

TerraSnow Enterprise

Enables the deployment of AWS resources from ServiceNow via Terraform Enterprise

Overview

TerraSnow Enterprise is a collection of scripts that enable the deployment of Terraform resources from a ServiceNow instance via Terraform Enterprise. It was designed to simplify cloud resource consumption at the user level and to operate within a multi-tenant AWS environment.

This project contains a terraform template to deploy a Ngnix reverse proxied, Flask based endpoint that handles Gitlab Tag [https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#tag-events] and Push [https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#push-events] events by creating a ServiceNow Terraform Module Catalog Item.

Contents

	Installation

	Usage

	Scripting Host

	API Reference

	ServiceNow Catalog Item

Project Flow Diagrams

Terraform Module Creation Workflow

[image: alt text]

ServiceNow Catalog Item Order

[image: alt text]

ServiceNow Catalog Item Creation - Detailed

[image: alt text]

Supported Versions of ServiceNow

	Jakarta (tested working)

Installation

TerraSnow is maintained in two separate repositories.

The first maintains the TerraSnow Enterprise Instance and backing code as a terraform deployable host. It is maintained in this project’s repo under /scripting_host.

The second repository hosts the accompanying ServiceNow scoped application [https://github.com/userhas404d/terrasnow-enterprise-scoped-app].

Overview

	Configure ServiceNow

	Create the TerraSnow Configuration File

	Configure/Deploy your MID Server

	Install the TerraSnow Scoped Application

	Associate the TerraSnow application with your MID server

	Create the TerraSnow API User

	Collect the required sys_ids

	Configure Terraform Enterprise

	Upload the TerraSnow Configuration file to S3

	Deploy the TerraSnow Instance

	Proceed to the usage section to create your first terraform catalog item

Assumptions

	Working familiarity with terraform module development and terraform based resource deployment within AWS

	Passing understanding of ServiceNow application development

	Familiarity with AWS IAM role assignment and configuration

Requirements

	Admin access to the target AWS account

	The latest version of terraform [https://www.terraform.io/downloads.html] installed on the machine from which the TerraSnow Instance template will be deployed

	Pre-configured Gitlab [https://about.gitlab.com/] instance

	Pre-configured ServiceNow Instance

	Web console access to Terraform Enterprise

	A MID Server
..

NOTE:

The MID Server must be deployed in the target AWS account with an instance role that has been granted assume role privileges to the accounts in which terraform resources will be deployed.

The MID Server must be associated with your ServiceNow instance

All of these services can be used with TerraSnow Enterprise in their SaaS form(s) with the exception of the ServiceNow MidServer.

Setup

	Clone the TerraSnow Enterprise [https://github.com/userhas404d/terrasnow-enterprise/] repo to your workstation.

	Create a file called config.ini in the root of the terrasnow-enterprise directory. See the Configuration File section of this document for this file’s structure.

	Fork the TerraSnow Enterprise Scoped Application [https://github.com/userhas404d/terrasnow-enterprise-scoped-app] project into a personal repo.

NOTE: The scoped application can be loaded into your ServiceNow instance directly from this repo. However, you will be unable to commit any local changes you make unless you follow these steps [https://community.servicenow.com/community?id=community_blog&sys_id=d2cc6265dbd0dbc01dcaf3231f9619ee] to point your application at a different repository.

Configure ServiceNow

The following instructions outline the steps required to configure your ServiceNow instance for use with the TerraSnow application.

Create the TerraSnow Configuration File

NOTE: Terraform Enterprise and ServiceNow environment specific details are stored within a configuration file.

These settings are pulled by the TerraSnow Instance automatically and as needed.

This file must be stored in an S3 bucket that is read-accessible by the TerraSnow instance (configurable via the associated AWS Instance Role). Additionally, it is recommended that this file be stored in an encrypted S3 bucket due to its sensitive nature.

The expected file structure is as follows:

File Name: config.ini

Contents:

[SERVICENOW]
INSTANCE_NAME=
SN_API_USER_NAME=
SN_API_USER_PWD=
TF_CATALOG=
CATEGORY=
TFE_WORKFLOW=
SYS_PACKAGE=

[TERRAFORM_ENTERPRISE]
INSTANCE_NAME=
ATLAS_TOKEN=

ServiceNow

Overview of the config.ini settings for ServiceNow specific information

	Value

	Description

	INSTANCE_NAME

	url of the target ServiceNow instance ex: https://mysninstance.com

	SN_API_USER_NAME

	user name of the user performing API actions against ServiceNow

	SN_API_USER_PWD

	password of the user performing API actions against ServiceNow

	TF_CATALOG

	sys_id of the target Catalog

	CATEGORY

	sys_id of the target Category

	TFE_WORKFLOW

	sys_id of the TF catalog item order workflow

	SYS_PACKAGE

	sys_id of the TerraSnow scoped application

Terraform enterprise

Overview of the config.ini settings for Terraform Enterprise specific information

	Value

	Description

	INSTANCE_NAME

	url of the target TFE instance ex: https://app.terraform.io

	ATLAS_TOKEN

	User API access token to create and populate TFE workspaces

Configure/Deploy your MID Server

Deploy a MID server into the target AWS environment. This mid server will be making the API calls against the TerraSnow Instance in order to deploy resources against TerraForm Enterprise.

NOTE:

The MID Server must be deployed in the target AWS account with an instance role that has been granted assume role privileges to the accounts in which terraform resources will be deployed.

The MID Server must be associated with your ServiceNow instance

Install the TerraSnow Scoped Application

Import the TerraSnow scoped application from your personal repo by following the official ServiceNow instructions for Importing applications from source control [https://docs.servicenow.com/bundle/kingston-application-development/page/build/applications/task/t_ImportAppFromSourceControl.html].

Associate the TerraSnow application with your MID server

	From your ServiceNow instance navigate to Service Mapping > MID Servers

	Select the MID server that was deployed to your target AWS account.

	Select the Supported Applications tab and click Edit...

	Add terraform-snow and confirm that it now shows in the Supported Applications list

Create the TerraSnow API User

	Create an account on the ServiceNow instance that has the following roles:

	role_name

	requirement

	admin

	place_holder

	api_analytics_read

	place_holder

	catalog_editor

	place_holder

	catalog

	place_holder

	catalog_admin

	place_holder

	credential_admin

	place_holder

	rest_api_explorer

	place_holder

	user_criteria_admin

	place_holder

	web_service_admin

	place_holder

	Add the user name and the user’s password to the values for SN_API_USER_NAME and SN_API_USER_PWD respectively in config.ini

NOTE: You must login to your ServiceNow instance with this user at least once and select the terraform-snow application scope.
If you fail to do so TerraSnow catalog items will be created in the global scope.

Collect the required sys_ids

From the Terraform Resources Catalog

	Within the TerraSnow Scoped application locate the Terraform Template Catalog (Terraform Resources Scoped App)

	Copy the sys_id of the catalog (Retrievable from the sys_id option of the right click context menu in the catalog list view) and update the value of TF_CATALOG in config.ini

	Copy the sys_id of the terraform resources catalog category (retrievable from the sys_id option of the right click context menu in the catalog Categories tab) and update the value of CATEGORY in config.ini

From the Terraform Resources Workflow

	Locate the terrasnow-enterprise - scoped workflow within the TerraSnow scoped application

	From the workflow properties context menu, right click and copy its sys_id

	Update the value of TFE_WORKFLOW in config.ini

Configure Terraform Enterprise

NOTE: Testing and development was done against Terraform Enterprise using a single Organization.

Generate a user API Token

	Generate an API token for a Terraform Enterprise user: TFE console > User Settings > Tokens

	Update the value of ATLAS_TOKEN in config.ini

Upload the configuration file to S3

Requirements:

	This bucket must be private

	The IAM Instance Role that is assigned to the TerraSnow Instance must have read access to this bucket

Recommendations:

	Ensure the bucket is encrypted.

	Configure the bucket with versioning to prevent inadvertent loss of information

Deploy the TerraSnow Instance

This instance will perform all the ‘heavy lifting’ when it comes to building the catalog item(s) within ServiceNow as well as the Workspace creation within Terraform Enterprise when the catalog item is ordered.

Deployment

NOTE: Successful deployment requires that the environment specific configuration file has been populated with the correct information and uploaded to S3.

	Navigate to the scripting_host folder and create a terraform.tfvars file specific to the target AWS env

	Configure the local env to target the correct AWS account either via the AWS cli [https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html] or by modifying the provider block in main.tf

	Run terraform apply

	Proceed to the usage section for catalog item creation and gitlab repo configuration.

API Endpoints

On successful deployment the instance is configured with the following endpoints:

	Endpoint

	Description

	/

	Sends 200 regardless of content, used for testing

	/aws-assume-role-webhook

	Listens for AWS assume role data, creates the required TFE credential env vars

	/gitlab-webhook

	Listens for tag update events sent from gitlab and creates the associated SN catalog item

	/tfe-run-webhook

	Listens for workflow run events, uploads the source terraform module to the target workspace to trigger a TFE workflow event

	/variables-webhook

	Listens for ServiceNow variables creation requests, sends associated API call to SN to create the variable

	/workflow-webhook

	Listens for TFE workspace creation events, creates an empty workspace

Create your first Terraform Catalog item

See the usage section of this guide for more details.

Usage

Requirements

	The Installation procedures have been completed successfully.

	A working Gitlab instance

Notes:

	Module repositories must meet the same requirements as those outlined for addition to the Terraform Module Private Registry [https://www.terraform.io/docs/enterprise/registry/publish.html]

	This project was successfully tested against the watchmaker lx-instance [https://github.com/plus3it/terraform-aws-watchmaker/tree/master/modules/lx-instance] module.

	The source terraform module has a separate main.tf and variables.tf file. Variables not defined in variables.tf will not be included in the resulting ServiceNow catalog item.

ServiceNow TF catalog item creation

	Create a Gitlab repo with the terraform-<PROVIDER>-<MODULE_NAME> name format

	Add the TerraSnow instance public key to the repo (available at the https://YOUR_TERRASNOW_INSTANCE/pub-key/key.txt) and grant the TerraSnow instance read access to the repo.

	Add a version tag to the project before commit that follows the PEP 440 [https://www.python.org/dev/peps/pep-0440/] standard (ex: 1.0.2)

	Add the TerraSnow instance url as a webhook under Repo > Settings > Integrations

	Select Tag push events and Enable SSL verification

	Paste in the TerraSnow instance gitlab webhook url: http://YOUR_TERRASNOW_INSTANCE/gitlab-webhook

	Click the Add Webhook button to complete

	Kick off the ServiceNow catalog item build process by either manually triggering the webhook or incrementing the project’s version tag:
git tag -a v0.0.1 -m 'test' && git push origin --tags

	The Terraform resource catalog item should now be available for order via the target ServiceNow instance.

Note: There is an issue with the ServiceNow catalog item OnLoad client scripts associating with their target variables (see the comments in the embedded client scripts for more details). Unfortunately, this is a manual step for now.

Deploying TF resources from ServiceNow

Navigate to the TerraForm ServiceNow Catalog via either the Terraform service portal https://YOUR_SNOW_INSTANCE/tfcm or via the application studio.

On order, the workflow should be triggered and a workspace will be created on the target Terraform Enterprise instance.

Current workspace naming convention is the ServiceNow REQ sys_id but this may be updated in a future release

Scripting Host

Documentation that outlines the configuration of the terraform deployable scripting host.

Module Input Variables

Variable: subnet_id
Description: The target subnet id for the TerraSnow instance

Variable: env_type
Description: Suffix added to the instance name (dev, test, prod, etc.)

Variable: alias_name
Description: Value used in building the instance name and the instance domain name.

Variable: target_r53_zone
Description: Target route 53 zone in which to build the resulting domain name entry.

Variable: pub_access_sg
Description: The security group within the target AWS account that allows public access.

Variable: priv_access_vpc_id
Description: ID of the VPC that provides private access within the target AWS account.

Variable: priv_alb_subnets
Description: List of subnets that are backed by the private ALB.

Variable: subnet_id
Description: The id of the security group in which to place the instance

Variable: sg_allow_inbound_from
Description: Source security group to allow inbound traffic into the instance’s private security group.

Variable: instance_type
Description: AWS instance type (t2.micro, t2.medium, etc.)

Variable: key_name
Description: SSH public key used to login to the TerraSnow instance.

Variable: instance_role
Description: Role to associate with the TerraForm Scripting host instance. Requires read access to the S3 bucket where the TerraSnow configuration file is stored.

Variable: private_gitlab_server
Description: “hostname of the gitlab server. ex: gitlab.mydomain.net. Passed as a variable into the TerraSnow host initialization script. Used to add the gitlab host as a trusted ssh endpoint and enable use of git clone via SSH.

Outputs

Variable: _private_ip
Value: IPv4 IP address
Description: The private IP address of the TerraSnow instance

Variable: aws_assume_role_webhook
Value: https://INSTANCE_FQDN/aws-assume-role-webhook
Description: The AWS assume role API endpoint of the TerraSnow instance

Variable: gitlab_webhook
Value: https://INSTANCE_FQDN/gitlab-webhook
Description: The gitlab webhook endpoint of the TerraSnow instance

Variable: pub_deployment_key
Value: https://INSTANCE_FQDN/pub-key/key.txt
Description: The web accessible path to the public key of the TerraSnow instance. This key is added to the target gitlab repo as a deploy key [https://docs.gitlab.com/ee/ssh/#per-repository-deploy-keys] with read access to enable the TerraSnow instance to successfully git clone.

Variable: tfe_workflow_webhook
Value: https://INSTANCE_FQDN/workflow-webhook
Description: The Terraform Enterprise workspace API endpoint of the TerraSnow instance.

Variable: sn_variables_webhook
Value: http://INSTANCE_FQDN/variables-webook
Description: The webhook that triggers the ServiceNow catalog item variables.

Overview

The included terraform module will deploy the following resources.

Terraform Enterprise Scripting Host

Description: An EC2 instance of the size of your choosing (via the instance_type variable).

Requirements:

	An IAM role that at a minimum has read access to the S3 bucket where the TerraSnow configuration file is stored.

	An AWS environment that has a security group that provides public access. Port 443 is required as all communications done with the TerraSnow api endpoints are over https via the TerraSnow alb.

Application Load balancer

Description: Created via the included alb module. An ALB that proxies http connections from the TerraSnow instance to https. Backed by an AWS issued https certificate.

Requirements: A separate public access security group within the target AWS account.

TerraSnow Initialization Script

Description: A bash script that will install and configure the flask application on an EC2 instance.

Requirements: The EC2 instance on which this script is run will require internet access.

API Reference

TerraSnow API endpoints

	Endpoint

	Description

	/

	Sends 200 regardless of content, used for testing

	/aws-assume-role-webhook

	Listens for AWS assume role data, creates the required TFE credential env vars

	/gitlab-webhook

	Listens for tag update events sent from gitlab and creates the associated SN catalog item

	/tfe-run-webhook

	Listens for workflow run events, uploads the source terraform module to the target workspace to trigger a TFE workflow event

	/variables-webhook

	Listens for ServiceNow variables creation requests, sends associated API call to SN to create the variable

	/workflow-webhook

	Listens for TFE workspace creation events, creates an empty workspace

Assume Role

Listens for AWS assume role data, and creates the following TFE workspace environment variables:

	AWS_ACCESS_KEY_ID

	AWS_SECRET_ACCESS_KEY (created with is_senative=True)

	AWS_DEFAULT_REGION

	AWS_SESSION_TOKEN

Request Syntax

{
 "data": [
 {
 "region": "us-east-1",
 "org_name": "MyTFEorg",
 "workspace_name": "ws-123456ASDFhjklmn",
 "role": "arn:aws:iam::0123456789123:role/target_role",
 "duration": "900"
 }
]
}

Parameters

	region (string) – [REQUIRED] – Target region for resource creation.

	org_name (string) – [REQUIRED] – Name of the target TFE region

	workspace_name (string) – [REQUIRED] – Id of the target TFE workspace

	role (string) – [REQUIRED] – The target AWS role to assume. This role requires the necessary permissions to deploy the source terraform template in the target account.

	duration (string) – [REQUIRED] – Maps to the DurationSections option in boto3’s assume_role and is subject to the same limitations. Set to 15 minutes by default.

Returns

The response contains the TFE api responses for each environment variable that is created within the target TFE workspace.

{
 "access_key_id": "TFE VARIABLE CREATION RESPONSE",
 "secret_access_key": "TFE VARIABLE CREATION RESPONSE",
 "region": "TFE VARIABLE CREATION RESPONSE",
 "aws_session_token": "TFE VARIABLE CREATION RESPONSE"
}

Gitlab

Designed to be triggered on Gitlab tag update events. This endpoint triggers a query against the target ServiceNow instance for a catalog item of the source terraform module. If a ServiceNow catalog item is found and its version is less than the current repo’s version tag a new ServiceNow catalog item will be created and the previous version’s catalog item will be disabled, otherwise no actions are taken.

Request Syntax

Expects the standard gitlab tag update [https://docs.gitlab.com/ee/user/project/integrations/webhooks.html#tag-events] request body

Returns

{
 "Status": "200"
}

TFE run

This endpoint will query the target workspace for the configuration upload url, git clone the target repo from Gitlab, and upload the resulting zip of your repo to the workspace. Currently workspace creation sets Auto Apply to true so any change in the configuration will trigger a Plan and Apply events.

Request Syntax

{
 "data" : [
 {
 "project_name": "terraform-aws-lx-instance",
 "repo_url": "git@your_gitlab_instance:gitlab.user/terraform-aws-lx-instance.git",
 "module_version": "vx.y.z",
 "workspace_id": "ws-123456ASDFhjklmn",
 "region": "us-east-1"
 }
]
 }

Parameters

	project_name (string) – [REQUIRED] – Name of your terraform module project.

	repo_url (string) – [REQUIRED] – SSH URI to the target gitlab repo containing your terraform module

	module_version (string) – [REQUIRED] – specific version tag of your repo that you want to associate the workspace with.

	workspace_id (string) – [REQUIRED] – target TFE workspace id

	region (string) – [REQUIRED] – target AWS region in which your terraform resources will be deployed.

Returns

If successful:

{
 "Status": "SUCCESS"
}

In the event of an error TerraSnow will return the response given by the TFE instance against it’s call to
PUT https://archivist.terraform.io/v1/object/<UNIQUE OBJECT ID>

Workflow

Listens for TFE workspace events, creates an empty TFE workspace and backs it with your source repo and version tag

Request Syntax

{
 "data" :
 [
 {
 "region": "us-east-1",
 "org_name": "your_tfe_org",
 "workspace_name": "your_tfe_workspace_name",
 "repo_id": "gitlab.user/tf_project",
 "repo_version": "x.y.z",
 "action": "CREATE"
 }
]
}

Parameters

	region (string) – [REQUIRED] – target AWS region in which the terraform resources will be deployed

	org_name (string) – [REQUIRED] – the target TFE organization name

	workspace_name (string) – [REQUIRED] – the target TFE workspace name

	repo_id (string) – [REQUIRED] – the id of the source terraform module’s repo

	repo_version (string) – [REQUIRED] – the target version tag of the terraform module’s repo

	action (string) – [REQUIRED] – the desired action on the target workspace, accepts CREATE or DELETE

Returns

TerraSnow simply passes back the response to the workspace creation api endpoint from the TFE instance.

From the official TFE workspace api documentation [https://www.terraform.io/docs/enterprise/api/workspaces.html]:

{
 "data": {
 "id": "ws-SihZTyXKfNXUWuUa",
 "type": "workspaces",
 "attributes": {
 "name": "workspace-2",
 "environment": "default",
 "auto-apply": false,
 "locked": false,
 "created-at": "2017-11-02T23:55:16.142Z",
 "working-directory": null,
 "terraform-version": "0.10.8",
 "can-queue-destroy-plan": true,
 "vcs-repo": {
 "identifier": "skierkowski/terraform-test-proj",
 "branch": "",
 "oauth-token-id": "ot-hmAyP66qk2AMVdbJ",
 "ingress-submodules": false
 },
 "permissions": {
 "can-update": true,
 "can-destroy": false,
 "can-queue-destroy": false,
 "can-queue-run": false,
 "can-update-variable": false,
 "can-lock": false,
 "can-read-settings": true
 }
 },
 "relationships": {
 "organization": {
 "data": {
 "id": "my-organization",
 "type": "organizations"
 }
 },
 "ssh-key": {
 "data": null
 },
 "latest-run": {
 "data": null
 }
 },
 "links": {
 "self": "/api/v2/organizations/my-organization/workspaces/workspace-2"
 }
 }
}

ServiceNow Catalog Item

The details below include descriptions of the variables, client scripts, and script includes utilized in each ServiceNow terraform resource catalog item. Unless otherwise stated variables and client scripts are created automatically.

Variables

ServiceNow catalog item variables are automatically populated with the default values of their terraform module counterparts. Variables that are defined in the terraform module without a default value are created as required ServiceNow catalog item variables.

The provided terraform module’s variable description is populated in both the ServiceNow variable question text and tool tip.

tfv

Type: String

Description: Denotes the prefix given to the variables included in the terraform module’s variables.tf file.

adv_toggle

Type: CheckBox

Description: Advanced mode toggle that is used to show/hide catalog item variables that are not marked as required.

Roles

Type: Select Box

Description: Used in conjunction with the populateAWSRoleInfoOnLoad.js client script. Contains the AWS account information for the user’s select role.

gen_OS_Type

Type: String

Description: not currently in use

gen_aws_role

Type: String

Description: Holds the ARN of the role selected from the Roles dropdown. Auto filled via the enableAfterPopulateRolesOnChange.js OnChange event

gen_AwsAccountInfo

Type: Multi Line Text

Description: Used to hold a JSON object of AWS account info. Details on how this information is populated are not currently documented. More information to follow in a later release.

gen_module_version

Type: String

Description: The version of the terraform module as provided in the Gitlab repo tag event.

gen_region

Type: String

Description: The target region in which AWS resources will be provisioned. Populated via the enableAfterPopulateRolesOnChange.js OnChange event.

gen_org_name

Type: String

Description: The name of the Terraform Enterprise Organization. Currently populated from the TerraSnow configuration file.

gen_repo_url

Type: String

Description: SSH URI to the gitlab repo

Client Scripts

This project contains several ServiceNow client scripts contained within the /sn_javascript directory that support ease of use when ordering a terraform resource catalog item.

createDiaplyToggleOnChange.js

Type: OnChange

Associated Variable: adv_toggle

Description: Used to show or hide ‘advanced’/default terraform module options (those variables included in the the terraform module that were provided with default values.)

hideGenericVariablesOnLoad.js

Type: OnLoad

Description: Hides variables prefixed with gen_ on the catalog item load event.

populateAWSRoleInfoOnLoad.js

Type: OnLoad

Description: invokes the populateAWSRoleInfoScriptInclude to populate the roles variable dropdown. This variable’s selection value is then passed to TerraSnow via the /aws-assume-role-webhook endpoint.

enableAfterPopulateRolesOnChange.js

Type: OnChange

Associated Variable: Roles

Description: popluates the gen_aws_role, gen_region variables on selection of the AWS role provided in the Roles variable dropdown

Script Includes

populateAWSRoleInfoScriptInclude.js

Description: Queries a custom table for the ServiceNow user’s associated Active directory group, their default AWS region, and the AWS account ARN that has been associated with that Active Directory group. Returns a JSON object containing this information.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/ServiceNow_Catalog_item_creation_detailed_diagram.png
SERIVCENOW CATALOG ITEM CREATION - DETAILED Plus3IT | July 6, 2018

webhook queries ServiceNow
instance for catalog item that
matches project name

Webhook triggered via VCS (Gitlab) repo tag and project name
tag update extracted from request body

Catalog item Exists repo version > SN cat item version

webhook sends SN API
NO- call to set exi:

item to disabled

Create SN catalog item git clone source repo to webhook check for tf.vars and tf.main then Make SN API call to create empty
instance convert tf.vars with HCL2JSON catalog item
convert tf.vars json obj variables to Make SN API call to create catalog Make SN API call to populate

SN var json objs item vars catalog item with client scripts

_images/ServiceNow_Catalog_item_order_diagram.png
SERIVCENOW CATALOG ITEM ORDER Plus3IT | July 6, 2018

PreRequisities/Assumptions:
* Webhook is deployed
« TFE instance has been configured properly
« TF module source repo is configured properly and the associated SN catalog item already exists
« Terrasnow scoped application has been deployed on the target ServiceNow instance

SN Catalog item OnLoad Client scripts called

User selects a TF module catalog

item from the SN catalog Query custom SN table for ARN of
Hide variables that are not required role to assume and user's default
as defined in the TF module region. Populate hidden fields with

this information

Present user with the catalog item User completes form and submits Catalog item order submitted TF catalog item workflow called ——
request form order. e
Build JSON payloads for the Send request via REST to webhook Send request to webhook via REST Send request to webhook via REST
webhook based on catalog item to create the TFE workspace. SN 1o create TF vars in target to create env vars. webhook
contents expects workspace id in response. workspace expects ARN and region info - aws
Workspace is set to auto run P assume role happens at this step.

TFE auto-runs on workspace and
AWS resource is created

_images/Terrasnow_Enterprise_Module_Creation_Workflow_diagram.png
Trigger the webhook

o| | e L e || e | s veones e .

g to VCS hovents 2 Key to read the repo ™a| Automatically: by
g push events incrementing the repo Manually
H version number
=

2

g

&

B Send event trigger data to

5 the webhook via REST call

P

8

B

TerraSnow Instance (webhook)

Query SN: Associated SN Cat item
exists?

Start SN Cat item
creation

than SN catalog item version

Set the existing SN Cat
item to disabled

Start SN Cat item
creation

END

_static/plus.png

nav.xhtml

 Table of Contents

 		
 TerraSnow Enterprise

 		
 Installation

 		
 Overview

 		
 Assumptions

 		
 Requirements

 		
 Setup

 		
 Configure ServiceNow

 		
 Configure Terraform Enterprise

 		
 Generate a user API Token

 		
 Upload the configuration file to S3

 		
 Deploy the TerraSnow Instance

 		
 Usage

 		
 Requirements

 		
 ServiceNow TF catalog item creation

 		
 Deploying TF resources from ServiceNow

 		
 Scripting Host

 		
 Module Input Variables

 		
 Outputs

 		
 Overview

 		
 Terraform Enterprise Scripting Host

 		
 Application Load balancer

 		
 TerraSnow Initialization Script

 		
 API Reference

 		
 TerraSnow API endpoints

 		
 Assume Role

 		
 Gitlab

 		
 TFE run

 		
 Workflow

 		
 ServiceNow Catalog Item

 		
 Variables

 		
 tfv

 		
 adv_toggle

 		
 Roles

 		
 gen_OS_Type

 		
 gen_aws_role

 		
 gen_AwsAccountInfo

 		
 gen_module_version

 		
 gen_region

 		
 gen_org_name

 		
 gen_repo_url

 		
 Client Scripts

 		
 createDiaplyToggleOnChange.js

 		
 hideGenericVariablesOnLoad.js

 		
 populateAWSRoleInfoOnLoad.js

 		
 enableAfterPopulateRolesOnChange.js

 		
 Script Includes

 		
 populateAWSRoleInfoScriptInclude.js

_static/up.png

_static/up-pressed.png

