

TensorTrade

[image: Logo]

TensorTrade [https://github.com/tensortrade-org/tensortrade] is an open source Python framework for building,
training, evaluating, and deploying robust trading algorithms using
reinforcement learning. The framework focuses on being highly composable
and extensible, to allow the system to scale from simple trading
strategies on a single CPU, to complex investment strategies run on a
distribution of HPC machines.

Under the hood, the framework uses many of the APIs from existing
machine learning libraries to maintain high quality data pipelines and
learning models. One of the main goals of TensorTrade is to enable fast
experimentation with algorithmic trading strategies, by leveraging the
existing tools and pipelines provided by numpy, pandas, gym,
keras, and tensorflow.

Every piece of the framework is split up into re-usable components,
allowing you to take advantage of the general use components built by
the community, while keeping your proprietary features private. The aim
is to simplify the process of testing and deploying robust trading
agents using deep reinforcement learning, to allow you and I to focus on
creating profitable strategies.

The goal of this framework is to enable fast experimentation, while
maintaining production-quality data pipelines.

Feel free to also walk through the Medium tutorial [https://medium.com/@notadamking/trade-smarter-w-reinforcement-learning-a5e91163f315].

The most up to date example is Train and Evaluate using Ray. We suggest you to start there!

Guiding principles

Inspired by Keras’ guiding principles [https://github.com/keras-team/keras].

User friendliness. TensorTrade is an API designed for human beings,
not machines. It puts user experience front and center. TensorTrade
follows best practices for reducing cognitive load: it offers consistent
& simple APIs, it minimizes the number of user actions required for
common use cases, and it provides clear and actionable feedback upon
user error.

Modularity. A trading environment is a conglomeration of fully
configurable modules that can be plugged together with as few
restrictions as possible. In particular, exchanges, feature pipelines,
action schemes, reward schemes, trading agents, and performance reports
are all standalone modules that you can combine to create new trading
environments.

Easy extensibility. New modules are simple to add (as new classes and
functions), and existing modules provide ample examples. To be able to
easily create new modules allows for total expressiveness, making
TensorTrade suitable for advanced research and production use.

Overview

	Getting Started

	Installation

	Docker

Examples

	Code Structure

	Setup Environment

	Train and Evaluate using Ray

	Renderers and Plotly Chart

	Stochastic Data

	Ledger Example

Tutorials

	Using Ray with TensorTrade

Components

	Components

	Action Scheme

	Reward Scheme

	Observer

	Default

	IntradayObserver

	Stopper

	Informer

	Renderer

Environments

	Overview

	What if I can’t make a particular environment?

Feed

	Overview

	What is a Stream?

	Using Data Types

	Advanced Usages

Order Management System

	Overview

	Portfolio

	Orders

Agents

	Overview

	Ray

	Stable Baselines

	Tensorforce

API reference

	API reference

Getting Started

You can get started testing on Google Colab or your local machine, by viewing our many examples [https://github.com/tensortrade-org/tensortrade/tree/master/examples]

Installation

TensorTrade requires Python >= 3.7 for all functionality to work as expected.

You can install the package from PyPi via pip or from the Github repo.

pip install tensortrade

OR

pip install git+https://github.com/tensortrade-org/tensortrade.git

Docker

To run the commands below ensure Docker is installed. Visit https://docs.docker.com/install/ for more information

Run Jupyter Notebooks

To run a jupyter notebook execute the following

make run-notebook

which will generate a link of the form 127.0.0.1:8888/?token=… Paste this link into your browsers and select the notebook you’d like to explore

Build Documentation

To build documentation execute the following

make run-docs

Run Test Suite

To run the test suite execute the following

make run-tests

Code Structure

The TensorTrade library is modular. The tensortrade library usually has a
common setup when using components. If you wish to make a particular class a
component all you need to do is subclass Component.

class Example(Component):
 """An example component to show how to subclass."""

 def foo(self, arg1, arg2) -> str:
 """A method to return a string."""
 raise NotImplementedError()

 def bar(self, arg1, arg2, **kwargs) -> int:
 """A method to return an integer."""

From this abstract base class, more concrete and custom subclasses can be made
that provide the implementation of these methods.

Example of Structure
A good example of this structure is the RewardScheme component. This component
controls the reward mechanism of a TradingEnv.

 Setup Environment

Setup Environment

import ta

import pandas as pd
import tensortrade.env.default as default

from tensortrade.data.cdd import CryptoDataDownload
from tensortrade.feed.core import Stream, DataFeed, NameSpace
from tensortrade.oms.instruments import USD, BTC, ETH, LTC
from tensortrade.oms.wallets import Wallet, Portfolio
from tensortrade.oms.exchanges import Exchange
from tensortrade.oms.services.execution.simulated import execute_order

Fetch Historical Data

 Train and Evaluate using Ray

Train and Evaluate using Ray

This doc has been updated to leverage Ray as a training backend. Builtin agents have been deprecated, since Ray offers a much more stable and faster execution, on top of the parallelized training\evaluation in a distributed cluster.

We will be using the fictional TensorTrade Corp stock (TTRD) traded in the TensorTrade Stock Exchange (TTSE) in all the examples, hoping noone goes public under that ticker and generates some confusion :)
The base currency will be US Dollars (USD) with a commission of 0.35% on each trade done.

Installing Requirements

TensorTrade

You can follow the “easy” way and install using the provided PIP package: (latest version available at the time of this example is 1.0.3)

pip install tensortrade

… or you can install the latest code available, pulling directly from the development codebase (this is the suggested way, since many fixes take time to get packaged in a new release)

pip install git+https://github.com/tensortrade-org/tensortrade.git

Ray

This example focuses on having Ray as a training backend, so we need to install ray with the default base features and rrlib and tune features (Latest version available at the time of this example is 1.8.0)

pip install ray[default,rllib,tune]==1.8.0

Ray has many builtins RLLib algorithms [https://docs.ray.io/en/latest/rllib-algorithms.html] to train agents with, and together with Tune [https://docs.ray.io/en/latest/tune/index.html] it allows us to run multiple parallel (or sequential) trainings with different parameters in a grid search for the best one to use within TensorTrade.

Pay attention to where you are installing Ray. Until recently (1.8.0 does NOT have this issue, but previous versions do), if Ray was installed in a VENV, it would hang at ray.init() during execution. If you need to be using Ray versions prior to 1.8.0 please make sure you are installing Ray in the default system environment.

Other Requirements

On top of TensorTrade and Ray, you need to install whichever library you want to use to fetch the data you want to train on, and any library you plan to use to augment your source data with calculated technical analysis fields such as log return, rsi, macd and so on…
In this example I am using yfinance to fetch stock ticker data and pandas-ta to add technical indicators.
I know pandas-ta is not actively mantained, but it’s well enough for what I need, and it’s really simple to use (you’ll see later). Also, for pandas-ta, you need to specify the --pre parameter when installing the package since pandas-ta has not had a stable release yet, and pip only looks for stable releases by default.

pip install yfinance==0.1.64
pip install pandas-ta==0.3.14b --pre

Of course you can choose whichever providers\augmenters you want, and this is just an example to show one possible implementation.

Build the training\evaluation dataset

We now arbitrarily define the timeframes we want to use in training our agent. Please note you have to substitute the ticker name, as it appears on Yahoo! Finance (ie: Gold Futures is GC=F, CBOE Volatility Index is ^VIX, GameStop Corp is GME, and so on…).

Once retrieved we need to add the relevant TA values, and this is enabled just by importing pandas_ta and then accessing the ta child in a dataframe. The #noqa tag is to silence PyCharm from reporting that pandas_ta has been imported but it has not been used (which is not true, but it can’t know that)

In the end, to avoid continuous Yahoo! Finance API requests, we simply save those dataframes to CSV, so that we can then simply read those preprocessed files during training and evaluation.

import yfinance
import pandas_ta #noqa
TICKER = 'TTRD' # TODO: replace this with your own ticker
TRAIN_START_DATE = '2021-02-09' # TODO: replace this with your own start date
TRAIN_END_DATE = '2021-09-30' # TODO: replace this with your own end date
EVAL_START_DATE = '2021-10-01' # TODO: replace this with your own end date
EVAL_END_DATE = '2021-11-12' # TODO: replace this with your own end date

yf_ticker = yfinance.Ticker(ticker=TICKER)

df_training = yf_ticker.history(start=TRAIN_START_DATE, end=TRAIN_END_DATE, interval='60m')
df_training.drop(['Dividends', 'Stock Splits'], axis=1, inplace=True)
df_training["Volume"] = df_training["Volume"].astype(int)
df_training.ta.log_return(append=True, length=16)
df_training.ta.rsi(append=True, length=14)
df_training.ta.macd(append=True, fast=12, slow=26)
df_training.to_csv('training.csv', index=False)

df_evaluation = yf_ticker.history(start=EVAL_START_DATE, end=EVAL_END_DATE, interval='60m')
df_evaluation.drop(['Dividends', 'Stock Splits'], axis=1, inplace=True)
df_evaluation["Volume"] = df_evaluation["Volume"].astype(int)
df_evaluation.ta.log_return(append=True, length=16)
df_evaluation.ta.rsi(append=True, length=14)
df_evaluation.ta.macd(append=True, fast=12, slow=26)
df_evaluation.to_csv('evaluation.csv', index=False)

We should now have the two preprocessed files ready (training.csv and evaluation.csv)

Please note that there are many better ways to do this. For example there is an obvious issue in doing things this way: all TA values that we have added require a minimum of 12 samples to be processed, since they perform calculations on longer timeframes. This means that the first 12 rows will not have any meaningful TA values to be trained (or evaluated) with.

This additional care in retrieving and preprocessing data is left to the user to implement, since many different approaches can be taken, each one with its pros and cons

Training and Evaluation

Create the environment build function

Here we are using the config dictionary to store the CSV filename that we need to read. During the training phase, we will pass training.csv as the value, while during the evaluation phase we will pass evaluation.csv

import pandas as pd
from tensortrade.feed.core import DataFeed, Stream
from tensortrade.oms.instruments import Instrument
from tensortrade.oms.exchanges import Exchange, ExchangeOptions
from tensortrade.oms.services.execution.simulated import execute_order
from tensortrade.oms.wallets import Wallet, Portfolio
import tensortrade.env.default as default

def create_env(config):
 dataset = pd.read_csv(filepath_or_buffer=config["csv_filename"], parse_dates=['Datetime']).fillna(method='backfill').fillna(method='ffill')
 ttse_commission = 0.0035 # TODO: adjust according to your commission percentage, if present
 price = Stream.source(list(dataset["Close"]), dtype="float").rename("USD-TTRD")
 ttse_options = ExchangeOptions(commission=ttse_commission)
 ttse_exchange = Exchange("TTSE", service=execute_order, options=ttse_options)(price)

 # Instruments, Wallets and Portfolio
 USD = Instrument("USD", 2, "US Dollar")
 TTRD = Instrument("TTRD", 2, "TensorTrade Corp")
 cash = Wallet(ttse_exchange, 1000 * USD) # This is the starting cash we are going to use
 asset = Wallet(ttse_exchange, 0 * TTRD) # And we will start owning 0 stocks of TTRD
 portfolio = Portfolio(USD, [cash, asset])

 # Renderer feed
 renderer_feed = DataFeed([
 Stream.source(list(dataset["Datetime"])).rename("date"),
 Stream.source(list(dataset["Open"]), dtype="float").rename("open"),
 Stream.source(list(dataset["High"]), dtype="float").rename("high"),
 Stream.source(list(dataset["Low"]), dtype="float").rename("low"),
 Stream.source(list(dataset["Close"]), dtype="float").rename("close"),
 Stream.source(list(dataset["Volume"]), dtype="float").rename("volume")
])

 features = []
 for c in dataset.columns[1:]:
 s = Stream.source(list(dataset[c]), dtype="float").rename(dataset[c].name)
 features += [s]
 feed = DataFeed(features)
 feed.compile()

 reward_scheme = default.rewards.SimpleProfit(window_size=config["reward_window_size"])
 action_scheme = default.actions.BSH(cash=cash, asset=asset)

 env = default.create(
 feed=feed,
 portfolio=portfolio,
 action_scheme=action_scheme,
 reward_scheme=reward_scheme,
 renderer_feed=renderer_feed,
 renderer=[],
 window_size=config["window_size"],
 max_allowed_loss=config["max_allowed_loss"]
)

 return env

Initialize and run Ray

Now it’s time to actually initialize and run Ray, passing all the parameters necessary, including the name of the environment creator function (create_env defined above).

Please note that many of these parameters need to be tuned for your specific use case (ie: "training_iteration": 5 is way too few to get anything remotely useful, but it allows the example to quickly reach the end)

import ray
import os
from ray import tune
from ray.tune.registry import register_env

Let's define some tuning parameters
FC_SIZE = tune.grid_search([[256, 256], [1024], [128, 64, 32]]) # Those are the alternatives that ray.tune will try...
LEARNING_RATE = tune.grid_search([0.001, 0.0005, 0.00001]) # ... and they will be combined with these ones ...
MINIBATCH_SIZE = tune.grid_search([5, 10, 20]) # ... and these ones, in a cartesian product.

Get the current working directory
cwd = os.getcwd()

Initialize Ray
ray.init() # There are *LOTS* of initialization parameters, like specifying the maximum number of CPUs\GPUs to allocate. For now just leave it alone.

Register our environment, specifying which is the environment creation function
register_env("MyTrainingEnv", create_env)

Specific configuration keys that will be used during training
env_config_training = {
 "window_size": 14, # We want to look at the last 14 samples (hours)
 "reward_window_size": 7, # And calculate reward based on the actions taken in the next 7 hours
 "max_allowed_loss": 0.10, # If it goes past 10% loss during the iteration, we don't want to waste time on a "loser".
 "csv_filename": os.path.join(cwd, 'training.csv'), # The variable that will be used to differentiate training and validation datasets
}
Specific configuration keys that will be used during evaluation (only the overridden ones)
env_config_evaluation = {
 "max_allowed_loss": 1.00, # During validation runs we want to see how bad it would go. Even up to 100% loss.
 "csv_filename": os.path.join(cwd, 'evaluation.csv'), # The variable that will be used to differentiate training and validation datasets
}

analysis = tune.run(
 run_or_experiment="PPO", # We'll be using the builtin PPO agent in RLLib
 name="MyExperiment1",
 metric='episode_reward_mean',
 mode='max',
 stop={
 "training_iteration": 5 # Let's do 5 steps for each hyperparameter combination
 },
 config={
 "env": "MyTrainingEnv",
 "env_config": env_config_training, # The dictionary we built before
 "log_level": "WARNING",
 "framework": "torch",
 "ignore_worker_failures": True,
 "num_workers": 1, # One worker per agent. You can increase this but it will run fewer parallel trainings.
 "num_envs_per_worker": 1,
 "num_gpus": 0, # I yet have to understand if using a GPU is worth it, for our purposes, but I think it's not. This way you can train on a non-gpu enabled system.
 "clip_rewards": True,
 "lr": LEARNING_RATE, # Hyperparameter grid search defined above
 "gamma": 0.50, # This can have a big impact on the result and needs to be properly tuned (range is 0 to 1)
 "observation_filter": "MeanStdFilter",
 "model": {
 "fcnet_hiddens": FC_SIZE, # Hyperparameter grid search defined above
 },
 "sgd_minibatch_size": MINIBATCH_SIZE, # Hyperparameter grid search defined above
 "evaluation_interval": 1, # Run evaluation on every iteration
 "evaluation_config": {
 "env_config": env_config_evaluation, # The dictionary we built before (only the overriding keys to use in evaluation)
 "explore": False, # We don't want to explore during evaluation. All actions have to be repeatable.
 },
 },
 num_samples=1, # Have one sample for each hyperparameter combination. You can have more to average out randomness.
 keep_checkpoints_num=10, # Keep the last 2 checkpoints
 checkpoint_freq=1, # Do a checkpoint on each iteration (slower but you can pick more finely the checkpoint to use later)
)

Once you launch this, it will block (meaning it will stay running until the stop condition happens for all samples). You will receive a console output that will show the training progress and all the hyperparameters that are being used in each trial.

Monitoring

You can basically monitor two things: how Ray is behaving on your cluster (local or distributed, in this example it will be a local cluster), and how is the training proceeding within the TensorTrade environment.

Ray Dashboard

The Ray Dashboard can be accessed by default at http://127.0.0.1:8265. If you want to access it remotely, you just need to specify dashboard_host="0.0.0.0" as a ray.init() parameter. This will allow external\remote connections to the Dashboard, provided the newtork routing\accessibility and eventual firewall is correctly configured.

The Dashboard will show resource usage statistics on the nodes working on the cluster, most importantly CPU and RAM usage. Please refer to the official dashboard documentation [https://docs.ray.io/en/latest/ray-dashboard.html] for further info on that.

TensorBoard

In order to browse the TensorBoard you first need to launch it, running this console command:

tensorboard --logdir path\to\Ray\results\folder

You can then access it by default at http://127.0.0.1:6006. As with the Ray Dashboard, if you want to access it remotely, you need to specify --host 0.0.0.0 in the commandline parameter, like:

tensorboard --logdir path\to\Ray\results\folder --host 0.0.0.0

The most important values you need to watch out for during a training are tune/episode_reward_min, tune/episode_reward_mean and tune/episode_reward_max that represent the minimum, average and maximum reward obtained by the agent during training on that specific iteration, using the training dataset.

Alongside with those three, there are the evaluation counterparts, so tune/evaluation/episode_reward_min, tune/evaluation/episode_reward_mean and tune/evaluation/episode_reward_max which represent the same metric, calculated on the evaluation dataset.

The best model will be the one that will score the highest evaluation values, given that the training values will be always higher\better than the evaluation ones.

 Renderers and Plotly Chart

Renderers and Plotly Chart

Data Loading Function

 Stochastic Data

Stochastic Data

Generating Price Data using Stocastic Processes

 Ledger Example

Ledger Example

Install master branch of TensorTrade

 Using Ray with TensorTrade

Using Ray with TensorTrade

In this tutorial, we are going to learn how to use ray with TensorTrade in order to create a profitable algorithm on a predictable sine curve. You may be asking yourself, why use something so simple when the real world data is much more difficult to predict? Now this is a very good question and there is a simple answer.

“The man who moves a mountain begins by carrying away small stones.”

- Confucius

Before trying to jump into the world of complex trading environments, a simple sine curve can be used to perform a sanity check on your trading algorithm. The reward and action scheme you use should be able to make money on the predictable pattern of a sine curve. If it does not, then you know there is no possibility success will be found on a more complex environment. There are some answers we would like to know fast before we waste time and resources in developing an algorithm which are and one of them is, does our RewardScheme correctly specify the goal we are after?

In this tutorial we will propose a new reward scheme and action scheme and show that you can actually have the reward scheme be dependent on the action scheme. This will be done through the use of a DataFeed. We first, however, need to install ray.

!pip install ray==0.8.7
!pip install symfit

We will begin by defining the two instruments we want to define our portfolio with. We will be using the U.S. dollar and fake coin called TensorTrade Coin.

from tensortrade.oms.instruments import Instrument

USD = Instrument("USD", 2, "U.S. Dollar")
TTC = Instrument("TTC", 8, "TensorTrade Coin")

Now let us look at the curve we will be using to define our price.

[image: ../_images/sine_curve.png]

Ideally, what we will be expecting from our agent is that it will be able to sell at the peaks and buy at the troughs. We will move on to defining our action scheme. The ActionScheme we are going to build is going to be extremely simple. There are only 3 states that our agent can be in which are buy, sell, and hold. We will make use of a new function in the library, proportion_order. This function enables the user to make an order that can take a percentage of funds at a particular wallet and send it to another. Therefore, we want to structure a way to only have two actions in our scheme and use them as indicators to move our funds to the opposite wallet.

from gym.spaces import Discrete

from tensortrade.env.default.actions import TensorTradeActionScheme

from tensortrade.env.generic import ActionScheme, TradingEnv
from tensortrade.core import Clock
from tensortrade.oms.instruments import ExchangePair
from tensortrade.oms.wallets import Portfolio
from tensortrade.oms.orders import (
 Order,
 proportion_order,
 TradeSide,
 TradeType
)

class BSH(TensorTradeActionScheme):

 registered_name = "bsh"

 def __init__(self, cash: 'Wallet', asset: 'Wallet'):
 super().__init__()
 self.cash = cash
 self.asset = asset

 self.listeners = []
 self.action = 0

 @property
 def action_space(self):
 return Discrete(2)

 def attach(self, listener):
 self.listeners += [listener]
 return self

 def get_orders(self, action: int, portfolio: 'Portfolio'):
 order = None

 if abs(action - self.action) > 0:
 src = self.cash if self.action == 0 else self.asset
 tgt = self.asset if self.action == 0 else self.cash
 order = proportion_order(portfolio, src, tgt, 1.0)
 self.action = action

 for listener in self.listeners:
 listener.on_action(action)

 return [order]

 def reset(self):
 super().reset()
 self.action = 0

Next, we want to create our reward scheme to reflect how well we are positioned in the environment. Essentially, we want to make a mapping that shows how we would like our rewards to be reflected for each state we are in. The following shows such a mapping:

	State
	Price Up
	Price Down

	All funds in cash wallet (0)
	-
	+

	All funds in asset wallet (1)
	+
	-

The signs in the table show what we would like the sign of the rewards to be. The position-based reward scheme (PBR) achieves this mapping.

from tensortrade.env.default.rewards import TensorTradeRewardScheme
from tensortrade.feed.core import Stream, DataFeed

class PBR(TensorTradeRewardScheme):

 registered_name = "pbr"

 def __init__(self, price: 'Stream'):
 super().__init__()
 self.position = -1

 r = Stream.sensor(price, lambda p: p.value, dtype="float").diff()
 position = Stream.sensor(self, lambda rs: rs.position, dtype="float")

 reward = (r * position).fillna(0).rename("reward")

 self.feed = DataFeed([reward])
 self.feed.compile()

 def on_action(self, action: int):
 self.position = -1 if action == 0 else 1

 def get_reward(self, portfolio: 'Portfolio'):
 return self.feed.next()["reward"]

 def reset(self):
 self.position = -1
 self.feed.reset()

Finally, we would like to make sure we can see if the agent is selling at the peaks and buying at the troughs. We will make a quick Renderer that can show this information using Matplotlib.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from tensortrade.env.generic import Renderer

class PositionChangeChart(Renderer):

 def __init__(self, color: str = "orange"):
 self.color = "orange"

 def render(self, env, **kwargs):
 history = pd.DataFrame(env.observer.renderer_history)

 actions = list(history.action)
 p = list(history.price)

 buy = {}
 sell = {}

 for i in range(len(actions) - 1):
 a1 = actions[i]
 a2 = actions[i + 1]

 if a1 != a2:
 if a1 == 0 and a2 == 1:
 buy[i] = p[i]
 else:
 sell[i] = p[i]

 buy = pd.Series(buy)
 sell = pd.Series(sell)

 fig, axs = plt.subplots(1, 2, figsize=(15, 5))

 fig.suptitle("Performance")

 axs[0].plot(np.arange(len(p)), p, label="price", color=self.color)
 axs[0].scatter(buy.index, buy.values, marker="^", color="green")
 axs[0].scatter(sell.index, sell.values, marker="^", color="red")
 axs[0].set_title("Trading Chart")

 performance_df = pd.DataFrame().from_dict(env.action_scheme.portfolio.performance, orient='index')
 performance_df.plot(ax=axs[1])
 axs[1].set_title("Net Worth")

 plt.show()

Train
Now in order to use our custom environment in ray we must first write a function that creates an instance of the TradingEnv from a configuration dictionary.

 Components

Components

TensorTrade is built around modular components that together make up a trading strategy. Trading strategies combine reinforcement learning agents with composable trading logic in the form of a gym environment. A trading environment is made up of a set of modular components that can be mixed and matched to create highly diverse trading and investment strategies.

Just like electrical components, the purpose of TensorTrade components is to be able to mix and match them as necessary.

 Action Scheme

Action Scheme

An ActionScheme defines the action space of the environment and interprets the action of an agent and how it gets applied to the environment.

For example, if we were using a discrete action space of 3 actions (0 = hold, 1 = buy 100 %, 2 = sell 100%), our learning agent does not need to know that returning an action of 1 is equivalent to buying an instrument. Rather, the agent needs to know the reward for returning an action of 1 in specific circumstances, and can leave the implementation details of converting actions to trades to the ActionScheme.

Each action scheme has a perform method, which will interpret the agent’s specified action into a change in the environmental state. It is often necessary to store additional state within the scheme, for example to keep track of the currently traded position. This state should be reset each time the action scheme’s reset method is called, which is done automatically when the parent TradingEnv is reset.

What is an Action?

This is a review of what was mentioned inside of the overview section and explains how a RL operates. You’ll better understand what an action is in context of an observation space and reward. At the same time, hopefully this will be a proper refresher.

An action is a predefined value of how the machine should move inside of the world. To better summarize, its a command that a player would give inside of a video game in respose to a stimuli. The commands usually come in the form of an action_space. An action_space defines the rules for how a user is allowed to act inside of an environment. While it might not be easily interpretable by humans, it can easily be interpreted by a machine.

Let’s look at a good example. Let’s say we’re trying to balance a cart with a pole on it (cartpole). We can choose to move the cart left and right. This is a Discrete(2) action space.

	0 - Push cart to the left

	1 - Push cart to the right

When we get the action from the agent, the environment will see that number instead of a name.

[image: ../_images/cartpole.gif]Watch Link Run Around In Circles

An ActionScheme supports any type of action space that subclasses Space from gym. For example, here is an implementation of an action space that represents a probability simplex.

import numpy as np

from gym.spaces import Space

class Simplex(Space):

 def __init__(self, k: int) -> None:
 assert k >= 2
 super().__init__(shape=(k,), dtype=np.float32)
 self.k = k

 def sample(self) -> float:
 return np.random.dirichlet(alpha=self.k*[3*np.random.random()])

 def contains(self, x) -> bool:
 if len(x) != self.k:
 return False
 if sum(x) != 1.0:
 return False
 return True

Default

The default TensorTrade action scheme is made to be compatible with the built-in order management system (OMS). The OMS is a system that is able to have orders be submitted to it for particular financial instruments.

Simple

Overview
A discrete action scheme that determines actions based on a list of
trading pairs, order criteria, and trade sizes.

 Reward Scheme

Reward Scheme

Reward schemes receive the TradingEnv at each time step and return a float, corresponding to the benefit of that specific action. For example, if the action taken this step was a sell that resulted in positive profits, our RewardScheme could return a positive number to encourage more trades like this. On the other hand, if the action was a sell that resulted in a loss, the scheme could return a negative reward to teach the agent not to make similar actions in the future.

TensorTrade currently implements SimpleProfit, RiskAdjustedReturns and PBR (position-based returns), however more complex schemes can obviously be used instead.

Each reward scheme has a reward method, which takes in the TradingEnv at each time step and returns a float corresponding to the value of that action. As with action schemes, it is often necessary to store additional state within a reward scheme for various reasons. This state should be reset each time the reward scheme’s reset method is called, which is done automatically when the environment is reset.

Ultimately the agent creates a sequence of actions to maximize its total reward over a given time. The RewardScheme is an abstract class that encapsulates how to tell the trading bot in tensortrade if it’s trading positively or negatively over time. The same methods will be called each time for each step, and we can directly swap out compatible schemes.

from tensortrade.env.default.rewards import SimpleProfit

reward_scheme = SimpleProfit()

Simple Profit

A reward scheme that simply rewards the agent for profitable trades, no matter how it got there.

Overview

The simple profit scheme needs to keep a history of profit over time. The way it does this is through looking at the portfolio as a means of keeping track of how the portfolio moves. This is seen inside of the get_reward function.

Computing Reward

Reward is calculated as the cumulative percentage change in net worth over the previous window_size time steps

 Observer

Observer

The Observer component is what the environment uses to represent the way the agent sees the environment. The way it is built in the default environment is with the help of the DataFeed. There were many reasons for this decision, but the most important ones are that we would like to be able to compute path-dependent observations in a reliable way. We would also like to minimize lookahead biases and we would also like it to translate well into the live setting as well. To leave the opportunities broad, however, all you need to do is fill out the observe method to determine what your agent sees next.

Default

The default observer at the moment uses a structure of a look-back window in order to create an observation. After the feed is made the environment will use a window of past observations and will have the shape (window_size, n_features).

IntradayObserver

The IntradayObserver divides the DataFeed into episodes of single trading days. It takes the same parameters as the default observer and additional parameters of stop_time of type datetime.time and randomize of type bool. stop_time is the datetime.time of the timestamp in the DataFrame that marks the end of the episode. It is imperative to ensure that each trading day includes the respective timestamp. randomize determines if the episode, or trading day, should be selected randomly or in the sequence of the DataFeed. The IntradayObserver requires that the DataFeed include a Stream of timestamps named 'timestamp'.

 Stopper

Stopper

The Stopper component just evaluates whether or not the environment is done running after each step in the environment. For example, right now the default environment just evaluate if the environment is done based on the profit loss of the agent. If the profit loss drops below a certain level the environment will be done. In addition, if the feed runs out of data to give the environment will also be done for that episode.

 Informer

Informer

The Informer component just delivers contextual environment information after each step in the environment. For example, right now the default environment just delivers the portfolio, broker, and net_worth in the step functions.

 Renderer

Renderer

The Renderer is the component of the TradingEnv that lets us peek into the thoughts and actions of an agent. There are many different ways to render this type of environment, but all you need to do in order to get a different renderering is to subclass Renderer and fill in the render method. If you want to see more on how to make a Renderer from scratch check out the tutorial for using ray with TensorTrade.

Default

The default renderers are made to work with any instance of the BaseRenderer
class.

Screen Logger

Logs the records of the environment to the screen for the user to see.

 Overview

Overview

A trading environment is a reinforcement learning environment that follows OpenAI’s gym.Env specification. This allows us to leverage many of the existing reinforcement learning models in our trading agent, if we’d like.

TradingEnv steps through the various interfaces from the tensortrade library in a consistent way, and will likely not change too often as all other parts of tensortrade changes. We’re going to go through an overview of the Trading environment below.

Trading environments are fully configurable gym environments with highly composable components:

	The ActionScheme interprets and applies the agent’s actions to the environment.

	The RewardScheme computes the reward for each time step based on the agent’s performance.

	The Observer generates the next observation for the agent.

	The Stopper determines whether or not the episode is over.

	The Informer generates useful monitoring information at each time step.

	The Renderer renders a view of the environment and interactions.

That’s all there is to it, now it’s just a matter of composing each of these components into a complete environment.

When the reset method of a TradingEnv is called, all of the child components will also be reset. The internal state of each action scheme, reward scheme, observer, stopper, and informer will be set back to their default values, ready for the next episode.

What if I can’t make a particular environment?

If none of the environments available in codebase serve your needs let us know! We would love to hear about so we can keep improving the quality of our framework as well as keeping up with the needs of the people using it.

 Overview

Overview

The feed package provides useful tools when building trading environments. The primary reason for using this package is to help build the mechanisms that generate observations from an environment. Therefore, it is fitting that their primary location of use is in the Observer component. The Stream API provides the granularity needed to connect specific data sources to the Observer.

What is a Stream?

A Stream is the basic building block for the DataFeed, which is also a stream itself. Each stream has a name and a data type and they can be set after the stream is created. Streams can be created through the following mechanisms:

	generators

	iterables

	sensors

	direct implementation of Stream

For example, if you wanted to make a stream for a simple counter. We will make it such that it will start at 0 and increment by 1 each time it is called and on reset will set the count back to 0. The following code accomplishes this functionality through creating a generator function.

from tensortrade.feed import Stream

def counter():
 i = 0
 while True:
 yield i
 i += 1

s = Stream.source(counter)

In addition, you can also use the built-in count generator from the itertools package.

from itertools import count

s = Stream.source(count(start=0, step=1))

These will all create infinite streams that will keep incrementing by 1 to infinity. If you wanted to make something that counted until some finite number you can use the built in range function.

s = Stream.source(range(5))

This can also be done by giving in a list directly.

s = Stream.source([1, 2, 3, 4, 5])

The direct approach to stream creation is by subclassing Stream and implementing the forward, has_next, and reset methods. If the stream does not hold stateful information, then reset is not required to be implemented and can be ignored.

class Counter(Stream):

 def __init__(self):
 super().__init__()
 self.count = None

 def forward(self):
 if self.count is None:
 self.count = 0
 else:
 self.count += 1
 return self.count

 def has_next(self):
 return True

 def reset(self):
 self.count = None

s = Counter()

There is also a way of creating streams which serves the purpose of watching a particular object and how it changes over time. This can be done through the sensor function. For example, we can use this to directly track performance statistics on our portfolio. Here is a specific example of how we can use it to track the number of orders the are currently active inside the order management system.

from tensortrade.env.default.actions import SimpleOrders

action_scheme = SimpleOrders()

s = Stream.sensor(action_scheme.broker, lambda b: len(b.unexecuted))

As the agent and the environment are interacting with one another, this stream will be able to monitor the number of active orders being handled by the broker. This stream can then be used by either computing performance statistics and supplying them to a Renderer or simply by including it within the observation space.

Now that we have seen the different ways we can create streams, we need to understand the ways in which we can aggregate new streams from old. This is where the data type of a stream becomes important.

Using Data Types

The purpose of the data type of a stream, dtype, is to add additional functionality and behavior to a stream such that it can be aggregated with other streams of the same type in an easy and intuitive way. For example, what if the number of executed orders from the broker is not important by itself, but is important with respect to the current time of the process. This can be taken into account if we create a stream for keeping count of the active orders and another one for keeping track of the step in the process. Here is what that would look like.

from itertools import count

from tensortrade.feed import Stream
from tensortrade.env.default.actions import SimpleOrders

n = Stream.source(count(0, step=1), dtype="float")
n_active = Stream.sensor(action_scheme.broker, lambda b: len(b.unexecuted), dtype="float")

s = (n_active / (n + 1)).rename("avg_n_active")

Suppose we find that this is not a useful statistic and instead would like to know how many of the active order have been filled since the last time step. This can be done by using the lag operator on our stream and finding the difference between the current count and the count from the last time step.

n_active = Stream.sensor(action_scheme.broker, lambda b: len(b.unexecuted), dtype="float")

s = (n_active - n_active.lag()).rename("n_filled")

As you can see from the code above, we were able to make more complex streams by using simple ones. Take note, however, in the way we use the rename function. We only really want to rename a stream if we will be using it somewhere else where its name will be useful (e.g. in our feed). We do not want to name all the intermediate streams that are used to build our final statistic because the code will become too cumbersome and annoying. To avoid these complications, streams are created to automatically generate a unique name on instantiation. We leave the naming for the user to decide which streams are useful to name.

Since the most common data type is float in these tasks, the following is a list of supported special operations for it:

	Let s, s1, s2 be streams.

	Let c be a constant.

	Let n be a number.

	Unary:

	-s, s.neg()

	abs(s), s.abs()

	s**2, pow(s, n)

	Binary:

	s1 + s2, s1.add(s2), s + c, c + s

	s1 - s2, s1.sub(s2), s - c, c - s

	s1 * s2, s1.mul(s2), s * c, c * s

	s1 / s2, s1.div(s2), s / c, c / s

There are many more useful functions that can be utilized, too many to list in fact. You can find all of the. however, in the API reference section of the documentation.

Advanced Usages

The Stream API is very robust and can handle complex streaming operations, particularly for the float data type. Some of the more advanced usages include performance tracking and developing reward schemes for the default trading environment. In the following example, we will show how to track the net worth of a portfolio. This implementation will be coming directly from the wallets that are defined in the portfolio.

Suppose we have an already constructed portfolio object, `portfolio`.

worth_streams = []

for wallet in portfolio.wallets:

 total_balance = Stream.sensor(
 wallet,
 lambda w: w.total_balance.as_float(),
 dtype="float"
)

 symbol = w.instrument.symbol

 if symbol == portfolio.base_instrument.symbol
 worth_streams += [total_balance]
 else:
 price = Stream.select(
 w.exchange.streams(),
 lambda s: s.name.endswith(symbol)
)
 worth_streams += [(price * total_balance)]

net_worth = Stream.reduce(worth_streams).sum().rename("net_worth")

 Overview

Overview

An order management system (OMS) is a system that controls how an order for a
specific financial instrument is filled. In building an OMS, you have to make clear
what the lifecycle of an order is. The OMS we use in the default environment for
TensorTrade is a first attempt at building such a system. The goal of our system,
however, was meant to serve the purpose simulating a real order management system.
We created it with the user in mind, hoping to give maximum customization the types
of order placed.

Portfolio

A portfolio [https://www.investopedia.com/terms/p/portfolio.asp]