

UnifyCR: A file system for burst buffers

User Guide

	Overview
	High Level Design

	Definitions
	Job

	Run or Job Step

	Assumptions
	Application Behavior

	Consistency Model

	File System Behavior

	System Characteristics

	Build & I/O Interception
	How to build UnifyCR

	I/O Interception

	Mounting UnifyCR
	Mounting

	Unmounting

	UnifyCR Configuration
	unifycr.conf

	Environment Variables

	Command Line arguments

	Starting & Stopping
	Initialization Example

	Stopping

Indices and tables

	Index

	Module Index

	Search Page

Overview

UnifyCR is a user level file system currently under active development. An
application can use node-local storage as burst buffers for shared files.
UnifyCR is designed to support both checkpoint/restart which is the most
important I/O workload for HPC and other common I/O workloads as well. With
UnifyCR, applications can write to fast, scalable, node-local burst buffers as
easily as they do the parallel file system. This section will provide a high
level design of UnifyCR. It will describe the UnifyCR library and the UnifyCR
daemon.

High Level Design

[image: _images/design-high-lvl.png]
UnifyCR will present a shared namespace (e.g., /unifycr as a mount point) to
all compute nodes in a users job allocation. There are two main components of
UnifyCR: the UnifyCR library and the UnifyCR daemon. The UnifyCR library (also
referred to as the UnifyCR client library) is linked into the user application
and is responsible for intercepting I/O calls from the user application and
then sending the I/O requests on to a UnifyCR server to be handled. The UnifyCR
client library uses the ECP GOTCHA [https://github.com/LLNL/GOTCHA] software
as its primary mechanism for intercepting I/O calls. Each UnifyCR daemon (also
referred to as a UnifyCR server daemon) runs as a daemon on a compute node in
the users allocation. The UnifyCR server is responsible for handling the I/O
requests from the UnifyCR library. On each compute node, there will be user
application processes running as well as tool daemon processes. The user
application is linked with the UnifyCR client library and a high-level I/O
library, e.g. HDF5, ADIOS, or PnetCDF. The UnifyCR server daemon also runs on
the compute node and is linked with the MDHIM library which is used for
metadata services.

Definitions

In this section, we provide some useful definitions for terms used in this
document.

Job

A set of commands that is issued to the resource manager and is allocated a set
of nodes for some duration

Run or Job Step

A single application launch of a group of one or more application processes
issued within a job

Assumptions

In this section, we provide assumptions we make about the behavior of
applications that use UnifyCR, and about how UnifyCR currently functions.

Application Behavior

	Workload supported is globally synchronous checkpointing.

	I/O occurs in write and read phases. Files are not read and written at
the same time. There is some (good) amount of time between the two phases.
For example, files are written during checkpoint phases and only read
during recovery or restart.

	Processes on any node can read any byte in the file (not just local
data), but the common case will be processes read only their local bytes.

	Assume general parallel I/O concurrency semantics where processes can
write to the same offset concurrently. We assume the outcome of concurrent
writes to the same offset or other conflicting concurrent accesses is
undefined. For example, if a command in the job renames a file while the
parallel application is writing to it, the outcome is undefined. It could
be a failure or not, depending on timing.

Consistency Model

In the first version of UnifyCR, lamination will be explicitly initiated
by a UnifyCR API call. In subsequent versions, we will support implicit
initiation of file lamination. Here, UnifyCR will determine a
file to be laminated based on conditions, e.g., texttt{fsync} or
texttt{ioctl} calls, or a time out on texttt{close} operations.
As part of the UnifyCR project, we will
investigate these implicit lamination conditions to determine the
best way to enable lamination of files without explicit UnifyCR API calls
being made by the application.

In the first version of UnifyCR, eventually, a process declares the file to be
laminated through a UnifyCR API call.
After a file has been laminated, the contents of the file cannot be changed.
The file becomes permanently read-only.
After lamination, any process may freely read any part of the file.
If the application process group fails before a file has been laminated,
UnifyCR may delete the file.
An application can delete a laminated file.

We define the laminated consistency model to enable certain optimizations
while supporting the perceived requirements of application checkpoints.
Since remote processes are not permitted to read arbitrary bytes within the
file until lamination,
global exchange of file data and/or data index information can be buffered
locally on each node until the point of lamination.
Since file contents cannot change after lamination,
aggressive caching may be used during the read-only phase with minimal locking.
Since a file may be lost on application failure unless laminated,
data redundancy schemes can be delayed until lamination.

Behavior before lamination:

	open/close: A process may open/close a file multiple times.

	write: A process may write to any part of a file. If two processes write
to the same location, the value is undefined.

	read: A process may read bytes it has written. Reading other bytes is
invalid.

	rename: A process may rename a file.

	truncate: A process may truncate a file.

	unlink: A process may delete a file.

Behavior after lamination:

	open/close: A process may open/close a file multiple times.

	write: All writes are invalid.

	read: A process may read any byte in the file.

	rename: A process may rename a file.

	truncate: Truncation is invalid (considered to be a write operation).

	unlink: A process may delete a file.

File System Behavior

	The file system exists on node local storage only and is not persisted to
stable storage like a parallel file system (PFS). Can be coupled with

	SymphonyFS or high level I/O or checkpoint library (VeloC) to move data to
PFS periodically, or data can be moved manually

	Can be used with checkpointing libraries (VeloC) or I/O libraries to
support shared files on burst buffers

	File system starts empty at job start. User job must populate the file
system.

	Shared file system namespace across all compute nodes in a job, even if
an application process is not running on all compute nodes

	Survives application termination and/or relaunch within a job

	Will transparently intercept system level I/O calls of applications and
I/O libraries

System Characteristics

	There is some storage available for storing file data on a compute node,
e.g. SSD or RAM disk

	We can run user-level daemon processes on compute nodes concurrently with
a user application

Build & I/O Interception

In this section, we describe how to build UnifyCR with I/O interception.

Note

The current version of UnifyCR adopts the mdhim key-value store, which strictly
requires:

“An MPI distribution that supports MPI_THREAD_MULTIPLE and per-object locking of
critical sections (this excludes OpenMPI up to version 3.0.1, the current version as of this writing)”

as specified in the project github [https://github.com/mdhim/mdhim-tng]

How to build UnifyCR

Download the latest UnifyCR release from the Releases [https://github.com/LLNL/UnifyCR/releases] page. UnifyCR requires MPI,
LevelDB, and GOTCHA.

Building with Spack

To install leveldb and gotcha and set up your build environment, we recommend
using the Spack package manager [https://github.com/spack/spack].

The instructions assume that you do not already have a module system installed
such as LMod, Dotkit, or Environment Modules. If your system already has Dotkit
or LMod installed then installing the environment-modules package with spack
is unnecessary (so you can safely skip that step).

If you use Dotkit then replace spack load with spack use.

$ git clone https://github.com/spack/spack
$./spack/bin/spack install leveldb
$./spack/bin/spack install gotcha
$./spack/bin/spack install environment-modules
$. spack/share/spack/setup-env.sh
$ spack load leveldb
$ spack load gotcha

Then to build UnifyCR:

$./autogen.sh
$./configure --prefix=/path/to/install --enable-debug
$ make
$ make install

Building without Spack

For users who cannot use Spack, you may fetch the latest release of
GOTCHA [https://github.com/LLNL/GOTCHA]

And leveldb (if not already installed on your system):
leveldb [https://github.com/google/leveldb/releases/tag/v1.20]

If you installed leveldb from source then you may have to add the pkgconfig file
for leveldb manually. This is assuming your install of leveldb does not contain
a .pc file (it usually doesn’t). Then, add the path to that file to
PKG_CONFIG_PATH.

$ cat leveldb.pc
#leveldb.pc
prefix=/path/to/leveldb/install
exec_prefix=/path/to/leveldb/install
libdir=/path/to/leveldb/install/lib64
includedir=/path/to/leveldb/install/include
Name: leveldb
Description: a fast key-value storage library
Version: 1.20
Cflags: -I${includedir}
Libs: -L${libdir} -lleveldb

$ export PKG_CONFIG_PATH=/path/to/leveldb/pkgconfig

Leave out the path to leveldb in your configure line if you didn’t install it
from source.

$./configure --prefix=/path/to/install --with-gotcha=/path/to/gotcha --enable-debug --with-leveldb=/path/to/leveldb
$ make
$ make install

Note

You may need to add the following to your configure line if it is not in
your default path on a linux machine:

--with-numa=$PATH_TO_NUMA

This is needed to enable NUMA-aware memory allocation on Linux machines. Set the
NUMA policy at runtime with UNIFYCR_NUMA_POLICY = local | interleaved, or set
NUMA nodes explicitly with UNIFYCR_USE_NUMA_BANK = <node no.>

I/O Interception

POSIX calls can be intercepted via the methods described below.

Statically

Steps for static linking using –wrap:

To intercept I/O calls using a static link, you must add flags to your link
line. UnifyCR installs a unifycr-config script that returns those flags, e.g.,

$ mpicc -o test_write \
 `<unifycr>/bin/unifycr-config --pre-ld-flags` \
 test_write.c \
 `<unifycr>/bin/unifycr-config --post-ld-flags`

Dynamically

Steps for dynamic linking using gotcha:

To intercept I/O calls using gotcha, use the following syntax to link an
application.

$ mpicc -o test_write test_write.c \
 -I<unifycr>/include -L<unifycy>/lib -lunifycr_gotcha \
 -L<gotcha>/lib64 -lgotcha

Mounting UnifyCR

In this section, we describe how to use the UnifyCR API in an application.

Mounting

To use the UnifyCR filesystem a user will have to provide a path prefix. All
file operations under the path prefix will be intercepted by the UnifyCR
filesystem. For instance, to use UnifyCR on all path prefixes that begin with
/tmp this would require a:

unifycr_mount('/tmp', rank, rank_num, 0);

Where /tmp is the path prefix you want UnifyCR to intercept. The rank and rank
number is the rank you are currently on, and the number of tasks you have
running in your job. Lastly, the zero corresponds to the app id.

Unmounting

When you are finished using UnifyCR in your application, you should unmount.

if (rank == 0) {
 unifycr_unmount();
}

It is only necessary to call unmount once on rank zero.

UnifyCR Configuration

Here, we explain how users can customize the runtime behavior of UnifyCR. In
particular, UnifyCR provides the following ways to configure:

	System-wide configuration file: /etc/unifycr/unifycr.conf

	Environment variables

	Command line arguments

For the duplicated entries, the command line arguments have the highest
priority, overriding any configuration options from unifycr.conf and
environment variables. Similarily, environment variables have higher priority
than options in the unifycr.conf file. unifycr command line utility
creates the final configuration file (unifycr-runstate.conf) based on all
forementioned configuration options.

unifycr.conf

unifycr.conf specifies the system-wide configuration options. The file is
written in TOML [https://github.com/toml-lang/toml] language format. The unifycr.conf file has four different
sections, i.e., global, filesystem, server, and client sections.

	
	[global] section

	
	runstatedir: a directory where the final configuration file
(unifycr-runstate.conf) has to be created

	unifycrd_path: path to unifycrd server daemon process

	
	[filesystem] section

	
	mountpoint: unifycr file system mountpoint

	
	consistency: consistency model to be used, one of:

	
	none:

	laminated:

	posix:

	
	[server] section

	
	meta_server_ratio: the ratio between the number of unifycrd daemon and
the number of metadata key-value storage instance

	meta_db_name: name of the database file to store unifycr file system
metadata

	meta_db_path: the pathname of the metadata database file will be created

	server_debug_log_path: the debug log file of the unifycrd daemon

	
	[client] section

	
	chunk_mem: allocation chunk size for unifycr file system memory storage

Environment Variables

The following is the list of the environment variables that UnifyCR supports.

	UNIFYCR_META_SERVER_RATIO: the ratio between the number of unifycrd
daemon and the number of metadata key-value storage instance

	UNIFYCR_META_DB_NAME: the name of the database file to store unifycr file
system metadata

	UNIFYCR_META_DB_PATH: the pathname of the metadata database file will be
created

	UNIFYCR_SERVER_DEBUG_LOG: the debug log file of the unifycrd daemon

	UNIFYCR_CHUNK_MEM: allocation chunk size for unifycr file system memory
storage

Command Line arguments

Lastly, unifycr command line utility accepts arguments to configure the runtime options.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 Usage: unifycr <command> [options...]

 <command> should be one of the following:
 start start the unifycr server daemon
 terminate terminate the unifycr server daemon

 Available options for "start":
 -C, --consistency=<model> consistency model (none, laminated, or posix)
 -m, --mount=<path> mount unifycr at <path>
 -i, --transfer-in=<path> stage in file(s) at <path>
 -o, --transfer-out=<path> transfer file(s) to <path> on termination

 Available options for "terminate":
 -c, --cleanup clean up the unifycr storage on termination

Starting & Stopping

In this section, we describe the mechanisms for starting and stopping UnifyCR in
a user’s allocation. The important features to consider are:

	Initialization of UnifyCR file system instance across compute nodes

Initialization Example

First, we need to start the UnifyCR daemon (unifycrd) on the nodes in your
allocation. UnifyCR provides the unifycr command line utility for this
purpose. The specific paths and job launch command will depend on your
installation and system configuration_.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 user@ unifycr --help

 Usage: unifycr <command> [options...]

 <command> should be one of the following:
 start start the unifycr server daemon
 terminate terminate the unifycr server daemon

 Available options for "start":
 -C, --consistency=<model> consistency model (none, laminated, or posix)
 -m, --mount=<path> mount unifycr at <path>
 -i, --transfer-in=<path> stage in file(s) at <path>
 -o, --transfer-out=<path> transfer file(s) to <path> on termination

 Available options for "terminate":
 -c, --cleanup clean up the unifycr storage on termination

For instance, the following script will launch the unifycrd daemon.

	1
2
3
4
5
6
7
8
9

	 #!/bin/bash

 export UNIFYCR_META_SERVER_RATIO=1
 export UNIFYCR_META_DB_NAME=unifycr_db
 export UNIFYCR_CHUNK_MEM=0
 export UNIFYCR_META_DB_PATH=/mnt/ssd
 export UNIFYCR_SERVER_DEBUG_LOG=/tmp/unifycrd_debug.$$

 unifycr start --mount=/mnt/unifycr

Note that the unifycr utility automatically detects the allocated nodes and
launches the daemon on each of the allocated node. In addition, the above
environment variables will override any configurations in
/etc/unifycr/unifycr.conf. See configurations_ for further details about
the configuration.

Next, we can start run our application with UnifyCR in the following manner:

	1
2
3
4
5
6
7
8
9

	 #!/bin/bash

 export UNIFYCR_EXTERNAL_META_DIR=/mnt/ssd
 export UNIFYCR_EXTERNAL_DATA_DIR=/mnt/ssd

 NODES=1
 PROCS=1

 mpirun -nodes ${NODES} -np ${PROCS} /path/to/my/app

So, overall the steps taken to run an application with UnifyCR include:

	Allocate Nodes

	Update any desired configuration variables in the bash scripts

	Start the UnifyCR server daemons on each node with the unifycr
utility.

	Run your application with UnifyCR

Stopping

Currently, the UnifyCR server daemon runs throughout a user’s job allocation
after it is started. Even if the UnifyCR daemon is running in a user’s job the
UnifyCR file system will only be utilized if the user has mounted a path for
UnifyCR to intercept. The UnifyCR daemon is stopped when the user’s allocation
is exited.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/design-high-lvl.png
Application Application

l | l |

VeloC HDF5/ADIOS/ VeloC HDF5/ADIOS/
PnetCDF PnetCDF

- + - +
UnifyCR library UnifyCR library

/und fycr ‘ X Vercury/siv 4

_static/plus.png

nav.xhtml

 Table of Contents

 		
 UnifyCR: A file system for burst buffers

 		
 Overview

 		
 High Level Design

 		
 Definitions

 		
 Job

 		
 Run or Job Step

 		
 Assumptions

 		
 Application Behavior

 		
 Consistency Model

 		
 File System Behavior

 		
 System Characteristics

 		
 Build & I/O Interception

 		
 How to build UnifyCR

 		
 Building with Spack

 		
 Building without Spack

 		
 I/O Interception

 		
 Statically

 		
 Dynamically

 		
 Mounting UnifyCR

 		
 Mounting

 		
 Unmounting

 		
 UnifyCR Configuration

 		
 unifycr.conf

 		
 Environment Variables

 		
 Command Line arguments

 		
 Starting & Stopping

 		
 Initialization Example

 		
 Stopping

_static/unify-logo.png
UNIFYCR

_static/up-pressed.png

_static/up.png

