
Jupyter Qt Console Documentation
Release 4.3.0

Jupyter Development Team

March 25, 2017

Contents

1 Installation 3
1.1 Install using conda . 3
1.2 Install using pip . 3
1.3 Installing Qt (if needed) . 4

2 Configuration options 5
2.1 Options . 5

3 Changes in Jupyter Qt console 11
3.1 4.3 . 11
3.2 4.2 . 12
3.3 4.1 . 12
3.4 4.1.1 . 12
3.5 4.0 . 13

4 Overview 15

5 Inline graphics 17

6 Saving and Printing 19

7 Colors and Highlighting 21

8 Fonts 23

9 Process Management 25
9.1 Multiple Consoles . 25
9.2 Security . 26
9.3 SSH Tunnels . 26
9.4 Manual SSH tunnels . 27
9.5 Stopping Kernels and Consoles . 28

10 Qt and the REPL 29
10.1 Embedding the QtConsole in a Qt application . 30

11 Regressions 31

i

ii

Jupyter Qt Console Documentation, Release 4.3.0

Release 4.3.0

Date March 25, 2017

To start the Qt console:

$ jupyter qtconsole

Contents 1

Jupyter Qt Console Documentation, Release 4.3.0

2 Contents

CHAPTER 1

Installation

The Qt console requires Qt, such as PyQt5, PyQt4, or PySide.

Although pip and conda may be used to install the Qt console, conda is simpler to use since it automatically installs
PyQt. Alternatively, qtconsole installation with pip needs additional steps since pip cannot install the Qt requirement.

Install using conda

To install:

conda install qtconsole

Note: If the Qt console is installed using conda, it will automatically install the Qt requirement as well.

Install using pip

To install:

pip install qtconsole

Important: Make sure that Qt is installed. Unfortunately, Qt cannot be installed using pip. The next section gives
instructions on installing Qt.

3

https://www.riverbankcomputing.com/software/pyqt/intro
https://www.riverbankcomputing.com/software/pyqt/download
http://pyside.github.io/docs/pyside
https://pypi.python.org/pypi/pip
http://conda.pydata.org/docs

Jupyter Qt Console Documentation, Release 4.3.0

Installing Qt (if needed)

We recommend installing PyQt with conda:

conda install pyqt

or with a system package manager. For Windows, PyQt binary packages may be used.

For example with Linux Debian’s system package manager, use:

sudo apt-get install python3-pyqt5 # PyQt5 on Python 3
sudo apt-get install python3-pyqt4 # PyQt4 on Python 3
sudo apt-get install python-qt4 # PyQt4 on Python 2

See also:

Installing Jupyter The Qt console is part of the Jupyter ecosystem.

4 Chapter 1. Installation

http://conda.pydata.org/docs
https://jupyter.readthedocs.io/en/latest/install.html

CHAPTER 2

Configuration options

These options can be set in the configuration file, ~/.jupyter/jupyter_qtconsole_config.py, or at the
command line when you start Qt console.

You may enter jupyter qtconsole --help-all to get information about all available configuration options.

Options

ConnectionFileMixin.connection_file [Unicode] Default: ''

JSON file in which to store connection info [default: kernel-<pid>.json]

This file will contain the IP, ports, and authentication key needed to connect clients to this kernel. By default,
this file will be created in the security dir of the current profile, but can be specified by absolute path.

ConnectionFileMixin.control_port [Int] Default: 0

set the control (ROUTER) port [default: random]

ConnectionFileMixin.hb_port [Int] Default: 0

set the heartbeat port [default: random]

ConnectionFileMixin.iopub_port [Int] Default: 0

set the iopub (PUB) port [default: random]

ConnectionFileMixin.ip [Unicode] Default: ''

Set the kernel’s IP address [default localhost]. If the IP address is something other than localhost, then Consoles
on other machines will be able to connect to the Kernel, so be careful!

ConnectionFileMixin.shell_port [Int] Default: 0

set the shell (ROUTER) port [default: random]

ConnectionFileMixin.stdin_port [Int] Default: 0

set the stdin (ROUTER) port [default: random]

5

Jupyter Qt Console Documentation, Release 4.3.0

ConnectionFileMixin.transport [‘tcp’|’ipc’] Default: 'tcp'

No description

JupyterConsoleApp.confirm_exit [CBool] Default: True

Set to display confirmation dialog on exit. You can always use ‘exit’ or ‘quit’, to force a direct exit without any
confirmation.

JupyterConsoleApp.existing [CUnicode] Default: ''

Connect to an already running kernel

JupyterConsoleApp.kernel_name [Unicode] Default: 'python'

The name of the default kernel to start.

JupyterConsoleApp.sshkey [Unicode] Default: ''

Path to the ssh key to use for logging in to the ssh server.

JupyterConsoleApp.sshserver [Unicode] Default: ''

The SSH server to use to connect to the kernel.

Application.log_datefmt [Unicode] Default: '%Y-%m-%d %H:%M:%S'

The date format used by logging formatters for %(asctime)s

Application.log_format [Unicode] Default: '[%(name)s]%(highlevel)s %(message)s'

The Logging format template

Application.log_level [0|10|20|30|40|50|’DEBUG’|’INFO’|’WARN’|’ERROR’|’CRITICAL’] Default: 30

Set the log level by value or name.

JupyterApp.answer_yes [Bool] Default: False

Answer yes to any prompts.

JupyterApp.config_file [Unicode] Default: ''

Full path of a config file.

JupyterApp.config_file_name [Unicode] Default: ''

Specify a config file to load.

JupyterApp.generate_config [Bool] Default: False

Generate default config file.

JupyterQtConsoleApp.display_banner [CBool] Default: True

Whether to display a banner upon starting the QtConsole.

JupyterQtConsoleApp.hide_menubar [CBool] Default: False

Start the console window with the menu bar hidden.

JupyterQtConsoleApp.maximize [CBool] Default: False

Start the console window maximized.

JupyterQtConsoleApp.plain [CBool] Default: False

Use a plaintext widget instead of rich text (plain can’t print/save).

6 Chapter 2. Configuration options

Jupyter Qt Console Documentation, Release 4.3.0

JupyterQtConsoleApp.stylesheet [Unicode] Default: ''

path to a custom CSS stylesheet

ConsoleWidget.ansi_codes [Bool] Default: True

Whether to process ANSI escape codes.

ConsoleWidget.buffer_size [Int] Default: 500

The maximum number of lines of text before truncation. Specifying a non-positive number disables text trunca-
tion (not recommended).

ConsoleWidget.console_height [Int] Default: 25

The height of the console at start time in number of characters (will double with vsplit paging)

ConsoleWidget.console_width [Int] Default: 81

The width of the console at start time in number of characters (will double with hsplit paging)

ConsoleWidget.execute_on_complete_input [Bool] Default: True

Whether to automatically execute on syntactically complete input.

If False, Shift-Enter is required to submit each execution. Disabling this is mainly useful for non-Python kernels,
where the completion check would be wrong.

ConsoleWidget.font_family [Unicode] Default: ''

The font family to use for the console. On OSX this defaults to Monaco, on Windows the default is Consolas
with fallback of Courier, and on other platforms the default is Monospace.

ConsoleWidget.font_size [Int] Default: 0

The font size. If unconfigured, Qt will be entrusted with the size of the font.

ConsoleWidget.gui_completion [‘plain’|’droplist’|’ncurses’] Default: 'ncurses'

The type of completer to use. Valid values are:

‘plain’ [Show the available completion as a text list] Below the editing area.

‘droplist’: Show the completion in a drop down list navigable by the arrow keys, and from which you can
select completion by pressing Return.

‘ncurses’ [Show the completion as a text list which is navigable by] tab and arrow keys.

ConsoleWidget.include_other_output [Bool] Default: False

Whether to include output from clients other than this one sharing the same kernel.

Outputs are not displayed until enter is pressed.

ConsoleWidget.kind [‘plain’|’rich’] Default: 'plain'

The type of underlying text widget to use. Valid values are ‘plain’, which specifies a QPlainTextEdit, and ‘rich’,
which specifies a QTextEdit.

ConsoleWidget.paging [‘inside’|’hsplit’|’vsplit’|’custom’|’none’] Default: 'inside'

The type of paging to use. Valid values are:

‘inside’ The widget pages like a traditional terminal.

‘hsplit’ When paging is requested, the widget is split horizontally. The top pane contains the console, and the
bottom pane contains the paged text.

‘vsplit’ Similar to ‘hsplit’, except that a vertical splitter is used.

2.1. Options 7

Jupyter Qt Console Documentation, Release 4.3.0

‘custom’ No action is taken by the widget beyond emitting a ‘custom_page_requested(str)’ signal.

‘none’ The text is written directly to the console.

HistoryConsoleWidget.history_lock [Bool] Default: False

No description

FrontendWidget.banner [Unicode] Default: ''

No description

FrontendWidget.clear_on_kernel_restart [Bool] Default: True

Whether to clear the console when the kernel is restarted

FrontendWidget.confirm_restart [Bool] Default: True

Whether to ask for user confirmation when restarting kernel

FrontendWidget.enable_calltips [Bool] Default: True

Whether to draw information calltips on open-parentheses.

FrontendWidget.is_complete_timeout [Float] Default: 0.25

Seconds to wait for is_complete replies from the kernel.

FrontendWidget.lexer_class [DottedObjectName] Default: traitlets.Undefined

The pygments lexer class to use.

JupyterWidget.editor [Unicode] Default: ''

A command for invoking a system text editor. If the string contains a {filename} format specifier, it will be
used. Otherwise, the filename will be appended to the end the command.

JupyterWidget.editor_line [Unicode] Default: ''

The editor command to use when a specific line number is requested. The string should contain two format
specifiers: {line} and {filename}. If this parameter is not specified, the line number option to the %edit magic
will be ignored.

JupyterWidget.in_prompt [Unicode] Default: 'In [%i</
span>]: '

No description

JupyterWidget.input_sep [Unicode] Default: '\\n'

No description

JupyterWidget.out_prompt [Unicode] Default: 'Out[%i</
span>]: '

No description

JupyterWidget.output_sep [Unicode] Default: ''

No description

JupyterWidget.output_sep2 [Unicode] Default: ''

No description

JupyterWidget.style_sheet [Unicode] Default: ''

A CSS stylesheet. The stylesheet can contain classes for:

1. Qt: QPlainTextEdit, QFrame, QWidget, etc

8 Chapter 2. Configuration options

Jupyter Qt Console Documentation, Release 4.3.0

2. Pygments: .c, .k, .o, etc. (see PygmentsHighlighter)

3. QtConsole: .error, .in-prompt, .out-prompt, etc

JupyterWidget.syntax_style [Unicode] Default: ''

If not empty, use this Pygments style for syntax highlighting. Otherwise, the style sheet is queried for Pygments
style information.

KernelManager.autorestart [Bool] Default: True

Should we autorestart the kernel if it dies.

KernelManager.kernel_cmd [List] Default: []

DEPRECATED: Use kernel_name instead.

The Popen Command to launch the kernel. Override this if you have a custom kernel. If kernel_cmd is specified
in a configuration file, Jupyter does not pass any arguments to the kernel, because it cannot make any assump-
tions about the arguments that the kernel understands. In particular, this means that the kernel does not receive
the option –debug if it given on the Jupyter command line.

KernelManager.shutdown_wait_time [Float] Default: 5.0

Time to wait for a kernel to terminate before killing it, in seconds.

KernelRestarter.debug [Bool] Default: False

Whether to include every poll event in debugging output.

Has to be set explicitly, because there will be a lot of output.

KernelRestarter.restart_limit [Int] Default: 5

The number of consecutive autorestarts before the kernel is presumed dead.

KernelRestarter.time_to_dead [Float] Default: 3.0

Kernel heartbeat interval in seconds.

Session.buffer_threshold [Int] Default: 1024

Threshold (in bytes) beyond which an object’s buffer should be extracted to avoid pickling.

Session.check_pid [Bool] Default: True

Whether to check PID to protect against calls after fork.

This check can be disabled if fork-safety is handled elsewhere.

Session.copy_threshold [Int] Default: 65536

Threshold (in bytes) beyond which a buffer should be sent without copying.

Session.debug [Bool] Default: False

Debug output in the Session

Session.digest_history_size [Int] Default: 65536

The maximum number of digests to remember.

The digest history will be culled when it exceeds this value.

Session.item_threshold [Int] Default: 64

The maximum number of items for a container to be introspected for custom serialization. Containers larger
than this are pickled outright.

2.1. Options 9

Jupyter Qt Console Documentation, Release 4.3.0

Session.key [CBytes] Default: b''

execution key, for signing messages.

Session.keyfile [Unicode] Default: ''

path to file containing execution key.

Session.metadata [Dict] Default: {}

Metadata dictionary, which serves as the default top-level metadata dict for each message.

Session.packer [DottedObjectName] Default: 'json'

The name of the packer for serializing messages. Should be one of ‘json’, ‘pickle’, or an import name for a
custom callable serializer.

Session.session [CUnicode] Default: ''

The UUID identifying this session.

Session.signature_scheme [Unicode] Default: 'hmac-sha256'

The digest scheme used to construct the message signatures. Must have the form ‘hmac-HASH’.

Session.unpacker [DottedObjectName] Default: 'json'

The name of the unpacker for unserializing messages. Only used with custom functions for packer.

Session.username [Unicode] Default: 'username'

Username for the Session. Default is your system username.

10 Chapter 2. Configuration options

CHAPTER 3

Changes in Jupyter Qt console

4.3

4.3 on GitHub

• Rename ConsoleWidget.width/height traits to console_width/console_height to avoid a
name clash with the QWidget properties. Note: the name change could be, in rare cases if a name collision
exists, a code-breaking change.

Additions

• Add Shift-Tab shortcut to unindent text

• Add Control-R shortcut to rename the current tab

• Add Alt-R shortcut to set the main window title

• Add Command-Alt-Left and Command-Alt-Right shortcut to switch tabs on macOS

• Add support for PySide2

• Add support for Python 3.5

• Add support for 24 bit ANSI color codes

• Add option to create new tab connected to the existing kernel

Changes

• Change Tab key behavior to always indent to the next increment of 4 spaces

• Change Home key behavior to alternate cursor between the beginning of text (ignoring leading spaces) and
beginning of the line

• Improve documentation of various options and clarified the docs in some places

11

https://github.com/jupyter/qtconsole/milestones/4.3

Jupyter Qt Console Documentation, Release 4.3.0

• Move documentation to ReadTheDocs

Fixes

• Fix automatic indentation of new lines that are inserted in the middle of a cell

• Fix regression where prompt would never be shown for --existing consoles

• Fix python.exe -m qtconsole on Windows

• Fix showing error messages when running a script using %run

• Fix invalid cursor position error and subsequent freezing of user input

• Fix syntax coloring when attaching to non-IPython kernels

• Fix printing when using QT5

• Fix Control-K shortcut (delete until end of line) on macOS

• Fix history browsing (Up/Down keys) when lines are longer than the terminal width

• Fix saving HTML with inline PNG for Python 3

• Various internal bugfixes

4.2

4.2 on GitHub

• various latex display fixes

• improvements for embedding in Qt applications (use existing Qt API if one is already loaded)

4.1

4.1.1

4.1.1 on GitHub

• Set AppUserModelID for taskbar icon on Windows 7 and later

4.1.0

4.1 on GitHub

• fix regressions in copy/paste, completion

• fix issues with inprocess IPython kernel

• fix jupyter qtconsole --generate-config

12 Chapter 3. Changes in Jupyter Qt console

https://github.com/jupyter/qtconsole/milestones/4.2
https://github.com/jupyter/qtconsole/milestones/4.1.1
https://github.com/jupyter/qtconsole/milestones/4.1

Jupyter Qt Console Documentation, Release 4.3.0

4.0

4.0.1

• fix installation issues, including setuptools entrypoints for Windows

• Qt5 fixes

4.0.0

4.0 on GitHub

First release of the Qt console as a standalone package.

3.5. 4.0 13

https://github.com/jupyter/qtconsole/milestones/4.0

Jupyter Qt Console Documentation, Release 4.3.0

14 Chapter 3. Changes in Jupyter Qt console

CHAPTER 4

Overview

The Qt console is a very lightweight application that largely feels like a terminal, but provides a number of enhance-
ments only possible in a GUI, such as inline figures, proper multi-line editing with syntax highlighting, graphical
calltips, and much more. The Qt console can use any Jupyter kernel.

The Qt console frontend has hand-coded emacs-style bindings for text navigation. This is not yet configurable.

Tip: Since the Qt console tries hard to behave like a terminal, by default it immediately executes single lines of input
that are complete. If you want to force multi-line input, hit Ctrl-Enter at the end of the first line instead of Enter,
and it will open a new line for input. At any point in a multi-line block, you can force its execution (without having to
go to the bottom) with Shift-Enter.

15

Jupyter Qt Console Documentation, Release 4.3.0

Fig. 4.1: The Qt console with IPython, using inline matplotlib plots.

16 Chapter 4. Overview

CHAPTER 5

Inline graphics

One of the most exciting features of the Qt Console is embedded figures. You can plot with matplotlib in IPython, or
the plotting library of choice in your kernel.

17

Jupyter Qt Console Documentation, Release 4.3.0

18 Chapter 5. Inline graphics

CHAPTER 6

Saving and Printing

The Qt Console has the ability to save your current session, as either HTML or XHTML. Your inline figures will be
PNG in HTML, or inlined as SVG in XHTML. PNG images have the option to be either in an external folder, as in
many browsers’ “Webpage, Complete” option, or inlined as well, for a larger, but more portable file.

Note: Export to SVG+XHTML requires that you are using SVG figures, which is not the default. To switch the inline
figure format in IPython to use SVG, do:

In [10]: %config InlineBackend.figure_format = 'svg'

Or, you can add the same line (c.Inline... instead of %config Inline...) to your config files.

This will only affect figures plotted after making this call

The widget also exposes the ability to print directly, via the default print shortcut or context menu.

See these examples of png/html and svg/xhtml output. Note that syntax highlighting does not survive export.
This is a known issue, and is being investigated.

19

Jupyter Qt Console Documentation, Release 4.3.0

20 Chapter 6. Saving and Printing

CHAPTER 7

Colors and Highlighting

Terminal IPython has always had some coloring, but never syntax highlighting. There are a few simple color choices,
specified by the colors flag or %colors magic:

• LightBG for light backgrounds

• Linux for dark backgrounds

• NoColor for a simple colorless terminal

The Qt widget, however, has full syntax highlighting as you type, handled by the pygments library. The style
argument exposes access to any style by name that can be found by pygments, and there are several already installed.

Screenshot of jupyter qtconsole --style monokai, which uses the ‘monokai’ theme:

21

http://pygments.org/

Jupyter Qt Console Documentation, Release 4.3.0

Note: Calling jupyter qtconsole -h will show all the style names that pygments can find on your system.

You can also pass the filename of a custom CSS stylesheet, if you want to do your own coloring, via the stylesheet
argument. The default LightBG stylesheet:

QPlainTextEdit, QTextEdit { background-color: white;
color: black ;
selection-background-color: #ccc}

.error { color: red; }

.in-prompt { color: navy; }

.in-prompt-number { font-weight: bold; }

.out-prompt { color: darkred; }

.out-prompt-number { font-weight: bold; }
/* .inverted is used to highlight selected completion */
.inverted { background-color: black ; color: white; }

22 Chapter 7. Colors and Highlighting

CHAPTER 8

Fonts

The Qt console is configurable via the ConsoleWidget. To change these, set the font_family or font_size traits
of the ConsoleWidget. For instance, to use 9pt Anonymous Pro:

$> jupyter qtconsole --ConsoleWidget.font_family="Anonymous Pro" --ConsoleWidget.font_
→˓size=9

23

Jupyter Qt Console Documentation, Release 4.3.0

24 Chapter 8. Fonts

CHAPTER 9

Process Management

With the two-process ZMQ model, the frontend does not block input during execution. This means that actions can
be taken by the frontend while the Kernel is executing, or even after it crashes. The most basic such command is via
‘Ctrl-.’, which restarts the kernel. This can be done in the middle of a blocking execution. The frontend can also know,
via a heartbeat mechanism, that the kernel has died. This means that the frontend can safely restart the kernel.

Multiple Consoles

Since the Kernel listens on the network, multiple frontends can connect to it. These do not have to all be qt frontends
- any Jupyter frontend can connect and run code.

Other frontends can connect to your kernel, and share in the execution. This is great for collaboration. The
--existing flag means connect to a kernel that already exists. Starting other consoles with that flag will not
try to start their own kernel, but rather connect to yours. kernel-12345.json is a small JSON file with the ip,
port, and authentication information necessary to connect to your kernel. By default, this file will be in your Jupyter
runtime directory. If it is somewhere else, you will need to use the full path of the connection file, rather than just its
filename.

If you need to find the connection info to send, and don’t know where your connection file lives, there are a couple of
ways to get it. If you are already running a console connected to an IPython kernel, you can use the %connect_info
magic to display the information necessary to connect another frontend to the kernel.

In [2]: %connect_info
{

"stdin_port":50255,
"ip":"127.0.0.1",
"hb_port":50256,
"key":"70be6f0f-1564-4218-8cda-31be40a4d6aa",
"shell_port":50253,
"iopub_port":50254

}

Paste the above JSON into a file, and connect with:

25

Jupyter Qt Console Documentation, Release 4.3.0

$> ipython <app> --existing <file>
or, if you are local, you can connect with just:

$> ipython <app> --existing kernel-12345.json
or even just:

$> ipython <app> --existing
if this is the most recent kernel you have started.

Otherwise, you can find a connection file by name (and optionally profile) with jupyter_client.
find_connection_file():

$> python -c "from jupyter_client import find_connection_file;\
print(find_connection_file('kernel-12345.json'))"
/home/you/Library/Jupyter/runtime/kernel-12345.json

Security

Warning: Since the ZMQ code currently has no encryption, listening on an external-facing IP is dangerous. You
are giving any computer that can see you on the network the ability to connect to your kernel, and view your traffic.
Read the rest of this section before listening on external ports or running a kernel on a shared machine.

By default (for security reasons), the kernel only listens on localhost, so you can only connect multiple frontends to
the kernel from your local machine. You can specify to listen on an external interface by specifying the ip argument:

$> jupyter qtconsole --ip=192.168.1.123

If you specify the ip as 0.0.0.0 or ‘*’, that means all interfaces, so any computer that can see yours on the network can
connect to the kernel.

Messages are not encrypted, so users with access to the ports your kernel is using will be able to see any output of the
kernel. They will NOT be able to issue shell commands as you due to message signatures.

Warning: If you disable message signatures, then any user with access to the ports your kernel is listening on can
issue arbitrary code as you. DO NOT disable message signatures unless you have a lot of trust in your environment.

The one security feature Jupyter does provide is protection from unauthorized execution. Jupyter’s messaging system
will sign messages with HMAC digests using a shared-key. The key is never sent over the network, it is only used to
generate a unique hash for each message, based on its content. When the kernel receives a message, it will check that
the digest matches, and discard the message. You can use any file that only you have access to to generate this key, but
the default is just to generate a new UUID.

SSH Tunnels

Sometimes you want to connect to machines across the internet, or just across a LAN that either doesn’t permit open
ports or you don’t trust the other machines on the network. To do this, you can use SSH tunnels. SSH tunnels are a
way to securely forward ports on your local machine to ports on another machine, to which you have SSH access.

In simple cases, Jupyter’s tools can forward ports over ssh by simply adding the --ssh=remote argument to the
usual --existing... set of flags for connecting to a running kernel, after copying the JSON connection file (or its
contents) to the second computer.

26 Chapter 9. Process Management

Jupyter Qt Console Documentation, Release 4.3.0

Warning: Using SSH tunnels does not increase localhost security. In fact, when tunneling from one machine to
another both machines have open ports on localhost available for connections to the kernel.

There are two primary models for using SSH tunnels with Jupyter. The first is to have the Kernel listen only on
localhost, and connect to it from another machine on the same LAN.

First, let’s start a kernel on machine worker, listening only on loopback:

user@worker $> ipython kernel
[IPKernelApp] To connect another client to this kernel, use:
[IPKernelApp] --existing kernel-12345.json

In this case, the IP that you would connect to would still be 127.0.0.1, but you want to specify the additional --ssh
argument with the hostname of the kernel (in this example, it’s ‘worker’):

user@client $> jupyter qtconsole --ssh=worker --existing /path/to/kernel-12345.json

Which will write a new connection file with the forwarded ports, so you can reuse them:

[JupyterQtConsoleApp] To connect another client via this tunnel, use:
[JupyterQtConsoleApp] --existing kernel-12345-ssh.json

Note again that this opens ports on the client machine that point to your kernel.

Note: the ssh argument is simply passed to openssh, so it can be fully specified user@host:port but it will also
respect your aliases, etc. in .ssh/config if you have any.

The second pattern is for connecting to a machine behind a firewall across the internet (or otherwise wide network).
This time, we have a machine login that you have ssh access to, which can see kernel, but client is on another network.
The important difference now is that client can see login, but not worker. So we need to forward ports from client to
worker via login. This means that the kernel must be started listening on external interfaces, so that its ports are visible
to login:

user@worker $> ipython kernel --ip=0.0.0.0
[IPKernelApp] To connect another client to this kernel, use:
[IPKernelApp] --existing kernel-12345.json

Which we can connect to from the client with:

user@client $> jupyter qtconsole --ssh=login --ip=192.168.1.123 --existing /path/to/
→˓kernel-12345.json

Note: The IP here is the address of worker as seen from login, and need only be specified if the kernel used the
ambiguous 0.0.0.0 (all interfaces) address. If it had used 192.168.1.123 to start with, it would not be needed.

Manual SSH tunnels

It’s possible that Jupyter’s ssh helper functions won’t work for you, for various reasons. You can still connect to remote
machines, as long as you set up the tunnels yourself. The basic format of forwarding a local port to a remote one is:

9.4. Manual SSH tunnels 27

Jupyter Qt Console Documentation, Release 4.3.0

[client] $> ssh <server> <localport>:<remoteip>:<remoteport> -f -N

This will forward local connections to localport on client to remoteip:remoteport via server. Note that remoteip
is interpreted relative to server, not the client. So if you have direct ssh access to the machine to which you want to
forward connections, then the server is the remote machine, and remoteip should be server’s IP as seen from the server
itself, i.e. 127.0.0.1. Thus, to forward local port 12345 to remote port 54321 on a machine you can see, do:

[client] $> ssh machine 12345:127.0.0.1:54321 -f -N

But if your target is actually on a LAN at 192.168.1.123, behind another machine called login, then you would do:

[client] $> ssh login 12345:192.168.1.16:54321 -f -N

The -f -N on the end are flags that tell ssh to run in the background, and don’t actually run any commands beyond
creating the tunnel.

See also:

A short discussion of ssh tunnels: http://www.revsys.com/writings/quicktips/ssh-tunnel.html

Stopping Kernels and Consoles

Since there can be many consoles per kernel, the shutdown mechanism and dialog are probably more complicated
than you are used to. Since you don’t always want to shutdown a kernel when you close a window, you are given the
option to just close the console window or also close the Kernel and all other windows. Note that this only refers to all
other local windows, as remote Consoles are not allowed to shutdown the kernel, and shutdowns do not close Remote
consoles (to allow for saving, etc.).

Rules:

• Restarting the kernel automatically clears all local Consoles, and prompts remote Consoles about the reset.

• Shutdown closes all local Consoles, and notifies remotes that the Kernel has been shutdown.

• Remote Consoles may not restart or shutdown the kernel.

28 Chapter 9. Process Management

http://www.revsys.com/writings/quicktips/ssh-tunnel.html

CHAPTER 10

Qt and the REPL

Note: This section is relevant regardless of the frontend you use to write Qt Code. This section is mostly there as
it is easy to get confused and assume that writing Qt code in the QtConsole should change from usual Qt code. It
should not. If you get confused, take a step back, and try writing your code using the pure terminal based jupyter
console that does not involve Qt.

An important part of working with the REPL – QtConsole, Jupyter notebook, IPython terminal – when you are writing
your own Qt code is to remember that user code (in the kernel) is not in the same process as the frontend. This means
that there is not necessarily any Qt code running in the kernel, and under most normal circumstances there isn’t. This
is true even if you are running the QtConsole.

Warning: When executing code from the qtconsole prompt, it is not possible to access the QtApplication instance
of the QtConsole itself.

A common problem listed in the PyQt4 Gotchas is the fact that Python’s garbage collection will destroy Qt objects
(Windows, etc.) once there is no longer a Python reference to them, so you have to hold on to them. For instance, in:

from PyQt4 import QtGui

def make_window():
win = QtGui.QMainWindow()

def make_and_return_window():
win = QtGui.QMainWindow()
return win

make_window() will never draw a window, because garbage collection will destroy it before it is drawn, whereas
make_and_return_window() lets the caller decide when the window object should be destroyed. If, as a de-
veloper, you know that you always want your objects to last as long as the process, you can attach them to the
QApplication instance itself:

29

http://pyqt.sourceforge.net/Docs/PyQt4/gotchas.html#garbage-collection

Jupyter Qt Console Documentation, Release 4.3.0

from PyQt4 import QtGui, QtCore

do this just once:
app = QtCore.QCoreApplication.instance()
if not app:

we are in the kernel in most of the case there is NO qt code running.
we need to create a Gui APP.
app = QtGui.QApplication([])

app.references = set()
then when you create Windows, add them to the set
def make_window():

win = QtGui.QMainWindow()
app.references.add(win)

Now the QApplication itself holds a reference to win, so it will never be garbage collected until the application
itself is destroyed.

Embedding the QtConsole in a Qt application

In order to make the QtConsole available to an external Qt GUI application (just as IPython.embed() enables one
to embed a terminal session of IPython in a command-line application), there are a few options:

• First start IPython, and then start the external Qt application from IPython, as described above. Effectively, this
embeds your application in IPython rather than the other way round.

• Use qtconsole.rich_jupyter_widget.RichJupyterWidget in your Qt application. This will
embed the console widget in your GUI and start the kernel in a separate process, so code typed into the console
cannot access objects in your application.

• Start a standard IPython kernel in the process of the external Qt application. See examples/Embedding/
ipkernel_qtapp.py for an example. Due to IPython’s two-process model, the QtConsole itself will live in
another process with its own QApplication, and thus cannot be embedded in the main GUI.

• Start a special IPython kernel, the IPython.kernel.inprocess.ipkernel.InProcessKernel,
that allows a QtConsole in the same process. See examples/Embedding/inprocess_qtconsole.
py for an example. While the QtConsole can now be embedded in the main GUI, one cannot connect to the
kernel from other consoles as there are no real ZMQ sockets anymore.

30 Chapter 10. Qt and the REPL

CHAPTER 11

Regressions

There are some features, where the qt console lags behind the Terminal frontend:

• !cmd input: Due to our use of pexpect, we cannot pass input to subprocesses launched using the ‘!’ escape, so
you should never call a command that requires interactive input. For such cases, use the terminal IPython. This
will not be fixed, as abandoning pexpect would significantly degrade the console experience.

31

	Installation
	Install using conda
	Install using pip
	Installing Qt (if needed)

	Configuration options
	Options

	Changes in Jupyter Qt console
	4.3
	4.2
	4.1
	4.1.1
	4.0

	Overview
	Inline graphics
	Saving and Printing
	Colors and Highlighting
	Fonts
	Process Management
	Multiple Consoles
	Security
	SSH Tunnels
	Manual SSH tunnels
	Stopping Kernels and Consoles

	Qt and the REPL
	Embedding the QtConsole in a Qt application

	Regressions

