

    
      
          
            
  
TerrainLib

TerrainLib is a library of algorithms used for landscape generation. They include generation, filtering and export
functions to allow to do everything with only one dependency: this library.

TerrainLib aims to be useful at both other projects wanting to include terrain generation, and end-user that don’t mind
using scripting as a mean to generate landscape. The API is easy to use by striping away the complicated stuff while
staying customizable.

In a few lines you’ll be able to create realistic looking terrain of any size.


Coverage

Test coverage data is available under the coverage [https://solarliner.gitlab.io/terrainlib/coverage] folder.




License

TerrainLib is licensed under LGPL v3. Non open-source, commercial projects are welcomed, but should ask for explicit
licensing agreement.


Contents:


	Getting Started
	Installation

	Introduction to the library

	A first pipeline














Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Getting Started


Installation


	TerrainLib is available on PyPi, therefore the easiest way to install it is the following::

	pip install TerrainLib





You can also install the library by downloading a version over the GitLab project home [https://gitlab.com/solarliner/terrainlib].




Introduction to the library

Once the library installed, you can import the algorithms from those three places:


	terrainlib.generator holds all generators, in sub-categories


	terrainlib.filters holds all filters, also in sub-categories


	terrainlib.readers holds all readers, in sub-categories





Definitions

What do we mean by those words? It may sound weird, as I, a non-native English speaker chose those words, but it allows
everyone to know what they’re talking about:


	Generator

	An algorithm that only has parameter inputs, and outputs a terrain. This include image import, Perlin noise, etc.



	Filter

	An algorithm that both inputs and outputs a terrain, while also accepting other parameter inputs. Those are erosion
algorithms, manipulations on the terrain, masking, etc.



	Reader

	An algorithm that inputs a terrain (and parameters) and output something completely different. These include image
export, mesh export, texture output, ‘playability’ scores, etc.





By feeding each the output of the previous algorithm we are able to define pipelines that define our terrain.
Let’s create one right now.






A first pipeline

Start off by importing the Diamond Square generator. This is a fast noise generation alrogithm that can output detailed
terrain fast - at the cost of not being tile-able.

	1

	 from terrainlib.generators.procedural import DiamondSquareGenerator







The output of that generator will be either too flat or too rough for the terrain to be interesting or even somewhat
realistic. To smooth things out, we need to simulate the process by which rocks and dirt fall downhill.
We need some thermal erosion:

	2

	 from terrainlib.filters.erosion import ThermalErosionFilter







Last, but not least, we need to export that terrain somewhere. The best way to do that is through an image - it’s easily
visualisable, and can be imported anywhere really. Load up the Image exporter:

	3

	 from terrainlib.readers.image import PILImageReader







Now, we need to initialize those. We’re going to create a 1025 pixel wide terrain, with a decent amount of roughness,
then apply 150 iterations of erosion at standard rates, and then export it to ‘terrain_out.png’ as a 16-bit image.

	4
5
6

	 generator = DiamondSquareGenerator(10, 0.1)
 erosion = ThermalErosionFilter(150)
 img_reader = PILImageReader(PILImageReader.BITDEPTH_16)







Couple of things to notice:


	Due to the way the Diamond Square algorithm works, we do not enter the desired size directly, but the power of two
that will result in the desired size. Here, we’re taking the 10th power of two (2^10 = 1024), and the algorithm adds
one to that number (this is a technical restriction, the algorithm needs a center pixel to work with, needing an odd
number of pixels on the side). Thus, we get a 1025 pixel wide terrain.


	We aren’t providing a filename to the reader directly, because the reader outputs a Pillow image. The actual file
will be saved from the PIL.Image instance.




Now, let’s setup our pipeline:

	 9
10
11

	 terrain = erosion(generator())
 img = img_reader(terrain)
 img.save('terrain_out.png')







If you run your script, and after some processing time, it will have created a file named ‘terrain_out.png’ with the
terrain saved in it. If you open that image as a heightfield, you will see your image in all its glory!

Here is the whole script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 from terrainlib.generators.procedural import DiamondSquareGenerator
 from terrainlib.filters.erosion import ThermalErosionFilter
 from terrainlib.readers.image import PILImageReader

 generator = DiamondSquareGenerator(10, 0.1)
 erosion = ThermalErosionFilter(150)
 img_reader = PILImageReader(PILImageReader.BITDEPTH_16)

 terrain = erosion(generator())
 img = img_reader(terrain)
 img.save('terrain_out.png')













          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          TerrainLib
        


        		
          Getting Started
          
            		
              Installation
            


            		
              Introduction to the library
              
                		
                  Definitions
                


              


            


            		
              A first pipeline
            


          


        


      


    
  

_static/Logo.png





_static/Type.png
@Terroin Lib





_static/down-pressed.png





_static/down.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





