TensorLayer Documentation
Release 1.8.3

TensorLayer contributors

May 17, 2018

Contents

1 User Guide 3
1.1 Installation e e e e e 3
1.2 Tutorials e e e e e e e e e e e e e e e e e 6
1.3 Examples oo e e e e e e e e 27
1.4 Development L e 29
1.5 MOre . . . o e e e e 32
2 API Reference 35
2.1 API-Layers o i e e e e 35
2.2 API-COSt . . . o e e e 109
2.3 APL-Preprocessing v v v it e e e e e e e e e e e e e e e e e e e 118
2.4 API-Tteration i i e e e e e e e e 151
2.5 APL-Utlity o o e e e 155
2.6 API - Natural Language Processing i e 161
2.7 API-Reinforcement Learning o e e e e e e e e e 174
2.8 API-Files 176
2.9 API-Visualization e e e e e 193
2.10 API-ACtivationsS o e e e e e e e e e e e e e e e 198
2.11 API- Distributed Training o 00t e e e 202
3 Command-line Reference 209
3.1 CLI-Command Line Interface e 209
4 Indices and tables 211
Python Module Index 213

TensorLayer Documentation, Release 1.8.3

Tensor
Good News: We won the Best Open Source Software Award @ ACM Multimedia

(MM) 2017.

TensorLayer is a Deep Learning (DL) and Reinforcement Learning (RL) library extended from Google TensorFlow.
It provides popular DL and RL modules that can be easily customized and assembled for tackling real-world machine
learning problems. More details can be found here.

Note: If you got problem to read the docs online, you could download the repository on GitHub, then go to /docs/
_build/html/index.html to read the docs offline. The _build folder can be generated in docs using make
html.

Contents 1

https://github.com/tensorlayer/tensorlayer
http://www.acmmm.org/2017/mm-2017-awardees/
http://www.acmmm.org/2017/mm-2017-awardees/
https://github.com/zsdonghao/tensorlayer/
https://www.tensorflow.org
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer

TensorLayer Documentation, Release 1.8.3

2 Contents

CHAPTER 1

User Guide

The TensorLayer user guide explains how to install TensorFlow, CUDA and cuDNN, how to build and train neural
networks using TensorLayer, and how to contribute to the library as a developer.

1.1 Installation

TensorLayer has some prerequisites that need to be installed first, including TensorFlow , numpy and matplotlib. For
GPU support CUDA and cuDNN are required.

If you run into any trouble, please check the TensorFlow installation instructions which cover installing the TensorFlow
for a range of operating systems including Mac OX, Linux and Windows, or ask for help on tensorlayer @ gmail.com
or FQA.

1.1.1 Step 1 : Install dependencies

TensorLayer is build on the top of Python-version TensorFlow, so please install Python first.

Note: We highly recommend python3 instead of python2 for the sake of future.

Python includes pip command for installing additional modules is recommended. Besides, a virtual environment via
virtualenv can help you to manage python packages.

Take Python3 on Ubuntu for example, to install Python includes pip, run the following commands:

sudo apt—-get install python3
sudo apt-get install python3-pip
sudo pip3 install virtualenv

To build a virtual environment and install dependencies into it, run the following commands: (You can also skip to
Step 3, automatically install the prerequisites by TensorLayer)

https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://www.tensorflow.org/versions/master/get_started/os_setup.html
mailto:tensorlayer@gmail.com
http://tensorlayer.readthedocs.io/en/latest/user/more.html
http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/

TensorLayer Documentation, Release 1.8.3

virtualenv env

env/bin/pip install matplotlib
env/bin/pip install numpy
env/bin/pip install scipy
env/bin/pip install scikit-image

To check the installed packages, run the following command:

’env/bin/pip list

After that, you can run python script by using the virtual python as follow.

’env/bin/python *.pYy

1.1.2 Step 2 : TensorFlow

The installation instructions of TensorFlow are written to be very detailed on TensorFlow website. However, there are
something need to be considered. For example, TensorFlow officially supports GPU acceleration for Linux, Mac OX
and Windows at present.

Warning: For ARM processor architecture, you need to install TensorFlow from source.

1.1.3 Step 3 : TensorLayer

The simplest way to install TensorLayer is as follow, it will also install the numpy and matplotlib automatically.

[stable version] pip install tensorlayer
[master version] pip install git+https://github.com/zsdonghao/tensorlayer.git

However, if you want to modify or extend TensorLayer, you can download the repository from Github and install it as
follow.

cd to the root of the git tree
pip install -e .

This command will run the setup . py to install TensorLayer. The —e reflects editable, then you can edit the source
code in tensorlayer folder, and import the edited TensorLayer.

1.1.4 Step 4 : GPU support

Thanks to NVIDIA supports, training a fully connected network on a GPU, which may be 10 to 20 times faster than
training them on a CPU. For convolutional network, may have 50 times faster. This requires an NVIDIA GPU with
CUDA and cuDNN support.

CUDA

The TensorFlow website also teach how to install the CUDA and cuDNN, please see TensorFlow GPU Support.
Download and install the latest CUDA is available from NVIDIA website:
¢ CUDA download and install

4 Chapter 1. User Guide

https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://github.com/zsdonghao/tensorlayer
https://www.tensorflow.org/versions/master/get_started/os_setup.html#optional-install-cuda-gpus-on-linux
https://developer.nvidia.com/cuda-downloads

TensorLayer Documentation, Release 1.8.3

If CUDA is set up correctly, the following command should print some GPU information on the terminal:

python —-c "import tensorflow"

cuDNN

Apart from CUDA, NVIDIA also provides a library for common neural network operations that especially speeds up
Convolutional Neural Networks (CNNs). Again, it can be obtained from NVIDIA after registering as a developer (it
take a while):

Download and install the latest cuDNN is available from NVIDIA website:
¢ cuDNN download and install

To install it, copy the * . h files to /usr/local/cuda/include and the 1ib~ files to /usr/local/cuda/
libe4.

1.1.5 Windows User
TensorLayer is built on the top of Python-version TensorFlow, so please install Python first. NoteWe highly recom-
mend installing Anaconda. The lowest version requirements of Python is py35.

Anaconda download

GPU support

Thanks to NVIDIA supports, training a fully connected network on a GPU, which may be 10 to 20 times faster than
training them on a CPU. For convolutional network, may have 50 times faster. This requires an NVIDIA GPU with
CUDA and cuDNN support.

1. Installing Microsoft Visual Studio

You should preinstall Microsoft Visual Studio (VS) before installing CUDA. The lowest version requirements is
VS2010. We recommend installing VS2015 or VS2013. CUDA7.5 supports VS2010, VS2012 and VS2013. CUDAS.O
also supports VS2015.

2. Installing CUDA

Download and install the latest CUDA is available from NVIDIA website:
CUDA download

We do not recommend modifying the default installation directory.

3. Installing cuDNN

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep
neural networks. Download and extract the latest cuDNN is available from NVIDIA website:

cuDNN download

After extracting cuDNN, you will get three folders (bin, lib, include). Then these folders should be copied to CUDA
installation. (The default installation directory is C:\Program Files\NVIDIA GPU Computing ToolkiNCUDA\vS.0)

1.1. Installation 5

https://developer.nvidia.com/cudnn
https://www.continuum.io/downloads
https://developer.nvidia.com/CUDA-downloads
https://developer.nvidia.com/cuDNN

TensorLayer Documentation, Release 1.8.3

Installing TensorLayer

You can easily install Tensorlayer using pip in CMD

pip install tensorflow #CPU version

pip install tensorflow-gpu #GPU version (GPU version and CPU version just choose_,
—one)

pip install tensorlayer #Install tensorlayer

Test

Enter “python” in CMD. Then:

import tensorlayer

If there is no error and the following output is displayed, the GPU version is successfully installed.

successfully opened CUDA library cublas64_80.dll locally
successfully opened CUDA library cuDNN64_5.dll locally
successfully opened CUDA library cufft64_80.dll locally
successfully opened CUDA library nvcuda.dll locally
successfully opened CUDA library curandé64_80.dll locally

If there is no error, the CPU version is successfully installed.

1.1.6 Issue

If you get the following output when import tensorlayer, please read FQA.

_tkinter.TclError: no display name and no S$SDISPLAY environment variable

1.2 Tutorials

For deep learning, this tutorial will walk you through building handwritten digits classifiers using the MNIST dataset,
arguably the “Hello World” of neural networks. For reinforcement learning, we will let computer learns to play Pong
game from the original screen inputs. For nature language processing, we start from word embedding, and then
describe language modeling and machine translation.

This tutorial includes all modularized implementation of Google TensorFlow Deep Learning tutorial, so you could
read TensorFlow Deep Learning tutorial as the same time [en] [cn] .

Note: For experts: Read the source code of InputLayer and DenseLayer, you will understand how TensorLayer
work. After that, we recommend you to read the codes on Github directly.

1.2.1 Before we start

The tutorial assumes that you are somewhat familiar with neural networks and TensorFlow (the library which Tensor-
Layer is built on top of). You can try to learn the basic of neural network from the Deeplearning Tutorial.

6 Chapter 1. User Guide

http://tensorlayer.readthedocs.io/en/latest/user/more.html
https://www.tensorflow.org/versions/master/tutorials/index.html
http://wiki.jikexueyuan.com/project/tensorflow-zh/
https://github.com/zsdonghao/tensorlayer/
https://github.com/zsdonghao/tensorlayer/
https://github.com/zsdonghao/tensorlayer/
http://deeplearning.stanford.edu/tutorial/

TensorLayer Documentation, Release 1.8.3

For a more slow-paced introduction to artificial neural networks, we recommend Convolutional Neural Networks for
Visual Recognition by Andrej Karpathy et al., Neural Networks and Deep Learning by Michael Nielsen.

To learn more about TensorFlow, have a look at the TensorFlow tutorial. You will not need all of it, but a basic
understanding of how TensorFlow works is required to be able to use TensorLayer. If you're new to TensorFlow,
going through that tutorial.

1.2.2 TensorLayer is simple

The following code shows a simple example of TensorLayer, see tutorial mnist_simple.py . We
provide a lot of simple functions like fit () , test ()), however, if you want to understand the de-

tails and be a machine learning expert, we suggest you to train the network by using the data itera-

tion toolbox (tl.iterate) and the TensorFlow’s native API like sess.run (), see tutorial_mnist.py
<https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mnist.py>_ , tutorial_mlp_dropoutl.py

and tutorial_mlp_dropout2.py <https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py>_
for more details.

import tensorflow as tf
import tensorlayer as tl

sess = tf.InteractiveSession ()

prepare data
X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1,784))

define placeholder
x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None,], name='y_ ')

define the network
network = tl.layers.Inputlayer (x, name='input_layer")
network tl.layers.DropoutLayer (network, keep=0.8, name='dropl')
network = tl.layers.Denselayer (network, n_units=800,
act = tf.nn.relu, name='relul')

network = tl.layers.DropoutLayer (network, keep=0.5, name='drop2')
network = tl.layers.Denselayer (network, n_units=800,
act = tf.nn.relu, name='relu2')
network = tl.layers.DropoutLayer (network, keep=0.5, name='drop3"')
the softmax is implemented internally in tl.cost.cross_entropy(y, y_, 'cost') to
speed up computation, so we use identity here.
see tf.nn.sparse_softmax_cross_entropy with_logits()
network = tl.layers.Denselayer (network, n_units=10,
act = tf.identity,
name="'output_layer")
define cost function and metric.
y = network.outputs
cost = tl.cost.cross_entropy(y, y_, 'cost')
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
acc = tf.reduce_mean(tf.cast (correct_prediction, tf.float32))
y_op = tf.argmax(tf.nn.softmax(y), 1)

define the optimizer

train_params = network.all_ params

train_op = tf.train.AdamOptimizer (learning_rate=0.0001, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_

—~list=train params)

(continues on next page)

1.2. Tutorials 7

http://cs231n.github.io/
http://cs231n.github.io/
http://neuralnetworksanddeeplearning.com/
https://www.tensorflow.org/versions/master/tutorials/index.html
https://github.com/zsdonghao/tensorlayer/
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

initialize all variables in the session

s
tl.layers.initialize_global_variables (sess)

print network information
network.print_params ()
network.print_layers ()

train the network

tl.utils.fit (sess, network, train_op, cost, X_train, y_train, x, y_,
acc=acc, batch_size=500, n_epoch=500, print_freg=5,
X_val=X_val, y_val=y_val, eval_train=False)

evaluation
tl.utils.test (sess, network, acc, X_test, y_test, x, y_, batch_size=None, cost=cost)

save the network to .npz file
tl.files.save_npz (network.all params , name='model.npz')
sess.close ()

1.2.3 Run the MNIST example

In the first part of the tutorial, we will just run the MNIST example that’s included in the source distribution of
TensorLayer. MNIST dataset contains 60000 handwritten digits that is commonly used for training various image
processing systems, each of digit has 28x28 pixels.

We assume that you have already run through the Installation. If you haven’t done so already, get a copy of
the source tree of TensorLayer, and navigate to the folder in a terminal window. Enter the folder and run the
tutorial mnist.py example script:

python tutorial_mnist.py

If everything is set up correctly, you will get an output like the following:

tensorlayer: GPU MEM Fraction 0.300000
Downloading train-images-idx3-ubyte.gz
Downloading train-labels-idxl-ubyte.gz
Downloading tl0k-images-idx3-ubyte.gz
Downloading tl0Ok-labels-idxl-ubyte.gz

(continues on next page)

8 Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer/

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

X_train.shape (50000, 784)
y_train.shape (50000,)
X_val.shape (10000, 784)
y_val.shape (10000,)
X_test.shape (10000, 784)
y_test.shape (10000,)

X float32 y int64

[TL] InputLayer input_layer (?, 784)

[TL] DropoutLayer dropl: keep: 0.800000

[TL] Denselayer relul: 800, relu

[TL] DropoutLayer drop2: keep: 0.500000

[TL] Denselayer relu2: 800, relu

[TL] DropoutLayer drop3: keep: 0.500000

[TL] Denselayer output_layer: 10, identity

param 0: (784, 800) (mean: -0.000053, median: -0.000043 std: 0.035558)
param 1: (800,) (mean 0.000000, median: 0.000000 std: 0.000000)
param 2: (800, 800) (mean: 0.000008, median: 0.000041 std: 0.035371)
param 3: (800,) (mean 0.000000, median: 0.000000 std: 0.000000)
param 4: (800, 10) (mean 0.000469, median: 0.000432 std: 0.049895)
param 5: (10,) (mean: 0.000000, median: 0.000000 std: 0.000000)

num of params: 1276810

layer 0: Tensor ("dropout/mul_1:0", shape=(?, 784), dtype=float32)
layer 1: Tensor ("Relu:0", shape=(?, 800), dtype=float32)

layer 2: Tensor ("dropout_1/mul_1:0", shape=(?, 800), dtype=float32)
layer 3: Tensor ("Relu_1:0", shape=(?, 800), dtype=float32)

layer 4: Tensor ("dropout_2/mul_1:0", shape=(?, 800), dtype=float32)
layer 5: Tensor("add_2:0", shape=(?, 10), dtype=float32)

learning_rate: 0.000100
batch_size: 128

Epoch 1 of 500 took 0.342539s
train loss: 0.330111
val loss: 0.298098
val acc: 0.910700

Epoch 10 of 500 took 0.356471s
train loss: 0.085225
val loss: 0.097082
val acc: 0.971700

Epoch 20 of 500 took 0.352137s
train loss: 0.040741
val loss: 0.070149
val acc: 0.978600

Epoch 30 of 500 took 0.350814s
train loss: 0.022995
val loss: 0.060471
val acc: 0.982800

Epoch 40 of 500 took 0.350996s
train loss: 0.013713
val loss: 0.055777
val acc: 0.983700

The example script allows you to try different models, including Multi-Layer Perceptron, Dropout, Dropconnect,

1.2. Tutorials 9

TensorLayer Documentation, Release 1.8.3

Stacked Denoising Autoencoder and Convolutional Neural Network. Select different models from if __ _name_

== main__ ':.

main_test_layers (model="'relu')
main_test_denoise_AE (model='relu')
main_test_stacked_denoise_AE (model="'relu')
main_test_cnn_layer ()

1.2.4 Understand the MNIST example

Let’s now investigate what’s needed to make that happen! To follow along, open up the source code.

Preface

The first thing you might notice is that besides TensorLayer, we also import numpy and tensorflow:

import tensorflow as tf

import tensorlayer as tl

from tensorlayer.layers import set_keep
import numpy as np

import time

As we know, TensorLayer is built on top of TensorFlow, it is meant as a supplement helping with some tasks, not as a
replacement. You will always mix TensorLayer with some vanilla TensorFlow code. The set_keep is used to access
the placeholder of keeping probabilities when using Denoising Autoencoder.

Loading data

The first piece of code defines a function 1load_mnist_dataset (). Its purpose is to download the MNIST dataset
(if it hasn’t been downloaded yet) and return it in the form of regular numpy arrays. There is no TensorLayer involved
at all, so for the purpose of this tutorial, we can regard it as:

X_train, y_train, X_val, y_val, X_ test, y_test = \
tl.files.load_mnist_dataset (shape=(-1,784))

X_train.shape is (50000, 784), to be interpreted as: 50,000 images and each image has 784 pixels.
y_train.shape is simply (50000,), which is a vector the same length of X_train giving an integer class
label for each image — namely, the digit between 0 and 9 depicted in the image (according to the human annotator who
drew that digit).

For Convolutional Neural Network example, the MNIST can be load as 4D version as follow:

X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1, 28, 28, 1))

X_train.shapeis (50000, 28, 28, 1) which represents 50,000 images with 1 channel, 28 rows and 28
columns each. Channel one is because it is a grey scale image, every pixel have only one value.

Building the model

This is where TensorLayer steps in. It allows you to define an arbitrarily structured neural network by creating and
stacking or merging layers. Since every layer knows its immediate incoming layers, the output layer (or output layers)

10 Chapter 1. User Guide

TensorLayer Documentation, Release 1.8.3

of a network double as a handle to the network as a whole, so usually this is the only thing we will pass on to the rest
of the code.

As mentioned above, tutorial mnist.py supports four types of models, and we implement that via easily
exchangeable functions of the same interface. First, we’ll define a function that creates a Multi-Layer Percep-
tron (MLP) of a fixed architecture, explaining all the steps in detail. We’ll then implement a Denosing Autoen-
coder (DAE), after that we will then stack all Denoising Autoencoder and supervised fine-tune them. Finally, we’ll
show how to create a Convolutional Neural Network (CNN). In addition, a simple example for MNIST dataset in
tutorial_mnist_simple.py,a CNN example for CIFAR-10 datasetin tutorial_cifarl0_tfrecord.
py-

Multi-Layer Perceptron (MLP)

The first script, main_test_layers (), creates an MLP of two hidden layers of 800 units each, followed by a
softmax output layer of 10 units. It applies 20% dropout to the input data and 50% dropout to the hidden layers.

To feed data into the network, TensofFlow placeholders need to be defined as follow. The None here means the
network will accept input data of arbitrary batchsize after compilation. The x is used to hold the X_train data
and y__ is used to hold the y_train data. If you know the batchsize beforehand and do not need this flexibility,
you should give the batchsize here — especially for convolutional layers, this can allow TensorFlow to apply some
optimizations.

x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None,], name='y_ ")

The foundation of each neural network in TensorLayer is an TnputLayer instance representing the input data that
will subsequently be fed to the network. Note that the InputLayer is not tied to any specific data yet.

’network = tl.layers.Inputlayer (x, name='input')

Before adding the first hidden layer, we’ll apply 20% dropout to the input data. This is realized viaa DropoutLayer
instance:

’network = tl.layers.Dropoutlayer (network, keep=0.8, name='dropl")

Note that the first constructor argument is the incoming layer, the second argument is the keeping probability for the
activation value. Now we’ll proceed with the first fully-connected hidden layer of 800 units. Note that when stacking
a DenselLayer.

network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name='relul')

Again, the first constructor argument means that we’re stacking network on top of network. n_units simply
gives the number of units for this fully-connected layer. act takes an activation function, several of which are defined
in tensorflow.nn and tensorlayer.activation. Here we’ve chosen the rectifier, so we’ll obtain ReLUs. We’ll now
add dropout of 50%, another 800-unit dense layer and 50% dropout again:

network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop2')
network tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name='relu2')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop3')

Finally, we’ll add the fully-connected output layer which the n_units equals to the number of classes. Note that,
the softmax is implemented internally in tf.nn.sparse_softmax_cross_entropy_with_logits () to
speed up computation, so we used identity in the last layer, more detailsin t 1 .cost .cross_entropy ().

1.2. Tutorials 11

TensorLayer Documentation, Release 1.8.3

network = tl.layers.Denselayer (network,
n_units=10,
act = tf.identity,
name="'"output'")

As mentioned above, each layer is linked to its incoming layer(s), so we only need the output layer(s) to access a
network in TensorLayer:

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(y, vy_))

Here, network . outputs is the 10 identity outputs from the network (in one hot format), y_op is the integer output
represents the class index. While cost is the cross-entropy between target and predicted labels.

Denoising Autoencoder (DAE)

Autoencoder is an unsupervised learning model which is able to extract representative features, it has become more
widely used for learning generative models of data and Greedy layer-wise pre-train. For vanilla Autoencoder see
Deeplearning Tutorial.

The script main_test_denoise_AE () implements a Denoising Autoencoder with corrosion rate of 50%. The
Autoencoder can be defined as follow, where an Autoencoder is represented by a DenseLayer:

network = tl.layers.Inputlayer (x, name='input_ layer')
network = tl.layers.DropoutlLayer (network, keep=0.5, name='denoisingl')
network = tl.layers.Denselayer (network, n_units=200, act=tf.nn.sigmoid, name='sigmoidl
o)
recon_layerl = tl.layers.Reconlayer (network,
X_recon=x,
n_units=784,
act=tf.nn.sigmoid,
name='recon_layerl")

To train the DenseLayer, simply run ReconlLayer.pretrain (), if using denoising Autoencoder, the name
of corrosion layer (a DropoutLayer) need to be specified as follow. To save the feature images, set save to
True. There are many kinds of pre-train metrices according to different architectures and applications. For sigmoid
activation, the Autoencoder can be implemented by using KL divergence, while for rectifer, L1 regularization of
activation outputs can make the output to be sparse. So the default behaviour of ReconLayer only provide KLD
and cross-entropy for sigmoid activation function and L1 of activation outputs and mean-squared-error for rectifing
activation function. We recommend you to modify ReconLayer to achieve your own pre-train metrice.

recon_layerl.pretrain (sess,
X=X,
X_train=X_train,
X_val=X_val,
denoise_name='denoisingl',
n_epoch=200,
batch_size=128,
print_freg=10,
save=True,
save_name='"'wlpre_ ")

In addition, the script main_test_stacked_denoise_AE () shows how to stacked multiple Autoencoder to one
network and then fine-tune.

12 Chapter 1. User Guide

http://deeplearning.stanford.edu/tutorial/

TensorLayer Documentation, Release 1.8.3

Convolutional Neural Network (CNN)

Finally, the main_test_cnn_layer () script creates two CNN layers and max pooling stages, a fully-connected
hidden layer and a fully-connected output layer. More CNN examples can be found in other examples, like
tutorial_cifarlO_tfrecord.py.

network = tl.layers.Conv2d(network, 32, (5, 5), (1, 1),
act=tf.nn.relu, padding='SAME', name='cnnl')

network = tl.layers.MaxPool2d (network, (2, 2), (2, 2),
padding="'SAME', name='pooll")

network = tl.layers.Conv2d(network, 64, (5, 5), (1, 1),
act=tf.nn.relu, padding='SAME', name='cnn2')

network = tl.layers.MaxPool2d (network, (2, 2), (2, 2),
padding='SAME', name='pool2'")

network = tl.layers.FlattenLayer (network, name='flatten')

network = tl.layers.Dropoutlayer (network, keep=0.5, name='dropl")

network = tl.layers.Denselayer (network, 256, act=tf.nn.relu, name='relul')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop2')

network = tl.layers.Denselayer (network, 10, act=tf.identity, name='output')

Training the model

The remaining part of the tutorial_mnist.py script copes with setting up and running a training loop over the
MNIST dataset by using cross-entropy only.

Dataset iteration

An iteration function for synchronously iterating over two numpy arrays of input data and targets, respectively, in
mini-batches of a given number of items. More iteration function can be found in tensorlayer.iterate

tl.iterate.minibatches (inputs, targets, batchsize, shuffle=False)

Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)
cost = tf.reduce_mean (tf.nn.sparse_softmax_cross_entropy_with_logits(y, vy_))

More cost or regularization can be applied here. For example, to apply max-norm on the weight matrices, we can add
the following line.

cost = cost + tl.cost.maxnorm_regularizer(1.0) (network.all _params[0]) +
tl.cost.maxnorm_regularizer (1.0) (network.all_params[2])

Depending on the problem you are solving, you will need different loss functions, see tensorlayer.cost
for more. Apart from using network.all_params to get the variables, we can also use t1l.layers.
get_variables_with_name to get the specific variables by string name.

Having the model and the loss function here, we create update expression/operation for training the network. Tensor-
Layer do not provide many optimizers, we used TensorFlow’s optimizer instead:

1.2. Tutorials 13

TensorLayer Documentation, Release 1.8.3

train_params =
train_op =
epsilon=1e-08,

network.all_params
tf.train.AdamOptimizer (learning_rate,

use_locking=False) .minimize (cost,

betal=0.9,

beta2=0.999,
var_list=train_params)

For training the network, we fed data and the keeping probabilities to the feed_dict.

feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update(network.all_drop)

sess.run(train_op, feed_dict=feed_dict)

While, for validation and testing, we use slightly different way. All Dropout, Dropconnect, Corrosion layers need to
be disable. Weuse t1.utils.dict_to_onetosetall network.all_dropto 1.

dp_dict = tl.utils.dict_to_one(network.all_drop)
feed_dict = {x: X_test_a, y_: y_test_a}
feed_dict.update (dp_dict)

err, ac = sess.run([cost, acc], feed_ dict=feed_dict)

For evaluation, we create an expression for the classification accuracy:

correct_prediction = tf.equal(tf.argmax(y, 1), v_)

acc = tf.reduce_mean(tf.cast (correct_prediction, tf.float32))

What Next?

We also have a more advanced image classification example in tutorial_cifarl0_tfrecord.py. Please read the code
and notes, figure out how to generate more training data and what is local response normalization. After that, try to
implement Residual Network (Hint: you may want to use the Layer.outputs).

1.2.5 Run the Pong Game example

In the second part of the tutorial, we will run the Deep Reinforcement Learning example which is introduced by
Karpathy in Deep Reinforcement Learning: Pong from Pixels.

python tutorial_atari_pong.py

Before running the tutorial code, you need to install OpenAl gym environment which is a popular benchmark for
Reinforcement Learning. If everything is set up correctly, you will get an output like the following:

[2016-07-12 09:31:59,760] Making new env: Pong-v0
[TL] InputLayer input_layer (?, 6400)
[TL] Denselayer relul: 200, relu
[TL] Denselayer output_layer: 3, identity
param O0: (6400, 200) (mean: -0.000009 median: -0.000018 std: 0.017393)
param 1: (200,) (mean: 0.000000 median: 0.000000 std: 0.000000)
param 2: (200, 3) (mean: 0.002239 median: 0.003122 std: 0.096611)
param 3: (3,) (mean: 0.000000 median: 0.000000 std: 0.000000)
num of params: 1280803
layer 0: Tensor ("Relu:0", shape=(?, 200), dtype=float32)
layer 1: Tensor("add_1:0", shape=(?, 3), dtype=float32)
episode 0: game 0 took 0.17381ls, reward: -1.000000
episode 0: game 1 took 0.12629s, reward: 1.000000 !!irrrtt
episode 0: game 2 took 0.17082s, reward: -1.000000
episode 0: game 3 took 0.08944s, reward: -1.000000
(continues on next page)
14 Chapter 1. User Guide

https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py
http://doi.org/10.3389/fpsyg.2013.00124
http://karpathy.github.io/2016/05/31/rl/
https://gym.openai.com/docs

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

episode 0: game 4 took 0.09446s, reward: -1.000000
episode 0: game 5 took 0.09440s, reward: -1.000000
episode 0: game 6 took 0.32798s, reward: -1.000000
episode 0: game 7 took 0.74437s, reward: -1.000000
episode 0: game 8 took 0.43013s, reward: -1.000000
episode 0: game 9 took 0.42496s, reward: -1.000000
episode 0: game 10 took 0.37128s, reward: -1.000000
episode 0: game 11 took 0.08979s, reward: -1.000000
episode 0: game 12 took 0.09138s, reward: -1.000000
episode 0: game 13 took 0.09142s, reward: -1.000000
episode 0: game 14 took 0.09639s, reward: -1.000000
episode 0: game 15 took 0.09852s, reward: -1.000000
episode 0: game 16 took 0.09984s, reward: -1.000000
episode 0: game 17 took 0.09575s, reward: -1.000000
episode 0: game 18 took 0.09416s, reward: -1.000000
episode 0: game 19 took 0.08674s, reward: -1.000000
episode 0: game 20 took 0.09628s, reward: -1.000000
resetting env. episode reward total was -20.000000. running mean: -20.000000
episode 1: game 0 took 0.09910s, reward: -1.000000
episode 1: game 1 took 0.17056s, reward: -1.000000
episode 1: game 2 took 0.09306s, reward: -1.000000
episode 1: game 3 took 0.09556s, reward: -1.000000
episode 1: game 4 took 0.12520s, reward: 1.000000 !!irrrtt
episode 1: game 5 took 0.17348s, reward: -1.000000
episode 1: game 6 took 0.09415s, reward: -1.000000

This example allow neural network to learn how to play Pong game from the screen inputs, just like human behavior.
The neural network will play with a fake Al player, and lean to beat it. After training for 15,000 episodes, the neural
network can win 20% of the games. The neural network win 35% of the games at 20,000 episode, we can seen the
neural network learn faster and faster as it has more winning data to train. If you run it for 30,000 episode, it never
loss.

render = False
resume = False

Setting render to True, if you want to display the game environment. When you run the code again, you can set
resume to True, the code will load the existing model and train the model basic on it.

1.2. Tutorials 15

TensorLayer Documentation, Release 1.8.3

1.2.6 Understand Reinforcement learning

Pong Game

To understand Reinforcement Learning, we let computer to learn how to play Pong game from the original screen
inputs. Before we start, we highly recommend you to go through a famous blog called Deep Reinforcement Learning:
Pong from Pixels which is a minimalistic implementation of Deep Reinforcement Learning by using python-numpy
and OpenAl gym environment.

python tutorial_atari_pong.py

Policy Network

In Deep Reinforcement Learning, the Policy Network is the same with Deep Neural Network, it is our player (or
“agent”) who output actions to tell what we should do (move UP or DOWN); in Karpathy’s code, he only defined 2
actions, UP and DOWN and using a single simgoid output; In order to make our tutorial more generic, we defined 3
actions which are UP, DOWN and STOP (do nothing) by using 3 softmax outputs.

observation for training
states_batch_pl = tf.placeholder(tf.float32, shape=[None, D])

(continues on next page)

16 Chapter 1. User Guide

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

network = tl.layers.Inputlayer (states_batch_pl, name='"input_layer')
network = tl.layers.Denselayer (network, n_units=H,
act = tf.nn.relu, name='relul')
network = tl.layers.Denselayer (network, n_units=3,
act = tf.identity, name='output_layer')
probs = network.outputs
sampling_prob = tf.nn.softmax (probs)

Then when our agent is playing Pong, it calculates the probabilities of different actions, and then draw sample (action)
from this uniform distribution. As the actions are represented by 1, 2 and 3, but the softmax outputs should be start
from 0, we calculate the label value by minus 1.

prob = sess.run/(
sampling_prob,
feed_dict={states_batch_pl: x}
)
action. 1: STOP 2: UP 3: DOWN
action = np.random.choice([1l,2,3], p=prob.flatten())

ys.append(action - 1)

Policy Gradient

Policy gradient methods are end-to-end algorithms that directly learn policy functions mapping states to actions. An
approximate policy could be learned directly by maximizing the expected rewards. The parameters of a policy function
(e.g. the parameters of a policy network used in the pong example) could be trained and learned under the guidance of
the gradient of expected rewards. In other words, we can gradually tune the policy function via updating its parameters,
such that it will generate actions from given states towards higher rewards.

An alternative method to policy gradient is Deep Q-Learning (DQN). It is based on Q-Learning that tries to learn a
value function (called Q function) mapping states and actions to some value. DQN employs a deep neural network to
represent the Q function as a function approximator. The training is done by minimizing temporal-difference errors. A
neurobiologically inspired mechanism called “experience replay” is typically used along with DQN to help improve
its stability caused by the use of non-linear function approximator.

You can check the following papers to gain better understandings about Reinforcement Learning.
* Reinforcement Learning: An Introduction. Richard S. Sutton and Andrew G. Barto
* Deep Reinforcement Learning. David Silver, Google DeepMind
e UCL Course on RL

The most successful applications of Deep Reinforcement Learning in recent years include DQN with experience replay
to play Atari games and AlphaGO that for the first time beats world-class professional GO players. AlphaGO used the
policy gradient method to train its policy network that is similar to the example of Pong game.

 Atari - Playing Atari with Deep Reinforcement Learning
* Atari - Human-level control through deep reinforcement learning

* AlphaGO - Mastering the game of Go with deep neural networks and tree search

1.2. Tutorials 17

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

TensorLayer Documentation, Release 1.8.3

Dataset iteration

In Reinforcement Learning, we consider a final decision as an episode. In Pong game, a episode is a few dozen games,
because the games go up to score of 21 for either player. Then the batch size is how many episode we consider to
update the model. In the tutorial, we train a 2-layer policy network with 200 hidden layer units using RMSProp on
batches of 10 episodes.

Loss and update expressions

We create a loss expression to be minimized in training:

actions_batch_pl = tf.placeholder (tf.int32, shape=[None])

discount_rewards_batch_pl = tf.placeholder (tf.float32, shape=[None])

loss = tl.rein.cross_entropy_reward_loss (probs, actions_batch_pl,
discount_rewards_batch_pl)

sess.run (
train_op,
feed_dict={
states_batch_pl: epx,
actions_batch_pl: epy,
discount_rewards_batch_pl: disR

The loss in a batch is relate to all outputs of Policy Network, all actions we made and the corresponding discounted
rewards in a batch. We first compute the loss of each action by multiplying the discounted reward and the cross-entropy
between its output and its true action. The final loss in a batch is the sum of all loss of the actions.

What Next?
The tutorial above shows how you can build your own agent, end-to-end. While it has reasonable quality, the default
parameters will not give you the best agent model. Here are a few things you can improve.

First of all, instead of conventional MLP model, we can use CNNs to capture the screen information better as Playing
Atari with Deep Reinforcement Learning describe.

Also, the default parameters of the model are not tuned. You can try changing the learning rate, decay, or initializing
the weights of your model in a different way.

Finally, you can try the model on different tasks (games) and try other reinforcement learning algorithm in Example.

1.2.7 Run the Word2Vec example

In this part of the tutorial, we train a matrix for words, where each word can be represented by a unique row vector in
the matrix. In the end, similar words will have similar vectors. Then as we plot out the words into a two-dimensional
plane, words that are similar end up clustering nearby each other.

python tutorial_word2vec_basic.py

If everything is set up correctly, you will get an output in the end.

18 Chapter 1. User Guide

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://tensorlayer.readthedocs.io/en/latest/user/example.html

TensorLayer Documentation, Release 1.8.3

n
.

J'j . ® u Eﬁgﬁr'%’mmnan ‘f‘:&
e eng E%
mdrerscg Iond%untr: sma liticgl

omputer & wor
0 systems :’::;:WG: bﬁm'l.' sggmmj%. agﬁ areI;:_I
wortl ay “‘Jh.?e me on west Iﬂmmm
east
i b P ; lslanqg; a'ﬁS'aWHeél
o = mth
playgftandaigle , %EF r tﬁ’ﬂ&& mma‘p
the th

xientﬂé&?ﬁ WEck
. ils ma! dﬂtﬁcﬂc‘reat lﬂg fgld popular
itself i %ﬂ‘?ﬂa
"wh meelf I'Ez\' seve%rﬁﬁﬁm port it m&}{gﬁﬁ kmglcmm

A
*an
another
each no és'on'nw W garfte members“?rj’ Iargllamens
. small
f‘gﬁ? iy %9 o rm*becajuo%x:emal aolR
such dihersneqy lous tm’t%mman
Ilwiere E% naturglicial
links mn5|gmﬁ1mm %hcﬁ hin inf8rmatio?

L]
Ii&mﬁpgﬂﬁ'ﬂm main ganeral
Ekﬁnok s had'ﬂ\" between sumeneenfa
dm * withput follgem% ey
-20 Ieﬁ‘émng althWéru nd | =gl
lc@g rmderather and
- BSthalﬁulﬁif ai

4' beﬁan m‘g
but 5 t m 3 c&n EI'.E' :l .
i b 0 i
; fa) sommmes
; Fy

o il * dhen becbeme

Era
Wt 3wy Ty
. * stifhday

hejt i
—40 o v Ilﬁ Flﬂ%l alsp
sh.e L

ool itz theol
QouR;

1.2.8 Understand Word Embedding

Word Embedding

We highly recommend you to read Colah’s blog Word Representations to understand why we want to use a vector
representation, and how to compute the vectors. (For chinese reader please click. More details about word2vec can be
found in Word2vec Parameter Learning Explained.

Bascially, training an embedding matrix is an unsupervised learning. As every word is refected by an unique ID, which
is the row index of the embedding matrix, a word can be converted into a vector, it can better represent the meaning.
For example, there seems to be a constant male-female difference vector: woman man = queen - king, this
means one dimension in the vector represents gender.

The model can be created as follow.

1.2. Tutorials 19

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://dataunion.org/9331.html
http://arxiv.org/abs/1411.2738

TensorLayer Documentation, Release 1.8.3

train_inputs is a row vector, a input is an integer id of single word.

train_labels is a column vector, a label is an integer id of single word.

valid_dataset is a column vector, a valid set is an integer id of single word.
train_inputs = tf.placeholder (tf.int32, shape=[batch_size])

train_labels = tf.placeholder (tf.int32, shape=[batch_size, 1])

valid_dataset = tf.constant (valid_examples, dtype=tf.int32)

Look up embeddings for inputs.
emb_net = tl.layers.Word2vecEmbeddingInputlayer (
inputs = train_inputs,
train_labels = train_labels,
vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
num_sampled = num_sampled,
nce_loss_args = {},
E_init = tf.random_uniform_initializer (minval=-1.0, maxval=1.0),
E_init_args = {},
nce_W_init = tf.truncated_normal_initializer(
stddev=float (1.0/np.sqgrt (embedding_size))),
nce_W_init_args = {},
nce_b_init = tf.constant_initializer (value=0.0),
nce_b_init_args = {},
name ='word2vec_layer',

Dataset iteration and loss

Word2vec uses Negative Sampling and Skip-Gram model for training. Noise-Contrastive Estimation Loss (NCE) can
help to reduce the computation of loss. Skip-Gram inverts context and targets, tries to predict each context word
from its target word. We use t1.nlp.generate_skip_gram_batch to generate training data as follow, see
tutorial_generate_text.py.

NCE cost expression 1s provided by Word2vecEmbeddingInputlayer
cost = emb_net.nce_cost
train_params = emb_net.all_params

train_op = tf.train.AdagradOptimizer (learning_rate, initial_accumulator_value=0.1,
use_locking=False) .minimize (cost, var_list=train_params)

data_index = 0
while (step < num_steps):
batch_inputs, batch_labels, data_index = tl.nlp.generate_skip_gram_batch (
data=data, batch_size=batch_size, num_skips=num_skips,
skip_window=skip_window, data_index=data_index)
feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
loss_val = sess.run([train_op, cost], feed_dict=feed_dict)

—

Restore existing Embedding matrix

In the end of training the embedding matrix, we save the matrix and corresponding dictionaries. Then next
time, we can restore the matrix and directories as follow. (see main_restore_embedding_layer () in
tutorial_generate_text.py)

20 Chapter 1. User Guide

TensorLayer Documentation, Release 1.8.3

vocabulary_size = 50000

embedding_size = 128

model_file_name = "model word2vec_50k_128"
batch_size = None

print ("Load existing embedding matrix and dictionaries")
all_var = tl.files.load_npy_to_any (name=model_file_name+'.npy')
data = all_var['data']; count = all_var(['count']

dictionary = all_var(['dictionary']

reverse_dictionary = all_var|['reverse_dictionary']
tl.nlp.save_vocab (count, name='vocab_ '+model_file_name+'.txt')
del all_var, data, count

load_params = tl.files.load_npz (name=model_file_name+'.npz")

x = tf.placeholder (tf.int32, shape=[batch_size])
y_ = tf.placeholder (tf.int32, shape=[batch_size, 1])

emb_net = tl.layers.EmbeddingInputlayer (

inputs = x,

vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
name ='embedding_ layer')

tl.layers.initialize_global_variables (sess)

tl.files.assign_params (sess, [load_params([0]], emb_net)

1.2.9 Run the PTB example

Penn TreeBank (PTB) dataset is used in many LANGUAGE MODELING papers, including “Empirical Evaluation
and Combination of Advanced Language Modeling Techniques”, “Recurrent Neural Network Regularization”. It
consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary.

The PTB example is trying to show how to train a recurrent neural network on a challenging task of language modeling.

Given a sentence “I am from Imperial College London”, the model can learn to predict “Imperial College London”
from “from Imperial College”. In other word, it predict the next word in a text given a history of previous words. In
the previous example , num_steps (sequence length) is 3.

python tutorial_ptb_lstm.py

The script provides three settings (small, medium, large), where a larger model has better performance. You can
choose different settings in:

flags.DEFINE_string(
"model", "small",
"A type of model. Possible options are: small, medium, large.")

If you choose the small setting, you can see:

Epoch: 1 Learning rate: 1.000
0.004 perplexity: 5220.213 speed: 7635 wps
0.104 perplexity: 828.871 speed: 8469 wps

(continues on next page)

1.2. Tutorials 21

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

.204 perplexity: 614.071 speed: 8839 wps
.304 perplexity: 495.485 speed: 8889 wps
.404 perplexity: 427.381 speed: 8940 wps
.504 perplexity: 383.063 speed: 8920 wps
.604 perplexity: 345.135 speed: 8920 wps
.703 perplexity: 319.263 speed: 8949 wps
.803 perplexity: 298.774 speed: 8975 wps
.903 perplexity: 279.817 speed: 8986 wps
Epoch: 1 Train Perplexity: 265.558

Epoch: 1 Valid Perplexity: 178.436

O O O O O O O o

=1
O .
o -
Q
jng

13 Learning rate: 0.004
0.004 perplexity: 56.122 speed: 8594 wps
0.104 perplexity: 40.793 speed: 9186 wps
0.204 perplexity: 44.527 speed: 9117 wps
0.304 perplexity: 42.668 speed: 9214 wps
0.404 perplexity: 41.943 speed: 9269 wps
0.504 perplexity: 41.286 speed: 9271 wps
0.604 perplexity: 39.989 speed: 9244 wps
0.703 perplexity: 39.403 speed: 9236 wps
0.803 perplexity: 38.742 speed: 9229 wps
0.903 perplexity: 37.430 speed: 9240 wps

Epoch: 13 Train Perplexity: 36.643
Epoch: 13 Valid Perplexity: 121.475
Test Perplexity: 116.716

The PTB example shows that RNN is able to model language, but this example did not do something practically
interesting. However, you should read through this example and “Understand LSTM” in order to understand the
basics of RNN. After that, you will learn how to generate text, how to achieve language translation, and how to build
a question answering system by using RNN.

1.2.10 Understand LSTM

Recurrent Neural Network

We personally think Andrey Karpathy’s blog is the best material to Understand Recurrent Neural Network , after
reading that, Colah’s blog can help you to Understand LSTM Network [chinese] which can solve The Problem of
Long-Term Dependencies. We will not describe more about the theory of RNN, so please read through these blogs
before you go on.

22 Chapter 1. User Guide

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dataunion.org/9331.html

TensorLayer Documentation, Release 1.8.3

one to one one to many many to one many to many many to many
m f bt

i
r Lﬁ‘ DD_ wjﬂﬂ ;*;;

bt t ot
Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (8) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification

where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

e
|—|
|—|

Image by Andrey Karpathy

Synced sequence input and output

The model in PTB example is a typical type of synced sequence input and output, which was described by Karpathy
as “(5) Synced sequence input and output (e.g. video classification where we wish to label each frame of the video).
Notice that in every case there are no pre-specified constraints on the lengths of sequences because the recurrent
transformation (green) can be applied as many times as we like.”

The model is built as follows. Firstly, we transfer the words into word vectors by looking up an embedding matrix. In
this tutorial, there is no pre-training on the embedding matrix. Secondly, we stack two LSTMs together using dropout
between the embedding layer, LSTM layers, and the output layer for regularization. In the final layer, the model
provides a sequence of softmax outputs.

The first LSTM layer outputs [batch_size, num_steps, hidden_size] for stacking another LSTM
after it. The second LSTM layer outputs [batch_sizexnum_steps, hidden_size] for stacking a
DenseLayer after it. Then the DenseLayer computes the softmax outputs of each example n_examples =
batch_size+num_steps).

To understand the PTB tutorial, you can also read TensorFlow PTB tutorial.

(Note that, TensorLayer supports DynamicRNNLayer after v1.1, so you can set the input/output dropouts, number of
RNN layers in one single layer)

network = tl.layers.EmbeddingInputlayer (
inputs = x,
vocabulary_size = vocab_size,
embedding_size = hidden_size,
E_init = tf.random_uniform_initializer (—-init_scale, init_scale),
name ='embedding_ layer')
if is_training:
network = tl.layers.Dropoutlayer (network, keep=keep_prob, name='dropl')
network = tl.layers.RNNLayer (network,
cell_fn=tf.contrib.rnn.BasicLSTMCell,

(continues on next page)

1.2. Tutorials 23

https://www.tensorflow.org/versions/r0.9/tutorials/recurrent/index.html#recurrent-neural-networks

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

cell_init_args={'forget_bias': 0.0},
n_hidden=hidden_size,
initializer=tf.random_uniform_initializer (-init_scale, init_scale),
n_steps=num_steps,
return_last=False,
name='basic_lstm_layerl')

lstml = network

if is_training:

network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop2')

network = tl.layers.RNNLayer (network,
cell_fn=tf.contrib.rnn.BasicLSTMCell,
cell_init_args={'forget_bias': 0.0},
n_hidden=hidden_size,
initializer=tf.random_uniform_initializer(-init_scale, init_scale),
n_steps=num_steps,
return_last=False,
return_seq_2d=True,
name='basic_lstm_layer2"')

lstm2 = network

if is_training:

network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop3')

network = tl.layers.Denselayer (network,
n_units=vocab_size,
W_init=tf.random_uniform_initializer (-init_scale, init_scale),
b_init=tf.random_uniform_initializer (-init_scale, init_scale),
act = tf.identity, name='output_layer')

Dataset iteration

The batch_size can be seen as the number of concurrent computations we are running. As the following example
shows, the first batch learns the sequence information by using items O to 9. The second batch learn the sequence
information by using items 10 to 19. So it ignores the information from items 9 to 10 !n If only if we set batch_size
= 17, it will consider all the information from items 0 to 20.

The meaning of batch_size here is not the same as the batch_size in the MNIST example. In the MNIST
example, batch_size reflects how many examples we consider in each iteration, while in the PTB example,
batch_size is the number of concurrent processes (segments) for accelerating the computation.

Some information will be ignored if batch_size > 1, however, if your dataset is “long” enough (a text corpus
usually has billions of words), the ignored information would not affect the final result.

In the PTB tutorial, we set batch_size = 20, so we divide the dataset into 20 segments. At the beginning of each
epoch, we initialize (reset) the 20 RNN states for the 20 segments to zero, then go through the 20 segments separately.

An example of generating training data is as follows:

train_data = [1i for 1 in range (20)]

for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3):
x, y = batch
print (x, '\n',y)

[l 0 1 2] <——x 1st subset/ iteration
[10 11 12]]

[[1 2 3] <—y

[11 12 13]1]

(continues on next page)

24 Chapter 1. User Guide

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

[[l 3 4 5] <-—— 1st batch input 2nd subset/ iteration
[13 14 15]] <--- 2nd batch input

[[4 5 6] <--- 1lst batch target

[14 15 16]] <-—-- 2nd batch target

[[6 7 8] 3rd subset/ iteration
[16 17 181]

(L7 8 9]

[17 18 1971]

Note: This example can also be considered as pre-training of the word embedding matrix.

Loss and update expressions

The cost function is the average cost of each mini-batch:

See tensorlayer.cost.cross_entropy_seq() for more details
def loss_fn (outputs, targets, batch_size, num_steps):
Returns the cost function of Cross—-entropy of two sequences, implement

softmax internally.

outputs : 2D tensor [batch_size*num steps, n_units of output layer]
targets : 2D tensor [batch_size, num_steps], need to be reshaped.

n_examples = batch_size * num_steps

so

cost 1is the average cost of each mini-batch (concurrent process).

loss = tf.nn.seg2seq.sequence_loss_by_example (
[outputs],
[tf.reshape (targets, [-1])1,
[tf.ones ([batch_size » num_steps])])
cost = tf.reduce_sum(loss) / batch_size
return cost

Cost for Training
cost = loss_fn(network.outputs, targets, batch_size, num_steps)

For updating, truncated backpropagation clips values of gradients by the ratio of the sum of their norms, so as to make
the learning process tractable.

Truncated Backpropagation for training
with tf.variable_scope('learning rate'):
lr = tf.Variable (0.0, trainable=False)
tvars = tf.trainable_variables ()
grads, _ = tf.clip_by_global_norm(tf.gradients (cost, tvars),
max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer (1r)
train_op = optimizer.apply_gradients (zip(grads, tvars))

In addition, if the epoch index is greater than max_epoch, we decrease the learning rate by multipling 1r_decay.

new_lr_decay = lr_decay *+* max(i - max_epoch, 0.0)
sess.run(tf.assign(lr, learning_rate * new_lr_decay))

1.2. Tutorials 25

TensorLayer Documentation, Release 1.8.3

At the beginning of each epoch, all states of LSTMs need to be reseted (initialized) to zero states. Then after each
iteration, the LSTMSs’ states is updated, so the new LSTM states (final states) need to be assigned as the initial states
of the next iteration:

set all states to zero states at the beginning of each epoch

statel = tl.layers.initialize_rnn_state(lstml.initial_state)

state2 = tl.layers.initialize_rnn_state(lstm2.initial_state)

for step, (x, y) in enumerate(tl.iterate.ptb_iterator (train_data,
batch_size, num_steps)):

feed_dict

= {input_data: x, targets: vy,

lstml.initial_state: statel,

lstm2.initial_state: state2,

}

For training, enable dropout

feed_dict.update(network.all_drop)

use the new states as the initial state of next iteration

_cost, statel, state2, _ = sess.run([cost,
lstml.final_state,
lstm2.final_state,
train_opl,
feed_dict=feed_dict
)

costs += _cost; iters += num_steps

Predicting

After training the model, when we predict the next output, we no long consider the number of steps (sequence length),
i.e. batch_size, num_steps are setto 1. Then we can output the next word one by one, instead of predicting a
sequence of words from a sequence of words.

input_data_test = tf.placeholder(tf.int32, [1, 11)
targets_test = tf.placeholder(tf.int32, [1, 11])

network_test, lstml_test, lstm2_test = inference (input_data_test,
is_training=False, num_steps=1l, reuse=True)

cost_test = loss_fn(network_test.outputs, targets_test, 1, 1)

print ("Evaluation")

Testing

go through the test set step by step, it will take a while.
start_time = time.time ()

costs = 0.0; iters = 0

reset all states at the beginning

statel = tl.layers.initialize_rnn_state(lstml_test.initial_state)
state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state)

for step, (x, y) in enumerate(tl.iterate.ptb_iterator (test_data,
batch_size=1, num_steps=1)):
feed_dict = {input_data_test: x, targets_test: vy,
lstml_test.initial_state: statel,
lstm2_test.initial_state: state2,
}

_cost, statel, state2 = sess.run([cost_test,
lstml_test.final_state,
lstm2_test.final_state],
feed_dict=feed_dict

(continues on next page)

26 Chapter 1. User Guide

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

)

costs += _cost; iters += 1
test_perplexity = np.exp(costs / iters)
print ("Test Perplexity: took s" % (test_perplexity, time.time() - start_
—time))
What Next?

Now, you have understood Synced sequence input and output. Let’s think about Many to one (Sequence input and one
output), so that LSTM is able to predict the next word “English” from “I am from London, I speak ..”.

Please read and understand the code of tutorial_generate_text .py. It shows you how to restore a pre-trained
Embedding matrix and how to learn text generation from a given context.

Karpathy’s blog : “(3) Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing
positive or negative sentiment). “

1.2.11 More Tutorials

In Example page, we provide many examples include Seq2seq, different type of Adversarial Learning, Reinforcement
Learning and etc.

1.2.12 More info

For more information on what you can do with TensorLayer, just continue reading through readthedocs. Finally, the
reference lists and explains as follow.

layers (tensorlayer.layers),

activation (tensorlayer.activation),

natural language processing (tensorlayer.nlp),
reinforcement learning (tensorlayer. rein),

cost expressions and regularizers (tensorlayer. cost),
load and save files (tensorlayer. files),

helper functions (tensorlayer.utils),

visualization (tensorlayer.visuallze),

iteration functions (tensorlayer. iterate),
preprocessing functions (tensorlayer.prepro),

command line interface (tensorlayer. prepro),

1.3 Examples

1.3.1 Basics

* Multi-layer perceptron (MNIST). Classification task, see tutorial _mnist_simple.py.

1.3. Examples 27

https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py

TensorLayer Documentation, Release 1.8.3

* Multi-layer perceptron (MNIST). Classification using Iterator, see method1 and method?2.

1.3.2 Computer Vision

* Denoising Autoencoder (MNIST). Classification task, see tutorial_mnist.py.
* Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A MLP classification task, see tutorial_mnist.py.
¢ Convolutional Network (MNIST). Classification task, see tutorial_mnist.py.

e Convolutional Network (CIFAR-10). Classification task, see tutorial_cifarlO.py and tuto-
rial_cifar10_tfrecord.py.

* VGG 16 (ImageNet). Classification task, see tutorial_vggl6.py.

* VGG 19 (ImageNet). Classification task, see tutorial_vgg19.py.

* InceptionV3 (ImageNet). Classification task, see tutorial_inceptionV3_tfslim.py.
» SqueezeNet (ImageNet). Classification task, see tutorial_squeezenet.py.

* BinaryNet. Model compression, see mnist cifarl0.

* Tenary Weight Network. Model compression, see mnist cifarl0.

* DoReFa-Net. Model compression, see mnist cifarl0.

¢ Wide ResNet (CIFAR) by ritchieng.

* More CNN implementations of TF-Slim can be connected to TensorLayer via SlimNetsLayer.
* Spatial Transformer Networks by zsdonghao.

* U-Net for brain tumor segmentation by zsdonghao.

* Variational Autoencoder (VAE) for (CelebA) by yzwxx.

* Variational Autoencoder (VAE) for (MNIST) by BUPTLdy.

» Image Captioning - Reimplementation of Google’s im2txt by zsdonghao.

1.3.3 Natural Language Processing
¢ Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see tuto-
rial_ptb_Istm_state_is_tuple.py.
* Word Embedding (Word2vec). Train a word embedding matrix, see tutorial_word2vec_basic.py.
* Restore Embedding matrix. Restore a pre-train embedding matrix, see tutorial _generate_text.py.
» Text Generation. Generates new text scripts, using LSTM network, see tutorial_generate_text.py.
* Chinese Text Anti-Spam by pakrchen.
 Chatbot in 200 lines of code for Seq2Seq.

* FastText Sentence Classification (IMDB), see tutorial_imdb_fasttext.py by tomtung.

28 Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_squeezenet.py
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_mnist_cnn.py
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_binarynet_cifar10_tfrecord.py
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_tenaryweight_mnist_cnn.py
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_tenaryweight_cifar10_tfrecord.py
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_mnist_cnn.py
https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_dorefanet_cifar10_tfrecord.py
https://github.com/ritchieng/wideresnet-tensorlayer
https://github.com/tensorflow/models/tree/master/research/slim
https://arxiv.org/abs/1506.02025
https://github.com/zsdonghao/Spatial-Transformer-Nets
https://github.com/zsdonghao/u-net-brain-tumor
https://github.com/zsdonghao/u-net-brain-tumor
https://github.com/yzwxx/vae-celebA
https://github.com/BUPTLdy/tl-vae
https://github.com/tensorflow/models/tree/master/research/im2txt
https://github.com/zsdonghao/Image-Captioning
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_word2vec_basic.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py
https://github.com/pakrchen/text-antispam
https://github.com/zsdonghao/seq2seq-chatbot
http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_imdb_fasttext.py
https://github.com/tomtung

TensorLayer Documentation, Release 1.8.3

1.3.4 Adversarial Learning

DCGAN (CelebA). Generating images by Deep Convolutional Generative Adversarial Networks by zsdonghao.
* Generative Adversarial Text to Image Synthesis by zsdonghao.

* Unsupervised Image to Image Translation with Generative Adversarial Networks by zsdonghao.

* Improved CycleGAN with resize-convolution by luoxier.

* Super Resolution GAN by zsdonghao.

* DAGAN: Fast Compressed Sensing MRI Reconstruction by nebulaV.

1.3.5 Reinforcement Learning

* Policy Gradient / Network (Atari Ping Pong), see tutorial_atari_pong.py.

* Deep Q-Network (Frozen lake), see tutorial_frozenlake_dqn.py.

¢ Q-Table learning algorithm (Frozen lake), see tutorial_frozenlake_q_table.py.

* Asynchronous Policy Gradient using TensorDB (Atari Ping Pong) by nebulaV.

» AC for discrete action space (Cartpole), see tutorial_cartpole_ac.py.

* A3C for continuous action space (Bipedal Walker), see tutorial_bipedalwalker_a3c*.py.

DAGGER for (Gym Torcs) by zsdonghao.

TRPO for continuous and discrete action space by jjkke88.

1.3.6 Miscellaneous

* Distributed Training. mnist and imagenet by jorgemf.
* Merge TF-Slim into TensorLayer. tutorial_inceptionV3_tfslim.py.
* Merge Keras into TensorLayer. tutorial_keras.py.

* Data augmentation with TFRecord. Effective way to load and pre-process data, see tutorial_tfrecord®.py and
tutorial_cifar10_tfrecord.py.

» Data augmentation with TensorLayer, see tutorial_image_preprocess.py.
» TensorDB by fangde see here.
* A simple web service - TensorFlask by JoelKronander.

¢ Float 16 half-precision model, see tutorial_mnist_float16.py.

1.4 Development

TensorLayer is a major ongoing research project in Data Science Institute, Imperial College London. The goal of the
project is to develop a compositional language while complex learning systems can be build through composition of
neural network modules. The whole development is now participated by numerous contributors on Release. As an
open-source project by we highly welcome contributions! Every bit helps and will be credited.

1.4. Development 29

http://arxiv.org/abs/1511.06434
https://github.com/zsdonghao/dcgan
https://github.com/zsdonghao/text-to-image
https://github.com/zsdonghao/text-to-image
https://github.com/zsdonghao/Unsup-Im2Im
https://github.com/zsdonghao/Unsup-Im2Im
https://github.com/luoxier/CycleGAN_Tensorlayer
https://github.com/luoxier/CycleGAN_Tensorlayer
https://arxiv.org/abs/1609.04802
https://github.com/zsdonghao/SRGAN
https://github.com/nebulaV/DAGAN
https://github.com/nebulaV/DAGAN
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_dqn.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_q_table.py
https://github.com/akaraspt/tl_paper
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cartpole_ac.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_bipedalwalker_a3c_continuous_action.py
https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf
https://github.com/ugo-nama-kun/gym_torcs
https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs
https://arxiv.org/abs/1502.05477
https://github.com/jjkke88/RL_toolbox
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py
https://github.com/jorgemf
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py
https://github.com/zsdonghao/tensorlayer/tree/master/example
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py
https://github.com/fangde
https://github.com/akaraspt/tl_paper
https://github.com/JoelKronander/TensorFlask
https://github.com/JoelKronander
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py
https://github.com/zsdonghao/tensorlayer/releases

TensorLayer Documentation, Release 1.8.3

1.4.1 What to contribute

Your method and example
If you have a new method or example in term of Deep learning and Reinforcement learning, you are welcome to
contribute.

 Provide your layer or example, so everyone can use it.

» Explain how it would work, and link to a scientific paper if applicable.

» Keep the scope as narrow as possible, to make it easier to implement.

Report bugs

Report bugs at the GitHub, we normally will fix it in 5 hours. If you are reporting a bug, please include:
* your TensorLayer, TensorFlow and Python version.
* steps to reproduce the bug, ideally reduced to a few Python commands.
* the results you obtain, and the results you expected instead.

If you are unsure whether the behavior you experience is a bug, or if you are unsure whether it is related to TensorLayer
or TensorFlow, please just ask on our mailing list first.

Fix bugs
Look through the GitHub issues for bug reports. Anything tagged with “bug” is open to whoever wants to implement

it. If you discover a bug in TensorLayer you can fix yourself, by all means feel free to just implement a fix and not
report it first.

Write documentation
Whenever you find something not explained well, misleading, glossed over or just wrong, please update it! The Edit

on GitHub link on the top right of every documentation page and the [source] link for every documented entity in the
API reference will help you to quickly locate the origin of any text.

1.4.2 How to contribute

Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit on GitHub link on the top right of a
documentation page or the [source] link of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser and send us a Pull Request. All you need for
this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup TensorLayer for development.

Documentation

The documentation is generated with Sphinx. To build it locally, run the following commands:

30 Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer
mailto:hao.dong11@imperial.ac.uk
http://sphinx-doc.org/latest/index.html

TensorLayer Documentation, Release 1.8.3

pip install Sphinx
sphinx—-quickstart

cd docs
make html

If you want to re-generate the whole docs, run the following commands:

cd docs
make clean
make html

To write the docs, we recommend you to install Local RTD VM.

Afterwards, open docs/_build/html/index.html to view the documentation as it would appear on readthe-
docs. If you changed a lot and seem to get misleading error messages or warnings, run make clean html to force
Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to ensure consistency throughout the
library. For additional information on the syntax and conventions used, please refer to the following documents:

¢ reStructuredText Primer
 Sphinx reST markup constructs

* A Guide to NumPy/SciPy Documentation

Testing

TensorLayer has a code coverage of 100%, which has proven very helpful in the past, but also creates some duties:

* Whenever you change any code, you should test whether it breaks existing features by just running the test
scripts.

* Every bug you fix indicates a missing test case, so a proposed bug fix should come with a new test that fails
without your fix.

Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation looks good without any markup errors,
commit your changes to a new branch, push that branch to your fork and send us a Pull Request via GitHub’s web
interface.

All these steps are nicely explained on GitHub: https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to help us reviewing it. If it is fixing an
open issue, say, issue #123, add Fixes #123, Resolves #123 or Closes #123 to the description text, so GitHub will close
it when your request is merged.

1.4. Development 31

http://docs.readthedocs.io/en/latest/custom_installs/local_rtd_vm.html
http://tensorlayer.readthedocs.org/
http://tensorlayer.readthedocs.org/
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://guides.github.com/introduction/flow/

TensorLayer Documentation, Release 1.8.3

1.5 More

1.5.1 FQA

How to effectively learn TensorLayer

No matter what stage you are in, we recommend you to spend just 10 minutes to read the source code of TensorLayer
and the Understand layer / Your layer in this website, you will find the abstract methods are very simple for everyone.
Reading the source codes helps you to better understand TensorFlow and allows you to implement your own methods
easily. For discussion, we recommend Gitter, Help Wanted Issues, QQ group and Wechat group.

Beginner

For people who new to deep learning, the contirbutors provided a number of tutorials in this website, these tutorials
will guide you to understand autoencoder, convolutional neural network, recurrent neural network, word embedding
and deep reinforcement learning and etc. If your already understand the basic of deep learning, we recommend you to
skip the tutorials and read the example codes on Github , then implement an example from scratch.

Engineer

For people from industry, the contirbutors provided mass format-consistent examples covering computer vision, nat-
ural language processing and reinforcement learning. Besides, there are also many TensorFlow users already im-
plemented product-level examples including image captioning, semantic/instance segmentation, machine translation,
chatbot and etc, which can be found online. It is worth noting that a wrapper especially for computer vision Tf-Slim
can be connected with TensorLayer seamlessly. Therefore, you may able to find the examples that can be used in your
project.

Researcher

For people from academic, TensorLayer was originally developed by PhD students who facing issues with other
libraries on implement novel algorithm. Installing TensorLayer in editable mode is recommended, so you can extend
your methods in TensorLayer. For researches related to image such as image captioning, visual QA and etc, you may
find it is very helpful to use the existing Tf-Slim pre-trained models with TensorLayer (a specially layer for connecting
Tf-Slim is provided).

Exclude some layers from training

You may need to get the list of variables you want to update, TensorLayer provides two ways to get the variables list.

The first way is to use the all_params of a network, by default, it will store the variables in order. You can print
the variables information via t1.layers.print_all_variables (train_only=True) or network.
print_params (details=False). To choose which variables to update, you can do as below.

train_params = network.all_params[3:]

The second way is to get the variables by a given name. For example, if you want to get all variables which the layer
name contain dense, you can do as below.

train_params = tl.layers.get_variables_with_name ('dense', train_only=True,
—printable=True)

32 Chapter 1. User Guide

http://tensorlayer.readthedocs.io/en/stable/modules/layers.html
https://gitter.im/tensorlayer/Lobby#?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://waffle.io/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer/blob/master/img/img_qq.png
https://github.com/shorxp/tensorlayer-chinese/blob/master/docs/wechat_group.md
https://github.com/zsdonghao/tensorlayer
https://github.com/tensorflow/models/tree/master/slim#Pretrained
https://github.com/tensorflow/models/tree/master/slim#Pretrained

TensorLayer Documentation, Release 1.8.3

After you get the variable list, you can define your optimizer like that so as to update only a part of the variables.

train_op = tf.train.AdamOptimizer (0.001) .minimize (cost, var_list= train_params)

Logging

TensorLayer adopts the Python logging module to log running information. The logging module would print logs to
the console in default. If you want to configure the logging module, you shall follow its manual.

Visualization

Cannot Save Image

If you run the script via SSH control, sometime you may find the following error.

_tkinter.TclError: no display name and no S$DISPLAY environment variable

If happen, use import matplotlib and matplotlib.use ('Agg') before import tensorlayer as
t 1. Alternatively, add the following code into the top of visualize.py or in your own code.

import matplotlib
matplotlib.use('Agg")
import matplotlib.pyplot as plt

Install Master Version

To use all new features of TensorLayer, you need to install the master version from Github. Before that, you need to
make sure you already installed git.

[stable version] pip install tensorlayer
[master version] pip install git+https://github.com/zsdonghao/tensorlayer.git

Editable Mode

e 1. Download the TensorLayer folder from Github.
e 2. Before editing the TensorLayer . py file.

e If your script and TensorLayer folder are in the same folder, when you edit the . py inside Tensor-
Layer folder, your script can access the new features.

 If your script and TensorLayer folder are not in the same folder, you need to run the following
command in the folder contains setup . py before you edit . py inside TensorLayer folder.

pip install -e

Load Model

Note that,the t1.files.load_npz () can only able to load the npz model saved by t1.files.save_npz ().
If you have a model want to load into your TensorLayer network, you can first assign your parameters into a list in
order, thenuse t1.files.assign_params () to load the parameters into your TensorLayer model.

1.5. More 33

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html

TensorLayer Documentation, Release 1.8.3

1.5.2 Recruitment

TensorLayer Contributors

TensorLayer contributors are from Imperial College, Tsinghua University, Carnegie Mellon University, Google, Mi-
crosoft, Bloomberg and etc. There are many functions need to be contributed such as Maxout, Neural Turing Machine,
Attention, TensorLayer Mobile and etc. Please push on GitHub, every bit helps and will be credited. If you are inter-
ested in working with us, please contact us.

Data Science Institute, Imperial College London

Data science is therefore by nature at the core of all modern transdisciplinary scientific activities, as it involves the
whole life cycle of data, from acquisition and exploration to analysis and communication of the results. Data science
is not only concerned with the tools and methods to obtain, manage and analyse data: it is also about extracting value
from data and translating it from asset to product.

Launched on 1st April 2014, the Data Science Institute at Imperial College London aims to enhance Imperial’s excel-
lence in data-driven research across its faculties by fulfilling the following objectives.

The Data Science Institute is housed in purpose built facilities in the heart of the Imperial College campus in South
Kensington. Such a central location provides excellent access to collabroators across the College and across London.

* To act as a focal point for coordinating data science research at Imperial College by facilitating access to funding,
engaging with global partners, and stimulating cross-disciplinary collaboration.

* To develop data management and analysis technologies and services for supporting data driven research in the
College.

* To promote the training and education of the new generation of data scientist by developing and coordinating
new degree courses, and conducting public outreach programmes on data science.

* To advise College on data strategy and policy by providing world-class data science expertise.

* To enable the translation of data science innovation by close collaboration with industry and supporting com-
mercialization.

If you are interested in working with us, please check our vacancies and other ways to get involved , or feel free to
contact us.

34 Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer
mailto:hao.dong11@imperial.ac.uk
https://www.imperial.ac.uk/data-science/get-involved/vacancies/
https://www.imperial.ac.uk/data-science/get-involved/
https://www.imperial.ac.uk/data-science/get-involved/contact-us/

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API - Layers

TensorLayer provides rich layer implementations trailed for various benchmarks and domain-specific problems. In
addition, we also support transparent access to native TensorFlow parameters. For example, we provide not only layers
for local response normalization, but also layers that allow user to apply t £ . nn. lrnonnetwork.outputs. More
functions can be found in TensorFlow API.

2.1.1 Understanding the Basic Layer

All TensorLayer layers have a number of properties in common:

e layer.outputs : a Tensor, the outputs of current layer.

* layer.all_params : alist of Tensor, all network variables in order.

* layer.all_layers : alist of Tensor, all network outputs in order.

e layer.all_drop : adictionary of {placeholder : float}, all keeping probabilities of noise layers.
All TensorLayer layers have a number of methods in common:

e layer.print_params () : print network variable information in order (after tl.layers.
initialize_global_variables (sess)). alternatively, print all variables by tl.layers.
print_all variables().

e layer.print_layers () : print network layer information in order.

e layer.count_params () : print the number of parameters in the network.

35

https://www.tensorflow.org/versions/master/api_docs/index.html

TensorLayer Documentation, Release 1.8.3

A network starts with the input layer and is followed by layers stacked in order. A network is essentially a Layer
class. The key properties of a network are network.all_params, network.all_layers and network.
all_drop. The all_params is a list which store pointers to all network parameters in order. For example, the
following script define a 3 layer network, then:

all_params =[WI, bl, W2, b2, W_out, b_out]

To get specified variable information, you can use network.all_params[2:3] or
get_variables_with_name (). all_layers is a list which stores the pointers to the outputs of all
layers, see the example as follow:

all_layers = [drop(?,784), relu(?,800), drop(?,800), relu(?,800), drop(?,800)], identity(?,10)]

where ? reflects a given batch size. You can print the layer and parameters information by using network.
print_layers () and network.print_params (). To count the number of parameters in a network, run
network.count_params ().

sess = tf.InteractiveSession ()
x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None,], name='y_ ')

network = tl.layers.Inputlayer (x, name='"input_ layer")
network = tl.layers.Dropoutlayer (network, keep=0.8, name='dropl")
network = tl.layers.Denselayer (network, n_units=800,

act = tf.nn.relu, name='relul')
network = tl.layers.DropoutlLayer (network, keep=0.5, name='drop2'")
network = tl.layers.Denselayer (network, n_units=800,

act = tf.nn.relu, name='relu2')
network = tl.layers.DropoutlLayer (network, keep=0.5, name='drop3'")
network = tl.layers.Denselayer (network, n_units=10,

act = tl.activation.identity,

name="'output_layer")

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)

cost = tl.cost.cross_entropy(y, y_)

train_params = network.all_ params

train_op = tf.train.AdamOptimizer (learning_rate, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_list,

—= train_params)

tl.layers.initialize_global_variables (sess)

network.print_params ()
network.print_layers()

In addition, network.all_drop is a dictionary which stores the keeping probabilities of all noise layers. In the
above network, they represent the keeping probabilities of dropout layers.

In case for training, you can enable all dropout layers as follow:

feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update(network.all_drop)

loss, _ = sess.run([cost, train_op], feed_ dict=feed_dict)
feed_dict.update(network.all_drop)

36 Chapter 2. API Reference

TensorLayer Documentation, Release 1.8.3

In case for evaluating and testing, you can disable all dropout layers as follow.

feed_dict = {x: X_val, y_: y_val}
feed_dict.update (dp_dict)

o

print (" val loss: " % sess.run(cost, feed dict=feed_dict))

print (" val acc: " % np.mean(y_val ==
sess.run(y_op, feed_dict=feed_dict)))

For more details, please read the MNIST examples in the example folder.

2.1.2 Customizing Layers
A Simple Layer

To implement a custom layer in TensorLayer, you will have to write a Python class that subclasses Layer and implement
the outputs expression.

The following is an example implementation of a layer that multiplies its input by 2:

class Doublelayer (Layer) :
def _ init_ (

self,
layer = None,
name ='double_layer',

check layer name (fixed)
Layer.__init__ (self, layer=layer, name=name)

the input of this layer is the output of previous layer (fixed)
self.inputs = layer.outputs

operation (customized)
self.outputs = self.inputs * 2

update layer (customized)
self.all_layers.append(self.outputs)

Your Dense Layer

Before creating your own TensorLayer layer, let’s have a look at the Dense layer. It creates a weight matrix and a
bias vector if not exists, and then implements the output expression. At the end, for a layer with parameters, we also
append the parameters into all_params.

class MyDenselayer (Layer) :
def _ init_ (
self,
layer = None,
n_units = 100,
act = tf.nn.reluy,
name ='simple_dense',

check layer name (fixed)
Layer.__init__ (self, layer=layer, name=name)

the input of this layer is the output of previous layer (fixed)

(continues on next page)

2.1. API - Layers 37

TensorLayer Documentation, Release 1.8.3

(continued from previous page)

self.inputs = layer.outputs

print out info (customized)
print (" MyDenselayer : , " % (self.name, n_units, act))

operation (customized)
n_in = int(self.inputs._shape[-1])
with tf.variable_scope (name) as vs:
create new parameters
W = tf.get_variable (name='W', shape=(n_in, n_units))
b = tf.get_variable (name='b', shape=(n_units))
tensor operation
self.outputs = act (tf.matmul (self.inputs, W) + b)

update layer (customized)
self.all_layers.extend([self.outputs])
self.all_params.extend([W, b])

Modifying Pre-train Behaviour

Greedy layer-wise pretraining is an important task for deep neural network initialization, while there are many kinds
of pre-training methods according to different network architectures and applications.

For example, the pre-train process of Vanilla Sparse Autoencoder can be implemented by using KL divergence (for
sigmoid) as the following code, but for Deep Rectifier Network, the sparsity can be implemented by using the L1
regularization of activation output.

Vanilla Sparse Autoencoder

beta = 4
rho = 0.15
p_hat = tf.reduce_mean(activation_out, reduction_indices = 0)

KLD = beta » tf.reduce_sum(rho » tf.log(tf.div(rho, p_hat))
+ (1- rho) * tf.log((l- rho)/ (tf.sub(float(l), p_hat))))

There are many pre-train methods, for this reason, TensorLayer provides a simple way to modify or design
your own pre-train method. For Autoencoder, TensorLayer uses ReconlLayer.__init__ () to define the re-
construction layer and cost function, to define your own cost function, just simply modify the self.cost
in ReconLayer.__init__ (). To creat your own cost expression please read Tensorflow Math. By de-
fault, ReconLayer only updates the weights and biases of previous 1 layer by using self.train params
= self.all _params[—-4:], where the 4 parameters are [W_encoder, b_encoder, W_decoder,
b_decoder], where W_encoder, b_encoder belong to previous DenseLayer, W_decoder, b_decoder
belong to this ReconLayer. In addition, if you want to update the parameters of previous 2 layers at the same time,
simply modify [-4:] to [-6:].

Reconlayer._ _init__ (...):
self.train_params = self.all_params[—-4:]

self.cost = mse + Ll_a + L2_w

2.1.3 Layer list

38 Chapter 2. API Reference

http://deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html

TensorLayer Documentation, Release 1.8.3

get_variables_with_name([name, train_only, ..

)

Get a list of TensorFlow variables by a given name scope.

get_layers_with_name(net[, name, printable])

Get a list of layers’ output in a network by a given name

scope.

set_name_reuse([enable]) DEPRECATED FUNCTION

print_all_ variables([train_only]) Print information of trainable or
all variables, without tl.layers.

initialize_global_variables (sess).

initialize global_variables(sess)

Initialize the global variables of TensorFlow.

Layer([prev_layer, name])

The basic Layer class represents a single layer of a neural
network.

InputLayer([inputs, name])

The InputLayer class is the starting layer of a neural
network.

OneHot InputLayer([inputs, depth, on_value, ...])

The OneHot InputLayer class is the starting layer of a
neural network, see t £.one_hot.

Word2vecEmbeddingInputlayer([inputs,...])

The Word2vecEmbeddingInputlayer class is a
fully connected layer.

EmbeddingInputlayer([inputs,...])

The EmbeddingInputlayer class is a look-up table
for word embedding.

AverageEmbeddingInputlayer(inputs,...[,...]) The AverageEmbeddingInputlayer averages over
embeddings of inputs.

DenseLayer(prev_layer[, n_units, act, ...]) The DenseLayer class is a fully connected layer.

ReconLayer(prev_layer[, Xx_recon, n_units, ...]) A reconstruction layer for DenseLayer to implement
AutoEncoder.

DropoutLayer(prev_layer[, keep, is_fix, ...]) The DropoutLayer class is a noise layer which ran-
domly set some activations to zero according to a keeping
probability.

GaussianNoiseLayer(prev_layer[, mean, ...]) The GaussianNoiseLayer class is noise layer that
adding noise with gaussian distribution to the activation.

DropconnectDenseLayer(prev_layer|, keep, ...]) The DropconnectDenselLayer class is

DenseLayer with DropConnect behaviour which
randomly removes connections between this layer and the
previous layer according to a keeping probability.

ConvldLayer(prev_layer[, act, shape, ...])

The ConvidLayer class is a 1D CNN layer, see
tf.nn.convolution.

Conv2dLayer(prev_layer[, act, shape, ...])

The Conv2dLayer class is a 2D CNN layer, see
tf.nn.conv2d.

DeConvZ2dLayer(prev_layer[, act, shape, ...])

A de-convolution 2D layer.

Conv3dLayer(prev_layer[, act, shape, ...])

The Conv3dLayer class is a 3D CNN layer, see
tf.nn.conv3d.

DeConv3dLayer(prev_layer[, act, shape, ...])

The DeConv3dLayer class is deconvolutional 3D layer,
see tf.nn.conv3d_transpose.

UpSampling2dLayer(prev_layer, size[, ...])

The UpSampling2dLayer class is a up-sampling 2D
layer, see tf.image.resize_images.

DownSampling2dLayer(prev_layer, size[, ...])

The DownSampling2dLayer class is down-sampling
2D layer, see tf.image.resize_images.

AtrousConvidLayer(layer[, n_filter, ...])

Simplified version of At rousConvldLayer.

AtrousConv2dLayer(prev_layer[, n_filter, ...])

The At rousConv2dLayer class is 2D atrous convolu-
tion (a.

Convl1d(layer[, n_filter, filter_size, ...])

Simplified version of ConvidLayer.

Conv2d(layer[, n_filter, filter_size, ...])

Simplified version of Conv2dLayer.

DeConvZ2d(layer[, n_filter, filter_size, ...])

Simplified version of DeConv2dLayer.

Continued on next page

2.1. API - Layers

39

https://www.tensorflow.org/api_docs/python/tf/nn/convolution
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv2d
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv3d
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv3d_transpose
https://www.tensorflow.org/api_docs/python/tf/image/resize_images
https://www.tensorflow.org/versions/master/api_docs/python/image/resizing#resize_images

TensorLayer Documentation, Release 1.8.3

Table 1 — continued from previous page

DeConv3d(prev_layer[, n_filter, ...])

Simplified version of The DeConv3dLayer, see
tf.contrib.layers.conv3d_transpose.

DepthwiseConv2d(prev_layer[, shape, ...])

Separable/Depthwise ~Convolutional 2D layer, see
tf.nn.depthwise_conv2d.

SeparableConv2d(prev_layer[, n_filter, ...])

The SeparableConv2d class is a 2D depthwise separa-
ble convolutional layer, see tf.layers.separable_conv2d.

DeformableConv2d(prev_layer[, offset_layer, ...])

The DeformableConv2d class is a 2D Deformable
Convolutional Networks.

GroupConv2d([prev_layer, n_filter, ...])

The GroupConv2d class is 2D grouped convolution, see
here.

PadLayer(prev_layer[, padding, mode, name])

The PadLayer class is a padding layer for any mode and
dimension.

PoolLayer([prev_layer, ksize, strides, ...])

The PoolLayer class is a Pooling layer.

ZeroPadld(prev_layer, padding[, name])

The ZeroPadld class is a 1D padding layer for signal
[batch, length, channel].

ZeroPad2d(prev_layer, padding[, name])

The ZeroPad2d class is a 2D padding layer for image
[batch, height, width, channel].

ZeroPad3d(prev_layer, padding[, name])

The ZeroPad3d class is a 3D padding layer for volume
[batch, height, width, depth, channel].

MaxPool1d(net[, filter_size, strides, ...])

Max pooling for 1D signal [batch, length, channel].

MeanPool1d(net[, filter_size, strides, ...])

Mean pooling for 1D signal [batch, length, channel].

MaxPoolZ2d(net], filter_size, strides, ...])

Max pooling for 2D image [batch, height, width, channel].

MeanPool2d(net[, filter_size, strides, ...])

Mean pooling for 2D image [batch, height, width, channel].

MaxPool3d(prev_layer][, filter_size, ...])

Max pooling for 3D volume [batch, height, width, depth,
channel].

MeanPool3d(prev_layer][, filter_size, ...])

Mean pooling for 3D volume [batch, height, width, depth,

channel].

GlobalMaxPoolld([prev_layer, name]) The GlobalMaxPoolld classisa 1D Global Max Pool-
ing layer.

GlobalMeanPool1d([prev_layer, name]) The GlobalMeanPoolld class is a 1D Global Mean
Pooling layer.

GlobalMaxPool2d([prev_layer, name]) The GlobalMaxPoolZ2d classis a 2D Global Max Pool-
ing layer.

GlobalMeanPoolZ2d([prev_layer, name]) The GlobalMeanPoolZ2d class is a 2D Global Mean
Pooling layer.

GlobalMaxPool3d([prev_layer, name]) The GlobalMaxPool3d class is a 3D Global Max Pool-
ing layer.

GlobalMeanPool3d([prev_layer, name]) The GlobalMeanPool3d class is a 3D Global Mean
Pooling layer.

SubpixelConvid(net[, scale, act, name])

It is a 1D sub-pixel up-sampling layer.

SubpixelConvZ2d(net[, scale, n_out_channel, ...])

It is a 2D sub-pixel up-sampling layer, usually be used for
Super-Resolution applications, see SRGAN for example.

SpatialTransformer2dAffineLayer([...])

The Spatial Transformer2dAffineLayer classis
a 2D Spatial Transformer Layer for 2D Affine Transforma-
tion.

transformer(U, theta, out_size[, name])

Spatial Transformer Layer for 2D Affine Transformation ,
see SpatialTransformer2dAffineLayer class.

batch_transformer(U, thetas, out_size[, name])

Batch Spatial Transformer function for 2D Affine Transfor-
mation.

BatchNormLayer(prev_layer[, decay, epsilon, ...])

The Bat chNormLayer is a batch normalization layer for
both fully-connected and convolution outputs.

Continued on next page

40

Chapter 2. API Reference

https://www.tensorflow.org/api_docs/python/tf/contrib/layers/conv3d_transpose
https://www.tensorflow.org/versions/master/api_docs/python/tf/nn/depthwise_conv2d
https://www.tensorflow.org/api_docs/python/tf/layers/separable_conv2d
https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211
https://blog.yani.io/filter-group-tutorial/
https://github.com/zsdonghao/SRGAN/
https://arxiv.org/abs/1506.02025
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation

TensorLayer Documentation, Release 1.8.3

Table 1 — continued from previous page

LocalResponseNormLayer(prev_layer[,...])

The LocalResponseNormLayer layer is for Local Re-
sponse Normalization.

InstanceNormLayer(prev_layerl[, act, ...])

The InstanceNormLayer class is a for instance nor-
malization.

LayerNormLayer(prev_layer[, center, scale, ...])

The LayerNormLayer class is for layer normalization,
see tf.contrib.layers.layer_norm.

ROIPoolingLayer(prev_layer, rois|, ...])

The region of interest pooling layer.

TimeDistributedLayer(prev_layer][,...])

The TimeDistributedLayer class that applies a
function to every timestep of the input tensor.

RNNLayer(prev_layer, cell_fn[, ...])

The RNNLayer class is a fixed length recurrent layer for
implementing vanilla RNN, LSTM, GRU and etc.

BiRNNLayer(prev_layer, cell_fn[,...])

The Bi RNNLayer class is a fixed length Bidirectional re-
current layer.

ConvRNNCell

Abstract object representing an Convolutional RNN Cell.

BasicConvLSTMCel 1(shape, filter_size, ...[,...])

Basic Conv LSTM recurrent network cell.

ConvLSTMLayer(prev_layer[, cell_shape, ...])

A fixed length Convolutional LSTM layer.

advanced_indexing_op(inputs, index)

Advanced Indexing for Sequences, returns the outputs by
given sequence lengths.

retrieve seq length_ op(data)

An op to compute the length of a sequence from input shape
of [batch_size, n_step(max), n_features], it can be used
when the features of padding (on right hand side) are all
Zer0S.

retrieve seq length_ opZ2(data)

An op to compute the length of a sequence, from input
shape of [batch_size, n_step(max)], it can be used when
the features of padding (on right hand side) are all zeros.

retrieve_seq_length_op3(data[, pad_val])

Return tensor for sequence length, if inputis tf.string.

target_mask_op(data[, pad_val])

Return tensor for mask, if inputis t £.string.

DynamicRNNLayer(prev_layer, cell_fn[,...])

The DynamicRNNLayer class is a dynamic recurrent
layer, see t £ . nn.dynamic_rnn.

BiDynamicRNNLayer(prev_layer, cell_fn[,...])

The BiDynamicRNNLayer class is a RNN layer, you
can implement vanilla RNN, LSTM and GRU with it.

Seqg2Seqg(net_encode_in, net_decode_in, cell_fn)

The Seg2Seq class is a simple DynamicRNNLayer
based Seq2seq layer without using tl.contrib.seq2seq.

FlattenLayer(prev_layer[, name])

A layer that reshapes high-dimension input into a vector.

ReshapeLayer(prev_layer, shape[, name])

A layer that reshapes a given tensor.

TransposeLayer(prev_layer, perm[, name])

A layer that transposes the dimension of a tensor.

LambdaLayer(prev_layer, fn[, fn_args, name])

A layer that takes a user-defined function using TensorFlow
Lambda.

Concat Layer(layers[, concat_dim, name])

A layer that concats multiple tensors according to given
axis.

ElementwiseLayer(layers[, combine_fn, act, name])

A layer that combines multiple Layer that have the same
output shapes according to an element-wise operation.

ExpandDimsLayer(prev_layer, axis[, name])

The ExpandDimsLayer class inserts a dimension of 1
into a tensor’s shape, see tf.expand_dims() .

TileLayer([prev_layer, multiples, name])

The TileLayer class constructs a tensor by tiling a given
tensor, see tf.tile() .

StackLayer(layers[, axis, name])

The StackLayer class is layer for stacking a list of rank-
R tensors into one rank-(R+1) tensor, see tf.stack().

UnStackLayer(layer[, num, axis, name])

It is layer for unstacking the given dimension of a rank-R
tensor into rank-(R-1) tensors.

S1imNetsLayer(prev_layer, slim_layer][, ...])

A layer that merges TF-Slim models into TensorLayer.

Continued on next page

2.1. API - Layers

41

https://www.tensorflow.org/api_docs/python/tf/contrib/layers/layer_norm
https://www.tensorflow.org/api_guides/python/contrib.seq2seq
https://www.tensorflow.org/api_docs/python/tf/expand_dims
https://www.tensorflow.org/api_docs/python/tf/tile
https://www.tensorflow.org/api_docs/python/tf/stack

TensorLayer Documentation, Release 1.8.3

Table 1 — continued from previous page

BinaryDenseLayer(prev_layer[, n_units, act, ...])

The BinaryDenseLayer class is a binary fully con-
nected layer, which weights are either -1 or 1 while infer-
encing.

BinaryConvZ2d(prev_layer[, n_filter, ...])

The BinaryConv2d class is a 2D binary CNN layer,
which weights are either -1 or 1 while inferencing.

TenaryDenseLayer(prev_layer[, n_units, act, ...])

The TenaryDenseLayer class is a tenary fully con-
nected layer, which weights are either -1 or 1 or O while
inferencing.

TenaryConv2d(prev_layer[, n_filter, ...])

The TenaryConvZ2d class is a 2D binary CNN layer,
which weights are either -1 or 1 or 0 while inferencing.

DorefaDenseLayer(prev_layer|[, bitW, bitA, ...])

The DorefaDenseLayer class is a binary fully con-
nected layer, which weights are ‘bitW’ bits and the output
of the previous layer are ‘bitA’ bits while inferencing.

DorefaConvZ2d(prev_layer[, bitW, bitA, ...])

The DorefaConv2d class is a binary fully connected
layer, which weights are ‘bitW’ bits and the output of the
previous layer are ‘bitA’ bits while inferencing.

SignLayer(prev_layer[, name])

The SignLayer class is for quantizing the layer outputs
to -1 or 1 while inferencing.

ScaleLayer(prev_layer[, init_scale, name])

The AddScaleLayer class is for multipling a trainble
scale value to the layer outputs.

PReluLayer(prev_layer[, channel_shared, ...])

The PRelulLayer class is Parametric Rectified Linear

layer.
MultiplexerLayer(layers[, name]) The MultiplexerLayer selects inputs to be forwarded
to output.
flatten_ reshape(variable[, name]) Reshapes a high-dimension vector input.
clear_layers_name() DEPRECATED FUNCTION

initialize rnn_state(state[, feed_dict])

Returns the initialized RNN state.

list_remove_ repeat(x)

Remove the repeated items in a list, and return the pro-
cessed list.

merge_networks([layers])

Merge all parameters, layers and dropout probabilities to a
Layer.

2.1.4 Name Scope and Sharing Parameters

These functions help you to reuse parameters for different inference (graph), and get a list of parameters by given

name. About TensorFlow parameters sharing click here.

Get variables with name

tensorlayer.layers.get_variables_with_name (name=None, train_only=True, print-

able=Fualse)

Get a list of TensorFlow variables by a given name scope.

Parameters

e name (str)— Get the variables that contain this name.

* train_only (boolean) - If Ture, only get the trainable variables.

* printable (boolean) - If True, print the information of all variables.

Returns A list of TensorFlow variables

Return type list of Tensor

42

Chapter 2. API Reference

https://www.tensorflow.org/versions/master/how_tos/variable_scope/index.html

TensorLayer Documentation, Release 1.8.3

Examples

>>> dense_vars = tl.layers.get_variable_with_name ('dense', True, True)

Get layers with name
tensorlayer.layers.get_layers_with_name (net, name=", printable=False)
Get a list of layers’ output in a network by a given name scope.
Parameters
* net (Layer) — The last layer of the network.
* name (str)— Get the layers’ output that contain this name.
* printable (boolean) - If True, print information of all the layers’ output
Returns A list of layers’ output (TensorFlow tensor)

Return type list of Tensor

Examples

>>> layers = tl.layers.get_layers_with_name (net, "CNN", True)

Enable layer name reuse
tensorlayer.layers.set_name_ reuse (enable=True)
DEPRECATED FUNCTION

THIS FUNCTION IS DEPRECATED. It will be removed after 2018-06-30. Instructions for updating: Tensor-
Layer relies on TensorFlow to check name reusing.

Print variables

tensorlayer.layers.print_all_variables (train_only=False)
Print information of trainable or all variables, without tl.layers.
initialize_global_variables (sess).

Parameters train_only (boolean)—
Whether print trainable variables only.
e If True, print the trainable variables.

« If False, print all variables.

Initialize variables
tensorlayer.layers.initialize_global_ variables (sess)
Initialize the global variables of TensorFlow.

Run sess.run(tf.global_variables_initializer()) for TF 0.12+ or sess.run(tf.
initialize_all_variables ()) for TFO0.11.

2.1. API - Layers 43

TensorLayer Documentation, Release 1.8.3

Parameters sess (Session)— TensorFlow session.

2.1.5 Basic layer

class tensorlayer.layers.Layer (prev_layer=None, name=None)
The basic Layer class represents a single layer of a neural network. It should be subclassed when implementing
new types of layers. Because each layer can keep track of the layer(s) feeding into it, a network’s output Layer
instance can double as a handle to the full network.

Parameters
* inputs (Layer instance) — The Layer class feeding into this layer.

* layer (Layer or None) — Previous layer (optional), for adding all properties of previous
layer(s) to this layer.

* name (str or None)- A unique layer name.

print_params (details=True, session=None)
Print all parameters of this network.

print_layers ()
Print all outputs of all layers of this network.

count_params ()
Return the number of parameters of this network.

Examples

¢ Define model

>>> x = tf.placeholder ("float32", [None, 100])
>>> n = tl.layers.Inputlayer (x, name='in')

>>> n = tl.layers.Denselayer (n, 80, name='dl")
>>> n = tl.layers.Denselayer (n, 80, name='d2")

¢ Get information

>>> print (n)

... Last layer is: Denselayer (d2) [None, 80]

>>> n.print_layers()
[TL] layer 0: dl/Identity:0 (?, 80) float32

... [TL)] layer 1: d2/Identity:0 (?, 80) float32

>>> n.print_params (False)
[TL] param 0: dl1/wW:0 (100, 80) float32_ref
[TL] param 1: dl1/b:0 (80,) float32_ref
[TL] param 2: d2/W:0 (80, 80) float32_ref
[TL] param 3: d2/b:0 (80,) float32_ref
[

... [TL] num of params: 14560
>>> n.count_params ()
14560

* Slicing the outputs

44 Chapter 2. API Reference

TensorLayer Documentation, Release 1.8.3

>>> n2 = nl[:, :30]
>>> print (n2)
Last layer is: Layer (d2) [None, 30]

e Iterating the outputs

>>> for 1 in n:

>>> print (1)
Tensor ("dl/Identity:0", shape=(?, 80), dtype=float32)
Tensor ("d2/Identity:0", shape=(?, 80), dtype=float32)

2.1.6 Input layer
class tensorlayer.layers.InputlLayer (inputs=None, name=’input’)
The ITnputLayer class is the starting layer of a neural network.
Parameters
* inputs (placeholder or tensor)- The input of a network.

* name (str)— A unique layer name.

2.1.7 One-hot layer

class tensorlayer.layers.OneHotInputlayer (inputs=None, depth=None, on_value=None,
off _value=None, axis=None, dtype=None,
name="input’)
The OneHot InputLayer class is the starting layer of a neural network, see t £ . one_hot.

Parameters
* inputs (placeholder or tensor)- The input of a network.

* depth (None or int) — If the input indices is rank N, the output will have rank N+1.
The new axis is created at dimension axis (default: the new axis is appended at the end).

* on_value (None or number) — The value to represnt ON. If None, it will default to
the value 1.

* off_value (None or number) — The value to represnt OFF. If None, it will default
to the value 0.

* axis (None or int)- The axis.
* dtype (None or TensorFlow dtype)— The data type, None means tf.float32.

* name (str)— A unique layer name.

Examples

>>> x = tf.placeholder (tf.int32, shape=[None])
>>> net = tl.layers.OneHotInputLayer (x, depth=8, name='onehot')
(2, 8)

2.1. API - Layers

45

TensorLayer Documentation, Release 1.8.3

2.1.8 Word Embedding Input layer

Word2vec layer for training

class tensorlayer.layers.Word2vecEmbeddingInputlayer (inputs=None,
train_labels=None, vo-
cabulary_size=80000,
embedding_size=200,
num_sampled=64,
nce_loss_args=None,
E_init=<tensorflow.python.ops.init_ops.RandomUnifori
object>, E_init_args=None,
nce_W_init=<tensorflow.python.ops.init_ops.Truncated
object>,
nce_W_init_args=None,
nce_b_init=<tensorflow.python.ops.init_ops.Constant
object>,
nce_b_init_args=None,

) name="word2vec’))
The Word2vecEmbeddingInputlayer class is a fully connected layer. For Word Embedding, words are

input as integer index. The output is the embedded word vector.
Parameters

* inputs (placeholder or tensor) — The input of a network. For word inputs,
please use integer index format, 2D tensor : [batch_size, num_steps(num_words)]

* train_labels (placeholder) — For word labels. integer index format

* vocabulary_size (int) - The size of vocabulary, number of words

* embedding_size (int)— The number of embedding dimensions

* num_sampled (int)— The mumber of negative examples for NCE loss

* nce_loss_args (dictionary)— The arguments for tf.nn.nce_loss()

* E_init (initializer)— The initializer for initializing the embedding matrix
* E_init_args (dictionary)— The arguments for embedding initializer

* nce_W_init (initializer) — The initializer for initializing the nce decoder weight
matrix

* nce_W_init_args (dictionary) — The arguments for initializing the nce decoder
weight matrix

* nce_b_init (initializer) — The initializer for initializing of the nce decoder bias
vector

* nce_b_init_args (dictionary) — The arguments for initializing the nce decoder
bias vector

* name (str)— A unique layer name

nce_cost
Tensor — The NCE loss.

outputs
Tensor — The embedding layer outputs.

46 Chapter 2. API Reference

TensorLayer Documentation, Release 1.8.3

normalized_embeddings
Tensor — Normalized embedding matrix.

Examples

With TensorLayer : see tensorlayer/example/tutorial_word2vec_basic.py

>>> batch_size = 8

>>> train_inputs = tf.placeholder (tf.int32, shape=(batch_size))

>>> train_labels = tf.placeholder (tf.int32, shape=(batch_size, 1))
>>> net = tl.layers.Word2vecEmbeddingInputlayer (inputs=train_inputs,

num_sampled=64, name='word2vec')

train_labels=train_labels, vocabulary_size=1000, embedding_size=200,

(8, 200)
>>> cost = net.nce_cost
>>> train_params = net.all_params
>>> cost = net.nce_cost
>>> train_params = net.all_params
>>> train_op = tf.train.GradientDescentOptimizer (learning_rate) .minimize (
cost, var_list=train_params)
>>> normalized_embeddings = net.normalized_embeddings

Without TensorLayer : see tensorflow/examples/tutorials/word2vec/word2vec_basic.py

>>> train_inputs = tf.placeholder (tf.int32, shape=(batch_size))
>>> train_labels = tf.placeholder (tf.int32, shape=(batch_size, 1))
>>> embeddings = tf.Variable(

>>> embed = tf.nn.embedding_lookup (embeddings, train_inputs)
>>> nce_weights = tf.Variable(
tf.truncated_normal ([vocabulary_size, embedding_size],
. stddev=1.0 / math.sqgrt (embedding_size)))
>>> nce_biases = tf.Variable(tf.zeros ([vocabulary_size]))
>>> cost = tf.reduce_mean (
tf.nn.nce_loss (weights=nce_weights, biases=nce_biases,
inputs=embed, labels=train_labels,
num_sampled=num_sampled, num_classes=vocabulary_size,
num_true=1))

tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

References

tensorflow/examples/tutorials/word2vec/word2vec_basic.py

Embedding Input layer

class tensorlayer.layers.EmbeddingInputlayer (inputs=None,

vocabu-

lary_size=80000, embedding_size=200,
E_init=<tensorflow.python.ops.init_ops.RandomUniform
object>, E_init_args=None,

name="embedding’)
The EmbeddingInputlayer class is alook-up table for word embedding.

Word content are accessed using integer indexes, then the output is the embedded word vector. To train a word
embedding matrix, you can used Word2vecEmbeddingInputlayer. If you have a pre-trained matrix, you

2.1. API - Layers

47

https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py

TensorLayer Documentation, Release 1.8.3

can assign the parameters into it.
Parameters

* inputs (placeholder) — The input of a network. For word inputs. Please use integer
index format, 2D tensor : (batch_size, num_steps(num_words)).

* vocabulary_size (int) - The size of vocabulary, number of words.

* embedding_size (int)— The number of embedding dimensions.

* E_init (initializer)—- The initializer for the embedding matrix.

* E_init_args (dictionary)— The arguments for embedding matrix initializer.
* name (str)— A unique layer name.

outputs
tensor — The embedding layer output is a 3D tensor in the shape: (batch_size, num_steps(num_words),
embedding_size).

Examples

>>> batch_size = 8
>>> x = tf.placeholder (tf.int32, shape=(batch_size,))
>>> net = tl.layers.EmbeddingInputlayer (inputs=x, vocabulary_size=1000, embedding_
—size=50, name='embed')
(8, 50)

Average Embedding Input layer

class tensorlayer.layers.AverageEmbeddingInputlayer (inputs, vocabulary_size, embed-
ding_size, pad_value=0, embed-
dings_initializer=<tensorflow.python.ops.init_ops.Rando
object>, embed-
dings_kwargs=None,
name=’average_embedding’)
The AverageEmbeddingInputlayer averages over embeddings of inputs. This is often used as the input

layer for models like DAN[1] and FastText[2].
Parameters

* inputs (placeholder or tensor) — The network input. For word inputs, please
use integer index format, 2D tensor: (batch_size, num_steps(num_words)).

* vocabulary_size (int) - The size of vocabulary.
* embedding_size (int)— The dimension of the embedding vectors.
* pad_value (int)— The scalar padding value used in inputs, 0 as default.

* embeddings_initializer (initializer)— The initializer of the embedding ma-
trix.
