

Important

From your browser, you can
try Pyodide in an Iodide notebook [https://alpha.iodide.io/].
The Iodide documentation site [https://iodide-project.github.io/docs/]
provides additional user and developer documentation.

Pyodide

The Python scientific stack, compiled to WebAssembly.

Note

Pyodide bundles support for the following packages: numpy, scipy, and
many other libraries in the Python scientific stack.

To use additional packages from PyPI, try the experimental feature,
Installing packages from PyPI and try to pip install the
package.

To create a Pyodide package to support and share libraries for new
applications, try Creating a Pyodide package.

Using Pyodide

Pyodide may be used in several ways, including in an Iodide notebook, directly
from JavaScript, or to execute Python scripts asynchronously in a web worker.
Although still experimental, additional packages may be installed from PyPI
to be used with Pyodide.

Usage

	Using Pyodide from Iodide

	Using Pyodide from Javascript

	Using Pyodide from a web worker

Extending

	Installing packages from PyPI

	API Reference

Developing Pyodide

The Development section help Pyodide contributors to find information about the
development process including making packages to support third party libraries
and understanding type conversions between Python and JavaScript.

The Project section helps contributors get started and gives additional
information about the project’s organization.

Development

	Creating a Pyodide package

	Type conversions

Project

	About the Project

	Pyodide

	How to Contribute

	IODIDE CODE of CONDUCT

Indices and tables

	Index

	Module Index

	Search Page

Using Pyodide from Iodide

This document describes using Pyodide inside Iodide. For information
about using Pyodide directly from Javascript, see Using Pyodide from
Javascript.

Running basic Python

Create a Python chunk, by inserting a line like this:

%% py

Type some Python code into the chunk, and press Shift+Enter to evaluate it. If
the last clause in the cell is an expression, that expression is evaluated,
converted to Javascript and displayed in the console like all other output
in Javascript. See type conversions for more information
about how data types are converted between Python and Javascript.

%% py
import sys
sys.version

Loading packages

Only the Python standard library and six are available after importing
Pyodide. Other available libraries, such as numpy and matplotlib are loaded
on demand.

If you just want to use the versions of those libraries included with Pyodide,
all you need to do is import and start using them:

%% py
import numpy as np
np.arange(10)

For most uses, that is all you need to know.

However, if you want to use your own custom package or load a package from
another provider, you’ll need to use the pyodide.loadPackage function from a
Javascript chunk. For example, to load a special distribution of Numpy from
custom.com:

%% js
pyodide.loadPackage('https://custom.com/numpy.js')

After doing that, the numpy you import from a Python chunk will be this special
version of Numpy.

Using a local build of Pyodide with Iodide

You may want to build a local copy of Pyodide with some changes and test it
inside of Iodide.

By default, Iodide will use a copy of Pyodide deployed to Netlify. However, it
will use locally-installed copy of Pyodide if USE_LOCAL_PYODIDE is set.

Set that environment variable in your shell:

export USE_LOCAL_PYODIDE=1

Then follow the building and running instructions for Iodide as usual.

Next, build Pyodide using the regular instructions in ../README.md. Copy the
contents of Pyodide’s build directory to your Iodide checkout’s build/pyodide
directory:

mkdir $IODIDE_CHECKOUT/build/pyodide
cp $PYODIDE_CHECKOUT/build/* $IODIDE_CHECKOUT/build/pyodide

Using Pyodide from Javascript

This document describes using Pyodide directly from Javascript. For information
about using Pyodide from Iodide, see Using Pyodide from
Iodide.

Startup

Include pyodide.js in your project.

The recommended way to include Pyodide in your project is to download a release
from here [https://github.com/iodide-project/pyodide/releases] and include the
contents in your distribution, and import the pyodide.js file there from a
<script> tag.

For prototyping purposes, you may also use the following CDN URL, though doing
so is not recommended, since it isn’t versioned and could change or be unstable
at any time:

https://pyodide.cdn.iodide.io/pyodide.js

This file has a single Promise object which bootstraps the Python environment:
languagePluginLoader. Since this must happen asynchronously, it is a
Promise, which you must call then on to complete initialization. When the
promise resolves, pyodide will have installed a namespace in global scope:
pyodide.

languagePluginLoader.then(() => {
 // pyodide is now ready to use...
 console.log(pyodide.runPython('import sys\nsys.version'));
});

Running Python code

Python code is run using the pyodide.runPython function. It takes as input a
string of Python code. If the code ends in an expression, it returns the result
of the expression, converted to Javascript objects (See type
conversions).

pyodide.runPython('import sys\nsys.version'));

Loading packages

Only the Python standard library and six are available after importing
Pyodide. To use other libraries, you’ll need to load their package using
pyodide.loadPackage. This downloads the file data over the network (as a
.data and .js index file) and installs the files in the virtual filesystem.

Packages can be loaded by name, for those included in the official pyodide
repository (e.g. pyodide.loadPackage('numpy')). It is also possible to load
packages from custom URLs (e.g.
pyodide.loadPackage('https://foo/bar/numpy.js')), in which case the URL must
end with <package-name>.js.

When you request a package from the official repository, all of that package’s
dependencies are also loaded. Dependency resolution is not yet implemented
when loading packages from custom URLs.

Multiple packages can also be loaded in a single call,

pyodide.loadPackage(['cycler', 'pytz'])

pyodide.loadPackage returns a Promise.

pyodide.loadPackage('matplotlib').then(() => {
 // matplotlib is now available
});

Complete example

TODO

Using Pyodide from a web worker

This document describes how to use pyodide to execute python scripts
asynchronously in a web worker.

Startup

Setup your project to serve webworker.js. You should also serve
pyodide.js, and all its associated .asm.js, .data, .json, and .wasm
files as well, though this is not strictly required if pyodide.js is pointing
to a site serving current versions of these files.

Update the webworker.js sample so that it has as valid URL for pyodide.js, and sets
self.languagePluginUrl to the location of the supporting files.

In your application code create a web worker, and add listeners for onerror
and onmessage.

Call postMessage on your web worker, passing an object with the key python
containing the script to execute as a string. You may pass other keys in the
data object. By default the web worker assigns these to its global scope so that
they may be imported from python. The results are returned as the results key,
or if an error was encountered, it is returned in the error key.

For example:

var pyodideWorker = new Worker('./webworker.js')

pyodideWorker.onerror = (e) => {
 console.log(`Error in pyodideWorker at ${e.filename}, Line: ${e.lineno}, ${e.message}`)
}

pyodideWorker.onmessage = (e) => {
 const {results, error} = e.data
 if (results) {
 console.log('pyodideWorker return results: ', results)
 } else if (error) {
 console.log('pyodideWorker error: ', error)
 }
}

const data = {
 A_rank: [0.8, 0.4, 1.2, 3.7, 2.6, 5.8],
 python:
 'import statistics\n' +
 'from js import A_rank\n' +
 'statistics.stdev(A_rank)'
}

pyodideWorker.postMessage(data)

Loading packages

Packages referenced from your python script will be automatically downloaded
the first time they are encountered. Please note that some of the larger
packages such as numpy or pandas may take several seconds to load.
Subsequent uses of these packages will not incur the download overhead of the
first run, but there is still some time required for the import in python
itself.

If you would like to pre-load some packages, or the automatic package loading
does not work for you for some reason, you may modify the webworker.js source
to load some specific packages as described in
Using Pyodide directly from Javascript.

For example, to always load packages numpy and pytz, you would insert the
line self.pyodide.loadPackage(['numpy', 'pytz']).then(() => { as shown below:

self.languagePluginUrl = 'http://localhost:8000/'
importScripts('./pyodide.js')

var onmessage = function(e) { // eslint-disable-line no-unused-vars
 languagePluginLoader.then(() => {
 self.pyodide.loadPackage(['numpy', 'pytz']).then(() => {
 const data = e.data;
 const keys = Object.keys(data);
 for (let key of keys) {
 if (key !== 'python') {
 // Keys other than python must be arguments for the python script.
 // Set them on self, so that `from js import key` works.
 self[key] = data[key];
 }
 }
 self.pyodide.runPythonAsync(data.python, () => {})
 .then((results) => { self.postMessage({results}); })
 .catch((err) => {
 // if you prefer messages with the error
 self.postMessage({error : err.message});
 // if you prefer onerror events
 // setTimeout(() => { throw err; });
 });
 });
 });
}

Caveats

Using a web worker is advantageous because the python code is run in a separate
thread from your main UI, and hence does not impact your application’s
responsiveness.
There are some limitations, however.
At present, Pyodide does not support sharing the Python interpreter and
packages between multiple web workers or with your main thread.
Since web workers are each in their own virtual machine, you also cannot share
globals between a web worker and your main thread.
Finally, although the web worker is separate from your main thread,
the web worker is itself single threaded, so only one python script will
execute at a time.

Installing packages from PyPI

Pyodide has experimental support for installing pure Python wheels from PyPI.

IMPORTANT: Since the packages hosted at files.pythonhosted.org don’t
support CORS requests, we use a CORS proxy at cors-anywhere.herokuapp.com to
get package contents. This makes a man-in-the-middle attack on the package
contents possible. However, this threat is minimized by the fact that the
integrity of each package is checked using a hash obtained directly from
pypi.org. We hope to have this improved in the future, but for now, understand
the risks and don’t use any sensitive data with the packages installed using
this method.

For use in Iodide:

%% py
import micropip
micropip.install('snowballstemmer')

Iodide implicitly waits for the promise to resolve when the packages have finished
installing...

%% py
import snowballstemmer
snowballstemmer.stemmer('english')
stemmer.stemWords('go goes going gone'.split())

For use outside of Iodide (just Python), you can use the then method on the
Promise that micropip.install returns to do work once the packages have
finished loading:

def do_work(*args):
 import snowballstemmer
 snowballstemmer.stemmer('english')
 stemmer.stemWords('go goes going gone'.split())

import micropip
micropip.install('snowballstemmer').then(do_work)

API Reference

pyodide version 0.1.0

Backward compatibility of the API is not guaranteed at this point.

Python API

pyodide.open_url(url)

Fetches a given url and returns a io.StringIO to access its contents.

Parameters

	name

	type

	description

	url

	str

	the URL to open

Returns

A io.StringIO object with the URL contents./

pyodide.eval_code(code, ns)

Runs a string of code. The last part of the string may be an expression, in which case, its value is returned.

This function may be overridden to change how pyodide.runPython interprets code, for example to perform
some preprocessing on the Python code first.

Parameters

	name

	type

	description

	code

	str

	the code to evaluate

	ns

	dict

	evaluation name space

Returns

Either the resulting object or None.

pyodide.as_nested_list(obj)

Converts Javascript nested arrays to Python nested lists. This conversion can not
be performed automatically, because Javascript Arrays and Objects can be combined
in ways that are ambiguous.

Parameters

	name

	type

	description

	obj

	JS Object

	The object to convert

Returns

The object as nested Python lists.

Javascript API

pyodide.loadPackage(names)

Load a package or a list of packages over the network.

This makes the files for the package available in the virtual filesystem.
The package needs to be imported from Python before it can be used.

Parameters

	name

	type

	description

	names

	{String, Array}

	package name, or URL. Can be either a single element, or an array.

	messageCallback

	function

	A callback, called with progress messages. (optional)

Returns

Loading is asynchronous, therefore, this returns a Promise.

pyodide.loadedPackages

Array with loaded packages.

Use Object.keys(pyodide.loadedPackages) to access the names of the
loaded packages, and pyodide.loadedPackages[package_name] to access
install location for a particular package_name.

pyodide.pyimport(name)

Access a Python object from Javascript. The object must be in the global Python namespace.

For example, to access the foo Python object from Javascript:

var foo = pyodide.pyimport('foo')

Parameters

	name

	type

	description

	names

	String

	Python variable name

Returns

	name

	type

	description

	object

	any

	If one of the basic types (string,

	
	
	number, boolean, array, object), the

	
	
	Python object is converted to

	
	
	Javascript and returned. For other

	
	
	types, a Proxy object to the Python

	
	
	object is returned.

pyodide.globals

An object whose attributes are members of the Python global namespace. This is a
more convenient alternative to pyodide.pyimport.

For example, to access the foo Python object from Javascript:

pyodide.globals.foo

pyodide.repr(obj)

Gets the Python’s string representation of an object.

This is equivalent to calling repr(obj) in Python.

Parameters

	name

	type

	description

	obj

	any

	Input object

Returns

	name

	type

	description

	str_repr

	String

	String representation of the input object

pyodide.runPython(code)

Runs a string of code. The last part of the string may be an expression, in which case, its value is returned.

Parameters

	name

	type

	description

	code

	String

	Python code to evaluate

Returns

	name

	type

	description

	jsresult

	any

	Result, converted to Javascript

pyodide.runPythonAsync(code, messageCallback)

Runs Python code, possibly asynchronously loading any known packages that the code
chunk imports.

For example, given the following code chunk

import numpy as np
x = np.array([1, 2, 3])

pyodide will first call pyodide.loadPackage(['numpy']), and then run the code
chunk, returning the result. Since package fetching must happen asynchronously,
this function returns a Promise which resolves to the output. For example, to
use:

pyodide.runPythonAsync(code, messageCallback)
 .then((output) => handleOutput(output))

Parameters

	name

	type

	description

	code

	String

	Python code to evaluate

	messageCallback

	function

	Callback given status messages

	
	
	(optional)

Returns

	name

	type

	description

	result

	Promise

	Resolves to the result of the code chunk

pyodide.version()

Returns the pyodide version.

It can be either the exact release version (e.g. 0.1.0), or
the latest release version followed by the number of commits since, and
the git hash of the current commit (e.g. 0.1.0-1-bd84646).

Parameters

None

Returns

	name

	type

	description

	version

	String

	Pyodide version string

Creating a Pyodide package

Pyodide includes a set of automatic tools to make it easier to add new
third-party Python libraries to the build.

These tools automate the following steps to build a package:

	Download a source tarball (usually from PyPI)

	Confirm integrity of the package by comparing it to a checksum

	Apply patches, if any, to the source distribution

	Add extra files, if any, to the source distribution

	If the package includes C/C++/Cython extensions:

	Build the package natively, keeping track of invocations of the native
compiler and linker

	Rebuild the package using emscripten to target WebAssembly

	If the package is pure Python:

	Run the setup.py script to get the built package

	Package the results into an emscripten virtual filesystem package, which
comprises:

	A .data file containing the file contents of the whole package,
concatenated together

	A .js file which contains metadata about the files and installs them into
the virtual filesystem.

Lastly, a packages.json file is output containing the dependency tree of all
packages, so pyodide.loadPackage can load a package’s dependencies
automatically.

The meta.yaml file

Packages are defined by writing a meta.yaml file. The format of these files is
based on the meta.yaml files used to build Conda
packages [https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html],
though it is much more limited. The most important limitation is that Pyodide
assumes there will only be one version of a given library available, whereas
Conda allows the user to specify the versions of each package that they want to
install. Despite the limitations, keeping the file format as close as possible
to conda’s should make it easier to use existing conda package definitions as a
starting point to create Pyodide packages. In general, however, one should not
expect Conda packages to “just work” with Pyodide. (In the longer term, Pyodide
may use conda as its packaging system, and this should hopefully ease that
transition.)

There is a helper tool that will generate a meta.yaml for packages on PyPI
that will work for many pure Python packages. This tool will populate the latest
version, download link and sha256 hash by querying PyPI. It doesn’t currently
handle package dependencies. To run it, do:

bin/pyodide mkpkg $PACKAGE_NAME

The supported keys in the meta.yaml file are described below.

package

package/name

The name of the package. It must match the name of the package used when
expanding the tarball, which is sometimes different from the name of the package
in the Python namespace when installed. It must also match the name of the
directory in which the meta.yaml file is placed. It can only contain
alpha-numeric characters and -, _.

package/version

The version of the package.

source

source/url

The url of the source tarball.

The tarball may be in any of the formats supported by Python’s
shutil.unpack_archive: tar, gztar, bztar, xztar, and zip.

source/md5

The MD5 checksum of the tarball. It is recommended to use SHA256 instead of MD5.
At most one checksum entry should be provided per package.

source/sha256

The SHA256 checksum of the tarball. It is recommended to use SHA256 instead of MD5.
At most one checksum entry should be provided per package.

source/patches

A list of patch files to apply after expanding the tarball. These are applied
using patch -p1 from the root of the source tree.

source/extras

Extra files to add to the source tree. This should be a list where each entry is
a pair of the form (src, dst). The src path is relative to the directory in
which the meta.yaml file resides. The dst path is relative to the root of
source tree (the expanded tarball).

build

build/skip_host

Skip building C extensions for the host environment. Default: True.

Setting this to False will result in ~2x slower builds for packages that
include C extensions. It should only be needed when a package is a build
time dependency for other packages. For instance, numpy is imported during
installation of matplotlib, importing numpy also imports included C extensions,
therefore it is built both for host and target.

build/cflags

Extra arguments to pass to the compiler when building for WebAssembly.

(This key is not in the Conda spec).

build/ldflags

Extra arguments to pass to the linker when building for WebAssembly.

(This key is not in the Conda spec).

build/post

Shell commands to run after building the library. These are run inside of
bash, and there are two special environment variables defined:

	$SITEPACKAGES: The site-packages directory into which the package has been installed.

	$PKGDIR: The directory in which the meta.yaml file resides.

(This key is not in the Conda spec).

requirements

requirements/run

A list of required packages.

(Unlike conda, this only supports package names, not versions).

Type conversions

Python to Javascript conversions occur:

	when returning the final expression from a pyodide.runPython call (evaluating a Python cell in Iodide)

	using pyodide.pyimport

	passing arguments to a Javascript function from Python

Javascript to Python conversions occur:

	when using the from js import ... syntax

	returning the result of a Javascript function to Python

Basic types

The following basic types are implicitly converted between Javascript and
Python. The values are copied and any connection to the original object is lost.

	Python

	Javascript

	int, float

	Number

	str

	String

	True

	true

	False

	false

	None

	undefined, null

	list, tuple

	Array

	dict

	Object

Typed arrays

Javascript typed arrays (Int8Array and friends) are converted to Python
memoryviews. This happens with a single binary memory copy (since Python can’t
access arrays on the Javascript heap), and the data type is preserved. This
makes it easy to correctly convert it to a Numpy array using numpy.asarray:

array = Float32Array([1, 2, 3])

from js import array
import numpy as np
numpy_array = np.asarray(array)

Python bytes and buffer objects are converted to Javascript as
Uint8ClampedArrays, without any memory copy at all, and is thus very
efficient, but be aware that any changes to the buffer will be reflected in both
places.

Numpy arrays are currently converted to Javascript as nested (regular) Arrays. A
more efficient method will probably emerge as we decide on an ndarray
implementation for Javascript.

Class instances

Any of the types not listed above are shared between languages using proxies
that allow methods and some operators to be called on the object from the other
language.

Javascript from Python

When passing a Javascript object to Python, an extension type is used to
delegate Python operations to the Javascript side. The following operations are
currently supported. (More should be possible in the future – work in ongoing
to make this more complete):

	Python

	Javascript

	repr(x)

	x.toString()

	x.foo

	x.foo

	x.foo = bar

	x.foo = bar

	del x.foo

	delete x.foo

	x(...)

	x(...)

	x.foo(...)

	x.foo(...)

	X.new(...)

	new X(...)

	len(x)

	x.length

	x[foo]

	x[foo]

	x[foo] = bar

	x[foo] = bar

	del x[foo]

	delete x[foo]

	x == y

	x == y

	x.typeof

	typeof x

One important difference between Python objects and Javascript objects is that
if you access a missing member in Python, an exception is raised. In Javascript,
it returns undefined. Since we can’t make any assumptions about whether the
Javascript member is missing or simply set to undefined, Python mirrors the
Javascript behavior. For example:

// Javascript
class Point {
 constructor(x, y) {
 this.x = x;
 this.y = y;
 }
}
point = new Point(42, 43))

python
from js import point
assert point.y == 43
del point.y
assert point.y is None

Python from Javascript

When passing a Python object to Javascript, the Javascript Proxy
API [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy]
is used to delegate Javascript operations to the Python side. In general, the
Proxy API is more limited than what can be done with a Python extension, so
there are certain operations that are impossible or more cumbersome when using
Python from Javascript than vice versa. The most notable limitation is that
while Python has distinct ways of accessing attributes and items (x.foo and
x[foo]), Javascript conflates these two concepts. The following operations are
currently supported:

	Javascript

	Python

	foo in x

	hasattr(x, 'foo')

	x.foo

	getattr(x, 'foo')

	x.foo = bar

	setattr(x, 'foo', bar)

	delete x.foo

	delattr(x, 'foo')

	x.ownKeys()

	dir(x)

	x(...)

	x(...)

	x.foo(...)

	x.foo(...)

An additional limitation is that when passing a Python object to Javascript,
there is no way for Javascript to automatically garbage collect that object.
Therefore, custom Python objects must be manually destroyed when passed to Javascript, or
they will leak. To do this, call .destroy() on the object, after which Javascript will no longer have access to the object.

var foo = pyodide.pyimport('foo');
foo.call_method();
foo.destroy();
foo.call_method(); // This will raise an exception, since the object has been
 // destroyed

Using Python objects from Javascript

A Python object (in global scope) can be brought over to Javascript using the
pyodide.pyimport function. It takes a string giving the name of the variable,
and returns the object, converted to Javascript (See type
conversions).

var sys = pyodide.pyimport('sys');

Using Javascript objects from Python

Javascript objects can be accessed from Python using the special js module.
This module looks up attributes of the global (window) namespace on the
Javascript side.

import js
js.document.title = 'New window title'

Performance considerations

Looking up and converting attributes of the js module happens dynamically. In
most cases, where the value is small or results in a proxy, this is not an
issue. However, if the value takes a long time to convert from Javascript to
Python, you may want to store it in a Python variable or use the from js import
... syntax.

For example, given this large Javascript variable:

var x = new Array(1000).fill(0)

Use it from Python as follows:

import js
x = js.x # conversion happens once here
for i in range(len(x)):
 item = x[i] # we don't pay the conversion price each time here

Or alternatively:

from js import x # conversion happens once here
for i in range(len(x)):
 item = x[i] # we don't pay the conversion price each time here

Important

From your browser, you can
try Pyodide in an Iodide notebook [https://alpha.iodide.io/].
The Iodide documentation site [https://iodide-project.github.io/docs/]
provides additional user and developer documentation.

About the Project

What is Pyodide? |
Try Pyodide |
Getting Started |
Contributing |
License

Pyodide [https://github.com/iodide-project/pyodide]

[image: Build Status]
 [https://circleci.com/gh/iodide-project/pyodide]The Python scientific stack, compiled to WebAssembly.

Try Pyodide and Iodide in your browser [https://alpha.iodide.io/notebooks/300/]

What is Pyodide?

Pyodide brings the Python runtime to the browser via WebAssembly, along with the Python scientific stack including NumPy, Pandas, Matplotlib, parts of SciPy, and NetworkX. The ``packages` directory <https://github.com/iodide-project/pyodide/tree/master/packages>`_ lists over 35 packages which are currently available.

Pyodide provides transparent conversion of objects between Javascript and Python.
When used inside a browser, Python has full access to the Web APIs.

While closely related to the iodide project [https://iodide.io], a tool for literate scientific computing and communication for the web, Pyodide goes beyond running in a notebook environment. To maximize the flexibility of the modern web, Pyodide may
be used standalone in any context where you want to run Python inside a web
browser.

Try Pyodide (no installation needed)

For more information, try the demo [https://alpha.iodide.io/notebooks/300/] and look through the
documentation [https://github.com/iodide-project/pyodide/tree/master/docs].

Getting Started

Pyodide offers three different ways to get started depending on your needs and technical resources.
These include:

	Download a pre-built version (the quickest way to get started)

	Build Pyodide from source (this method requires installing prerequistes and using make. Primarily for Linux users who want to experiment or contribute back to the project.)

	Use a Docker image (recommended for Windows and macOS users and for Linux users who prefer a Debian-based Docker image on Docker Hub with the dependencies
already installed)

Download a pre-built version

Pre-built versions of Pyodide may be downloaded from
this repository’s releases page [https://github.com/iodide-project/pyodide/releases/].

Building from source

Building is easiest on Linux. For other platforms, we recommend using
the Docker image (described below) to build Pyodide.

Make sure the prerequisites for emsdk [https://github.com/emscripten-core/emsdk] are
installed. Pyodide will build a custom, patched version of emsdk, so there is no
need to build it yourself prior.

Additional build prerequisites are:

	A working native compiler toolchain, enough to build CPython.

	A native Python 3.7 to run the build scripts.

	PyYAML

	lessc [http://lesscss.org/] to compile less to css.

	uglifyjs [https://github.com/mishoo/UglifyJS] to minify Javascript builds.

	ccache [https://ccache.samba.org] (optional) recommended for much faster rebuilds.

Build using make

After installing the build prerequisites, run from the command line:

make

Using Docker

We provide a Debian-based Docker image on Docker Hub with the dependencies
already installed to make it easier to build Pyodide.

	Install Docker

	From a git checkout of Pyodide, run ./run_docker

	Run make to build.

If running make deterministically stops at one point in each subsequent try, increasing
the maximum RAM usage available to the docker container might help [This is different
from the physical RAM capacity inside the system]. Ideally, at least 3 GB of RAM
should be available to the docker container to build pyodide smoothly. These settings can
be changed via Docker Preferences [See here [https://stackoverflow.com/questions/44533319/how-to-assign-more-memory-to-docker-container]].

You can edit the files in your source checkout on your host machine, and then
repeatedly run make inside the Docker environment to test your changes.

Contributing

Please view the CONTRIBUTING document for tips on filing
issues, making changes, and submitting pull requests. The following sections
describe how to run tests, run Pyodide benchmarks, and lint the source code.

Testing

Install the following dependencies into the default Python installation:

pip install pytest selenium pytest-instafail

Install geckodriver [https://github.com/mozilla/geckodriver/releases] and
chromedriver [https://sites.google.com/a/chromium.org/chromedriver/downloads]
and check that they are in your PATH.

Automated testing

To run the pytest suite of tests, type on the command line:

pytest test/ packages/

Manual interactive testing

To run manual interactive tests, a docker environment and a webserver will be
used.

	Bind port 8000 for testing. To automatically bind port 8000 of the docker
environment and the host system, run: ./run_docker

	Now, this can be used to test the pyodide builds running within the
docker environment using external browser programs on the host system. To do
this, run: ./bin/pyodide serve

	This serves the build directory of the pyodide project on port 8000.

	To serve a different directory, use the --build_dir argument followed
by the path of the directory.

	To serve on a different port, use the --port argument followed by the
desired port number. Make sure that the port passed in --port argument
is same as the one defined as DOCKER_PORT in the run_docker script.

	Once the webserver is running, simple interactive testing can be run by
visiting this URL:
http://localhost:8000/console.html

Benchmarking

To run common benchmarks to understand Pyodide’s performance, begin by
installing the same prerequisites as for testing. Then run:

make benchmark

Linting

Python is linted with flake8. C and Javascript are linted with
clang-format.

To lint the code, run:

make lint

License

Pyodide uses the Mozilla Public License Version 2.0. See the
LICENSE file for more details.

What is Pyodide? |
Try Pyodide |
Getting Started |
Contributing |
License |
Back to top

How to Contribute

Thank you for your interest in contributing to PYODIDE! There are many ways to contribute, and we appreciate all of them. Here are some guidelines & pointers for diving into it.

Code of Conduct

PYODIDE has adopted a Code of Conduct that we expect all contributors and core members to adhere to.

Development

Work on PYODIDE happens on Github. Core members and contributors can make Pull Requests to fix issues and add features, which all go through the same review process. We’ll detail how you can start making PRs below.

We’ll do our best to keep master in a non-breaking state, ideally with tests always passing. The unfortunate reality of software development is sometimes things break. As such, master cannot be expected to remain reliable at all times. We recommend using the latest stable version of PYODIDE.

PYODIDE follows semantic versioning (http://semver.org/) - major versions for breaking changes (x.0.0), minor versions for new features (0.x.0), and patches for bug fixes (0.0.x).

We keep a file, CHANGELOG.md, outlining changes to PYODIDE in each release. We like to think of the audience for changelogs as non-developers who primarily run the latest stable. So the change log will primarily outline user-visible changes such as new features and deprecations, and will exclude things that might otherwise be inconsequential to the end user experience, such as infrastructure or refactoring.

Bugs & Issues

We use Github Issues [https://github.com/iodide-project/pyodide/issues] for announcing and discussing bugs and features. Use this link [https://github.com/iodide-project/pyodide/issues/new] to report an bug or issue. We provide a template to give you a guide for how to file optimally. If you have the chance, please search the existing issues before reporting a bug. It’s possible that someone else has already reported your error. This doesn’t always work, and sometimes it’s hard to know what to search for, so consider this extra credit. We won’t mind if you accidentally file a duplicate report.

Core contributors are monitoring new issues & comments all the time, and will label & organize issues to align with development priorities.

How to Contribute

Pull requests are the primary mechanism we use to change PYODIDE. GitHub itself has some great documentation [https://help.github.com/articles/about-pull-requests/] on using the Pull Request feature. We use the “fork and pull” model described here [https://help.github.com/articles/about-pull-requests/], where contributors push changes to their personal fork and create pull requests to bring those changes into the source repository.

Please make pull requests against the master branch.

If you’re looking for a way to jump in and contribute, our list of ``good first issues` <https://github.com/iodide-project/pyodide/labels/good%20first%20issue>`_ is a great place to start.

If you’d like to fix a currently-filed issue, please take a look at the comment thread on the issue to ensure no one is already working on it. If no one has claimed the issue, make a comment stating you’d like to tackle it in a PR. If someone has claimed the issue but has not worked on it in a few weeks, make a comment asking if you can take over, and we’ll figure it out from there.

We use py.test [https://pytest.org], driving Selenium [https://www.seleniumhq.org] as our testing framework. Every PR will automatically run through our tests, and our test framework will alert you on Github if your PR doesn’t pass all of them. If your PR fails a test, try to figure out whether or not you can update your code to make the test pass again, or ask for help. As a policy we will not accept a PR that fails any of our tests, and will likely ask you to add tests if your PR adds new functionality. Writing tests can be scary, but they make open-source contributions easier for everyone to assess. Take a moment and look through how we’ve written our tests, and try to make your tests match. If you are having trouble, we can help you get started on our test-writing journey.

All code submissions should pass make lint. Python is checked with the default settings of flake8. C and Javascript are checked against the Mozilla style in clang-format.

Development Workflow

See README.md.

License

All contributions to PYODIDE will be licensed under the Mozilla Public License 2.0 (MPL 2.0) [https://www.mozilla.org/en-US/MPL/2.0/]. This is considered a “weak copyleft” license. Check out the tl;drLegal entry [https://tldrlegal.com/license/mozilla-public-license-2.0-(mpl-2)] for more information, as well as Mozilla’s MPL 2.0 FAQ [https://www.mozilla.org/en-US/MPL/2.0/FAQ/] if you need further clarification on what is and isn’t permitted.

Get in Touch

	Gitter: Pyodide currently shares the #iodide [https://gitter.im/iodide-project/iodide] channel over at gitter.im

IODIDE CODE of CONDUCT

CONDUCT

We are committed to providing a friendly, safe and welcoming environment for all, regardless of level of experience, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion, nationality, or other similar characteristic.

	Please be kind and courteous. There’s no need to be mean or rude.

	On IRC & any other IODIDE communication venue, please avoid using overtly sexual nicknames or other nicknames that might detract from a friendly, safe and welcoming environment for all.

	Respect that people have differences of opinion and that every design or implementation choice carries a trade-off and numerous costs. There is seldom a right answer.

	There are many unproductive habits that should be avoided in communication. We borrow the Recurse Center’s “social rules” [https://www.recurse.com/manual#sec-environment]: no feigning surprise, no well-actually’s, no backseat driving, and no subtle -isms. Read the preceding link for further discussion.

	Please keep unstructured critique to a minimum. If you have solid ideas you want to experiment with, make a fork and see how it works. All feedback should be constructive in nature. If you need more detailed guidance around giving feedback, consult Digital Ocean’s Code of Conduct [https://github.com/digitalocean/engineering-code-of-conduct#giving-and-receiving-feedback].

	We will exclude you from interaction if you insult, demean or harass anyone. That is not welcome behavior. We interpret the term “harassment” as including the definition in the Citizen Code of Conduct [http://citizencodeofconduct.org/]; if you have any lack of clarity about what might be included in that concept, please read their definition. In particular, we don’t tolerate behavior that excludes people in socially marginalized groups.

	Private harassment is also unacceptable. No matter who you are, if you feel you have been or are being harassed or made uncomfortable by a community member, please contact one of the channel ops or any of the IODIDE core team members immediately. Whether you’re a regular contributor or a newcomer, we care about making this community a safe place for you and we’ve got your back.

	Likewise any spamming, trolling, flaming, baiting or other attention-stealing behavior is not welcome.

MODERATION

These are the policies for upholding our community’s standards of conduct. If you feel that a thread needs moderation, please contact the IODIDE core team.

	Remarks that violate the IODIDE standards of conduct, including hateful, hurtful, oppressive, or exclusionary remarks, are not allowed. (Cursing is allowed, but never targeting another user, and never in a hateful manner.)

	Remarks that moderators find inappropriate, whether listed in the code of conduct or not, are also not allowed.

	Moderators will first respond to such remarks with a warning.

	If the warning is unheeded, the user will be “kicked,” i.e., kicked out of the communication channel to cool off.

	If the user comes back and continues to make trouble, they will be banned, i.e., indefinitely excluded.

	Moderators may choose at their discretion to un-ban the user if it was a first offense and they offer the offended party a genuine apology.

	If a moderator bans someone and you think it was unjustified, please take it up with that moderator, or with a different moderator, in private. Complaints about bans in-channel are not allowed.

	Moderators are held to a higher standard than other community members. If a moderator creates an inappropriate situation, they should expect less leeway than others.

	In the IODIDE community we strive to go the extra step to look out for each other. Don’t just aim to be technically unimpeachable, try to be your best self. In particular, avoid flirting with offensive or sensitive issues, particularly if they’re off-topic; this all too often leads to unnecessary fights, hurt feelings, and damaged trust; worse, it can drive people away from the community entirely.

	And if someone takes issue with something you said or did, resist the urge to be defensive. Just stop doing what it was they complained about and apologize. Even if you feel you were misinterpreted or unfairly accused, chances are good there was something you could’ve communicated better — remember that it’s your responsibility to make your fellow IODIDE community members comfortable. Everyone wants to get along and we are all here first and foremost because we want to talk about science and cool technology. You will find that people will be eager to assume good intent and forgive as long as you earn their trust.

	The enforcement policies listed above apply to all official IODIDE venues. If you wish to use this code of conduct for your own project, consider explicitly mentioning your moderation policy or making a copy with your own moderation policy so as to avoid confusion.

Adapted from the the `Rust Code of Conduct <https://www.rust-lang.org/en-US/conduct.html>`_, with further reference from `Digital Ocean Code of Conduct <https://github.com/digitalocean/engineering-code-of-conduct#giving-and-receiving-feedback>`_, the `Recurse Center <https://www.recurse.com/code-of-conduct>`_, the `Citizen Code of Conduct <http://citizencodeofconduct.org/>`_, and the `Contributor Covenant <https://www.contributor-covenant.org/version/1/4/code-of-conduct.html>`_.

Index

 _static/comment-bright.png

_images/pyodide.png
& FAILED |

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Pyodide

 		
 Using Pyodide from Iodide

 		
 Running basic Python

 		
 Loading packages

 		
 Using a local build of Pyodide with Iodide

 		
 Using Pyodide from Javascript

 		
 Startup

 		
 Running Python code

 		
 Loading packages

 		
 Complete example

 		
 Using Pyodide from a web worker

 		
 Startup

 		
 Loading packages

 		
 Caveats

 		
 Installing packages from PyPI

 		
 API Reference

 		
 Python API

 		
 pyodide.open_url(url)

 		
 pyodide.eval_code(code, ns)

 		
 pyodide.as_nested_list(obj)

 		
 Javascript API

 		
 pyodide.loadPackage(names)

 		
 pyodide.loadedPackages

 		
 pyodide.pyimport(name)

 		
 pyodide.globals

 		
 pyodide.repr(obj)

 		
 pyodide.runPython(code)

 		
 pyodide.runPythonAsync(code, messageCallback)

 		
 pyodide.version()

 		
 Creating a Pyodide package

 		
 The meta.yaml file

 		
 package

 		
 source

 		
 build

 		
 requirements

 		
 Type conversions

 		
 Basic types

 		
 Typed arrays

 		
 Class instances

 		
 Javascript from Python

 		
 Python from Javascript

 		
 Using Python objects from Javascript

 		
 Using Javascript objects from Python

 		
 Performance considerations

 		
 About the Project

 		
 Pyodide

 		
 How to Contribute

 		
 IODIDE CODE of CONDUCT

_static/up-pressed.png

_static/up.png

_static/plus.png

