

Welcome to SUNFISH Platform

The SUNFISH Platform is software platform enabling Federation-as-a-Service (FaaS), a new and innovative Cloud Federation solution conceived and designed by the EU SUNFISH Project.

Key Concepts

	Federation-as-a-Service
	Operational Phases

	SUNFISH Platform in a nutshell

Platform at work

	Setting-up a SUNFISH Cloud Federation
	Data Security Enforcement Infrastructure

	SUNFISH Use Case Demonstrator

Platform architecture

	API
	SUNFISH Policy Administration Point (PAP) API

	SUNFISH Policy Decision Point (PDP) API

	SUNFISH Policy Enforcement Point (PEP) API

	SUNFISH Policy Information Point (PIP) API

	SUNFISH Policy Retrieval Point (PRP) API

	SUNFISH Intelligent Workload Manager (IWM) API

	Registry Interface
	Instructions for Registry Interface Deployment and Development

	Registry
	Instructions for deploying chaincode

	FRM
	Instructions for deploying FRM

	IWM
	Overview of Intelligent Workload Manager

	Screenshots

	Instructions for deploying IWM

Operational Guide

	Registry Interface

	Registry

Federation-as-a-Service

This is a page for FaaS

Operational Phases

[image: _images/FaaS_Phases_1.0.png]

SUNFISH Platform in a nutshell

This is a page for the SUNFISH Platform

Setting-up a SUNFISH Cloud Federation

Data Security Enforcement Infrastructure

	Data Security Enforcement Infrastructure
	Setting-Up a Service Tenant

	Setting-Up an Infrastructure Tenant

Data Security Enforcement Infrastructure

The SUNFISH data security enforcement infrastructure is responsible for regulating and securing access to services in a federated cloud environment.

	It consists of the following components:

	
	The Policy Enforcement Gateway (PEG) responsible for enforcing decision regarding whether access to a resource is granted or not and which obligations need to be observed (if any). This component serves as the main entry point to a service protected by the SUNFISH DS enforcement infrastructure.

	An accompanying Proxy enabling the non-SUNFISH-aware applications to utilise the benefits of the SUNFISH platform.

	A Policy Decision Point (PDP) evaluating a decision request, indicating whether access to a service should be granted or not. In addition, Obligations such as data masking, for example can be part of the decision.

	Policy Information Points (PIPs) delivering information to the PEG and the PDP to enhance decision requests.

	A Policy Administration Point (PAP) providing an interface for administration data security policies.

	The Registry Interface responsible for storing, managing and delivering policies to the PDP for evaluation. Setup an operation of the RI is described separately, since it is operated independently of the other components.

	A Masking Service providing data masking capabilities to the PEG. Like the RI, the masking service is operated independently of the other components and therefore also discussed separately.

Typically, the enforcement infrastructure will be deployed among different tenants. The following setup instructions are based on a minimal example consisting of one infrastructure tenant and a service tenant.

The infrastructure tenant will typically house the PDP, any number of PIPs and the PRP.
The service tenant hosts the actual service to be protected by the enforcement infrastructure as well as the PEG, any number of PIPs and the proxy to maintain backwards compatibility to non-SUNFISH-aware clients. As outlined initially, the PEG located at the service tenant serves as the main entry point, responding to incoming requests, which can either be submitted directly to the PEG, or through the proxy.
In case the requests was directed to the proxy, responses are also interpreted by the proxy and reduced in such a way that non-SUNFISH-aware applications are able to interpret it correctly (albeit losing expressibility in the process).

In-depth descriptions on how to set up a service tenant and an infrastructure tenant are available. These include step-by-step instructions to deploy the enforcement infrastructure on existing Java application servers. In addition, a streamlined, deployment-script-based setup as well as an automated, easy-to-use, self-contained, two-step, docker-based setup is provided for jump-starting a SUNFISH deployment.
The referred scripts and configuration files are located at https://github.com/sunfish-prj/Data-Security/tree/master/ds/doc/install. The sub-folder service contains necessary files for the service tenant deployment, the infrastructure folder for the infrastructure tenant deployment respectively.
The docker folder again contains the same structure, but for the dockerized setup.

Setting-Up a Service Tenant

It is assumed that a service is already running in the service tenant.

Step-By-Step Setup

Although not recommended, the SUNFISH data security enforcement infrastructure can be deployed following the succeeding steps. However, depending on the deployment use case, additional steps or adaptions to either configuration or system components may still be necessary. For demonstration purposes a two tenant setup is assumed.
The sample configuration ships with precompiled Tomcat applications, which can be found in the respective webapps directory of either tenant. Additionally, a sample configuration for the service tenant can be found in the respective conf directory.
To deploy the service tenant follow these steps:

	Copy the content of the provided ./tomcat/webapps directory to CATALINA_HOME/webapps directory

	Copy the content of the provided ./tomcat/conf directory to CATALINA_HOME/conf directory

	Copy the content of the provided ./proxy/ directory to any desired directory (referred to as PROXY_HOME)

In a divergent deployment scenario, the respective configurations of the SUNFISH components and the SUNFISH proxy need to be adapted individually. To start the SUNFISH data security enforcement infrastructure simply start your local Tomcat instance and execute the start.sh script, located in your PROXY_HOME directory.

Using the Deployment Script

The attached deployment script is an easy way to automatically setup a service tenant. For this, the following two steps are necessary:

	Adapt the configuration if necessary (config.sh)

	Execute the deployment script (./deploy.sh)

The deployment script will automatically create all necessary resources and copy them to their designated destination. No further steps are necessary. To start the SUNFISH data security enforcement infrastructure simply start your local Tomcat instance and execute the start.sh script, located in your PROXY_HOME directory.

Configuration Directives

The infrastructure tenant features several configuration options before installation. The following parameters are available:

	TOMCAT_PORT: Defines the port of the local Tomcat instance

	CATALINA_HOME: Defines the home directory of the local Tomcat instance (e.g. (/usr/local/tomcat/)

	PEP_URL_PDP: Defines the URL of the designated PDP for the PEP

	PEP_URLS_PIPS: Defines the possible PIPs available to the PEP. Multiple URLs can be specified, separated by a comma

	PEP_ZONE: Defines the tenant name the PEP is located in

	PEP_URL_DM: Specifies the URL to the data masking service

	PEP_URL_ANON: Sepcifies the URL to the anonymisation service

	PIP_DATABASE: Defines possible database values for the PIP. Each setting consists of a key and a value. In general three entries are necessary in order to setup a new service inside the service tenant:
	Host for ID: Assign a hostname to a specific service. The key must be in the format host.<service_id>. The value represents a single URL to the designated service.

	Tenant for ID: Assign a service to a specific tenant. The key must be in the format zone.<service_id>. The value defines the tenant the service is located at.

	PEP for Tenant: Assign a PEP to a specific tenant. The key must be in the format pep.<tenant name>. The value represents a single URL to the designated PEP.

	PROXY_HOME: Defines the home directory of the SUNFISH proxy (e.g. (/usr/local/proxy/)

	PROXY_IP: Defines the IP address the SUNFISH Proxy will run on

	PROXY_PORT: Defines the port the SUNISH Proxy will listen to

	PROXY_PEP[<service_id>]: Defines the URL of the PEP guarding the service <service_id> for the SUNFISH Proxy. Multiple services can be defined; should match the service IDs in the PIP database.

Dockerised Setup

The docker-based deployment also features a configuration file containing essentially the same (at this point mostly self-explanatory) directives and a deployment script. This script has to be invoked after editing the configuration file just as it is the case for the regular deployment-script-based setup.

To actually deploy the docker container, once the configuration file has been adapted, the following steps need to be performed:

	Download the service docker container (tenant.tar) from the Releases tab in the GitHub repository and copy it to install/docker/tenant/

	The preconfigured docker container tenant.tar needs to be loaded: docker load -i tenant.tar

	The deployment script has to be executed (./deploy.sh)

This should start a docker container, inside which the proxy is running on PROXY_PORT and the PEG and the PIP are running as web applications on a Tomcat server on TOMCAT_PORT. Both ports are mapped to their respective counterparts on the host machine.

Setting-Up a Service

To add a new service to the SUNFISH data security enforcement infrastructure, the following steps are necessary:

	Add a host for the service id to the configuration file config.sh or, if the SUNFISH tenant has already been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/pip_database.config

	Add a tenant for the service id to the configuration file config.sh or, if the SUNFISH tenant has already been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/pip_database.config. It is important to note that this step needs to be performed for all operational tenants, as long as the PIP database containing the service configuration is not replicated between all tenants.

	Add a pep for the tenant of the service to the configuration file config.sh or, if the SUNFISH tenant has already been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/pip_database.config. It is important to note that this step needs to be performed for all operational tenants, as long as the PIP database containing the service configuration is not replicated between all tenants.

	Restart your local Service Tenant Tomcat in order to apply the changes

Adding Policies

By default, any deployed service requires dedicated policies in order for the SUNFISH data security enforcement infrastructure to work. Policies can be added via the PAP and the defined API (see also Chapter SUNFISH Policy Administration Point (PAP) API). A sample policy, allowing access to a defined service is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:ns2="urn:sunfish" PolicyId="urn:sunfish:policy:demo-proxy-https" Version="1.0" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">
 <Description>Demo Permit-All Policy </Description>
 <Target>
 <AnyOf>
 <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">129.27.142.49</AttributeValue>
 <AttributeDesignator Category="urn:sunfish:attribute-category:service" AttributeId="urn:sunfish:attribute:id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>
 </Match>
 <Match MatchId="urn:oasis:names:tc:xacml:3.0:function:string-starts-with">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/demo-app/demo/</AttributeValue>
 <AttributeDesignator Category="urn:sunfish:attribute-category:response" AttributeId="urn:sunfish:attribute:request:path" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>
 </Match>
 </AllOf>
 <AllOf>
 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">129.27.142.49</AttributeValue>
 <AttributeDesignator Category="urn:sunfish:attribute-category:service" AttributeId="urn:sunfish:attribute:id" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>
 </Match>
 <Match MatchId="urn:oasis:names:tc:xacml:3.0:function:string-starts-with">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">/demo-app/demo/</AttributeValue>
 <AttributeDesignator Category="urn:sunfish:attribute-category:request" AttributeId="urn:sunfish:attribute:request:path" DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <Rule RuleId="urn:sunfish:rule:permit" Effect="Permit">
 <Target/>
 </Rule>
</Policy>

Setting-Up an Infrastructure Tenant

Step-By-Step Setup

Although not recommended, the SUNFISH data security enforcement infrastructure can be deployed following the succeeding steps. However, depending on the deployment use case, additional steps or adaptions to either configuration or system components may still be necessary. For demonstration purposes a two tenant setup is assumed.
The sample configuration ships with precompiled Tomcat applications, which can be found in the respective webapps directory of either tenant. Additionally, a sample configuration for the infrastructure tenant can be found in the respective conf directory.
To deploy the service tenant follow these steps:

	Copy the content of the provided webapps directory to CATALINA_HOME/webapps directory

	Copy the content of the provided conf directory to CATALINA_HOME/conf directory

In a divergent deployment scenario, the respective configurations of the SUNFISH components need to be adapted individually. To start the SUNFISH data security enforcement infrastructure simply start your local Tomcat instance.

Using the Deployment Script

The attached deployment script is an easy way to automatically setup an infrastructure tenant. For this, the following two steps are necessary:

	Adapt the configuration if necessary (config.sh)

	Execute the deployment script (./deploy.sh)

The deployment script will automatically create all necessary resources and copy them to their designated destination. No further steps are necessary. To start the SUNFISH data security enforcement infrastructure simply start your local Tomcat instance.

Configuration Directives

The infrastructure tenant features several configuration options before installation. The following parameters are available:

	TOMCAT_PORT: Defines the port of the local Tomcat instance

	CATALINA_HOME: Defines the home directory of the local Tomcat instance (e.g. (/usr/local/tomcat/)

	PAP_URL_RI: Defines the URL of the designated Registry Interface for the PAP

	PDP_URLS_PRPS: Defines the possible PRPs available to the PDP. Multiple URLs can be specified, separated by a comma

	PDP_URLS_PIPS: Defines the possible PIPs available to the PDP. Multiple URLs can be specified, separated by a comma

	PRP_URL_RI: Defines the URL of the designated Registry Interface for the PRP

	PIP_DATABASE: Defines possible database values for the PIP. Each setting consists of a key and a value. In general, no additional values are necessary for the PIP in the infrastructure tenant.

Dockerised Setup

The docker-based deployment also features a configuration file containing essentially the same (at this point mostly self-explanatory) directives and a deployment script. This script has to be invoked after editing the configuration file just as it is the case for the regular deployment-script-based setup.

To actually deploy the docker container, once the configuration file has been adapted, the following steps need to be performed:

	Download the infrastructure docker container (infrastructure.tar) from the Releases tab in the GitHub repository and copy it to install/docker/infrastructure/

	The preconfigured docker container infrastructure.tar needs to be loaded: docker load -i infrastructure.tar

	The deployment script has to be executed (./deploy.sh)

This should start a docker container, inside which the PDP, the PRP and the PIP are running as web applications on a Tomcat server on TOMCAT_PORT which is mapped to the same port on the host machine.

SUNFISH Use Case Demonstrator

This is the page for Use Case Demonstrator

API

This is a page for API

Data Security

	SUNFISH Policy Administration Point (PAP) API
	/v1/policies

	/v1/policies/{id}/{version}

	SUNFISH Policy Decision Point (PDP) API
	/v1

	/v1/verifyServicePolicy

	/v1/verifyServicePolicySet

	/v1/authorization

	Models

	SUNFISH Policy Enforcement Point (PEP) API
	/v1/request

	/v1/app-request

	SUNFISH Policy Information Point (PIP) API
	/v1/collect

	/v1/request

	SUNFISH Policy Retrieval Point (PRP) API
	/v1/collect

	/v1/policyset/{id}/{version}

	/v1/policy/{id}

	/v1/policyset/{id}

	/v1/policy/{id}/{version}

	SUNFISH Intelligent Workload Manager (IWM) API
	

SUNFISH Policy Administration Point (PAP) API

The PAP interface follows a straight forward REST interface, as it
requires bare access to the policy storage.

Version: 1.0.0

Contact information:

Alexander Marsalek

alexander.marsalek@a-sit.at

/v1/policies

GET

Summary: This endpoint is used by entities interfacing with the PAP
to retrieve policies

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	SUNFISH-issuer
	header
	References
the entity
that issued
the request.
This field
may include
the data
that
confirms the
authenticati
on
of source
entity and
its
authenticati
on
level.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	The body of
the response
contains the
requested
policies
according to
the schema
defined in
Listing 3.
The response
result set
only
contains a
certain
amount of
entries.
Pagination
is done
using the
Web Linking
approach
according to
RFC5988. A
Link header
is included
in the
response
pointing to
the next
resultset:
Link:
https://%3Ch
ost/pap/api/
v1/policies/
?page=2>;
rel=”next”
The possible
“rel” values
are “next”
pointing to
the next
result-set.
Pagination
URLs are not
allowed to
be
constructed
manually.
	string

	400
	Invalid
request
	

	403
	The
requestor is
not allowed
to perform
this
operation
	

	404
	No policies
matching the
specified
request were
found
	

POST

Summary: This endpoint is used by entities interfacing with the PAP
to add a policy

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	body
	body
	The body of
the request
contains a
to be added
policy
according to
the schema
in Listing
1.
	Yes
	string

	SUNFISH-issuer
	header
	References
the entity
that issued
the request.
This field
may include
the data
that
confirms the
authenticati
on
of source
entity and
its
authenticati
on
level.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Created successful
	string

	400
	Invalid request
	

	403
	The requestor is not allowed to perform this operation
	

	409
	The policy exists already
	

/v1/policies/{id}/{version}

DELETE

Summary: This endpoint is used by entities to remove policies

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schem
a

	id
	path
	Id of the
policy to
delete
	Yes
	string

	version
	path
	Specifies
the version
of the
policy to be
deleted
	Yes
	string

	SUNFISH-issuer
	header
	References
the entity
that issued
the request.
This field
may include
the data
that
confirms the
authenticati
on
of source
entity and
its
authenticati
on
level.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Deleted successful
	string

	400
	Invalid request
	

	403
	The requestor is not allowed to perform this operation
	

	404
	Policy not found
	

SUNFISH Policy Decision Point (PDP) API

This API is primarily used by adjacent PEPs to issue authorization
requests for intra-zone and cross-zone interactions. In this
specification we partially rely on the REST profile suggested by the
OASIS XACML Standard

Version: 1.0.0

Contact information:

Bernd Prünster

bernd.pruenster@a-sit.at

/v1

GET

Summary: API entry point. This point is used to identify
functionality and endpoints provided by PDP.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	
	
	
	
	

Responses

	Code
	Description

	200
	The response
contains a
resource
with link
relation
http://docs.
oasis-open.o
rg/ns/xacml/
relation/pdp
and a valid
URL.

/v1/verifyServicePolicy

POST

Summary: Verify a service policy

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	SUNFISH-signature
	header
	This field
is used to
provide
integrity
and
authenticity
of messages.
	No
	string

	body
	body
	Contains
XACML-format
ted
policy for
PDP to
perform
verification.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains information about the verification result.
	VerifyPolicyResult

	400
	Invalid request
	

	404
	The requestor is not allowed
	

/v1/verifyServicePolicySet

POST

Summary: Verify a service policy set

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	SUNFISH-signature
	header
	This field
is used to
provide
integrity
and
authenticity
of messages.
	No
	string

	body
	body
	Contains
XACML-format
ted
policy set
for PDP to
perform
verification
.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains information about the verification result.
	VerifyPolicyResult

	400
	Invalid request
	

	404
	The requestor is not allowed
	

/v1/authorization

POST

Summary: This endpoint is used by PEPs to issue authorization
decision requests to PDP. These requests are sent using POST method.
Inputs to this endpoint are parameters that describe access requests
initiated by entities interacting through the calling PEP. Additionally,
this request contains other contextual parameters that can be used by
PDP to evaluate request.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schem
a

	SUNFISH-signature
	header
	This field
is used to
provide
integrity
and
authenticity
of messages.
	No
	string

	body
	body
	Contains
XACML-format
ted
(or other)
request with
all relevant
data and
attributes
necessary
for PDP to
perform
authorization
decision.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains
complete
XACML-format
ted
answer. Body
can include
additional
answer that
deals with
activity
context, if
requested.
	string

	400
	Invalid
XACML
request
	

	404
	Requestor is
not allowed
to perform
the request
	

Models

VerifyPolicyResult

	Name
	Type
	Description
	Required

	status
	string
	Indicates
the status
of the
verification
operation.
	No

	description
	string
	Description,
containing
detailed
information
about the
requested
operation.
	No

	statusCode
	integer
	Status code
of the
operation.
	No

SUNFISH Policy Enforcement Point (PEP) API

The interactions executed inside one zone are checked by and enforced in
the scope of a PEP assigned for that zone. The approach is similar for
the zones that consist of geographically dispersed locations: each PEP
(or sub-PEP) is responsible for its geographical unit or layer. Being
the single point of contact of a zone, the PEP is primarily responsible
for checking incoming and outgoing requests. In the second instance,
depending on security settings and application requirements, PEP might
serve as an inter-zone communication gateway, as well.

Version: 1.0.0

Contact information:

Dominik Ziegler

dominik.ziegler@a-sit.at

/v1/request

POST

Summary: This endpoint is used by PEPs to POST new requests to other
PEPs. Inputs to this endpoint are contextual parameters that establish
the request, application and target specific settings. The response of
this action is the data record that contains request id and data
structure describing status parameters or other PEP requirements.

Description:

Parameters

Responses

	Code
	Description
	Schema

	200
	Body of the original request
	[byte]

/v1/app-request

POST

Summary: Applications can POST new requests to this endpoint. Inputs
to this endpoint are contextual parameters that establish the request,
application and target specific settings. For this specification, the
applications rely on common SUNFISH functionalities and components. The
response of this action is the original response of the target service
(synchronous use case).

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	body
	body
	Body of the
original
request
	No
	[
byte
]

	SUNFISH-issuer
	header
	References
the
application
that issued
the request.
This field
may include
the data
required to
perform
application
authenticati
on,
in the form
of
authenticati
on
token.
	No
	string

	SUNFISH-service
	header
	Machine-read
able
description
of endpoint
including at
least an
identifier
of the
service.
With the
service id,
the PEP can
resolve
other
required
attributes.
	Yes
	string

	SUNFISH-request
	header
	Machine-read
able
description
of the
target
endpoint and
request
data. The
PEP at least
requires the
parameters
method,
port, path
and
protocol. If
additional
attributes
are
registered
in the
SUNFISH
federation,
the PEP can
retrieve
these
attributes
from a
correspondin

PIP.
Furthermore,
this field
may include
validity
constraints
on a request
(not-valid-b
efore,
not
valid-after)
.

	Yes
	string

	SUNFISH-request-parameters
	header
	The
parameters
related to
the request,
including
its
priority,
SLA
requirements
,
call-back
URI. This
field
includes
other
request
meta-data
that may
extend or
override the
definitions
provided in
centralized
administrati
ve
console.
These
include
request
type,
application-
specific
policies or
obligations
to be
applied
beyond the
ones defined
in the
central
console, or
parameters
related to
data-masking
policies.
The scope of
applicable
and allowed
definitions
provided in
this
variable
depends on
an extent of
delegation
policies, as
determined
in
centralized
console.
	No
	string

	SUNFISH-request-data
	header
	This field
encapsulates
the original
header data
and the
original
query string
as issued by
the
application.
	Yes
	string

	SUNFISH-signature
	header
	This
parameter is
used to
ensure
integrity
and
authenticity
of the
source
message for
applications
which
require a
higher
degree of
security. It
contains
signed
request and
fields,
according to
predefined
schema
	No
	string

Responses

	Code
	Description
	Schema

	200
	The same response as provided by the target service
	[byte]

SUNFISH Policy Information Point (PIP) API

The PIP is generally defined as “the system entity that acts as source
of attribute values

Version: 1.0.0

Contact information:

Dominik Ziegler

dominik.ziegler@a-sit.at

/v1/collect

GET

Summary: This endpoint is used to retrieve collection of all
available attribute ids

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	SUNFISH-issuer
	header
	References
the entity
that issued
the request.
This field
includes the
data that
confirms the
authenticati
on
of source
entity and
its
authenticati
on
level.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains
collection
of attribute
designators
ids
according to
the
attribute
designator
set schema.
	string

	400
	Invalid
request
	

	403
	The
requestor is
not allowed
	

/v1/request

POST

Summary: This endpoint is used to retrieve additional attributes

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	body
	body
	Contains the
requested
attributes
and the
request
context as
issued by
the PEP. If
multiple
PIPs are
involved,
the PIP
always
receive the
most recent
request
context.
	No
	string

	SUNFISH-issuer
	header
	References
the entity
that issued
the request.
This field
includes the
data that
confirms the
authenticati
on
of source
entity and
its
authenticati
on
level.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	The request
context was
enhanced
with all or
some of the
requested
attributes.
	string

	400
	Invalid
request
	

	403
	The
requestor is
not allowed
	

	404
	This PIP
does not
provide any
of the
requested
attributes.
	

SUNFISH Policy Retrieval Point (PRP) API

The PRP is not included in the OASIS XACML standard, but provides
another abstraction level of the PAP

Version: 1.0.0

Contact information:

Alexander Marsalek

alexander.marsalek@a-sit.at

/v1/collect

POST

Summary: This endpoint is used by PDPs to retrieve collection of
policies for specified decision request.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	body
	body
	Contains the
request
formatted
according to
the XACML
decision
request
language
with all
relevant
data and
attributes
necessary
for the PRP
to identify
the relevant
policies.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains
single
policy set
where all
policies are
contained or
references
according to
the XACML
policy set
schema.
	string

	400
	Invalid
request
	

	404
	No policies
matching the
specified
request were
found
	

/v1/policyset/{id}/{version}

GET

Summary: This endpoint is used to retrieve policy by id.
Optionally version can be specified.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	rootPolicySet
	query
	true
	false
Defines
if root
policy-se
t
or
re-usable
policies-
set
should be
returned.
	Yes

	id
	path
	Specifies
the id of
the policy
set to be
returned in
the
response.
	Yes
	string

	version
	path
	Specifies
the version
of the
policy set
to be
returned in
the
response. If
no version
is specified
the newest
policy set
will be
returned.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains the requested policy set
	string

	400
	Invalid request
	

	403
	The requestor is not allowed to retrieve this policy
	

	404
	The policy set with the specified id was not found
	

/v1/policy/{id}

GET

Summary: This endpoint is used to retrieve policy by id.
Optionally version can be specified.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	rootPolicy
	query
	true
	false
Defines
if root
policy or

re-usable
policy
should be
returned.

	Yes

	id
	path
	Specifies
the id of
the policy
to be
returned in
the
response.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains the requested policy set
	string

	400
	Invalid request
	

	403
	The requestor is not allowed to retrieve this policy
	

	404
	The policy set with the specified id was not found
	

/v1/policyset/{id}

GET

Summary: This endpoint is used to retrieve policy by id.
Optionally version can be specified.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	rootPolicySet
	query
	true
	false
Defines
if root
policy-se
t
or
re-usable
policies-
set
should be
returned.
	Yes

	id
	path
	Specifies
the id of
the policy
set to be
returned in
the
response.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains the requested policy set
	string

	400
	Invalid request
	

	403
	The requestor is not allowed to retrieve this policy
	

	404
	The policy set with the specified id was not found
	

/v1/policy/{id}/{version}

GET

Summary: This endpoint is used to retrieve policy by id.
Optionally version can be specified.

Description:

Parameters

	Name
	Located in
	Description
	Required
	Schema

	rootPolicy
	query
	true
	false
Defines
if root
policy or

re-usable
policy
should be
returned.

	Yes

	id
	path
	Specifies
the id of
the policy
to be
returned in
the
response.
	Yes
	string

	version
	path
	Specifies
the version
of the
policy to be
returned in
the
response. If
no version
is specified
the newest
policy will
be returned.
	Yes
	string

Responses

	Code
	Description
	Schema

	200
	Contains the requested policy set
	string

	400
	Invalid request
	

	403
	The requestor is not allowed to retrieve this policy
	

	404
	The policy set with the specified id was not found
	

SUNFISH Intelligent Workload Manager (IWM) API

IWM provides lifecycle management for virtual resources in a multi-cloud multi-tenant environment. It also provides
optimized planner for the target infrastructure (costs, tags, etc). Functionality is implemented on top of the
Waldur hybrid cloud broker.

Version: 1.0.0

Contact information:

Ilja Livenson

ilja.livenson@gmail.com

PUT /api/openstacktenant-snapshots/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstacktenant-snapshots/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstacktenant-snapshots/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstacktenant-snapshots/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/customers/{uuid}/users/

A list of users connected to the customer
	Description:
A list of users connected to the customer

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/project-permissions/

- Projects are connected to customers, whereas the project may belong to one customer only,
	Description:
- Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have
multiple projects.
- Projects are connected to services, whereas the project may contain multiple services,
and the service may belong to multiple projects.
- Staff members can list all available projects of any customer and create new projects.
- Customer owners can list all projects that belong to any of the customers they own.
Customer owners can also create projects for the customers they own.
- Project administrators can list all the projects they are administrators in.
- Project managers can list all the projects they are managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/project-permissions/

Project permissions expresses connection of user to a project.
	Description:
Project permissions expresses connection of user to a project.
User may have either project manager or system administrator permission in the project.
Use */api/project-permissions/* endpoint to maintain project permissions.

Note that project permissions can be viewed and modified only by customer owners and staff users.

To list all visible permissions, run a **GET** query against a list.
Response will contain a list of project users and their brief data.

To add a new user to the project, **POST** a new relationship to */api/project-permissions/* endpoint specifying
project, user and the role of the user (‘admin’ or ‘manager’):

.. code-block:: http

 POST /api/project-permissions/ HTTP/1.1
 Accept: application/json
 Authorization: Token 95a688962bf68678fd4c8cec4d138ddd9493c93b
 Host: example.com

 {
 “project”: “http://example.com/api/projects/6c9b01c251c24174a6691a1f894fae31/”,
 “role”: “manager”,
 “user”: “http://example.com/api/users/82cec6c8e0484e0ab1429412fe4194b7/”
 }

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	role
	query
	
	string

	user
	query
	
	string

	user_url
	query
	
	string

	username
	query
	
	string

	full_name
	query
	
	string

	native_name
	query
	
	string

	o
	query
	
	string

	customer
	query
	
	string

	project
	query
	
	string

	project_url
	query
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/pull_floating_ips/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

201 -

PUT /api/hooks-email/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/hooks-email/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/hooks-email/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/hooks-email/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-snapshots/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-snapshots/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	o
	query
	
	string

	source_volume_uuid
	query
	
	string

	source_volume
	query
	
	string

	backup_uuid
	query
	
	string

	backup
	query
	
	string

Responses

200 -

PUT /api/openstacktenant-service-project-link/{id}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstacktenant-service-project-link/{id}/

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

204 -

PATCH /api/openstacktenant-service-project-link/{id}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstacktenant-service-project-link/{id}/

To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.
	Description:
To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_floating_ip/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

201 -

PUT /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,
	Description:
- Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have
multiple projects.
- Projects are connected to services, whereas the project may contain multiple services,
and the service may belong to multiple projects.
- Staff members can list all available projects of any customer and create new projects.
- Customer owners can list all projects that belong to any of the customers they own.
Customer owners can also create projects for the customers they own.
- Project administrators can list all the projects they are administrators in.
- Project managers can list all the projects they are managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/project-permissions/{id}/

To remove a user from a project, delete corresponding connection (**url** field). Successful deletion
	Description:
To remove a user from a project, delete corresponding connection (**url** field). Successful deletion
will return status code 204.

.. code-block:: http

 DELETE /api/project-permissions/42/ HTTP/1.1
 Authorization: Token 95a688962bf68678fd4c8cec4d138ddd9493c93b
 Host: example.com

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

204 -

PATCH /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,
	Description:
- Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have
multiple projects.
- Projects are connected to services, whereas the project may contain multiple services,
and the service may belong to multiple projects.
- Staff members can list all available projects of any customer and create new projects.
- Customer owners can list all projects that belong to any of the customers they own.
Customer owners can also create projects for the customers they own.
- Project administrators can list all the projects they are administrators in.
- Project managers can list all the projects they are managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,
	Description:
- Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have
multiple projects.
- Projects are connected to services, whereas the project may contain multiple services,
and the service may belong to multiple projects.
- Staff members can list all available projects of any customer and create new projects.
- Customer owners can list all projects that belong to any of the customers they own.
Customer owners can also create projects for the customers they own.
- Project administrators can list all the projects they are administrators in.
- Project managers can list all the projects they are managers in.

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

200 -

GET /api/events/event_groups/

Returns a list of groups with event types.
	Description:
Returns a list of groups with event types.
Group is used in exclude_features query param.

Parameters

	Name
	Position
	Description
	Type

Responses

200 -

PUT /api/hooks-push/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/hooks-push/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/hooks-push/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/hooks-push/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/events/scope_types/

Returns a list of scope types acceptable by events filter.
	Description:
Returns a list of scope types acceptable by events filter.

Parameters

	Name
	Position
	Description
	Type

Responses

200 -

PUT /api/openstack-floating-ips/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

DELETE /api/openstack-floating-ips/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-floating-ips/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/openstack-floating-ips/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/extend/

Increase volume size
	Description:
Increase volume size

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/openstack-subnets/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack-subnets/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-subnets/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack-subnets/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

PUT /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstacktenant-instances/{uuid}/

Deletion of an instance is done through sending a **DELETE** request to the instance URI.
	Description:
Deletion of an instance is done through sending a **DELETE** request to the instance URI.
Valid request example (token is user specific):

.. code-block:: http

 DELETE /api/openstacktenant-instances/abceed63b8e844afacd63daeac855474/ HTTP/1.1
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

Only stopped instances or instances in ERRED state can be deleted.

By default when instance is destroyed, all data volumes
attached to it are destroyed too. In order to preserve data
volumes use query parameter ?delete_volumes=false
In this case data volumes are detached from the instance and
then instance is destroyed. Note that system volume is deleted anyway.
For example:

.. code-block:: http

 DELETE /api/openstacktenant-instances/abceed63b8e844afacd63daeac855474/?delete_volumes=false HTTP/1.1
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/change_flavor/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/hooks-web/

To create new web hook issue **POST** against */api/hooks-web/* as an authenticated user.
	Description:
To create new web hook issue **POST** against */api/hooks-web/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

 POST /api/hooks-web/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “event_types”: [“resource_start_succeeded”],
 “event_groups”: [“users”],
 “destination_url”: “http://example.com/”
 }

When hook is activated, **POST** request is issued against destination URL with the following data:

.. code-block:: javascript

 {
 “timestamp”: “2015-07-14T12:12:56.000000”,
 “message”: “Customer ABC LLC has been updated.”,
 “type”: “customer_update_succeeded”,
 “context”: {
 “user_native_name”: “Walter Lebrowski”,
 “customer_contact_details”: “”,
 “user_username”: “Walter”,
 “user_uuid”: “1c3323fc4ae44120b57ec40dea1be6e6”,
 “customer_uuid”: “4633bbbb0b3a4b91bffc0e18f853de85”,
 “ip_address”: “8.8.8.8”,
 “user_full_name”: “Walter Lebrowski”,
 “customer_abbreviation”: “ABC LLC”,
 “customer_name”: “ABC LLC”
 },
 “levelname”: “INFO”
 }

Note that context depends on event type.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/hooks-web/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	user
	query
	
	string

	is_active
	query
	
	string

	last_published
	query
	
	string

	destination_url
	query
	
	string

	content_type
	query
	
	string

	author_uuid
	query
	
	string

Responses

200 -

POST /api/openstack-tenants/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-tenants/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstack-floating-ips/

Parameters

	Name
	Position
	Description
	Type

Responses

201 -

GET /api/openstack-floating-ips/

To get a list of all available floating IPs, issue **GET** against */api/floating-ips/*.
	Description:
To get a list of all available floating IPs, issue **GET** against */api/floating-ips/*.
Floating IPs are read only. Each floating IP has fields: ‘address’, ‘status’.

Status *DOWN* means that floating IP is not linked to a VM, status *ACTIVE* means that it is in use.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	runtime_state
	query
	
	string

	o
	query
	
	string

	tenant_uuid
	query
	
	string

	tenant
	query
	
	string

Responses

200 -

POST /api/openstack-subnets/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-subnets/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	o
	query
	
	string

	tenant_uuid
	query
	
	string

	tenant
	query
	
	string

	network_uuid
	query
	
	string

	network
	query
	
	string

Responses

200 -

POST /api/openstack/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack/

To create a service, issue a **POST** to */api/openstack/* as a customer owner.
	Description:
To create a service, issue a **POST** to */api/openstack/* as a customer owner.

You can create service based on shared service settings. Example:

.. code-block:: http

 POST /api/openstack/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “Common OpenStack”,
 “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
 “settings”: “http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/”
 }

Or provide your own credentials. Example:

.. code-block:: http

 POST /api/openstack/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “My OpenStack”,
 “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
 “backend_url”: “http://keystone.example.com:5000/v2.0”,
 “username”: “admin”,
 “password”: “secret”
 }

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	project_uuid
	query
	
	string

	customer
	query
	
	string

	project
	query
	
	string

	settings
	query
	
	string

	shared
	query
	
	string

	type
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

Responses

200 -

GET /api/customers/{uuid}/balance_history/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/stop/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstack-networks/{uuid}/pull/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/projects/

A new project can be created by users with staff privilege (is_staff=True) or customer owners.
	Description:
A new project can be created by users with staff privilege (is_staff=True) or customer owners.
Project resource quota is optional. Example of a valid request:

.. code-block:: http

 POST /api/projects/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “Project A”,
 “customer”: “http://example.com/api/customers/6c9b01c251c24174a6691a1f894fae31/”,
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/projects/

To get a list of projects, run **GET** against */api/projects/* as authenticated user.
	Description:
To get a list of projects, run **GET** against */api/projects/* as authenticated user.
Here you can also check actual value for project quotas and project usage

Note that a user can only see connected projects:

- projects that the user owns as a customer
- projects where user has any role

Supported logic filters:

- ?can_manage - return a list of projects where current user is manager or a customer owner;
- ?can_admin - return a list of projects where current user is admin;

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	customer
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	description
	query
	
	string

	created
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstacktenant-instances/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-instances/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	o
	query
	
	string

	tenant_uuid
	query
	
	string

Responses

200 -

GET /api/openstacktenant-security-groups/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	settings_uuid
	query
	
	string

	settings
	query
	
	string

Responses

200 -

POST /api/openstack-networks/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-networks/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	o
	query
	
	string

	tenant_uuid
	query
	
	string

	tenant
	query
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/pull/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-security-groups/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

PUT /api/openstack/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack/{uuid}/

To update OpenStack service issue **PUT** or **PATCH** against */api/openstack/<service_uuid>/*
	Description:
To update OpenStack service issue **PUT** or **PATCH** against */api/openstack/<service_uuid>/*
as a customer owner. You can update service’s `name` and `available_for_all` fields.

Example of a request:

.. code-block:: http

 PUT /api/openstack/c6526bac12b343a9a65c4cd6710666ee/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “My OpenStack2”
 }

To remove OpenStack service, issue **DELETE** against */api/openstack/<service_uuid>/* as
staff user or customer owner.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstack-security-groups/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-security-groups/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	description
	query
	
	string

	name
	query
	
	string

	error_message
	query
	
	string

	backend_id
	query
	
	string

	start_time
	query
	
	string

	service_project_link
	query
	
	string

	tenant
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	service_settings_name
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	o
	query
	
	string

	tenant_uuid
	query
	
	string

Responses

200 -

GET /api/hooks/

Use */api/hooks/* to get a list of all the hooks of any type that a user can see.
	Description:
Use */api/hooks/* to get a list of all the hooks of any type that a user can see.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

POST /api/users/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/users/

User list is available to all authenticated users. To get a list,
	Description:
User list is available to all authenticated users. To get a list,
issue authenticated **GET** request against */api/users/*.

User list supports several filters. All filters are set in HTTP query section.
Field filters are listed below. All of the filters apart from ?organization are
using case insensitive partial matching.

Several custom filters are supported:

- ?current - filters out user making a request. Useful for getting information about a currently logged in user.
- ?civil_number=XXX - filters out users with a specified civil number
- ?is_active=True|False - show only active (non-active) users
- ?potential - shows users that have common connections to the customers and are potential collaborators.
 Exclude staff users. Staff users can see all the customers.
- ?potential_customer=<Customer UUID> - optionally filter potential users by customer UUID
- ?potential_organization=<organization name> - optionally filter potential unconnected users by
 their organization name
 (deprecated, use `organization plugin <http://nodeconductor-organization.readthedocs.org/en/stable/>`_ instead)
- ?organization_claimed - show only users with a non-empty organization
 (deprecated, use `organization plugin <http://nodeconductor-organization.readthedocs.org/en/stable/>`_ instead)

The user can be created either through automated process on login with SAML token, or through a REST call by a user
with staff privilege.

Example of a creation request is below.

.. code-block:: http

 POST /api/users/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “username”: “sample-user”,
 “full_name”: “full name”,
 “native_name”: “taisnimi”,
 “job_title”: “senior cleaning manager”,
 “email”: “example@example.com”,
 “civil_number”: “12121212”,
 “phone_number”: “”,
 “description”: “”,
 “organization”: “”,
 }

NB! Username field is case-insensitive. So “John” and “john” will be treated as the same user.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	full_name
	query
	
	string

	native_name
	query
	
	string

	organization
	query
	
	string

	organization_approved
	query
	
	string

	email
	query
	
	string

	phone_number
	query
	
	string

	description
	query
	
	string

	job_title
	query
	
	string

	username
	query
	
	string

	civil_number
	query
	
	string

	is_active
	query
	
	string

	registration_method
	query
	
	string

	o
	query
	
	string

	full_name
	query
	
	string

	native_name
	query
	
	string

	organization
	query
	
	string

	organization_approved
	query
	
	string

	email
	query
	
	string

	phone_number
	query
	
	string

	description
	query
	
	string

	job_title
	query
	
	string

	username
	query
	
	string

	civil_number
	query
	
	string

	is_active
	query
	
	string

	registration_method
	query
	
	string

	o
	query
	
	string

	full_name
	query
	
	string

	native_name
	query
	
	string

	organization
	query
	
	string

	organization_approved
	query
	
	string

	email
	query
	
	string

	phone_number
	query
	
	string

	description
	query
	
	string

	job_title
	query
	
	string

	username
	query
	
	string

	civil_number
	query
	
	string

	is_active
	query
	
	string

	registration_method
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/attach/

Attach volume to instance
	Description:
Attach volume to instance

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstacktenant-instances/{uuid}/update_security_groups/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/hooks-email/

To create new email hook issue **POST** against */api/hooks-email/* as an authenticated user.
	Description:
To create new email hook issue **POST** against */api/hooks-email/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

 POST /api/hooks-email/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “event_types”: [“openstack_instance_start_succeeded”],
 “event_groups”: [“users”],
 “email”: “test@example.com”
 }

You may temporarily disable hook without deleting it by issuing following **PATCH** request against hook URL:

.. code-block:: javascript

 {
 “is_active”: “false”
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/hooks-email/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	user
	query
	
	string

	is_active
	query
	
	string

	last_published
	query
	
	string

	email
	query
	
	string

	author_uuid
	query
	
	string

Responses

200 -

POST /api/openstacktenant/{uuid}/unlink/

Unlink all related resources, service project link and service itself.
	Description:
Unlink all related resources, service project link and service itself.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.
	Description:
- Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers.
- Staff members can list all available customers and create new customers.
- Customer owners can list all customers they own. Customer owners can also create new customers.
- Project administrators can list all the customers that own any of the projects they are administrators in.
- Project managers can list all the customers that own any of the projects they are managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.
	Description:
- Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers.
- Staff members can list all available customers and create new customers.
- Customer owners can list all customers they own. Customer owners can also create new customers.
- Project administrators can list all the customers that own any of the projects they are administrators in.
- Project managers can list all the customers that own any of the projects they are managers in.

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

204 -

PATCH /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.
	Description:
- Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers.
- Staff members can list all available customers and create new customers.
- Customer owners can list all customers they own. Customer owners can also create new customers.
- Project administrators can list all the customers that own any of the projects they are administrators in.
- Project managers can list all the customers that own any of the projects they are managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/customer-permissions/{id}/

To remove a user from a customer owner group, delete corresponding connection (**url** field).
	Description:
To remove a user from a customer owner group, delete corresponding connection (**url** field).
Successful deletion will return status code 204.

.. code-block:: http

 DELETE /api/customer-permissions/71/ HTTP/1.1
 Authorization: Token 95a688962bf68678fd4c8cec4d138ddd9493c93b
 Host: example.com

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_network/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/openstack-service-project-link/{id}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack-service-project-link/{id}/

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

204 -

PATCH /api/openstack-service-project-link/{id}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack-service-project-link/{id}/

To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.
	Description:
To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

200 -

POST /api/users/{uuid}/password/

To change a user password, submit a **POST** request to the user’s RPC URL, specifying new password
	Description:
To change a user password, submit a **POST** request to the user’s RPC URL, specifying new password
by staff user or account owner.

Password is expected to be at least 7 symbols long and contain at least one number
and at least one lower or upper case.

Example of a valid request:

.. code-block:: http

 POST /api/users/e0c058d06864441fb4f1c40dee5dd4fd/password/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “password”: “nQvqHzeP123”,
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-floating-ips/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	settings_uuid
	query
	
	string

	settings
	query
	
	string

	runtime_state
	query
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/unassign_floating_ip/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

201 -

POST /api/hooks-push/

To create new push hook issue **POST** against */api/hooks-push/* as an authenticated user.
	Description:
To create new push hook issue **POST** against */api/hooks-push/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

 POST /api/hooks-push/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “event_types”: [“resource_start_succeeded”],
 “event_groups”: [“users”],
 “type”: “Android”
 }

You may temporarily disable hook without deleting it by issuing following **PATCH** request against hook URL:

.. code-block:: javascript

 {
 “is_active”: “false”
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/hooks-push/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	user
	query
	
	string

	is_active
	query
	
	string

	last_published
	query
	
	string

	type
	query
	
	string

	device_id
	query
	
	string

	device_manufacturer
	query
	
	string

	device_model
	query
	
	string

	token
	query
	
	string

	author_uuid
	query
	
	string

Responses

200 -

POST /api/events/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/events/

To get a list of events - run **GET** against */api/events/* as authenticated user. Note that a user can
	Description:
To get a list of events - run **GET** against */api/events/* as authenticated user. Note that a user can
only see events connected to objects she is allowed to see.

Sorting is supported in ascending and descending order by specifying a field to an **?o=** parameter. By default
events are sorted by @timestamp in descending order.

Run POST against */api/events/* to create an event. Only users with staff privileges can create events.
New event will be emitted with `custom_notification` event type.
Request should contain following fields:

- level: the level of current event. Following levels are supported: debug, info, warning, error
- message: string representation of event message
- scope: optional URL, which points to the loggable instance

Request example:

.. code-block:: javascript

 POST /api/events/
 Accept: application/json
 Content-Type: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “level”: “info”,
 “message”: “message#1”,
 “scope”: “http://example.com/api/customers/9cd869201e1b4158a285427fcd790c1c/”
 }

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

GET /api/customer-permissions-log/{id}/

Parameters

	Name
	Position
	Description
	Type

	id
	path
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_security_group/

Example of a request:
	Description:
Example of a request:

.. code-block:: http

 {
 “name”: “Security group name”,
 “description”: “description”,
 “rules”: [
 {
 “protocol”: “tcp”,
 “from_port”: 1,
 “to_port”: 10,
 “cidr”: “10.1.1.0/24”
 },
 {
 “protocol”: “udp”,
 “from_port”: 10,
 “to_port”: 8000,
 “cidr”: “10.1.1.0/24”
 }
]
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstacktenant-volumes/{uuid}/pull/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/customer-permissions-log/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	role
	query
	
	string

	user
	query
	
	string

	user_url
	query
	
	string

	username
	query
	
	string

	full_name
	query
	
	string

	native_name
	query
	
	string

	o
	query
	
	string

	customer
	query
	
	string

	customer_url
	query
	
	string

Responses

200 -

GET /api/openstacktenant-flavors/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
	Description:
VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of virtual
hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	ram
	query
	
	string

	ram__gte
	query
	
	string

	ram__lte
	query
	
	string

	name
	query
	
	string

	settings
	query
	
	string

	cores
	query
	
	string

	cores__gte
	query
	
	string

	cores__lte
	query
	
	string

	disk
	query
	
	string

	disk__gte
	query
	
	string

	disk__lte
	query
	
	string

	settings_uuid
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstack-ip-mappings/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-ip-mappings/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	project
	query
	
	string

	private_ip
	query
	
	string

	public_ip
	query
	
	string

Responses

200 -

GET /api/openstacktenant-flavors/{uuid}/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
	Description:
VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of virtual
hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

PUT /api/openstack-packages/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

DELETE /api/openstack-packages/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-packages/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/openstack-packages/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/keys/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can
	Description:
SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can
log in to that instance.
SSH public keys are connected to user accounts, whereas the key may belong to one user only,
and the user may have multiple SSH keys.
Users can only access SSH keys connected to their accounts. Staff users can see all the accounts.
Project administrators can select what SSH key will be injected into VM instance during instance provisioning.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/keys/

To get a list of SSH keys, run **GET** against */api/keys/* as authenticated user.
	Description:
To get a list of SSH keys, run **GET** against */api/keys/* as authenticated user.

A new SSH key can be created by any active users. Example of a valid request:

.. code-block:: http

 POST /api/keys/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “ssh_public_key1”,
 “public_key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDURXDP5YhOQUYoDuTxJ84DuzqMJYJqJ8+SZT28
 TtLm5yBDRLKAERqtlbH2gkrQ3US58gd2r8H9jAmQOydfvgwauxuJUE4eDpaMWupqquMYsYLB5f+vVGhdZbbzfc6DTQ2rY
 dknWoMoArlG7MvRMA/xQ0ye1muTv+mYMipnd7Z+WH0uVArYI9QBpqC/gpZRRIouQ4VIQIVWGoT6M4Kat5ZBXEa9yP+9du
 D2C05GX3gumoSAVyAcDHn/xgej9pYRXGha4l+LKkFdGwAoXdV1z79EG1+9ns7wXuqMJFHM2KDpxAizV0GkZcojISvDwuh
 vEAFdOJcqjyyH4FOGYa8usP1 jhon@example.com”,
 }

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	fingerprint
	query
	
	string

	uuid
	query
	
	string

	user_uuid
	query
	
	string

	o
	query
	
	string

Responses

200 -

GET /api/customers/{uuid}/counters/

Count number of entities related to customer
	Description:
Count number of entities related to customer

.. code-block:: javascript

{
“alerts”: 12,
“services”: 1,
“projects”: 1,
“users”: 3
}

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

GET /api/openstack-images/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

PUT /api/projects/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/projects/{uuid}/

Deletion of a project is done through sending a **DELETE** request to the project instance URI.
	Description:
Deletion of a project is done through sending a **DELETE** request to the project instance URI.
Please note, that if a project has connected instances, deletion request will fail with 409 response code.

Valid request example (token is user specific):

.. code-block:: http

 DELETE /api/projects/6c9b01c251c24174a6691a1f894fae31/ HTTP/1.1
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/projects/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/projects/{uuid}/

Optional `field` query parameter (can be list) allows to limit what fields are returned.
	Description:
Optional `field` query parameter (can be list) allows to limit what fields are returned.
For example, given request /api/projects/<uuid>/?field=uuid&field=name you get response like this:

.. code-block:: javascript

 {
 “uuid”: “90bcfe38b0124c9bbdadd617b5d739f5”,
 “name”: “Default”
 }

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/pull/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/service-settings/

To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated user.
	Description:
To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated user.
Only settings owned by this user or shared settings will be listed.

Supported filters are:

- ?name=<text> - partial matching used for searching
- ?type=<type> - choices: OpenStack, DigitalOcean, Amazon, JIRA, GitLab, Oracle
- ?state=<state> - choices: New, Creation Scheduled, Creating, Sync Scheduled, Syncing, In Sync, Erred
- ?shared=<bool> - allows to filter shared service settings

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	type
	query
	
	string

	state
	query
	
	string

	shared
	query
	
	string

	name
	query
	
	string

	type
	query
	
	string

	state
	query
	
	string

	shared
	query
	
	string

Responses

200 -

GET /api/openstack-flavors/{uuid}/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
	Description:
VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of virtual
hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstack-packages/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-packages/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	customer
	query
	
	string

	project
	query
	
	string

	tenant
	query
	
	string

Responses

200 -

GET /api/openstacktenant-floating-ips/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/openstack-flavors/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
	Description:
VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of virtual
hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	ram
	query
	
	string

	ram__gte
	query
	
	string

	ram__lte
	query
	
	string

	name
	query
	
	string

	settings
	query
	
	string

	cores
	query
	
	string

	cores__gte
	query
	
	string

	cores__lte
	query
	
	string

	disk
	query
	
	string

	disk__gte
	query
	
	string

	disk__lte
	query
	
	string

	settings_uuid
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/restart/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

DELETE /api/keys/{uuid}/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can
	Description:
SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can
log in to that instance.
SSH public keys are connected to user accounts, whereas the key may belong to one user only,
and the user may have multiple SSH keys.
Users can only access SSH keys connected to their accounts. Staff users can see all the accounts.
Project administrators can select what SSH key will be injected into VM instance during instance provisioning.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

GET /api/keys/{uuid}/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can
	Description:
SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can
log in to that instance.
SSH public keys are connected to user accounts, whereas the key may belong to one user only,
and the user may have multiple SSH keys.
Users can only access SSH keys connected to their accounts. Staff users can see all the accounts.
Project administrators can select what SSH key will be injected into VM instance during instance provisioning.

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/service-metadata/

To get a list of supported service types, run **GET** against */api/service-metadata/* as an authenticated user.
	Description:
To get a list of supported service types, run **GET** against */api/service-metadata/* as an authenticated user.
Use an endpoint from the returned list in order to create new service.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

POST /api/openstacktenant-volumes/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-volumes/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	customer
	query
	
	string

	customer_uuid
	query
	
	string

	customer_name
	query
	
	string

	customer_native_name
	query
	
	string

	customer_abbreviation
	query
	
	string

	project
	query
	
	string

	project_uuid
	query
	
	string

	project_name
	query
	
	string

	service_uuid
	query
	
	string

	service_name
	query
	
	string

	service_settings_name
	query
	
	string

	service_settings_uuid
	query
	
	string

	name
	query
	
	string

	description
	query
	
	string

	state
	query
	
	string

	uuid
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

	instance
	query
	
	string

	instance_uuid
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_service/

Create non-admin service with credentials from the tenant
	Description:
Create non-admin service with credentials from the tenant

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/version/

Retrieve version of the application
	Description:
Retrieve version of the application

Parameters

	Name
	Position
	Description
	Type

Responses

200 -

GET /api/resources/

To get a list of supported resources’ actions, run **OPTIONS** against
	Description:
To get a list of supported resources’ actions, run **OPTIONS** against
/api/<resource_url>/ as an authenticated user.

It is possible to filter and order by resource-specific fields, but this filters will be applied only to
resources that support such filtering. For example it is possible to sort resource by ?o=ram, but SugarCRM crms
will ignore this ordering, because they do not support such option.

Filter resources by type or category
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

There are two query argument to select resources by their type.

- Specify explicitly list of resource types, for example:

 /api/<resource_endpoint>/?resource_type=DigitalOcean.Droplet&resource_type=OpenStack.Instance

- Specify category, one of vms, apps, private_clouds or storages for example:

 /api/<resource_endpoint>/?category=vms

Filtering by monitoring fields
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Resources may have SLA attached to it. Example rendering of SLA:

.. code-block:: javascript

 “sla”: {
 “value”: 95.0
 “agreed_value”: 99.0,
 “period”: “2016-03”
 }

You may filter or order resources by SLA. Default period is current year and month.

- Example query for filtering list of resources by actual SLA:

 /api/<resource_endpoint>/?actual_sla=90&period=2016-02

- Warning! If resource does not have SLA attached to it, it is not included in ordered response.
 Example query for ordering list of resources by actual SLA:

 /api/<resource_endpoint>/?o=actual_sla&period=2016-02

Service list is displaying current SLAs for each of the items. By default,
SLA period is set to the current month. To change the period pass it as a query argument:

- ?period=YYYY-MM - return a list with SLAs for a given month
- ?period=YYYY - return a list with SLAs for a given year

In all cases all currently running resources are returned, if SLA for the given period is
not known or not present, it will be shown as **null** in the response.

Resources may have monitoring items attached to it. Example rendering of monitoring items:

.. code-block:: javascript

 “monitoring_items”: {
 “application_state”: 1
 }

You may filter or order resources by monitoring item.

- Example query for filtering list of resources by installation state:

 /api/<resource_endpoint>/?monitoring__installation_state=1

- Warning! If resource does not have monitoring item attached to it, it is not included in ordered response.
 Example query for ordering list of resources by installation state:

 /api/<resource_endpoint>/?o=monitoring__installation_state

Filtering by tags
^^^^^^^^^^^^^^^^^

Resource may have tags attached to it. Example of tags rendering:

.. code-block:: javascript

 “tags”: [
 “license-os:centos7”,
 “os-family:linux”,
 “license-application:postgresql”,
 “support:premium”
]

Tags filtering:

 - ?tag=IaaS - filter by full tag name, using method OR. Can be list.
 - ?rtag=os-family:linux - filter by full tag name, using AND method. Can be list.
 - ?tag__license-os=centos7 - filter by tags with particular prefix.

Tags ordering:

 - ?o=tag__license-os - order by tag with particular prefix. Instances without given tag will not be returned.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

POST /api-auth/password/

Api view loosely based on DRF’s default ObtainAuthToken,
	Description:
Api view loosely based on DRF’s default ObtainAuthToken,
but with the responses formats and status codes aligned with BasicAuthentication behavior.

Valid request example:

.. code-block:: http

POST /api-auth/password/ HTTP/1.1

Parameters

	Name
	Position
	Description
	Type

Responses

201 -

PUT /api/openstacktenant/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstacktenant/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstacktenant/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstacktenant/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/assign_floating_ip/

To assign floating IP to the instance, make **POST** request to
	Description:
To assign floating IP to the instance, make **POST** request to
/api/openstacktenant-instances/<uuid>/assign_floating_ip/ with link to the floating IP.
Make empty POST request to allocate new floating IP and assign it to instance.
Note that instance should be in stable state, service project link of the instance should be in stable state
and have external network.

Example of a valid request:

.. code-block:: http

 POST /api/openstacktenant-instances/6c9b01c251c24174a6691a1f894fae31/assign_floating_ip/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “floating_ip”: “http://example.com/api/floating-ips/5e7d93955f114d88981dea4f32ab673d/”
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/openstack-networks/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack-networks/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-networks/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack-networks/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/backup/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/users/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/users/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/users/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/users/{uuid}/

User fields can be updated by account owner or user with staff privilege (is_staff=True).
	Description:
User fields can be updated by account owner or user with staff privilege (is_staff=True).
Following user fields can be updated:

- organization (deprecated, use
 `organization plugin <http://nodeconductor-organization.readthedocs.org/en/stable/>`_ instead)
- full_name
- native_name
- job_title
- phone_number
- email

Can be done by **PUT**ing a new data to the user URI, i.e. */api/users/<UUID>/* by staff user or account owner.
Valid request example (token is user specific):

.. code-block:: http

 PUT /api/users/e0c058d06864441fb4f1c40dee5dd4fd/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “email”: “example@example.com”,
 “organization”: “Bells organization”,
 }

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstack-floating-ips/{uuid}/pull/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

201 -

POST /api/openstack-service-project-link/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstack-service-project-link/

In order to be able to provision OpenStack resources, it must first be linked to a project. To do that,
	Description:
In order to be able to provision OpenStack resources, it must first be linked to a project. To do that,
POST a connection between project and a service to */api/openstack-service-project-link/*
as stuff user or customer owner.

Example of a request:

.. code-block:: http

 POST /api/openstack-service-project-link/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “project”: “http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/”,
 “service”: “http://example.com/api/openstack/b0e8a4cbd47c4f9ca01642b7ec033db4/”
 }

To remove a link, issue DELETE to URL of the corresponding connection as stuff user or customer owner.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	project
	query
	
	string

	service
	query
	
	string

	service_uuid
	query
	
	string

	customer_uuid
	query
	
	string

	project_uuid
	query
	
	string

Responses

200 -

PUT /api/hooks-web/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/hooks-web/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/hooks-web/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/hooks-web/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/openstacktenant/{uuid}/managed_resources/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstack-packages/extend/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

POST /api/openstacktenant-service-project-link/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-service-project-link/

To get a list of connections between a project and an service, run **GET** against service_project_link_url
	Description:
To get a list of connections between a project and an service, run **GET** against service_project_link_url
as authenticated user. Note that a user can only see connections of a project where a user has a role.

If service has `available_for_all` flag, project-service connections are created automatically.
Otherwise, in order to be able to provision resources, service must first be linked to a project.
To do that, **POST** a connection between project and a service to service_project_link_url
as stuff user or customer owner.

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	project
	query
	
	string

	service
	query
	
	string

	service_uuid
	query
	
	string

	customer_uuid
	query
	
	string

	project_uuid
	query
	
	string

Responses

200 -

GET /api/services/

Filter services by type
	Description:
Filter services by type
^^^^^^^^^^^^^^^^^^^^^^^

It is possible to filter services by their types. Example:

 /api/services/?service_type=DigitalOcean&service_type=OpenStack

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

POST /api/openstack-security-groups/{uuid}/set_rules/

WARNING! Auto-generated HTML form is wrong for this endpoint. List should be defined as input.
	Description:
WARNING! Auto-generated HTML form is wrong for this endpoint. List should be defined as input.

Example:
[
 {
 “protocol”: “tcp”,
 “from_port”: 1,
 “to_port”: 10,
 “cidr”: “10.1.1.0/24”
 }
]

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstacktenant-instances/{uuid}/start/

OpenStack instance permissions
	Description:
OpenStack instance permissions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service.
- Customer owners can list all VM instances in all the services that belong to any of the customers they own.
- Project administrators can list all VM instances, create new instances and start/stop/restart instances in all the
services that are connected to any of the projects they are administrators in.
- Project managers can list all VM instances in all the services that are connected to any of the projects they are
managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstacktenant-volumes/{uuid}/detach/

Detach instance from volume
	Description:
Detach instance from volume

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstack-tenants/{uuid}/pull_security_groups/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstack-networks/{uuid}/create_subnet/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/service-settings/{uuid}/

To update service settings, issue a **PUT** or **PATCH** to */api/service-settings/<uuid>/* as a customer owner.
	Description:
To update service settings, issue a **PUT** or **PATCH** to */api/service-settings/<uuid>/* as a customer owner.
You are allowed to change name and credentials only.

Example of a request:

.. code-block:: http

 PATCH /api/service-settings/9079705c17d64e6aa0af2e619b0e0702/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “username”: “admin”,
 “password”: “new_secret”
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

PATCH /api/service-settings/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/service-settings/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstack/{uuid}/link/

To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
	Description:
To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
as an authenticated user.
Optionally project_uuid parameter can be supplied for services requiring it like OpenStack.

To import (link with NodeConductor) resource issue **POST** against the same endpoint with resource id.

.. code-block:: http

 POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “backend_id”: “bd5ec24d-9164-440b-a9f2-1b3c807c5df3”,
 “project”: “http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/”
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/openstack/{uuid}/link/

To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
	Description:
To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
as an authenticated user.
Optionally project_uuid parameter can be supplied for services requiring it like OpenStack.

To import (link with NodeConductor) resource issue **POST** against the same endpoint with resource id.

.. code-block:: http

 POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “backend_id”: “bd5ec24d-9164-440b-a9f2-1b3c807c5df3”,
 “project”: “http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/”
 }

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

PUT /api/openstack-ip-mappings/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack-ip-mappings/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-ip-mappings/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack-ip-mappings/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstack-tenants/{uuid}/set_quotas/

A quota can be set for a particular tenant. Only staff users can do that.
	Description:
A quota can be set for a particular tenant. Only staff users can do that.
In order to set quota submit **POST** request to */api/openstack-tenants/<uuid>/set_quotas/*.
The quota values are propagated to the backend.

The following quotas are supported. All values are expected to be integers:

- instances - maximal number of created instances.
- ram - maximal size of ram for allocation. In MiB_.
- storage - maximal size of storage for allocation. In MiB_.
- vcpu - maximal number of virtual cores for allocation.
- security_group_count - maximal number of created security groups.
- security_group_rule_count - maximal number of created security groups rules.
- volumes - maximal number of created volumes.
- snapshots - maximal number of created snapshots.

It is possible to update quotas by one or by submitting all the fields in one request.
NodeConductor will attempt to update the provided quotas. Please note, that if provided quotas are
conflicting with the backend (e.g. requested number of instances is below of the already existing ones),
some quotas might not be applied.

.. _MiB: http://en.wikipedia.org/wiki/Mebibyte
.. _settings: http://nodeconductor.readthedocs.org/en/stable/guide/intro.html#id1

Example of a valid request (token is user specific):

.. code-block:: http

 POST /api/openstack-tenants/c84d653b9ec92c6cbac41c706593e66f567a7fa4/set_quotas/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Host: example.com

 {
 “instances”: 30,
 “ram”: 100000,
 “storage”: 1000000,
 “vcpu”: 30,
 “security_group_count”: 100,
 “security_group_rule_count”: 100,
 “volumes”: 10,
 “snapshots”: 20
 }

Response code of a successful request is **202 ACCEPTED**. In case tenant is in a non-stable status, the response
would be **409 CONFLICT**. In this case REST client is advised to repeat the request after some time.
On successful completion the task will synchronize quotas with the backend.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstack/{uuid}/unlink/

Unlink all related resources, service project link and service itself.
	Description:
Unlink all related resources, service project link and service itself.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/customers/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/customers/{uuid}/

Deletion of a customer is done through sending a **DELETE** request to the customer instance URI. Please note,
	Description:
Deletion of a customer is done through sending a **DELETE** request to the customer instance URI. Please note,
that if a customer has connected projects, deletion request will fail with 409 response code.

Valid request example (token is user specific):

.. code-block:: http

 DELETE /api/customers/6c9b01c251c24174a6691a1f894fae31/ HTTP/1.1
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/customers/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/customers/{uuid}/

Optional `field` query parameter (can be list) allows to limit what fields are returned.
	Description:
Optional `field` query parameter (can be list) allows to limit what fields are returned.
For example, given request /api/customers/<uuid>/?field=uuid&field=name you get response like this:

.. code-block:: javascript

 {
 “uuid”: “90bcfe38b0124c9bbdadd617b5d739f5”,
 “name”: “Ministry of Bells”
 }

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/customers/

A new customer can only be created by users with staff privilege (is_staff=True).
	Description:
A new customer can only be created by users with staff privilege (is_staff=True).
Example of a valid request:

.. code-block:: http

 POST /api/customers/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “Customer A”,
 “native_name”: “Customer A”,
 “abbreviation”: “CA”,
 “contact_details”: “Luhamaa 28, 10128 Tallinn”,
 }

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/customers/

To get a list of customers, run GET against */api/customers/* as authenticated user. Note that a user can
	Description:
To get a list of customers, run GET against */api/customers/* as authenticated user. Note that a user can
only see connected customers:

- customers that the user owns
- customers that have a project where user has a role

Staff also can filter customers by user UUID, for example /api/customers/?user_uuid=<UUID>

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	abbreviation
	query
	
	string

	contact_details
	query
	
	string

	native_name
	query
	
	string

	registration_code
	query
	
	string

	o
	query
	
	string

Responses

200 -

POST /api/openstacktenant-snapshots/{uuid}/pull/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

PUT /api/customers/{uuid}/image/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/customers/{uuid}/image/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/customers/{uuid}/image/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/customers/{uuid}/image/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	page
	query
	
	string

	page_size
	query
	
	string

Responses

200 -

GET /api/events/count/

To get a count of events - run **GET** against */api/events/count/* as authenticated user.
	Description:
To get a count of events - run **GET** against */api/events/count/* as authenticated user.
Endpoint support same filters as events list.

Response example:

.. code-block:: javascript

 {“count”: 12321}

Parameters

	Name
	Position
	Description
	Type

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/snapshot/

Create snapshot from volume
	Description:
Create snapshot from volume

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstack-security-groups/{uuid}/pull/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

POST /api/openstack-subnets/{uuid}/pull/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant-images/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	settings_uuid
	query
	
	string

	settings
	query
	
	string

Responses

200 -

PUT /api/openstacktenant-volumes/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstacktenant-volumes/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstacktenant-volumes/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstacktenant-volumes/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/openstacktenant/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/openstacktenant/

To list all services without regard to its type, run **GET** against */api/services/* as an authenticated user.
	Description:
To list all services without regard to its type, run **GET** against */api/services/* as an authenticated user.

To list services of specific type issue **GET** to specific endpoint from a list above as a customer owner.
Individual endpoint used for every service type.

To create a service, issue a **POST** to specific endpoint from a list above as a customer owner.
Individual endpoint used for every service type.

You can create service based on shared service settings. Example:

.. code-block:: http

 POST /api/digitalocean/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “Common DigitalOcean”,
 “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
 “settings”: “http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/”
 }

Or provide your own credentials. Example:

.. code-block:: http

 POST /api/oracle/ HTTP/1.1
 Content-Type: application/json
 Accept: application/json
 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4
 Host: example.com

 {
 “name”: “My Oracle”,
 “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
 “backend_url”: “https://oracle.example.com:7802/em”,
 “username”: “admin”,
 “password”: “secret”
 }

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	project_uuid
	query
	
	string

	customer
	query
	
	string

	project
	query
	
	string

	settings
	query
	
	string

	shared
	query
	
	string

	type
	query
	
	string

	tag
	query
	
	string

	rtag
	query
	
	string

Responses

200 -

GET /api/openstack/{uuid}/managed_resources/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/openstack-images/

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	name
	query
	
	string

	settings_uuid
	query
	
	string

	settings
	query
	
	string

Responses

200 -

PUT /api/openstack-security-groups/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack-security-groups/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-security-groups/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack-security-groups/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

GET /api/openstacktenant-images/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

POST /api/customer-permissions/

- Customers are connected to users through roles, whereas user may have role “customer owner”.
	Description:
- Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers.
- Staff members can list all available customers and create new customers.
- Customer owners can list all customers they own. Customer owners can also create new customers.
- Project administrators can list all the customers that own any of the projects they are administrators in.
- Project managers can list all the customers that own any of the projects they are managers in.

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	data
	body
	
	

Responses

201 -

GET /api/customer-permissions/

Each customer is associated with a group of users that represent customer owners. The link is maintained
	Description:
Each customer is associated with a group of users that represent customer owners. The link is maintained
through **api/customer-permissions/** endpoint.

To list all visible links, run a **GET** query against a list.
Response will contain a list of customer owners and their brief data.

To add a new user to the customer, **POST** a new relationship to **customer-permissions** endpoint:

.. code-block:: http

 POST /api/customer-permissions/ HTTP/1.1
 Accept: application/json
 Authorization: Token 95a688962bf68678fd4c8cec4d138ddd9493c93b
 Host: example.com

 {
 “customer”: “http://example.com/api/customers/6c9b01c251c24174a6691a1f894fae31/”,
 “role”: “owner”,
 “user”: “http://example.com/api/users/82cec6c8e0484e0ab1429412fe4194b7/”
 }

Parameters

	Name
	Position
	Description
	Type

	page
	query
	
	string

	page_size
	query
	
	string

	role
	query
	
	string

	user
	query
	
	string

	user_url
	query
	
	string

	username
	query
	
	string

	full_name
	query
	
	string

	native_name
	query
	
	string

	o
	query
	
	string

	customer
	query
	
	string

	customer_url
	query
	
	string

Responses

200 -

PUT /api/openstack-tenants/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

DELETE /api/openstack-tenants/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

204 -

PATCH /api/openstack-tenants/{uuid}/

	Consumes:
[u’application/json’]

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

	data
	body
	
	

Responses

200 -

GET /api/openstack-tenants/{uuid}/

Parameters

	Name
	Position
	Description
	Type

	uuid
	path
	
	string

Responses

200 -

Registry Interface

Registry Interface Components

	Instructions for Registry Interface Deployment and Development
	RI

	RI Infrastructure

Instructions for Registry Interface Deployment and Development

The Registry Interface is a key component of the SUNFISH architecture. It has two purposes. On one hand, it interacts with the fabric blockchain. On the other hand, it provides web interfaces for other SUNFISH components to enable the interactions between those components and the blockchain.

It has two components RI and RI Infrastructure which are presented below.

RI

RI is responsible for handling requests from other SUNFISH components in all tenants, except in an infrastructure tenant. Next, two instruction sets are presented. One describes how to deploy deploy this component. The other presents the development paradigm to aid other developers working in future.

Deployment Guide

RI can be deployed by following the steps presented below. It has been integrated with the fabric blockchain by utilising the docker container provided by the fabric project. However, thanks to its modular architecture, other blockchain can be easily integrated in future. Follow the Development Guide below to understand how it can be done.

	Prepare the hosting machine by following the instructions at: http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

	Setup your GOPATH environment variable as required.

	Clone the Registry repository using the following command:

git clone https://github.com/sunfish-prj/Registry.git

	cd into Registry/chaincode directory.

	Copy the “github.com” directory from the Registry/chaincode directory to $GOPATH/src/

	Clone the Registry Interface repository using the following command:

git clone https://github.com/sunfish-prj/Registry-Interface.git

	cd into Registry-Interface/RI directory.

	Issue the following command to make shell scripts executable:

chmod a+x channel_test.sh deployAll.sh stop.sh

	Issue the following command to install the required node packages:

npm install

	Update the goPath config field in Registry-Interface/RI/config.json with the go path directory of the host (as printed by the :bash:`echo $GOPATH` command)

	Update the dockerIP config field in Registry-Interface/RI/config.ini with the IP address of the docker interface (for ubuntu, use the ifconfig command to get the IP address of the docker interface for the host machine)

	Within the Registry-Interface/RI directory, issue the following command in a terminal. This creates the fabric blockchain and initiates and deploys the required entities for the particular blockchain.

docker-compose -f dockerCompose.yml up -d

	In another terminal, use the command docker exec -it cli bash to connect to the cli container and then issue: more results.txt. Repeat more results.txt until the following outputs are printed. This ensures that all peers have joined the created channel.

SUCCESSFUL CHANNEL CREATION
SUCCESSFUL JOIN CHANNEL on PEER0
SUCCESSFUL JOIN CHANNEL on PEER1
SUCCESSFUL JOIN CHANNEL on PEER2

	In different terminals, the following commands can be used to trace the logs of the orderer and peer0 (or peer1/peer2 by changing the respective value) respectively :

docker logs -f orderer

docker logs -f peer0

	In another terminal, within the Registry-Interface/RI directory, the following command needs to be issued to deploy the required smart contracts (chaincode):

./deployAll.sh

	Wait until the following output is printed. This confirms that the smart contract has been successfully deployed in the fabric blockchain. This output will be repeated all each chaincode.

The chaincode transaction has been successfully committed

	In the same terminal (or in a different terminal), within the Registry-Interface/RI directory, the following command needs to be issued. This starts the node server for the registry interface, listening at port 8075.

node ri.js

	Wait until the server started output is printed in the terminal. This indicates that the node server for RI has been successfully started.

	Test the interface by registering, retrieving, updating and deleting some dummy data, use the test cases from the from the testCases file. For these test cases, docker_IP needs to be updated accordingly. The in/index field needs to be updated accordingly for reading from the interface.

	To get the output of the smart-contract, the following command can be issued after a single data has been registered/stored. Here, ”...” represents the corresponding container name.

docker logs -f peer0-peer0...

	Once finished, issue the following command to stop and remove the fabric containers:

./stop.sh

	Repeat the steps from step 10 to deploy the smart contracts and utilise the ri.

	To enable the interactions between the RI and FRM/FAM, a separate instance of RI for any infrastructure tenant is required. This needs to be deployed following the instructions provided below.

Development Guide

Ri has been developed using node.js. The flow control in the registry interface is as follows:

SUNFISH Component ====> ri.js --> *API.js --> hyperledger/hyperledger*.js ====> fabric ====> SUNFISH Component

The ri.js is the entry point of the registry interface. There are different hyperledger*.js files inside the hyperledger; each of which is responsible for interacting with a particular smart-contract.
There are also different API.js files which are responsible for forwarding each request to the appropriate hyperledger.js file. Currently, these *API.js files are configured to
hyperledger. However, if needed, this configuration can be changed in the config.ini file and also by developing required *.js files which interact with the other blockchain.

A SUNFISH component submits a request following the SUNFISH RI specification. Based on the request path, the request is forwarded
internally to the appropriate API.js file. Then this file forwards the request to the corresponding hyperledger.js file where the request is handled.

RI Infrastructure

RI Infrastructure is responsible for handling requests from other SUNFISH components in an infrastructure tenant. Next, two instruction sets are presented. One describes how to deploy deploy this component. The other presents the development paradigm to aid other developers working in future.

Deployment Guide

	If not already cloned, clone the Registry Interface project using the following command:

git clone https://github.com/sunfish-prj/Registry-Interface.git

	cd into Registry-Interface/INF_RI directory.

	Configure the IP address of the hosting machine by changing the frmIP parameter in the config.ini file.

	In a terminal, within the Registry-Interface/INF_RI directory, the following command needs to be issued. This starts the node server for the registry interface for the infrastructure tenant, listening at port 8076.

node infRI.js

	Wait until the server started output is printed in the terminal. This indicates that the node server for Infrastructure RI has been successfully started.

Development Guide

This follows the same pattern described in the previous section.

Registry

This is a page for the Registry Architecture.

Chaincode

	Instructions for deploying chaincode
	Deployment Guide

Instructions for deploying chaincode

The current iteration of SUNFISH Registry leverages the hyperledger fabric blockchain and the chaincode represents the smart-contract which are executed on the fabric blockchain.

Currently, the chaincode has been written in Go lang and is hosted at: https://github.com/sunfish-prj/Registry

Within the chaincode/github.com directory of the repository, there are several directories. In each directory, there is a chaincode for a particular functionality of the RI. For example, the chaincode/github.com/alert directory contains a chainconde called alert.go which is used by corresponding RI endpoint to store and retrive an alert in the blockchain and so on. These directories also contain a file called Dockerfile which is used to deploy any particular chaincode in the corresponding container.

Deployment Guide

Follow steps are required to deploy any chaincode.

	Prepare the hosting machine by following the instructions at: http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

	Setup your GOPATH environment variable as required.

	Clone the Registry repository using the following command:

git clone https://github.com/sunfish-prj/Registry.git

	cd into Registry/chaincode directory.

	Copy the github.com directory from the Registry/chaincode directory to $GOPATH/src/

	Once copied, no other additional step is required. The copied chaincode will be automatically deployed in the container by the deployment script of the RI.

FRM

This is a page for the FRM.

FRM

	Instructions for deploying FRM
	Proxy

	Chaincode

Instructions for deploying FRM

FRM (Federated Runtime Monitoring) consists of two directories having two components: i) Proxy and ii) Chaincode component. The development and deployment models for each of these components are discussed below.

Proxy

The proxy component represents the proxies that need to be attached to the DS components to enable the interception of access requests and responses.

Development model

The proxy component has been developed as a servlet filter in order to be compatible with the DS servlets. It consists of two Java source files, named ProxyFilter.java and CachedServletRequest.java under the sunfish.frm.proxy package.

The supplied pom.xml file contains the maven depency code snippet for the required libraries.

The supplied web.xml file, located under the src/main/webapp/WEB-INF directory, contains the servlet mapping for the servlet filter.

A config.json file, located under the src/main/webapp/WEB-INF directory, contains configuration directives.

There are several additional libraries supplied in the src/main/webapp/WEB-INF/lib directory. which need to be properly added into the java path during the deployment.

Deployment guide

The following steps are required to deploy and/or integrate the proxy with each DS component.

	
	Setup the configuration directives:

	1.1 hostingID: denotes the DS component with which the proxy is being integrated. Currently, it takes the value of either PDP or PEP. Other values can be attached, however, the ProxyFilter.java source needs to be updated accordingly.
1.2 loggerID: the identifier of the hosting entity.

	Add the dependency code snippet from the pom.xml file of the proxy to the pom.xml file of the corresponding DS component.

	Add the code servlet mapping code snippet from the web.xml of the proxy to the web.xml file of the corresponding DS component.

	Add the additional libraries from the src/main/webapp/WEB-INF/lib directory to the java path during the deployment.

TODO: For the integration, it will also require to update the doFilter method of ProxyFilter.java file so that it can capture the supplied parameters according to the APIs of the DS component and pass it to the corresponding API of the RI.

Chaincode

The chaincode components exposes the endpoints for the PVE (Policy Violation Engine) and the agent. The PVE is an integrated component of the FRM used to analyse the access logs. The agent endpoint is used by the FSA to forward alerts to the RI.

Development model

The current iteration of the chaincode component of FRM leverages the hyperledger fabric blockchain and the chaincode represents the smart-contract which are executed on the fabric blockchain.

This component has been developed using node.js. The flow control in the registry interface is as follows:

SUNFISH Component ====> frm.js --> *API.js --> hyperledger/hyperledger*.js ====> fabric ====> SUNFISH Component

The frm.js is the entry point of the chaincode component. There are different hyperledger*.js files inside the hyperledger directory; each of which is responsible for interacting with a particular smart-contract. There are also different API.js files which are responsible for forwarding each request to the appropriate hyperledger.js file. Currently, these *API.js files are configured to
hyperledger. However, if needed, this configuration can be changed in the config.ini file and also by developing required *.js files which interact with the other blockchain.

A SUNFISH component submits a request following the SUNFISH RI specification. Based on the request path, the request is forwarded internally to the appropriate API.js file. Then this file forwards the request to the corresponding hyperledger.js file where the request is handled.

Deployment guide

Follow steps are required to deploy any chaincode.

	Prepare the hosting machine by following the instructions at: http://hyperledger-fabric.readthedocs.io/en/latest/prereqs.html

	Setup your GOPATH environment variable as required.

	Clone the Registry repository using the following command:

https://github.com/sunfish-prj/Federation-Monitoring.git

	cd into Federation-Monitoring/chainComponent directory.

	Configure the IP address of the docker container and the id of the PVE in the config.ini file.

	In a terminal, within the Federation-Monitoring/chainComponent directory, the following command needs to be issued. This starts the node server for the FRM, listening at port 8077.

node frm.js

	Wait until the server started output is printed in the terminal. This indicates that the node server for Infrastructure RI has been successfully started.

IWM

This is a page for Intelligent Workload Manager (IWM).

IWM

	Overview of Intelligent Workload Manager

	Screenshots

	Instructions for deploying IWM

Overview of Intelligent Workload Manager

SUNFISH Federation provides automated services for joining and leaving the federation, as well as
an interface to the available Federation services for a Service Consumer with ability to request
optimized service list of services matching Consumer requirements better. A common aspect of all
use cases is requirement to be able to retrieve information about the Federation resources and
optionally schedule execution of a workload on a particular service provider. Within SUNFISH, a
component responsible for delivering such functionality is called Intelligent Workload Manager
(IWM).

Optimization model applicable to the scenario of Service provisioning by Service Consumer is
offering an improvement over local scheduling while imposing as little as possible of additional
overhead on the definition of the workload requirements. Improvement means achieving a better
outcome regarding user-defined parameters (e.g. cost) while preserving the strict
requirements for the job payload. The goal of the model is to offer an added value over local scope
of resources by finding and managing a globally optimal target for the Service Consumer’s planned
workload.

Optimisation model is a logical component exposed to the user in form of an optional ordering and
filtering capability used during provider lookup request.

IWM is based on open-source Waldur cloud brokerage platform. The latter is extended to include more
fine-grained optimisation capability. The functionality developed within SUNFISH has been integrated
with the upstream.

Screenshots

Screenshots below are taken from a demo deployment of IWM in a federation.

[image: ../_images/iwm-login.png]
Login view of IWM frontend, white-labelled to a concrete federation.

[image: ../_images/iwm-providers.png]
Adding federation service providers to IWM.

[image: ../_images/iwm-tenants.png]
Listing registered SUNFISH tenants within an IWM.

[image: ../_images/iwm-plan-1.png]
Visual interface to optimisation API for finding the best option for a planned infrastructure.

[image: ../_images/iwm-plan-2.png]
Results of the optimisation with 2 service providers in the federation.

Instructions for deploying IWM

IWM functionality has been integrated into Waldur. As such, deployment of IWM is done in the same
fashion as upstream. Installation script is below. Deployment requirements are:

	CentOS 7 or other RHEL7-compliant operating system

	At least 8GB of RAM, preferably 2 cores or more.

yum clean all
yum -y update

Configure repositories
yum -y install epel-release
yum -y install https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-7-x86_64/pgdg-centos95-9.5-2.noarch.rpm
yum -y install https://opennodecloud.com/centos/7/elastic-release.rpm
yum -y install https://opennodecloud.com/centos/7/waldur-release.rpm

Set up PostgreSQL
yum -y install postgresql95-server
/usr/pgsql-9.5/bin/postgresql95-setup initdb
systemctl start postgresql-9.5
systemctl enable postgresql-9.5

su - postgres -c "/usr/pgsql-9.5/bin/createdb -EUTF8 waldur"
su - postgres -c "/usr/pgsql-9.5/bin/createuser waldur"

Set up Redis
yum -y install redis
systemctl start redis
systemctl enable redis

Set up Elasticsearch
yum -y install elasticsearch java

systemctl start elasticsearch
systemctl enable elasticsearch

Set up Logstash
yum -y install logstash

cat > /etc/logstash/conf.d/waldur-events.json <<EOF
input {
 tcp {
 codec => json
 port => 5959
 type => "waldur-event"
 }
}

filter {
 if [type] == "waldur-event" {
 json {
 source => "message"
 }

 mutate {
 remove_field => ["class", "file", "logger_name", "method", "path", "priority", "thread"]
 }

 grok {
 match => { "host" => "%{IPORHOST:host}:%{POSINT}" }
 overwrite => ["host"]
 }
 }
}

output {
 elasticsearch { }
}
EOF

systemctl start logstash
systemctl enable logstash

Set up Waldur Core
yum -y install waldur-core

su - waldur -c "waldur migrate --noinput"

systemctl start waldur-uwsgi
systemctl enable waldur-uwsgi

systemctl start waldur-celery
systemctl enable waldur-celery

systemctl start waldur-celerybeat
systemctl enable waldur-celerybeat

su - waldur -c "waldur createstaffuser -u admin -p admin"

Set up Waldur MasterMind
yum -y install centos-release-openstack-pike
yum -y install waldur-mastermind

su - waldur -c "waldur migrate --noinput"

systemctl restart waldur-uwsgi
systemctl restart waldur-celery
systemctl restart waldur-celerybeat

Set up Waldur HomePort
yum -y install waldur-homeport

Set up Nginx
yum -y install nginx

systemctl start nginx
systemctl enable nginx

Registry Interface

The Registry Interface (RI) is the logical component that manages the storing and retrieval operations directed to the blockchain based registry.

The RI offers a set of APIs that the different components, if authorised, can invoke to store or retrieve data from the blockchain-empowered registry. The specifications of the APIs can be found at: https://github.com/sunfish-prj/SUNFISH-Platform-API

RI, thus, is a central component of the SUNFISH insfrastructure. Other respectice SUNFISH components need to leverage the RI to store and update corresponding data by invoking the defined endpoints of the APIs.

Registry

Registy provides a blockchain-empowered storage and programming platform that is used to store and update relevant data to/from the blockchain via the Registry Interface (RI). It consists of several chaincode (smart-contract) which are programs executed within the blockchain platform. It consists of several chaincode with each one used for a specific purpose.

Index

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to SUNFISH Platform

 		Federation-as-a-Service

 		Operational Phases

 		SUNFISH Platform in a nutshell

 		Setting-up a SUNFISH Cloud Federation

 		Data Security Enforcement Infrastructure

 		Setting-Up a Service Tenant

 		Setting-Up an Infrastructure Tenant

 		SUNFISH Use Case Demonstrator

 		API

 		SUNFISH Policy Administration Point (PAP) API

 		/v1/policies

 		/v1/policies/{id}/{version}

 		SUNFISH Policy Decision Point (PDP) API

 		/v1

 		/v1/verifyServicePolicy

 		/v1/verifyServicePolicySet

 		/v1/authorization

 		Models

 		SUNFISH Policy Enforcement Point (PEP) API

 		/v1/request

 		/v1/app-request

 		SUNFISH Policy Information Point (PIP) API

 		/v1/collect

 		/v1/request

 		SUNFISH Policy Retrieval Point (PRP) API

 		/v1/collect

 		/v1/policyset/{id}/{version}

 		/v1/policy/{id}

 		/v1/policyset/{id}

 		/v1/policy/{id}/{version}

 		SUNFISH Intelligent Workload Manager (IWM) API

 		Registry Interface

 		Instructions for Registry Interface Deployment and Development

 		RI

 		RI Infrastructure

 		Registry

 		Instructions for deploying chaincode

 		Deployment Guide

 		FRM

 		Instructions for deploying FRM

 		Proxy

 		Chaincode

 		IWM

 		Overview of Intelligent Workload Manager

 		Screenshots

 		Instructions for deploying IWM

 		Registry Interface

 		Registry

_static/down-pressed.png

_images/iwm-plan-2.png
Deployment plan

Configure &% Evaluate
Provider Price per day © Price per month @ Actions
—
MEF Cloud €1.34 €40.20 f
—— @ Explain plan

Small / Small (10 vCPU, 20 GB RAM, 300 GB storage)

== MITA Cloud €4.87 €146.16 @ Explain plan
Component Flavor Quantity Price
o
Database / Small MySQL 5.7 (4 vCPU, 8 GB RAM, 120 A3: Large Instance 1 €4.87
GB storage)

Save Cancel

_images/iwm-tenants.png
a2 SUNFISH IWM & Ministry of Economy and Finance (ltaly) v © Support EN ® Logout

Projects
Q Organization workspace Projects
IWM Admin
Show 10 4 entries Search & Exportasv 4 Add project & Refresh

Showing 1 to 2 of 2 entries

Dashboard Name Description Creation date VMs Storage Privateclouds Allocations Estimated cost Actions
PrOVIGErS Tenant A 2017-10-26 17:20 0 0 0 0 €0.00 @ Details @ Remove
Projects Tenant B 2017-10-26 17:20 0 0 0 0 €0.00 @ Details @ Remove
Service store 1
Analytics
Audit logs
Version: 2.7.8 Privacy policy | Terms of Service

Issues

_images/FaaS_Phases_1.0.png
Cloud Admin

Phase 1

Phase 3

Phase 2

Cloud User

Phase 4

Phase §

_images/iwm-login.png
‘
L)
v
*

SUN ISH

Your single pane of control for aII cloud services.
Login in to see it in action.

"
[]
)
‘

Username

Password

English v

_images/iwm-providers.png
aa SUNFISH IWM

3

IWM Admin

Dashboard
Providers
Projects
Service store
Analytics

Audit logs

Create provider

Organization workspace / Create provider

Provider type

Provider name

API URL *

Username *

Password *

Domain

Select provider type...

Virtual machines

Tenant user username

Tenant domain

_images/iwm-plan-1.png
Deployment plan

Configure

Name
New plan
Required certifications

Select certifications

Components Quantity Actions

Database / Small MySQL 5.7 (4 vCPU, 8 GB RAM, 120 GB storage, 120 GB storage) o

+ Add item

Total planned resource consumption: 4 vCPU, 8 GB RAM, 120 GB storage

