

Tesseroids: forward modeling in spherical coordinates

[image: Tesseroids]
A collection of command-line programs
for modeling the gravitational potential, acceleration, and gradient
tensor.
Tesseroids supports models and computation grids in Cartesian
and spherical coordinates.

Developed by Leonardo Uieda [http://www.leouieda.com]
in cooperation with Carla Braitenberg [http://www2.units.it/geodin/biobraitenberg.html].

Official site: http://tesseroids.leouieda.com

License: BSD 3-clause

Source code: https://github.com/leouieda/tesseroids

Latest release: v1.2.1 (doi:10.5281/zenodo.582366 [https://doi.org/10.5281/zenodo.582366])

Note

Tesseroids is research software.
Please consider citing it in your publications
if you use it for your research.

Warning

See the list of known issues for things you should be
aware of.

The geometric element used in the modeling processes is
a spherical prism, also called a tesseroid.
Tesseroids also contains programs for modeling using
right rectangular prisms,
both in Cartesian and spherical coordinates.

[image: _images/tesseroid.png]
View of a tesseroid (spherical prism) in a geocentric coordinate system.
Original image (licensed CC-BY) at doi:10.6084/m9.figshare.1495521 [https://doi.org/10.6084/m9.figshare.1495521].

Getting started

Take a look at the examples in the
Cookbook.
They contain scripts that run Tesseroids and some Python code to plot the
results.

If you’re the kind of person who likes to see the equations
(who doesn’t?),
see the Theoretical background and the references cited there.

For a more detailed description of the software, options, and conventions used,
see the usage instructions.

Also, all programs accept the -h flag to print the instructions for using
that particular program. For example:

$ tessgrd -h
Usage: tessgrd [PARAMS] [OPTIONS]

Make a regular grid of points.

All units either SI or degrees!

Output:
 Printed to standard output (stdout) in the format:
 lon1 lat1 height
 lon2 lat1 height

 lonNLON lat1 height
 lon1 lat2 height

 lonNLON latNLAT height

 * Comments about the provenance of the data are inserted into
 the top of the output

Parameters:
 -r W/E/S/N: Bounding region of the grid.
 -b NLON/NLAT: Number of grid points in the
 longitudinal and latitudinal directions.
 -z HEIGHT: Height of the grid with respect to the
 mean Earth radius.
 -h Print instructions.
 --version Print version and license information.

Options:
 -v Enable verbose printing to stderr.
 -lFILENAME Print log messages to file FILENAME.

Part of the Tesseroids package.
Project site: <http://fatiando.org/software/tesseroids>
Report bugs at: <http://code.google.com/p/tesseroids/issues/list>

Getting help

Write an e-mail to Leonardo Uieda [http://www.leouieda.com/],
or tweet [https://twitter.com/leouieda],
or Google Hangout [https://plus.google.com/+LeonardoUieda].
Even better, submit a bug report/feature request/question to the
Github issue tracker [https://github.com/leouieda/tesseroids/issues].

Contents

	Citing
	Geophysics paper

	Source code

	Conference proceeding

	Known issues

	Changelog
	Changes in version 1.2.1

	Changes in version 1.2.0

	Changes in version 1.1.1

	Changes in version 1.1

	Changes in version 1.0

	Installing
	Compiling from source

	Releases
	Developement

	Stable releases

	Theorerical background
	What is a tesseroid anyway?

	About coordinate systems

	Gravitational fields of a tesseroid

	Numerical integration

	Gravitational fields of a prism in spherical coordinates

	Recommended reading

	References

	Using Tesseroids
	A note about heights and units

	Getting help information

	Computing the gravitational effect of a tesseroid

	The -a flag

	Verbose and logging to files

	Comments and provenance information

	Generating regular grids

	Automatic model generation

	Calculating the total mass of a model

	Computing the effect of rectangular prisms in Cartesian coordinates

	Piping

	Cookbook
	Calculate the gravity gradient tensor from a DEM

	Simple prism model in Cartesian coordinates

	Simple tesseroid model

	Convert a tesseroid model to prisms and calculate in spherical coordinates

	Convert a tesseroid model to prisms and calculate in Cartesian coordinates

	Using tesslayers to make a tesseroid model of a stack of layers

	License

Citing

Geophysics paper

To cite Tesseroids in publications, please use our paper published in
Geophysics:

Uieda, L., V. Barbosa, and C. Braitenberg (2016), Tesseroids:
Forward-modeling gravitational fields in spherical coordinates, GEOPHYSICS,
F41-F48,
doi:10.1190/geo2015-0204.1 [http://dx.doi.org/10.1190/geo2015-0204.1].

You can download a copy of the paper PDF [http://www.leouieda.com/papers/paper-tesseroids-2016.html] and see all
source code used in the paper at
the Github repository [https://github.com/pinga-lab/paper-tesseroids].

Please note that citing the paper is prefered over citing the previous
conference proceedings.

If you’re a BibTeX user:

@article{uieda2016,
 title = {Tesseroids: {{Forward}}-modeling gravitational fields in spherical coordinates},
 author = {Uieda, L. and Barbosa, V. and Braitenberg, C.},
 issn = {0016-8033},
 doi = {10.1190/geo2015-0204.1},
 url = {http://library.seg.org/doi/abs/10.1190/geo2015-0204.1},
 journal = {GEOPHYSICS},
 month = jul,
 year = {2016},
 pages = {F41--F48},
}

Source code

You can refer to individual versions of Tesseroids through their DOIs.
However, please also cite the Geophysics paper.

For example. if you want to mention that you used the 1.1.1 version,
you can go to the Releases page of the documentation
and get the DOI link for that version.
This link will not be broken, even if I move the site somewhere else.

You can also cite the specific version instead of just providing the link.
If you click of the DOI link for 1.1.1, the Zenodo page will
recommend that you cite it as:

Uieda, Leonardo. (2015). Tesseroids v1.1.1: Forward modeling of
gravitational fields in spherical coordinates. Zenodo. 10.5281/zenodo.15800

Conference proceeding

The previous way citation for Tesseroids was a conference proceeding from the
2011 GOCE User Workshop:

Uieda, L., E. P. Bomfim, C. Braitenberg, and E. Molina (2011),
Optimal forward calculation method of the Marussi tensor
due to a geologic structure at GOCE height,
Proceedings of the 4th International GOCE User Workshop.

Download a PDF version of the proceedings [http://www.leouieda.com/pdf/goce-2011.pdf].
You can also see the poster and source code at
the Github repository [https://github.com/leouieda/goce2011].

Known issues

	Prism and tesseroid calculations are only valid outside of the mass
elements.
If you calculate on top or inside of the prism/tesseroid, there is
no guarantee that the result will be correct.

	The gravity gradient components of tesseroids suffer from increased numerical
error as the computation point gets closer to the tesseroid. It is not
recommened to compute the effects at distances smaller than 1km above the
tesseroid.

Changelog

Changes in version 1.2.1

	Binaries for Windows 64bit are now available for download as well.
(PR 28 [https://github.com/leouieda/tesseroids/pull/28])

	Validate order of boundaries for input tesseroids. Errors if boundaries are
switched (e.g, W > E).
(PR 27 [https://github.com/leouieda/tesseroids/pull/27])

	Ignore tesseroids with zero volume from the input file (i.e., W == E, S == N,
or top == bottom). These elements can cause crashes because of infinite loops
during adaptive discretization.
(PR 27 [https://github.com/leouieda/tesseroids/pull/27])

Changes in version 1.2.0

	General improvements to the adaptive discretization (described in the
upcoming method paper).
(PR 21 [https://github.com/leouieda/tesseroids/pull/21])

	Better error messages when there is a stack overflow (computation point too
close to the tesseroid).
(PR 21 [https://github.com/leouieda/tesseroids/pull/21])

	Replace the recursive algorithm with a stack-based algorithm for adaptive
discretization of tesseroids. This makes the computations faster, specially
for gravity acceleration and gradient tensor components.
(PR 21 [https://github.com/leouieda/tesseroids/pull/21])

	Divide the tesseroids only along the necessary dimensions. This provides
speedups when dealing with flattened or elongated tesseroids.
(PR 21 [https://github.com/leouieda/tesseroids/pull/21])

	Speedup tesseroid computations by moving some trigonometric functions out of
loops.
(PR 22 [https://github.com/leouieda/tesseroids/pull/22])

	BUG fix: Singularities when calculating around a prism. Due to wrong quadrant
returned by atan2 and log(0) evaluations. Fix by wrapping atan2 in a
safe_atan2 that corrects the result. log(0) error happened only in cross
components of the gravity gradient when the computation is aligned with the
vertices of a certain face (varies for each component. Fix by displacing the
point a small amount when that happens.
(PR 12 [https://github.com/leouieda/tesseroids/pull/12])

Changes in version 1.1.1

	BUG fix: Wrong results when calculating fields below a prism in Cartesian
coordinates (PR 1 [https://github.com/leouieda/tesseroids/pull/1])

Changes in version 1.1

	the tesseroids license was changed from the GNU GPL
to the more permissive BSD license
(see the license text).

	tess2prism has a new flag –flatten
to make the prism model by flattening the tesseroids
(i.e., 1 degree = 111km) into Cartesian coordinates
(so that they can be used with the prismg* programs).

	tessg* programs have a new flag -t
used to control the distance-size ratio for the automatic recursive division
of tesseroids.

	NEW PROGRAMS prismpots, prismgs, and prismggts,
to calculate the prism effects
in spherical coordinates.
These programs are compatible with the output of tess2prism
(see this recipe for an example).

	NEW PROGRAM tesslayers to generate a tesseroid model of a stack of layers
from grids of the thickness and density of each layer.
tesslayers complements the functionality of tessmodgen
and can be used to generate crustal models,
sedimentary basin models, etc.
(see this recipe for an example).

	tesseroids now strictly follows the ANSI C standard.

	Bug fix: prismpot, prismgx, prismgy, prismgz, and prismgxy had problems with
a log(z + r) when the computation point was bellow the top of the prism
(zp > prism.z1). Fixed by calculating on top of the prism when this happens,
then changing the sign of the result when needed (only for gz).

	Bug fix: the tessg and prismg family of programs was crashing when the model
file is empty. Now they fail with an error message.

Changes in version 1.0

Tesseroids 1.0 was completely re-coded in the C programming language
and is much faster and more stable than the 0.3 release.
Here is a list of new features:

	tesspot and tessg* programs now take the computation points as input,
allowing for custom grids.

	tesspot and tessg* programs now automatically subdivide a tesseroid
if needed to maintain GLQ precision
(this makes computations up to 5x faster and safer).

	Automated model generation using program tessmodgen.

	Regular grid generation with program tessgrd.

	Total mass calculation with program tessmass.

	Programs to calculate the gravitational fields
of right rectangular prisms in Cartesian coordinates.

	HTML User Manual and API Reference generated with Doxygen.

	Easy source code compilation with SCons.

Installing

We offer binaries for Windows (32 and 64 bit)
and GNU/Linux (32 and 64 bit).
You can download the latest version for your operating system from Github:

https://github.com/leouieda/tesseroids/releases/latest

Once downloaded, simply unpack the archive in the desired directory.
The executables will be in the bin folder.
For easier access to the programs, consider
adding the bin folder to your PATH environment
variable [http://www.computerhope.com/issues/ch000549.htm].

Tesseroids is permanently archived in Zenodo [http://zenodo.org/].
Each release is stored (source code and binaries) and given a
DOI [http://www.doi.org/].
The DOIs, source code, and compiled binaries for previous versions
can be found on the Releases page.

If we don’t provide the binaries for your operating system,
you can compile the source code (download a source distribution from Github) by
following the instructions below.

Compiling from source

If you want to build Tesseroids from source, you’ll need:

	A C compiler (preferably GCC [http://gcc.gnu.org])

	The build tool SCons [http://www.scons.org/]

Setting up SCons

Tesseroids uses the build tool SCons.
A SConstruct file (Makefile equivalent)
is used to define the compilation rules.
The advantage of SCons over Make is that it automatically detects your system
settings.
You will have to download and install SCons
in order to easily compile Tesseroids.
SCons is available for both GNU/Linux and Windows
so compiling should work the same on both platforms.

SCons requires that you have Python [https://www.python.org] installed.
Follow the instructions in the SCons website [http://www.scons.org/]
to install it.
Python is usually installed by default on most GNU/Linux systems.

Under Windows you will have to put SCons on
your PATH environment variable
in order to use it from the command line.
It is usually located in the Scripts directory of your Python installation.

On GNU/Linux, SCons will generally use
the GCC compiler to compile sources.
On Windows it will search for an existing compiler.
We recommend that you install GCC on Windows using
MinGW [http://mingw.org/].

Compiling

Download a source distribution and
unpack the archive anywhere you want
(e.g., ~/tesseroids or C:\tesseroids or whatever).
To compile,
open a terminal (or cmd.exe on Windows)
and go to the directory where you unpacked (use the cd command).
Then, type the following and hit Enter:

scons

If everything goes well, the compiled executables will be placed on a bin
folder.

To clean up the build (delete all generated files), run:

scons -c

If you get any strange errors or the code doesn’t compile for some reason,
please submit a bug report [https://github.com/leouieda/tesseroids/issues].
Don’t forget to copy the output of running scons.

Testing the build

After the compilation,
a program called tesstest
will be placed in the directory where you unpacked the source.
This program runs the unit tests [https://en.wikipedia.org/wiki/Unit_testing]
for Tesseroids (sources in the test directory).

To run the test suite, simply execute tesstest with no arguments:

tesstest

or on GNU/Linux:

./tesstest

A summary of all tests (pass or fail) will be printed on the screen.
If all tests pass,
the compilation probably went well.
If any test fail,
please submit a bug report [https://github.com/leouieda/tesseroids/issues]
with the output of running tesstest.

Releases

Developement

The latest development version can be found on
github.com/leouieda/tesseroids [https://github.com/leouieda/tesseroids].
The master branch is kept stable and can be used.
See the install guide for instruction on compiling the source
code.

Stable releases

	
	v1.2.1:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v1.2.1]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v1.2.1]

	Documentation [http://tesseroids.leouieda.com/en/v1.2.1]

	doi:10.5281/zenodo.16033 [http://dx.doi.org/10.5281/zenodo.582366]

	
	v1.2.0:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v1.2.0]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v1.2.0]

	Documentation [http://tesseroids.leouieda.com/en/v1.2.0]

	doi:10.5281/zenodo.16033 [http://dx.doi.org/10.5281/zenodo.16033]

	
	v1.1.1:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v1.1.1]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v1.1.1]

	Documentation [http://tesseroids.leouieda.com/en/v1.1.1]

	doi:10.5281/zenodo.15800 [http://dx.doi.org/10.5281/zenodo.15800]

	
	v1.1:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v1.1]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v1.1]

	Documentation [http://tesseroids.leouieda.com/en/v1.1]

	doi:10.5281/zenodo.15801 [http://dx.doi.org/10.5281/zenodo.15801]

	
	v1.0:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v1.0]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v1.0]

	doi:10.5281/zenodo.15803 [http://dx.doi.org/10.5281/zenodo.15803]

	
	v0.3:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v0.3]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v0.3]

	doi:10.5281/zenodo.15804 [http://dx.doi.org/10.5281/zenodo.15804]

	
	v0.1:

	
	Source code [https://github.com/leouieda/tesseroids/tree/v0.1]

	Download [https://github.com/leouieda/tesseroids/releases/tag/v0.1]

	doi:10.5281/zenodo.15805 [http://dx.doi.org/10.5281/zenodo.15805]

Theorerical background

What is a tesseroid anyway?

A tesseroid, or spherical prism,
is segment of a sphere.
It is delimited by:

	2 meridians, \(\lambda_1\) and \(\lambda_2\)

[image: _images/tesseroid_meridians.png]

	2 parallels, \(\phi_1\) and \(\phi_2\)

[image: _images/tesseroid_parallels.png]

	2 spheres of radii \(r_1\) and \(r_2\)

[image: _images/tesseroid_sphere.png]

Original images (licensed CC-BY) at doi:10.6084/m9.figshare.1495537 [https://doi.org/10.6084/m9.figshare.1495537].

About coordinate systems

The figure bellow shows a tesseroid,
the global coordinate system (X, Y, Z),
and the local coordinate system (\(x,\ y,\ z\)) of a point P.

[image: _images/tesseroid-coordinates.png]
View of a tesseroid, the integration point Q,
the global coordinate system (X, Y, Z),
the computation P
and it’s local coordinate system (\(x,\ y,\ z\)).
\(r,\ \phi,\ \lambda\) are
the radius, latitude, and longitude, respectively,
of point P.
Original image (licensed CC-BY) at doi:10.6084/m9.figshare.1495525 [https://doi.org/10.6084/m9.figshare.1495525].

The global system has origin on the center of the Earth
and Z axis aligned with the Earth’s mean rotation axis.
The X and Y axis are contained on the equatorial parallel
with X intercepting the mean Greenwich meridian
and Y completing a right-handed system.

The local system has origin on the computation point P.
It’s \(z\) axis is oriented along the radial direction
and points away from the center of the Earth.
The \(x\) and \(y\) axis
are contained on a plane normal to the \(z\) axis.
\(x\) points North and \(y\) East.

The gravitational attraction
and gravity gradient tensor
of a tesseroid
are calculated with respect to
the local coordinate system of the computation point P.

Warning

The \(g_z\) component is an exception to this.
In order to conform with the regular convention
of z-axis pointing toward the center of the Earth,
this component ONLY is calculated with an inverted z axis.
This way, gravity anomalies of
tesseroids with positive density
are positive, not negative.

Gravitational fields of a tesseroid

The gravitational potential of a tesseroid
can be calculated using the formula

\[V(r,\phi,\lambda) = G \rho
 \displaystyle\int_{\lambda_1}^{\lambda_2}
 \displaystyle\int_{\phi_1}^{\phi_2}
 \displaystyle\int_{r_1}^{r_2}
 \frac{1}{\ell} \kappa \ d r' d \phi' d \lambda'\]

The gravitational attraction
can be calculated using the formula
(Grombein et al., 2013):

\[g_{\alpha}(r,\phi,\lambda) = G \rho
 \displaystyle\int_{\lambda_1}^{\lambda_2}
 \displaystyle\int_{\phi_1}^{\phi_2} \displaystyle\int_{r_1}^{r_2}
 \frac{\Delta_{\alpha}}{\ell^3} \kappa \ d r' d \phi' d \lambda'
 \ \ \alpha \in \{x,y,z\}\]

The gravity gradients can be calculated
using the general formula
(Grombein et al., 2013):

\[g_{\alpha\beta}(r,\phi,\lambda) = G \rho
 \displaystyle\int_{\lambda_1}^{\lambda_2}
 \displaystyle\int_{\phi_1}^{\phi_2} \displaystyle\int_{r_1}^{r_2}
 I_{\alpha\beta}({r'}, {\phi'}, {\lambda'})
 \ d r' d \phi' d \lambda'
 \ \ \alpha,\beta \in \{x,y,z\}\]

\[I_{\alpha\beta}({r'}, {\phi'}, {\lambda'}) =
 \left(
 \frac{3\Delta_{\alpha} \Delta_{\beta}}{\ell^5} -
 \frac{\delta_{\alpha\beta}}{\ell^3}
 \right)
 \kappa\
 \ \ \alpha,\beta \in \{x,y,z\}\]

where \(\rho\) is density,
\(\{x, y, z\}\) correspond to the local coordinate system
of the computation point P
(see the tesseroid figure),
\(\delta_{\alpha\beta}\) is the Kronecker delta [http://en.wikipedia.org/wiki/Kronecker_delta], and

 \begin{eqnarray*}
 \Delta_x &=& r' K_{\phi} \\
 \Delta_y &=& r' \cos \phi' \sin(\lambda' - \lambda) \\
 \Delta_z &=& r' \cos \psi - r\\
 \ell &=& \sqrt{r'^2 + r^2 - 2 r' r \cos \psi} \\
 \cos\psi &=& \sin\phi\sin\phi' + \cos\phi\cos\phi'
 \cos(\lambda' - \lambda) \\
 K_{\phi} &=& \cos\phi\sin\phi' - \sin\phi\cos\phi'
 \cos(\lambda' - \lambda)\\
 \kappa &=& {r'}^2 \cos \phi'
 \end{eqnarray*}
\(\phi\) is latitude,
\(\lambda\) is longitude, and
\(r\) is radius.

Note

The gravitational attraction and gravity gradient tensor
are calculated with respect to \((x, y, z)\),
the local coordinate system
of the computation point P.

Numerical integration

The above integrals are solved using the Gauss-Legendre Quadrature rule
(Asgharzadeh et al., 2007):

\[g_{\alpha\beta}(r,\phi,\lambda) \approx G \rho
 \frac{(\lambda_2 - \lambda_1)(\phi_2 - \phi_1)(r_2 - r_1)}{8}
 \displaystyle\sum_{k=1}^{N^{\lambda}}
 \displaystyle\sum_{j=1}^{N^{\phi}}
 \displaystyle\sum_{i=1}^{N^r}
 W^r_i W^{\phi}_j W^{\lambda}_k
 I_{\alpha\beta}({r'}_i, {\phi'}_j, {\lambda'}_k)
 \ \alpha,\beta \in \{1,2,3\}\]

where \(W_i^r\), \(W_j^{\phi}\), and \(W_k^{\lambda}\)
are weighting coefficients
and \(N^r\), \(N^{\phi}\), and \(N^{\lambda}\)
are the number of quadrature nodes
(i.e., the order of the quadrature),
for the radius, latitude, and longitude, respectively.

Tesseroids implements a modified version the adaptive discretization
algorithm of Li et al (2011).
This helps guarantee that the numerical integration will achieve a
maximum error of 0.1%.

Warning

The integration error may be larger than this if the computation
points are closer than 1km of the tesseroids. This effect is more
significant in the gravity gradient components.

Gravitational fields of a prism in spherical coordinates

The gravitational potential and its first and second derivatives
for the right rectangular prism
can be calculated in Cartesian coordinates
using the formula of Nagy et al. (2000).

However, several transformations have to made
in order to calculate the fields of a prism
in a global coordinate system
using spherical coordinates (see this figure).

[image: _images/prism-coordinates.png]
View of a right rectangular prism
with its corresponding local coordinate system
(\(x^*,\ y^*,\ z^*\)),
the global coordinate system (X, Y, Z),
the computation P
and it’s local coordinate system (\(x,\ y,\ z\)).
\(r,\ \phi,\ \lambda\) are
the radius, latitude, and longitude, respectively.

The formula of Nagy et al. (2000)
require that the computation point
be given in the Cartesian coordinates of the prism
(\(x^*,\ y^*,\ z^*\) in this figure).
Therefore, we must first transform
the spherical coordinates (\(r,\ \phi,\ \lambda\))
of the computation point P
into \(x^*,\ y^*,\ z^*\).
This means that we must convert vector \(\bar{e}\)
(from this other figure)
to the coordinate system of the prism.
We must first obtain vector \(\bar{e}\)
in the global Cartesian coordinates (X, Y, Z):

\[\bar{e}^g = \bar{E} - \bar{E}^*\]

where \(\bar{e}^g\) is the vector \(\bar{e}\)
in the global Cartesian coordinates and

\[\begin{split}\bar{E} =
\begin{bmatrix}
 r \cos\phi\cos\lambda \\
 r \cos\phi\sin\lambda \\
 r \sin\phi
\end{bmatrix}\end{split}\]

\[\begin{split}\bar{E}^* =
\begin{bmatrix}
 r^* \cos\phi^*\cos\lambda^* \\
 r^* \cos\phi^*\sin\lambda^* \\
 r^* \sin\phi^*
\end{bmatrix}\end{split}\]

[image: _images/prism-vectors.png]
The position vectors
involved in the coordinate transformations.
\(\bar{E}^*\) is the position vector of point Q
in the global coordinate system,
\(\bar{E}\) is the position vector of point P
in the global coordinate system,
and \(\bar{e}\) is the position vector of point P
in the local coordinate system of the prism
(\(x^*,\ y^*,\ z^*\)).

Next, we transform \(\bar{e}^g\)
to the local Cartesian system of the prism by

\[\bar{e} =
 \underbrace{
 \bar{\bar{P}}_y
 \bar{\bar{R}}_y(90^\circ - \phi^*)
 \bar{\bar{R}}_z(180^\circ - \lambda^*)
 }_{
 \bar{\bar{W}}
 }
 \bar{e}^g\]

where \(\bar{\bar{P}}_y\) is a deflection matrix of the y axis,
\(\bar{\bar{R}}_y\) and \(\bar{\bar{R}}_z\) are
counterclockwise rotation matrices
around the y and z axis, respectively
(see Wolfram MathWorld [http://mathworld.wolfram.com/RotationMatrix.html]).

\[\begin{split}\bar{\bar{P}}_y =
\begin{bmatrix}
1 & 0 & 0\\
0 & -1 & 0\\
0 & 0 & 1\\
\end{bmatrix}\end{split}\]

\[\begin{split}\bar{\bar{R}}_y(\alpha) =
\begin{bmatrix}
\cos\alpha & 0 & \sin\alpha\\
0 & 1 & 0\\
-\sin\alpha & 0 & \cos\alpha\\
\end{bmatrix}\end{split}\]

\[\begin{split}\bar{\bar{R}}_z(\alpha) =
\begin{bmatrix}
\cos\alpha & -\sin\alpha & 0\\
\sin\alpha & \cos\alpha & 0\\
0 & 0 & 1\\
\end{bmatrix}\end{split}\]

\[\begin{split}\bar{\bar{W}} =
\begin{bmatrix}
\cos(90^\circ - \phi^*)\cos(180^\circ - \lambda^*) &
-\cos(90^\circ - \phi^*)\sin(180^\circ - \lambda^*) &
\sin(90^\circ - \phi^*)
\\
-\sin(180^\circ - \lambda^*) &
-\cos(180^\circ - \lambda^*) &
0
\\
-\sin(90^\circ - \phi^*)\cos(180^\circ - \lambda^*) &
\sin(90^\circ - \phi^*)\sin(180^\circ - \lambda^*) &
\cos(90^\circ - \phi^*)
\end{bmatrix}\end{split}\]

Which gives us

\[\begin{split}\bar{e} =
\begin{bmatrix}
x\\y\\z
\end{bmatrix}\end{split}\]

Note

Nagy et al. (2000) use the z axis pointing down,
so we still need to invert the sign of \(z\).

Vector \(\bar{e}\) can then be used
with the Nagy et al. (2000) formula.
These formula give us the gravitational attraction
and the gravity gradient tensor
calculated with respect to the coordinate system of the prism
(i.e., \(x^*,\ y^*,\ z^*\)).
However, we need them in
the coordinate system of the observation point P,
where they are measured by GOCE [http://www.esa.int/Our_Activities/Observing_the_Earth/The_Living_Planet_Programme/Earth_Explorers/GOCE/ESA_s_gravity_mission_GOCE] and
calculated for the tesseroids.
We perform these transformations via the global Cartesian system
(tip: the rotation matrices are orthogonal).
\(\bar{g}^*\) is the gravity vector
in the coordinate system of the prism,
\(\bar{g}^g\) is the gravity vector
in the global coordinate system,
and \(\bar{g}\) is the gravity vector
in the coordinate system of computation point P.

\[\bar{g}^g =
 \bar{\bar{R}}_z(\lambda^* - 180^\circ)
 \bar{\bar{R}}_y(\phi^* - 90^\circ)
 \bar{\bar{P}}_y
 \bar{g}^*\]

\[\bar{g} = \bar{\bar{P}}_y \bar{\bar{R}}_y(90^\circ - \phi)
 \bar{\bar{R}}_z(180^\circ - \lambda)\bar{g}^g\]

\[\bar{g} =
 \bar{\bar{P}}_y
 \bar{\bar{R}}_y(90^\circ - \phi)
 \underbrace{
 \bar{\bar{R}}_z(180^\circ - \lambda)
 \bar{\bar{R}}_z(\lambda^* - 180^\circ)
 }_{
 \bar{\bar{R}}_z(\lambda^* - \lambda)
 }
 \bar{\bar{R}}_y(\phi^* - 90^\circ)
 \bar{\bar{P}}_y
 \bar{g}^*\]

\[\bar{g} =
 \bar{\bar{R}}
 \bar{g}^*\]

\[\bar{\bar{R}} =
 \bar{\bar{P}}_y
 \bar{\bar{R}}_y(90^\circ - \phi)
 \bar{\bar{R}}_z(\lambda^* - \lambda)
 \bar{\bar{R}}_y(\phi^* - 90^\circ)
 \bar{\bar{P}}_y\]

\[\begin{split}\bar{\bar{R}} =
\begin{bmatrix}
\cos\beta\cos\alpha\cos\gamma - \sin\alpha\sin\gamma &
\sin\beta\cos\alpha &
\cos\beta\cos\alpha\sin\gamma + \sin\alpha\cos\gamma
\\
-\sin\beta\cos\gamma &
\cos\beta &
-\sin\beta\sin\gamma
\\
-\cos\beta\sin\alpha\cos\gamma - \cos\alpha\sin\gamma &
-\sin\beta\sin\alpha &
-\cos\beta\sin\alpha\sin\gamma + \cos\alpha\cos\gamma
\end{bmatrix}\end{split}\]

\[\begin{split}\bar{\bar{R}} =
\begin{bmatrix}
\cos\beta\sin\phi\sin\phi^* + \cos\phi\cos\phi^* &
\sin\beta\sin\phi &
-\cos\beta\sin\phi\cos\phi^* + \cos\phi\sin\phi^*
\\
-\sin\beta\sin\phi^* &
\cos\beta &
\sin\beta\cos\phi^*
\\
-\cos\beta\cos\phi\sin\phi^* + \sin\phi\cos\phi^* &
-\sin\beta\cos\phi &
\cos\beta\cos\phi\cos\phi^* + \sin\phi\sin\phi^*
\end{bmatrix}\end{split}\]

where

 \begin{eqnarray*}
 &\alpha = 90^\circ - \phi \\
 &\beta = \lambda^* - \lambda \\
 &\gamma = \phi^* - 90^\circ \\
 &\cos\alpha = \sin\phi \\
 &\sin\alpha = \cos\phi \\
 &\cos\gamma = \sin\phi^* \\
 &\sin\gamma = -\cos\phi^*
 \end{eqnarray*}
Likewise,
transformation for the gravity gradient tensor \(T\) is

\[\bar{\bar{T}} =
 \bar{\bar{R}}
 \bar{\bar{T}}^*
 \bar{\bar{R}}^T\]

Recommended reading

	Smith et al. (2001)

	﻿Wild-Pfeiffer (2008)

References

﻿Asgharzadeh, M. F., R. R. B. von Frese, H. R. Kim, T. E. Leftwich,
and J. W. Kim (2007),
Spherical prism gravity effects by Gauss-Legendre quadrature integration,
Geophysical Journal International, 169(1), 1-11,
doi:10.1111/j.1365-246X.2007.03214.x.

Grombein, T.; Seitz, K.; Heck, B. (2013), Optimized formulas for the
gravitational field of a tesseroid, Journal of Geodesy,
doi: 10.1007/s00190-013-0636-1

Li, Z., T. Hao, Y. Xu, and Y. Xu (2011), An efficient and adaptive approach for
modeling gravity effects in spherical coordinates, Journal of Applied
Geophysics, 73(3), 221–231, doi:10.1016/j.jappgeo.2011.01.004.

Nagy, D., G. Papp, and J. Benedek (2000),
The gravitational potential and its derivatives for the prism,
Journal of Geodesy, 74(7-8), 552-560, doi:10.1007/s001900000116.

Nagy, D., G. Papp, and J. Benedek (2002),
Corrections to “The gravitational potential and its derivatives for the prism,”
Journal of Geodesy, 76(8), 475-475, doi:10.1007/s00190-002-0264-7.

Smith, D. A., D. S. Robertson, and D. G. Milbert (2001),
Gravitational attraction of local crustal masses in spherical coordinates,
Journal of Geodesy, 74(11-12), 783-795, doi:10.1007/s001900000142.

Wild-Pfeiffer, F. (2008),
A comparison of different mass elements for use in gravity gradiometry,
Journal of Geodesy, 82(10), 637-653, doi:10.1007/s00190-008-0219-8.
﻿

Using Tesseroids

This is a tutorial about
how to use the Tesseroids package.
It is a work-in-progress
but I have tried to be as complete as possible.
If you find that anything is missing,
or would like something explained in more detail,
please submit a bug report [https://github.com/leouieda/tesseroids/issues]
(it’s not that hard).

Any further questions and comments
can be e-mail directly to me
(leouieda [at] gmail [dot] com).

If you don’t find what you’re looking for here,
the cookbook
contains several example recipes
of using Tesseroids.

A note about heights and units

In order to have a single convention,
the word “height” means “height above the Earths surface” and
are interpreted as positive up and negative down
(i.e., oriented with the z axis of the Local coordinate system).
Also, all input units are in SI and decimal degrees.
Output of tesspot is in SI, tessgx, tessgy, and tessgz are in mGal, and
the tensor components in Eotvos.
All other output is also in SI and decimal degrees.

Getting help information

All programs accept the -h and –version flags.
-h will print a help message describing
the usage, input and output formats and options accepted.
–version prints version and license information about the program.

Program tessdefaults prints the default values of
constants used in the computations such as:
mean Earth radius, pi, gravitational constant, etc.

Computing the gravitational effect of a tesseroid

The tesspot, tessgx, tessgy, tessgz, tessgxx, etc. programs
calculate the combined effect of a list of tesseroids
on given computation points.
The computation points are passed via standard input and
do NOT have to be in a regular grid.
This allows, for example, computation on points where data was measured.
The values calculated are put in
the last column of the input points and printed to standard output.

For example, if calculating gz on these points:

lon1 lat1 height1 value1 othervalue1
lon2 lat2 height2 value2 othervalue2
...
lonN latN heightN valueN othervalueN

the output would look something like:

lon1 lat1 height1 value1 othervalue1 gz1
lon2 lat2 height2 value2 othervalue2 gz2
...
lonN latN heightN valueN othervalueN gzN

The input model file should contain one tesseroid per line and
have columns formatted as:

W E S N HEIGHT_OF_TOP HEIGHT_OF_BOTTOM DENSITY

HEIGHT_OF_TOP and HEIGHT_OF_BOTTOM are
positive if the above the Earth’s surface and negative if bellow.

Note

Remember that HEIGHT_OF_TOP > HEIGHT_OF_BOTTOM!

Use the command line option -h to view a list of all commands available.

Example:

Calculate the field of a tesseroid model
having verbose printed and logged to file gz.log and GLQ order 3/3/3.
The computation points are in points.txt
and the output will be placed in gz_data.txt:

tessgz modelfile.txt -v -lgz.log -o3/3/3 < points.txt > gz_data.txt

The -a flag

The -a flag on tesspot, tessgx, tessgxx, etc., programs
disables the automatic recursive dividing of tesseroids
to maintain the GLQ accuracy.
As a general rule,
the tesseroid should be no bigger than
a ratio times the distance from the computation point
(program tessdefaults prints the value of the size ratios used).
The programs automatically break the tesseroids
when this criterion is breached.
This means that the computations can be performed
with the default GLQ order 2/2/2,
which is much faster,
and still maintain correctness.

Warning

It is strongly recommended that you don’t use this flag unless you
know what you are doing! It is also recommended that you keep 2/2/2 order
always.

Verbose and logging to files

The -v flag enables printing of information messages to
the default error stream (stderr).
If omitted, only error messages will appear.
The -l flag enables logging of information and error messages to a file.

Comments and provenance information

Comments can be inserted into input files
by placing a “#” character at the start of a line.
All comment lines are ignored.
All programs pass on (print) the comment lines
of the input to the output.
All programs insert comments about the provenance of their results
(where they came from) to their output.
These include names of input files, version of program used, date, etc.

Generating regular grids

Included in the package is program tessgrd,
which creates a regular grid of points and prints them to standard output.

Example

To generate a regular grid of 100 x 100 points,
in the are -10/10/-10/10 degrees,
at a height of 250 km:

tessgrd -r-10/10/-10/10 -b100/100 -z250e03 -v > points.txt

Automatic model generation

As of version 1.0,
Tesseroids includes program tessmodgen
for automatically generating a tesseroid model
from a map of an interface.
The interface can be any surface deviating from a reference level.
For example, topography (a DEM) deviates from 0,
a Moho map deviates from a mean crustal thickness, etc.
This program takes as input a REGULAR grid
with longitude, latitude and height values of the interface.
Each tesseroid is generated with a grid point at the center of it’s top face.
The top and bottom faces of the tesseroid are defined as:

	Top = Interface and Bottom = Reference if the interface is above the reference

	Top = Reference and Bottom = Interface if the interface is bellow the reference

The density RHO of the tesseroids can be passed using the -d option.
This will assign a density value of RHO,
when the interface is above the reference,
and a value of -RHO if the interface is bellow the reference.
Alternatively, the density of each tesseroid
can be passed as a forth column on the input grid.
As with the -d option, if the interface is bellow the reference,
the density value will be multiplied by -1!
Also, an error will occur if both a forth column and the -d option are passed!

Example:

To generate a tesseroid model from a Digital Elevation Model (DEM)
with 1 x 1 degree resolution using a density of 2670 km/m^3:

tessmodgen -s1/1 -d2670 -z0 -v < dem_file.txt > dem_tess_model.txt

Calculating the total mass of a model

The tessmass program can be used to
compute the total mass of a given tesseroid model.
If desired, a density range can be given
and only tesseroids that fall within the given range
will be used in the calculation.

Example:

To calculate the total mass of all tesseroids in model.txt
with density between 0 and 1 g/cm^3:

tessmass -r0/1000 < model.txt

Computing the effect of rectangular prisms in Cartesian coordinates

Tesseroids 1.0 also introduced programs
to calculate the gravitational effect of
right rectangular prisms in Cartesian coordinates.
This is done using the formula of Nagy et al. (2000).
The programs are prismpot, prismgx, prismgy, prismgz, prismgxx, etc.
Input and output for these programs
is very similar to that of the tesspot, tessgx, etc., programs.
Computation points are read from standard input and
the prism model is read from a file.
The model file should have the column format:

X1 X2 Y1 Y2 Z1 Z2 DENSITY

Note

As in Nagy et al. (2000),
the coordinate system for the rectangular prism calculations
has X axis pointing North, Y axis pointing East and Z axis pointing Down.
This is important to note because it differs from
the convention adopted for the tesseroids.
In practice, this means that
the \(g_{xz}\) and \(g_{yz}\) components of
the prism and tesseroid will have different signs.
This will not be such for the \(g_z\) component, though,
because the convention for tesseroids is
to have Z axis Down for this component only.
See the Theoretical background section
for more details on this.

Piping

Tesseroids was designed with the Unix philosophy in mind:

Write programs that do one thing and do it well.
Write programs to work together.
Write programs to handle text streams, because that is a universal interface.

Therefore, all tessg* programs and tessgrd
can be piped together to calculate many components on a regular grid.

Example:

Given a tesseroids file model.txt as follows:

-1 1 -1 1 0 -10e03 -500

Running the following would calculate
gz and gradient tensor of tesseroids in model.txt
of a regular grid from -5W to 5E and -5S to 5N
on 100x100 points at 250 km height.
And the best of all is that it is done in parallel!
If your system has multiple cores,
this would mean a great increase in the computation time.
All information regarding the computations
will be logged to files gz.log, gxx.log, etc.
These should include the information
about how many times the tesseroid had to be split into smaller ones
to guarantee GLQ accuracy:

tessgrd -r-5/5/-5/5 -b100/100 -z250e03 | \
tessgz model.txt -lgz.log | \
tessgxx model.txt -lgxx.log | \
tessgxy model.txt -lgxy.log | \
tessgxz model.txt -lgxz.log | \
tessgyy model.txt -lgyy.log | \
tessgyz model.txt -lgyz.log | \
tessgzz model.txt -lgzz.log > output.txt

Cookbook

The following recipes can be found in the cookbook folder
that comes with your Tesseroids download
(along with shell and batch scripts and sample output):

	Calculate the gravity gradient tensor from a DEM

	Simple prism model in Cartesian coordinates

	Simple tesseroid model

	Convert a tesseroid model to prisms and calculate in spherical coordinates

	Convert a tesseroid model to prisms and calculate in Cartesian coordinates

	Using tesslayers to make a tesseroid model of a stack of layers

Calculate the gravity gradient tensor from a DEM

This example demonstrates how to calculate
the gravity gradient tensor (GGT) due to
topographic masses using tesseroids.

To do that we need:

	A DEM file with lon, lat, and height information;

	Assign correct densities to continents and oceans (we’ll be using a little Python for this);

	Convert the DEM information into a tesseroid model;

	Calculate the 6 components of the GGT;

The file dem_brasil.sh is a small shell script
that executes all the above
(we’ll be looking at each step in more detail):

 1 #!/bin/bash
 2
 3 # First, insert the density information into
 4 # the DEM file using the Python script.
 5 python dem_density.py dem.xyz > dem-dens.txt
 6
 7 # Next, use the modified DEM with tessmodgen
 8 # to create a tesseroid model
 9 tessmodgen -s0.166667/0.166667 -z0 -v < dem-dens.txt \
10 > dem-tess.txt
11
12 # Calculate the GGT on a regular grid at 250km
13 # use the -l option to log the processes to files
14 # (usefull to diagnose when things go wrong)
15 # The output is dumped to dem-ggt.txt
16 tessgrd -r-60/-45/-30/-15 -b50/50 -z250e03 | \
17 tessgxx dem-tess.txt -lgxx.log | \
18 tessgxy dem-tess.txt -lgxy.log | \
19 tessgxz dem-tess.txt -lgxz.log | \
20 tessgyy dem-tess.txt -lgyy.log | \
21 tessgyz dem-tess.txt -lgyz.log | \
22 tessgzz dem-tess.txt -lgzz.log -v > dem-ggt.txt

Why Python

Python is a modern programming language
that is very easy to learn and extremely productive.
We’ll be using it to make our lives a bit easier
during this example but it is by no means a necessity.
The same thing could have been accomplished
with Unix tools and the Generic Mapping Tools [http://www.soest.hawaii.edu/gmt] (GMT)
or other plotting program.

If you have interest in learning Python
we recommend the excelent video lectures
in the Software Carpentry [http://software-carpentry.org] course.
There you will also find lectures
on various scientific programming topics.
I strongly recommend taking this course
to anyone who works with scientific computing.

The DEM file

For this example we’ll use ETOPO1 [http://www.ngdc.noaa.gov/mgg/global/global.html] for our DEM.
The file dem.xyz contains the DEM as a 10’ grid.
Longitude and latitude are in decimal degrees
and heights are in meters.
This is what the DEM file looks like (first few lines):

 1 # This is the DEM file from ETOPO1 with 10' resolution
 2 # points in longitude: 151
 3 # Columns:
 4 # lon lat height(m)
 5 -65.000000 -10.000000 157
 6 -64.833333 -10.000000 168
 7 -64.666667 -10.000000 177
 8 -64.500000 -10.000000 197
 9 -64.333333 -10.000000 144
10 -64.166667 -10.000000 178

Notice that Tesseroids allows you to include
comments in the files by starting a line with #.
This figure
shows the DEM ploted in pseudocolor.
The red rectangle is the area
in which we’ll be calculating the GGT.

[image: ../_images/sample-dem.png]
The ETOPO1 10’ DEM of the Parana Basin, southern Brasil.

Assigning densities

Program tessmodgen allows us
to provide the density value of each tesseroid
through the DEM file.
All we have to do is insert an extra column
in the DEM file with the density values
of the tesseroids that will be put on each point.
This way we can have
the continents with 2.67 g/cm3
and oceans with 1.67 g/cm3.
Notice that the density assigned to the oceans
is positive!
This is because the DEM in the oceans
will have heights bellow our reference (h = 0km)
and tessmodgen will automatically invert
the sign of the density values if a point is bellow the reference.

We will use the Python script dem_density.py
to insert the density values into our DEM
and save the result to dem-dens.txt:

3 # First, insert the density information into
4 # the DEM file using the Python script.
5 python dem_density.py dem.xyz > dem-dens.txt

If you don’t know Python,
you can easily do this step in any other language
or even in Excel.
This is what the dem_density.py script looks like:

 1 """
 2 Assign density values for the DEM points.
 3 """
 4 import sys
 5 import numpy
 6
 7 lons, lats, heights = numpy.loadtxt(sys.argv[1], unpack=True)
 8
 9 for i in xrange(len(heights)):
10 if heights[i] >=0:
11 print "%lf %lf %lf %lf" % (lons[i], lats[i], heights[i], 2670.0)
12 else:
13 print "%lf %lf %lf %lf" % (lons[i], lats[i], heights[i], 1670.0)

The result is a DEM file with a forth column
containing the density values
(see this figure):

 1 -65.000000 -10.000000 157.000000 2670.000000
 2 -64.833333 -10.000000 168.000000 2670.000000
 3 -64.666667 -10.000000 177.000000 2670.000000
 4 -64.500000 -10.000000 197.000000 2670.000000
 5 -64.333333 -10.000000 144.000000 2670.000000
 6 -64.166667 -10.000000 178.000000 2670.000000
 7 -64.000000 -10.000000 166.000000 2670.000000
 8 -63.833333 -10.000000 164.000000 2670.000000
 9 -63.666667 -10.000000 189.000000 2670.000000
10 -63.500000 -10.000000 210.000000 2670.000000

[image: ../_images/sample-dem-dens.png]
Density values. 2.67 g/cm3 in continents and 1.67 g/cm3 in the oceans.

Making the tesseroid model

Next, we’ll use our new file dem-dens.txt
and program tessmodgen to create
a tesseroid model of the DEM:

 7 # Next, use the modified DEM with tessmodgen
 8 # to create a tesseroid model
 9 tessmodgen -s0.166667/0.166667 -z0 -v < dem-dens.txt \
10 > dem-tess.txt

tessmodgen places a tesseroid on each point of the DEM.
The bottom of the tesseroid is placed on a reference level
and the top on the DEM.
If the height of the point is bellow the reference,
the top and bottom will be inverted
so that the tesseroid isn’t upside-down.
In this case,
the density value of the point
will also have its sign changed
so that you get the right density values
if modeling things like the Moho.
For topographic masses,
the reference surface is h = 0km (argument -z).
The argument -s is used
to specify the grid spacing (10’)
which will be used to set
the horizontal dimensions of the tesseroid.
Since we didn’t pass the -d argument
with the density of the tesseroids,
tessmodgen will expect a fourth column
in the input with the density values.

The result is a tesseroid model file
that should look somthing like this:

 1 # Tesseroid model generated by tessmodgen 1.1dev:
 2 # local time: Wed May 9 19:08:12 2012
 3 # grid spacing: 0.166667 deg lon / 0.166667 deg lat
 4 # reference level (depth): 0
 5 # density: read from input
 6 -65.0833335 -64.9166665 -10.0833335 -9.9166665 157 0 2670
 7 -64.9166665 -64.7499995 -10.0833335 -9.9166665 168 0 2670
 8 -64.7500005 -64.5833335 -10.0833335 -9.9166665 177 0 2670
 9 -64.5833335 -64.4166665 -10.0833335 -9.9166665 197 0 2670
10 -64.4166665 -64.2499995 -10.0833335 -9.9166665 144 0 2670

and for the points in the ocean (negative height):

9065 -40.0833335 -39.9166665 -19.9166665 -19.7499995 0 -19 -1670

Calculating the GGT

Tesseroids allows use of custom computation grids
by reading the computation points from standard input.
This way,
if you have a file with lon, lat, and height coordinates
and wish to calculate any gravitational field in those points,
all you have to do is redirect stardard input to that file
(using <).
All tess* programs will calculate their respective field,
append a column with the result to the input
and print it to stdout.
So you can pass grid files
with more than three columns,
as long as the first three
correspond to lon, lat and height.
This means that you can pipe the results
from one tessg to the other
and have an output file with many columns,
each corresponding to a gravitational field.
The main advantage of this approach is that,
in most shell environments,
the computation of pipes is done in parallel.
So, if your system has more than one core,
you can get parallel computation of GGT components
with no extra effort.

For convience,
we added the program tessgrd to the set of tools,
which creates regular grids and print them to standard output.
So if you don’t want to compute on a custom grid (like us),
you can simply pipe the output of tessgrd to the tess* programs:

12 # Calculate the GGT on a regular grid at 250km
13 # use the -l option to log the processes to files
14 # (usefull to diagnose when things go wrong)
15 # The output is dumped to dem-ggt.txt
16 tessgrd -r-60/-45/-30/-15 -b50/50 -z250e03 | \
17 tessgxx dem-tess.txt -lgxx.log | \
18 tessgxy dem-tess.txt -lgxy.log | \
19 tessgxz dem-tess.txt -lgxz.log | \
20 tessgyy dem-tess.txt -lgyy.log | \
21 tessgyz dem-tess.txt -lgyz.log | \
22 tessgzz dem-tess.txt -lgzz.log -v > dem-ggt.txt

The end result of this is file dem-ggt.txt,
which will have 9 columns in total.
The first three are the lon, lat and height coordinates
generated by tessgrd.
The next six will correspond to each component
of the GGT calculated by tessgxx, tessgxy, etc., respectively.
The resulting GGT is shown in this figure.

[image: ../_images/sample-dem-ggt.png]
GGT of caused by the topographic masses.

Making the plots

The plots were generated using
the powerfull Python library Matplotlib [http://matplotlib.org].
The script plots.py is somewhat more complicated than dem_density.py
and requires a bit of “Python Fu”.
The examples in the Matplotlib website
should give some insight into how it works.
To hanble the map projections,
we used the Basemap toolkit [http://matplotlib.org/basemap/index.html] of Matplotlib.

Simple prism model in Cartesian coordinates

The simple_prism.sh script calculates
the gravitational potential, gravitational attraction,
and gravity gradient tensor due to a simple prism model
in Cartesian coordinates:

#!/bin/bash

Generate a regular grid, pipe it to all the computation programs,
and write the result to output.txt

tessgrd -r0/20000/0/20000 -b50/50 -z1000 | \
prismpot model.txt | \
prismgx model.txt | prismgy model.txt | prismgz model.txt | \
prismgxx model.txt | prismgxy model.txt | \
prismgxz model.txt | prismgyy model.txt | \
prismgyz model.txt | prismgzz model.txt > output.txt

The model file looks like this:

Test prism model file
2000 5000 2000 15000 0 5000 1000
10000 18000 10000 18000 0 5000 -1000

The result should look like the following
(“column” means the column of the output file).

[image: ../_images/simple_prism.png]
Plot of the columns of output.txt generated by simple_prism.sh.
The x and y axis are longitude and latitude, respectively.

Simple tesseroid model

The files in the folder cookbook/simple_tess show how to calculate the
gravitational fields of a simple 2 tesseroid model at 260 km height.

For this simple setup, the model file looks like this:

Test tesseroid model file
10 20 10 20 0 -50000 200
-20 -10 -20 -10 0 -30000 -500

The simple_tess.sh script performs the calculations and calls the
plot.py script to plot the results:

#!/bin/bash

Generate a regular grid, pipe it to all the computation programs,
and write the result to output.txt

tessgrd -r-45/45/-45/45 -b101/101 -z260e03 | \
tesspot model.txt | \
tessgx model.txt | tessgy model.txt | tessgz model.txt | \
tessgxx model.txt | tessgxy model.txt | \
tessgxz model.txt | tessgyy model.txt | \
tessgyz model.txt | tessgzz model.txt -v -llog.txt > output.txt

Make a plot with the columns of output.txt
python plot.py output.txt 101 101

tessgrd generates a regular grid and prints that to standard output
(stdout).
The scripts pipes the grid points to tesspot etc. to calculate the
corresponding fields.
Option -v tells tessgzz
to print information messages (to stderr).
Option -llog.txt tells tessgzz
to log the information plus debug messages
to a file called log.txt.

The columns of the output file will be, respectively:
longitude, latitude, height, potential, gx, gy, gz, gxx, gxy, gxz, gyy, gyz,
and gzz.
The result should look like this
(“column” means the column of the output file):

[image: ../_images/simple_tess.png]
Plot of the columns of output.txt generated by simple_tess.sh.
Orthographic projection
(thanks to the Basemap [http://matplotlib.org/basemap/index.html] toolkit of matplotlib [http://matplotlib.org]).

Convert a tesseroid model to prisms and calculate in spherical coordinates

The tess2prism.sh script
converts a tesseroid model to prisms
(using tessmodgen) and
calculates the gravitational potential, gravitational attraction,
and gravity gradient tensor
in spherical coordinates:

#!/bin/bash

Generate a prism model from a tesseroid model.
Prisms will have the same mass as the tesseroids and
associated spherical coordinates of the center of
the top of the tesseroid.

tess2prism < tess-model.txt > prism-model.txt

Generate a regular grid in spherical coordinates,
pipe the grid to the computation programs,
and dump the result on output.txt
prismpots calculates the potential in spherical
coordinates, prismgs calculates the full
gravity vector, and prismggts calculates the full
gravity gradient tensor.

tessgrd -r-160/0/-80/0 -b100/100 -z250e03 | \
prismpots prism-model.txt | \
prismgs prism-model.txt | \
prismggts prism-model.txt -v > output.txt

The tesseroid model file looks like this:

Test tesseroid model file
-77 -75 -41 -39 0 -50000 500
-79 -77 -41 -39 0 -50000 500
-81 -79 -41 -39 0 -50000 500
-83 -81 -41 -39 0 -50000 500
-85 -83 -41 -39 0 -50000 500

and the converted prism model looks like this:

Prisms converted from tesseroid model with tess2prism 1.1dev
local time: Wed May 16 14:34:47 2012
tesseroids file: stdin
conversion type: equal mass|spherical coordinates
format: dx dy dz density lon lat r
Test tesseroid model file
221766.31696055 169882.854778591 50000 499.977196258595 -76 -40 6378137
221766.31696055 169882.854778591 50000 499.977196258595 -78 -40 6378137
221766.31696055 169882.854778591 50000 499.977196258595 -80 -40 6378137
221766.31696055 169882.854778591 50000 499.977196258595 -82 -40 6378137
221766.31696055 169882.854778591 50000 499.977196258595 -84 -40 6378137

Note that the density of prisms is altered.
This is so that the tesseroid and corresponding prism have the same mass.

The result should look like the following
(“column” means the column of the output file).

[image: ../_images/tess2prism.png]
Plot of the columns of output.txt generated
by tess2prism.sh.
Orthographic projection
(thanks to the Basemap [http://matplotlib.org/basemap/index.html] toolkit of matplotlib [http://matplotlib.org]).

Convert a tesseroid model to prisms and calculate in Cartesian coordinates

The tess2prism_flatten.sh script
converts a tesseroid model to prisms
(using the --flatten flag in tessmodgen) and
calculates the gravitational potential, gravitational attraction,
and gravity gradient tensor
in Cartesian coordinates:

#!/bin/bash

Generate a prism model from a tesseroid model by
flattening the tesseroids (1 degree = 111.11 km).
This way the converted prisms can be used
with the prism* programs in Cartesian coordinates.

tess2prism --flatten < tess-model.txt > prism-model.txt

Generate a regular grid in Cartesian coordinates,
pipe the grid to the computation programs,
and dump the result on output.txt

tessgrd -r-3e06/3e06/-3e06/3e06 -b50/50 -z250e03 | \
prismpot prism-model.txt | \
prismgx prism-model.txt | \
prismgy prism-model.txt | \
prismgz prism-model.txt | \
prismgxx prism-model.txt | prismgxy prism-model.txt | \
prismgxz prism-model.txt | prismgyy prism-model.txt | \
prismgyz prism-model.txt | prismgzz prism-model.txt > output.txt

The tesseroid model file looks like this:

Test tesseroid model file
10 15 10 15 0 -30000 500
-15 -10 -10 10 0 -50000 200
-15 5 -16 -10 0 -30000 -300

and the converted prism model looks like this:

Prisms converted from tesseroid model with tess2prism 1.1dev
local time: Tue May 8 14:55:02 2012
tesseroids file: stdin
conversion type: flatten
format: x1 x2 y1 y2 z1 z2 density
Test tesseroid model file
1111100 1666650 1111100 1666650 0 30000 487.534658568521
-1111100 1111100 -1666650 -1111100 0 50000 198.175508383774
-1777760 -1111100 -1666650 555550 0 30000 -291.9029748328

Note that the density of prisms is altered.
This is so that the tesseroid and corresponding prism have the same mass.

The result should look like the following
(“column” means the column of the output file).

[image: ../_images/tess2prism_flatten.png]
Plot of the columns of output.txt generated
by tess2prism_flatten.sh.
The x and y axis are West-East and South-North, respectively, in kilometers.

Using tesslayers to make a tesseroid model of a stack of layers

The tesslayers.sh script converts
grids that define a stack of layers
into a tesseroid model.
It then calculates
the gravitational attraction
and gravity gradient tensor due to the tesseroid model:

#!/bin/bash

Convert the layer grids in layers.txt to tesseroids.
The grid spacing passed to -s is used as the size of the tesseroids,
so be careful!
tesslayers -s0.5/0.5 -v < layers.txt > tessmodel.txt

Now calculate the gz and tensor effect of this model at 100km height
tessgrd -r-8/8/32/48 -b50/50 -z100000 | \
tessgz tessmodel.txt | \
tessgxx tessmodel.txt | tessgxy tessmodel.txt | \
tessgxz tessmodel.txt | tessgyy tessmodel.txt | \
tessgyz tessmodel.txt | tessgzz tessmodel.txt -v > output.txt

The input file layers.txt contains
the information about the stack of layers.
It is basicaly regular grids in xyz format (i.e., in columns).
The first 2 columns in the file are
the longitude and latitude
of the grid points.
Then comes a column with the height of the first layer.
This is the height (with respect to mean Earth radius)
of the top of stack of layers.
Then comes the thickness and density of each layer.
Our layer file looks like this:

 1 # Synthetic layer model of sediments and topography
 2 # lon lat height thickness density
 3 -10 30 800 800.002 1900
 4 -9.5 30 800 800.006 1900
 5 -9 30 800 800.016 1900
 6 -8.5 30 800 800.042 1900
 7 -8 30 800 800.105 1900
 8 -7.5 30 800 800.248 1900
 9 -7 30 800 800.554 1900
10 -6.5 30 800 801.173 1900

...

500 -7 36 798.411 814.357 1900
501 -6.5 36 796.635 830.394 1900
502 -6 36 793.262 860.866 1900
503 -5.5 36 787.236 915.303 1900
504 -5 36 777.127 1006.62 1900
505 -4.5 36 761.226 1150.26 1900
506 -4 36 737.823 1361.66 1900
507 -3.5 36 705.685 1651.98 1900
508 -3 36 664.665 2022.53 1900
509 -2.5 36 616.299 2459.43 1900

This is a synthetic layer model
generated from two gaussian functions.
This is what
the topography (height column)
and the thickness of the sediments
look like:

[image: ../_images/layers.png]
Plot of the third and forth columns of layers.txt.
The x and y axis are longitude and latitude, respectively.

The model file generated looks like this:

 1 # Tesseroid model generated by tesslayers 1.1dev:
 2 # local time: Fri Jul 20 18:02:45 2012
 3 # grid spacing (size of tesseroids): 0.5 deg lon / 0.5 deg lat
 4 -10.25 -9.75 29.75 30.25 800 -0.00200000032782555 1900
 5 -9.75 -9.25 29.75 30.25 800 -0.00600000005215406 1900
 6 -9.25 -8.75 29.75 30.25 800 -0.0159999998286366 1900
 7 -8.75 -8.25 29.75 30.25 800 -0.0420000003650784 1900
 8 -8.25 -7.75 29.75 30.25 800 -0.105000000447035 1900
 9 -7.75 -7.25 29.75 30.25 800 -0.247999999672174 1900
10 -7.25 -6.75 29.75 30.25 800 -0.553999999538064 1900

...

500 -7.75 -7.25 35.75 36.25 799.290000000037 -7.125 1900
501 -7.25 -6.75 35.75 36.25 798.411000000313 -15.9459999995306 1900
502 -6.75 -6.25 35.75 36.25 796.634999999776 -33.7590000005439 1900
503 -6.25 -5.75 35.75 36.25 793.262000000104 -67.6040000002831 1900
504 -5.75 -5.25 35.75 36.25 787.235999999568 -128.067000000738 1900
505 -5.25 -4.75 35.75 36.25 777.127000000328 -229.492999999784 1900
506 -4.75 -4.25 35.75 36.25 761.225999999791 -389.033999999985 1900
507 -4.25 -3.75 35.75 36.25 737.822999999858 -623.837000000291 1900
508 -3.75 -3.25 35.75 36.25 705.68499999959 -946.295000000857 1900
509 -3.25 -2.75 35.75 36.25 664.665000000037 -1357.86500000022 1900

The result should look like the following
(“column” means the column of the output file).

[image: ../_images/tesslayers.png]
Plot of the columns of output.txt generated by tesslayers.sh.
The x and y axis are longitude and latitude, respectively.

License

Copyright (c) 2012-2017, Leonardo Uieda

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of Leonardo Uieda nor the names of any contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 _static/up-pressed.png

_static/comment-bright.png

_static/tesseroid_parallels.png

_static/prism-coordinates.png

_images/banner.png
Jesseroids

_images/simple_prism.png
Column 4

20000

15000

10000

0 5000 10000 15000 20000

20000 Column 5 20000 C0|.I.J.[Ym & T 40 20000 Column 7

30

20 15000

10

© 10000 -

5000

15000 15000

10000 -10 10000

5000 =30 5000

0 5000 10000 15000 20000 00 5000 10000 15000 20000 0 ‘5000 10000 15000 20000

Column 8 Column 9 Column 10

20000 20000 80 20000
i Heo 60

100
15000 s 15000 40 15000 .

10000 10000
-50
5000 -100

5000 "
B -200

5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000

Column 11 Column 12 20000 Column 13
160 200

150
100
50
0

=80 5000
vooe | -
—-200

5000 10000 15000 20000 % 5000 10000 15000 20000 % 5000 10000 15000 20000

g0 15000

_images/sample-dem.png
15°S

20°s

25°S

30°s

A
=

W 50°wW 45°W

1000

800

600

400

200

-200

—400

-600

-800

—1000

Height [m]

_static/down.png

_images/tesseroid_meridians.png

nav.xhtml

 Table of Contents

 		Tesseroids: forward modeling in spherical coordinates

 		Citing

 		Geophysics paper

 		Source code

 		Conference proceeding

 		Known issues

 		Changelog

 		Changes in version 1.2.1

 		Changes in version 1.2.0

 		Changes in version 1.1.1

 		Changes in version 1.1

 		Changes in version 1.0

 		Installing

 		Compiling from source

 		Setting up SCons

 		Compiling

 		Testing the build

 		Releases

 		Developement

 		Stable releases

 		Theorerical background

 		What is a tesseroid anyway?

 		About coordinate systems

 		Gravitational fields of a tesseroid

 		Numerical integration

 		Gravitational fields of a prism in spherical coordinates

 		Recommended reading

 		References

 		Using Tesseroids

 		A note about heights and units

 		Getting help information

 		Computing the gravitational effect of a tesseroid

 		The -a flag

 		Verbose and logging to files

 		Comments and provenance information

 		Generating regular grids

 		Automatic model generation

 		Calculating the total mass of a model

 		Computing the effect of rectangular prisms in Cartesian coordinates

 		Piping

 		Cookbook

 		Calculate the gravity gradient tensor from a DEM

 		Why Python

 		The DEM file

 		Assigning densities

 		Making the tesseroid model

 		Calculating the GGT

 		Making the plots

 		Simple prism model in Cartesian coordinates

 		Simple tesseroid model

 		Convert a tesseroid model to prisms and calculate in spherical coordinates

 		Convert a tesseroid model to prisms and calculate in Cartesian coordinates

 		Using tesslayers to make a tesseroid model of a stack of layers

 		License

_static/logo.png

_static/tesseroid.png
a tesseroid

AZ

_images/prism-vectors.png

_images/tess2prism.png
Column 13

=

OHNWHRUWOG N ®

_images/sample-dem-dens.png
7
=
2
@
2
3
a

60°W 55°W 50°W 45°W

_static/tesseroid-coordinates.png

_images/tesseroid_sphere.png
£ £

_images/sample-dem-ggt.png
Y Z 0.30
120 075 -
18%] 0.90 0.60 0.00
0.60 0.45 -0.30
s 030 2 030 2 060 4
S S 0.90 &
20| 0.00 i§ 015 §]
030 0.00 1.20
27| 0.60 0.15 : 150
-0.30 E
0.90 1.80
-0.45 57°W 54°W S51°W 48°W
2.40 J.
120
1.60 .00 e
9 120 -
1.60 0.00
o 0.80 A
2|
5 120 g4 0.60 .8
0.40 %’ %’ %’
20|] 080 § 1208
0.00
0.40 0.40 -1.80
s ’ 0.00 2.40
-0.80
0.40 -3.00
57°W 54°W 51°W 48°W 57°W 54°W S51°W 48°W N 57T°W 54°W 51°W 48°W

_images/tesslayers.png
Column 5

46
a4
42
40
38
36
32

“8-6-4-20 2 4 6 8
Column 8

46
44
42
40
38
36

327864202468

I

-10.5

Column 4

46
44
42
40
38
36
34
32

~8-6-4-20 2 4 6 8
Column 6

"

&

Column 7

8-6-4-20 2 4 6 8
Column 9

8-6-4-20 2 4 6 8

8-6-4-20 2 4 6 8

Column 10

8-6-4-20 2 4 6 8

_images/simple_tess.png
—2562064.560000500 0 500100@500 -206-156-100-50 0 50 100 150200 -206-156-100-50 O 50 100 150200 -—406-326-246-160-80 O 80 160 240

Column 10 Column 11

—6.4-4.8-3.2-1.60.0 1.6 3.2 4.8 6.4

—6.4-4.8-3.2-1.60.0 1.6 3.2 4.8 6.4 -8 6 -4 -2 0 2 4 6

_images/layers.png
Topography [m]

10

Thickness of sediment layer [m]

800 50
700 7200
600 6400

a5
500 5600
400 4800
300 40 4000
200 3200
100
0 2400
—10¢ 1600
-20¢ 800

_images/tesseroid_parallels.png

_static/comment.png

_images/prism-coordinates.png

_images/tess2prism_flatten.png
3000
2000
1000

0
~1000
~2000

-3009,
3000
2000
1000

0

-1000

~2000

-3000,
3000
2000
1000

0

Column 4

~1000f

-2000

-3000,

3000 1000
2000 750
1000 ' 500
250
0 o
-1000 " -250
-500
-2000
-750
~300050620061000 0100020003000
Column 5 3000 Column 6 3000 Column 7 200
160 75
2000 o 20 150
120 r. 100
1000 A " 25 1000 L
80 50
o
0 0 o
40 s "
o -1000 @ _so 1000 - .
~40 2000 =75 -2000
-150
80 -100
00620061000 0 100020003000 3000362006100 0 100070003000 3005062006100 0100020003000
Column 8 Column 9 Column 10
3000 25 3000 6.0
4 . .
20
3 2000 2000 45
- || 15 L
1000 1000 & 3.0
1 10
15
o 0 05 0
“1 1000 = 'S %0 1000 °
" = . - s
3 -2000f M 102000} S 30
4 3009l 1 15 300 -45
00620061000 0 100020003000 2000620061000 0100020003000 280620061000 0100020003000
Column 11 Column 12 Column 13
16 3000 . 3000
08 2000 3 2000
0.0 ! 2
1000 Ll 1000 o
-0.8 1 |
“16 0 o1 0 f
-2.4 1000 -1000
-2
I, R
4 -2000 =3 -2000
-4.0 -4
-3009 -3009
00620061000 0 100020003000 ~300620061000 0 100020003000 =300620061000 0100020003000

_static/comment-close.png

_images/tesseroid.png
a tesseroid

AZ

_images/tesseroid-coordinates.png

_static/minus.png

_static/up.png

_static/banner.png
Jesseroids

_static/down-pressed.png

_static/tesseroid_meridians.png

_static/prism-vectors.png

_static/ajax-loader.gif

_static/tesseroid_sphere.png
£ £

_static/plus.png

_static/file.png

