

pip

User list [http://groups.google.com/group/python-virtualenv] |
Dev list [http://groups.google.com/group/pypa-dev] |
Github [https://github.com/pypa/pip] |
PyPI [https://pypi.python.org/pypi/pip/] |
User IRC: #pypa |
Dev IRC: #pypa-dev

The PyPA recommended [https://packaging.python.org/en/latest/current/] tool
for installing Python packages.

	Quickstart

	Installation
	Do I need to install pip?

	Installing with get-pip.py

	Using Linux Package Managers

	Upgrading pip

	Python and OS Compatibility

	User Guide
	Installing Packages

	Requirements Files

	Constraints Files

	Installing from Wheels

	Uninstalling Packages

	Listing Packages

	Searching for Packages

	Configuration

	Installing from local packages

	"Only if needed" Recursive Upgrade

	User Installs

	Ensuring Repeatability

	Reference Guide
	pip

	pip install

	pip download

	pip uninstall

	pip freeze

	pip list

	pip show

	pip search

	pip wheel

	pip hash

	Development
	Pull Requests

	Automated Testing

	Running tests

	Getting Involved

	Release Process

	Creating a Bugfix Release

	Release Notes

Quickstart

First, Install pip.

Install a package from PyPI [http://pypi.python.org/pypi/]:

$ pip install SomePackage
 [...]
 Successfully installed SomePackage

Install a package already downloaded from PyPI [http://pypi.python.org/pypi/] or got elsewhere.
This is useful if the target machine does not have a network connection:

$ pip install SomePackage-1.0-py2.py3-none-any.whl
 [...]
 Successfully installed SomePackage

Show what files were installed:

$ pip show --files SomePackage
 Name: SomePackage
 Version: 1.0
 Location: /my/env/lib/pythonx.x/site-packages
 Files:
 ../somepackage/__init__.py
 [...]

List what packages are outdated:

$ pip list --outdated
 SomePackage (Current: 1.0 Latest: 2.0)

Upgrade a package:

$ pip install --upgrade SomePackage
 [...]
 Found existing installation: SomePackage 1.0
 Uninstalling SomePackage:
 Successfully uninstalled SomePackage
 Running setup.py install for SomePackage
 Successfully installed SomePackage

Uninstall a package:

$ pip uninstall SomePackage
 Uninstalling SomePackage:
 /my/env/lib/pythonx.x/site-packages/somepackage
 Proceed (y/n)? y
 Successfully uninstalled SomePackage

Installation

Do I need to install pip?

pip is already installed if you're using Python 2 >=2.7.9 or Python 3 >=3.4
binaries downloaded from python.org [https://www.python.org], but you'll
need to upgrade pip.

Additionally, pip will already be installed if you're working in a Virtual
Environment [https://packaging.python.org/tutorials/installing-packages/#creating-and-using-virtual-environments] created by
virtualenv [https://packaging.python.org/key_projects/#virtualenv] or pyvenv [https://packaging.python.org/key_projects/#venv].

Installing with get-pip.py

To install pip, securely download get-pip.py [https://bootstrap.pypa.io/get-pip.py]. 2

Then run the following:

python get-pip.py

Warning

Be cautious if you're using a Python install that's managed by your operating
system or another package manager. get-pip.py does not coordinate with
those tools, and may leave your system in an inconsistent state.

get-pip.py will also install setuptools [https://packaging.python.org/key_projects/#setuptools] 3 and wheel [https://packaging.python.org/key_projects/#wheel],
if they're not already. setuptools [https://packaging.python.org/key_projects/#setuptools] is required to install
source distributions [https://packaging.python.org/glossary/#term-source-distribution-or-sdist]. Both are
required to be able to build a Wheel Cache (which improves installation
speed), although neither are required to install pre-built wheels [https://packaging.python.org/glossary/#term-wheel].

Note

The get-pip.py script is supported on the same python version as pip.
For the now unsupported Python 3.2, an alternate script is available
here [https://bootstrap.pypa.io/3.2/get-pip.py].

get-pip.py options

	
--no-setuptools

	If set, don't attempt to install setuptools [https://packaging.python.org/key_projects/#setuptools]

	
--no-wheel

	If set, don't attempt to install wheel [https://packaging.python.org/key_projects/#wheel]

Additionally, get-pip.py supports using the pip install options and the general options. Below are
some examples:

Install from local copies of pip and setuptools:

python get-pip.py --no-index --find-links=/local/copies

Install to the user site 4:

python get-pip.py --user

Install behind a proxy:

python get-pip.py --proxy="[user:passwd@]proxy.server:port"

Using Linux Package Managers

See Installing pip/setuptools/wheel with Linux Package Managers [https://packaging.python.org/guides/installing-using-linux-tools/#installing-pip-setuptools-wheel-with-linux-package-managers] in
the Python Packaging User Guide [https://packaging.python.org/en/latest/current/].

Upgrading pip

On Linux or macOS:

pip install -U pip

On Windows 5:

python -m pip install -U pip

Python and OS Compatibility

pip works with CPython versions 2.6, 2.7, 3.3, 3.4, 3.5 and also pypy.

This means pip works on the latest patch version of each of these minor versions
(i.e. 2.6.9 for 2.6, etc).
Previous patch versions are supported on a best effort approach.

pip works on Unix/Linux, macOS, and Windows.

	1

	For Python 2, see https://docs.python.org/2/installing, and for Python3,
see https://docs.python.org/3/installing.

	2

	"Secure" in this context means using a modern browser or a
tool like curl that verifies SSL certificates when downloading from
https URLs.

	3

	Beginning with pip v1.5.1, get-pip.py stopped requiring setuptools to
be installed first.

	4

	The pip developers are considering making --user the default for all
installs, including get-pip.py installs of pip, but at this time,
--user installs for pip itself, should not be considered to be fully
tested or endorsed. For discussion, see Issue 1668 [https://github.com/pypa/pip/issues/1668].

	5

	https://github.com/pypa/pip/issues/1299

User Guide

Contents

	User Guide

	Installing Packages

	Requirements Files

	Constraints Files

	Installing from Wheels

	Uninstalling Packages

	Listing Packages

	Searching for Packages

	Configuration

	Config file

	Environment Variables

	Config Precedence

	Command Completion

	Installing from local packages

	"Only if needed" Recursive Upgrade

	User Installs

	Ensuring Repeatability

	Pinned Version Numbers

	Hash-checking Mode

	Installation Bundles

Installing Packages

pip supports installing from PyPI [http://pypi.python.org/pypi], version control, local projects, and
directly from distribution files.

The most common scenario is to install from PyPI [http://pypi.python.org/pypi] using Requirement Specifiers

$ pip install SomePackage # latest version
$ pip install SomePackage==1.0.4 # specific version
$ pip install 'SomePackage>=1.0.4' # minimum version

For more information and examples, see the pip install reference.

Requirements Files

"Requirements files" are files containing a list of items to be
installed using pip install like so:

pip install -r requirements.txt

Details on the format of the files are here: Requirements File Format.

Logically, a Requirements file is just a list of pip install arguments
placed in a file. Note that you should not rely on the items in the file being
installed by pip in any particular order.

In practice, there are 4 common uses of Requirements files:

	Requirements files are used to hold the result from pip freeze for the
purpose of achieving repeatable installations. In
this case, your requirement file contains a pinned version of everything that
was installed when pip freeze was run.

pip freeze > requirements.txt
pip install -r requirements.txt

	Requirements files are used to force pip to properly resolve dependencies.
As it is now, pip doesn't have true dependency resolution [https://github.com/pypa/pip/issues/988], but instead simply uses the first
specification it finds for a project. E.g if pkg1 requires pkg3>=1.0 and
pkg2 requires pkg3>=1.0,<=2.0, and if pkg1 is resolved first, pip will
only use pkg3>=1.0, and could easily end up installing a version of pkg3
that conflicts with the needs of pkg2. To solve this problem, you can
place pkg3>=1.0,<=2.0 (i.e. the correct specification) into your
requirements file directly along with the other top level requirements. Like
so:

pkg1
pkg2
pkg3>=1.0,<=2.0

	Requirements files are used to force pip to install an alternate version of a
sub-dependency. For example, suppose ProjectA in your requirements file
requires ProjectB, but the latest version (v1.3) has a bug, you can force
pip to accept earlier versions like so:

ProjectA
ProjectB<1.3

	Requirements files are used to override a dependency with a local patch that
lives in version control. For example, suppose a dependency,
SomeDependency from PyPI has a bug, and you can't wait for an upstream fix.
You could clone/copy the src, make the fix, and place it in VCS with the tag
sometag. You'd reference it in your requirements file with a line like so:

git+https://myvcs.com/some_dependency@sometag#egg=SomeDependency

If SomeDependency was previously a top-level requirement in your
requirements file, then replace that line with the new line. If
SomeDependency is a sub-dependency, then add the new line.

It's important to be clear that pip determines package dependencies using
install_requires metadata [https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-dependencies],
not by discovering requirements.txt files embedded in projects.

See also:

	Requirements File Format

	pip freeze

	"setup.py vs requirements.txt" (an article by Donald Stufft) [https://caremad.io/2013/07/setup-vs-requirement/]

Constraints Files

Constraints files are requirements files that only control which version of a
requirement is installed, not whether it is installed or not. Their syntax and
contents is nearly identical to Requirements Files. There is one key
difference: Including a package in a constraints file does not trigger
installation of the package.

Use a constraints file like so:

pip install -c constraints.txt

Constraints files are used for exactly the same reason as requirements files
when you don't know exactly what things you want to install. For instance, say
that the "helloworld" package doesn't work in your environment, so you have a
local patched version. Some things you install depend on "helloworld", and some
don't.

One way to ensure that the patched version is used consistently is to
manually audit the dependencies of everything you install, and if "helloworld"
is present, write a requirements file to use when installing that thing.

Constraints files offer a better way: write a single constraints file for your
organisation and use that everywhere. If the thing being installed requires
"helloworld" to be installed, your fixed version specified in your constraints
file will be used.

Constraints file support was added in pip 7.1.

Installing from Wheels

"Wheel" is a built, archive format that can greatly speed installation compared
to building and installing from source archives. For more information, see the
Wheel docs [https://wheel.readthedocs.io] ,
PEP427 [http://www.python.org/dev/peps/pep-0427], and
PEP425 [http://www.python.org/dev/peps/pep-0425]

Pip prefers Wheels where they are available. To disable this, use the
--no-binary flag for pip install.

If no satisfactory wheels are found, pip will default to finding source archives.

To install directly from a wheel archive:

pip install SomePackage-1.0-py2.py3-none-any.whl

For the cases where wheels are not available, pip offers pip wheel as a
convenience, to build wheels for all your requirements and dependencies.

pip wheel requires the wheel package [https://pypi.python.org/pypi/wheel] to be installed, which provides the
"bdist_wheel" setuptools extension that it uses.

To build wheels for your requirements and all their dependencies to a local directory:

pip install wheel
pip wheel --wheel-dir=/local/wheels -r requirements.txt

And then to install those requirements just using your local directory of wheels (and not from PyPI):

pip install --no-index --find-links=/local/wheels -r requirements.txt

Uninstalling Packages

pip is able to uninstall most packages like so:

$ pip uninstall SomePackage

pip also performs an automatic uninstall of an old version of a package
before upgrading to a newer version.

For more information and examples, see the pip uninstall reference.

Listing Packages

To list installed packages:

$ pip list
docutils (0.9.1)
Jinja2 (2.6)
Pygments (1.5)
Sphinx (1.1.2)

To list outdated packages, and show the latest version available:

$ pip list --outdated
docutils (Current: 0.9.1 Latest: 0.10)
Sphinx (Current: 1.1.2 Latest: 1.1.3)

To show details about an installed package:

$ pip show sphinx

Name: Sphinx
Version: 1.1.3
Location: /my/env/lib/pythonx.x/site-packages
Requires: Pygments, Jinja2, docutils

For more information and examples, see the pip list and pip show
reference pages.

Searching for Packages

pip can search PyPI [http://pypi.python.org/pypi] for packages using the pip search
command:

$ pip search "query"

The query will be used to search the names and summaries of all
packages.

For more information and examples, see the pip search reference.

Configuration

Config file

pip allows you to set all command line option defaults in a standard ini
style config file.

The names and locations of the configuration files vary slightly across
platforms. You may have per-user, per-virtualenv or site-wide (shared amongst
all users) configuration:

Per-user:

	On Unix the default configuration file is: $HOME/.config/pip/pip.conf
which respects the XDG_CONFIG_HOME environment variable.

	On macOS the configuration file is
$HOME/Library/Application Support/pip/pip.conf.

	On Windows the configuration file is %APPDATA%\pip\pip.ini.

There are also a legacy per-user configuration file which is also respected,
these are located at:

	On Unix and macOS the configuration file is: $HOME/.pip/pip.conf

	On Windows the configuration file is: %HOME%\pip\pip.ini

You can set a custom path location for this config file using the environment
variable PIP_CONFIG_FILE.

Inside a virtualenv:

	On Unix and macOS the file is $VIRTUAL_ENV/pip.conf

	On Windows the file is: %VIRTUAL_ENV%\pip.ini

Site-wide:

	On Unix the file may be located in /etc/pip.conf. Alternatively
it may be in a "pip" subdirectory of any of the paths set in the
environment variable XDG_CONFIG_DIRS (if it exists), for example
/etc/xdg/pip/pip.conf.

	On macOS the file is: /Library/Application Support/pip/pip.conf

	On Windows XP the file is:
C:\Documents and Settings\All Users\Application Data\pip\pip.ini

	On Windows 7 and later the file is hidden, but writeable at
C:\ProgramData\pip\pip.ini

	Site-wide configuration is not supported on Windows Vista

If multiple configuration files are found by pip then they are combined in
the following order:

	Firstly the site-wide file is read, then

	The per-user file is read, and finally

	The virtualenv-specific file is read.

Each file read overrides any values read from previous files, so if the
global timeout is specified in both the site-wide file and the per-user file
then the latter value is the one that will be used.

The names of the settings are derived from the long command line option, e.g.
if you want to use a different package index (--index-url) and set the
HTTP timeout (--default-timeout) to 60 seconds your config file would
look like this:

[global]
timeout = 60
index-url = http://download.zope.org/ppix

Each subcommand can be configured optionally in its own section so that every
global setting with the same name will be overridden; e.g. decreasing the
timeout to 10 seconds when running the freeze
(Freezing Requirements) command and using
60 seconds for all other commands is possible with:

[global]
timeout = 60

[freeze]
timeout = 10

Boolean options like --ignore-installed or --no-dependencies can be
set like this:

[install]
ignore-installed = true
no-dependencies = yes

To enable the boolean options --no-compile and --no-cache-dir, falsy
values have to be used:

[global]
no-cache-dir = false

[install]
no-compile = no

Appending options like --find-links can be written on multiple lines:

[global]
find-links =
 http://download.example.com

[install]
find-links =
 http://mirror1.example.com
 http://mirror2.example.com

Environment Variables

pip's command line options can be set with environment variables using the
format PIP_<UPPER_LONG_NAME> . Dashes (-) have to be replaced with
underscores (_).

For example, to set the default timeout:

export PIP_DEFAULT_TIMEOUT=60

This is the same as passing the option to pip directly:

pip --default-timeout=60 [...]

To set options that can be set multiple times on the command line, just add
spaces in between values. For example:

export PIP_FIND_LINKS="http://mirror1.example.com http://mirror2.example.com"

is the same as calling:

pip install --find-links=http://mirror1.example.com --find-links=http://mirror2.example.com

Config Precedence

Command line options have precedence over environment variables, which have precedence over the config file.

Within the config file, command specific sections have precedence over the global section.

Examples:

	--host=foo overrides PIP_HOST=foo

	PIP_HOST=foo overrides a config file with [global] host = foo

	A command specific section in the config file [<command>] host = bar
overrides the option with same name in the [global] config file section

Command Completion

pip comes with support for command line completion in bash, zsh and fish.

To setup for bash:

$ pip completion --bash >> ~/.profile

To setup for zsh:

$ pip completion --zsh >> ~/.zprofile

To setup for fish:

$ pip completion --fish > ~/.config/fish/completions/pip.fish

Alternatively, you can use the result of the completion command
directly with the eval function of your shell, e.g. by adding the following to your startup file:

eval "`pip completion --bash`"

Installing from local packages

In some cases, you may want to install from local packages only, with no traffic
to PyPI.

First, download the archives that fulfill your requirements:

$ pip install --download DIR -r requirements.txt

Note that pip install --download will look in your wheel cache first, before
trying to download from PyPI. If you've never installed your requirements
before, you won't have a wheel cache for those items. In that case, if some of
your requirements don't come as wheels from PyPI, and you want wheels, then run
this instead:

$ pip wheel --wheel-dir DIR -r requirements.txt

Then, to install from local only, you'll be using --find-links and --no-index like so:

$ pip install --no-index --find-links=DIR -r requirements.txt

"Only if needed" Recursive Upgrade

pip install --upgrade is currently written to perform an eager recursive
upgrade, i.e. it upgrades all dependencies regardless of whether they still
satisfy the new parent requirements.

E.g. supposing:

	SomePackage-1.0 requires AnotherPackage>=1.0

	SomePackage-2.0 requires AnotherPackage>=1.0 and OneMorePackage==1.0

	SomePackage-1.0 and AnotherPackage-1.0 are currently installed

	SomePackage-2.0 and AnotherPackage-2.0 are the latest versions available on PyPI.

Running pip install --upgrade SomePackage would upgrade SomePackage and
AnotherPackage despite AnotherPackage already being satisfied.

pip doesn't currently have an option to do an "only if needed" recursive
upgrade, but you can achieve it using these 2 steps:

pip install --upgrade --no-deps SomePackage
pip install SomePackage

The first line will upgrade SomePackage, but not dependencies like
AnotherPackage. The 2nd line will fill in new dependencies like
OneMorePackage.

See #59 [https://github.com/pypa/pip/issues/59] for a plan of making "only if needed" recursive the default
behavior for a new pip upgrade command.

User Installs

With Python 2.6 came the "user scheme" for installation [http://docs.python.org/install/index.html#alternate-installation-the-user-scheme],
which means that all Python distributions support an alternative install
location that is specific to a user. The default location for each OS is
explained in the python documentation for the site.USER_BASE [http://docs.python.org/library/site.html#site.USER_BASE] variable. This mode
of installation can be turned on by specifying the --user option to pip install.

Moreover, the "user scheme" can be customized by setting the
PYTHONUSERBASE environment variable, which updates the value of site.USER_BASE.

To install "SomePackage" into an environment with site.USER_BASE customized to '/myappenv', do the following:

export PYTHONUSERBASE=/myappenv
pip install --user SomePackage

pip install --user follows four rules:

	When globally installed packages are on the python path, and they conflict
with the installation requirements, they are ignored, and not
uninstalled.

	When globally installed packages are on the python path, and they satisfy
the installation requirements, pip does nothing, and reports that
requirement is satisfied (similar to how global packages can satisfy
requirements when installing packages in a --system-site-packages
virtualenv).

	pip will not perform a --user install in a --no-site-packages
virtualenv (i.e. the default kind of virtualenv), due to the user site not
being on the python path. The installation would be pointless.

	In a --system-site-packages virtualenv, pip will not install a package
that conflicts with a package in the virtualenv site-packages. The --user
installation would lack sys.path precedence and be pointless.

To make the rules clearer, here are some examples:

From within a --no-site-packages virtualenv (i.e. the default kind):

$ pip install --user SomePackage
Can not perform a '--user' install. User site-packages are not visible in this virtualenv.

From within a --system-site-packages virtualenv where SomePackage==0.3 is already installed in the virtualenv:

$ pip install --user SomePackage==0.4
Will not install to the user site because it will lack sys.path precedence

From within a real python, where SomePackage is not installed globally:

$ pip install --user SomePackage
[...]
Successfully installed SomePackage

From within a real python, where SomePackage is installed globally, but is not the latest version:

$ pip install --user SomePackage
[...]
Requirement already satisfied (use --upgrade to upgrade)

$ pip install --user --upgrade SomePackage
[...]
Successfully installed SomePackage

From within a real python, where SomePackage is installed globally, and is the latest version:

$ pip install --user SomePackage
[...]
Requirement already satisfied (use --upgrade to upgrade)

$ pip install --user --upgrade SomePackage
[...]
Requirement already up-to-date: SomePackage

force the install
$ pip install --user --ignore-installed SomePackage
[...]
Successfully installed SomePackage

Ensuring Repeatability

pip can achieve various levels of repeatability:

Pinned Version Numbers

Pinning the versions of your dependencies in the requirements file
protects you from bugs or incompatibilities in newly released versions:

SomePackage == 1.2.3
DependencyOfSomePackage == 4.5.6

Using pip freeze to generate the requirements file will ensure that not
only the top-level dependencies are included but their sub-dependencies as
well, and so on. Perform the installation using --no-deps for an extra dose of insurance against installing
anything not explicitly listed.

This strategy is easy to implement and works across OSes and architectures.
However, it trusts PyPI and the certificate authority chain. It
also relies on indices and find-links locations not allowing
packages to change without a version increase. (PyPI does protect
against this.)

Hash-checking Mode

Beyond pinning version numbers, you can add hashes against which to verify
downloaded packages:

FooProject == 1.2 --hash=sha256:2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

This protects against a compromise of PyPI or the HTTPS
certificate chain. It also guards against a package changing
without its version number changing (on indexes that allow this).
This approach is a good fit for automated server deployments.

Hash-checking mode is a labor-saving alternative to running a private index
server containing approved packages: it removes the need to upload packages,
maintain ACLs, and keep an audit trail (which a VCS gives you on the
requirements file for free). It can also substitute for a vendor library,
providing easier upgrades and less VCS noise. It does not, of course,
provide the availability benefits of a private index or a vendor library.

For more, see pip install's discussion of hash-checking mode.

Installation Bundles

Using pip wheel, you can bundle up all of a project's dependencies, with
any compilation done, into a single archive. This allows installation when
index servers are unavailable and avoids time-consuming recompilation. Create
an archive like this:

$ tempdir=$(mktemp -d /tmp/wheelhouse-XXXXX)
$ pip wheel -r requirements.txt --wheel-dir=$tempdir
$ cwd=`pwd`
$ (cd "$tempdir"; tar -cjvf "$cwd/bundled.tar.bz2" *)

You can then install from the archive like this:

$ tempdir=$(mktemp -d /tmp/wheelhouse-XXXXX)
$ (cd $tempdir; tar -xvf /path/to/bundled.tar.bz2)
$ pip install --force-reinstall --ignore-installed --upgrade --no-index --no-deps $tempdir/*

Note that compiled packages are typically OS- and architecture-specific, so
these archives are not necessarily portable across machines.

Hash-checking mode can be used along with this method to ensure that future
archives are built with identical packages.

Warning

Finally, beware of the setup_requires keyword arg in setup.py.
The (rare) packages that use it will cause those dependencies to be
downloaded by setuptools directly, skipping pip's protections. If you need
to use such a package, see Controlling
setup_requires.

Reference Guide

	pip
	Usage

	Description

	General Options

	pip install
	Usage

	Description

	Options

	Examples

	pip download
	Usage

	Description

	Options

	Examples

	pip uninstall
	Usage

	Description

	Options

	Examples

	pip freeze
	Usage

	Description

	Options

	Examples

	pip list
	Usage

	Description

	Options

	Examples

	pip show
	Usage

	Description

	Options

	Examples

	pip search
	Usage

	Description

	Options

	Examples

	pip wheel
	Usage

	Description

	Options

	Examples

	pip hash
	Usage

	Description

	Options

	Example

pip

Contents

	pip

	Usage

	Description

	Logging

	Console logging

	File logging

	--exists-action option

	Build System Interface

	Setuptools Injection

	Future Developments

	Build Options

	General Options

Usage

pip <command> [options]

Description

Logging

Console logging

pip offers -v, --verbose and -q, --quiet
to control the console log level.

File logging

pip offers the --log option for specifying a file where a maximum
verbosity log will be kept. This option is empty by default. This log appends
to previous logging.

Like all pip options, --log can also be set as an environment variable, or
placed into the pip config file. See the Configuration section.

--exists-action option

This option specifies default behavior when path already exists.
Possible cases: downloading files or checking out repositories for installation,
creating archives. If --exists-action is not defined, pip will prompt
when decision is needed.

	(s)witch

	Only relevant to VCS checkout. Attempt to switch the checkout
to the appropriate url and/or revision.

	(i)gnore

	Abort current operation (e.g. don't copy file, don't create archive,
don't modify a checkout).

	(w)ipe

	Delete the file or VCS checkout before trying to create, download, or checkout a new one.

	(b)ackup

	Rename the file or checkout to {name}{'.bak' * n}, where n is some number
of .bak extensions, such that the file didn't exist at some point.
So the most recent backup will be the one with the largest number after .bak.

	(a)abort

	Abort pip and return non-zero exit status.

Build System Interface

Pip builds packages by invoking the build system. Presently, the only supported
build system is setuptools, but future developments to the Python packaging
infrastructure are expected to include support for other build systems. As
well as package building, the build system is also invoked to install packages
direct from source.

The interface to the build system is via the setup.py command line script -
all build actions are defined in terms of the specific setup.py command
line that will be run to invoke the required action.

Setuptools Injection

As noted above, the supported build system is setuptools. However, not all
packages use setuptools in their build scripts. To support projects that
use "pure distutils", pip injects setuptools into sys.modules
before invoking setup.py. The injection should be transparent to
distutils-based projects, but 3rd party build tools wishing to provide a
setup.py emulating the commands pip requires may need to be aware that it
takes place.

Future Developments

PEP426 [http://www.python.org/dev/peps/pep-0426/#metabuild-system] notes that the intention is to add hooks to project metadata in
version 2.1 of the metadata spec, to explicitly define how to build a project
from its source. Once this version of the metadata spec is final, pip will
migrate to using that interface. At that point, the setup.py interface
documented here will be retained solely for legacy purposes, until projects
have migrated.

Specifically, applications should not expect to rely on there being any form
of backward compatibility guarantees around the setup.py interface.

Build Options

The --global-option and --build-option arguments to the pip install
and pip wheel inject additional arguments into the setup.py command
(--build-option is only available in pip wheel). These arguments are
included in the command as follows:

python setup.py <global_options> BUILD COMMAND <build_options>

The options are passed unmodified, and presently offer direct access to the
distutils command line. Use of --global-option and --build-option
should be considered as build system dependent, and may not be supported in the
current form if support for alternative build systems is added to pip.

General Options

	
-h, --help

	Show help.

	
--isolated

	Run pip in an isolated mode, ignoring environment variables and user configuration.

	
-v, --verbose

	Give more output. Option is additive, and can be used up to 3 times.

	
-V, --version

	Show version and exit.

	
-q, --quiet

	Give less output. Option is additive, and can be used up to 3 times (corresponding to WARNING, ERROR, and CRITICAL logging levels).

	
--log <path>

	Path to a verbose appending log.

	
--proxy <proxy>

	Specify a proxy in the form [user:passwd@]proxy.server:port.

	
--retries <retries>

	Maximum number of retries each connection should attempt (default 5 times).

	
--timeout <sec>

	Set the socket timeout (default 15 seconds).

	
--exists-action <action>

	Default action when a path already exists: (s)witch, (i)gnore, (w)ipe, (b)ackup, (a)bort.

	
--trusted-host <hostname>

	Mark this host as trusted, even though it does not have valid or any HTTPS.

	
--cert <path>

	Path to alternate CA bundle.

	
--client-cert <path>

	Path to SSL client certificate, a single file containing the private key and the certificate in PEM format.

	
--cache-dir <dir>

	Store the cache data in <dir>.

	
--no-cache-dir

	Disable the cache.

	
--disable-pip-version-check

	Don't periodically check PyPI to determine whether a new version of pip is available for download. Implied with --no-index.

pip install

Contents

	pip install

	Usage

	Description

	Overview

	Argument Handling

	Working Out the Name and Version

	Satisfying Requirements

	Installation Order

	Requirements File Format

	Example Requirements File

	Requirement Specifiers

	Per-requirement Overrides

	Pre-release Versions

	VCS Support

	Git

	Mercurial

	Subversion

	Bazaar

	Finding Packages

	SSL Certificate Verification

	Caching

	Wheel Cache

	Hash-Checking Mode

	Hashes from PyPI

	"Editable" Installs

	Controlling setup_requires

	Build System Interface

	Options

	Examples

Usage

pip install [options] <requirement specifier> [package-index-options] ...
pip install [options] -r <requirements file> [package-index-options] ...
pip install [options] [-e] <vcs project url> ...
pip install [options] [-e] <local project path> ...
pip install [options] <archive url/path> ...

Description

Install packages from:

	PyPI (and other indexes) using requirement specifiers.

	VCS project urls.

	Local project directories.

	Local or remote source archives.

pip also supports installing from "requirements files", which provide
an easy way to specify a whole environment to be installed.

Overview

Pip install has several stages:

	Identify the base requirements. The user supplied arguments are processed
here.

	Resolve dependencies. What will be installed is determined here.

	Build wheels. All the dependencies that can be are built into wheels.

	Install the packages (and uninstall anything being upgraded/replaced).

Argument Handling

When looking at the items to be installed, pip checks what type of item
each is, in the following order:

	Project or archive URL.

	Local directory (which must contain a setup.py, or pip will report
an error).

	Local file (a sdist or wheel format archive, following the naming
conventions for those formats).

	A requirement, as specified in PEP 440.

Each item identified is added to the set of requirements to be satisfied by
the install.

Working Out the Name and Version

For each candidate item, pip needs to know the project name and version. For
wheels (identified by the .whl file extension) this can be obtained from
the filename, as per the Wheel spec. For local directories, or explicitly
specified sdist files, the setup.py egg_info command is used to determine
the project metadata. For sdists located via an index, the filename is parsed
for the name and project version (this is in theory slightly less reliable
than using the egg_info command, but avoids downloading and processing
unnecessary numbers of files).

Any URL may use the #egg=name syntax (see VCS Support) to
explicitly state the project name.

Satisfying Requirements

Once pip has the set of requirements to satisfy, it chooses which version of
each requirement to install using the simple rule that the latest version that
satisfies the given constraints will be installed (but see here
for an exception regarding pre-release versions). Where more than one source of
the chosen version is available, it is assumed that any source is acceptable
(as otherwise the versions would differ).

Installation Order

As of v6.1.0, pip installs dependencies before their dependents, i.e. in
"topological order". This is the only commitment pip currently makes related
to order. While it may be coincidentally true that pip will install things in
the order of the install arguments or in the order of the items in a
requirements file, this is not a promise.

In the event of a dependency cycle (aka "circular dependency"), the current
implementation (which might possibly change later) has it such that the first
encountered member of the cycle is installed last.

For instance, if quux depends on foo which depends on bar which depends on baz,
which depends on foo:

pip install quux
...
Installing collected packages baz, bar, foo, quux

pip install bar
...
Installing collected packages foo, baz, bar

Prior to v6.1.0, pip made no commitments about install order.

The decision to install topologically is based on the principle that
installations should proceed in a way that leaves the environment usable at each
step. This has two main practical benefits:

	Concurrent use of the environment during the install is more likely to work.

	A failed install is less likely to leave a broken environment. Although pip
would like to support failure rollbacks eventually, in the mean time, this is
an improvement.

Although the new install order is not intended to replace (and does not replace)
the use of setup_requires to declare build dependencies, it may help certain
projects install from sdist (that might previously fail) that fit the following
profile:

	They have build dependencies that are also declared as install dependencies
using install_requires.

	python setup.py egg_info works without their build dependencies being
installed.

	For whatever reason, they don't or won't declare their build dependencies using
setup_requires.

Requirements File Format

Each line of the requirements file indicates something to be installed,
and like arguments to pip install, the following forms are supported:

[[--option]...]
<requirement specifier> [; markers] [[--option]...]
<archive url/path>
[-e] <local project path>
[-e] <vcs project url>

For details on requirement specifiers, see Requirement Specifiers.

See the pip install Examples for examples of all these forms.

A line that begins with # is treated as a comment and ignored. Whitespace
followed by a # causes the # and the remainder of the line to be
treated as a comment.

A line ending in an unescaped \ is treated as a line continuation
and the newline following it is effectively ignored.

Comments are stripped before line continuations are processed.

The following options are supported:

	-i, --index-url

	--extra-index-url

	--no-index

	-f, --find-links

	--no-binary

	--only-binary

	--require-hashes

For example, to specify --no-index and 2 --find-links locations:

--no-index
--find-links /my/local/archives
--find-links http://some.archives.com/archives

If you wish, you can refer to other requirements files, like this:

-r more_requirements.txt

You can also refer to constraints files, like this:

-c some_constraints.txt

Example Requirements File

Use pip install -r example-requirements.txt to install:

#
####### example-requirements.txt #######
#
Requirements without Version Specifiers
nose
nose-cov
beautifulsoup4
#
Requirements with Version Specifiers
See https://www.python.org/dev/peps/pep-0440/#version-specifiers
docopt == 0.6.1 # Version Matching. Must be version 0.6.1
keyring >= 4.1.1 # Minimum version 4.1.1
coverage != 3.5 # Version Exclusion. Anything except version 3.5
Mopidy-Dirble ~= 1.1 # Compatible release. Same as >= 1.1, == 1.*
#
Refer to other requirements files
-r other-requirements.txt
#
#
A particular file
./downloads/numpy-1.9.2-cp34-none-win32.whl
http://wxpython.org/Phoenix/snapshot-builds/wxPython_Phoenix-3.0.3.dev1820+49a8884-cp34-none-win_amd64.whl
#
Additional Requirements without Version Specifiers
Same as 1st section, just here to show that you can put things in any order.
rejected
green
#

Requirement Specifiers

pip supports installing from a package index using a requirement
specifier [https://packaging.python.org/glossary/#term-requirement-specifier]. Generally speaking, a requirement
specifier is composed of a project name followed by optional version
specifiers [https://packaging.python.org/glossary/#term-version-specifier]. PEP508 [http://www.python.org/dev/peps/pep-0508] contains a full specification
of the format of a requirement (pip does not support the url_req form
of specifier at this time).

Some examples:

SomeProject
SomeProject == 1.3
SomeProject >=1.2,<.2.0
SomeProject[foo, bar]
SomeProject~=1.4.2

Since version 6.0, pip also supports specifiers containing environment markers [https://www.python.org/dev/peps/pep-0426/#environment-markers] like so:

SomeProject ==5.4 ; python_version < '2.7'
SomeProject; sys_platform == 'win32'

Environment markers are supported in the command line and in requirements files.

Note

Use quotes around specifiers in the shell when using >, <, or when
using environment markers. Don't use quotes in requirement files. 1

Per-requirement Overrides

Since version 7.0 pip supports controlling the command line options given to
setup.py via requirements files. This disables the use of wheels (cached or
otherwise) for that package, as setup.py does not exist for wheels.

The --global-option and --install-option options are used to pass
options to setup.py. For example:

FooProject >= 1.2 --global-option="--no-user-cfg" \
 --install-option="--prefix='/usr/local'" \
 --install-option="--no-compile"

The above translates roughly into running FooProject's setup.py
script as:

python setup.py --no-user-cfg install --prefix='/usr/local' --no-compile

Note that the only way of giving more than one option to setup.py
is through multiple --global-option and --install-option
options, as shown in the example above. The value of each option is
passed as a single argument to the setup.py script. Therefore, a
line such as the following is invalid and would result in an
installation error.

Invalid. Please use '--install-option' twice as shown above.
FooProject >= 1.2 --install-option="--prefix=/usr/local --no-compile"

Pre-release Versions

Starting with v1.4, pip will only install stable versions as specified by
PEP426 [http://www.python.org/dev/peps/pep-0426] by default. If a version cannot be parsed as a compliant PEP426 [http://www.python.org/dev/peps/pep-0426]
version then it is assumed to be a pre-release.

If a Requirement specifier includes a pre-release or development version
(e.g. >=0.0.dev0) then pip will allow pre-release and development versions
for that requirement. This does not include the != flag.

The pip install command also supports a --pre flag
that will enable installing pre-releases and development releases.

VCS Support

pip supports installing from Git, Mercurial, Subversion and Bazaar, and detects
the type of VCS using url prefixes: "git+", "hg+", "bzr+", "svn+".

pip requires a working VCS command on your path: git, hg, svn, or bzr.

VCS projects can be installed in editable mode (using
the --editable option) or not.

	For editable installs, the clone location by default is "<venv
path>/src/SomeProject" in virtual environments, and "<cwd>/src/SomeProject"
for global installs. The --src option can be used to
modify this location.

	For non-editable installs, the project is built locally in a temp dir and then
installed normally. Note that if a satisfactory version of the package is
already installed, the VCS source will not overwrite it without an --upgrade
flag. VCS requirements pin the package version (specified in the setup.py
file) of the target commit, not necessarily the commit itself.

The "project name" component of the url suffix "egg=<project name>-<version>"
is used by pip in its dependency logic to identify the project prior
to pip downloading and analyzing the metadata. The optional "version"
component of the egg name is not functionally important. It merely
provides a human-readable clue as to what version is in use. For projects
where setup.py is not in the root of project, "subdirectory" component
is used. Value of "subdirectory" component should be a path starting from root
of the project to where setup.py is located.

So if your repository layout is:

	pkg_dir/

	setup.py # setup.py for package pkg

	some_module.py

	other_dir/

	some_file

	some_other_file

You'll need to use pip install -e vcs+protocol://repo_url/#egg=pkg&subdirectory=pkg_dir.

Git

pip currently supports cloning over git, git+http, git+https,
git+ssh, git+git and git+file:

Here are the supported forms:

[-e] git://git.myproject.org/MyProject#egg=MyProject
[-e] git+http://git.myproject.org/MyProject#egg=MyProject
[-e] git+https://git.myproject.org/MyProject#egg=MyProject
[-e] git+ssh://git.myproject.org/MyProject#egg=MyProject
[-e] git+git://git.myproject.org/MyProject#egg=MyProject
[-e] git+file://git.myproject.org/MyProject#egg=MyProject
-e git+git@git.myproject.org:MyProject#egg=MyProject

Passing branch names, a commit hash or a tag name is possible like so:

[-e] git://git.myproject.org/MyProject.git@master#egg=MyProject
[-e] git://git.myproject.org/MyProject.git@v1.0#egg=MyProject
[-e] git://git.myproject.org/MyProject.git@da39a3ee5e6b4b0d3255bfef95601890afd80709#egg=MyProject

Mercurial

The supported schemes are: hg+http, hg+https,
hg+static-http and hg+ssh.

Here are the supported forms:

[-e] hg+http://hg.myproject.org/MyProject#egg=MyProject
[-e] hg+https://hg.myproject.org/MyProject#egg=MyProject
[-e] hg+ssh://hg.myproject.org/MyProject#egg=MyProject

You can also specify a revision number, a revision hash, a tag name or a local
branch name like so:

[-e] hg+http://hg.myproject.org/MyProject@da39a3ee5e6b#egg=MyProject
[-e] hg+http://hg.myproject.org/MyProject@2019#egg=MyProject
[-e] hg+http://hg.myproject.org/MyProject@v1.0#egg=MyProject
[-e] hg+http://hg.myproject.org/MyProject@special_feature#egg=MyProject

Subversion

pip supports the URL schemes svn, svn+svn, svn+http, svn+https, svn+ssh.

You can also give specific revisions to an SVN URL, like so:

[-e] svn+svn://svn.myproject.org/svn/MyProject#egg=MyProject
[-e] svn+http://svn.myproject.org/svn/MyProject/trunk@2019#egg=MyProject

which will check out revision 2019. @{20080101} would also check
out the revision from 2008-01-01. You can only check out specific
revisions using -e svn+....

Bazaar

pip supports Bazaar using the bzr+http, bzr+https, bzr+ssh,
bzr+sftp, bzr+ftp and bzr+lp schemes.

Here are the supported forms:

[-e] bzr+http://bzr.myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+sftp://user@myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+ssh://user@myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+ftp://user@myproject.org/MyProject/trunk#egg=MyProject
[-e] bzr+lp:MyProject#egg=MyProject

Tags or revisions can be installed like so:

[-e] bzr+https://bzr.myproject.org/MyProject/trunk@2019#egg=MyProject
[-e] bzr+http://bzr.myproject.org/MyProject/trunk@v1.0#egg=MyProject

Finding Packages

pip searches for packages on PyPI [http://pypi.python.org/pypi/] using the
http simple interface [http://pypi.python.org/simple],
which is documented here [https://setuptools.readthedocs.io/en/latest/easy_install.html#package-index-api]
and there [http://www.python.org/dev/peps/pep-0301/]

pip offers a number of Package Index Options for modifying how packages are found.

pip looks for packages in a number of places, on PyPI (if not disabled via
`--no-index`), in the local filesystem, and in any additional repositories
specified via `--find-links` or `--index-url`. There is no ordering in
the locations that are searched, rather they are all checked, and the "best"
match for the requirements (in terms of version number - see PEP440 [http://www.python.org/dev/peps/pep-0440] for
details) is selected.

See the pip install Examples.

SSL Certificate Verification

Starting with v1.3, pip provides SSL certificate verification over https, to
prevent man-in-the-middle attacks against PyPI downloads.

Caching

Starting with v6.0, pip provides an on-by-default cache which functions
similarly to that of a web browser. While the cache is on by default and is
designed do the right thing by default you can disable the cache and always
access PyPI by utilizing the --no-cache-dir option.

When making any HTTP request pip will first check its local cache to determine
if it has a suitable response stored for that request which has not expired. If
it does then it simply returns that response and doesn't make the request.

If it has a response stored, but it has expired, then it will attempt to make a
conditional request to refresh the cache which will either return an empty
response telling pip to simply use the cached item (and refresh the expiration
timer) or it will return a whole new response which pip can then store in the
cache.

When storing items in the cache, pip will respect the CacheControl header
if it exists, or it will fall back to the Expires header if that exists.
This allows pip to function as a browser would, and allows the index server
to communicate to pip how long it is reasonable to cache any particular item.

While this cache attempts to minimize network activity, it does not prevent
network access altogether. If you want a local install solution that
circumvents accessing PyPI, see Installing from local packages.

The default location for the cache directory depends on the Operating System:

	Unix

	~/.cache/pip and it respects the XDG_CACHE_HOME directory.

	macOS

	~/Library/Caches/pip.

	Windows

	<CSIDL_LOCAL_APPDATA>\pip\Cache

Wheel Cache

Pip will read from the subdirectory wheels within the pip cache directory
and use any packages found there. This is disabled via the same
--no-cache-dir option that disables the HTTP cache. The internal structure
of that is not part of the pip API. As of 7.0, pip makes a subdirectory for
each sdist that wheels are built from and places the resulting wheels inside.

Pip attempts to choose the best wheels from those built in preference to
building a new wheel. Note that this means when a package has both optional
C extensions and builds py tagged wheels when the C extension can't be built
that pip will not attempt to build a better wheel for Pythons that would have
supported it, once any generic wheel is built. To correct this, make sure that
the wheels are built with Python specific tags - e.g. pp on Pypy.

When no wheels are found for an sdist, pip will attempt to build a wheel
automatically and insert it into the wheel cache.

Hash-Checking Mode

Since version 8.0, pip can check downloaded package archives against local
hashes to protect against remote tampering. To verify a package against one or
more hashes, add them to the end of the line:

FooProject == 1.2 --hash=sha256:2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824 \
 --hash=sha256:486ea46224d1bb4fb680f34f7c9ad96a8f24ec88be73ea8e5a6c65260e9cb8a7

(The ability to use multiple hashes is important when a package has both
binary and source distributions or when it offers binary distributions for a
variety of platforms.)

The recommended hash algorithm at the moment is sha256, but stronger ones are
allowed, including all those supported by hashlib. However, weaker ones
such as md5, sha1, and sha224 are excluded to avoid giving a false sense of
security.

Hash verification is an all-or-nothing proposition. Specifying a --hash
against any requirement not only checks that hash but also activates a global
hash-checking mode, which imposes several other security restrictions:

	Hashes are required for all requirements. This is because a partially-hashed
requirements file is of little use and thus likely an error: a malicious
actor could slip bad code into the installation via one of the unhashed
requirements. Note that hashes embedded in URL-style requirements via the
#md5=... syntax suffice to satisfy this rule (regardless of hash
strength, for legacy reasons), though you should use a stronger
hash like sha256 whenever possible.

	Hashes are required for all dependencies. An error results if there is a
dependency that is not spelled out and hashed in the requirements file.

	Requirements that take the form of project names (rather than URLs or local
filesystem paths) must be pinned to a specific version using ==. This
prevents a surprising hash mismatch upon the release of a new version
that matches the requirement specifier.

	--egg is disallowed, because it delegates installation of dependencies
to setuptools, giving up pip's ability to enforce any of the above.

Hash-checking mode can be forced on with the --require-hashes command-line
option:

$ pip install --require-hashes -r requirements.txt
 ...
 Hashes are required in --require-hashes mode (implicitly on when a hash is
 specified for any package). These requirements were missing hashes,
 leaving them open to tampering. These are the hashes the downloaded
 archives actually had. You can add lines like these to your requirements
 files to prevent tampering.
 pyelasticsearch==1.0 --hash=sha256:44ddfb1225054d7d6b1d02e9338e7d4809be94edbe9929a2ec0807d38df993fa
 more-itertools==2.2 --hash=sha256:93e62e05c7ad3da1a233def6731e8285156701e3419a5fe279017c429ec67ce0

This can be useful in deploy scripts, to ensure that the author of the
requirements file provided hashes. It is also a convenient way to bootstrap
your list of hashes, since it shows the hashes of the packages it fetched. It
fetches only the preferred archive for each package, so you may still need to
add hashes for alternatives archives using pip hash: for instance if
there is both a binary and a source distribution.

The wheel cache is disabled in hash-checking mode to
prevent spurious hash mismatch errors. These would otherwise occur while
installing sdists that had already been automatically built into cached wheels:
those wheels would be selected for installation, but their hashes would not
match the sdist ones from the requirements file. A further complication is that
locally built wheels are nondeterministic: contemporary modification times make
their way into the archive, making hashes unpredictable across machines and
cache flushes. Compilation of C code adds further nondeterminism, as many
compilers include random-seeded values in their output. However, wheels fetched
from index servers are the same every time. They land in pip's HTTP cache, not
its wheel cache, and are used normally in hash-checking mode. The only downside
of having the wheel cache disabled is thus extra build time for sdists, and
this can be solved by making sure pre-built wheels are available from the index
server.

Hash-checking mode also works with pip download and pip wheel. A
comparison of hash-checking mode with other repeatability strategies is available in the User Guide.

Warning

Beware of the setup_requires keyword arg in setup.py. The
(rare) packages that use it will cause those dependencies to be downloaded
by setuptools directly, skipping pip's hash-checking. If you need to use
such a package, see Controlling
setup_requires.

Warning

Be careful not to nullify all your security work when you install your
actual project by using setuptools directly: for example, by calling
python setup.py install, python setup.py develop, or
easy_install. Setuptools will happily go out and download, unchecked,
anything you missed in your requirements file—and it’s easy to miss things
as your project evolves. To be safe, install your project using pip and
--no-deps.

Instead of python setup.py develop, use...

pip install --no-deps -e .

Instead of python setup.py install, use...

pip install --no-deps .

Hashes from PyPI

PyPI provides an MD5 hash in the fragment portion of each package download URL,
like #md5=123..., which pip checks as a protection against download
corruption. Other hash algorithms that have guaranteed support from hashlib
are also supported here: sha1, sha224, sha384, sha256, and sha512. Since this
hash originates remotely, it is not a useful guard against tampering and thus
does not satisfy the --require-hashes demand that every package have a
local hash.

"Editable" Installs

"Editable" installs are fundamentally "setuptools develop mode" [https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode]
installs.

You can install local projects or VCS projects in "editable" mode:

$ pip install -e path/to/SomeProject
$ pip install -e git+http://repo/my_project.git#egg=SomeProject

(See the VCS Support section above for more information on VCS-related syntax.)

For local projects, the "SomeProject.egg-info" directory is created relative to
the project path. This is one advantage over just using setup.py develop,
which creates the "egg-info" directly relative the current working directory.

Controlling setup_requires

Setuptools offers the setup_requires setup() keyword [https://setuptools.readthedocs.io/en/latest/setuptools.html#new-and-changed-setup-keywords]
for specifying dependencies that need to be present in order for the setup.py
script to run. Internally, Setuptools uses easy_install to fulfill these
dependencies.

pip has no way to control how these dependencies are located. None of the
Package Index Options have an effect.

The solution is to configure a "system" or "personal" Distutils configuration
file [http://docs.python.org/2/install/index.html#distutils-configuration-files] to
manage the fulfillment.

For example, to have the dependency located at an alternate index, add this:

[easy_install]
index_url = https://my.index-mirror.com

To have the dependency located from a local directory and not crawl PyPI, add this:

[easy_install]
allow_hosts = ''
find_links = file:///path/to/local/archives/

Build System Interface

In order for pip to install a package from source, setup.py must implement
the following commands:

setup.py egg_info [--egg-base XXX]
setup.py install --record XXX [--single-version-externally-managed] [--root XXX] [--compile|--no-compile] [--install-headers XXX]

The egg_info command should create egg metadata for the package, as
described in the setuptools documentation at
https://setuptools.readthedocs.io/en/latest/setuptools.html#egg-info-create-egg-metadata-and-set-build-tags

The install command should implement the complete process of installing the
package to the target directory XXX.

To install a package in "editable" mode (pip install -e), setup.py must
implement the following command:

setup.py develop --no-deps

This should implement the complete process of installing the package in
"editable" mode.

All packages will be attempted to built into wheels:

setup.py bdist_wheel -d XXX

One further setup.py command is invoked by pip install:

setup.py clean

This command is invoked to clean up temporary commands from the build. (TODO:
Investigate in more detail when this command is required).

No other build system commands are invoked by the pip install command.

Installing a package from a wheel does not invoke the build system at all.

Options

	
-c, --constraint <file>

	Constrain versions using the given constraints file. This option can be used multiple times.

	
-e, --editable <path/url>

	Install a project in editable mode (i.e. setuptools "develop mode") from a local project path or a VCS url.

	
-r, --requirement <file>

	Install from the given requirements file. This option can be used multiple times.

	
-b, --build <dir>

	Directory to unpack packages into and build in.

	
-t, --target <dir>

	Install packages into <dir>. By default this will not replace existing files/folders in <dir>. Use --upgrade to replace existing packages in <dir> with new versions.

	
-d, --download <dir>

	Download packages into <dir> instead of installing them, regardless of what's already installed.

	
--src <dir>

	Directory to check out editable projects into. The default in a virtualenv is "<venv path>/src". The default for global installs is "<current dir>/src".

	
-U, --upgrade

	Upgrade all specified packages to the newest available version. The handling of dependencies depends on the upgrade-strategy used.

	
--upgrade-strategy <upgrade_strategy>

	Determines how dependency upgrading should be handled. "eager" - dependencies are upgraded regardless of whether the currently installed version satisfies the requirements of the upgraded package(s). "only-if-needed" - are upgraded only when they do not satisfy the requirements of the upgraded package(s).

	
--force-reinstall

	When upgrading, reinstall all packages even if they are already up-to-date.

	
-I, --ignore-installed

	Ignore the installed packages (reinstalling instead).

	
--ignore-requires-python

	Ignore the Requires-Python information.

	
--no-deps

	Don't install package dependencies.

	
--install-option <options>

	Extra arguments to be supplied to the setup.py install command (use like --install-option="--install-scripts=/usr/local/bin"). Use multiple --install-option options to pass multiple options to setup.py install. If you are using an option with a directory path, be sure to use absolute path.

	
--global-option <options>

	Extra global options to be supplied to the setup.py call before the install command.

	
--user

	Install to the Python user install directory for your platform. Typically ~/.local/, or %APPDATA%Python on Windows. (See the Python documentation for site.USER_BASE for full details.)

	
--egg

	Install packages as eggs, not 'flat', like pip normally does. This option is not about installing from eggs. (WARNING: Because this option overrides pip's normal install logic, requirements files may not behave as expected.)

	
--root <dir>

	Install everything relative to this alternate root directory.

	
--prefix <dir>

	Installation prefix where lib, bin and other top-level folders are placed

	
--compile

	Compile py files to pyc

	
--no-compile

	Do not compile py files to pyc

	
--no-use-wheel

	Do not Find and prefer wheel archives when searching indexes and find-links locations. DEPRECATED in favour of --no-binary.

	
--no-binary <format_control>

	Do not use binary packages. Can be supplied multiple times, and each time adds to the existing value. Accepts either :all: to disable all binary packages, :none: to empty the set, or one or more package names with commas between them. Note that some packages are tricky to compile and may fail to install when this option is used on them.

	
--only-binary <format_control>

	Do not use source packages. Can be supplied multiple times, and each time adds to the existing value. Accepts either :all: to disable all source packages, :none: to empty the set, or one or more package names with commas between them. Packages without binary distributions will fail to install when this option is used on them.

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
--no-clean

	Don't clean up build directories.

	
--require-hashes

	Require a hash to check each requirement against, for repeatable installs. This option is implied when any package in a requirements file has a --hash option.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple). This should point to a repository compliant with PEP 503 (the simple repository API) or a local directory laid out in the same format.

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to --index-url. Should follow the same rules as --index-url.

	
--no-index

	Ignore package index (only looking at --find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that's a directory, then look for archives in the directory listing.

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	Install SomePackage and its dependencies from PyPI [http://pypi.python.org/pypi/] using Requirement Specifiers

$ pip install SomePackage # latest version
$ pip install SomePackage==1.0.4 # specific version
$ pip install 'SomePackage>=1.0.4' # minimum version

	Install a list of requirements specified in a file. See the Requirements files.

$ pip install -r requirements.txt

	Upgrade an already installed SomePackage to the latest from PyPI.

$ pip install --upgrade SomePackage

	Install a local project in "editable" mode. See the section on Editable Installs.

$ pip install -e . # project in current directory
$ pip install -e path/to/project # project in another directory

	Install a project from VCS in "editable" mode. See the sections on VCS Support and Editable Installs.

$ pip install -e git+https://git.repo/some_pkg.git#egg=SomePackage # from git
$ pip install -e hg+https://hg.repo/some_pkg.git#egg=SomePackage # from mercurial
$ pip install -e svn+svn://svn.repo/some_pkg/trunk/#egg=SomePackage # from svn
$ pip install -e git+https://git.repo/some_pkg.git@feature#egg=SomePackage # from 'feature' branch
$ pip install -e "git+https://git.repo/some_repo.git#egg=subdir&subdirectory=subdir_path" # install a python package from a repo subdirectory

	Install a package with setuptools extras [https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras-optional-features-with-their-own-dependencies].

$ pip install SomePackage[PDF]
$ pip install git+https://git.repo/some_pkg.git#egg=SomePackage[PDF]
$ pip install SomePackage[PDF]==3.0
$ pip install -e .[PDF]==3.0 # editable project in current directory

	Install a particular source archive file.

$ pip install ./downloads/SomePackage-1.0.4.tar.gz
$ pip install http://my.package.repo/SomePackage-1.0.4.zip

	Install from alternative package repositories.

Install from a different index, and not PyPI [http://pypi.python.org/pypi/]

$ pip install --index-url http://my.package.repo/simple/ SomePackage

Search an additional index during install, in addition to PyPI [http://pypi.python.org/pypi/]

$ pip install --extra-index-url http://my.package.repo/simple SomePackage

Install from a local flat directory containing archives (and don't scan indexes):

$ pip install --no-index --find-links=file:///local/dir/ SomePackage
$ pip install --no-index --find-links=/local/dir/ SomePackage
$ pip install --no-index --find-links=relative/dir/ SomePackage

	Find pre-release and development versions, in addition to stable versions. By default, pip only finds stable versions.

$ pip install --pre SomePackage

	1

	This is true with the exception that pip v7.0 and v7.0.1 required quotes
around specifiers containing environment markers in requirement files.

pip download

Contents

	pip download

	Usage

	Description

	Overview

	Options

	Examples

Usage

pip download [options] <requirement specifier> [package-index-options] ...
pip download [options] -r <requirements file> [package-index-options] ...
pip download [options] [-e] <vcs project url> ...
pip download [options] [-e] <local project path> ...
pip download [options] <archive url/path> ...

Description

Download packages from:

	PyPI (and other indexes) using requirement specifiers.

	VCS project urls.

	Local project directories.

	Local or remote source archives.

pip also supports downloading from "requirements files", which provide
an easy way to specify a whole environment to be downloaded.

Overview

pip download replaces the --download option to pip install,
which is now deprecated and will be removed in pip 10.

pip download does the same resolution and downloading as pip install,
but instead of installing the dependencies, it collects the downloaded
distributions into the directory provided (defaulting to the current
directory). This directory can later be passed as the value to pip install
--find-links to facilitate offline or locked down package installation.

pip download with the --platform, --python-version,
--implementation, and --abi options provides the ability to fetch
dependencies for an interpreter and system other than the ones that pip is
running on. --only-binary=:all: is required when using any of these
options. It is important to note that these options all default to the
current system/interpreter, and not to the most restrictive constraints (e.g.
platform any, abi none, etc). To avoid fetching dependencies that happen to
match the constraint of the current interpreter (but not your target one), it
is recommended to specify all of these options if you are specifying one of
them. Generic dependencies (e.g. universal wheels, or dependencies with no
platform, abi, or implementation constraints) will still match an over-
constrained download requirement.

Options

	
-c, --constraint <file>

	Constrain versions using the given constraints file. This option can be used multiple times.

	
-e, --editable <path/url>

	Install a project in editable mode (i.e. setuptools "develop mode") from a local project path or a VCS url.

	
-r, --requirement <file>

	Install from the given requirements file. This option can be used multiple times.

	
-b, --build <dir>

	Directory to unpack packages into and build in.

	
--no-deps

	Don't install package dependencies.

	
--global-option <options>

	Extra global options to be supplied to the setup.py call before the install command.

	
--no-binary <format_control>

	Do not use binary packages. Can be supplied multiple times, and each time adds to the existing value. Accepts either :all: to disable all binary packages, :none: to empty the set, or one or more package names with commas between them. Note that some packages are tricky to compile and may fail to install when this option is used on them.

	
--only-binary <format_control>

	Do not use source packages. Can be supplied multiple times, and each time adds to the existing value. Accepts either :all: to disable all source packages, :none: to empty the set, or one or more package names with commas between them. Packages without binary distributions will fail to install when this option is used on them.

	
--src <dir>

	Directory to check out editable projects into. The default in a virtualenv is "<venv path>/src". The default for global installs is "<current dir>/src".

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
--no-clean

	Don't clean up build directories.

	
--require-hashes

	Require a hash to check each requirement against, for repeatable installs. This option is implied when any package in a requirements file has a --hash option.

	
-d, --dest <dir>

	Download packages into <dir>.

	
--platform <platform>

	Only download wheels compatible with <platform>. Defaults to the platform of the running system.

	
--python-version <python_version>

	Only download wheels compatible with Python interpreter version <version>. If not specified, then the current system interpreter minor version is used. A major version (e.g. '2') can be specified to match all minor revs of that major version. A minor version (e.g. '34') can also be specified.

	
--implementation <implementation>

	Only download wheels compatible with Python implementation <implementation>, e.g. 'pp', 'jy', 'cp', or 'ip'. If not specified, then the current interpreter implementation is used. Use 'py' to force implementation-agnostic wheels.

	
--abi <abi>

	Only download wheels compatible with Python abi <abi>, e.g. 'pypy_41'. If not specified, then the current interpreter abi tag is used. Generally you will need to specify --implementation, --platform, and --python-version when using this option.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple). This should point to a repository compliant with PEP 503 (the simple repository API) or a local directory laid out in the same format.

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to --index-url. Should follow the same rules as --index-url.

	
--no-index

	Ignore package index (only looking at --find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that's a directory, then look for archives in the directory listing.

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	Download a package and all of its dependencies

$ pip download SomePackage
$ pip download -d . SomePackage # equivalent to above
$ pip download --no-index --find-links=/tmp/wheelhouse -d /tmp/otherwheelhouse SomePackage

	
	Download a package and all of its dependencies with OSX specific interpreter constraints.

	This forces OSX 10.10 or lower compatibility. Since OSX deps are forward compatible,
this will also match macosx-10_9_x86_64, macosx-10_8_x86_64, macosx-10_8_intel,
etc.
It will also match deps with platform any. Also force the interpreter version to 27
(or more generic, i.e. 2) and implementation to cp (or more generic, i.e. py).

$ pip download \
 --only-binary=:all: \
 --platform macosx-10_10_x86_64 \
 --python-version 27 \
 --implementation cp \
 SomePackage

	
	Download a package and its dependencies with linux specific constraints.

	Force the interpreter to be any minor version of py3k, and only accept
cp34m or none as the abi.

$ pip download \
 --only-binary=:all: \
 --platform linux_x86_64 \
 --python-version 3 \
 --implementation cp \
 --abi cp34m \
 SomePackage

	Force platform, implementation, and abi agnostic deps.

$ pip download \
 --only-binary=:all: \
 --platform any \
 --python-version 3 \
 --implementation py \
 --abi none \
 SomePackage

	Even when overconstrained, this will still correctly fetch the pip universal wheel.

$ pip download \
 --only-binary=:all: \
 --platform linux_x86_64 \
 --python-version 33 \
 --implementation cp \
 --abi cp34m \
 pip>=8
$ ls pip-8.1.1-py2.py3-none-any.whl
pip-8.1.1-py2.py3-none-any.whl

pip uninstall

Contents

	pip uninstall

	Usage

	Description

	Options

	Examples

Usage

pip uninstall [options] <package> ...
pip uninstall [options] -r <requirements file> ...

Description

Uninstall packages.

pip is able to uninstall most installed packages. Known exceptions are:

	Pure distutils packages installed with python setup.py install, which
leave behind no metadata to determine what files were installed.

	Script wrappers installed by python setup.py develop.

Options

	
-r, --requirement <file>

	Uninstall all the packages listed in the given requirements file. This option can be used multiple times.

	
-y, --yes

	Don't ask for confirmation of uninstall deletions.

Examples

	Uninstall a package.

$ pip uninstall simplejson
Uninstalling simplejson:
 /home/me/env/lib/python2.7/site-packages/simplejson
 /home/me/env/lib/python2.7/site-packages/simplejson-2.2.1-py2.7.egg-info
Proceed (y/n)? y
 Successfully uninstalled simplejson

pip freeze

Contents

	pip freeze

	Usage

	Description

	Options

	Examples

Usage

pip freeze [options]

Description

Output installed packages in requirements format.

packages are listed in a case-insensitive sorted order.

Options

	
-r, --requirement <file>

	Use the order in the given requirements file and its comments when generating output. This option can be used multiple times.

	
-f, --find-links <url>

	URL for finding packages, which will be added to the output.

	
-l, --local

	If in a virtualenv that has global access, do not output globally-installed packages.

	
--user

	Only output packages installed in user-site.

	
--all

	Do not skip these packages in the output: pip, setuptools, distribute, wheel

Examples

	Generate output suitable for a requirements file.

$ pip freeze
docutils==0.11
Jinja2==2.7.2
MarkupSafe==0.19
Pygments==1.6
Sphinx==1.2.2

	Generate a requirements file and then install from it in another environment.

$ env1/bin/pip freeze > requirements.txt
$ env2/bin/pip install -r requirements.txt

pip list

Contents

	pip list

	Usage

	Description

	Options

	Examples

Usage

pip list [options]

Description

List installed packages, including editables.

Packages are listed in a case-insensitive sorted order.

Options

	
-o, --outdated

	List outdated packages

	
-u, --uptodate

	List uptodate packages

	
-e, --editable

	List editable projects.

	
-l, --local

	If in a virtualenv that has global access, do not list globally-installed packages.

	
--user

	Only output packages installed in user-site.

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
--format <list_format>

	Select the output format among: legacy (default), columns, freeze or json.

	
--not-required

	List packages that are not dependencies of installed packages.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple). This should point to a repository compliant with PEP 503 (the simple repository API) or a local directory laid out in the same format.

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to --index-url. Should follow the same rules as --index-url.

	
--no-index

	Ignore package index (only looking at --find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that's a directory, then look for archives in the directory listing.

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	List installed packages.

$ pip list
docutils (0.10)
Jinja2 (2.7.2)
MarkupSafe (0.18)
Pygments (1.6)
Sphinx (1.2.1)

	List outdated packages (excluding editables), and the latest version available.

$ pip list --outdated
docutils (Current: 0.10 Latest: 0.11)
Sphinx (Current: 1.2.1 Latest: 1.2.2)

	List installed packages with column formatting.

$ pip list --format columns
Package Version
------- -------
docopt 0.6.2
idlex 1.13
jedi 0.9.0

	List outdated packages with column formatting.

$ pip list -o --format columns
Package Version Latest Type
---------- ------- ------ -----
retry 0.8.1 0.9.1 wheel
setuptools 20.6.7 21.0.0 wheel

	List packages that are not dependencies of other packages. Can be combined with
other options.

$ pip list --outdated --not-required
docutils (Current: 0.10 Latest: 0.11)

	Use legacy formatting

$ pip list --format=legacy
colorama (0.3.7)
docopt (0.6.2)
idlex (1.13)
jedi (0.9.0)

	Use json formatting

$ pip list --format=json
[{'name': 'colorama', 'version': '0.3.7'}, {'name': 'docopt', 'version': '0.6.2'}, ...

	Use freeze formatting

$ pip list --format=freeze
colorama==0.3.7
docopt==0.6.2
idlex==1.13
jedi==0.9.0

pip show

Contents

	pip show

	Usage

	Description

	Options

	Examples

Usage

pip show [options] <package> ...

Description

Show information about one or more installed packages.

Options

	
-f, --files

	Show the full list of installed files for each package.

Examples

	Show information about a package:

$ pip show sphinx
Name: Sphinx
Version: 1.4.5
Summary: Python documentation generator
Home-page: http://sphinx-doc.org/
Author: Georg Brandl
Author-email: georg@python.org
License: BSD
Location: /my/env/lib/python2.7/site-packages
Requires: docutils, snowballstemmer, alabaster, Pygments, imagesize, Jinja2, babel, six

	Show all information about a package

$ pip show --verbose sphinx
Name: Sphinx
Version: 1.4.5
Summary: Python documentation generator
Home-page: http://sphinx-doc.org/
Author: Georg Brandl
Author-email: georg@python.org
License: BSD
Location: /my/env/lib/python2.7/site-packages
Requires: docutils, snowballstemmer, alabaster, Pygments, imagesize, Jinja2, babel, six
Metadata-Version: 2.0
Installer:
Classifiers:
 Development Status :: 5 - Production/Stable
 Environment :: Console
 Environment :: Web Environment
 Intended Audience :: Developers
 Intended Audience :: Education
 License :: OSI Approved :: BSD License
 Operating System :: OS Independent
 Programming Language :: Python
 Programming Language :: Python :: 2
 Programming Language :: Python :: 3
 Framework :: Sphinx
 Framework :: Sphinx :: Extension
 Framework :: Sphinx :: Theme
 Topic :: Documentation
 Topic :: Documentation :: Sphinx
 Topic :: Text Processing
 Topic :: Utilities
Entry-points:
 [console_scripts]
 sphinx-apidoc = sphinx.apidoc:main
 sphinx-autogen = sphinx.ext.autosummary.generate:main
 sphinx-build = sphinx:main
 sphinx-quickstart = sphinx.quickstart:main
 [distutils.commands]
 build_sphinx = sphinx.setup_command:BuildDoc

pip search

Contents

	pip search

	Usage

	Description

	Options

	Examples

Usage

pip search [options] <query>

Description

Search for PyPI packages whose name or summary contains <query>.

Options

	
-i, --index <url>

	Base URL of Python Package Index (default https://pypi.python.org/pypi)

Examples

	Search for "peppercorn"

$ pip search peppercorn
pepperedform - Helpers for using peppercorn with formprocess.
peppercorn - A library for converting a token stream into [...]

pip wheel

Contents

	pip wheel

	Usage

	Description

	Build System Interface

	Customising the build

	Options

	Examples

Usage

pip wheel [options] <requirement specifier> ...
pip wheel [options] -r <requirements file> ...
pip wheel [options] [-e] <vcs project url> ...
pip wheel [options] [-e] <local project path> ...
pip wheel [options] <archive url/path> ...

Description

Build Wheel archives for your requirements and dependencies.

Wheel is a built-package format, and offers the advantage of not
recompiling your software during every install. For more details, see the
wheel docs: https://wheel.readthedocs.io/en/latest/

Requirements: setuptools>=0.8, and wheel.

'pip wheel' uses the bdist_wheel setuptools extension from the wheel
package to build individual wheels.

Build System Interface

In order for pip to build a wheel, setup.py must implement the
bdist_wheel command with the following syntax:

python setup.py bdist_wheel -d TARGET

This command must create a wheel compatible with the invoking Python
interpreter, and save that wheel in the directory TARGET.

No other build system commands are invoked by the pip wheel command.

Customising the build

It is possible using --global-option to include additional build commands
with their arguments in the setup.py command. This is currently the only
way to influence the building of C extensions from the command line. For
example:

pip wheel --global-option bdist_ext --global-option -DFOO wheel

will result in a build command of

setup.py bdist_ext -DFOO bdist_wheel -d TARGET

which passes a preprocessor symbol to the extension build.

Such usage is considered highly build-system specific and more an accident of
the current implementation than a supported interface.

Options

	
-w, --wheel-dir <dir>

	Build wheels into <dir>, where the default is the current working directory.

	
--no-use-wheel

	Do not Find and prefer wheel archives when searching indexes and find-links locations. DEPRECATED in favour of --no-binary.

	
--no-binary <format_control>

	Do not use binary packages. Can be supplied multiple times, and each time adds to the existing value. Accepts either :all: to disable all binary packages, :none: to empty the set, or one or more package names with commas between them. Note that some packages are tricky to compile and may fail to install when this option is used on them.

	
--only-binary <format_control>

	Do not use source packages. Can be supplied multiple times, and each time adds to the existing value. Accepts either :all: to disable all source packages, :none: to empty the set, or one or more package names with commas between them. Packages without binary distributions will fail to install when this option is used on them.

	
--build-option <options>

	Extra arguments to be supplied to 'setup.py bdist_wheel'.

	
-c, --constraint <file>

	Constrain versions using the given constraints file. This option can be used multiple times.

	
-e, --editable <path/url>

	Install a project in editable mode (i.e. setuptools "develop mode") from a local project path or a VCS url.

	
-r, --requirement <file>

	Install from the given requirements file. This option can be used multiple times.

	
--src <dir>

	Directory to check out editable projects into. The default in a virtualenv is "<venv path>/src". The default for global installs is "<current dir>/src".

	
--ignore-requires-python

	Ignore the Requires-Python information.

	
--no-deps

	Don't install package dependencies.

	
-b, --build <dir>

	Directory to unpack packages into and build in.

	
--global-option <options>

	Extra global options to be supplied to the setup.py call before the 'bdist_wheel' command.

	
--pre

	Include pre-release and development versions. By default, pip only finds stable versions.

	
--no-clean

	Don't clean up build directories.

	
--require-hashes

	Require a hash to check each requirement against, for repeatable installs. This option is implied when any package in a requirements file has a --hash option.

	
-i, --index-url <url>

	Base URL of Python Package Index (default https://pypi.python.org/simple). This should point to a repository compliant with PEP 503 (the simple repository API) or a local directory laid out in the same format.

	
--extra-index-url <url>

	Extra URLs of package indexes to use in addition to --index-url. Should follow the same rules as --index-url.

	
--no-index

	Ignore package index (only looking at --find-links URLs instead).

	
-f, --find-links <url>

	If a url or path to an html file, then parse for links to archives. If a local path or file:// url that's a directory, then look for archives in the directory listing.

	
--process-dependency-links

	Enable the processing of dependency links.

Examples

	Build wheels for a requirement (and all its dependencies), and then install

$ pip wheel --wheel-dir=/tmp/wheelhouse SomePackage
$ pip install --no-index --find-links=/tmp/wheelhouse SomePackage

pip hash

Contents

	pip hash

	Usage

	Description

	Overview

	Options

	Example

Usage

pip hash [options] <file> ...

Description

Compute a hash of a local package archive.

These can be used with --hash in a requirements file to do repeatable
installs.

Overview

pip hash is a convenient way to get a hash digest for use with
Hash-Checking Mode, especially for packages with multiple archives. The
error message from pip install --require-hashes ... will give you one
hash, but, if there are multiple archives (like source and binary ones), you
will need to manually download and compute a hash for the others. Otherwise, a
spurious hash mismatch could occur when pip install is passed a
different set of options, like --no-binary.

Options

	
-a, --algorithm <algorithm>

	The hash algorithm to use: one of sha256, sha384, sha512

Example

Compute the hash of a downloaded archive:

$ pip download SomePackage
 Collecting SomePackage
 Downloading SomePackage-2.2.tar.gz
 Saved ./pip_downloads/SomePackage-2.2.tar.gz
 Successfully downloaded SomePackage
$ pip hash ./pip_downloads/SomePackage-2.2.tar.gz
 ./pip_downloads/SomePackage-2.2.tar.gz:
 --hash=sha256:93e62e05c7ad3da1a233def6731e8285156701e3419a5fe279017c429ec67ce0

Development

Pull Requests

	Submit Pull Requests against the master branch.

	Provide a good description of what you're doing and why.

	Provide tests that cover your changes and try to run the tests locally first.

Example. Assuming you set up GitHub account, forked pip repository from
https://github.com/pypa/pip to your own page via web interface, and your
fork is located at https://github.com/yourname/pip

$ git clone git@github.com:pypa/pip.git
$ cd pip
...
$ git diff
$ git add <modified> ...
$ git status
$ git commit

You may reference relevant issues in commit messages (like #1259) to
make GitHub link issues and commits together, and with phrase like
"fixes #1259" you can even close relevant issues automatically. Now
push the changes to your fork:

$ git push git@github.com:yourname/pip.git

Open Pull Requests page at https://github.com/yourname/pip/pulls and
click "New pull request". That's it.

Automated Testing

All pull requests and merges to 'master' branch are tested in Travis [https://travis-ci.org/]
based on our .travis.yml file [https://github.com/pypa/pip/blob/master/.travis.yml].

Usually, a link to your specific travis build appears in pull requests, but if not,
you can find it on our travis pull requests page [https://travis-ci.org/pypa/pip/pull_requests]

The only way to trigger Travis to run again for a pull request, is to submit another change to the pull branch.

We also have Jenkins CI that runs regularly for certain python versions on windows and centos.

Running tests

OS Requirements: subversion, bazaar, git, and mercurial.

Python Requirements: tox or pytest, virtualenv, scripttest, and mock

Ways to run the tests locally:

$ tox -e py33 # The preferred way to run the tests, can use pyNN to
 # run for a particular version or leave off the -e to
 # run for all versions.
$ python setup.py test # Using the setuptools test plugin
$ py.test # Using py.test directly
$ tox # Using tox against pip's tox.ini

If you are missing one of the VCS tools, you can tell py.test to skip it:

$ py.test -k 'not bzr'
$ py.test -k 'not svn'

Getting Involved

The pip project welcomes help in the following ways:

	Making Pull Requests for code, tests, or docs.

	Commenting on open issues and pull requests.

	Helping to answer questions on the mailing list.

If you want to become an official maintainer, start by helping out.

Later, when you think you're ready, get in touch with one of the maintainers,
and they will initiate a vote.

Release Process

	On the current pip master branch, generate a new AUTHORS.txt by
running invoke generate.authors and commit the results.

	On the current pip master branch, make a new commit which bumps the
version in pip/__init__.py to the release version and adjust the
CHANGES.txt file to reflect the current date.

	Create a signed tag of the master branch of the form X.Y.Z using the
command git tag -s X.Y.Z.

	Checkout the tag using git checkout X.Y.Z and create the distribution
files using python setup.py sdist bdist_wheel.

	Upload the distribution files to PyPI using twine
(twine upload -s dist/*). The upload should include GPG signatures of
the distribution files.

	Push all of the changes.

	Regenerate the get-pip.py script by running
invoke generate.installer in the get-pip repository, and committing the
results.

Creating a Bugfix Release

Sometimes we need to release a bugfix release of the form X.Y.Z+1. In order
to create one of these the changes should already be merged into the
master branch.

	Create a new release/X.Y.Z+1 branch off of the X.Y.Z tag using the
command git checkout -b release/X.Y.Z+1 X.Y.Z.

	Cherry pick the fixed commits off of the master branch, fixing any
conflicts and moving any changelog entries from the development version's
changelog section to the X.Y.Z+1 section.

	Push the release/X.Y.Z+1 branch to github and submit a PR for it against
the master branch and wait for the tests to run.

	Once tests run, merge the release/X.Y.Z+1 branch into master, and follow
the above release process starting with step 4.

Release Notes

9.0.3 (2018-03-21)

	Fix an error where the vendored requests was not correctly containing itself
to only the internal vendored prefix.

	Restore compatability with 2.6.

9.0.2 (2018-03-16)

	Fallback to using SecureTransport on macOS when the linked OpenSSL is too old
to support TLSv1.2.

9.0.1 (2016-11-06)

	Correct the deprecation message when not specifying a --format so that it
uses the correct setting name (format) rather than the incorrect one
(list_format) (#4058 [https://github.com/pypa/pip/issues/4058]).

	Fix pip check to check all available distributions and not just the
local ones (#4083 [https://github.com/pypa/pip/issues/4083]).

	Fix a crash on non ASCII characters from lsb_release (#4062 [https://github.com/pypa/pip/issues/4062]).

	Fix an SyntaxError in an an used module of a vendored dependency
(#4059 [https://github.com/pypa/pip/issues/4059]).

	Fix UNC paths on Windows (#4064 [https://github.com/pypa/pip/issues/4064]).

9.0.0 (2016-11-02)

	BACKWARD INCOMPATIBLE Remove the attempted autodetection of requirement
names from URLs, URLs must include a name via #egg=.

	DEPRECATION pip install --egg have been deprecated and will be
removed in the future. This "feature" has a long list of drawbacks which
break nearly all of pip's other features in subtle and hard-to-diagnose
ways.

	DEPRECATION --default-vcs option (#4052 [https://github.com/pypa/pip/issues/4052]).

	WARNING pip 9 cache can break forward compatibility with previous pip
versions if your package repository allows chunked responses (#4078 [https://github.com/pypa/pip/issues/4078]).

	Add a pip check command to check installed packages dependencies
(PR #3750 [https://github.com/pypa/pip/pull/3750]).

	Add option allowing user to abort pip operation if file/directory exists

	Add Appveyor CI

	Uninstall existing packages when performing an editable installation of
the same packages (#1548 [https://github.com/pypa/pip/issues/1548]).

	pip show is less verbose by default. --verbose prints multiline fields.
(PR #3858 [https://github.com/pypa/pip/pull/3858]).

	Add optional column formatting to pip list (#3651 [https://github.com/pypa/pip/issues/3651]).

	Add --not-required option to pip list, which lists packages that are
not dependencies of other packages.

	Fix builds on systems with symlinked /tmp directory for custom
builds such as numpy (PR #3701 [https://github.com/pypa/pip/pull/3701]).

	Fix regression in pip freeze: when there is more than one git remote,
priority is given to the remote named origin (PR #3708 [https://github.com/pypa/pip/pull/3708], #3616 [https://github.com/pypa/pip/issues/3616]).

	Fix crash when calling pip freeze with invalid requirement installed
(PR #3704 [https://github.com/pypa/pip/pull/3704], #3681 [https://github.com/pypa/pip/issues/3681]).

	Allow multiple --requirement files in pip freeze (PR #3703 [https://github.com/pypa/pip/pull/3703]).

	Implementation of pep-503 data-requires-python. When this field is
present for a release link, pip will ignore the download when
installing to a Python version that doesn't satisfy the requirement.

	pip wheel now works on editable packages too (it was only working on
editable dependencies before); this allows running pip wheel on the result
of pip freeze in presence of editable requirements (PR #3695 [https://github.com/pypa/pip/pull/3695],
#3291 [https://github.com/pypa/pip/issues/3291]).

	Load credentials from .netrc files (PR #3715 [https://github.com/pypa/pip/pull/3715], #3569 [https://github.com/pypa/pip/issues/3569]).

	Add --platform, --python-version, --implementation and --abi parameters to
pip download. These allow utilities and advanced users to gather
distributions for interpreters other than the one pip is being run on.
(PR #3760 [https://github.com/pypa/pip/pull/3760])

	Skip scanning virtual environments, even when venv/bin/python is a dangling
symlink.

	Added pip completion support for the fish shell.

	Fix problems on Windows on Python 2 when username or hostname contains
non-ASCII characters (#3463 [https://github.com/pypa/pip/issues/3463], PR #3970 [https://github.com/pypa/pip/pull/3970], PR #4000 [https://github.com/pypa/pip/pull/4000]).

	Use git fetch --tags to fetch tags in addition to everything else that
is normally fetched; this is necessary in case a git requirement url
points to a tag or commit that is not on a branch (PR #3791 [https://github.com/pypa/pip/pull/3791])

	Normalize package names before using in pip show (#3976 [https://github.com/pypa/pip/issues/3976])

	Raise when Requires-Python do not match the running version and add
--ignore-requires-python option as escape hatch (PR #3846 [https://github.com/pypa/pip/pull/3846]).

	Report the correct installed version when performing an upgrade in some
corner cases (#2382 [https://github.com/pypa/pip/issues/2382])

	Add -i shorthand for --index flag in pip search

	Do not optionally load C dependencies in requests (#1840 [https://github.com/pypa/pip/issues/1840],
#2930 [https://github.com/pypa/pip/issues/2930], #3024 [https://github.com/pypa/pip/issues/3024])

	Strip authentication from SVN url prior to passing it to svn
(PR #3697 [https://github.com/pypa/pip/pull/3697], #3209 [https://github.com/pypa/pip/issues/3209]).

	Also install in platlib with --target option (PR #3694 [https://github.com/pypa/pip/pull/3694], #3682 [https://github.com/pypa/pip/issues/3682]).

	Restore the ability to use inline comments in requirements files passed to
pip freeze (#3680 [https://github.com/pypa/pip/issues/3680]).

8.1.2 (2016-05-10)

	Fix a regression on systems with uninitialized locale (#3575 [https://github.com/pypa/pip/issues/3575]).

	Use environment markers to filter packages before determining if a
required wheel is supported. Solves (#3254 [https://github.com/pypa/pip/issues/3254]).

	Make glibc parsing for manylinux1 support more robust for the variety of
glibc versions found in the wild (#3588 [https://github.com/pypa/pip/issues/3588]).

	Update environment marker support to fully support PEP 508 and legacy
environment markers (#3624 [https://github.com/pypa/pip/issues/3624]).

	Always use debug logging to the --log file (#3351 [https://github.com/pypa/pip/issues/3351]).

	Don't attempt to wrap search results for extremely narrow terminal windows
(#3655 [https://github.com/pypa/pip/issues/3655]).

8.1.1 (2016-03-17)

	Fix regression with non-ascii requirement files on Python 2 and add support
for encoding headers in requirement files (#3548 [https://github.com/pypa/pip/issues/3548], PR #3547 [https://github.com/pypa/pip/pull/3547]).

8.1.0 (2016-03-05)

	Implement PEP 513, which adds support for the manylinux1 platform tag,
allowing carefully compiled binary wheels to be installed on compatible Linux
platforms.

	Allow wheels which are not specific to a particular Python interpreter but
which are specific to a particular platform (#3202 [https://github.com/pypa/pip/issues/3202]).

	Fixed an issue where call_subprocess would crash trying to print debug
data on child process failure (#3521 [https://github.com/pypa/pip/issues/3521], PR #3522 [https://github.com/pypa/pip/pull/3522]).

	Exclude the wheel package from the pip freeze output (like pip and setuptools).
#2989 [https://github.com/pypa/pip/issues/2989].

	Allow installing modules from a subdirectory of a vcs repository
in non-editable mode (#3217 [https://github.com/pypa/pip/issues/3217], PR #3466 [https://github.com/pypa/pip/pull/3466]).

	Make pip wheel and pip download work with vcs urls with subdirectory option
(PR #3466 [https://github.com/pypa/pip/pull/3466]).

	Show classifiers in pip show.

	Show PEP376 Installer in pip show (#3517 [https://github.com/pypa/pip/issues/3517]).

	Unhide completion command (PR #1810 [https://github.com/pypa/pip/pull/1810]).

	Show latest version number in pip search results (PR #1415 [https://github.com/pypa/pip/pull/1415]).

	Decode requirement files according to their BOM if present (PR #3485 [https://github.com/pypa/pip/pull/3485],
#2865 [https://github.com/pypa/pip/issues/2865]).

	Fix and deprecate package name detection from url path (#3523 [https://github.com/pypa/pip/issues/3523] and
PR #3495 [https://github.com/pypa/pip/pull/3495]).

	Correct the behavior where interpreter specific tags (such as cp34) were
being used on later versions of the same interpreter instead of only for that
specific interpreter (#3472 [https://github.com/pypa/pip/issues/3472]).

	Fix an issue where pip would erroneously install a 64 bit wheel on a 32 bit
Python running on a 64 bit macOS machine.

	Do not assume that all git repositories have an origin remote.

	Correctly display the line to add to a requirements.txt for an URL based
dependency when --require-hashes is enabled.

8.0.3 (2016-02-25)

	Make install --quiet really quiet. See #3418 [https://github.com/pypa/pip/issues/3418].

	Fix a bug when removing packages in python 3: disable INI-style parsing of the
entry_point.txt file to allow entry point names with colons (PR #3434 [https://github.com/pypa/pip/pull/3434])

	Normalize generated script files path in RECORD files. (PR #3448 [https://github.com/pypa/pip/pull/3448])

	Fix bug introduced in 8.0.0 where subcommand output was not shown,
even when the user specified -v / --verbose. #3486 [https://github.com/pypa/pip/issues/3486].

	Enable python -W with respect to PipDeprecationWarning. (PR #3455 [https://github.com/pypa/pip/pull/3455])

	Upgrade distlib to 0.2.2 (fix #3467 [https://github.com/pypa/pip/issues/3467]):

	Improved support for Jython when quoting executables in output scripts.

	Add a --all option to pip freeze to include usually skipped package
(like pip, setuptools and wheel) to the freeze output. #1610 [https://github.com/pypa/pip/issues/1610].

8.0.2 (2016-01-21)

	Stop attempting to trust the system CA trust store because it's extremely
common for them to be broken, often in incompatible ways. See PR #3416 [https://github.com/pypa/pip/pull/3416].

8.0.1 (2016-01-21)

	Detect CAPaths in addition to CAFiles on platforms that provide them.

	Installing argparse or wsgiref will no longer warn or error - pip will allow
the installation even though it may be useless (since the installed thing
will be shadowed by the standard library).

	Upgrading a distutils installed item that is installed outside of a virtual
environment, while inside of a virtual environment will no longer warn or
error.

	Fix a bug where pre-releases were showing up in pip list --outdated
without the --pre flag.

	Switch the SOABI emulation from using RuntimeWarnings to debug logging.

	Rollback the removal of the ability to uninstall distutils installed items
until a future date.

8.0.0 (2016-01-19)

	BACKWARD INCOMPATIBLE Drop support for Python 3.2.

	BACKWARD INCOMPATIBLE Remove the ability to find any files other than the
ones directly linked from the index or find-links pages.

	BACKWARD INCOMPATIBLE Remove the --download-cache which had been
deprecated and no-op'd in 6.0.

	BACKWARD INCOMPATIBLE Remove the --log-explicit-levels which had been
deprecated in 6.0.

	BACKWARD INCOMPATIBLE Change pip wheel --wheel-dir default path from
<cwd>/wheelhouse to <cwd>.

	Deprecate and no-op the --allow-external, --allow-all-external, and
--allow-unverified functionality that was added as part of PEP 438. With
changes made to the repository protocol made in PEP 470, these options are no
longer functional.

	Allow --trusted-host within a requirements file. #2822 [https://github.com/pypa/pip/issues/2822].

	Allow --process-dependency-links within a requirements file. #1274 [https://github.com/pypa/pip/issues/1274].

	Allow --pre within a requirements file. #1273 [https://github.com/pypa/pip/issues/1273].

	Allow repository URLs with secure transports to count as trusted. (E.g.,
"git+ssh" is okay.) #2811 [https://github.com/pypa/pip/issues/2811].

	Implement a top-level pip download command and deprecate
pip install --download.

	Fixed #3141 [https://github.com/pypa/pip/issues/3141], when uninstalling, look for the case of paths containing
symlinked directories (PR #3154 [https://github.com/pypa/pip/pull/3154])

	When installing, if building a wheel fails, clear up the build directory
before falling back to a source install. #3047 [https://github.com/pypa/pip/issues/3047].

	Fix user directory expansion when HOME=/. Workaround for Python bug
http://bugs.python.org/issue14768, reported in #2996 [https://github.com/pypa/pip/issues/2996].

	Fixed #3009 [https://github.com/pypa/pip/issues/3009], correct reporting of requirements file line numbers
(PR #3125 [https://github.com/pypa/pip/pull/3125])

	Fixed #1062 [https://github.com/pypa/pip/issues/1062], Exception(IOError) for pip freeze and pip list
commands with subversion >= 1.7. (PR #3346 [https://github.com/pypa/pip/pull/3346])

	Provide a spinner showing that progress is happening when installing or
building a package via setup.py. This will alleviate concerns that
projects with unusually long build times have with pip appearing to stall.

	Include the functionality of peep into pip, allowing hashes to be baked
into a requirements file and ensuring that the packages being downloaded
match one of those hashes. This is an additional, opt-in security measure
that, when used, removes the need to trust the repository.

	Fix a bug causing pip to not select a wheel compiled against an OSX SDK later
than what Python itself was compiled against when running on a newer version
of OSX.

	Add a new --prefix option for pip install that supports wheels and
sdists. (PR #3252 [https://github.com/pypa/pip/pull/3252])

	Fixed #2042 [https://github.com/pypa/pip/issues/2042] regarding wheel building with setup.py using a different
encoding than the system.

	Drop PasteScript specific egg_info hack. (PR #3270 [https://github.com/pypa/pip/pull/3270])

	Allow combination of pip list options --editable with --outdated/--uptodate.
(#933 [https://github.com/pypa/pip/issues/933])

	Gives VCS implementations control over saying whether a project
is under their control (PR #3258 [https://github.com/pypa/pip/pull/3258])

	Git detection now works when setup.py is not at the Git repo root
and when package_dir is used, so pip freeze works in more
cases (PR #3258 [https://github.com/pypa/pip/pull/3258])

	Correctly freeze Git develop packages in presence of the &subdirectory
option (PR #3258 [https://github.com/pypa/pip/pull/3258])

	The detection of editable packages now relies on the presence of .egg-link
instead of looking for a VCS, so pip list -e is more reliable
(PR #3258 [https://github.com/pypa/pip/pull/3258])

	Add the --prefix flag to pip install which allows specifying a root
prefix to use instead of sys.prefix (PR #3252 [https://github.com/pypa/pip/pull/3252]).

	Allow duplicate specifications in the case that only the extras differ, and
union all specified extras together (PR #3198 [https://github.com/pypa/pip/pull/3198]).

	Fix the detection of the user's current platform on OSX when determining the
OSX SDK version (PR #3232 [https://github.com/pypa/pip/pull/3232]).

	Prevent the automatically built wheels from mistakenly being used across
multiple versions of Python when they may not be correctly configured for
that by making the wheel specific to a specific version of Python and
specific interpreter (PR #3225 [https://github.com/pypa/pip/pull/3225]).

	Emulate the SOABI support in wheels from Python 2.x on Python 2.x as closely
as we can with the information available within the interpreter
(PR #3075 [https://github.com/pypa/pip/pull/3075]).

	Don't roundtrip to the network when git is pinned to a specific commit hash
and that hash already exists locally (PR #3066 [https://github.com/pypa/pip/pull/3066]).

	Prefer wheels built against a newer SDK to wheels built against an older SDK
on OSX (PR #3163 [https://github.com/pypa/pip/pull/3163]).

	Show entry points for projects installed via wheel (PR #3122 [https://github.com/pypa/pip/pull/3122]).

	Improve message when an unexisting path is passed to --find-links option
(#2968 [https://github.com/pypa/pip/issues/2968]).

	pip freeze does not add the VCS branch/tag name in the #egg=... fragment anymore
(PR #3312 [https://github.com/pypa/pip/pull/3312]).

	Warn on installation of editable if the provided #egg=name part does not
match the metadata produced by setup.py egg_info. #3143 [https://github.com/pypa/pip/issues/3143].

	Add support for .xz files for python versions supporting them (>= 3.3).
#722 [https://github.com/pypa/pip/issues/722].

7.1.2 (2015-08-22)

	Don't raise an error if pip is not installed when checking for the latest pip
version.

7.1.1 (2015-08-20)

	Check that the wheel cache directory is writable before we attempt to write
cached files to them.

	Move the pip version check until after any installs have been performed,
thus removing the extraneous warning when upgrading pip.

	Added debug logging when using a cached wheel.

	Respect platlib by default on platforms that have it separated from purelib.

	Upgrade packaging to 15.3.

	Normalize post-release spellings for rev/r prefixes.

	Upgrade distlib to 0.2.1.

	Updated launchers to decode shebangs using UTF-8. This allows non-ASCII
pathnames to be correctly handled.

	Ensured that the executable written to shebangs is normcased.

	Changed ScriptMaker to work better under Jython.

	Upgrade ipaddress to 1.0.13.

7.1.0 (2015-06-30)

	Allow constraining versions globally without having to know exactly what will
be installed by the pip command. #2731 [https://github.com/pypa/pip/issues/2731].

	Accept --no-binary and --only-binary via pip.conf. #2867 [https://github.com/pypa/pip/issues/2867].

	Allow --allow-all-external within a requirements file.

	Fixed an issue where --user could not be used when --prefix was used
in a distutils configuration file.

	Fixed an issue where the SOABI tags were not correctly being generated on
Python 3.5.

	Fixed an issue where we were advising windows users to upgrade by directly
executing pip, when that would always fail on Windows.

	Allow ~ to be expanded within a cache directory in all situations.

7.0.3 (2015-06-01)

	Fixed a regression where --no-cache-dir would raise an exception, fixes
#2855 [https://github.com/pypa/pip/issues/2855].

7.0.2 (2015-06-01)

	BACKWARD INCOMPATIBLE Revert the change (released in v7.0.0) that
required quoting in requirements files around specifiers containing
environment markers. (PR #2841 [https://github.com/pypa/pip/pull/2841])

	BACKWARD INCOMPATIBLE Revert the accidental introduction of support for
options interleaved with requirements, version specifiers etc in
requirements files. (PR #2841 [https://github.com/pypa/pip/pull/2841])

	Expand ~ in the cache directory when caching wheels, fixes #2816 [https://github.com/pypa/pip/issues/2816].

	Use python -m pip instead of pip when recommending an upgrade command
to Windows users.

7.0.1 (2015-05-22)

	Don't build and cache wheels for non-editable installations from VCSs.

	Allow --allow-all-external inside of a requirements.txt file, fixing a
regression in 7.0.

7.0.0 (2015-05-21)

	BACKWARD INCOMPATIBLE Removed the deprecated --mirror,
--use-mirrors, and -M options.

	BACKWARD INCOMPATIBLE Removed the deprecated zip and unzip
commands.

	BACKWARD INCOMPATIBLE Removed the deprecated --no-install and
--no-download options.

	BACKWARD INCOMPATIBLE No longer implicitly support an insecure origin
origin, and instead require insecure origins be explicitly trusted with the
--trusted-host option.

	BACKWARD INCOMPATIBLE Removed the deprecated link scraping that attempted
to parse HTML comments for a specially formatted comment.

	BACKWARD INCOMPATIBLE Requirements in requirements files containing
markers must now be quoted due to parser changes from (PR #2697 [https://github.com/pypa/pip/pull/2697]) and
(PR #2725 [https://github.com/pypa/pip/pull/2725]). For example, use "SomeProject; python_version < '2.7'",
not simply SomeProject; python_version < '2.7'

	get-pip.py now installs the "wheel" package, when it's not already installed
(PR #2800 [https://github.com/pypa/pip/pull/2800]).

	Ignores bz2 archives if Python wasn't compiled with bz2 support.
Fixes #497 [https://github.com/pypa/pip/issues/497]

	Support --install-option and --global-option per requirement in
requirement files (PR #2537 [https://github.com/pypa/pip/pull/2537])

	Build Wheels prior to installing from sdist, caching them in the pip cache
directory to speed up subsequent installs. (PR #2618 [https://github.com/pypa/pip/pull/2618])

	Allow fine grained control over the use of wheels and source builds.
(PR #2699 [https://github.com/pypa/pip/pull/2699])

	--no-use-wheel and --use-wheel are deprecated in favour of new
options --no-binary and --only-binary. The equivalent of
--no-use-wheel is --no-binary=:all:. (PR #2699 [https://github.com/pypa/pip/pull/2699])

	The use of --install-option, --global-option or --build-option
disable the use of wheels, and the autobuilding of wheels. (PR #2711 [https://github.com/pypa/pip/pull/2711])
Fixes #2677 [https://github.com/pypa/pip/issues/2677]

	Improve logging when a requirement marker doesn't match your environment
(PR #2735 [https://github.com/pypa/pip/pull/2735])

	Removed the temporary modifications (that began in pip v1.4 when distribute
and setuptools merged) that allowed distribute to be considered a conflict to
setuptools. pip install -U setuptools will no longer upgrade "distribute"
to "setuptools". Instead, use pip install -U distribute (PR #2767 [https://github.com/pypa/pip/pull/2767]).

	Only display a warning to upgrade pip when the newest version is a final
release and it is not a post release of the version we already have
installed (PR #2766 [https://github.com/pypa/pip/pull/2766]).

	Display a warning when attempting to access a repository that uses HTTPS when
we don't have Python compiled with SSL support (PR #2761 [https://github.com/pypa/pip/pull/2761]).

	Allowing using extras when installing from a file path without requiring the
use of an editable (PR #2785 [https://github.com/pypa/pip/pull/2785]).

	Fix an infinite loop when the cache directory is stored on a file system
which does not support hard links (PR #2796 [https://github.com/pypa/pip/pull/2796]).

	Remove the implicit debug log that was written on every invocation, instead
users will need to use --log if they wish to have one (PR #2798 [https://github.com/pypa/pip/pull/2798]).

6.1.1 (2015-04-07)

	No longer ignore dependencies which have been added to the standard library,
instead continue to install them.

6.1.0 (2015-04-07)

	Fixes #2502 [https://github.com/pypa/pip/issues/2502]. Upgrades were failing when no potential links were found
for dependencies other than the current installation. (PR #2538 [https://github.com/pypa/pip/pull/2538])

	Use a smoother progress bar when the terminal is capable of handling it,
otherwise fallback to the original ASCII based progress bar.

	Display much less output when pip install succeeds, because on success,
users probably don't care about all the nitty gritty details of compiling and
installing. When pip install fails, display the failed install output once
instead of twice, because once is enough. (PR #2487 [https://github.com/pypa/pip/pull/2487])

	Upgrade the bundled copy of requests to 2.6.0, fixing CVE-2015-2296.

	Display format of latest package when using pip list --outdated.
(PR #2475 [https://github.com/pypa/pip/pull/2475])

	Don't use pywin32 as ctypes should always be available on Windows, using
pywin32 prevented uninstallation of pywin32 on Windows. (PR #2467 [https://github.com/pypa/pip/pull/2467])

	Normalize the --wheel-dir option, expanding out constructs such as ~
when used (PR #2441 [https://github.com/pypa/pip/pull/2441]).

	Display a warning when an undefined extra has been requested. (PR #2142 [https://github.com/pypa/pip/pull/2142])

	Speed up installing a directory in certain cases by creating a sdist instead
of copying the entire directory. (PR #2535 [https://github.com/pypa/pip/pull/2535])

	Don't follow symlinks when uninstalling files (PR #2552 [https://github.com/pypa/pip/pull/2552])

	Upgrade the bundled copy of cachecontrol from 0.11.1 to 0.11.2.
Fixes #2481 [https://github.com/pypa/pip/issues/2481] (PR #2595 [https://github.com/pypa/pip/pull/2595])

	Attempt to more smartly choose the order of installation to try and install
dependencies before the projects that depend on them. (PR #2616 [https://github.com/pypa/pip/pull/2616])

	Skip trying to install libraries which are part of the standard library.
(PR #2636 [https://github.com/pypa/pip/pull/2636], PR #2602 [https://github.com/pypa/pip/pull/2602])

	Support arch specific wheels that are not tied to a specific Python ABI.
(PR #2561 [https://github.com/pypa/pip/pull/2561])

	Output warnings and errors to stderr instead of stdout. (PR #2543 [https://github.com/pypa/pip/pull/2543])

	Adjust the cache dir file checks to only check ownership if the effective
user is root. (PR #2396 [https://github.com/pypa/pip/pull/2396])

	Install headers into a per project name directory instead of all of them into
the root directory when inside of a virtual environment. (PR #2421 [https://github.com/pypa/pip/pull/2421])

6.0.8 (2015-02-04)

	Fix an issue where the --download flag would cause pip to no longer use
randomized build directories.

	Fix an issue where pip did not properly unquote quoted URLs which contain
characters like PEP 440's epoch separator (!).

	Fix an issue where distutils installed projects were not actually uninstalled
and deprecate attempting to uninstall them altogether.

	Retry deleting directories in case a process like an antivirus is holding the
directory open temporarily.

	Fix an issue where pip would hide the cursor on Windows but would not reshow
it.

6.0.7 (2015-01-28)

	Fix a regression where Numpy requires a build path without symlinks to
properly build.

	Fix a broken log message when running pip wheel without a requirement.

	Don't mask network errors while downloading the file as a hash failure.

	Properly create the state file for the pip version check so it only happens
once a week.

	Fix an issue where switching between Python 3 and Python 2 would evict cached
items.

	Fix a regression where pip would be unable to successfully uninstall a
project without a normalized version.

6.0.6 (2015-01-03)

	Continue the regression fix from 6.0.5 which was not a complete fix.

6.0.5 (2015-01-03)

	Fix a regression with 6.0.4 under Windows where most commands would raise an
exception due to Windows not having the os.geteuid() function.

6.0.4 (2015-01-03)

	Fix an issue where ANSI escape codes would be used on Windows even though the
Windows shell does not support them, causing odd characters to appear with
the progress bar.

	Fix an issue where using -v would cause an exception saying
TypeError: not all arguments converted during string formatting.

	Fix an issue where using -v with dependency links would cause an exception
saying TypeError: 'InstallationCandidate' object is not iterable.

	Fix an issue where upgrading distribute would cause an exception saying
TypeError: expected string or buffer.

	Show a warning and disable the use of the cache directory when the cache
directory is not owned by the current user, commonly caused by using sudo
without the -H flag.

	Update PEP 440 support to handle the latest changes to PEP 440, particularly
the changes to >V and <V so that they no longer imply !=V.*.

	Document the default cache directories for each operating system.

	Create the cache directory when the pip version check needs to save to it
instead of silently logging an error.

	Fix a regression where the -q flag would not properly suppress the
display of the progress bars.

6.0.3 (2014-12-23)

	Fix an issue where the implicit version check new in pip 6.0 could cause pip
to block for up to 75 seconds if PyPI was not accessible.

	Make --no-index imply --disable-pip-version-check.

6.0.2 (2014-12-23)

	Fix an issue where the output saying that a package was installed would
report the old version instead of the new version during an upgrade.

	Fix left over merge conflict markers in the documentation.

	Document the backwards incompatible PEP 440 change in the 6.0.0 changelog.

6.0.1 (2014-12-22)

	Fix executable file permissions for Wheel files when using the distutils
scripts option.

	Fix a confusing error message when an exceptions was raised at certain
points in pip's execution.

	Fix the missing list of versions when a version cannot be found that matches
the specifiers.

	Add a warning about the possibly problematic use of > when the given
specifier doesn't match anything.

	Fix an issue where installing from a directory would not copy over certain
directories which were being excluded, however some build systems rely on
them.

6.0 (2014-12-22)

	PROCESS Version numbers are now simply X.Y where the leading 1
has been dropped.

	BACKWARD INCOMPATIBLE Dropped support for Python 3.1.

	BACKWARD INCOMPATIBLE Removed the bundle support which was deprecated in
1.4. (PR #1806 [https://github.com/pypa/pip/pull/1806])

	BACKWARD INCOMPATIBLE File lists generated by pip show -f are now
rooted at the location reported by show, rather than one (unstated)
directory lower. (PR #1933 [https://github.com/pypa/pip/pull/1933])

	BACKWARD INCOMPATIBLE The ability to install files over the FTP protocol
was accidentally lost in pip 1.5 and it has now been decided to not restore
that ability.

	BACKWARD INCOMPATIBLE PEP 440 is now fully implemented, this means that
in some cases versions will sort differently or version specifiers will be
interpreted differently than previously. The common cases should all function
similarly to before.

	DEPRECATION pip install --download-cache and
pip wheel --download-cache command line flags have been deprecated and
the functionality removed. Since pip now automatically configures and uses
it's internal HTTP cache which supplants the --download-cache the
existing options have been made non functional but will still be accepted
until their removal in pip v8.0. For more information please see
https://pip.pypa.io/en/stable/reference/pip_install.html#caching

	DEPRECATION pip install --build and pip install --no-clean are now
NOT deprecated. This reverses the deprecation that occurred in v1.5.3. See
#906 [https://github.com/pypa/pip/issues/906] for discussion.

	DEPRECATION Implicitly accessing URLs which point to an origin which is
not a secure origin, instead requiring an opt-in for each host using the new
--trusted-host flag (pip install --trusted-host example.com foo).

	Allow the new --trusted-host flag to also disable TLS verification for
a particular hostname.

	Added a --user flag to pip freeze and pip list to check the
user site directory only.

	Fixed #1873 [https://github.com/pypa/pip/issues/1873]. Silence byte compile errors when installation succeed.

	Added a virtualenv-specific configuration file. (PR #1364 [https://github.com/pypa/pip/pull/1364])

	Added site-wide configuration files. (PR #1978 [https://github.com/pypa/pip/pull/1978])

	Added an automatic check to warn if there is an updated version of pip
available (PR #2049 [https://github.com/pypa/pip/pull/2049]).

	wsgiref and argparse (for >py26) are now excluded from pip list and pip
freeze (PR #1606 [https://github.com/pypa/pip/pull/1606], PR #1369 [https://github.com/pypa/pip/pull/1369])

	Fixed #1424 [https://github.com/pypa/pip/issues/1424]. Add --client-cert option for SSL client certificates.

	Fixed #1484 [https://github.com/pypa/pip/issues/1484]. pip show --files was broken for wheel installs. (PR #1635 [https://github.com/pypa/pip/pull/1635])

	Fixed #1641 [https://github.com/pypa/pip/issues/1641]. install_lib should take precedence when reading distutils config.
(PR #1642 [https://github.com/pypa/pip/pull/1642])

	Send Accept-Encoding: identity when downloading files in an attempt to
convince some servers who double compress the downloaded file to stop doing
so. (PR #1688 [https://github.com/pypa/pip/pull/1688])

	Fixed #1559 [https://github.com/pypa/pip/issues/1559]. Stop breaking when given pip commands in uppercase (PR #1725 [https://github.com/pypa/pip/pull/1725])

	Fixed #1618 [https://github.com/pypa/pip/issues/1618]. Pip no longer adds duplicate logging consumers, so it
won't create duplicate output when being called multiple times. (PR #1723 [https://github.com/pypa/pip/pull/1723])

	Fixed #1769 [https://github.com/pypa/pip/issues/1769]. pip wheel now returns an error code if any wheels
fail to build.

	Fixed #1775 [https://github.com/pypa/pip/issues/1775]. pip wheel wasn't building wheels for dependencies of
editable requirements.

	Allow the use of --no-use-wheel within a requirements file. (PR #1859 [https://github.com/pypa/pip/pull/1859])

	Fixed #1680 [https://github.com/pypa/pip/issues/1680]. Attempt to locate system TLS certificates to use instead
of the included CA Bundle if possible. (PR #1866 [https://github.com/pypa/pip/pull/1866])

	Fixed #1319 [https://github.com/pypa/pip/issues/1319]. Allow use of Zip64 extension in Wheels and other zip
files. (PR #1868 [https://github.com/pypa/pip/pull/1868])

	Fixed #1101 [https://github.com/pypa/pip/issues/1101]. Properly handle an index or --find-links target which
has a <base> without a href attribute. (PR #1869 [https://github.com/pypa/pip/pull/1869])

	Fixed #1885 [https://github.com/pypa/pip/issues/1885]. Properly handle extras when a project is installed
via Wheel. (PR #1896 [https://github.com/pypa/pip/pull/1896])

	Fixed #1180 [https://github.com/pypa/pip/issues/1180]. Added support to respect proxies in pip search. It
also fixes #932 [https://github.com/pypa/pip/issues/932] and #1104 [https://github.com/pypa/pip/issues/1104]. (PR #1902 [https://github.com/pypa/pip/pull/1902])

	Fixed #798 [https://github.com/pypa/pip/issues/798] and #1060 [https://github.com/pypa/pip/issues/1060]. pip install --download works with vcs links.
(PR #1926 [https://github.com/pypa/pip/pull/1926])

	Fixed #1456 [https://github.com/pypa/pip/issues/1456]. Disabled warning about insecure index host when using localhost.
Based off of Guy Rozendorn's work in PR #1718 [https://github.com/pypa/pip/pull/1718]. (PR #1967 [https://github.com/pypa/pip/pull/1967])

	Allow the use of OS standard user configuration files instead of ones simply
based around $HOME. (PR #2021 [https://github.com/pypa/pip/pull/2021])

	Fixed #1825 [https://github.com/pypa/pip/issues/1825]. When installing directly from wheel paths or urls,
previous versions were not uninstalled. This also fixes #804 [https://github.com/pypa/pip/issues/804]
specifically for the case of wheel archives. (PR #1838 [https://github.com/pypa/pip/pull/1838])

	Fixed #2075 [https://github.com/pypa/pip/issues/2075], detect the location of the .egg-info directory by
looking for any file located inside of it instead of relying on the record
file listing a directory. (PR #2076 [https://github.com/pypa/pip/pull/2076])

	Fixed #1964 [https://github.com/pypa/pip/issues/1964], #1935 [https://github.com/pypa/pip/issues/1935], #676 [https://github.com/pypa/pip/issues/676], Use a randomized and secure
default build directory when possible. (PR #2122 [https://github.com/pypa/pip/pull/2122], CVE-2014-8991)

	Fixed #1433 [https://github.com/pypa/pip/issues/1433]. Support environment markers in requirements.txt files.
(PR #2134 [https://github.com/pypa/pip/pull/2134])

	Automatically retry failed HTTP requests by default. (PR #1444 [https://github.com/pypa/pip/pull/1444], PR #2147 [https://github.com/pypa/pip/pull/2147])

	Fixed #1100 [https://github.com/pypa/pip/issues/1100] - Handle HTML Encoding better using a method that is more
similar to how browsers handle it. (PR #1874 [https://github.com/pypa/pip/pull/1874])

	Reduce the verbosity of the pip command by default. (PR #2175 [https://github.com/pypa/pip/pull/2175],
PR #2177 [https://github.com/pypa/pip/pull/2177], PR #2178 [https://github.com/pypa/pip/pull/2178])

	Fixed #2031 [https://github.com/pypa/pip/issues/2031] - Respect sys.executable on OSX when installing from
Wheels.

	Display the entire URL of the file that is being downloaded when downloading
from a non PyPI repository (PR #2183 [https://github.com/pypa/pip/pull/2183]).

	Support setuptools style environment markers in a source distribution
(PR #2153 [https://github.com/pypa/pip/pull/2153]).

1.5.6 (2014-05-16)

	Upgrade requests to 2.3.0 to fix an issue with proxies on Python 3.4.1
(PR #1821 [https://github.com/pypa/pip/pull/1821]).

1.5.5 (2014-05-03)

	Fixes #1632 [https://github.com/pypa/pip/issues/1632]. Uninstall issues on debianized pypy, specifically issues with
setuptools upgrades. (PR #1743 [https://github.com/pypa/pip/pull/1743])

	Update documentation to point at https://bootstrap.pypa.io/get-pip.py for
bootstrapping pip.

	Update docs to point to https://pip.pypa.io/

	Upgrade the bundled projects (distlib==0.1.8, html5lib==1.0b3, six==1.6.1,
colorama==0.3.1, setuptools==3.4.4).

1.5.4 (2014-02-21)

	Correct deprecation warning for pip install --build to only notify when
the --build value is different than the default.

1.5.3 (2014-02-20)

	DEPRECATION pip install --build and pip install --no-clean are now
deprecated. See #906 [https://github.com/pypa/pip/issues/906] for discussion.

	Fixed #1112 [https://github.com/pypa/pip/issues/1112]. Couldn't download directly from wheel paths/urls, and when wheel
downloads did occur using requirement specifiers, dependencies weren't
downloaded (PR #1527 [https://github.com/pypa/pip/pull/1527])

	Fixed #1320 [https://github.com/pypa/pip/issues/1320]. pip wheel was not downloading wheels that already existed (PR
#1524 [https://github.com/pypa/pip/issues/1524])

	Fixed #1111 [https://github.com/pypa/pip/issues/1111]. pip install --download was failing using local
--find-links (PR #1524 [https://github.com/pypa/pip/pull/1524])

	Workaround for Python bug http://bugs.python.org/issue20053 (PR #1544 [https://github.com/pypa/pip/pull/1544])

	Don't pass a unicode __file__ to setup.py on Python 2.x (PR #1583 [https://github.com/pypa/pip/pull/1583])

	Verify that the Wheel version is compatible with this pip (PR #1569 [https://github.com/pypa/pip/pull/1569])

1.5.2 (2014-01-26)

	Upgraded the vendored pkg_resources and _markerlib to setuptools 2.1.

	Fixed an error that prevented accessing PyPI when pyopenssl, ndg-httpsclient,
and pyasn1 are installed

	Fixed an issue that caused trailing comments to be incorrectly included as
part of the URL in a requirements file

1.5.1 (2014-01-20)

	pip now only requires setuptools (any setuptools, not a certain version) when
installing distributions from src (i.e. not from wheel). (PR #1434 [https://github.com/pypa/pip/pull/1434]).

	get-pip.py now installs setuptools, when it's not already installed
(PR #1475 [https://github.com/pypa/pip/pull/1475])

	Don't decode downloaded files that have a Content-Encoding header.
(PR #1435 [https://github.com/pypa/pip/pull/1435])

	Fix to correctly parse wheel filenames with single digit versions.
(PR #1445 [https://github.com/pypa/pip/pull/1445])

	If --allow-unverified is used assume it also means --allow-external.
(PR #1457 [https://github.com/pypa/pip/pull/1457])

1.5 (2014-01-01)

	BACKWARD INCOMPATIBLE pip no longer supports the --use-mirrors,
-M, and --mirrors flags. The mirroring support has been removed. In
order to use a mirror specify it as the primary index with -i or
--index-url, or as an additional index with --extra-index-url. (PR #1098 [https://github.com/pypa/pip/pull/1098], CVE-2013-5123)

	BACKWARD INCOMPATIBLE pip no longer will scrape insecure external urls by
default nor will it install externally hosted files by default. Users may opt
into installing externally hosted or insecure files or urls using
--allow-external PROJECT and --allow-unverified PROJECT. (PR #1055 [https://github.com/pypa/pip/pull/1055])

	BACKWARD INCOMPATIBLE pip no longer respects dependency links by default.
Users may opt into respecting them again using --process-dependency-links.

	DEPRECATION pip install --no-install and pip install
--no-download are now formally deprecated. See #906 [https://github.com/pypa/pip/issues/906] for discussion on
possible alternatives, or lack thereof, in future releases.

	DEPRECATION pip zip and pip unzip are now formally deprecated.

	pip will now install Mac OSX platform wheels from PyPI. (PR #1278 [https://github.com/pypa/pip/pull/1278])

	pip now generates the appropriate platform-specific console scripts when
installing wheels. (PR #1251 [https://github.com/pypa/pip/pull/1251])

	Pip now confirms a wheel is supported when installing directly from a path or
url. (PR #1315 [https://github.com/pypa/pip/pull/1315])

	Fixed #1097 [https://github.com/pypa/pip/issues/1097], --ignore-installed now behaves again as designed, after it was
unintentionally broke in v0.8.3 when fixing #14 [https://github.com/pypa/pip/issues/14] (PR #1352 [https://github.com/pypa/pip/pull/1352]).

	Fixed a bug where global scripts were being removed when uninstalling --user
installed packages (PR #1353 [https://github.com/pypa/pip/pull/1353]).

	Fixed #1163 [https://github.com/pypa/pip/issues/1163], --user wasn't being respected when installing scripts from wheels (PR #1176 [https://github.com/pypa/pip/pull/1176]).

	Fixed #1150 [https://github.com/pypa/pip/issues/1150], we now assume '_' means '-' in versions from wheel filenames (PR #1158 [https://github.com/pypa/pip/pull/1158]).

	Fixed #219 [https://github.com/pypa/pip/issues/219], error when using --log with a failed install (PR #1205 [https://github.com/pypa/pip/pull/1205]).

	Fixed #1131 [https://github.com/pypa/pip/issues/1131], logging was buffered and choppy in Python 3.

	Fixed #70 [https://github.com/pypa/pip/issues/70], --timeout was being ignored (PR #1202 [https://github.com/pypa/pip/pull/1202]).

	Fixed #772 [https://github.com/pypa/pip/issues/772], error when setting PIP_EXISTS_ACTION (PR #1201 [https://github.com/pypa/pip/pull/1201]).

	Added colors to the logging output in order to draw attention to important
warnings and errors. (PR #1109 [https://github.com/pypa/pip/pull/1109])

	Added warnings when using an insecure index, find-link, or dependency link. (PR #1121 [https://github.com/pypa/pip/pull/1121])

	Added support for installing packages from a subdirectory using the subdirectory
editable option. (PR #1082 [https://github.com/pypa/pip/pull/1082])

	Fixed #1192 [https://github.com/pypa/pip/issues/1192]. "TypeError: bad operand type for unary" in some cases when
installing wheels using --find-links (PR #1218 [https://github.com/pypa/pip/pull/1218]).

	Fixed #1133 [https://github.com/pypa/pip/issues/1133] and #317 [https://github.com/pypa/pip/issues/317]. Archive contents are now written based on system
defaults and umask (i.e. permissions are not preserved), except that regular
files with any execute permissions have the equivalent of "chmod +x" applied
after being written (PR #1146 [https://github.com/pypa/pip/pull/1146]).

	PreviousBuildDirError now returns a non-zero exit code and prevents the
previous build dir from being cleaned in all cases (PR #1162 [https://github.com/pypa/pip/pull/1162]).

	Renamed --allow-insecure to --allow-unverified, however the old name will
continue to work for a period of time (PR #1257 [https://github.com/pypa/pip/pull/1257]).

	Fixed #1006 [https://github.com/pypa/pip/issues/1006], error when installing local projects with symlinks in
Python 3. (PR #1311 [https://github.com/pypa/pip/pull/1311])

	The previously hidden --log-file option, is now shown as a general option.
(PR #1316 [https://github.com/pypa/pip/pull/1316])

1.4.1 (2013-08-07)

	New Signing Key Release 1.4.1 is using a different key than normal with
fingerprint: 7C6B 7C5D 5E2B 6356 A926 F04F 6E3C BCE9 3372 DCFA

	Fixed issues with installing from pybundle files (PR #1116 [https://github.com/pypa/pip/pull/1116]).

	Fixed error when sysconfig module throws an exception (PR #1095 [https://github.com/pypa/pip/pull/1095]).

	Don't ignore already installed pre-releases (PR #1076 [https://github.com/pypa/pip/pull/1076]).

	Fixes related to upgrading setuptools (PR #1092 [https://github.com/pypa/pip/pull/1092]).

	Fixes so that --download works with wheel archives (PR #1113 [https://github.com/pypa/pip/pull/1113]).

	Fixes related to recognizing and cleaning global build dirs (PR #1080 [https://github.com/pypa/pip/pull/1080]).

1.4 (2013-07-23)

	BACKWARD INCOMPATIBLE pip now only installs stable versions by default,
and offers a new --pre option to also find pre-release and development
versions. (PR #834 [https://github.com/pypa/pip/pull/834])

	BACKWARD INCOMPATIBLE Dropped support for Python 2.5. The minimum
supported Python version for pip 1.4 is Python 2.6.

	Added support for installing and building wheel archives.
Thanks Daniel Holth, Marcus Smith, Paul Moore, and Michele Lacchia
(PR #845 [https://github.com/pypa/pip/pull/845])

	Applied security patch to pip's ssl support related to certificate DNS
wildcard matching (http://bugs.python.org/issue17980).

	To satisfy pip's setuptools requirement, pip now recommends setuptools>=0.8,
not distribute. setuptools and distribute are now merged into one project
called 'setuptools'. (PR #1003 [https://github.com/pypa/pip/pull/1003])

	pip will now warn when installing a file that is either hosted externally to
the index or cannot be verified with a hash. In the future pip will default
to not installing them and will require the flags --allow-external NAME, and
--allow-insecure NAME respectively. (PR #985 [https://github.com/pypa/pip/pull/985])

	If an already-downloaded or cached file has a bad hash, re-download it rather
than erroring out. (#963 [https://github.com/pypa/pip/issues/963]).

	pip bundle and support for installing from pybundle files is now
considered deprecated and will be removed in pip v1.5.

	Fixed a number of issues (#413 [https://github.com/pypa/pip/issues/413], #709 [https://github.com/pypa/pip/issues/709], #634 [https://github.com/pypa/pip/issues/634], #602 [https://github.com/pypa/pip/issues/602], and #939 [https://github.com/pypa/pip/issues/939]) related to
cleaning up and not reusing build directories. (PR #865 [https://github.com/pypa/pip/pull/865], #948 [https://github.com/pypa/pip/issues/948])

	Added a User Agent so that pip is identifiable in logs. (PR #901 [https://github.com/pypa/pip/pull/901])

	Added ssl and --user support to get-pip.py. Thanks Gabriel de Perthuis.
(PR #895 [https://github.com/pypa/pip/pull/895])

	Fixed the proxy support, which was broken in pip 1.3.x (PR #840 [https://github.com/pypa/pip/pull/840])

	Fixed #32 [https://github.com/pypa/pip/issues/32] - pip fails when server does not send content-type header.
Thanks Hugo Lopes Tavares and Kelsey Hightower (PR #872 [https://github.com/pypa/pip/pull/872]).

	"Vendorized" distlib as pip.vendor.distlib (https://distlib.readthedocs.io/).

	Fixed git VCS backend with git 1.8.3. (PR #967 [https://github.com/pypa/pip/pull/967])

1.3.1 (2013-03-08)

	Fixed a major backward incompatible change of parsing URLs to externally
hosted packages that got accidentally included in 1.3.

1.3 (2013-03-07)

	SSL Cert Verification; Make https the default for PyPI access.
Thanks James Cleveland, Giovanni Bajo, Marcus Smith and many others (PR #791 [https://github.com/pypa/pip/pull/791], CVE-2013-1629).

	Added "pip list" for listing installed packages and the latest version
available. Thanks Rafael Caricio, Miguel Araujo, Dmitry Gladkov (PR #752 [https://github.com/pypa/pip/pull/752])

	Fixed security issues with pip's use of temp build directories.
Thanks David (d1b) and Thomas Guttler. (PR #780 [https://github.com/pypa/pip/pull/780], CVE-2013-1888)

	Improvements to sphinx docs and cli help. (PR #773 [https://github.com/pypa/pip/pull/773])

	Fixed #707 [https://github.com/pypa/pip/issues/707], dealing with macOS temp dir handling, which was causing
global NumPy installs to fail. (PR #768 [https://github.com/pypa/pip/pull/768])

	Split help output into general vs command-specific option groups.
Thanks Georgi Valkov. (PR #744 [https://github.com/pypa/pip/pull/744]; PR #721 [https://github.com/pypa/pip/pull/721] contains preceding refactor)

	Fixed dependency resolution when installing from archives with uppercase
project names. (PR #724 [https://github.com/pypa/pip/pull/724])

	Fixed problem where re-installs always occurred when using file:// find-links.
(Pulls #683 [https://github.com/pypa/pip/issues/683]/#702 [https://github.com/pypa/pip/issues/702])

	"pip install -v" now shows the full download url, not just the archive name.
Thanks Marc Abramowitz (PR #687 [https://github.com/pypa/pip/pull/687])

	Fix to prevent unnecessary PyPI redirects. Thanks Alex Gronholm (PR #695 [https://github.com/pypa/pip/pull/695])

	Fixed #670 [https://github.com/pypa/pip/issues/670] - install failure under Python 3 when the same version
of a package is found under 2 different URLs. Thanks Paul Moore (PR #671 [https://github.com/pypa/pip/pull/671])

	Fix git submodule recursive updates. Thanks Roey Berman. (Pulls #674 [https://github.com/pypa/pip/issues/674])

	Explicitly ignore rel='download' links while looking for html pages.
Thanks Maxime R. (PR #677 [https://github.com/pypa/pip/pull/677])

	--user/--upgrade install options now work together. Thanks 'eevee' for
discovering the problem. (PR #705 [https://github.com/pypa/pip/pull/705])

	Added check in install --download to prevent re-downloading if the target
file already exists. Thanks Andrey Bulgakov. (PR #669 [https://github.com/pypa/pip/pull/669])

	Added support for bare paths (including relative paths) as argument to
--find-links. Thanks Paul Moore for draft patch.

	Added support for --no-index in requirements files.

	Added "pip show" command to get information about an installed package.
Fixes #131 [https://github.com/pypa/pip/issues/131]. Thanks Kelsey Hightower and Rafael Caricio.

	Added --root option for "pip install" to specify root directory. Behaves
like the same option in distutils but also plays nice with pip's egg-info.
Thanks Przemek Wrzos. (#253 [https://github.com/pypa/pip/issues/253] / PR #693 [https://github.com/pypa/pip/pull/693])

1.2.1 (2012-09-06)

	Fixed a regression introduced in 1.2 about raising an exception when
not finding any files to uninstall in the current environment. Thanks for
the fix, Marcus Smith.

1.2 (2012-09-01)

	Dropped support for Python 2.4 The minimum supported Python version is
now Python 2.5.

	Fixed #605 [https://github.com/pypa/pip/issues/605] - pypi mirror support broken on some DNS responses. Thanks
philwhin.

	Fixed #355 [https://github.com/pypa/pip/issues/355] - pip uninstall removes files it didn't install. Thanks
pjdelport.

	Fixed issues #493 [https://github.com/pypa/pip/issues/493], #494 [https://github.com/pypa/pip/issues/494], #440 [https://github.com/pypa/pip/issues/440], and #573 [https://github.com/pypa/pip/issues/573] related to improving support for the
user installation scheme. Thanks Marcus Smith.

	Write failure log to temp file if default location is not writable. Thanks
andreigc.

	Pull in submodules for git editable checkouts. Fixes #289 [https://github.com/pypa/pip/issues/289] and #421 [https://github.com/pypa/pip/issues/421]. Thanks
Hsiaoming Yang and Markus Hametner.

	Use a temporary directory as the default build location outside of a
virtualenv. Fixes issues #339 [https://github.com/pypa/pip/issues/339] and #381 [https://github.com/pypa/pip/issues/381]. Thanks Ben Rosser.

	Added support for specifying extras with local editables. Thanks Nick
Stenning.

	Added --egg flag to request egg-style rather than flat installation. Refs
#3 [https://github.com/pypa/pip/issues/3]. Thanks Kamal Bin Mustafa.

	Fixed #510 [https://github.com/pypa/pip/issues/510] - prevent e.g. gmpy2-2.0.tar.gz from matching a request
to pip install gmpy; sdist filename must begin with full project name
followed by a dash. Thanks casevh for the report.

	Fixed #504 [https://github.com/pypa/pip/issues/504] - allow package URLS to have querystrings. Thanks W.
Trevor King.

	Fixed #58 [https://github.com/pypa/pip/issues/58] - pip freeze now falls back to non-editable format rather
than blowing up if it can't determine the origin repository of an editable.
Thanks Rory McCann.

	Added a __main__.py file to enable python -m pip on Python versions
that support it. Thanks Alexey Luchko.

	Fixed #487 [https://github.com/pypa/pip/issues/487] - upgrade from VCS url of project that does exist on
index. Thanks Andrew Knapp for the report.

	Fixed #486 [https://github.com/pypa/pip/issues/486] - fix upgrade from VCS url of project with no distribution
on index. Thanks Andrew Knapp for the report.

	Fixed #427 [https://github.com/pypa/pip/issues/427] - clearer error message on a malformed VCS url. Thanks
Thomas Fenzl.

	Added support for using any of the built in guaranteed algorithms in
hashlib as a checksum hash.

	Fixed #321 [https://github.com/pypa/pip/issues/321] - Raise an exception if current working directory can't be
found or accessed.

	Fixed #82 [https://github.com/pypa/pip/issues/82] - Removed special casing of the user directory and use the
Python default instead.

	Fixed #436 [https://github.com/pypa/pip/issues/436] - Only warn about version conflicts if there is actually one.
This re-enables using ==dev in requirements files.

	Moved tests to be run on Travis CI: http://travis-ci.org/pypa/pip

	Added a better help formatter.

1.1 (2012-02-16)

	Fixed #326 [https://github.com/pypa/pip/issues/326] - don't crash when a package's setup.py emits UTF-8 and
then fails. Thanks Marc Abramowitz.

	Added --target option for installing directly to arbitrary directory.
Thanks Stavros Korokithakis.

	Added support for authentication with Subversion repositories. Thanks
Qiangning Hong.

	Fixed #315 [https://github.com/pypa/pip/issues/315] - --download now downloads dependencies as well.
Thanks Qiangning Hong.

	Errors from subprocesses will display the current working directory.
Thanks Antti Kaihola.

	Fixed #369 [https://github.com/pypa/pip/issues/369] - compatibility with Subversion 1.7. Thanks Qiangning
Hong. Note that setuptools remains incompatible with Subversion 1.7; to
get the benefits of pip's support you must use Distribute rather than
setuptools.

	Fixed #57 [https://github.com/pypa/pip/issues/57] - ignore py2app-generated macOS mpkg zip files in finder.
Thanks Rene Dudfield.

	Fixed #182 [https://github.com/pypa/pip/issues/182] - log to ~/Library/Logs/ by default on macOS framework
installs. Thanks Dan Callahan for report and patch.

	Fixed #310 [https://github.com/pypa/pip/issues/310] - understand version tags without minor version ("py3")
in sdist filenames. Thanks Stuart Andrews for report and Olivier Girardot for
patch.

	Fixed #7 [https://github.com/pypa/pip/issues/7] - Pip now supports optionally installing setuptools
"extras" dependencies; e.g. "pip install Paste[openid]". Thanks Matt Maker
and Olivier Girardot.

	Fixed #391 [https://github.com/pypa/pip/issues/391] - freeze no longer borks on requirements files with
--index-url or --find-links. Thanks Herbert Pfennig.

	Fixed #288 [https://github.com/pypa/pip/issues/288] - handle symlinks properly. Thanks lebedov for the patch.

	Fixed #49 [https://github.com/pypa/pip/issues/49] - pip install -U no longer reinstalls the same versions of
packages. Thanks iguananaut for the pull request.

	Removed -E/--environment option and PIP_RESPECT_VIRTUALENV;
both use a restart-in-venv mechanism that's broken, and neither one is
useful since every virtualenv now has pip inside it. Replace pip -E
path/to/venv install Foo with virtualenv path/to/venv &&
path/to/venv/pip install Foo.

	Fixed #366 [https://github.com/pypa/pip/issues/366] - pip throws IndexError when it calls scraped_rel_links

	Fixed #22 [https://github.com/pypa/pip/issues/22] - pip search should set and return a useful shell status code

	Fixed #351 [https://github.com/pypa/pip/issues/351] and #365 [https://github.com/pypa/pip/issues/365] - added global --exists-action command line
option to easier script file exists conflicts, e.g. from editable
requirements from VCS that have a changed repo URL.

1.0.2 (2011-07-16)

	Fixed docs issues.

	Fixed #295 [https://github.com/pypa/pip/issues/295] - Reinstall a package when using the install -I option

	Fixed #283 [https://github.com/pypa/pip/issues/283] - Finds a Git tag pointing to same commit as origin/master

	Fixed #279 [https://github.com/pypa/pip/issues/279] - Use absolute path for path to docs in setup.py

	Fixed #314 [https://github.com/pypa/pip/issues/314] - Correctly handle exceptions on Python3.

	Fixed #320 [https://github.com/pypa/pip/issues/320] - Correctly parse --editable lines in requirements files

1.0.1 (2011-04-30)

	Start to use git-flow.

	Fixed #274 [https://github.com/pypa/pip/issues/274] - find_command should not raise AttributeError

	Fixed #273 [https://github.com/pypa/pip/issues/273] - respect Content-Disposition header. Thanks Bradley Ayers.

	Fixed #233 [https://github.com/pypa/pip/issues/233] - pathext handling on Windows.

	Fixed #252 [https://github.com/pypa/pip/issues/252] - svn+svn protocol.

	Fixed #44 [https://github.com/pypa/pip/issues/44] - multiple CLI searches.

	Fixed #266 [https://github.com/pypa/pip/issues/266] - current working directory when running setup.py clean.

1.0 (2011-04-04)

	Added Python 3 support! Huge thanks to Vinay Sajip, Vitaly Babiy, Kelsey
Hightower, and Alex Gronholm, among others.

	Download progress only shown on a real TTY. Thanks Alex Morega.

	Fixed finding of VCS binaries to not be fooled by same-named directories.
Thanks Alex Morega.

	Fixed uninstall of packages from system Python for users of Debian/Ubuntu
python-setuptools package (workaround until fixed in Debian and Ubuntu).

	Added get-pip.py [https://raw.github.com/pypa/pip/master/contrib/get-pip.py]
installer. Simply download and execute it, using the Python interpreter of
your choice:

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ python get-pip.py

This may have to be run as root.

Note

Make sure you have distribute [http://pypi.python.org/pypi/distribute]
installed before using the installer!

0.8.3

	Moved main repository to Github: https://github.com/pypa/pip

	Transferred primary maintenance from Ian to Jannis Leidel, Carl Meyer, Brian Rosner

	Fixed #14 [https://github.com/pypa/pip/issues/14] - No uninstall-on-upgrade with URL package. Thanks Oliver Tonnhofer

	Fixed #163 [https://github.com/pypa/pip/issues/163] - Egg name not properly resolved. Thanks Igor Sobreira

	Fixed #178 [https://github.com/pypa/pip/issues/178] - Non-alphabetical installation of requirements. Thanks Igor Sobreira

	Fixed #199 [https://github.com/pypa/pip/issues/199] - Documentation mentions --index instead of --index-url. Thanks Kelsey Hightower

	Fixed #204 [https://github.com/pypa/pip/issues/204] - rmtree undefined in mercurial.py. Thanks Kelsey Hightower

	Fixed bug in Git vcs backend that would break during reinstallation.

	Fixed bug in Mercurial vcs backend related to pip freeze and branch/tag resolution.

	Fixed bug in version string parsing related to the suffix "-dev".

0.8.2

	Avoid redundant unpacking of bundles (from pwaller)

	Fixed #32 [https://github.com/pypa/pip/issues/32], #150 [https://github.com/pypa/pip/issues/150], #161 [https://github.com/pypa/pip/issues/161] - Fixed checking out the correct
tag/branch/commit when updating an editable Git requirement.

	Fixed #49 [https://github.com/pypa/pip/issues/49] - Added ability to install version control requirements
without making them editable, e.g.:

pip install git+https://github.com/pypa/pip/

	Fixed #175 [https://github.com/pypa/pip/issues/175] - Correctly locate build and source directory on macOS.

	Added git+https:// scheme to Git VCS backend.

0.8.1

	Added global --user flag as shortcut for --install-option="--user". From
Ronny Pfannschmidt.

	Added support for PyPI mirrors [http://pypi.python.org/mirrors] as
defined in PEP 381 [http://www.python.org/dev/peps/pep-0381/], from
Jannis Leidel.

	Fixed #138 [https://github.com/pypa/pip/issues/138] - Git revisions ignored. Thanks John-Scott Atlakson.

	Fixed #95 [https://github.com/pypa/pip/issues/95] - Initial editable install of github package from a tag fails. Thanks John-Scott Atlakson.

	Fixed #107 [https://github.com/pypa/pip/issues/107] - Can't install if a directory in cwd has the same name as the package you're installing.

	Fixed #39 [https://github.com/pypa/pip/issues/39] - --install-option="--prefix=~/.local" ignored with -e.
Thanks Ronny Pfannschmidt and Wil Tan.

0.8

	Track which build/ directories pip creates, never remove directories
it doesn't create. From Hugo Lopes Tavares.

	Pip now accepts file:// index URLs. Thanks Dave Abrahams.

	Various cleanup to make test-running more consistent and less fragile.
Thanks Dave Abrahams.

	Real Windows support (with passing tests). Thanks Dave Abrahams.

	pip-2.7 etc. scripts are created (Python-version specific scripts)

	contrib/build-standalone script creates a runnable .zip form of
pip, from Jannis Leidel

	Editable git repos are updated when reinstalled

	Fix problem with --editable when multiple .egg-info/ directories
are found.

	A number of VCS-related fixes for pip freeze, from Hugo Lopes Tavares.

	Significant test framework changes, from Hugo Lopes Tavares.

0.7.2

	Set zip_safe=False to avoid problems some people are encountering where
pip is installed as a zip file.

0.7.1

	Fixed opening of logfile with no directory name. Thanks Alexandre Conrad.

	Temporary files are consistently cleaned up, especially after
installing bundles, also from Alex Conrad.

	Tests now require at least ScriptTest 1.0.3.

0.7

	Fixed uninstallation on Windows

	Added pip search command.

	Tab-complete names of installed distributions for pip uninstall.

	Support tab-completion when there is a global-option before the
subcommand.

	Install header files in standard (scheme-default) location when installing
outside a virtualenv. Install them to a slightly more consistent
non-standard location inside a virtualenv (since the standard location is
a non-writable symlink to the global location).

	pip now logs to a central location by default (instead of creating
pip-log.txt all over the place) and constantly overwrites the
file in question. On Unix and macOS this is '$HOME/.pip/pip.log'
and on Windows it's '%HOME%\\pip\\pip.log'. You are still able to
override this location with the $PIP_LOG_FILE environment variable.
For a complete (appended) logfile use the separate '--log' command line
option.

	Fixed an issue with Git that left an editable package as a checkout of a
remote branch, even if the default behaviour would have been fine, too.

	Fixed installing from a Git tag with older versions of Git.

	Expand "~" in logfile and download cache paths.

	Speed up installing from Mercurial repositories by cloning without
updating the working copy multiple times.

	Fixed installing directly from directories (e.g.
pip install path/to/dir/).

	Fixed installing editable packages with svn+ssh URLs.

	Don't print unwanted debug information when running the freeze command.

	Create log file directory automatically. Thanks Alexandre Conrad.

	Make test suite easier to run successfully. Thanks Dave Abrahams.

	Fixed "pip install ." and "pip install .."; better error for directory
without setup.py. Thanks Alexandre Conrad.

	Support Debian/Ubuntu "dist-packages" in zip command. Thanks duckx.

	Fix relative --src folder. Thanks Simon Cross.

	Handle missing VCS with an error message. Thanks Alexandre Conrad.

	Added --no-download option to install; pairs with --no-install to separate
download and installation into two steps. Thanks Simon Cross.

	Fix uninstalling from requirements file containing -f, -i, or
--extra-index-url.

	Leftover build directories are now removed. Thanks Alexandre Conrad.

0.6.3

	Fixed import error on Windows with regard to the backwards compatibility
package

0.6.2

	Fixed uninstall when /tmp is on a different filesystem.

	Fixed uninstallation of distributions with namespace packages.

0.6.1

	Added support for the https and http-static schemes to the
Mercurial and ftp scheme to the Bazaar backend.

	Fixed uninstallation of scripts installed with easy_install.

	Fixed an issue in the package finder that could result in an
infinite loop while looking for links.

	Fixed issue with pip bundle and local files (which weren't being
copied into the bundle), from Whit Morriss.

0.6

	Add pip uninstall and uninstall-before upgrade (from Carl
Meyer).

	Extended configurability with config files and environment variables.

	Allow packages to be upgraded, e.g., pip install Package==0.1
then pip install Package==0.2.

	Allow installing/upgrading to Package==dev (fix "Source version does not
match target version" errors).

	Added command and option completion for bash and zsh.

	Extended integration with virtualenv by providing an option to
automatically use an active virtualenv and an option to warn if no active
virtualenv is found.

	Fixed a bug with pip install --download and editable packages, where
directories were being set with 0000 permissions, now defaults to 755.

	Fixed uninstallation of easy_installed console_scripts.

	Fixed uninstallation on macOS Framework layout installs

	Fixed bug preventing uninstall of editables with source outside venv.

	Creates download cache directory if not existing.

0.5.1

	Fixed a couple little bugs, with git and with extensions.

0.5

	Added ability to override the default log file name (pip-log.txt)
with the environmental variable $PIP_LOG_FILE.

	Made the freeze command print installed packages to stdout instead of
writing them to a file. Use simple redirection (e.g.
pip freeze > stable-req.txt) to get a file with requirements.

	Fixed problem with freezing editable packages from a Git repository.

	Added support for base URLs using <base href='...'> when parsing
HTML pages.

	Fixed installing of non-editable packages from version control systems.

	Fixed issue with Bazaar's bzr+ssh scheme.

	Added --download-dir option to the install command to retrieve package
archives. If given an editable package it will create an archive of it.

	Added ability to pass local file and directory paths to --find-links,
e.g. --find-links=file:///path/to/my/private/archive

	Reduced the amount of console log messages when fetching a page to find a
distribution was problematic. The full messages can be found in pip-log.txt.

	Added --no-deps option to install ignore package dependencies

	Added --no-index option to ignore the package index (PyPI) temporarily

	Fixed installing editable packages from Git branches.

	Fixes freezing of editable packages from Mercurial repositories.

	Fixed handling read-only attributes of build files, e.g. of Subversion and
Bazaar on Windows.

	When downloading a file from a redirect, use the redirected
location's extension to guess the compression (happens specifically
when redirecting to a bitbucket.org tip.gz file).

	Editable freeze URLs now always use revision hash/id rather than tip or
branch names which could move.

	Fixed comparison of repo URLs so incidental differences such as
presence/absence of final slashes or quoted/unquoted special
characters don't trigger "ignore/switch/wipe/backup" choice.

	Fixed handling of attempt to checkout editable install to a
non-empty, non-repo directory.

0.4

	Make -e work better with local hg repositories

	Construct PyPI URLs the exact way easy_install constructs URLs (you
might notice this if you use a custom index that is
slash-sensitive).

	Improvements on Windows (from Ionel Maries Cristian [http://ionelmc.wordpress.com/]).

	Fixed problem with not being able to install private git repositories.

	Make pip zip zip all its arguments, not just the first.

	Fix some filename issues on Windows.

	Allow the -i and --extra-index-url options in requirements
files.

	Fix the way bundle components are unpacked and moved around, to make
bundles work.

	Adds -s option to allow the access to the global site-packages if a
virtualenv is to be created.

	Fixed support for Subversion 1.6.

0.3.1

	Improved virtualenv restart and various path/cleanup problems on win32.

	Fixed a regression with installing from svn repositories (when not
using -e).

	Fixes when installing editable packages that put their source in a
subdirectory (like src/).

	Improve pip -h

0.3

	Added support for editable packages created from Git, Mercurial and Bazaar
repositories and ability to freeze them. Refactored support for version
control systems.

	Do not use sys.exit() from inside the code, instead use a
return. This will make it easier to invoke programmatically.

	Put the install record in Package.egg-info/installed-files.txt
(previously they went in
site-packages/install-record-Package.txt).

	Fix a problem with pip freeze not including -e svn+ when an
svn structure is peculiar.

	Allow pip -E to work with a virtualenv that uses a different
version of Python than the parent environment.

	Fixed Win32 virtualenv (-E) option.

	Search the links passed in with -f for packages.

	Detect zip files, even when the file doesn't have a .zip
extension and it is served with the wrong Content-Type.

	Installing editable from existing source now works, like pip
install -e some/path/ will install the package in some/path/.
Most importantly, anything that package requires will also be
installed by pip.

	Add a --path option to pip un/zip, so you can avoid zipping
files that are outside of where you expect.

	Add --simulate option to pip zip.

0.2.1

	Fixed small problem that prevented using pip.py without actually
installing pip.

	Fixed --upgrade, which would download and appear to install
upgraded packages, but actually just reinstall the existing package.

	Fixed Windows problem with putting the install record in the right
place, and generating the pip script with Setuptools.

	Download links that include embedded spaces or other unsafe
characters (those characters get %-encoded).

	Fixed use of URLs in requirement files, and problems with some blank
lines.

	Turn some tar file errors into warnings.

0.2

	Renamed to pip, and to install you now do pip install
PACKAGE

	Added command pip zip PACKAGE and pip unzip PACKAGE. This
is particularly intended for Google App Engine to manage libraries
to stay under the 1000-file limit.

	Some fixes to bundles, especially editable packages and when
creating a bundle using unnamed packages (like just an svn
repository without #egg=Package).

0.1.4

	Added an option --install-option to pass options to pass
arguments to setup.py install

	.svn/ directories are no longer included in bundles, as these
directories are specific to a version of svn -- if you build a
bundle on a system with svn 1.5, you can't use the checkout on a
system with svn 1.4. Instead a file svn-checkout.txt is
included that notes the original location and revision, and the
command you can use to turn it back into an svn checkout. (Probably
unpacking the bundle should, maybe optionally, recreate this
information -- but that is not currently implemented, and it would
require network access.)

	Avoid ambiguities over project name case, where for instance
MyPackage and mypackage would be considered different packages.
This in particular caused problems on Macs, where MyPackage/ and
mypackage/ are the same directory.

	Added support for an environmental variable
$PIP_DOWNLOAD_CACHE which will cache package downloads, so
future installations won't require large downloads. Network access
is still required, but just some downloads will be avoided when
using this.

0.1.3

	Always use svn checkout (not export) so that
tag_svn_revision settings give the revision of the package.

	Don't update checkouts that came from .pybundle files.

0.1.2

	Improve error text when there are errors fetching HTML pages when
seeking packages.

	Improve bundles: include empty directories, make them work with
editable packages.

	If you use -E env and the environment env/ doesn't exist, a
new virtual environment will be created.

	Fix dependency_links for finding packages.

0.1.1

	Fixed a NameError exception when running pip outside of a
virtualenv environment.

	Added HTTP proxy support (from Prabhu Ramachandran)

	Fixed use of hashlib.md5 on python2.5+ (also from Prabhu
Ramachandran)

0.1

	Initial release

Configuration

This content is now covered in the User Guide

Cookbook

This content is now covered in the User Guide

Internal Details

This content is now covered in the Reference Guide

Usage

The "Usage" section is now covered in the Reference Guide

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 pip

 		
 Quickstart

 		
 Installation

 		
 Do I need to install pip?

 		
 Installing with get-pip.py

 		
 get-pip.py options

 		
 Using Linux Package Managers

 		
 Upgrading pip

 		
 Python and OS Compatibility

 		
 User Guide

 		
 Installing Packages

 		
 Requirements Files

 		
 Constraints Files

 		
 Installing from Wheels

 		
 Uninstalling Packages

 		
 Listing Packages

 		
 Searching for Packages

 		
 Configuration

 		
 Config file

 		
 Environment Variables

 		
 Config Precedence

 		
 Command Completion

 		
 Installing from local packages

 		
 “Only if needed” Recursive Upgrade

 		
 User Installs

 		
 Ensuring Repeatability

 		
 Pinned Version Numbers

 		
 Hash-checking Mode

 		
 Installation Bundles

 		
 Reference Guide

 		
 pip

 		
 Usage

 		
 Description

 		
 General Options

 		
 pip install

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip download

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip uninstall

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip freeze

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip list

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip show

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip search

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip wheel

 		
 Usage

 		
 Description

 		
 Options

 		
 Examples

 		
 pip hash

 		
 Usage

 		
 Description

 		
 Options

 		
 Example

 		
 Development

 		
 Pull Requests

 		
 Automated Testing

 		
 Running tests

 		
 Getting Involved

 		
 Release Process

 		
 Creating a Bugfix Release

 		
 Release Notes

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

