

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	tento 0.0.1 documentation

tento

Contents:

	tento — tento
	tento.db — tento의 DB의 설정과 관련된 모듈

	tento.user — 사용자 스키마를 담고있습니다.

	tento.music — 스키마를 담고있습니다.

	tento.web — tento의 web 패키지
	tento.web.auth — tento의 인증 모듈

	tento.web.user — tento의 user API

	tento.web.login — tento의 login API

	tento.web.music — tento의 음악 관련 API

	tento.crawler — crawl song’s lyrics from nmusic.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

tento — tento

	tento.db — tento의 DB의 설정과 관련된 모듈

	tento.user — 사용자 스키마를 담고있습니다.

	tento.music — 스키마를 담고있습니다.

	tento.web — tento의 web 패키지
	tento.web.auth — tento의 인증 모듈

	tento.web.user — tento의 user API

	tento.web.login — tento의 login API

	tento.web.music — tento의 음악 관련 API

	tento.crawler — crawl song’s lyrics from nmusic.

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

tento.db — tento의 DB의 설정과 관련된 모듈

	
tento.db.ensure_shutdown_session(app)

	tento.web.app.app 의 문맥이 종료될때,
tento.db.session 이 반드시 닫히도록 합니다.

	
tento.db.get_engine(app=None)

	DB 연결에 필요한 엔진을 생성합니다.

	Parameters:	app (flask.Flask) – flask.Flask 로 생성한 앱

	Returns:	sqlalchemy 의 엔진

	Return type:	sqlalchemy.engine.Engine

	
tento.db.get_session(engine=None)

	sqlalchemy 의 쿼리를 날릴때 사용하는 세션을 가지고옵니다.

	Parameters:	engine (sqlalchemy.engine.Engine) – sqlalchemy 엔진

	Returns:	DB에 쿼리를 날리때 사용하는 세션

	Return type:	sqlalchemy.orm.session.Session

	
tento.db.get_alembic_config(engine)

	alembic 에필요한 설정을 가져옵니다.

	Parameters:	
	engine – db에 연결할 sqlalchemy.engine.Engine 인스턴스

	app (flask.Flask) – flask.Flask 로 생성한 앱

	Returns:	alembic 사용할때 필요한 설정이 담긴
alembic.config.Config

	Return type:	alembic.config.Config

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

tento.user — 사용자 스키마를 담고있습니다.

	
class tento.user.User(email, password, created_at=None)

	사용자 정보를 담고있는 테이블의 스키마

	
confirm_password(password)

	사용자의 비밀번호가 올바른지 확인합니다.

	Parameters:	password (str) – 확인할 사용자의 비밀번호

	Returns:	패스워드가 맞는지 틀린지에 대한 여부

	Return type:	bool

	
created_at

	생성일

	
email

	사용자의 이메일

	
id

	사용자의 고유 인덱스

	
name

	이메일의 앞부분을 이름으로 반환합니다.

>>> User(email='admire9@gmail.com', password='foobar')
>>> _.name
'admire9'

	Returns:	사용자의 이름

	Return type:	str

	
password

	사용자의 패스워드

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

tento.music — 스키마를 담고있습니다.

	
class tento.music.Album(**kwargs)

	앨범 정보를 저장하는 스키마

	
artist_id

	가수 이름 정보

	
created_at

	생성일

	
id

	Album 의 고유키

	
musics

	이 앨범에 속한 Music 들

	
name

	앨범 이름

	
year

	앨범이 출시된 연도

	
class tento.music.Artist(**kwargs)

	가수 정보를 저장하는 스키마

	
albums

	이 가수에 속한 Album 들

	
created_at

	가수에 관한 데이터가 생성된 시각

	
id

	Artist 의 고유키

	
name

	가수 이름 정보

	
class tento.music.Genre(**kwargs)

	음악의 장르 정보를 저장하는 스키마

	
created_at

	생성일

	
id

	Genre 의 고유키

	
name

	장르 이름

	
class tento.music.Music(**kwargs)

	음악의 제목과 가수등의 정보를 저장하는 스키마

	
album_id

	해당 음악이 수록된 앨범의 고유 아이디(번호, 생략가능)

	
created_at

	생성일

	
disc_number

	앨범 디스크 번호(생략가능)

	
genre

	노래의 장르

	
genre_id

	장르 정보(생략 가능)

	
id

	Music 의 고유키

	
name

	음악의 이름

	
track_number

	앨범 트랙 번호(생략가능)

	
class tento.music.Position(**kwargs)

	음악 분위기 데이터의 x, y, music_id
정보를 저장하는 스키마

	
created_at

	생성일

	
id

	Position 의 고유키

	
music

	tento.Music

	
music_id

	tento.Music.music_id 를 가리키는 외래키

	
x

	분위기의 x 좌표(가사에 의한 분위기)

	
y

	분위기의 y 좌표(BPM에 의한 분위기)

	
tento.music.relationship(argument, secondary=None, primaryjoin=None, secondaryjoin=None, foreign_keys=None, uselist=None, order_by=False, backref=None, back_populates=None, post_update=False, cascade=False, extension=None, viewonly=False, lazy=True, collection_class=None, passive_deletes=False, passive_updates=True, remote_side=None, enable_typechecks=True, join_depth=None, comparator_factory=None, single_parent=False, innerjoin=False, distinct_target_key=None, doc=None, active_history=False, cascade_backrefs=True, load_on_pending=False, strategy_class=None, _local_remote_pairs=None, query_class=None, info=None)

	Provide a relationship between two mapped classes.

This corresponds to a parent-child or associative table relationship.
The constructed class is an instance of
RelationshipProperty.

A typical relationship(), used in a classical mapping:

mapper(Parent, properties={
 'children': relationship(Child)
})

Some arguments accepted by relationship() optionally accept a
callable function, which when called produces the desired value.
The callable is invoked by the parent Mapper at “mapper
initialization” time, which happens only when mappers are first used,
and is assumed to be after all mappings have been constructed. This
can be used to resolve order-of-declaration and other dependency
issues, such as if Child is declared below Parent in the same
file:

mapper(Parent, properties={
 "children":relationship(lambda: Child,
 order_by=lambda: Child.id)
})

When using the declarative_toplevel extension, the Declarative
initializer allows string arguments to be passed to
relationship(). These string arguments are converted into
callables that evaluate the string as Python code, using the
Declarative class-registry as a namespace. This allows the lookup of
related classes to be automatic via their string name, and removes the
need to import related classes at all into the local module space:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Parent(Base):
 __tablename__ = 'parent'
 id = Column(Integer, primary_key=True)
 children = relationship("Child", order_by="Child.id")

See also

relationship_config_toplevel - Full introductory and
reference documentation for relationship().

orm_tutorial_relationship - ORM tutorial introduction.

	Parameters:	
	argument – a mapped class, or actual Mapper instance, representing
the target of the relationship.

:paramref:`~.relationship.argument` may also be passed as a callable
function which is evaluated at mapper initialization time, and may
be passed as a Python-evaluable string when using Declarative.

See also

declarative_configuring_relationships - further detail
on relationship configuration when using Declarative.

	secondary – for a many-to-many relationship, specifies the intermediary
table, and is typically an instance of Table.
In less common circumstances, the argument may also be specified
as an Alias construct, or even a Join construct.

:paramref:`~.relationship.secondary` may
also be passed as a callable function which is evaluated at
mapper initialization time. When using Declarative, it may also
be a string argument noting the name of a Table that is
present in the MetaData collection associated with the
parent-mapped Table.

The :paramref:`~.relationship.secondary` keyword argument is
typically applied in the case where the intermediary Table
is not otherwise exprssed in any direct class mapping. If the
“secondary” table is also explicitly mapped elsewhere (e.g. as in
association_pattern), one should consider applying the
:paramref:`~.relationship.viewonly` flag so that this
relationship() is not used for persistence operations which
may conflict with those of the association object pattern.

See also

relationships_many_to_many - Reference example of “many
to many”.

orm_tutorial_many_to_many - ORM tutorial introduction to
many-to-many relationships.

self_referential_many_to_many - Specifics on using
many-to-many in a self-referential case.

declarative_many_to_many - Additional options when using
Declarative.

association_pattern - an alternative to
:paramref:`~.relationship.secondary` when composing association
table relationships, allowing additional attributes to be
specified on the association table.

composite_secondary_join - a lesser-used pattern which
in some cases can enable complex relationship() SQL
conditions to be used.

New in version 0.9.2: :paramref:`~.relationship.secondary` works
more effectively when referring to a Join instance.

	active_history=False – When True, indicates that the “previous” value for a
many-to-one reference should be loaded when replaced, if
not already loaded. Normally, history tracking logic for
simple many-to-ones only needs to be aware of the “new”
value in order to perform a flush. This flag is available
for applications that make use of
attributes.get_history() which also need to know
the “previous” value of the attribute.

	backref – indicates the string name of a property to be placed on the related
mapper’s class that will handle this relationship in the other
direction. The other property will be created automatically
when the mappers are configured. Can also be passed as a
backref() object to control the configuration of the
new relationship.

See also

relationships_backref - Introductory documentation and
examples.

:paramref:`~.relationship.back_populates` - alternative form
of backref specification.

backref() - allows control over relationship()
configuration when using :paramref:`~.relationship.backref`.

	back_populates – Takes a string name and has the same meaning as
:paramref:`~.relationship.backref`, except the complementing
property is not created automatically, and instead must be
configured explicitly on the other mapper. The complementing
property should also indicate
:paramref:`~.relationship.back_populates` to this relationship to
ensure proper functioning.

See also

relationships_backref - Introductory documentation and
examples.

:paramref:`~.relationship.backref` - alternative form
of backref specification.

	cascade – a comma-separated list of cascade rules which determines how
Session operations should be “cascaded” from parent to child.
This defaults to False, which means the default cascade
should be used - this default cascade is "save-update, merge".

The available cascades are save-update, merge,
expunge, delete, delete-orphan, and refresh-expire.
An additional option, all indicates shorthand for
"save-update, merge, refresh-expire,
expunge, delete", and is often used as in "all, delete-orphan"
to indicate that related objects should follow along with the
parent object in all cases, and be deleted when de-associated.

See also

unitofwork_cascades - Full detail on each of the available
cascade options.

tutorial_delete_cascade - Tutorial example describing
a delete cascade.

	cascade_backrefs=True – a boolean value indicating if the save-update cascade should
operate along an assignment event intercepted by a backref.
When set to False, the attribute managed by this relationship
will not cascade an incoming transient object into the session of a
persistent parent, if the event is received via backref.

See also

backref_cascade - Full discussion and examples on how
the :paramref:`~.relationship.cascade_backrefs` option is used.

	collection_class – a class or callable that returns a new list-holding object. will
be used in place of a plain list for storing elements.

See also

custom_collections - Introductory documentation and
examples.

	comparator_factory – a class which extends RelationshipProperty.Comparator
which provides custom SQL clause generation for comparison
operations.

See also

PropComparator - some detail on redefining comparators
at this level.

custom_comparators - Brief intro to this feature.

	distinct_target_key=None – Indicate if a “subquery” eager load should apply the DISTINCT
keyword to the innermost SELECT statement. When left as None,
the DISTINCT keyword will be applied in those cases when the target
columns do not comprise the full primary key of the target table.
When set to True, the DISTINCT keyword is applied to the
innermost SELECT unconditionally.

It may be desirable to set this flag to False when the DISTINCT is
reducing performance of the innermost subquery beyond that of what
duplicate innermost rows may be causing.

New in version 0.8.3: -
:paramref:`~.relationship.distinct_target_key` allows the
subquery eager loader to apply a DISTINCT modifier to the
innermost SELECT.

Changed in version 0.9.0: -
:paramref:`~.relationship.distinct_target_key` now defaults to
None, so that the feature enables itself automatically for
those cases where the innermost query targets a non-unique
key.

See also

loading_toplevel - includes an introduction to subquery
eager loading.

	doc – docstring which will be applied to the resulting descriptor.

	extension – an AttributeExtension instance, or list of extensions,
which will be prepended to the list of attribute listeners for
the resulting descriptor placed on the class.

Deprecated since version 0.7: Please see AttributeEvents.

	foreign_keys – a list of columns which are to be used as “foreign key”
columns, or columns which refer to the value in a remote
column, within the context of this relationship()
object’s :paramref:`~.relationship.primaryjoin` condition.
That is, if the :paramref:`~.relationship.primaryjoin`
condition of this relationship() is a.id ==
b.a_id, and the values in b.a_id are required to be
present in a.id, then the “foreign key” column of this
relationship() is b.a_id.

In normal cases, the :paramref:`~.relationship.foreign_keys`
parameter is not required. relationship() will
automatically determine which columns in the
:paramref:`~.relationship.primaryjoin` conditition are to be
considered “foreign key” columns based on those
Column objects that specify ForeignKey,
or are otherwise listed as referencing columns in a
ForeignKeyConstraint construct.
:paramref:`~.relationship.foreign_keys` is only needed when:

	There is more than one way to construct a join from the local
table to the remote table, as there are multiple foreign key
references present. Setting foreign_keys will limit the
relationship() to consider just those columns specified
here as “foreign”.
Changed in version 0.8: A multiple-foreign key join ambiguity can be resolved by
setting the :paramref:`~.relationship.foreign_keys`
parameter alone, without the need to explicitly set
:paramref:`~.relationship.primaryjoin` as well.

	The Table being mapped does not actually have
ForeignKey or ForeignKeyConstraint
constructs present, often because the table
was reflected from a database that does not support foreign key
reflection (MySQL MyISAM).

	The :paramref:`~.relationship.primaryjoin` argument is used to
construct a non-standard join condition, which makes use of
columns or expressions that do not normally refer to their
“parent” column, such as a join condition expressed by a
complex comparison using a SQL function.

The relationship() construct will raise informative
error messages that suggest the use of the
:paramref:`~.relationship.foreign_keys` parameter when
presented with an ambiguous condition. In typical cases,
if relationship() doesn’t raise any exceptions, the
:paramref:`~.relationship.foreign_keys` parameter is usually
not needed.

:paramref:`~.relationship.foreign_keys` may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

See also

relationship_foreign_keys

relationship_custom_foreign

foreign() - allows direct annotation of the “foreign”
columns within a :paramref:`~.relationship.primaryjoin` condition.

New in version 0.8: The foreign() annotation can also be applied
directly to the :paramref:`~.relationship.primaryjoin`
expression, which is an alternate, more specific system of
describing which columns in a particular
:paramref:`~.relationship.primaryjoin` should be considered
“foreign”.

	info – Optional data dictionary which will be populated into the
MapperProperty.info attribute of this object.

New in version 0.8.

	innerjoin=False – when True, joined eager loads will use an inner join to join
against related tables instead of an outer join. The purpose
of this option is generally one of performance, as inner joins
generally perform better than outer joins.

This flag can be set to True when the relationship references an
object via many-to-one using local foreign keys that are not
nullable, or when the reference is one-to-one or a collection that
is guaranteed to have one or at least one entry.

If the joined-eager load is chained onto an existing LEFT OUTER
JOIN, innerjoin=True will be bypassed and the join will continue
to chain as LEFT OUTER JOIN so that the results don’t change. As an
alternative, specify the value "nested". This will instead nest
the join on the right side, e.g. using the form “a LEFT OUTER JOIN
(b JOIN c)”.

New in version 0.9.4: Added innerjoin="nested" option to
support nesting of eager “inner” joins.

See also

what_kind_of_loading - Discussion of some details of
various loader options.

:paramref:`.joinedload.innerjoin` - loader option version

	join_depth – when non-None, an integer value indicating how many levels
deep “eager” loaders should join on a self-referring or cyclical
relationship. The number counts how many times the same Mapper
shall be present in the loading condition along a particular join
branch. When left at its default of None, eager loaders
will stop chaining when they encounter a the same target mapper
which is already higher up in the chain. This option applies
both to joined- and subquery- eager loaders.

See also

self_referential_eager_loading - Introductory documentation
and examples.

	lazy=’select’ – specifies
how the related items should be loaded. Default value is
select. Values include:

	select - items should be loaded lazily when the property is
first accessed, using a separate SELECT statement, or identity map
fetch for simple many-to-one references.

	immediate - items should be loaded as the parents are loaded,
using a separate SELECT statement, or identity map fetch for
simple many-to-one references.

	joined - items should be loaded “eagerly” in the same query as
that of the parent, using a JOIN or LEFT OUTER JOIN. Whether
the join is “outer” or not is determined by the
:paramref:`~.relationship.innerjoin` parameter.

	subquery - items should be loaded “eagerly” as the parents are
loaded, using one additional SQL statement, which issues a JOIN to
a subquery of the original statement, for each collection
requested.

	noload - no loading should occur at any time. This is to
support “write-only” attributes, or attributes which are
populated in some manner specific to the application.

	dynamic - the attribute will return a pre-configured
Query object for all read
operations, onto which further filtering operations can be
applied before iterating the results. See
the section dynamic_relationship for more details.

	True - a synonym for ‘select’

	False - a synonym for ‘joined’

	None - a synonym for ‘noload’

See also

/orm/loading - Full documentation on relationship loader
configuration.

dynamic_relationship - detail on the dynamic option.

	load_on_pending=False – Indicates loading behavior for transient or pending parent objects.

When set to True, causes the lazy-loader to
issue a query for a parent object that is not persistent, meaning it
has never been flushed. This may take effect for a pending object
when autoflush is disabled, or for a transient object that has been
“attached” to a Session but is not part of its pending
collection.

The :paramref:`~.relationship.load_on_pending` flag does not improve
behavior when the ORM is used normally - object references should be
constructed at the object level, not at the foreign key level, so
that they are present in an ordinary way before a flush proceeds.
This flag is not not intended for general use.

See also

Session.enable_relationship_loading() - this method
establishes “load on pending” behavior for the whole object, and
also allows loading on objects that remain transient or
detached.

	order_by – indicates the ordering that should be applied when loading these
items. :paramref:`~.relationship.order_by` is expected to refer to
one of the Column objects to which the target class is
mapped, or the attribute itself bound to the target class which
refers to the column.

:paramref:`~.relationship.order_by` may also be passed as a callable
function which is evaluated at mapper initialization time, and may
be passed as a Python-evaluable string when using Declarative.

	passive_deletes=False – Indicates loading behavior during delete operations.

A value of True indicates that unloaded child items should not
be loaded during a delete operation on the parent. Normally,
when a parent item is deleted, all child items are loaded so
that they can either be marked as deleted, or have their
foreign key to the parent set to NULL. Marking this flag as
True usually implies an ON DELETE <CASCADE|SET NULL> rule is in
place which will handle updating/deleting child rows on the
database side.

Additionally, setting the flag to the string value ‘all’ will
disable the “nulling out” of the child foreign keys, when there
is no delete or delete-orphan cascade enabled. This is
typically used when a triggering or error raise scenario is in
place on the database side. Note that the foreign key
attributes on in-session child objects will not be changed
after a flush occurs so this is a very special use-case
setting.

See also

passive_deletes - Introductory documentation
and examples.

	passive_updates=True – Indicates loading and INSERT/UPDATE/DELETE behavior when the
source of a foreign key value changes (i.e. an “on update”
cascade), which are typically the primary key columns of the
source row.

When True, it is assumed that ON UPDATE CASCADE is configured on
the foreign key in the database, and that the database will
handle propagation of an UPDATE from a source column to
dependent rows. Note that with databases which enforce
referential integrity (i.e. PostgreSQL, MySQL with InnoDB tables),
ON UPDATE CASCADE is required for this operation. The
relationship() will update the value of the attribute on related
items which are locally present in the session during a flush.

When False, it is assumed that the database does not enforce
referential integrity and will not be issuing its own CASCADE
operation for an update. The relationship() will issue the
appropriate UPDATE statements to the database in response to the
change of a referenced key, and items locally present in the
session during a flush will also be refreshed.

This flag should probably be set to False if primary key changes
are expected and the database in use doesn’t support CASCADE
(i.e. SQLite, MySQL MyISAM tables).

See also

passive_updates - Introductory documentation and
examples.

:paramref:`.mapper.passive_updates` - a similar flag which
takes effect for joined-table inheritance mappings.

	post_update – this indicates that the relationship should be handled by a
second UPDATE statement after an INSERT or before a
DELETE. Currently, it also will issue an UPDATE after the
instance was UPDATEd as well, although this technically should
be improved. This flag is used to handle saving bi-directional
dependencies between two individual rows (i.e. each row
references the other), where it would otherwise be impossible to
INSERT or DELETE both rows fully since one row exists before the
other. Use this flag when a particular mapping arrangement will
incur two rows that are dependent on each other, such as a table
that has a one-to-many relationship to a set of child rows, and
also has a column that references a single child row within that
list (i.e. both tables contain a foreign key to each other). If
a flush operation returns an error that a “cyclical
dependency” was detected, this is a cue that you might want to
use :paramref:`~.relationship.post_update` to “break” the cycle.

See also

post_update - Introductory documentation and examples.

	primaryjoin – a SQL expression that will be used as the primary
join of this child object against the parent object, or in a
many-to-many relationship the join of the primary object to the
association table. By default, this value is computed based on the
foreign key relationships of the parent and child tables (or
association table).

:paramref:`~.relationship.primaryjoin` may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

See also

relationship_primaryjoin

	remote_side – used for self-referential relationships, indicates the column or
list of columns that form the “remote side” of the relationship.

:paramref:`.relationship.remote_side` may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

Changed in version 0.8: The remote() annotation can also be applied
directly to the primaryjoin expression, which is an
alternate, more specific system of describing which columns in a
particular primaryjoin should be considered “remote”.

See also

self_referential - in-depth explanation of how
:paramref:`~.relationship.remote_side`
is used to configure self-referential relationships.

remote() - an annotation function that accomplishes the
same purpose as :paramref:`~.relationship.remote_side`, typically
when a custom :paramref:`~.relationship.primaryjoin` condition
is used.

	query_class – a Query subclass that will be used as the base of the
“appender query” returned by a “dynamic” relationship, that
is, a relationship that specifies lazy="dynamic" or was
otherwise constructed using the orm.dynamic_loader()
function.

See also

dynamic_relationship - Introduction to “dynamic”
relationship loaders.

	secondaryjoin – a SQL expression that will be used as the join of
an association table to the child object. By default, this value is
computed based on the foreign key relationships of the association
and child tables.

:paramref:`~.relationship.secondaryjoin` may also be passed as a
callable function which is evaluated at mapper initialization time,
and may be passed as a Python-evaluable string when using
Declarative.

See also

relationship_primaryjoin

	single_parent – when True, installs a validator which will prevent objects
from being associated with more than one parent at a time.
This is used for many-to-one or many-to-many relationships that
should be treated either as one-to-one or one-to-many. Its usage
is optional, except for relationship() constructs which
are many-to-one or many-to-many and also
specify the delete-orphan cascade option. The
relationship() construct itself will raise an error
instructing when this option is required.

See also

unitofwork_cascades - includes detail on when the
:paramref:`~.relationship.single_parent` flag may be appropriate.

	uselist – a boolean that indicates if this property should be loaded as a
list or a scalar. In most cases, this value is determined
automatically by relationship() at mapper configuration
time, based on the type and direction
of the relationship - one to many forms a list, many to one
forms a scalar, many to many is a list. If a scalar is desired
where normally a list would be present, such as a bi-directional
one-to-one relationship, set :paramref:`~.relationship.uselist` to
False.

The :paramref:`~.relationship.uselist` flag is also available on an
existing relationship() construct as a read-only attribute,
which can be used to determine if this relationship() deals
with collections or scalar attributes:

>>> User.addresses.property.uselist
True

See also

relationships_one_to_one - Introduction to the “one to
one” relationship pattern, which is typically when the
:paramref:`~.relationship.uselist` flag is needed.

	viewonly=False – when set to True, the relationship is used only for loading objects,
and not for any persistence operation. A relationship()
which specifies :paramref:`~.relationship.viewonly` can work
with a wider range of SQL operations within the
:paramref:`~.relationship.primaryjoin` condition, including
operations that feature the use of a variety of comparison operators
as well as SQL functions such as cast(). The
:paramref:`~.relationship.viewonly` flag is also of general use when
defining any kind of relationship() that doesn’t represent
the full set of related objects, to prevent modifications of the
collection from resulting in persistence operations.

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

tento.web — tento의 web 패키지

	tento.web.auth — tento의 인증 모듈

	tento.web.user — tento의 user API

	tento.web.login — tento의 login API

	tento.web.music — tento의 음악 관련 API

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

 	tento.web — tento의 web 패키지

tento.web.auth — tento의 인증 모듈

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

 	tento.web — tento의 web 패키지

tento.web.user — tento의 user API

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

 	tento.web — tento의 web 패키지

tento.web.login — tento의 login API

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

 	tento.web — tento의 web 패키지

tento.web.music — tento의 음악 관련 API

	
tento.web.music.create()

	음악 데이터를 받아서 tento.music.Artist,
tento.music.Album, tento.music.Music 을 생성합니다.

POST /musics/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: tento.com

{
 "music_name": "유감",
 "music_track_number": 1,
 "music_disc_number": 1,
 "artist_name": "leeSA",
 "album_name": "유감",
 "album_release_year": 2010,
 "genre": "팝 > 팝, 팝 > 발라드"
}

HTTP/1.1 201 created
Content-Type: application/json

	Returns:	생성된 tento.music.Artist , tento.music.Album ,
tento.music.Music 를 json으로 반환.

	Statuscode 201:	데이터가 정상적으로 생성됬음.

	Statuscode 400:	필요한 데이터가 비어있음.

	Statuscode 500:	서버 에러발생

	
tento.web.music.create_chunks()

	여러 음악 데이터를 받아서 tento.music.Artist,
tento.music.Album, tento.music.Music 을 생성합니다.

POST /musics/chunk/ HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: tento.com

{
 'musics': [
 {
 "music_name": "유감",
 "music_track_number": 1,
 "music_disc_number": 1,
 "artist_name": "leeSA",
 "album_name": "유감",
 "album_release_year": 2010,
 "genre": "팝 > 팝, 팝 > 발라드"
 },
 ...
]
}

HTTP/1.1 201 created
Content-Type: application/json

{
 'musics': [
 {'id': 1, 'name': '유감'},
 ...
]
}

	Returns:	생성된 tento.music.Artist , tento.music.Album ,
tento.music.Music 를 json으로 반환.

	Statuscode 201:	데이터가 정상적으로 생성됬음.

	Statuscode 400:	필요한 데이터가 비어있음.

	Statuscode 500:	서버 에러발생

	
tento.web.music.find_all_positions()

	모든 :class:`tento.music.Position`을 조회합니다.

GET /musics/positions/?music_ids=1,2,3,4
Accept: application/json
Host: tento.com

HTTP/1.1 201 created
Content-Type: application/json
{
 "positions": [
 {
 "x": 0,
 "y": 0,
 "music_id": 1
 },
 ...
]
}

	Query string music_ids:

		tento.music.Music.id 를 , 로 이어 붙인것.

	Returns:	조회한 :py:class:`tento.music.Position`을 json으로 반환

	Statuscode 200:	데이터가 정상적으로 조회되었음.

	Statuscode 400:	쿼리스트링에 이상한 문자열이 들어왔을때,
music_ids가 없을때

	Statuscode 500:	서버 에러 발생.

	
tento.web.music.find_position(id_)

	

	Parameters:	id – 에 해당하는 :class:`tento.music.Position`을 조회합니다.

GET /musics/:id/position/
Accept: application/json
Host: tento.com

HTTP/1.1 201 created
Content-Type: application/json

{
 "x": 0,
 "y": 0,
 "music_id": :id
}

	Parameters:	id – tento.music.Music 의 tento.music.Music.id

	Returns:	조회한 :py:class:`tento.music.Position`을 json으로 반환

	Statuscode 200:	데이터가 정상적으로 조회되었음.

	Statuscode 404:	

	param id_:	에 해당하는 tento.music.Position

데이터가 존재하지않음.

	Statuscode 500:	서버 에러 발생.

	
tento.web.music.position(id_)

	음악 데이터를 받아서 :class:`tento.music.Position`을 생성합니다.

POST /musics/:id/position/
Content-Type: application/json
Accept: application/json
Host: tento.com

{
 "x": 10,
 "y": 9,
 "music_id": 1
}

	..sourcecode:: http

	HTTP/1.1 201 created
Content-Type: application/json

	Parameters:	id – tento.music.Music 의 tento.music.Music.id

	Returns:	생성된 :py:class:`tento.music.Position`을 json으로 반환

	Statuscode 201:	데이터가 정상적으로 생성되었음.

	Statuscode 400:	필요한 데이터가 비어있음.

	Statuscode 500:	서버 에러 발생.

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	tento 0.0.1 documentation

 	tento — tento

tento.crawler — crawl song’s lyrics from nmusic.

	
class tento.crawler.NmusicCrawler

	Crawl nmusic’s information.

	
lyrics(nmusic_id)

	Get lyrics.

	Parameters:	nmusic_id (int) – naver music id.

	Returns:	lyrics of :param nmusic_id: .

	Return type:	str

	
lyrics_url()

	lyrics url

	
read_doc(url)

	Read html document from given :param url: .

	Parameters:	url – url want to be readed.

	Returns:	html document.

	
search(word)

	Search naver music track id.

	Parameters:	word (str) – song’s name or artist name want to search.

	Returns:	list of result.

	Return type:	list

	
url()

	search url

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	tento 0.0.1 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tento	

 	
 	
 tento.crawler	

 	
 	
 tento.db	

 	
 	
 tento.music	

 	
 	
 tento.user	

 	
 	
 tento.web	

 	
 	
 tento.web.app	

 	
 	
 tento.web.auth	

 	
 	
 tento.web.login	

 	
 	
 tento.web.music	

 	
 	
 tento.web.user	

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	tento 0.0.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | X
 | Y

A

 	

 	Album (class in tento.music)

 	album_id (tento.music.Music attribute)

 	albums (tento.music.Artist attribute)

 	

 	Artist (class in tento.music)

 	artist_id (tento.music.Album attribute)

C

 	

 	confirm_password() (tento.user.User method)

 	create() (in module tento.web.music)

 	

 	create_chunks() (in module tento.web.music)

 	created_at (tento.music.Album attribute)

 	

 	(tento.music.Artist attribute)

 	(tento.music.Genre attribute)

 	(tento.music.Music attribute)

 	(tento.music.Position attribute)

 	(tento.user.User attribute)

D

 	

 	disc_number (tento.music.Music attribute)

E

 	

 	email (tento.user.User attribute)

 	

 	ensure_shutdown_session() (in module tento.db)

F

 	

 	find_all_positions() (in module tento.web.music)

 	

 	find_position() (in module tento.web.music)

G

 	

 	Genre (class in tento.music)

 	genre (tento.music.Music attribute)

 	genre_id (tento.music.Music attribute)

 	

 	get_alembic_config() (in module tento.db)

 	get_engine() (in module tento.db)

 	get_session() (in module tento.db)

I

 	

 	id (tento.music.Album attribute)

 	

 	(tento.music.Artist attribute)

 	(tento.music.Genre attribute)

 	(tento.music.Music attribute)

 	(tento.music.Position attribute)

 	(tento.user.User attribute)

L

 	

 	lyrics() (tento.crawler.NmusicCrawler method)

 	

 	lyrics_url() (tento.crawler.NmusicCrawler method)

M

 	

 	Music (class in tento.music)

 	music (tento.music.Position attribute)

 	

 	music_id (tento.music.Position attribute)

 	musics (tento.music.Album attribute)

N

 	

 	name (tento.music.Album attribute)

 	

 	(tento.music.Artist attribute)

 	(tento.music.Genre attribute)

 	(tento.music.Music attribute)

 	(tento.user.User attribute)

 	

 	NmusicCrawler (class in tento.crawler)

P

 	

 	password (tento.user.User attribute)

 	Position (class in tento.music)

 	

 	position() (in module tento.web.music)

R

 	

 	read_doc() (tento.crawler.NmusicCrawler method)

 	

 	relationship() (in module tento.music)

S

 	

 	search() (tento.crawler.NmusicCrawler method)

T

 	

 	tento (module)

 	tento.crawler (module)

 	tento.db (module)

 	tento.music (module)

 	tento.user (module)

 	tento.web (module)

 	

 	tento.web.app (module)

 	tento.web.auth (module)

 	tento.web.login (module)

 	tento.web.music (module)

 	tento.web.user (module)

 	track_number (tento.music.Music attribute)

U

 	

 	url() (tento.crawler.NmusicCrawler method)

 	

 	User (class in tento.user)

X

 	

 	x (tento.music.Position attribute)

Y

 	

 	y (tento.music.Position attribute)

 	

 	year (tento.music.Album attribute)

 Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

 tento/web/app.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		tento 0.0.1 documentation »

 		tento — tento »

 		tento.web — tento의 web 패키지 »

 © Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		tento 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Kang Hyojun.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

