
tess Documentation
Release 0.1.3

Wendell Smith

Aug 03, 2018

Contents

1 A 3D cell-based Voronoi library based on voro++ 1

2 Description 3
2.1 voro++ . 3

3 Quick Start 5
3.1 Installation . 5
3.2 Usage . 5

4 Voro++ Copyright And Acknowledgments 7
4.1 Copyright Notice . 7
4.2 Acknowledgments . 7

5 Full Contents 9
5.1 Reference . 9

5.1.1 Basic Process . 9

6 Indices and tables 15

Python Module Index 17

i

ii

CHAPTER 1

A 3D cell-based Voronoi library based on voro++

This library includes Python bindings, using Cython.

Code available on Github.

Documentation available at Read the Docs.

1

https://travis-ci.org/wackywendell/tess
https://github.com/wackywendell/tess
https://tess.readthedocs.org

tess Documentation, Release 0.1.3

2 Chapter 1. A 3D cell-based Voronoi library based on voro++

CHAPTER 2

Description

Tess is a library to calculate Voronoi (and Laguerre) tessellations in 3D and analyze their structure. The tessellation
is calculated as a list of Cell objects, each of which can give information on its volume, centroid, number of faces,
surface area, etc. The library is made with packings of spherical particles in mind, possibly with variable sizes.

2.1 voro++

The Tess library is a set of Python bindings to the Voro++ library. Voro++ provides all the algorithms, and Tess
provides an easy to use interface to the voro++ library for Python, using Cython to do so.

Original work on voro++ by Chris H. Rycroft (UC Berkeley / Lawrence Berkeley Laboratory).

3

http://math.lbl.gov/voro++/

tess Documentation, Release 0.1.3

4 Chapter 2. Description

CHAPTER 3

Quick Start

3.1 Installation

To install, use pip (or easy_install):

pip install --user tess

Or to install from Github:

pip install --user git+git://github.com/wackywendell/tess@master

3.2 Usage

The first step is to create a Container:

>>> from tess import Container
>>> cntr = Container([[1,1,1], [2,2,2]], limits=(3,3,3), periodic=False)

A container is a list of Cell objects, representing Voronoi cells:

>>> [round(v.volume(), 3) for v in cntr]
[13.5, 13.5]

Cell objects have many methods. Here are a few:

>>> [v.pos for v in cntr]
[(1.0, 1.0, 1.0), (2.0, 2.0, 2.0)]

>>> [v.centroid() for v in cntr]
[(1.09375, 1.09375, 1.09375), (1.90625, 1.90625, 1.90625)]

(continues on next page)

5

https://www.github.com/wackywendell/tess

tess Documentation, Release 0.1.3

(continued from previous page)

>>> [v.neighbors() for v in cntr]
[[-5, -2, -3, -1, -4, 1, -6], [0, -3, -6, -4, -5, -2, -1]]

>>> [v.face_areas() for v in cntr]
[[7.875, 1.125, 7.875, 7.875, 1.125, 11.691342951089922, 1.125],
[11.691342951089922, 1.125, 7.875, 7.875, 1.125, 7.875, 1.125]]

>>> [v.normals() for v in cntr]
[[(0.0, 0.0, -1.0),

(1.0, 0.0, 0.0),
(0.0, -1.0, 0.0),
(-1.0, 0.0, 0.0),
(0.0, 1.0, 0.0),
(0.5773502691896257, 0.5773502691896257, 0.5773502691896257),
(0.0, 0.0, 1.0)],

[(-0.5773502691896257, -0.5773502691896257, -0.5773502691896257),
(-0.0, -1.0, -0.0),
(0.0, 0.0, 1.0),
(0.0, 1.0, -0.0),
(0.0, 0.0, -1.0),
(1.0, 0.0, -0.0),
(-1.0, -0.0, -0.0)]]

See the Reference for more methods, or just use a Python interpreter or IPython notebook to find them on your own!

6 Chapter 3. Quick Start

api.html

CHAPTER 4

Voro++ Copyright And Acknowledgments

4.1 Copyright Notice

Voro++ Copyright (c) 2008, The Regents of the University of California, through Lawrence Berkeley National Labo-
ratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Technology
Transfer Department at TTD@lbl.gov.

NOTICE. This software was developed under partial funding from the U.S. Department of Energy. As such, the
U.S. Government has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable,
worldwide license in the Software to reproduce, prepare derivative works, and perform publicly and display publicly.
Beginning five (5) years after the date permission to assert copyright is obtained from the U.S. Department of Energy,
and subject to any subsequent five (5) year renewals, the U.S. Government is granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, prepare derivative works,
distribute copies to the public, perform publicly and display publicly, and to permit others to do so.

4.2 Acknowledgments

This work (voro++) was supported by the Director, Office of Science, Computational and Technology Research, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

7

mailto:TTD@lbl.gov

tess Documentation, Release 0.1.3

8 Chapter 4. Voro++ Copyright And Acknowledgments

CHAPTER 5

Full Contents

5.1 Reference

This is a library to calculate Voronoi cells and access their information.

5.1.1 Basic Process

• Create a Container object, using information about your system.

– a Container is a list of Cell objects

• Access the Cell methods to get information about them

Example

>>> from tess import Container
>>> c = Container([[1,1,1], [2,2,2]], limits=(3,3,3), periodic=False)
>>> [round(v.volume(), 3) for v in c]
[13.5, 13.5]

class tess.Container(points, limits=1.0, periodic=False, radii=None, blocks=None)
A container (list) of Voronoi cells.

This is the main entry point into the tess module. After creation, this will be a list of Cell objects.

The Container must be rectilinear, and can have solid boundary conditions, periodic boundary conditions, or
a mix of the two.

>>> from tess import Container
>>> c = Container([[1,1,1], [2,2,2]], limits=(3,3,3), periodic=False)
>>> [round(v.volume(), 3) for v in c]
[13.5, 13.5]

9

tess Documentation, Release 0.1.3

Parameters

• points (iterable of iterable of float) – The coordinates of the points, size Nx3.

• limits (float, 3-tuple of float, or two 3-tuples of float) – The box limits. If given a float L,
then the box limits are [0, 0, 0] to [L, L, L]. If given a 3-tuple (Lx, Ly, Lz), limits are [0, 0,
0] to [Lx, Ly, Lz]. If given two 3-tuples (x0, y0, z0), (x1, y1, z1), limits are [x0, y0, z0] to
[x1, y1, z1].

• periodic (bool or 3-tuple of bool, optional) – Periodicity of the x, y, and z walls

• radii (iterable of float, optional) – for unequally sized particles, for generating a Laguerre
transformation.

Returns A list of Cell objects

Return type Container

Notes

Voronoi Tesselation

A point �⃗� is part of a Voronoi cell 𝑖 with nucleus �⃗�𝑖 iff

|�⃗�− �⃗�𝑖|2 < |�⃗�− �⃗�𝑗 |2 ∀𝑗 ̸= 𝑖

Laguerre Tesselation, also known as Radical Voronoi Tesselation

A point �⃗� is part of a Laguerre cell 𝑖 with nucleus �⃗�𝑖 and radius 𝑅𝑖 iff

|�⃗�− �⃗�𝑖|2 −𝑅2
𝑖 < |�⃗�− �⃗�𝑗 |2 −𝑅2

𝑗∀𝑗 ̸= 𝑖

get_widths()
Get the size of the box.

order(l=6, local=False, weighted=True)
Returns crystalline order parameter 𝑄𝑙 (such as 𝑄6).

Requires numpy and scipy.

Parameters

• l (int, optional) – Defines which 𝑄𝑙 you want (6 is standard, for detecting hexag-
onal lattices)

• local (bool, optional) – Calculate Local 𝑄6 (true) or Global 𝑄6

• weighted (bool, optional) – Whether or not to weight by area the faces of each
polygonal side

Notes

For local=False, this calculates

𝑄𝑙 =

⎯⎸⎸⎸⎷ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

⃒⃒⃒⃒
⃒
𝑁𝑏∑︁
𝑖=1

𝑤𝑖𝑌𝑙𝑚 (𝜃𝑖, 𝜑𝑖)

⃒⃒⃒⃒
⃒
2

10 Chapter 5. Full Contents

tess Documentation, Release 0.1.3

where:

𝑁𝑏 is the number of bonds

𝜃𝑖 and 𝜑𝑖 are the angles of each bond 𝑖, in spherical coordinates

𝑌𝑙𝑚 (𝜃𝑖, 𝜑𝑖) is the spherical harmonic function

𝑤𝑖 is the weighting factor, either proportional to the area (for weighted) or all equal (1
𝑁𝑏

)

For local=True, this calculates

𝑄𝑙,local =

𝑁∑︁
𝑗=1

⎯⎸⎸⎸⎷ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

⃒⃒⃒⃒
⃒⃒ 𝑛𝑗

𝑏∑︁
𝑖=1

𝑤𝑖𝑌𝑙𝑚 (𝜃𝑖, 𝜑𝑖)

⃒⃒⃒⃒
⃒⃒
2

where variables are as above, and each cell is weighted equally but each bond for each cell is weighted:∑︀𝑛𝑗
𝑏

𝑖=1 𝑤𝑖 = 1

Returns

Return type float

tess.cart_to_spher(xyz)
Converts 3D cartesian coordinates to the angular portion of spherical coordinates, (theta, phi).

Requires numpy.

Parameters xyz (array-like, Nx3) – Column 0: the “elevation” angle, 0 to 𝜋

Column 1: the “azimuthal” angle, 0 to 2𝜋

Returns

Return type array, Nx2

tess.orderQ(l, xyz, weights=1)
Returns 𝑄𝑙, for a given l (int) and a set of Cartesian coordinates xyz.

Requires numpy and scipy.

For global 𝑄6, use 𝑙 = 6, and pass xyz of all the bonds.

For local 𝑄6, use 𝑙 = 6, and the bonds have to be averaged slightly differently.

Parameters

• l (int) – The order of 𝑄𝑙

• xyz (array-like Nx3) – The bond vectors �⃗�𝑗 − �⃗�𝑖

• weights (array-like, optional) – How to weight the bonds; weighting by
Voronoi face area is common.

Notes

This calculates

𝑄𝑙 =

⎯⎸⎸⎸⎷ 4𝜋

2𝑙 + 1

𝑙∑︁
𝑚=−𝑙

⃒⃒⃒⃒
⃒
𝑁𝑏∑︁
𝑖=1

𝑤𝑖𝑌𝑙𝑚 (𝜃𝑖, 𝜑𝑖)

⃒⃒⃒⃒
⃒
2

where:

5.1. Reference 11

tess Documentation, Release 0.1.3

𝑁𝑏 is the number of bonds

𝜃𝑖 and 𝜑𝑖 are the angles of each bond 𝑖, in spherical coordinates

𝑌𝑙𝑚 (𝜃𝑖, 𝜑𝑖) is the spherical harmonic function

𝑤𝑖 are the weights, defaulting to uniform: (1
𝑁𝑏

)

class tess.Cell
A basic voronoi cell, usually created by Container.

A Voronoi cell has polygonal faces, connected by edges and vertices.

The various methods of a Cell allow access to the geometry and neighbor information.

__repr__

__str__

centroid()

face_areas()
A list of the areas of each face.

Returns

Return type A list of floats. Each inner list corresponds to a face.

face_freq_table()

face_perimeters()

face_vertices()
A list of the indices of the vertices of each face.

Returns

• A list of lists of ints. Each inner list corresponds to a face, and each index corresponds

• to a vertex from vertices().

id
The id of the cell, which should generally correspond to its index in the Container.

max_radius_squared()
Maximum distance from pos() to outer edge of the cell (I think, see voro++ documentation.)

neighbors()
Return a list of the neighbors of the current Cell.

This is a list of indices, which correspond to the input points. The exception to this is the walls: walls are
numbered -1 to -6, so an index less than 0 in the list of neighbors() indicates that a Cell is neighbors with
a wall.

normals()
A list of the areas of each face.

Returns

Return type A list of 3-tuples of floats. Each tuple corresponds to a face.

number_of_edges()

number_of_faces()

pos
The position of the initial point around which this cell was created.

12 Chapter 5. Full Contents

tess Documentation, Release 0.1.3

radius
The radius of the particle around which this cell was created.

Defaults to 0.

surface_area()

total_edge_distance()

vertex_orders()

vertices()
A list of all the locations of the vertices of each face.

Returns

Return type A list of 3-tuples of floats. Each tuple corresponds to a single vertex.

volume()
Cell volume

5.1. Reference 13

tess Documentation, Release 0.1.3

14 Chapter 5. Full Contents

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

tess Documentation, Release 0.1.3

16 Chapter 6. Indices and tables

Python Module Index

t
tess, 9

17

tess Documentation, Release 0.1.3

18 Python Module Index

Index

Symbols
__repr__ (tess.Cell attribute), 12
__str__ (tess.Cell attribute), 12

C
cart_to_spher() (in module tess), 11
Cell (class in tess), 12
centroid() (tess.Cell method), 12
Container (class in tess), 9

F
face_areas() (tess.Cell method), 12
face_freq_table() (tess.Cell method), 12
face_perimeters() (tess.Cell method), 12
face_vertices() (tess.Cell method), 12

G
get_widths() (tess.Container method), 10

I
id (tess.Cell attribute), 12

M
max_radius_squared() (tess.Cell method), 12

N
neighbors() (tess.Cell method), 12
normals() (tess.Cell method), 12
number_of_edges() (tess.Cell method), 12
number_of_faces() (tess.Cell method), 12

O
order() (tess.Container method), 10
orderQ() (in module tess), 11

P
pos (tess.Cell attribute), 12

R
radius (tess.Cell attribute), 12

S
surface_area() (tess.Cell method), 13

T
tess (module), 9
total_edge_distance() (tess.Cell method), 13

V
vertex_orders() (tess.Cell method), 13
vertices() (tess.Cell method), 13
volume() (tess.Cell method), 13

19

	A 3D cell-based Voronoi library based on voro++
	Description
	voro++

	Quick Start
	Installation
	Usage

	Voro++ Copyright And Acknowledgments
	Copyright Notice
	Acknowledgments

	Full Contents
	Reference
	Basic Process

	Indices and tables
	Python Module Index

