

 Navigation

 	
 index

 	test-JupyterKernelGateway stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/test-jupyterkernelgateway/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/test-jupyterkernelgateway/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	test-JupyterKernelGateway stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 LICENSE.html

 Navigation

 		
 index

 		test-JupyterKernelGateway stable documentation »

Licensing terms

This project is licensed under the terms of the Modified BSD License
(also known as New or Revised or 3-Clause BSD), as follows:

		Copyright (c) 2001-2015, IPython Development Team

		Copyright (c) 2015-, Jupyter Development Team

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of the Jupyter Development Team nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

About the Jupyter Development Team

The Jupyter Development Team is the set of all contributors to the Jupyter project.
This includes all of the Jupyter Subprojects, which are the different repositories
under the jupyter [https://github.com/jupyter/] GitHub organization.

The core team that coordinates development on GitHub can be found here:
https://github.com/jupyter/.

Our copyright policy

Jupyter uses a shared copyright model. Each contributor maintains copyright
over their contributions to Jupyter. But, it is important to note that these
contributions are typically only changes to the repositories. Thus, the Jupyter
source code, in its entirety is not the copyright of any single person or
institution. Instead, it is the collective copyright of the entire Jupyter
Development Team. If individual contributors want to maintain a record of what
changes/contributions they have specific copyright on, they should indicate
their copyright in the commit message of the change, when they commit the
change to one of the Jupyter repositories.

With this in mind, the following banner should be used in any source code file
to indicate the copyright and license terms:

Copyright (c) Jupyter Development Team.
Distributed under the terms of the Modified BSD License.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		test-JupyterKernelGateway stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

README.html

 Navigation

 		
 index

 		test-JupyterKernelGateway stable documentation »

Jupyter Kernel Gateway

A web server that supports different mechanisms for spawning and communicating with Jupyter kernels, such as:

		A Jupyter Notebook server-compatible HTTP API for requesting kernels and talking the Jupyter kernel protocol [http://jupyter-client.readthedocs.org/en/latest/messaging.html] with them over Websockets

		A HTTP API defined by annotated notebook cells that maps HTTP verbs and resources to code to execute on a kernel

The server launches kernels in its local process/filesystem space. It can be containerized and scaled out by a cluster manager (e.g., tmpnb [https://github.com/jupyter/tmpnb]).

Interesting Uses

		Attach a local Jupyter Notebook server to a compute cluster in the cloud running near big data (e.g., interactive gateway to Spark)

		Enable a new breed of non-notebook web clients to provision and use kernels (e.g., dashboards using jupyter-js-services [https://github.com/jupyter/jupyter-js-services])

		Scale kernels independently from clients (e.g., via tmpnb [https://github.com/jupyter/tmpnb], Binder [https://mybinder.org], your favorite cluster manager)

		Create microservices from notebooks via notebook-http mode

[image: Example diagram of how tmpnb might deploy kernel gateway + kernel containers]

See the jupyter-incubator/kernel_gateway_demos [https://github.com/jupyter-incubator/kernel_gateway_demos] repository for additional ideas.

What It Gives You

		jupyter-websocket mode which provides a Jupyter Notebook server-compatible API for requesting kernels and communicating with them using Websockets

		notebook-http mode which maps HTTP requests to cells in annotated notebooks

		Option to set a shared authentication token and require it from clients

		Options to set CORS headers for servicing browser-based clients

		Option to set a custom base URL (e.g., for running under tmpnb)

		Option to limit the number kernel instances a gateway server will launch (e.g., to force scaling at the container level)

		Option to pre-spawn a set number of kernel instances

		Option to set a default kernel language to use when one is not specified in the request

		Option to pre-populate kernel memory from a notebook

		Option to serve annotated notebooks as HTTP endpoints, see notebook-http

		Option to allow downloading of the notebook source when running notebook-http mode

		Automatic Swagger spec [http://swagger.io/introducing-the-open-api-initiative/] for a notebook-defined API in notebook-http mode

		A CLI for launching the kernel gateway: jupyter kernelgateway OPTIONS

		A Python 2.7 and 3.3+ compatible implementation

Try It

install from pypi
pip install jupyter_kernel_gateway

show all config options
jupyter kernelgateway --help-all

run it with default options
jupyter kernelgateway

As an alternative to installing the kernel gateway from pypi, one can also use the minimal-kernel [https://hub.docker.com/r/jupyter/minimal-kernel/] image from the docker-stacks [https://github.com/jupyter/docker-stacks] project to try out its functionalities.

Run jupyter kernelgateway --help-all after installation to see the full set of server options. A snapshot of this help appears below.

KernelGatewayApp options

--KernelGatewayApp.allow_credentials=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Credentials header. (KG_ALLOW_CREDENTIALS env
 var)
--KernelGatewayApp.allow_headers=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Headers header. (KG_ALLOW_HEADERS env var)
--KernelGatewayApp.allow_methods=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Methods header. (KG_ALLOW_METHODS env var)
--KernelGatewayApp.allow_notebook_download=<Bool>
 Default: False
 Optional API to download the notebook source code in notebook-http mode,
 defaults to not allow
--KernelGatewayApp.allow_origin=<Unicode>
 Default: ''
 Sets the Access-Control-Allow-Origin header. (KG_ALLOW_ORIGIN env var)
--KernelGatewayApp.answer_yes=<Bool>
 Default: False
 Answer yes to any prompts.
--KernelGatewayApp.api=<Unicode>
 Default: 'jupyter-websocket'
 Controls which API to expose, that of a Jupyter kernel or the seed
 notebook's, using values "jupyter-websocket" or "notebook-http" (KG_API env
 var)
--KernelGatewayApp.auth_token=<Unicode>
 Default: ''
 Authorization token required for all requests (KG_AUTH_TOKEN env var)
--KernelGatewayApp.base_url=<Unicode>
 Default: ''
 The base path on which all API resources are mounted (KG_BASE_URL env var)
--KernelGatewayApp.config_file=<Unicode>
 Default: ''
 Full path of a config file.
--KernelGatewayApp.config_file_name=<Unicode>
 Default: ''
 Specify a config file to load.
--KernelGatewayApp.default_kernel_name=<Unicode>
 Default: ''
 The default kernel name to use when spawning a kernel
 (KG_DEFAULT_KERNEL_NAME env var)
--KernelGatewayApp.expose_headers=<Unicode>
 Default: ''
 Sets the Access-Control-Expose-Headers header. (KG_EXPOSE_HEADERS env var)
--KernelGatewayApp.generate_config=<Bool>
 Default: False
 Generate default config file.
--KernelGatewayApp.ip=<Unicode>
 Default: ''
 IP address on which to listen (KG_IP env var)
--KernelGatewayApp.list_kernels=<Bool>
 Default: False
 Enables listing the running kernels through /api/kernels and /api/sessions
 (KG_LIST_KERNELS env var). Note: Jupyter Notebook allows this by default but
 kernel gateway does not .
--KernelGatewayApp.log_datefmt=<Unicode>
 Default: '%Y-%m-%d %H:%M:%S'
 The date format used by logging formatters for %(asctime)s
--KernelGatewayApp.log_format=<Unicode>
 Default: '[%(name)s]%(highlevel)s %(message)s'
 The Logging format template
--KernelGatewayApp.log_level=<Enum>
 Default: 30
 Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
 Set the log level by value or name.
--KernelGatewayApp.max_age=<Unicode>
 Default: ''
 Sets the Access-Control-Max-Age header. (KG_MAX_AGE env var)
--KernelGatewayApp.max_kernels=<Int>
 Default: 0
 Limits the number of kernel instances allowed to run by this gateway.
 (KG_MAX_KERNELS env var)
--KernelGatewayApp.port=<Int>
 Default: 0
 Port on which to listen (KG_PORT env var)
--KernelGatewayApp.prespawn_count=<Int>
 Default: None
 Number of kernels to prespawn using the default language. (KG_PRESPAWN_COUNT
 env var)
--KernelGatewayApp.seed_uri=<Unicode>
 Default: ''
 Runs the notebook (.ipynb) at the given URI on every kernel launched.
 (KG_SEED_URI env var)

jupyter-websocket Mode

The KernelGatewayApp.api command line argument defaults to jupyter-websocket. In this mode, the kernel gateway defines the following web resources:

		/api (metadata)

		/api/kernelspecs (what kernels are available)

		/api/kernels (kernel CRUD, with discovery disabled by default, see --list_kernels)

		/api/kernels/:kernel_id/channels (Websocket-to-ZeroMQ [http://zeromq.org/] transformer for the Jupyter kernel protocol [http://jupyter-client.readthedocs.org/en/latest/messaging.html])

		/api/sessions (session CRUD, for associating information with kernels, discovery disabled by default, see --list_kernels)

		/_api/activity (activity metrics for all running kernels, enabled with --list_kernels)

Discounting features of the kernel gateway (e.g., token auth), the behavior of these resources is equivalent to that found in the Jupyter Notebook server. The kernel gateway simply imports and extends the handler clases from Jupyter Notebook.

notebook-http Mode

The KernelGatewayApp.api command line argument can be set to notebook-http. In this mode, the kernel gateway exposes annotated cells in the KernelGatewayApp.seed_uri notebook as HTTP resources.

To turn a notebook cell into a HTTP handler, you must prefix it with a single line comment. The comment describes the HTTP method and resource, as in the following Python example:

GET /hello/world
print("hello world")

The annotation above declares the cell contents as the code to execute when the kernel gateway receives a HTTP GET request for the path /hello/world. For other languages, the comment prefix may change, but the rest of the annotation remains the same.

Getting the Request Data

Before the gateway invokes an annotated cell, it sets the value of a global notebook variable named REQUEST to a JSON string containing information about the request. You may parse this string to access the request properties.

For example, in Python:

GET /hello/world
req = json.loads(REQUEST)
do something with req

You may specify path parameters when registering an endpoint by prepending a : to a path segment. For example, a path with parameters firstName and lastName would be defined as the following in a Python comment:

GET /hello/:firstName/:lastName

The REQUEST object currently contains the following properties:

		body - The value of the body, see the Body And Content Type section below

		args - An object with keys representing query parameter names and their associated values. A query parameter name may be specified multiple times in a valid URL, and so each value is a sequence (e.g., list, array) of strings from the original URL.

		path - An object of key-value pairs representing path parameters and their values.

		headers - An object of key-value pairs where a key is a HTTP header name and a value is the HTTP header value. If there are multiple values are specified for a header, the value will be an array.

Request Content-Type and Request Body Processing

If the HTTP request to the kernel gateway has a Content-Type header the value of REQUEST.body may change. Below is the list of outcomes for various mime-types:

		application/json - The REQUEST.body will be an object of key-value pairs representing the request body

		multipart/form-data and application/x-www-form-urlencoded - The REQUEST.body will be an object of key-value pairs representing the parameters and their values. Files are currently not supported for multipart/form-data

		text/plain - The REQUEST.body will be the string value of the body

		All other types will be sent as strings

Setting the Response Body

The response from an annotated cell may be set in one of two ways:

		Writing to stdout in a notebook cell

		Emitting output in a notebook cell

The first method is preferred because it is explicit: a cell writes to stdout using the appropriate language statement or function (e.g. Python print, Scala println, R print, etc.). The kernel gateway collects all bytes from kernel stdout and returns the entire byte string verbatim as the response body.

The second approach is used if nothing appears on stdout. This method is dependent upon language semantics, kernel implementation, and library usage. The response body will be the content.data structure in the Jupyter execute_result [http://jupyter-client.readthedocs.org/en/latest/messaging.html#id4] message.

In both cases, the response defaults to status 200 OK and Content-Type: text/plain if cell execution completes without error. If an error occurs, the status is 500 Internal Server Error. If the HTTP request method is not one supported at the given path, the status is 405 Not Supported. If you wish to return custom status or headers, see the next section.

See the api_intro.ipynb notebook for basic request and response examples.

Setting the Response Status and Headers

Annotated cells may have an optional metadata companion cell that sets the HTTP response status and headers. Consider this Python cell that creates a person entry in a database table and returns the new row ID in a JSON object:

POST /person
req = json.loads(REQUEST)
row_id = person_table.insert(req['body'])
res = {'id' : row_id}
print(json.dumps(res))

Now consider this companion cell which runs after the cell above and sets a custom response header and status:

ResponseInfo GET /hello/world
print(json.dumps({
 "headers" : {
 "Content-Type" : "application/json"
 },
 "status" : 201
}))

Currently, headers and status are the only fields supported. headers should be an object of key-value pairs mapping header names to header values. status should be an integer value. Both should be printed to stdout as JSON.

Given the two cells above, a POST request to /person produces a HTTP response like the following from the kernel gateway, assuming no errors occur:

HTTP/1.1 200 OK
Content-Type: application/json

{"id": 123}

See the setting_response_metadata.ipynb notebook for examples of setting response metadata.

Swagger Spec

The resource /_api/spec/swagger.json is automatically generated from the notebook used to define the HTTP API. The response is a simple Swagger spec which can be used with the Swagger editor [http://editor.swagger.io/#/], a Swagger ui [https://github.com/swagger-api/swagger-ui], or with any other Swagger-aware tool.

Currently, every response is listed as having a status of 200 OK.

Running

The minimum number of arguments needed to run in HTTP mode are --KernelGatewayApp.api=notebook-http and --KernelGatewayApp.seed_uri=some/notebook/file.ipynb.

If you development, you can run the kernel gateway in notebook-http mode using the Makefile in this repository:

make dev ARGS="--KernelGatewayApp.api='notebook-http' \
--KernelGatewayApp.seed_uri=/srv/kernel_gateway/etc/api_examples/api_intro.ipynb"

With the above Make command, all of the notebooks in etc/api_examples are
mounted into /srv/kernel_gateway/etc/api_examples/ and can be run in HTTP mode.

The notebook-http mode will honor the prespawn_count command line argument. This will start the specified number of kernels and execute the seed_uri notebook on each one. Requests will be distributed across the pool of prespawned kernels, providing a minimal layer of scalability. An example which starts a pool of 5 kernels follows:

make dev ARGS="--KernelGatewayApp.api='notebook-http' \
 --KernelGatewayApp.seed_uri=/srv/kernel_gateway/etc/api_examples/api_intro.ipynb" \
 --KernelGatewayApp.prespawn_count=5

Develop

This repository is setup for a Dockerized development environment. On a Mac, do this one-time setup if you don’t have a local Docker environment yet.

brew update

make sure you're on Docker >= 1.7
brew install docker-machine docker
docker-machine create -d virtualbox dev
eval "$(docker-machine env dev)"

Clone this repository in a local directory that docker can volume mount:

make a directory under ~ to put source
mkdir -p ~/projects
cd !$

clone this repo
git clone https://github.com/jupyter-incubator/kernel_gateway.git

Run the tests:

make test-python3
make test-python2

Run the gateway server:

cd kernel_gateway
make dev

To access the gateway instance:

		Run docker-machine ls and note the IP of the dev machine.

		Visit http://THAT_IP:8888/api in your browser. (Note that the route /api/kernels is not enabled by default for security. See the --KernelGatewayApp.list_kernels parameter above.)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

CHANGELOG.html

 Navigation

 		
 index

 		test-JupyterKernelGateway stable documentation »

Changelog

0.4.0 (2016-02-17)

		Enable /_api/activity resource with stats about kernels in jupyter-websocket mode

		Enable /api/sessions resource with in-memory name-to-kernel mapping for non-notebook clients that want to look-up kernels by associated session name

		Fix prespawn kernel logic regression for jupyter-websocket mode

		Fix all handlers so that they return application/json responses on error

		Fix missing output from cells that emit display data in notebook-http mode

0.3.1 (2016-01-25)

		Fix CORS and auth token headers for /_api/spec/swagger.json resource

		Fix allow_origin handling for non-browser clients

		Ensure base path is prefixed with a forward slash

		Filter stderr from all responses in notebook-http mode

		Set Tornado logging level and Jupyter logging level together with --log-level

0.3.0 (2016-01-15)

		Support setting of status and headers in notebook-http mode

		Support automatic, minimal Swagger doc generation in notebook-http mode

		Support download of a notebook in notebook-http mode

		Support CORS and token auth in notebook-http mode

		Expose HTTP request headers in notebook-http mode

		Support multipart form encoding in notebook-http mode

		Fix request value JSON encoding when passing requests to kernels

		Fix kernel name handling when pre-spawning

		Fix lack of access logs in notebook-http mode

0.2.0 (2015-12-15)

		Support notebook-defined HTTP APIs on a pool of kernels

		Disable kernel instance list by default

0.1.0 (2015-11-18)

		Support Jupyter Notebook kernel CRUD APIs and Jupyter kernel protocol over Websockets

		Support shared token auth

		Support CORS headers

		Support base URL

		Support seeding kernels code from a notebook at a file path or URL

		Support default kernel, kernel pre-spawning, and kernel count limit

		First PyPI release

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/tmpnb_kernel_gateway.png
tmpnb cluster

Container Container Container
jupyter-js-services, POST /api/spawn ‘ ‘
Thebe, Notebook JS, |+ > tmpnb dockerd Container Container Container
etc. response: { “url": “<proxy url>" } ‘ ‘
Container Container Container

tmpnb-proxy
wssi//<proxy Url>/api/kernels/channels

Websocket
Container

kernel-gateway

_static/comment-bright.png

