_text()
 super(AbstractAddress, self).save(*args, **kwargs)

 def clean(self):
 # Strip all whitespace
 for field in ['first_name', 'last_name', 'line1', 'line2', 'line3',
 'line4', 'state', 'postcode']:
 if self.__dict__[field]:
 self.__dict__[field] = self.__dict__[field].strip()

 # Ensure postcodes are valid for country
 self.ensure_postcode_is_valid_for_country()

[docs] def ensure_postcode_is_valid_for_country(self):
 """
 Validate postcode given the country
 """
 if not self.postcode and self.POSTCODE_REQUIRED and self.country_id:
 country_code = self.country.iso_3166_1_a2
 regex = self.POSTCODES_REGEX.get(country_code, None)
 if regex:
 msg = _("Addresses in %(country)s require a valid postcode") \
 % {'country': self.country}
 raise exceptions.ValidationError(msg)

 if self.postcode and self.country_id:
 # Ensure postcodes are always uppercase
 postcode = self.postcode.upper().replace(' ', '')
 country_code = self.country.iso_3166_1_a2
 regex = self.POSTCODES_REGEX.get(country_code, None)

 # Validate postcode against regex for the country if available
 if regex and not re.match(regex, postcode):
 msg = _("The postcode '%(postcode)s' is not valid "
 "for %(country)s") \
 % {'postcode': self.postcode,
 'country': self.country}
 raise exceptions.ValidationError(
 {'postcode': [msg]})

 def _update_search_text(self):
 search_fields = filter(
 bool, [self.first_name, self.last_name,
 self.line1, self.line2, self.line3, self.line4,
 self.state, self.postcode, self.country.name])
 self.search_text = ' '.join(search_fields)

 # Properties

 @property
 def city(self):
 # Common alias
 return self.line4

 @property
 def summary(self):
 """
 Returns a single string summary of the address,
 separating fields using commas.
 """
 return u", ".join(self.active_address_fields())

 @property
 def salutation(self):
 """
 Name (including title)
 """
 return self.join_fields(
 ('title', 'first_name', 'last_name'),
 separator=u" ")

 @property
 def name(self):
 return self.join_fields(('first_name', 'last_name'), separator=u" ")

 # Helpers

[docs] def generate_hash(self):
 """
 Returns a hash of the address summary
 """
 # We use an upper-case version of the summary
 return zlib.crc32(self.summary.strip().upper().encode('UTF8'))

[docs] def join_fields(self, fields, separator=u", "):
 """
 Join a sequence of fields using the specified separator
 """
 field_values = []
 for field in fields:
 # Title is special case
 if field == 'title':
 value = self.get_title_display()
 else:
 value = getattr(self, field)
 field_values.append(value)
 return separator.join(filter(bool, field_values))

[docs] def populate_alternative_model(self, address_model):
 """
 For populating an address model using the matching fields
 from this one.

 This is used to convert a user address to a shipping address
 as part of the checkout process.
 """
 destination_field_names = [
 field.name for field in address_model._meta.fields]
 for field_name in [field.name for field in self._meta.fields]:
 if field_name in destination_field_names and field_name != 'id':
 setattr(address_model, field_name, getattr(self, field_name))

[docs] def active_address_fields(self, include_salutation=True):
 """
 Return the non-empty components of the address, but merging the
 title, first_name and last_name into a single line.
 """
 fields = [self.line1, self.line2, self.line3,
 self.line4, self.state, self.postcode]
 if include_salutation:
 fields = [self.salutation] + fields
 fields = [f.strip() for f in fields if f]
 try:
 fields.append(self.country.printable_name)
 except exceptions.ObjectDoesNotExist:
 pass
 return fields

@python_2_unicode_compatible
[docs]class AbstractCountry(models.Model):
 """
 International Organization for Standardization (ISO) 3166-1 Country list.

 The field names are a bit awkward, but kept for backwards compatibility.
 pycountry's syntax of alpha2, alpha3, name and official_name seems sane.
 """
 iso_3166_1_a2 = models.CharField(
 _('ISO 3166-1 alpha-2'), max_length=2, primary_key=True)
 iso_3166_1_a3 = models.CharField(
 _('ISO 3166-1 alpha-3'), max_length=3, blank=True)
 iso_3166_1_numeric = models.CharField(
 _('ISO 3166-1 numeric'), blank=True, max_length=3)

 #: The commonly used name; e.g. 'United Kingdom'
 printable_name = models.CharField(_('Country name'), max_length=128)
 #: The full official name of a country
 #: e.g. 'United Kingdom of Great Britain and Northern Ireland'
 name = models.CharField(_('Official name'), max_length=128)

 display_order = models.PositiveSmallIntegerField(
 _("Display order"), default=0, db_index=True,
 help_text=_('Higher the number, higher the country in the list.'))

 is_shipping_country = models.BooleanField(
 _("Is shipping country"), default=False, db_index=True)

 class Meta:
 abstract = True
 app_label = 'address'
 verbose_name = _('Country')
 verbose_name_plural = _('Countries')
 ordering = ('-display_order', 'printable_name',)

 def __str__(self):
 return self.printable_name or self.name

 @property
 def code(self):
 """
 Shorthand for the ISO 3166 Alpha-2 code
 """
 return self.iso_3166_1_a2

 @property
 def numeric_code(self):
 """
 Shorthand for the ISO 3166 numeric code.

 iso_3166_1_numeric used to wrongly be a integer field, but has to be
 padded with leading zeroes. It's since been converted to a char field,
 but the database might still contain non-padded strings. That's why
 the padding is kept.
 """
 return u"%.03d" % int(self.iso_3166_1_numeric)

[docs]class AbstractShippingAddress(AbstractAddress):
 """
 A shipping address.

 A shipping address should not be edited once the order has been placed -
 it should be read-only after that.

 NOTE:
 ShippingAddress is a model of the order app. But moving it there is tricky
 due to circular import issues that are amplified by get_model/get_class
 calls pre-Django 1.7 to register receivers. So...
 TODO: Once Django 1.6 support is dropped, move AbstractBillingAddress and
 AbstractShippingAddress to the order app, and move
 PartnerAddress to the partner app.
 """

 phone_number = PhoneNumberField(
 _("Phone number"), blank=True,
 help_text=_("In case we need to call you about your order"))
 notes = models.TextField(
 blank=True, verbose_name=_('Instructions'),
 help_text=_("Tell us anything we should know when delivering "
 "your order."))

 class Meta:
 abstract = True
 # ShippingAddress is registered in order/models.py
 app_label = 'order'
 verbose_name = _("Shipping address")
 verbose_name_plural = _("Shipping addresses")

 @property
 def order(self):
 """
 Return the order linked to this shipping address
 """
 try:
 return self.order_set.all()[0]
 except IndexError:
 return None

[docs]class AbstractUserAddress(AbstractShippingAddress):
 """
 A user's address. A user can have many of these and together they form an
 'address book' of sorts for the user.

 We use a separate model for shipping and billing (even though there will be
 some data duplication) because we don't want shipping/billing addresses
 changed or deleted once an order has been placed. By having a separate
 model, we allow users the ability to add/edit/delete from their address
 book without affecting orders already placed.
 """
 user = models.ForeignKey(
 AUTH_USER_MODEL, related_name='addresses', verbose_name=_("User"))

 #: Whether this address is the default for shipping
 is_default_for_shipping = models.BooleanField(
 _("Default shipping address?"), default=False)

 #: Whether this address should be the default for billing.
 is_default_for_billing = models.BooleanField(
 _("Default billing address?"), default=False)

 #: We keep track of the number of times an address has been used
 #: as a shipping address so we can show the most popular ones
 #: first at the checkout.
 num_orders = models.PositiveIntegerField(_("Number of Orders"), default=0)

 #: A hash is kept to try and avoid duplicate addresses being added
 #: to the address book.
 hash = models.CharField(_("Address Hash"), max_length=255, db_index=True,
 editable=False)
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

[docs] def save(self, *args, **kwargs):
 """
 Save a hash of the address fields
 """
 # Save a hash of the address fields so we can check whether two
 # addresses are the same to avoid saving duplicates
 self.hash = self.generate_hash()

 # Ensure that each user only has one default shipping address
 # and billing address
 self._ensure_defaults_integrity()
 super(AbstractUserAddress, self).save(*args, **kwargs)

 def _ensure_defaults_integrity(self):
 if self.is_default_for_shipping:
 self.__class__._default_manager\
 .filter(user=self.user, is_default_for_shipping=True)\
 .update(is_default_for_shipping=False)
 if self.is_default_for_billing:
 self.__class__._default_manager\
 .filter(user=self.user, is_default_for_billing=True)\
 .update(is_default_for_billing=False)

 class Meta:
 abstract = True
 app_label = 'address'
 verbose_name = _("User address")
 verbose_name_plural = _("User addresses")
 ordering = ['-num_orders']
 unique_together = ('user', 'hash')

 def validate_unique(self, exclude=None):
 super(AbstractAddress, self).validate_unique(exclude)
 qs = self.__class__.objects.filter(
 user=self.user,
 hash=self.generate_hash())
 if self.id:
 qs = qs.exclude(id=self.id)
 if qs.exists():
 raise exceptions.ValidationError({
 '__all__': [_("This address is already in your address"
 " book")]})

class AbstractBillingAddress(AbstractAddress):
 class Meta:
 abstract = True
 # BillingAddress is registered in order/models.py
 app_label = 'order'
 verbose_name = _("Billing address")
 verbose_name_plural = _("Billing addresses")

 @property
 def order(self):
 """
 Return the order linked to this shipping address
 """
 try:
 return self.order_set.all()[0]
 except IndexError:
 return None

[docs]class AbstractPartnerAddress(AbstractAddress):
 """
 A partner can have one or more addresses. This can be useful e.g. when
 determining US tax which depends on the origin of the shipment.
 """
 partner = models.ForeignKey('partner.Partner', related_name='addresses',
 verbose_name=_('Partner'))

 class Meta:
 abstract = True
 app_label = 'partner'
 verbose_name = _("Partner address")
 verbose_name_plural = _("Partner addresses")

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/order/abstract_models.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.order.abstract_models

import hashlib
from collections import OrderedDict
from decimal import Decimal as D

from django.conf import settings
from django.db import models
from django.db.models import Sum
from django.utils import timezone
from django.utils.encoding import python_2_unicode_compatible
from django.utils.timezone import now
from django.utils.translation import ugettext_lazy as _
from django.utils.translation import pgettext_lazy

from oscar.core.compat import AUTH_USER_MODEL
from oscar.core.loading import get_model
from oscar.core.utils import get_default_currency
from oscar.models.fields import AutoSlugField

from . import exceptions

@python_2_unicode_compatible
[docs]class AbstractOrder(models.Model):
 """
 The main order model
 """
 number = models.CharField(
 _("Order number"), max_length=128, db_index=True, unique=True)

 # We track the site that each order is placed within
 site = models.ForeignKey(
 'sites.Site', verbose_name=_("Site"), null=True,
 on_delete=models.SET_NULL)

 basket = models.ForeignKey(
 'basket.Basket', verbose_name=_("Basket"),
 null=True, blank=True, on_delete=models.SET_NULL)

 # Orders can be placed without the user authenticating so we don't always
 # have a customer ID.
 user = models.ForeignKey(
 AUTH_USER_MODEL, related_name='orders', null=True, blank=True,
 verbose_name=_("User"), on_delete=models.SET_NULL)

 # Billing address is not always required (eg paying by gift card)
 billing_address = models.ForeignKey(
 'order.BillingAddress', null=True, blank=True,
 verbose_name=_("Billing Address"),
 on_delete=models.SET_NULL)

 # Total price looks like it could be calculated by adding up the
 # prices of the associated lines, but in some circumstances extra
 # order-level charges are added and so we need to store it separately
 currency = models.CharField(
 _("Currency"), max_length=12, default=get_default_currency)
 total_incl_tax = models.DecimalField(
 _("Order total (inc. tax)"), decimal_places=2, max_digits=12)
 total_excl_tax = models.DecimalField(
 _("Order total (excl. tax)"), decimal_places=2, max_digits=12)

 # Shipping charges
 shipping_incl_tax = models.DecimalField(
 _("Shipping charge (inc. tax)"), decimal_places=2, max_digits=12,
 default=0)
 shipping_excl_tax = models.DecimalField(
 _("Shipping charge (excl. tax)"), decimal_places=2, max_digits=12,
 default=0)

 # Not all lines are actually shipped (such as downloads), hence shipping
 # address is not mandatory.
 shipping_address = models.ForeignKey(
 'order.ShippingAddress', null=True, blank=True,
 verbose_name=_("Shipping Address"),
 on_delete=models.SET_NULL)
 shipping_method = models.CharField(
 _("Shipping method"), max_length=128, blank=True)

 # Identifies shipping code
 shipping_code = models.CharField(blank=True, max_length=128, default="")

 # Use this field to indicate that an order is on hold / awaiting payment
 status = models.CharField(_("Status"), max_length=100, blank=True)
 guest_email = models.EmailField(_("Guest email address"), blank=True)

 # Index added to this field for reporting
 date_placed = models.DateTimeField(db_index=True)

 #: Order status pipeline. This should be a dict where each (key, value) #:
 #: corresponds to a status and a list of possible statuses that can follow
 #: that one.
 pipeline = getattr(settings, 'OSCAR_ORDER_STATUS_PIPELINE', {})

 #: Order status cascade pipeline. This should be a dict where each (key,
 #: value) pair corresponds to an *order* status and the corresponding
 #: *line* status that needs to be set when the order is set to the new
 #: status
 cascade = getattr(settings, 'OSCAR_ORDER_STATUS_CASCADE', {})

 @classmethod
[docs] def all_statuses(cls):
 """
 Return all possible statuses for an order
 """
 return list(cls.pipeline.keys())

[docs] def available_statuses(self):
 """
 Return all possible statuses that this order can move to
 """
 return self.pipeline.get(self.status, ())

[docs] def set_status(self, new_status):
 """
 Set a new status for this order.

 If the requested status is not valid, then ``InvalidOrderStatus`` is
 raised.
 """
 if new_status == self.status:
 return
 if new_status not in self.available_statuses():
 raise exceptions.InvalidOrderStatus(
 _("'%(new_status)s' is not a valid status for order %(number)s"
 " (current status: '%(status)s')")
 % {'new_status': new_status,
 'number': self.number,
 'status': self.status})
 self.status = new_status
 if new_status in self.cascade:
 for line in self.lines.all():
 line.status = self.cascade[self.status]
 line.save()
 self.save()

 set_status.alters_data = True

 @property
 def is_anonymous(self):
 # It's possible for an order to be placed by a customer who then
 # deletes their profile. Hence, we need to check that a guest email is
 # set.
 return self.user is None and bool(self.guest_email)

 @property
 def basket_total_before_discounts_incl_tax(self):
 """
 Return basket total including tax but before discounts are applied
 """
 total = D('0.00')
 for line in self.lines.all():
 total += line.line_price_before_discounts_incl_tax
 return total

 @property
 def basket_total_before_discounts_excl_tax(self):
 """
 Return basket total excluding tax but before discounts are applied
 """
 total = D('0.00')
 for line in self.lines.all():
 total += line.line_price_before_discounts_excl_tax
 return total

 @property
 def basket_total_incl_tax(self):
 """
 Return basket total including tax
 """
 return self.total_incl_tax - self.shipping_incl_tax

 @property
 def basket_total_excl_tax(self):
 """
 Return basket total excluding tax
 """
 return self.total_excl_tax - self.shipping_excl_tax

 @property
 def total_before_discounts_incl_tax(self):
 return (self.basket_total_before_discounts_incl_tax +
 self.shipping_incl_tax)

 @property
 def total_before_discounts_excl_tax(self):
 return (self.basket_total_before_discounts_excl_tax +
 self.shipping_excl_tax)

 @property
 def total_discount_incl_tax(self):
 """
 The amount of discount this order received
 """
 discount = D('0.00')
 for line in self.lines.all():
 discount += line.discount_incl_tax
 return discount

 @property
 def total_discount_excl_tax(self):
 discount = D('0.00')
 for line in self.lines.all():
 discount += line.discount_excl_tax
 return discount

 @property
 def total_tax(self):
 return self.total_incl_tax - self.total_excl_tax

 @property
 def num_lines(self):
 return self.lines.count()

 @property
 def num_items(self):
 """
 Returns the number of items in this order.
 """
 num_items = 0
 for line in self.lines.all():
 num_items += line.quantity
 return num_items

 @property
 def shipping_tax(self):
 return self.shipping_incl_tax - self.shipping_excl_tax

 @property
 def shipping_status(self):
 """Return the last complete shipping event for this order."""

 # As safeguard against identical timestamps, also sort by the primary
 # key. It's not recommended to rely on this behaviour, but in practice
 # reasonably safe if PKs are not manually set.
 events = self.shipping_events.order_by('-date_created', '-pk').all()
 if not len(events):
 return ''

 # Collect all events by event-type
 event_map = OrderedDict()
 for event in events:
 event_name = event.event_type.name
 if event_name not in event_map:
 event_map[event_name] = []
 event_map[event_name].extend(list(event.line_quantities.all()))

 # Determine last complete event
 status = _("In progress")
 for event_name, event_line_quantities in event_map.items():
 if self._is_event_complete(event_line_quantities):
 return event_name
 return status

 @property
 def has_shipping_discounts(self):
 return len(self.shipping_discounts) > 0

 @property
 def shipping_before_discounts_incl_tax(self):
 # We can construct what shipping would have been before discounts by
 # adding the discounts back onto the final shipping charge.
 total = D('0.00')
 for discount in self.shipping_discounts:
 total += discount.amount
 return self.shipping_incl_tax + total

 def _is_event_complete(self, event_quantities):
 # Form map of line to quantity
 event_map = {}
 for event_quantity in event_quantities:
 line_id = event_quantity.line_id
 event_map.setdefault(line_id, 0)
 event_map[line_id] += event_quantity.quantity

 for line in self.lines.all():
 if event_map.get(line.pk, 0) != line.quantity:
 return False
 return True

 class Meta:
 abstract = True
 app_label = 'order'
 ordering = ['-date_placed']
 verbose_name = _("Order")
 verbose_name_plural = _("Orders")

 def __str__(self):
 return u"#%s" % (self.number,)

 def verification_hash(self):
 key = '%s%s' % (self.number, settings.SECRET_KEY)
 hash = hashlib.md5(key.encode('utf8'))
 return hash.hexdigest()

 @property
 def email(self):
 if not self.user:
 return self.guest_email
 return self.user.email

 @property
 def basket_discounts(self):
 # This includes both offer- and voucher- discounts. For orders we
 # don't need to treat them differently like we do for baskets.
 return self.discounts.filter(
 category=AbstractOrderDiscount.BASKET)

 @property
 def shipping_discounts(self):
 return self.discounts.filter(
 category=AbstractOrderDiscount.SHIPPING)

 @property
 def post_order_actions(self):
 return self.discounts.filter(
 category=AbstractOrderDiscount.DEFERRED)

 def set_date_placed_default(self):
 if self.date_placed is None:
 self.date_placed = now()

 def save(self, *args, **kwargs):
 # Ensure the date_placed field works as it auto_now_add was set. But
 # this gives us the ability to set the date_placed explicitly (which is
 # useful when importing orders from another system).
 self.set_date_placed_default()
 super(AbstractOrder, self).save(*args, **kwargs)

@python_2_unicode_compatible
[docs]class AbstractOrderNote(models.Model):
 """
 A note against an order.

 This are often used for audit purposes too. IE, whenever an admin
 makes a change to an order, we create a note to record what happened.
 """
 order = models.ForeignKey('order.Order', related_name="notes",
 verbose_name=_("Order"))

 # These are sometimes programatically generated so don't need a
 # user everytime
 user = models.ForeignKey(AUTH_USER_MODEL, null=True,
 verbose_name=_("User"))

 # We allow notes to be classified although this isn't always needed
 INFO, WARNING, ERROR, SYSTEM = 'Info', 'Warning', 'Error', 'System'
 note_type = models.CharField(_("Note Type"), max_length=128, blank=True)

 message = models.TextField(_("Message"))
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)
 date_updated = models.DateTimeField(_("Date Updated"), auto_now=True)

 # Notes can only be edited for 5 minutes after being created
 editable_lifetime = 300

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Order Note")
 verbose_name_plural = _("Order Notes")

 def __str__(self):
 return u"'%s' (%s)" % (self.message[0:50], self.user)

 def is_editable(self):
 if self.note_type == self.SYSTEM:
 return False
 delta = timezone.now() - self.date_updated
 return delta.seconds < self.editable_lifetime

@python_2_unicode_compatible
[docs]class AbstractCommunicationEvent(models.Model):
 """
 An order-level event involving a communication to the customer, such
 as an confirmation email being sent.
 """
 order = models.ForeignKey(
 'order.Order', related_name="communication_events",
 verbose_name=_("Order"))
 event_type = models.ForeignKey(
 'customer.CommunicationEventType', verbose_name=_("Event Type"))
 date_created = models.DateTimeField(_("Date"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Communication Event")
 verbose_name_plural = _("Communication Events")
 ordering = ['-date_created']

 def __str__(self):
 return _("'%(type)s' event for order #%(number)s") \
 % {'type': self.event_type.name, 'number': self.order.number}

LINES

@python_2_unicode_compatible
[docs]class AbstractLine(models.Model):
 """
 An order line
 """
 order = models.ForeignKey(
 'order.Order', related_name='lines', verbose_name=_("Order"))

 # PARTNER INFORMATION
 # -------------------
 # We store the partner and various detail their SKU and the title for cases
 # where the product has been deleted from the catalogue (but we still need
 # the data for reporting). We also store the partner name in case the
 # partner gets deleted at a later date.

 partner = models.ForeignKey(
 'partner.Partner', related_name='order_lines', blank=True, null=True,
 on_delete=models.SET_NULL, verbose_name=_("Partner"))
 partner_name = models.CharField(
 _("Partner name"), max_length=128, blank=True)
 partner_sku = models.CharField(_("Partner SKU"), max_length=128)

 # A line reference is the ID that a partner uses to represent this
 # particular line (it's not the same as a SKU).
 partner_line_reference = models.CharField(
 _("Partner reference"), max_length=128, blank=True,
 help_text=_("This is the item number that the partner uses "
 "within their system"))
 partner_line_notes = models.TextField(
 _("Partner Notes"), blank=True)

 # We keep a link to the stockrecord used for this line which allows us to
 # update stocklevels when it ships
 stockrecord = models.ForeignKey(
 'partner.StockRecord', on_delete=models.SET_NULL, blank=True,
 null=True, verbose_name=_("Stock record"))

 # PRODUCT INFORMATION
 # -------------------

 # We don't want any hard links between orders and the products table so we
 # allow this link to be NULLable.
 product = models.ForeignKey(
 'catalogue.Product', on_delete=models.SET_NULL, blank=True, null=True,
 verbose_name=_("Product"))
 title = models.CharField(
 pgettext_lazy(u"Product title", u"Title"), max_length=255)
 # UPC can be null because it's usually set as the product's UPC, and that
 # can be null as well
 upc = models.CharField(_("UPC"), max_length=128, blank=True, null=True)

 quantity = models.PositiveIntegerField(_("Quantity"), default=1)

 # REPORTING INFORMATION
 # ---------------------

 # Price information (these fields are actually redundant as the information
 # can be calculated from the LinePrice models
 line_price_incl_tax = models.DecimalField(
 _("Price (inc. tax)"), decimal_places=2, max_digits=12)
 line_price_excl_tax = models.DecimalField(
 _("Price (excl. tax)"), decimal_places=2, max_digits=12)

 # Price information before discounts are applied
 line_price_before_discounts_incl_tax = models.DecimalField(
 _("Price before discounts (inc. tax)"),
 decimal_places=2, max_digits=12)
 line_price_before_discounts_excl_tax = models.DecimalField(
 _("Price before discounts (excl. tax)"),
 decimal_places=2, max_digits=12)

 # Cost price (the price charged by the fulfilment partner for this
 # product).
 unit_cost_price = models.DecimalField(
 _("Unit Cost Price"), decimal_places=2, max_digits=12, blank=True,
 null=True)
 # Normal site price for item (without discounts)
 unit_price_incl_tax = models.DecimalField(
 _("Unit Price (inc. tax)"), decimal_places=2, max_digits=12,
 blank=True, null=True)
 unit_price_excl_tax = models.DecimalField(
 _("Unit Price (excl. tax)"), decimal_places=2, max_digits=12,
 blank=True, null=True)
 # Retail price at time of purchase
 unit_retail_price = models.DecimalField(
 _("Unit Retail Price"), decimal_places=2, max_digits=12,
 blank=True, null=True)

 # Partners often want to assign some status to each line to help with their
 # own business processes.
 status = models.CharField(_("Status"), max_length=255, blank=True)

 # Estimated dispatch date - should be set at order time
 est_dispatch_date = models.DateField(
 _("Estimated Dispatch Date"), blank=True, null=True)

 #: Order status pipeline. This should be a dict where each (key, value)
 #: corresponds to a status and the possible statuses that can follow that
 #: one.
 pipeline = getattr(settings, 'OSCAR_LINE_STATUS_PIPELINE', {})

 class Meta:
 abstract = True
 app_label = 'order'
 # Enforce sorting in order of creation.
 ordering = ['pk']
 verbose_name = _("Order Line")
 verbose_name_plural = _("Order Lines")

 def __str__(self):
 if self.product:
 title = self.product.title
 else:
 title = _('<missing product>')
 return _("Product '%(name)s', quantity '%(qty)s'") % {
 'name': title, 'qty': self.quantity}

 @classmethod
[docs] def all_statuses(cls):
 """
 Return all possible statuses for an order line
 """
 return list(cls.pipeline.keys())

[docs] def available_statuses(self):
 """
 Return all possible statuses that this order line can move to
 """
 return self.pipeline.get(self.status, ())

[docs] def set_status(self, new_status):
 """
 Set a new status for this line

 If the requested status is not valid, then ``InvalidLineStatus`` is
 raised.
 """
 if new_status == self.status:
 return
 if new_status not in self.available_statuses():
 raise exceptions.InvalidLineStatus(
 _("'%(new_status)s' is not a valid status (current status:"
 " '%(status)s')")
 % {'new_status': new_status, 'status': self.status})
 self.status = new_status
 self.save()

 set_status.alters_data = True

 @property
 def category(self):
 """
 Used by Google analytics tracking
 """
 return None

 @property
 def description(self):
 """
 Returns a description of this line including details of any
 line attributes.
 """
 desc = self.title
 ops = []
 for attribute in self.attributes.all():
 ops.append("%s = '%s'" % (attribute.type, attribute.value))
 if ops:
 desc = "%s (%s)" % (desc, ", ".join(ops))
 return desc

 @property
 def discount_incl_tax(self):
 return self.line_price_before_discounts_incl_tax \
 - self.line_price_incl_tax

 @property
 def discount_excl_tax(self):
 return self.line_price_before_discounts_excl_tax \
 - self.line_price_excl_tax

 @property
 def line_price_tax(self):
 return self.line_price_incl_tax - self.line_price_excl_tax

 @property
 def unit_price_tax(self):
 return self.unit_price_incl_tax - self.unit_price_excl_tax

 # Shipping status helpers

 @property
 def shipping_status(self):
 """
 Returns a string summary of the shipping status of this line
 """
 status_map = self.shipping_event_breakdown
 if not status_map:
 return ''

 events = []
 last_complete_event_name = None
 for event_dict in reversed(list(status_map.values())):
 if event_dict['quantity'] == self.quantity:
 events.append(event_dict['name'])
 last_complete_event_name = event_dict['name']
 else:
 events.append("%s (%d/%d items)" % (
 event_dict['name'], event_dict['quantity'],
 self.quantity))

 if last_complete_event_name == list(status_map.values())[0]['name']:
 return last_complete_event_name

 return ', '.join(events)

[docs] def is_shipping_event_permitted(self, event_type, quantity):
 """
 Test whether a shipping event with the given quantity is permitted

 This method should normally be overriden to ensure that the
 prerequisite shipping events have been passed for this line.
 """
 # Note, this calculation is simplistic - normally, you will also need
 # to check if previous shipping events have occurred. Eg, you can't
 # return lines until they have been shipped.
 current_qty = self.shipping_event_quantity(event_type)
 return (current_qty + quantity) <= self.quantity

[docs] def shipping_event_quantity(self, event_type):
 """
 Return the quantity of this line that has been involved in a shipping
 event of the passed type.
 """
 result = self.shipping_event_quantities.filter(
 event__event_type=event_type).aggregate(Sum('quantity'))
 if result['quantity__sum'] is None:
 return 0
 else:
 return result['quantity__sum']

[docs] def has_shipping_event_occurred(self, event_type, quantity=None):
 """
 Test whether this line has passed a given shipping event
 """
 if not quantity:
 quantity = self.quantity
 return self.shipping_event_quantity(event_type) == quantity

[docs] def get_event_quantity(self, event):
 """
 Fetches the ShippingEventQuantity instance for this line

 Exists as a separate method so it can be overridden to avoid
 the DB query that's caused by get().
 """
 return event.line_quantities.get(line=self)

 @property
 def shipping_event_breakdown(self):
 """
 Returns a dict of shipping events that this line has been through
 """
 status_map = OrderedDict()
 for event in self.shipping_events.all():
 event_type = event.event_type
 event_name = event_type.name
 event_quantity = self.get_event_quantity(event).quantity
 if event_name in status_map:
 status_map[event_name]['quantity'] += event_quantity
 else:
 status_map[event_name] = {
 'event_type': event_type,
 'name': event_name,
 'quantity': event_quantity
 }
 return status_map

 # Payment event helpers

[docs] def is_payment_event_permitted(self, event_type, quantity):
 """
 Test whether a payment event with the given quantity is permitted.

 Allow each payment event type to occur only once per quantity.
 """
 current_qty = self.payment_event_quantity(event_type)
 return (current_qty + quantity) <= self.quantity

[docs] def payment_event_quantity(self, event_type):
 """
 Return the quantity of this line that has been involved in a payment
 event of the passed type.
 """
 result = self.payment_event_quantities.filter(
 event__event_type=event_type).aggregate(Sum('quantity'))
 if result['quantity__sum'] is None:
 return 0
 else:
 return result['quantity__sum']

 @property
 def is_product_deleted(self):
 return self.product is None

[docs] def is_available_to_reorder(self, basket, strategy):
 """
 Test if this line can be re-ordered using the passed strategy and
 basket
 """
 if not self.product:
 return False, (_("'%(title)s' is no longer available") %
 {'title': self.title})

 try:
 basket_line = basket.lines.get(product=self.product)
 except basket.lines.model.DoesNotExist:
 desired_qty = self.quantity
 else:
 desired_qty = basket_line.quantity + self.quantity

 result = strategy.fetch_for_product(self.product)
 is_available, reason = result.availability.is_purchase_permitted(
 quantity=desired_qty)
 if not is_available:
 return False, reason
 return True, None

@python_2_unicode_compatible
[docs]class AbstractLineAttribute(models.Model):
 """
 An attribute of a line
 """
 line = models.ForeignKey(
 'order.Line', related_name='attributes',
 verbose_name=_("Line"))
 option = models.ForeignKey(
 'catalogue.Option', null=True, on_delete=models.SET_NULL,
 related_name="line_attributes", verbose_name=_("Option"))
 type = models.CharField(_("Type"), max_length=128)
 value = models.CharField(_("Value"), max_length=255)

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Line Attribute")
 verbose_name_plural = _("Line Attributes")

 def __str__(self):
 return "%s = %s" % (self.type, self.value)

@python_2_unicode_compatible
[docs]class AbstractLinePrice(models.Model):
 """
 For tracking the prices paid for each unit within a line.

 This is necessary as offers can lead to units within a line
 having different prices. For example, one product may be sold at
 50% off as it's part of an offer while the remainder are full price.
 """
 order = models.ForeignKey(
 'order.Order', related_name='line_prices', verbose_name=_("Option"))
 line = models.ForeignKey(
 'order.Line', related_name='prices', verbose_name=_("Line"))
 quantity = models.PositiveIntegerField(_("Quantity"), default=1)
 price_incl_tax = models.DecimalField(
 _("Price (inc. tax)"), decimal_places=2, max_digits=12)
 price_excl_tax = models.DecimalField(
 _("Price (excl. tax)"), decimal_places=2, max_digits=12)
 shipping_incl_tax = models.DecimalField(
 _("Shiping (inc. tax)"), decimal_places=2, max_digits=12, default=0)
 shipping_excl_tax = models.DecimalField(
 _("Shipping (excl. tax)"), decimal_places=2, max_digits=12, default=0)

 class Meta:
 abstract = True
 app_label = 'order'
 ordering = ('id',)
 verbose_name = _("Line Price")
 verbose_name_plural = _("Line Prices")

 def __str__(self):
 return _("Line '%(number)s' (quantity %(qty)d) price %(price)s") % {
 'number': self.line,
 'qty': self.quantity,
 'price': self.price_incl_tax}

PAYMENT EVENTS

@python_2_unicode_compatible
[docs]class AbstractPaymentEventType(models.Model):
 """
 Payment event types are things like 'Paid', 'Failed', 'Refunded'.

 These are effectively the transaction types.
 """
 name = models.CharField(_("Name"), max_length=128, unique=True)
 code = AutoSlugField(_("Code"), max_length=128, unique=True,
 populate_from='name')

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Payment Event Type")
 verbose_name_plural = _("Payment Event Types")
 ordering = ('name',)

 def __str__(self):
 return self.name

@python_2_unicode_compatible
[docs]class AbstractPaymentEvent(models.Model):
 """
 A payment event for an order

 For example:

 * All lines have been paid for
 * 2 lines have been refunded
 """
 order = models.ForeignKey(
 'order.Order', related_name='payment_events',
 verbose_name=_("Order"))
 amount = models.DecimalField(
 _("Amount"), decimal_places=2, max_digits=12)
 # The reference should refer to the transaction ID of the payment gateway
 # that was used for this event.
 reference = models.CharField(
 _("Reference"), max_length=128, blank=True)
 lines = models.ManyToManyField(
 'order.Line', through='PaymentEventQuantity',
 verbose_name=_("Lines"))
 event_type = models.ForeignKey(
 'order.PaymentEventType', verbose_name=_("Event Type"))
 # Allow payment events to be linked to shipping events. Often a shipping
 # event will trigger a payment event and so we can use this FK to capture
 # the relationship.
 shipping_event = models.ForeignKey(
 'order.ShippingEvent', related_name='payment_events',
 null=True)
 date_created = models.DateTimeField(_("Date created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Payment Event")
 verbose_name_plural = _("Payment Events")
 ordering = ['-date_created']

 def __str__(self):
 return _("Payment event for order %s") % self.order

 def num_affected_lines(self):
 return self.lines.all().count()

[docs]class PaymentEventQuantity(models.Model):
 """
 A "through" model linking lines to payment events
 """
 event = models.ForeignKey(
 'order.PaymentEvent', related_name='line_quantities',
 verbose_name=_("Event"))
 line = models.ForeignKey(
 'order.Line', related_name="payment_event_quantities",
 verbose_name=_("Line"))
 quantity = models.PositiveIntegerField(_("Quantity"))

 class Meta:
 app_label = 'order'
 verbose_name = _("Payment Event Quantity")
 verbose_name_plural = _("Payment Event Quantities")
 unique_together = ('event', 'line')

SHIPPING EVENTS

@python_2_unicode_compatible
[docs]class AbstractShippingEvent(models.Model):
 """
 An event is something which happens to a group of lines such as
 1 item being dispatched.
 """
 order = models.ForeignKey(
 'order.Order', related_name='shipping_events', verbose_name=_("Order"))
 lines = models.ManyToManyField(
 'order.Line', related_name='shipping_events',
 through='ShippingEventQuantity', verbose_name=_("Lines"))
 event_type = models.ForeignKey(
 'order.ShippingEventType', verbose_name=_("Event Type"))
 notes = models.TextField(
 _("Event notes"), blank=True,
 help_text=_("This could be the dispatch reference, or a "
 "tracking number"))
 date_created = models.DateTimeField(_("Date Created"), auto_now_add=True)

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Shipping Event")
 verbose_name_plural = _("Shipping Events")
 ordering = ['-date_created']

 def __str__(self):
 return _("Order #%(number)s, type %(type)s") % {
 'number': self.order.number,
 'type': self.event_type}

 def num_affected_lines(self):
 return self.lines.count()

@python_2_unicode_compatible
[docs]class ShippingEventQuantity(models.Model):
 """
 A "through" model linking lines to shipping events.

 This exists to track the quantity of a line that is involved in a
 particular shipping event.
 """
 event = models.ForeignKey(
 'order.ShippingEvent', related_name='line_quantities',
 verbose_name=_("Event"))
 line = models.ForeignKey(
 'order.Line', related_name="shipping_event_quantities",
 verbose_name=_("Line"))
 quantity = models.PositiveIntegerField(_("Quantity"))

 class Meta:
 app_label = 'order'
 verbose_name = _("Shipping Event Quantity")
 verbose_name_plural = _("Shipping Event Quantities")
 unique_together = ('event', 'line')

 def save(self, *args, **kwargs):
 # Default quantity to full quantity of line
 if not self.quantity:
 self.quantity = self.line.quantity
 # Ensure we don't violate quantities constraint
 if not self.line.is_shipping_event_permitted(
 self.event.event_type, self.quantity):
 raise exceptions.InvalidShippingEvent
 super(ShippingEventQuantity, self).save(*args, **kwargs)

 def __str__(self):
 return _("%(product)s - quantity %(qty)d") % {
 'product': self.line.product,
 'qty': self.quantity}

@python_2_unicode_compatible
[docs]class AbstractShippingEventType(models.Model):
 """
 A type of shipping/fulfillment event

 Eg: 'Shipped', 'Cancelled', 'Returned'
 """
 # Name is the friendly description of an event
 name = models.CharField(_("Name"), max_length=255, unique=True)
 # Code is used in forms
 code = AutoSlugField(_("Code"), max_length=128, unique=True,
 populate_from='name')

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Shipping Event Type")
 verbose_name_plural = _("Shipping Event Types")
 ordering = ('name',)

 def __str__(self):
 return self.name

DISCOUNTS

@python_2_unicode_compatible
[docs]class AbstractOrderDiscount(models.Model):
 """
 A discount against an order.

 Normally only used for display purposes so an order can be listed with
 discounts displayed separately even though in reality, the discounts are
 applied at the line level.

 This has evolved to be a slightly misleading class name as this really
 track benefit applications which aren't necessarily discounts.
 """
 order = models.ForeignKey(
 'order.Order', related_name="discounts", verbose_name=_("Order"))

 # We need to distinguish between basket discounts, shipping discounts and
 # 'deferred' discounts.
 BASKET, SHIPPING, DEFERRED = "Basket", "Shipping", "Deferred"
 CATEGORY_CHOICES = (
 (BASKET, _(BASKET)),
 (SHIPPING, _(SHIPPING)),
 (DEFERRED, _(DEFERRED)),
)
 category = models.CharField(
 _("Discount category"), default=BASKET, max_length=64,
 choices=CATEGORY_CHOICES)

 offer_id = models.PositiveIntegerField(
 _("Offer ID"), blank=True, null=True)
 offer_name = models.CharField(
 _("Offer name"), max_length=128, db_index=True, blank=True)
 voucher_id = models.PositiveIntegerField(
 _("Voucher ID"), blank=True, null=True)
 voucher_code = models.CharField(
 _("Code"), max_length=128, db_index=True, blank=True)
 frequency = models.PositiveIntegerField(_("Frequency"), null=True)
 amount = models.DecimalField(
 _("Amount"), decimal_places=2, max_digits=12, default=0)

 # Post-order offer applications can return a message to indicate what
 # action was taken after the order was placed.
 message = models.TextField(blank=True)

 @property
 def is_basket_discount(self):
 return self.category == self.BASKET

 @property
 def is_shipping_discount(self):
 return self.category == self.SHIPPING

 @property
 def is_post_order_action(self):
 return self.category == self.DEFERRED

 class Meta:
 abstract = True
 app_label = 'order'
 verbose_name = _("Order Discount")
 verbose_name_plural = _("Order Discounts")

 def save(self, **kwargs):
 if self.offer_id and not self.offer_name:
 offer = self.offer
 if offer:
 self.offer_name = offer.name

 if self.voucher_id and not self.voucher_code:
 voucher = self.voucher
 if voucher:
 self.voucher_code = voucher.code

 super(AbstractOrderDiscount, self).save(**kwargs)

 def __str__(self):
 return _("Discount of %(amount)r from order %(order)s") % {
 'amount': self.amount, 'order': self.order}

 @property
 def offer(self):
 Offer = get_model('offer', 'ConditionalOffer')
 try:
 return Offer.objects.get(id=self.offer_id)
 except Offer.DoesNotExist:
 return None

 @property
 def voucher(self):
 Voucher = get_model('voucher', 'Voucher')
 try:
 return Voucher.objects.get(id=self.voucher_id)
 except Voucher.DoesNotExist:
 return None

 def description(self):
 if self.voucher_code:
 return self.voucher_code
 return self.offer_name or u""

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/order/processing.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.order.processing

from decimal import Decimal as D

from django.utils.translation import ugettext_lazy as _

from oscar.apps.order import exceptions
from oscar.core.loading import get_model

ShippingEventQuantity = get_model('order', 'ShippingEventQuantity')
PaymentEventQuantity = get_model('order', 'PaymentEventQuantity')

[docs]class EventHandler(object):
 """
 Handle requested order events.

 This is an important class: it houses the core logic of your shop's order
 processing pipeline.
 """

 def __init__(self, user=None):
 self.user = user

 # Core API
 # --------

[docs] def handle_shipping_event(self, order, event_type, lines,
 line_quantities, **kwargs):
 """
 Handle a shipping event for a given order.

 This is most common entry point to this class - most of your order
 processing should be modelled around shipping events. Shipping events
 can be used to trigger payment and communication events.

 You will generally want to override this method to implement the
 specifics of you order processing pipeline.
 """
 # Example implementation
 self.validate_shipping_event(
 order, event_type, lines, line_quantities, **kwargs)
 return self.create_shipping_event(
 order, event_type, lines, line_quantities, **kwargs)

[docs] def handle_payment_event(self, order, event_type, amount, lines=None,
 line_quantities=None, **kwargs):
 """
 Handle a payment event for a given order.

 These should normally be called as part of handling a shipping event.
 It is rare to call to this method directly. It does make sense for
 refunds though where the payment event may be unrelated to a particular
 shipping event and doesn't directly correspond to a set of lines.
 """
 self.validate_payment_event(
 order, event_type, amount, lines, line_quantities, **kwargs)
 return self.create_payment_event(
 order, event_type, amount, lines, line_quantities, **kwargs)

[docs] def handle_order_status_change(self, order, new_status, note_msg=None):
 """
 Handle a requested order status change

 This method is not normally called directly by client code. The main
 use-case is when an order is cancelled, which in some ways could be
 viewed as a shipping event affecting all lines.
 """
 order.set_status(new_status)
 if note_msg:
 self.create_note(order, note_msg)

 # Validation methods
 # ------------------

[docs] def validate_shipping_event(self, order, event_type, lines,
 line_quantities, **kwargs):
 """
 Test if the requested shipping event is permitted.

 If not, raise InvalidShippingEvent
 """
 errors = []
 for line, qty in zip(lines, line_quantities):
 # The core logic should be in the model. Ensure you override
 # 'is_shipping_event_permitted' and enforce the correct order of
 # shipping events.
 if not line.is_shipping_event_permitted(event_type, qty):
 msg = _("The selected quantity for line #%(line_id)s is too"
 " large") % {'line_id': line.id}
 errors.append(msg)
 if errors:
 raise exceptions.InvalidShippingEvent(", ".join(errors))

 def validate_payment_event(self, order, event_type, amount, lines=None,
 line_quantities=None, **kwargs):
 if lines and line_quantities:
 errors = []
 for line, qty in zip(lines, line_quantities):
 if not line.is_payment_event_permitted(event_type, qty):
 msg = _("The selected quantity for line #%(line_id)s is too"
 " large") % {'line_id': line.id}
 errors.append(msg)
 if errors:
 raise exceptions.InvalidPaymentEvent(", ".join(errors))

 # Query methods
 # -------------
 # These are to help determine the status of lines

[docs] def have_lines_passed_shipping_event(self, order, lines, line_quantities,
 event_type):
 """
 Test whether the passed lines and quantities have been through the
 specified shipping event.

 This is useful for validating if certain shipping events are allowed
 (ie you can't return something before it has shipped).
 """
 for line, line_qty in zip(lines, line_quantities):
 if line.shipping_event_quantity(event_type) < line_qty:
 return False
 return True

 # Payment stuff
 # -------------

[docs] def calculate_payment_event_subtotal(self, event_type, lines,
 line_quantities):
 """
 Calculate the total charge for the passed event type, lines and line
 quantities.

 This takes into account the previous prices that have been charged for
 this event.

 Note that shipping is not including in this subtotal. You need to
 subclass and extend this method if you want to include shipping costs.
 """
 total = D('0.00')
 for line, qty_to_consume in zip(lines, line_quantities):
 # This part is quite fiddly. We need to skip the prices that have
 # already been settled. This involves keeping a load of counters.

 # Count how many of this line have already been involved in an
 # event of this type.
 qty_to_skip = line.payment_event_quantity(event_type)

 # Test if request is sensible
 if qty_to_skip + qty_to_consume > line.quantity:
 raise exceptions.InvalidPaymentEvent

 # Consume prices in order of ID (this is the default but it's
 # better to be explicit)
 qty_consumed = 0
 for price in line.prices.all().order_by('id'):
 if qty_consumed == qty_to_consume:
 # We've accounted for the asked-for quantity: we're done
 break

 qty_available = price.quantity - qty_to_skip
 if qty_available <= 0:
 # Skip the whole quantity of this price instance
 qty_to_skip -= price.quantity
 else:
 # Need to account for some of this price instance and
 # track how many we needed to skip and how many we settled
 # for.
 qty_to_include = min(
 qty_to_consume - qty_consumed, qty_available)
 total += qty_to_include * price.price_incl_tax
 # There can't be any left to skip if we've included some in
 # our total
 qty_to_skip = 0
 qty_consumed += qty_to_include
 return total

 # Stock
 # -----

[docs] def are_stock_allocations_available(self, lines, line_quantities):
 """
 Check whether stock records still have enough stock to honour the
 requested allocations.
 """
 for line, qty in zip(lines, line_quantities):
 record = line.stockrecord
 if not record:
 return False
 if not record.is_allocation_consumption_possible(qty):
 return False
 return True

[docs] def consume_stock_allocations(self, order, lines, line_quantities):
 """
 Consume the stock allocations for the passed lines
 """
 for line, qty in zip(lines, line_quantities):
 if line.stockrecord:
 line.stockrecord.consume_allocation(qty)

[docs] def cancel_stock_allocations(self, order, lines, line_quantities):
 """
 Cancel the stock allocations for the passed lines
 """
 for line, qty in zip(lines, line_quantities):
 if line.stockrecord:
 line.stockrecord.cancel_allocation(qty)

 # Model instance creation
 # -----------------------

 def create_shipping_event(self, order, event_type, lines, line_quantities,
 **kwargs):
 reference = kwargs.get('reference', '')
 event = order.shipping_events.create(
 event_type=event_type, notes=reference)
 try:
 for line, quantity in zip(lines, line_quantities):
 event.line_quantities.create(
 line=line, quantity=quantity)
 except exceptions.InvalidShippingEvent:
 event.delete()
 raise
 return event

 def create_payment_event(self, order, event_type, amount, lines=None,
 line_quantities=None, **kwargs):
 reference = kwargs.get('reference', "")
 event = order.payment_events.create(
 event_type=event_type, amount=amount, reference=reference)
 if lines and line_quantities:
 for line, quantity in zip(lines, line_quantities):
 event.line_quantities.create(
 line=line, quantity=quantity)
 return event

 def create_communication_event(self, order, event_type):
 return order.communication_events.create(event_type=event_type)

 def create_note(self, order, message, note_type='System'):
 return order.notes.create(
 message=message, note_type=note_type, user=self.user)

 © Copyright .
 Created using Sphinx 1.3.3.

_modules/oscar/apps/order/utils.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar 1.3 documentation »

 		Module code »

 Source code for oscar.apps.order.utils

from decimal import Decimal as D

from django.conf import settings
from django.contrib.sites.models import Site
from django.utils.translation import ugettext_lazy as _

from oscar.core.loading import get_class, get_model

from . import exceptions

Order = get_model('order', 'Order')
Line = get_model('order', 'Line')
OrderDiscount = get_model('order', 'OrderDiscount')
order_placed = get_class('order.signals', 'order_placed')

[docs]class OrderNumberGenerator(object):
 """
 Simple object for generating order numbers.

 We need this as the order number is often required for payment
 which takes place before the order model has been created.
 """

[docs] def order_number(self, basket):
 """
 Return an order number for a given basket
 """
 return 100000 + basket.id

[docs]class OrderCreator(object):
 """
 Places the order by writing out the various models
 """

[docs] def place_order(self, basket, total, # noqa (too complex (12))
 shipping_method, shipping_charge, user=None,
 shipping_address=None, billing_address=None,
 order_number=None, status=None, **kwargs):
 """
 Placing an order involves creating all the relevant models based on the
 basket and session data.
 """
 if basket.is_empty:
 raise ValueError(_("Empty baskets cannot be submitted"))
 if not order_number:
 generator = OrderNumberGenerator()
 order_number = generator.order_number(basket)
 if not status and hasattr(settings, 'OSCAR_INITIAL_ORDER_STATUS'):
 status = getattr(settings, 'OSCAR_INITIAL_ORDER_STATUS')
 try:
 Order._default_manager.get(number=order_number)
 except Order.DoesNotExist:
 pass
 else:
 raise ValueError(_("There is already an order with number %s")
 % order_number)

 # Ok - everything seems to be in order, let's place the order
 order = self.create_order_model(
 user, basket, shipping_address, shipping_method, shipping_charge,
 billing_address, total, order_number, status, **kwargs)
 for line in basket.all_lines():
 self.create_line_models(order, line)
 self.update_stock_records(line)

 # Record any discounts associated with this order
 for application in basket.offer_applications:
 # Trigger any deferred benefits from offers and capture the
 # resulting message
 application['message'] \
 = application['offer'].apply_deferred_benefit(basket, order,
 application)
 # Record offer application results
 if application['result'].affects_shipping:
 # Skip zero shipping discounts
 shipping_discount = shipping_method.discount(basket)
 if shipping_discount <= D('0.00'):
 continue
 # If a shipping offer, we need to grab the actual discount off
 # the shipping method instance, which should be wrapped in an
 # OfferDiscount instance.
 application['discount'] = shipping_discount
 self.create_discount_model(order, application)
 self.record_discount(application)

 for voucher in basket.vouchers.all():
 self.record_voucher_usage(order, voucher, user)

 # Send signal for analytics to pick up
 order_placed.send(sender=self, order=order, user=user)

 return order

[docs] def create_order_model(self, user, basket, shipping_address,
 shipping_method, shipping_charge, billing_address,
 total, order_number, status, **extra_order_fields):
 """
 Create an order model.
 """
 order_data = {'basket': basket,
 'number': order_number,
 'currency': total.currency,
 'total_incl_tax': total.incl_tax,
 'total_excl_tax': total.excl_tax,
 'shipping_incl_tax': shipping_charge.incl_tax,
 'shipping_excl_tax': shipping_charge.excl_tax,
 'shipping_method': shipping_method.name,
 'shipping_code': shipping_method.code}
 if shipping_address:
 order_data['shipping_address'] = shipping_address
 if billing_address:
 order_data['billing_address'] = billing_address
 if user and user.is_authenticated():
 order_data['user_id'] = user.id
 if status:
 order_data['status'] = status
 if extra_order_fields:
 order_data.update(extra_order_fields)
 if 'site' not in order_data:
 order_data['site'] = Site._default_manager.get_current()
 order = Order(**order_data)
 order.save()
 return order

[docs] def create_line_models(self, order, basket_line, extra_line_fields=None):
 """
 Create the batch line model.

 You can set extra fields by passing a dictionary as the
 extra_line_fields value
 """
 product = basket_line.product
 stockrecord = basket_line.stockrecord
 if not stockrecord:
 raise exceptions.UnableToPlaceOrder(
 "Baket line #%d has no stockrecord" % basket_line.id)
 partner = stockrecord.partner
 line_data = {
 'order': order,
 # Partner details
 'partner': partner,
 'partner_name': partner.name,
 'partner_sku': stockrecord.partner_sku,
 'stockrecord': stockrecord,
 # Product details
 'product': product,
 'title': product.get_title(),
 'upc': product.upc,
 'quantity': basket_line.quantity,
 # Price details
 'line_price_excl_tax':
 basket_line.line_price_excl_tax_incl_discounts,
 'line_price_incl_tax':
 basket_line.line_price_incl_tax_incl_discounts,
 'line_price_before_discounts_excl_tax':
 basket_line.line_price_excl_tax,
 'line_price_before_discounts_incl_tax':
 basket_line.line_price_incl_tax,
 # Reporting details
 'unit_cost_price': stockrecord.cost_price,
 'unit_price_incl_tax': basket_line.unit_price_incl_tax,
 'unit_price_excl_tax': basket_line.unit_price_excl_tax,
 'unit_retail_price': stockrecord.price_retail,
 # Shipping details
 'est_dispatch_date':
 basket_line.purchase_info.availability.dispatch_date
 }
 extra_line_fields = extra_line_fields or {}
 if hasattr(settings, 'OSCAR_INITIAL_LINE_STATUS'):
 if not (extra_line_fields and 'status' in extra_line_fields):
 extra_line_fields['status'] = getattr(
 settings, 'OSCAR_INITIAL_LINE_STATUS')
 if extra_line_fields:
 line_data.update(extra_line_fields)

 order_line = Line._default_manager.create(**line_data)
 self.create_line_price_models(order, order_line, basket_line)
 self.create_line_attributes(order, order_line, basket_line)
 self.create_additional_line_models(order, order_line, basket_line)

 return order_line

[docs] def update_stock_records(self, line):
 """
 Update any relevant stock records for this order line
 """
 if line.product.get_product_class().track_stock:
 line.stockrecord.allocate(line.quantity)

[docs] def create_additional_line_models(self, order, order_line, basket_line):
 """
 Empty method designed to be overridden.

 Some applications require additional information about lines, this
 method provides a clean place to create additional models that
 relate to a given line.
 """
 pass

[docs] def create_line_price_models(self, order, order_line, basket_line):
 """
 Creates the batch line price models
 """
 breakdown = basket_line.get_price_breakdown()
 for price_incl_tax, price_excl_tax, quantity in breakdown:
 order_line.prices.create(
 order=order,
 quantity=quantity,
 price_incl_tax=price_incl_tax,
 price_excl_tax=price_excl_tax)

[docs] def create_line_attributes(self, order, order_line, basket_line):
 """
 Creates the batch line attributes.
 """
 for attr in basket_line.attributes.all():
 order_line.attributes.create(
 option=attr.option,
 type=attr.option.code,
 value=attr.value)

[docs] def create_discount_model(self, order, discount):

 """
 Create an order discount model for each offer application attached to
 the basket.
 """
 order_discount = OrderDiscount(
 order=order,
 message=discount['message'] or '',
 offer_id=discount['offer'].id,
 frequency=discount['freq'],
 amount=discount['discount'])
 result = discount['result']
 if result.affects_shipping:
 order_discount.category = OrderDiscount.SHIPPING
 elif result.affects_post_order:
 order_discount.category = OrderDiscount.DEFERRED
 voucher = discount.get('voucher', None)
 if voucher:
 order_discount.voucher_id = voucher.id
 order_discount.voucher_code = voucher.code
 order_discount.save()

 def record_discount(self, discount):
 discount['offer'].record_usage(discount)
 if 'voucher' in discount and discount['voucher']:
 discount['voucher'].record_discount(discount)

[docs] def record_voucher_usage(self, order, voucher, user):
 """
 Updates the models that care about this voucher.
 """
 voucher.record_usage(order, user)

 © Copyright .
 Created using Sphinx 1.3.3.

