TensorLayer Documentation
Release 1.5.4

TensorLayer contributors

May 17, 2018

Contents

1 User Guide 3
.1 Inmstallation e e e e e e 3
1.2 Tutorial o e e e e e e e e e 6
1.3 Example e 38
1.4 Development L e 39
LS MOre . . . o o e 41
2 API Reference 45
2.1 API-Layers o i e e e e 45
22 API-COSt . . . o e e e 106
2.3 APL-Preprocessing v v v it e e e e e e e e e e e e e e e e e e e 114
24 APL-Tteration v v i i e e e e e e e e e e e e e e e e e 131
2.5 APL-Utlity o o e e e 135
2.6 API - Natural Language Processing i e 140
2.7 API-Reinforcement Learning o e e e e e e e e e 151
2.8 API-Load, Save Modeland Data o i i i e e 153
2.9 API- Visualize Modeland Data e 164
2.10 API-Operation System e e e e 168
201 APL- ACHVAtionS v v e 170
212 API-Database o vt e e e e e e e e e e e e e e e e e 172
3 Indices and tables 179
Python Module Index 181

TensorLayer Documentation, Release 1.5.4

T N
TensorLayer
TensorLayer is a Deep Learning (DL) and Reinforcement Learning (RL) library extended from Google

TensorFlow. It provides popular DL and RL modules that can be easily customized and assembled for tackling real-
world machine learning problems.

Note: If you got problem to read the docs online, you could download the repository on GitHub, then go to /docs/
_build/html/index.html to read the docs offline. The _build folder can be generated in docs using make
html.

Contents 1

https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer/
https://www.tensorflow.org
https://www.tensorflow.org
https://github.com/zsdonghao/tensorlayer

TensorLayer Documentation, Release 1.5.4

2 Contents

CHAPTER 1

User Guide

The TensorLayer user guide explains how to install TensorFlow, CUDA and cuDNN, how to build and train neural
networks using TensorLayer, and how to contribute to the library as a developer.

1.1 Installation

TensorLayer has some prerequisites that need to be installed first, including TensorFlow , numpy and matplotlib. For
GPU support CUDA and cuDNN are required.

If you run into any trouble, please check the TensorFlow installation instructions which cover installing the TensorFlow
for a range of operating systems including Mac OX, Linux and Windows, or ask for help on tensorlayer @ gmail.com
or FQA.

1.1.1 Step 1 : Install dependencies

TensorLayer is build on the top of Python-version TensorFlow, so please install Python first.

Note: We highly recommend python3 instead of python2 for the sake of future.

Python includes pip command for installing additional modules is recommended. Besides, a virtual environment via
virtualenv can help you to manage python packages.

Take Python3 on Ubuntu for example, to install Python includes pip, run the following commands:

sudo apt—-get install python3
sudo apt-get install python3-pip
sudo pip3 install virtualenv

To build a virtual environment and install dependencies into it, run the following commands: (You can also skip to
Step 3, automatically install the prerequisites by TensorLayer)

https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://www.tensorflow.org/versions/master/get_started/os_setup.html
mailto:tensorlayer@gmail.com
http://tensorlayer.readthedocs.io/en/latest/user/more.html
http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/

TensorLayer Documentation, Release 1.5.4

virtualenv env

env/bin/pip install matplotlib
env/bin/pip install numpy
env/bin/pip install scipy
env/bin/pip install scikit-image

To check the installed packages, run the following command:

’env/bin/pip list

After that, you can run python script by using the virtual python as follow.

’env/bin/python *.pYy

1.1.2 Step 2 : TensorFlow

The installation instructions of TensorFlow are written to be very detailed on TensorFlow website. However, there are
something need to be considered. For example, TensorFlow officially supports GPU acceleration for Linux, Mac OX
and Windows at present.

Warning: For ARM processor architecture, you need to install TensorFlow from source.

1.1.3 Step 3 : TensorLayer

The simplest way to install TensorLayer is as follow, it will also install the numpy and matplotlib automatically.

[stable version] pip install tensorlayer
[master version] pip install git+https://github.com/zsdonghao/tensorlayer.git

However, if you want to modify or extend TensorLayer, you can download the repository from Github and install it as
follow.

cd to the root of the git tree
pip install -e .

This command will run the setup . py to install TensorLayer. The —e reflects editable, then you can edit the source
code in tensorlayer folder, and import the edited TensorLayer.

1.1.4 Step 4 : GPU support

Thanks to NVIDIA supports, training a fully connected network on a GPU, which may be 10 to 20 times faster than
training them on a CPU. For convolutional network, may have 50 times faster. This requires an NVIDIA GPU with
CUDA and cuDNN support.

CUDA

The TensorFlow website also teach how to install the CUDA and cuDNN, please see TensorFlow GPU Support.
Download and install the latest CUDA is available from NVIDIA website:
¢ CUDA download and install

4 Chapter 1. User Guide

https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://github.com/zsdonghao/tensorlayer
https://www.tensorflow.org/versions/master/get_started/os_setup.html#optional-install-cuda-gpus-on-linux
https://developer.nvidia.com/cuda-downloads

TensorLayer Documentation, Release 1.5.4

If CUDA is set up correctly, the following command should print some GPU information on the terminal:

python —-c "import tensorflow"

cuDNN

Apart from CUDA, NVIDIA also provides a library for common neural network operations that especially speeds up
Convolutional Neural Networks (CNNs). Again, it can be obtained from NVIDIA after registering as a developer (it
take a while):

Download and install the latest cuDNN is available from NVIDIA website:
¢ cuDNN download and install

To install it, copy the * . h files to /usr/local/cuda/include and the 1ib~ files to /usr/local/cuda/
libe4.

1.1.5 Windows User
TensorLayer is built on the top of Python-version TensorFlow, so please install Python first. NoteWe highly recom-
mend installing Anaconda. The lowest version requirements of Python is py35.

Anaconda download

GPU support

Thanks to NVIDIA supports, training a fully connected network on a GPU, which may be 10 to 20 times faster than
training them on a CPU. For convolutional network, may have 50 times faster. This requires an NVIDIA GPU with
CUDA and cuDNN support.

1. Installing Microsoft Visual Studio

You should preinstall Microsoft Visual Studio (VS) before installing CUDA. The lowest version requirements is
VS2010. We recommend installing VS2015 or VS2013. CUDA7.5 supports VS2010, VS2012 and VS2013. CUDAS.O
also supports VS2015.

2. Installing CUDA

Download and install the latest CUDA is available from NVIDIA website:
CUDA download

We do not recommend modifying the default installation directory.

3. Installing cuDNN

The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for deep
neural networks. Download and extract the latest cuDNN is available from NVIDIA website:

cuDNN download

After extracting cuDNN, you will get three folders (bin, lib, include). Then these folders should be copied to CUDA
installation. (The default installation directory is C:\Program Files\NVIDIA GPU Computing ToolkiNCUDA\vS.0)

1.1. Installation 5

https://developer.nvidia.com/cudnn
https://www.continuum.io/downloads
https://developer.nvidia.com/CUDA-downloads
https://developer.nvidia.com/cuDNN

TensorLayer Documentation, Release 1.5.4

Installing TensorLayer

You can easily install Tensorlayer using pip in CMD

pip install tensorflow #CPU version

pip install tensorflow-gpu #GPU version (GPU version and CPU version just choose_,
—one)

pip install tensorlayer #Install tensorlayer

Test

Enter “python” in CMD. Then:

import tensorlayer

If there is no error and the following output is displayed, the GPU version is successfully installed.

successfully opened CUDA library cublas64_80.dll locally
successfully opened CUDA library cuDNN64_5.dll locally
successfully opened CUDA library cufft64_80.dll locally
successfully opened CUDA library nvcuda.dll locally
successfully opened CUDA library curandé64_80.dll locally

If there is no error, the CPU version is successfully installed.

1.1.6 Issue

If you get the following output when import tensorlayer, please read FQA.

_tkinter.TclError: no display name and no S$SDISPLAY environment variable

1.2 Tutorial

For deep learning, this tutorial will walk you through building handwritten digits classifiers using the MNIST dataset,
arguably the “Hello World” of neural networks. For reinforcement learning, we will let computer learns to play Pong
game from the original screen inputs. For nature language processing, we start from word embedding, and then
describe language modeling and machine translation.

This tutorial includes all modularized implementation of Google TensorFlow Deep Learning tutorial, so you could
read TensorFlow Deep Learning tutorial as the same time [en] [cn] .

Note: For experts: Read the source code of InputLayer and DenseLayer, you will understand how TensorLayer
work. After that, we recommend you to read the codes on Github directly.

1.2.1 Before we start

The tutorial assumes that you are somewhat familiar with neural networks and TensorFlow (the library which Tensor-
Layer is built on top of). You can try to learn the basic of neural network from the Deeplearning Tutorial.

6 Chapter 1. User Guide

http://tensorlayer.readthedocs.io/en/latest/user/more.html
https://www.tensorflow.org/versions/master/tutorials/index.html
http://wiki.jikexueyuan.com/project/tensorflow-zh/
https://github.com/zsdonghao/tensorlayer/
https://github.com/zsdonghao/tensorlayer/
https://github.com/zsdonghao/tensorlayer/
http://deeplearning.stanford.edu/tutorial/

TensorLayer Documentation, Release 1.5.4

For a more slow-paced introduction to artificial neural networks, we recommend Convolutional Neural Networks for
Visual Recognition by Andrej Karpathy et al., Neural Networks and Deep Learning by Michael Nielsen.

To learn more about TensorFlow, have a look at the TensorFlow tutorial. You will not need all of it, but a basic
understanding of how TensorFlow works is required to be able to use TensorLayer. If you're new to TensorFlow,
going through that tutorial.

1.2.2 TensorLayer is simple

The following code shows a simple example of TensorLayer, see tutorial_mnist_simple.py . We provide
a lot of simple functions like fit () , test ()), however, if you want to understand the details and be a ma-
chine learning expert, we suggest you to train the network by using TensorFlow’s methods like sess.run (), see
tutorial_mnist.py for more details.

import tensorflow as tf
import tensorlayer as tl

sess = tf.InteractiveSession|()

prepare data
X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1,784))

define placeholder
x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None,], name='y_ ")

define the network
network = tl.layers.Inputlayer (x, name='input_layer")
network = tl.layers.Dropoutlayer (network, keep=0.8, name='dropl')
network = tl.layers.Denselayer (network, n_units=800,
act = tf.nn.relu, name='relul')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop2')
network tl.layers.Denselayer (network, n_units=800,
act = tf.nn.relu, name='relu2')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop3')
the softmax is implemented internally in tl.cost.cross_entropy(y, y_, 'cost') to
speed up computation, so we use identity here.
see tf.nn.sparse_softmax_cross_entropy_with_logits()
network = tl.layers.Denselayer (network, n_units=10,
act = tf.identity,
name='output_layer")

define cost function and metric.

y = network.outputs

cost = tl.cost.cross_entropy(y, y_, 'cost')
correct_prediction = tf.equal(tf.argmax(y, 1), v_)

acc = tf.reduce_mean (tf.cast (correct_prediction, tf.float32))
y_op = tf.argmax(tf.nn.softmax(y), 1)

define the optimizer

train_params = network.all_params

train_op = tf.train.AdamOptimizer (learning_rate=0.0001, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_

—list=train_params)

initialize all variables in the session
tl.layers.initialize_global_variables (sess)

(continues on next page)

1.2. Tutorial 7

http://cs231n.github.io/
http://cs231n.github.io/
http://neuralnetworksanddeeplearning.com/
https://www.tensorflow.org/versions/master/tutorials/index.html
https://github.com/zsdonghao/tensorlayer/

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

print network information
network.print_params ()
network.print_layers ()

train the network

tl.utils.fit (sess, network, train_op, cost, X_train, y_train, x, y_,
acc=acc, batch_size=500, n_epoch=500, print_freg=5,
X_val=X_val, y_val=y_val, eval_train=False)

evaluation

tl.utils.test (sess, network, acc, X_test, y_test, x, y_, batch_size=None, cost=cost)

save the network to .npz file
tl.files.save_npz (network.all params , name='model.npz')
sess.close ()

1.2.3 Run the MNIST example

In the first part of the tutorial, we will just run the MNIST example that’s included in the source distribution of
TensorLayer. MNIST dataset contains 60000 handwritten digits that is commonly used for training various image
processing systems, each of digit has 28x28 pixels.

We assume that you have already run through the Installation. If you haven’t done so already, get a copy of
the source tree of TensorLayer, and navigate to the folder in a terminal window. Enter the folder and run the
tutorial mnist.py example script:

python tutorial_mnist.py

If everything is set up correctly, you will get an output like the following:

tensorlayer: GPU MEM Fraction 0.300000
Downloading train-images-idx3-ubyte.gz
Downloading train-labels-idxl-ubyte.gz
Downloading tlO0k-images-idx3-ubyte.gz
Downloading tl0Ok-labels-idxl-ubyte.gz

X_train.shape (50000, 784)
y_train.shape (50000,)
X_val.shape (10000, 784)

(continues on next page)

8 Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer/

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

y_val.shape (10000,)
X_test.shape (10000, 784)
y_test.shape (10000,)

X float32 y int64

[TL] InputLayer input_layer (?, 784)

[TL] DropoutLayer dropl: keep: 0.800000

[TL] Denselayer relul: 800, relu

[TL] DropoutLayer drop2: keep: 0.500000

[TL] Denselayer relu2: 800, relu

[TL] DropoutLayer drop3: keep: 0.500000

[TL] Denselayer output_layer: 10, identity

param 0 (784, 800) (mean: -0.000053, median: -0.000043 std: 0.035558)
param 1 (800,) (mean 0.000000, median: 0.000000 std: 0.000000)
param 2 (800, 800) (mean: 0.000008, median: 0.000041 std: 0.035371)
param 3: (800,) (mean 0.000000, median: 0.000000 std: 0.000000)
param 4 (800, 10) (mean 0.000469, median: 0.000432 std: 0.049895)
param 5 (10,) (mean: 0.000000, median: 0.000000 std: 0.000000)

num of params: 1276810

layer 0: Tensor ("dropout/mul_1:0", shape=(?, 784), dtype=float32)
layer 1: Tensor ("Relu:0", shape=(?, 800), dtype=float32)

layer 2: Tensor ("dropout_1/mul_1:0", shape=(?, 800), dtype=float32)
layer 3: Tensor ("Relu_1:0", shape=(?, 800), dtype=float32)

layer 4: Tensor ("dropout_2/mul_1:0", shape=(?, 800), dtype=float32)
layer 5: Tensor("add_2:0", shape=(?, 10), dtype=float32)

learning_rate: 0.000100
batch_size: 128

Epoch 1 of 500 took 0.342539s
train loss: 0.330111
val loss: 0.298098
val acc: 0.910700

Epoch 10 of 500 took 0.356471s
train loss: 0.085225
val loss: 0.097082
val acc: 0.971700

Epoch 20 of 500 took 0.352137s
train loss: 0.040741
val loss: 0.070149
val acc: 0.978600

Epoch 30 of 500 took 0.350814s
train loss: 0.022995
val loss: 0.060471
val acc: 0.982800

Epoch 40 of 500 took 0.350996s
train loss: 0.013713
val loss: 0.055777
val acc: 0.983700

The example script allows you to try different models, including Multi-Layer Perceptron, Dropout, Dropconnect,
Stacked Denoising Autoencoder and Convolutional Neural Network. Select different models from if _ name_

= main__ ':.

1.2. Tutorial 9

TensorLayer Documentation, Release 1.5.4

main_test_layers (model="relu')
main_test_denoise_AE (model='relu')
main_test_stacked_denoise_AE (model="relu')
main_test_cnn_layer ()

1.2.4 Understand the MNIST example

Let’s now investigate what’s needed to make that happen! To follow along, open up the source code.

Preface

The first thing you might notice is that besides TensorLayer, we also import numpy and tensorflow:

import tensorflow as tf

import tensorlayer as tl

from tensorlayer.layers import set_keep
import numpy as np

import time

As we know, TensorLayer is built on top of TensorFlow, it is meant as a supplement helping with some tasks, not as a
replacement. You will always mix TensorLayer with some vanilla TensorFlow code. The set_keep is used to access
the placeholder of keeping probabilities when using Denoising Autoencoder.

Loading data

The first piece of code defines a function load_mnist_dataset (). Its purpose is to download the MNIST dataset
(if it hasn’t been downloaded yet) and return it in the form of regular numpy arrays. There is no TensorLayer involved
at all, so for the purpose of this tutorial, we can regard it as:

X_train, y_train, X_val, y_val, X_ test, y_test = \
tl.files.load_mnist_dataset (shape=(-1,784))

X_train.shape is (50000, 784), to be interpreted as: 50,000 images and each image has 784 pixels.
y_train.shape is simply (50000,), which is a vector the same length of X_train giving an integer class
label for each image — namely, the digit between 0 and 9 depicted in the image (according to the human annotator who
drew that digit).

For Convolutional Neural Network example, the MNIST can be load as 4D version as follow:

X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1, 28, 28, 1))

X_train.shapeis (50000, 28, 28, 1) which represents 50,000 images with 1 channel, 28 rows and 28
columns each. Channel one is because it is a grey scale image, every pixel have only one value.

Building the model

This is where TensorLayer steps in. It allows you to define an arbitrarily structured neural network by creating and
stacking or merging layers. Since every layer knows its immediate incoming layers, the output layer (or output layers)
of a network double as a handle to the network as a whole, so usually this is the only thing we will pass on to the rest
of the code.

10 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

As mentioned above, tutorial_mnist.py supports four types of models, and we implement that via easily
exchangeable functions of the same interface. First, we’ll define a function that creates a Multi-Layer Percep-
tron (MLP) of a fixed architecture, explaining all the steps in detail. We’ll then implement a Denosing Autoen-
coder (DAE), after that we will then stack all Denoising Autoencoder and supervised fine-tune them. Finally, we’ll
show how to create a Convolutional Neural Network (CNN). In addition, a simple example for MNIST dataset in
tutorial_mnist_simple.py, a CNN example for CIFAR-10 datasetin tutorial_cifarl0_tfrecord.
py.

Multi-Layer Perceptron (MLP)

The first script, main_test_layers (), creates an MLP of two hidden layers of 800 units each, followed by a
softmax output layer of 10 units. It applies 20% dropout to the input data and 50% dropout to the hidden layers.

To feed data into the network, TensofFlow placeholders need to be defined as follow. The None here means the
network will accept input data of arbitrary batchsize after compilation. The x is used to hold the X_train data
and y_ is used to hold the y_train data. If you know the batchsize beforehand and do not need this flexibility,
you should give the batchsize here — especially for convolutional layers, this can allow TensorFlow to apply some
optimizations.

x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None,], name='y_ ')

The foundation of each neural network in TensorLayer is an TnputLayer instance representing the input data that
will subsequently be fed to the network. Note that the InputLayer is not tied to any specific data yet.

’network = tl.layers.InputLayer (x, name='"input_layer")

Before adding the first hidden layer, we’ll apply 20% dropout to the input data. This is realized viaa Dropout Layer
instance:

’network = tl.layers.DropoutlLayer (network, keep=0.8, name='dropl')

Note that the first constructor argument is the incoming layer, the second argument is the keeping probability for the
activation value. Now we’ll proceed with the first fully-connected hidden layer of 800 units. Note that when stacking
a Denselayer.

network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name='relul')

Again, the first constructor argument means that we’re stacking network on top of network. n_units simply
gives the number of units for this fully-connected layer. act takes an activation function, several of which are defined
in tensorflow.nn and fensorlayer.activation. Here we’ve chosen the rectifier, so we’ll obtain ReLUs. We’ll now
add dropout of 50%, another 800-unit dense layer and 50% dropout again:

network = tl.layers.DropoutLayer (network, keep=0.5, name='drop2')
network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name='relu2')
network = tl.layers.DropoutLayer (network, keep=0.5, name='drop3'")

Finally, we’ll add the fully-connected output layer which the n_units equals to the number of classes. Note that,
the softmax is implemented internally in tf.nn.sparse_softmax_cross_entropy_with_logits () to
speed up computation, so we used identity in the last layer, more details in t1.cost.cross_entropy ().

network = tl.layers.Denselayer (network,
n_units=10,
act = tf.identity,
name="output_layer")

1.2. Tutorial 11

TensorLayer Documentation, Release 1.5.4

As mentioned above, each layer is linked to its incoming layer(s), so we only need the output layer(s) to access a
network in TensorLayer:

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)
cost = tf.reduce_mean (tf.nn.sparse_softmax_cross_entropy_with_logits(y, v_))

Here, network.outputs is the 10 identity outputs from the network (in one hot format), v_op is the integer output
represents the class index. While cost is the cross-entropy between target and predicted labels.

Denoising Autoencoder (DAE)

Autoencoder is an unsupervised learning model which is able to extract representative features, it has become more
widely used for learning generative models of data and Greedy layer-wise pre-train. For vanilla Autoencoder see
Deeplearning Tutorial.

The script main_test_denoise_AE () implements a Denoising Autoencoder with corrosion rate of 50%. The
Autoencoder can be defined as follow, where an Autoencoder is represented by a DenselLayer:

network = tl.layers.Inputlayer (x, name='"input_layer")
network = tl.layers.DropoutLayer (network, keep=0.5, name='denoisingl')
network = tl.layers.Denselayer (network, n_units=200, act=tf.nn.sigmoid, name='sigmoidl
=)
recon_layerl = tl.layers.Reconlayer (network,
X_recon=x,
n_units=784,
act=tf.nn.sigmoid,
name='recon_layerl")

To train the DenseLayer, simply run ReconlLayer.pretrain (), if using denoising Autoencoder, the name
of corrosion layer (a DropoutLayer) need to be specified as follow. To save the feature images, set save to
True. There are many kinds of pre-train metrices according to different architectures and applications. For sigmoid
activation, the Autoencoder can be implemented by using KL divergence, while for rectifer, L1 regularization of
activation outputs can make the output to be sparse. So the default behaviour of ReconLayer only provide KLD
and cross-entropy for sigmoid activation function and L1 of activation outputs and mean-squared-error for rectifing
activation function. We recommend you to modify ReconLayer to achieve your own pre-train metrice.

recon_layerl.pretrain(sess,
X=X,
X_train=X_train,
X_val=X_val,
denoise_name='denoisingl',
n_epoch=200,
batch_size=128,
print_freg=10,
save=True,
save_name='"'wlpre_ ")

In addition, the script main_test_stacked_denoise_AE () shows how to stacked multiple Autoencoder to one
network and then fine-tune.

Convolutional Neural Network (CNN)

Finally, the main_test_cnn_layer () script creates two CNN layers and max pooling stages, a fully-connected
hidden layer and a fully-connected output layer. More CNN examples can be found in the tutorial scripts, like
tutorial_cifarl0O_tfrecord.py.

12 Chapter 1. User Guide

http://deeplearning.stanford.edu/tutorial/

TensorLayer Documentation, Release 1.5.4

At the begin, we add a Conv2dLayer with 32 filters of size 5x5 on top, follow by max-pooling of factor 2 in both
dimensions. And then apply a Conv2dLayer with 64 filters of size 5x5 again and follow by a max_pool again. After
that, flatten the 4D output to 1D vector by using FlattenLayer, and apply a dropout with 50% to last hidden layer.
The ? represents arbitrary batch_size.

Note, tutorial_mnist . py introduces the simplified CNN API for beginner.

network
network

network

network

network

network

network

network

network

network

tl
tl

tl.

tl.

tl.

tl.

tl.

tl.

tl.

tl.

.layers.
.layers.

layers

layers

layers

layers

layers

layers
act

layers.

layers.

InputlLayer (x, name='input_layer')
Conv2dLayer (network,
act = tf.nn.reluy,
shape = [5, 5, 1, 32], # 32 features for each 5x5 patch
strides=[1, 1, 1, 1],
padding="'SAME",
name ='cnn_layerl") # output: (2, 28, 28, 32)

.PoolLayer (network,

ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 1],
padding="'SAME',

pool = tf.nn.max_pool,

name ='pool_ layerl',) # output: (2, 14, 14, 32)
Conv2dLayer (network,

act = tf.nn.relu,

shape = [5, 5, 32, 64], # 64 features for each 5x5 patch

strides=[1, 1, 1, 1],
padding="'SAME",
name ='cnn_layer2'") # output: (2, 14, 14, 64)

.PoolLayer (network,

ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 1],
padding="'SAME',
pool = tf.nn.max_pool,
name ='pool_ layer2',) # output: (?, 7, 7, 64)
FlattenLayer (network, name='flatten layer')
output: (?, 3136)

.DropoutLayer (network, keep=0.5, name='dropl")

output: (?, 3136)

.Denselayer (network, n_units=256, act = tf.nn.relu, name='relul')

output: (?, 256)

.DropoutLayer (network, keep=0.5, name='drop2')

output: (72, 256)

.Denselayer (network, n_units=10,

= tf.identity, name='output_layer')
output: (72, 10)

Note: For experts: Conv2dLayer will create a convolutional layer using tensorflow.nn.conv2d, Tensor-
Flow’s default convolution.

Training the model

The remaining part of the tutorial_mnist.py script copes with setting up and running a training loop over the
MNIST dataset by using cross-entropy only.

1.2. Tutorial

13

TensorLayer Documentation, Release 1.5.4

Dataset iteration

An iteration function for synchronously iterating over two numpy arrays of input data and targets, respectively, in
mini-batches of a given number of items. More iteration function can be found in tensorlayer.iterate

tl.iterate.minibatches (inputs, targets, batchsize, shuffle=False)

Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)
cost = tf.reduce_mean (tf.nn.sparse_softmax_cross_entropy_with_logits(y, v_))

More cost or regularization can be applied here, take main_test_layers () for example, to apply max-norm on
the weight matrices, we can add the following line:

cost = cost + tl.cost.maxnorm_regularizer(1.0) (network.all_params[0]) +
tl.cost.maxnorm_regularizer (1.0) (network.all_params[2])

Depending on the problem you are solving, you will need different loss functions, see tensorlayer.cost for
more.

Having the model and the loss function defined, we create update expressions for training the network. TensorLayer
do not provide many optimizers, we used TensorFlow’s optimizer instead:

train_params = network.all_params
train_op = tf.train.AdamOptimizer (learning_rate, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_list=train_params)

For training the network, we fed data and the keeping probabilities to the feed_dict.

feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update(network.all_drop)
sess.run(train_op, feed_dict=feed_dict)

While, for validation and testing, we use slightly different way. All dropout, dropconnect, corrosion layers need to be
disable. t1.utils.dict_to_one setall network.all_dropto 1.

dp_dict = tl.utils.dict_to_one(network.all_drop)
feed_dict = {x: X_test_a, y_: y_test_a}
feed_dict.update (dp_dict)

err, ac = sess.run([cost, acc], feed_dict=feed_dict)

As an additional monitoring quantity, we create an expression for the classification accuracy:

correct_prediction = tf.equal(tf.argmax(y, 1), y_)
acc = tf.reduce_mean(tf.cast (correct_prediction, tf.float32))

What Next?

We also have a more advanced image classification example in tutorial_cifarl0_tfrecord.py. Please read
the code and notes, figure out how to generate more training data and what is local response normalization. After that,
try to implement Residual Network (Hint: you may want to use the Layer.outputs).

14 Chapter 1. User Guide

http://doi.org/10.3389/fpsyg.2013.00124

TensorLayer Documentation, Release 1.5.4

1.2.5 Run the Pong Game example

In the second part of the tutorial, we will run the Deep Reinforcement Learning example that is introduced by Karpathy
in Deep Reinforcement Learning: Pong from Pixels.

python tutorial_atari_pong.py

Before running the tutorial code, you need to install OpenAl gym environment which is a benchmark for Reinforce-
ment Learning. If everything is set up correctly, you will get an output like the following:

[2016-07-12 09:31:59,760] Making new env: Pong-vO0
[TL] Inputlayer input_layer (?, 6400)
[TL] Denselayer relul: 200, relu
[TL] Denselayer output_layer: 3, identity
param O0: (6400, 200) (mean: -0.000009, median: -0.000018 std: 0.017393)
param 1: (200,) (mean: 0.000000, median: 0.000000 std: 0.000000)
param 2: (200, 3) (mean: 0.002239, median: 0.003122 std: 0.096611)
param 3: (3,) (mean: 0.000000, median: 0.000000 std: 0.000000)
num of params: 1280803

layer 0: Tensor ("Relu:0", shape=(?, 200), dtype=float32)
layer 1: Tensor("add_1:0", shape=(?, 3), dtype=float32)

episode 0: game 0 took 0.17381ls, reward: -1.000000
episode 0: game 1 took 0.12629s, reward: 1.000000 !!rrrrnt
episode 0: game 2 took 0.17082s, reward: -1.000000
episode 0: game 3 took 0.08944s, reward: -1.000000
episode 0: game 4 took 0.09446s, reward: —-1.000000
episode 0: game 5 took 0.09440s, reward: -1.000000
episode 0: game 6 took 0.32798s, reward: -1.000000
episode 0: game 7 took 0.74437s, reward: —-1.000000
episode 0: game 8 took 0.43013s, reward: -1.000000
episode 0: game 9 took 0.42496s, reward: -1.000000
episode 0: game 10 took 0.37128s, reward: -1.000000
episode 0: game 11 took 0.08979s, reward: -1.000000
episode 0: game 12 took 0.09138s, reward: -1.000000
episode 0: game 13 took 0.09142s, reward: -1.000000
episode 0: game 14 took 0.09639s, reward: -1.000000
episode 0: game 15 took 0.09852s, reward: -1.000000
episode 0: game 16 took 0.09984s, reward: -1.000000
episode 0: game 17 took 0.09575s, reward: -1.000000
episode 0: game 18 took 0.09416s, reward: -1.000000
episode 0: game 19 took 0.08674s, reward: -1.000000
episode 0: game 20 took 0.09628s, reward: -1.000000
resetting env. episode reward total was -20.000000. running mean: -20.000000
episode 1: game 0 took 0.09910s, reward: -1.000000
episode 1: game 1 took 0.17056s, reward: -1.000000
episode 1: game 2 took 0.09306s, reward: —-1.000000
episode 1: game 3 took 0.09556s, reward: -1.000000
episode 1: game 4 took 0.12520s, reward: 1.000000 !!rrrrtt
episode 1: game 5 took 0.17348s, reward: —-1.000000
episode 1: game 6 took 0.09415s, reward: -1.000000

This example allow computer to learn how to play Pong game from the screen inputs, just like human behavior. After
training for 15,000 episodes, the computer can win 20% of the games. The computer win 35% of the games at 20,000
episode, we can seen the computer learn faster and faster as it has more winning data to train. If you run it for 30,000
episode, it start to win.

render = False
resume = False

1.2. Tutorial 15

http://karpathy.github.io/2016/05/31/rl/
https://gym.openai.com/docs

TensorLayer Documentation, Release 1.5.4

Setting render to True, if you want to display the game environment. When you run the code again, you can set
resume to True, the code will load the existing model and train the model basic on it.

1.2.6 Understand Reinforcement learning

Pong Game

To understand Reinforcement Learning, we let computer to learn how to play Pong game from the original screen
inputs. Before we start, we highly recommend you to go through a famous blog called Deep Reinforcement Learning:
Pong from Pixels which is a minimalistic implementation of Deep Reinforcement Learning by using python-numpy
and OpenAl gym environment.

python tutorial_atari_pong.py

Policy Network

In Deep Reinforcement Learning, the Policy Network is the same with Deep Neural Network, it is our player (or
“agent”) who output actions to tell what we should do (move UP or DOWN); in Karpathy’s code, he only defined 2
actions, UP and DOWN and using a single simgoid output; In order to make our tutorial more generic, we defined 3
actions which are UP, DOWN and STOP (do nothing) by using 3 softmax outputs.

16 Chapter 1. User Guide

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/

TensorLayer Documentation, Release 1.5.4

observation for training
states_batch_pl = tf.placeholder(tf.float32, shape=[None, D])

network = tl.layers.Inputlayer (states_batch_pl, name='"input_layer")
network = tl.layers.Denselayer (network, n_units=H,
act = tf.nn.relu, name='relul')
network = tl.layers.Denselayer (network, n_units=3,
act = tf.identity, name='output_layer')
probs = network.outputs
sampling_prob = tf.nn.softmax (probs)

Then when our agent is playing Pong, it calculates the probabilities of different actions, and then draw sample (action)
from this uniform distribution. As the actions are represented by 1, 2 and 3, but the softmax outputs should be start
from 0, we calculate the label value by minus 1.

prob = sess.run/(
sampling_prob,
feed_dict={states_batch_pl: x}
)
action. 1: STOP 2: UP 3: DOWN
action = np.random.choice([1l,2,3], p=prob.flatten())

ys.append(action - 1)

Policy Gradient

Policy gradient methods are end-to-end algorithms that directly learn policy functions mapping states to actions. An
approximate policy could be learned directly by maximizing the expected rewards. The parameters of a policy function
(e.g. the parameters of a policy network used in the pong example) could be trained and learned under the guidance of
the gradient of expected rewards. In other words, we can gradually tune the policy function via updating its parameters,
such that it will generate actions from given states towards higher rewards.

An alternative method to policy gradient is Deep Q-Learning (DQN). It is based on Q-Learning that tries to learn a
value function (called Q function) mapping states and actions to some value. DQN employs a deep neural network to
represent the Q function as a function approximator. The training is done by minimizing temporal-difference errors. A
neurobiologically inspired mechanism called “experience replay” is typically used along with DQN to help improve
its stability caused by the use of non-linear function approximator.

You can check the following papers to gain better understandings about Reinforcement Learning.
* Reinforcement Learning: An Introduction. Richard S. Sutton and Andrew G. Barto
* Deep Reinforcement Learning. David Silver, Google DeepMind
* UCL Course on RL

The most successful applications of Deep Reinforcement Learning in recent years include DQN with experience replay
to play Atari games and AlphaGO that for the first time beats world-class professional GO players. AlphaGO used the
policy gradient method to train its policy network that is similar to the example of Pong game.

 Atari - Playing Atari with Deep Reinforcement Learning
 Atari - Human-level control through deep reinforcement learning

* AlphaGO - Mastering the game of Go with deep neural networks and tree search

1.2. Tutorial 17

https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

TensorLayer Documentation, Release 1.5.4

Dataset iteration

In Reinforcement Learning, we consider a final decision as an episode. In Pong game, a episode is a few dozen games,
because the games go up to score of 21 for either player. Then the batch size is how many episode we consider to
update the model. In the tutorial, we train a 2-layer policy network with 200 hidden layer units using RMSProp on
batches of 10 episodes.

Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

actions_batch_pl = tf.placeholder (tf.int32, shape=[None])

discount_rewards_batch_pl = tf.placeholder (tf.float32, shape=[None])

loss = tl.rein.cross_entropy_reward_loss (probs, actions_batch_pl,
discount_rewards_batch_pl)

sess.run (
train_op,
feed_dict={
states_batch_pl: epx,
actions_batch_pl: epy,
discount_rewards_batch_pl: disR

The loss in a batch is relate to all outputs of Policy Network, all actions we made and the corresponding discounted
rewards in a batch. We first compute the loss of each action by multiplying the discounted reward and the cross-entropy
between its output and its true action. The final loss in a batch is the sum of all loss of the actions.

What Next?
The tutorial above shows how you can build your own agent, end-to-end. While it has reasonable quality, the default
parameters will not give you the best agent model. Here are a few things you can improve.

First of all, instead of conventional MLP model, we can use CNNs to capture the screen information better as Playing
Atari with Deep Reinforcement Learning describe.

Also, the default parameters of the model are not tuned. You can try changing the learning rate, decay, or initializing
the weights of your model in a different way.

Finally, you can try the model on different tasks (games).

1.2.7 Run the Word2Vec example

In this part of the tutorial, we train a matrix for words, where each word can be represented by a unique row vector in
the matrix. In the end, similar words will have similar vectors. Then as we plot out the words into a two-dimensional
plane, words that are similar end up clustering nearby each other.

python tutorial_word2vec_basic.py

If everything is set up correctly, you will get an output in the end.

18 Chapter 1. User Guide

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf

TensorLayer Documentation, Release 1.5.4

n
.

J'j . ® u Eﬁgﬁr'%’mmnan ‘f‘:&
e eng E%
mdrerscg Iond%untr: sma liticgl

omputer & wor
0 systems :’::;:WG: bﬁm'l.' sggmmj%. agﬁ areI;:_I
wortl ay “‘Jh.?e me on west Iﬂmmm
east
i b P ; lslanqg; a'ﬁS'aWHeél
o = mth
playgftandaigle , %EF r tﬁ’ﬂ&& mma‘p
the th

xientﬂé&?ﬁ WEck
. ils ma! dﬂtﬁcﬂc‘reat lﬂg fgld popular
itself i %ﬂ‘?ﬂa
"wh meelf I'Ez\' seve%rﬁﬁﬁm port it m&}{gﬁﬁ kmglcmm

A
*an
another
each no és'on'nw W garfte members“?rj’ Iargllamens
. small
f‘gﬁ? iy %9 o rm*becajuo%x:emal aolR
such dihersneqy lous tm’t%mman
Ilwiere E% naturglicial
links mn5|gmﬁ1mm %hcﬁ hin inf8rmatio?

L]
Ii&mﬁpgﬂﬁ'ﬂm main ganeral
Ekﬁnok s had'ﬂ\" between sumeneenfa
dm * withput follgem% ey
-20 Ieﬁ‘émng althWéru nd | =gl
lc@g rmderather and
- BSthalﬁulﬁif ai

4' beﬁan m‘g
but 5 t m 3 c&n EI'.E' :l .
i b 0 i
; fa) sommmes
; Fy

o il * dhen becbeme

Era
Wt 3wy Ty
. * stifhday

hejt i
—40 o v Ilﬁ Flﬂ%l alsp
sh.e L

ool itz theol
QouR;

1.2.8 Understand Word Embedding

Word Embedding

We highly recommend you to read Colah’s blog Word Representations to understand why we want to use a vector
representation, and how to compute the vectors. (For chinese reader please click. More details about word2vec can be
found in Word2vec Parameter Learning Explained.

Bascially, training an embedding matrix is an unsupervised learning. As every word is refected by an unique ID, which
is the row index of the embedding matrix, a word can be converted into a vector, it can better represent the meaning.
For example, there seems to be a constant male-female difference vector: woman man = queen - king, this
means one dimension in the vector represents gender.

The model can be created as follow.

1.2. Tutorial 19

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://dataunion.org/9331.html
http://arxiv.org/abs/1411.2738

TensorLayer Documentation, Release 1.5.4

train_inputs is a row vector, a input is an integer id of single word.

train_labels is a column vector, a label is an integer id of single word.

valid_dataset is a column vector, a valid set is an integer id of single word.
train_inputs = tf.placeholder (tf.int32, shape=[batch_size])

train_labels = tf.placeholder (tf.int32, shape=[batch_size, 1])

valid_dataset = tf.constant (valid_examples, dtype=tf.int32)

Look up embeddings for inputs.
emb_net = tl.layers.Word2vecEmbeddingInputlayer (
inputs = train_inputs,
train_labels = train_labels,
vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
num_sampled = num_sampled,
nce_loss_args = {},
E_init = tf.random_uniform_initializer (minval=-1.0, maxval=1.0),
E_init_args = {},
nce_W_init = tf.truncated_normal_initializer(
stddev=float (1.0/np.sqgrt (embedding_size))),
nce_W_init_args = {},
nce_b_init = tf.constant_initializer (value=0.0),
nce_b_init_args = {},
name ='word2vec_layer',

Dataset iteration and loss

Word2vec uses Negative Sampling and Skip-Gram model for training. Noise-Contrastive Estimation Loss (NCE) can
help to reduce the computation of loss. Skip-Gram inverts context and targets, tries to predict each context word
from its target word. We use t1.nlp.generate_skip_gram_batch to generate training data as follow, see
tutorial_generate_text.py.

NCE cost expression 1s provided by Word2vecEmbeddingInputlayer
cost = emb_net.nce_cost
train_params = emb_net.all_params

train_op = tf.train.AdagradOptimizer (learning_rate, initial_accumulator_value=0.1,
use_locking=False) .minimize (cost, var_list=train_params)

data_index = 0
while (step < num_steps):
batch_inputs, batch_labels, data_index = tl.nlp.generate_skip_gram_batch (
data=data, batch_size=batch_size, num_skips=num_skips,
skip_window=skip_window, data_index=data_index)
feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
loss_val = sess.run([train_op, cost], feed_dict=feed_dict)

—

Restore existing Embedding matrix

In the end of training the embedding matrix, we save the matrix and corresponding dictionaries. Then next
time, we can restore the matrix and directories as follow. (see main_restore_embedding_layer () in
tutorial_generate_text.py)

20 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

vocabulary_size = 50000

embedding_size = 128

model_file_name = "model word2vec_50k_128"
batch_size = None

print ("Load existing embedding matrix and dictionaries")
all_var = tl.files.load_npy_to_any (name=model_file_name+'.npy')
data = all_var['data']; count = all_var(['count']

dictionary = all_var(['dictionary']

reverse_dictionary = all_var|['reverse_dictionary']
tl.nlp.save_vocab (count, name='vocab_ '+model_file_name+'.txt')
del all_var, data, count

load_params = tl.files.load_npz (name=model_file_name+'.npz")

x = tf.placeholder (tf.int32, shape=[batch_size])
y_ = tf.placeholder (tf.int32, shape=[batch_size, 1])

emb_net = tl.layers.EmbeddingInputlayer (

inputs = x,

vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
name ='embedding_ layer')

tl.layers.initialize_global_variables (sess)

tl.files.assign_params (sess, [load_params([0]], emb_net)

1.2.9 Run the PTB example

Penn TreeBank (PTB) dataset is used in many LANGUAGE MODELING papers, including “Empirical Evaluation
and Combination of Advanced Language Modeling Techniques”, “Recurrent Neural Network Regularization”. It
consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary.

The PTB example is trying to show how to train a recurrent neural network on a challenging task of language modeling.

Given a sentence “I am from Imperial College London”, the model can learn to predict “Imperial College London”
from “from Imperial College”. In other word, it predict the next word in a text given a history of previous words. In
the previous example , num_steps (sequence length) is 3.

python tutorial_ptb_lstm.py

The script provides three settings (small, medium, large), where a larger model has better performance. You can
choose different settings in:

flags.DEFINE_string(
"model", "small",
"A type of model. Possible options are: small, medium, large.")

If you choose the small setting, you can see:

Epoch: 1 Learning rate: 1.000
0.004 perplexity: 5220.213 speed: 7635 wps
0.104 perplexity: 828.871 speed: 8469 wps

(continues on next page)

1.2. Tutorial 21

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

.204 perplexity: 614.071 speed: 8839 wps
.304 perplexity: 495.485 speed: 8889 wps
.404 perplexity: 427.381 speed: 8940 wps
.504 perplexity: 383.063 speed: 8920 wps
.604 perplexity: 345.135 speed: 8920 wps
.703 perplexity: 319.263 speed: 8949 wps
.803 perplexity: 298.774 speed: 8975 wps
.903 perplexity: 279.817 speed: 8986 wps
Epoch: 1 Train Perplexity: 265.558

Epoch: 1 Valid Perplexity: 178.436

O O O O O O O o

=1
O .
o -
Q
jng

13 Learning rate: 0.004
0.004 perplexity: 56.122 speed: 8594 wps
0.104 perplexity: 40.793 speed: 9186 wps
0.204 perplexity: 44.527 speed: 9117 wps
0.304 perplexity: 42.668 speed: 9214 wps
0.404 perplexity: 41.943 speed: 9269 wps
0.504 perplexity: 41.286 speed: 9271 wps
0.604 perplexity: 39.989 speed: 9244 wps
0.703 perplexity: 39.403 speed: 9236 wps
0.803 perplexity: 38.742 speed: 9229 wps
0.903 perplexity: 37.430 speed: 9240 wps

Epoch: 13 Train Perplexity: 36.643
Epoch: 13 Valid Perplexity: 121.475
Test Perplexity: 116.716

The PTB example shows that RNN is able to model language, but this example did not do something practically
interesting. However, you should read through this example and “Understand LSTM” in order to understand the
basics of RNN. After that, you will learn how to generate text, how to achieve language translation, and how to build
a question answering system by using RNN.

1.2.10 Understand LSTM

Recurrent Neural Network

We personally think Andrey Karpathy’s blog is the best material to Understand Recurrent Neural Network , after
reading that, Colah’s blog can help you to Understand LSTM Network [chinese] which can solve The Problem of
Long-Term Dependencies. We will not describe more about the theory of RNN, so please read through these blogs
before you go on.

22 Chapter 1. User Guide

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dataunion.org/9331.html

TensorLayer Documentation, Release 1.5.4

one to one one to many many to one many to many many to many
m f bt

i
r Lﬁ‘ DD_ wjﬂﬂ ;*;;

bt t ot
Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (8) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification

where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

e
|—|
|—|

Image by Andrey Karpathy

Synced sequence input and output

The model in PTB example is a typical type of synced sequence input and output, which was described by Karpathy
as “(5) Synced sequence input and output (e.g. video classification where we wish to label each frame of the video).
Notice that in every case there are no pre-specified constraints on the lengths of sequences because the recurrent
transformation (green) can be applied as many times as we like.”

The model is built as follows. Firstly, we transfer the words into word vectors by looking up an embedding matrix. In
this tutorial, there is no pre-training on the embedding matrix. Secondly, we stack two LSTMs together using dropout
between the embedding layer, LSTM layers, and the output layer for regularization. In the final layer, the model
provides a sequence of softmax outputs.

The first LSTM layer outputs [batch_size, num_steps, hidden_size] for stacking another LSTM
after it. The second LSTM layer outputs [batch_sizexnum_steps, hidden_size] for stacking a
DenseLayer after it. Then the DenseLayer computes the softmax outputs of each example n_examples =
batch_size+num_steps).

To understand the PTB tutorial, you can also read TensorFlow PTB tutorial.

(Note that, TensorLayer supports DynamicRNNLayer after v1.1, so you can set the input/output dropouts, number of
RNN layers in one single layer)

network = tl.layers.EmbeddingInputlayer (
inputs = x,
vocabulary_size = vocab_size,
embedding_size = hidden_size,
E_init = tf.random_uniform_initializer (—-init_scale, init_scale),
name ='embedding_ layer')
if is_training:
network = tl.layers.Dropoutlayer (network, keep=keep_prob, name='dropl')
network = tl.layers.RNNLayer (network,
cell_fn=tf.contrib.rnn.BasicLSTMCell,

(continues on next page)

1.2. Tutorial 23

https://www.tensorflow.org/versions/r0.9/tutorials/recurrent/index.html#recurrent-neural-networks

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

cell_init_args={'forget_bias': 0.0},
n_hidden=hidden_size,
initializer=tf.random_uniform_initializer (-init_scale, init_scale),
n_steps=num_steps,
return_last=False,
name='basic_lstm_layerl')

lstml = network

if is_training:

network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop2')

network = tl.layers.RNNLayer (network,
cell_fn=tf.contrib.rnn.BasicLSTMCell,
cell_init_args={'forget_bias': 0.0},
n_hidden=hidden_size,
initializer=tf.random_uniform_initializer(-init_scale, init_scale),
n_steps=num_steps,
return_last=False,
return_seq_2d=True,
name='basic_lstm_layer2"')

lstm2 = network

if is_training:

network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop3')

network = tl.layers.Denselayer (network,
n_units=vocab_size,
W_init=tf.random_uniform_initializer (-init_scale, init_scale),
b_init=tf.random_uniform_initializer (-init_scale, init_scale),
act = tf.identity, name='output_layer')

Dataset iteration

The batch_size can be seen as the number of concurrent computations we are running. As the following example
shows, the first batch learns the sequence information by using items O to 9. The second batch learn the sequence
information by using items 10 to 19. So it ignores the information from items 9 to 10 !n If only if we set batch_size
= 17, it will consider all the information from items 0 to 20.

The meaning of batch_size here is not the same as the batch_size in the MNIST example. In the MNIST
example, batch_size reflects how many examples we consider in each iteration, while in the PTB example,
batch_size is the number of concurrent processes (segments) for accelerating the computation.

Some information will be ignored if batch_size > 1, however, if your dataset is “long” enough (a text corpus
usually has billions of words), the ignored information would not affect the final result.

In the PTB tutorial, we set batch_size = 20, so we divide the dataset into 20 segments. At the beginning of each
epoch, we initialize (reset) the 20 RNN states for the 20 segments to zero, then go through the 20 segments separately.

An example of generating training data is as follows:

train_data = [1i for 1 in range (20)]

for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3):
x, y = batch
print (x, '\n',y)

[l 0 1 2] <——x 1st subset/ iteration
[10 11 12]]

[[1 2 3] <—y

[11 12 13]1]

(continues on next page)

24 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

[[l 3 4 5] <-—— 1st batch input 2nd subset/ iteration
[13 14 15]] <--- 2nd batch input

[[4 5 6] <--- 1lst batch target

[14 15 16]] <-—-- 2nd batch target

[[6 7 8] 3rd subset/ iteration
[16 17 181]

(L7 8 9]

[17 18 1971]

Note: This example can also be considered as pre-training of the word embedding matrix.

Loss and update expressions

The cost function is the average cost of each mini-batch:

See tensorlayer.cost.cross_entropy_seq() for more details
def loss_fn (outputs, targets, batch_size, num_steps):
Returns the cost function of Cross—-entropy of two sequences, implement

softmax internally.

outputs : 2D tensor [batch_size*num steps, n_units of output layer]
targets : 2D tensor [batch_size, num_steps], need to be reshaped.

n_examples = batch_size * num_steps

so

cost 1is the average cost of each mini-batch (concurrent process).

loss = tf.nn.seg2seq.sequence_loss_by_example (
[outputs],
[tf.reshape (targets, [-1])1,
[tf.ones ([batch_size » num_steps])])
cost = tf.reduce_sum(loss) / batch_size
return cost

Cost for Training
cost = loss_fn(network.outputs, targets, batch_size, num_steps)

For updating, truncated backpropagation clips values of gradients by the ratio of the sum of their norms, so as to make
the learning process tractable.

Truncated Backpropagation for training
with tf.variable_scope('learning rate'):
lr = tf.Variable (0.0, trainable=False)
tvars = tf.trainable_variables ()
grads, _ = tf.clip_by_global_norm(tf.gradients (cost, tvars),
max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer (1r)
train_op = optimizer.apply_gradients (zip(grads, tvars))

In addition, if the epoch index is greater than max_epoch, we decrease the learning rate by multipling 1r_decay.

new_lr_decay = lr_decay *+* max(i - max_epoch, 0.0)
sess.run(tf.assign(lr, learning_rate * new_lr_decay))

1.2. Tutorial 25

TensorLayer Documentation, Release 1.5.4

At the beginning of each epoch, all states of LSTMs need to be reseted (initialized) to zero states. Then after each
iteration, the LSTMSs’ states is updated, so the new LSTM states (final states) need to be assigned as the initial states
of the next iteration:

set all states to zero states at the beginning of each epoch

statel = tl.layers.initialize_rnn_state(lstml.initial_state)

state2 = tl.layers.initialize_rnn_state(lstm2.initial_state)

for step, (x, y) in enumerate(tl.iterate.ptb_iterator (train_data,
batch_size, num_steps)):

feed_dict

= {input_data: x, targets: vy,

lstml.initial_state: statel,

lstm2.initial_state: state2,

}

For training, enable dropout

feed_dict.update(network.all_drop)

use the new states as the initial state of next iteration

_cost, statel, state2, _ = sess.run([cost,
lstml.final_state,
lstm2.final_state,
train_opl,
feed_dict=feed_dict
)

costs += _cost; iters += num_steps

Predicting

After training the model, when we predict the next output, we no long consider the number of steps (sequence length),
i.e. batch_size, num_steps are setto 1. Then we can output the next word one by one, instead of predicting a
sequence of words from a sequence of words.

input_data_test = tf.placeholder(tf.int32, [1, 11)
targets_test = tf.placeholder(tf.int32, [1, 11])

network_test, lstml_test, lstm2_test = inference (input_data_test,
is_training=False, num_steps=1l, reuse=True)

cost_test = loss_fn(network_test.outputs, targets_test, 1, 1)

print ("Evaluation")

Testing

go through the test set step by step, it will take a while.
start_time = time.time ()

costs = 0.0; iters = 0

reset all states at the beginning

statel = tl.layers.initialize_rnn_state(lstml_test.initial_state)
state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state)

for step, (x, y) in enumerate(tl.iterate.ptb_iterator (test_data,
batch_size=1, num_steps=1)):
feed_dict = {input_data_test: x, targets_test: vy,
lstml_test.initial_state: statel,
lstm2_test.initial_state: state2,
}

_cost, statel, state2 = sess.run([cost_test,
lstml_test.final_state,
lstm2_test.final_state],
feed_dict=feed_dict

(continues on next page)

26 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

costs += _cost; iters += 1
test_perplexity = np.exp(costs / iters)
print ("Test Perplexity: took s" % (test_perplexity, time.time() - start_
—time))
What Next?

Now, you have understood Synced sequence input and output. Let’s think about Many to one (Sequence input and one
output), so that LSTM is able to predict the next word “English” from “I am from London, I speak ..”.

Please read and understand the code of tutorial_generate_text.py. It shows you how to restore a pre-trained
Embedding matrix and how to learn text generation from a given context.

Karpathy’s blog : “(3) Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing
positive or negative sentiment). “

1.2.11 Run the Translation example

python tutorial_translate.py

This script is going to training a neural network to translate English to French. If everything is correct, you will see.
* Download WMT English-to-French translation data, includes training and testing data.
* Create vocabulary files for English and French from training data.

¢ Create the tokenized training and testing data from original training and testing data.

Prepare raw data

Load or Download WMT English-to-French translation > wmt
Training data : wmt/giga-fren.release?

Testing data : wmt/newstest2013

Create vocabularies
Vocabulary of French : wmt/vocab40000.fr
Vocabulary of English : wmt/vocab40000.en
Creating vocabulary wmt/vocab40000.fr from data wmt/giga-fren.releasel2.fr

processing line 100000

processing line 200000

processing line 300000

processing line 400000

processing line 500000

processing line 600000

processing line 700000

processing line 800000

processing line 900000

processing line 1000000

processing line 1100000

processing line 1200000

processing line 22500000
Creating vocabulary wmt/vocab40000.en from data wmt/giga-fren.release2.en
processing line 100000

(continues on next page)

1.2. Tutorial 27

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

processing line 22500000

Firstly, we download English-to-French translation data from the WMT*‘15 Website. The training and testing data as
follow. The training data is used to train the model, the testing data is used to evaluate the model.

wmt /training-giga-fren.tar <-- Training data for English-to-French (2.6GB)
glga-fren.release2.x are extracted from it.

wnt /dev-v2.tgz <-- Testing data for different language (21.4MB)
newstest2013.% are extracted from it.

wnt /giga-fren.release2.fr <-- Training data of French (4.57GB)
wmt /giga-fren.release2.en <-- Training data of English (3.79GB)

wmt /newstest2013.fr <-— Testing data of French (393KB)
wmt /newstest2013.en <-- Testing data of English (333KB)

As giga—-fren.release?2. « are the training data, the context of giga—-fren.release2. fr look as follow.

Il a transformé notre vie | Il a transformé la société | Son fonctionnement | La_
—technologie, moteur du changement Accueil | Concepts | Enseignants | Recherche |
—Apercu | Collaborateurs | Web HHCC | Ressources | Commentaires Musée virtuel du,,
—Canada

Plan du site

Rétroaction

Crédits

English

Qu’est-ce que la lumiere?

La découverte du spectre de la lumiere blanche Des codes dans la lumiere Le spectre,,
—électromagnétique Les spectres d’émission Les spectres d’absorption Les années-
—lumiére La pollution lumineuse

Le ciel des premiers habitants La vision contemporaine de 1'Univers L’astronomie pour,
—tous

Bande dessinée

Liens

Glossaire

Observatoires

While giga-fren.release?2.en look as follow, we can see words or sentences are separated by | or \n.

Changing Lives | Changing Society | How It Works | Technology Drives Change Home |,
—Concepts | Teachers | Search | Overview | Credits | HHCC Web | Reference | Feedback,,
—Virtual Museum of Canada Home Page

Site map

Feedback

Credits

Francais

What is light ?

The white light spectrum Codes in the light The electromagnetic spectrum Emission
—spectra Absorption spectra Light-years Light pollution

The sky of the first inhabitants A contemporary vison of the Universe Astronomy for
—everyone

Cartoon

Links

(continues on next page)

28 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

Glossary
Observatories

The testing data newstest2013.en and newstest2013. fr look as follow.

newstest2013.en

A Republican strategy to counter the re-election of Obama

Republican leaders justified their policy by the need to combat electoral fraud.
However, the Brennan Centre considers this a myth, stating that electoral fraud is_
—rarer in the United States than the number of people killed by lightning.

newstest2013.fr

Une stratégie républicaine pour contrer la réélection d'Obama

Les dirigeants républicains justifierent leur politique par la nécessité de lutter
—contre la fraude électorale.

Or, le Centre Brennan consideére cette derniére comme un mythe, affirmant que la
—fraude électorale est plus rare aux Etats-Unis que le nombre de personnes tuées par,
—la foudre.

After downloading the dataset, it start to create vocabulary files, vocab40000. fr and vocab40000 . en from the
training data giga-fren.release2.fr and giga—-fren.release?2.en, usually it will take a while. The
number 40000 reflects the vocabulary size.

The vocab40000. £fr (381KB) stores one-item-per-line as follow.

_PAD
_GO
_EOS
_UNK
de

’

la
et
des
les

pour
dans
un
que
une
sur
au
0000

par

1.2. Tutorial 29

TensorLayer Documentation, Release 1.5.4

The vocab40000 . en (344KB) stores one-item-per-line as follow as well.

_PAD
_GO
_EOS
_UNK
the

of
and

that
is
on
The
0000

by

with

as

000
are

And then, we start to create the tokenized training and testing data for both English and French. It will take a while as

well.

Tokenize data
Tokenizing data in wmt/giga-fren.release2.fr
tokenizing line 100000
tokenizing line 200000
tokenizing line 300000
tokenizing line 400000

tokenizing line 22500000
Tokenizing data in wmt/giga-fren.release2.en
tokenizing line 100000
tokenizing line 200000
tokenizing line 300000
tokenizing line 400000

tokenizing line 22500000
Tokenizing data in wmt/newstest2013.fr
Tokenizing data in wmt/newstest2013.en

<-- Training data of French

<-- Training data of English

<-- Testing data of French
<-- Testing data of English

In the end, all files we have as follow.

30

Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

wmt /training-giga-fren.tar

wmt /dev-v2.tgz
—4MB)

wmt /giga-fren.release2.fr
wnt /giga-fren.release2.en

wmt /newstest2013.fr
wmt /newstest2013.en

wmt /vocab40000.fr
wmt /vocab40000.en

wmt /giga-fren.release2.ids
wnt /giga-fren.release2.ids

wmt /newstest2013.1ds40000.
wmt /newstest2013.1ds40000.

<-- Compressed Training data for English-to-French (2.6GB)
giga-fren.release2.x are extracted from it.
<-— Compressed Testing data for different language (21.
newstest2013.* are extracted from it.
<-- Training data of French (4.57GB)
<-— Training data of English (3.79GB)
<-- Testing data of French (393KB)
<-— Testing data of English (333KB)
<-- Vocabulary of French (381KB)
<-— Vocabulary of English (344KB)
40000. fr <-- Tokenized Training data of French (2.81GB)
40000.en <-— Tokenized Training data of English (2.38GB)
fr <-- Tokenized Testing data of French (268KB)
en <-- Tokenized Testing data of English (232KB)

Now, read all tokenized data into buckets and compute the number of data of each bucket.

Read development (test)
dev data: (5, 10) [[13388,
en word_ids: [13388, 4, 94
context: [b'Preventing'
word_ids: [23113, 8, 91
context:

Read training data into bu
reading data line 100000
reading data line 200000
reading data line 300000
reading data line 400000
reading data line 500000
reading data line 600000
reading data line 700000
reading data line 800000
reading data line 224000
reading data line 225000

train_bucket_sizes: [23912

train_total_size: 17268326

train_buckets_scale: [0.01

—1.0]

train data:

en word_ids:

en context:
fr word_ids:
fr context:

(5, 10) [[1368
[1368, 3344]
[b'Site',
[1089, 14, 26
[b'Plan', b'du

the num of training data in each buckets:

the num of training data:
train_buckets_scale: [0.01
—1.0]

[b'Pr\xc3\xa9venir',

data into buckets

4,
9]

’

0,

94971, [23113, 8, 910, 2]]

b'the',
2]

b'disease']

b'la', b'maladie', b'_EO0S']

ckets (limit: 0)

00
00
1,
.0
3847375825543252,

1344322, 5239557, 10445326]

0.09169638099257565, 0.3951164693091849,

33441, [1089, 14, 261, 2]]

14

b'map']

2]
b'site',

1,

'
4

b'_EOS']

[239121, 1344322, 5239557, 10445326]

17268326
3847375825543252,

0.09169638099257565, 0.3951164693091849,

Start training by using the tokenized bucket data, the training process can only be terminated by stop the program.

1.2. Tutorial

31

TensorLayer Documentation, Release 1.5.4

When steps_per_checkpoint =

10 you

will see.

Create Embedding Attention SegZseq Model

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

step 10
bucket
bucket
bucket
bucket

step 20
bucket
bucket
bucket
bucket

step 30
bucket
bucket
bucket
bucket

step 40
bucket
bucket
bucket
bucket

step 50
bucket
bucket
bucket
bucket

step 60
bucket
bucket
bucket
bucket

step 70
bucket
bucket
bucket
bucket

step 80
bucket
bucket
bucket
bucket

step 90
bucket
bucket
bucket
bucket

step 100 learning rate 0.

learning rate 0.5000
0 perplexity 5887.75
1 perplexity 3891.96
2 perplexity 3748.77
3 perplexity 4940.10
learning rate 0.5000

step-time

step-time

0 perplexity
1 perplexity
2 perplexity
3 perplexity

10137.01
12809.90
15758.65
26760.93

learning rate 0.5000
0 perplexity 1789.80
1 perplexity 1690.00
2 perplexity 2190.18
3 perplexity 3808.12
learning rate 0.5000
0 perplexity 4778.76
1 perplexity 3698.90
2 perplexity 3902.37
3 perplexity 22612.44
learning rate 0.5000
0 perplexity 644.72
1 perplexity 759.16
2 perplexity 984.18
3 perplexity 1585.68
learning rate 0.5000
0 perplexity 1724.84
1 perplexity 2292.24
2 perplexity 2698.52
3 perplexity 3189.30
learning rate 0.5000
0 perplexity 298.55
1 perplexity 502.04
2 perplexity 645.44
3 perplexity 604.29
learning rate 0.5000
0 perplexity 2056.23
1 perplexity 1344.26
2 perplexity 767.82
3 perplexity 649.38
learning rate 0.5000
0 perplexity 180.86
1 perplexity 350.99
2 perplexity 326.85
3 perplexity 383.22

step-time

step-time

step-time

step-time

step-time

step-time

step-time

22.

20.

20.

16.

14.

19.

17.

18.

12.

26

38

64

10

84

76

16

50

61

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

1276

2876

6372.

3418.

1811.

1580.

1250.

793.

541.

1.50

1.36

95

93

02

55

57

90

57

5000 step-time 18.42 perplexity 471.12

eval: bucket 0 perplexity 216.63

eval: bucket 1 perplexity 348.96

eval: bucket 2 perplexity 318.20

eval: bucket 3 perplexity 389.92
global step 110 learning rate 0.5000 step-time 18.39 perplexity 474.89

eval: bucket 0 perplexity 8049.85

eval: bucket 1 perplexity 1677.24

eval: bucket 2 perplexity 936.98

(continues on next page)

32 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

bucket 3 perplexity 657.
step 120 learning rate 0.
bucket 0 perplexity 189.
bucket 1 perplexity 360.
bucket 2 perplexity 410.
bucket 3 perplexity 456.
step 130 learning rate 0.
bucket 0 perplexity 196.
bucket 1 perplexity 655.
bucket 2 perplexity 860.
bucket 3 perplexity
step 140 learning rate 0.
bucket 0 perplexity 391.
bucket 1 perplexity 339.
bucket 2 perplexity 320.
bucket 3 perplexity 376.
step 150 learning rate 0.
bucket 0 perplexity 269.
bucket 1 perplexity 286.
bucket 2 perplexity 391.
bucket 3 perplexity 485.
step 160 learning rate 0.
bucket 0 perplexity 137.
bucket 1 perplexity 198.
bucket 2 perplexity 276.
bucket 3 perplexity 357.
step 170 learning rate 0.
bucket 0 perplexity
bucket 1 perplexity
bucket 2 perplexity 496.
bucket 3 perplexity 458.
step 180 learning rate 0.
bucket 0 perplexity 178.
bucket 1 perplexity 299.
bucket 2 perplexity 294.
bucket 3 perplexity 296.
step 190 learning rate 0.
bucket 0 perplexity 860.
bucket 1 perplexity 910.
bucket 2 perplexity 909.
bucket 3 perplexity 786.
step 200 learning rate 0.
bucket 0 perplexity 152.
bucket 1 perplexity 234.
bucket 2 perplexity 249.
bucket 3 perplexity 285.

626.

step 980 learning rate 0.
bucket 0 perplexity
bucket 1 perplexity
bucket 2 perplexity 137.
bucket 3 perplexity 173.

step 990 learning rate 0.
bucket 0 perplexity
bucket 1 perplexity
bucket 2 perplexity
bucket 3 perplexity

108.

119.
169.
202.

46
5000
22
69
57
40
5000
93
18
44

1062.36

5000
88
09
08
44
4950
16
51
78
23
4950
00
85
58
78
4950

1051.29

64
32
85
4950
12
86
84
46
4950
60
16
24
04
4901
13
41
66
95

4215

78.45

40
83
53
4173

78.37

72
11
89

step-time

step-time

step-time

step-time

step-time

step-time

step-time

step-time

step-time

step-time

step-time

18.

20.

21.

15.

19.

17.

16.

19.

18.

18.

17.

81

34

05

53

36

50

69

93

75

31

31

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

832.

452.

847.

590.

400.

541.

400.

886.

449.

208.

175.

11

27

11

03

80

79

65

73

64

74

05

(continues on next page)

1.2. Tutorial

33

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

global step 1000 learning rate 0.4173 step-time 15.85 perplexity 174.33
eval: bucket 0 perplexity 76.52
eval: bucket 1 perplexity 125.97
eval: bucket 2 perplexity 150.13
eval: bucket 3 perplexity 181.07

After training the model for 350000 steps, you can play with the translation by switch main_train () to
main_decode (). You type in a English sentence, the program will outputs a French sentence.

Reading model parameters from wmt/translate.ckpt-350000
> Who is the president of the United States?
Qui est le président des Etats-Unis ?

1.2.12 Understand Translation
Seqg2seq

Sequence to sequence model is commonly be used to translate a language to another. Actually it can do many thing
you can’t imagine, we can translate a long sentence into short and simple sentence, for example, translation going
from Shakespeare to modern English. With CNN, we can also translate a video into a sentence, i.e. video captioning.

If you just want to use Seq2seq but not going to design a new algorithm, the only think you need to consider is the
data format including how to split the words, how to tokenize the words etc. In this tutorial, we described a lot about
data formating.

Basics

Sequence to sequence model is a type of “Many to many” but different with Synced sequence input and output in
PTB tutorial. Seq2seq generates sequence output after feeding all sequence inputs. The following two methods can
improve the accuracy:

* Reversing the inputs
 Attention mechanism

To speed up the computation, we used:
* Sampled softmax

Karpathy’s blog described Seq2seq as: “(4) Sequence input and sequence output (e.g. Machine Translation: an RNN
reads a sentence in English and then outputs a sentence in French).”

W X <eos>

[
T T

A B C < go > W

A 4
\4
A 4

v

\4

X— —s<
<— |}—>aN
—>

As the above figure shows, the encoder inputs, decoder inputs and targets are:

34 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

encoder_input = A B C
decoder_input = <go> W X Y Z
targets = W X Y Z <eos>

Note: in the code, the size of targets is one smaller than the size
of decoder_input, not like this figure. More details will be show later.

Papers

The English-to-French example implements a multi-layer recurrent neural network as encoder, and an Attention-based
decoder. It is the same as the model described in this paper:

e Grammar as a Foreign Language

The example uses sampled softmax to handle large output vocabulary size. In this example, as
target_vocab_size=4000, for vocabularies smaller than 512, it might be a better idea to just use a standard
softmax loss. Sampled softmax is described in Section 3 of the this paper:

* On Using Very Large Target Vocabulary for Neural Machine Translation

Reversing the inputs and Multi-layer cells have been successfully used in sequence-to-sequence models for translation
has beed described in this paper:

* Sequence to Sequence Learning with Neural Networks
Attention mechanism allows the decoder more direct access to the input, it was described in this paper:
* Neural Machine Translation by Jointly Learning to Align and Translate

Alternatively, the model can also be implemented by a single-layer version, but with Bi-directional encoder, was
presented in this paper:

* Neural Machine Translation by Jointly Learning to Align and Translate

Implementation

Bucketing and Padding

(Note that, TensorLayer supports Dynamic RNN layer after v1.2, so bucketing is not longer necessary in many cases)

Bucketing is a method to efficiently handle sentences of different length. When translating English to French, we will
have English sentences of different lengths L1 on input, and French sentences of different lengths L2 on output. We
should in principle create a seq2seq model for every pair (L1, L2+1) (prefixed by a GO symbol) of lengths of an
English and French sentence.

To minimize the number of buckets and find the closest bucket for each pair, then we could just pad every sentence
with a special PAD symbol in the end if the bucket is bigger than the sentence

We use a number of buckets and pad to the closest one for efficiency. In this example, we used 4 buckets as follow.

buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]

If the input is an English sentence with 3 tokens, and the corresponding output is a French sentence with 6 tokens,
then they will be put in the first bucket and padded to length 5 for encoder inputs (English sentence), and length 10 for
decoder inputs. If we have an English sentence with 8 tokens and the corresponding French sentence has 18 tokens,
then they will be fitinto (20, 25) bucket.

In other word, bucket (I, O) is (encoder_input_size, decoder_inputs_size).

1.2. Tutorial 35

http://arxiv.org/abs/1412.7449
http://arxiv.org/abs/1412.2007
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

TensorLayer Documentation, Release 1.5.4

Given a pairof [["I", "go", "."], ["Je", "vais", "."]1] in tokenized format, we fit it into bucket
(5, 10). The training data of encoder inputs representing [PAD PAD "." "go" "I"] and decoder inputs
[GO "Je" "vais"™ "." EOS PAD PAD PAD PAD PAD]. The targets are decoder inputs shifted by one. The

target_weights is the mask of targets.

bucket = (I, O0) = (5, 10)

encoder_inputs = [PAD PAD "." "go" "I"] <-- 5 x batch_size
decoder_inputs = [GO "Je" "vais"™ "." EOS PAD PAD PAD PAD PAD] <-- 10 x batch_size
target_weights = [1 1 1 1 00 000 0 0] <—— 10 x batch_size
targets = ["Je" "vais"™ "." EOS PAD PAD PAD PAD PAD] <--— 9 x batch_size

In this example, one sentence is represented by one column, so assume batch_size = 3,bucket = (5, 10)

the training data will look like:

encoder_inputs decoder_inputs target_weights targets
0 0 0 1 1 1 1 1 1 87 71 16748
0 0 0 87 71 16748 1 1 1 2 3 14195
0 0 0 2 3 14195 0 1 1 0 2
0 0 3233 0 2 2 0 0 0 0 0 0
3 698 4061 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
where 0 : _PAD 1 : _GO 2 : _EOS 3 : _UNK

During training, the decoder inputs are the targets, while during prediction, the next decoder input is the last decoder
output.

Special vocabulary symbols, punctuations and digits

The special vocabulary symbols in this example are:

_PAD = b"_PAD"
_GO = b"_GOo"

_EOS = b"_EOS"
UNK = b"_ UNK"

PAD_ID = O <-— index (row number) in vocabulary
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
ID MEANINGS
_PAD 0 Padding, empty word
_GO 1 1st element of decoder_inputs
_EOS 2 End of Sentence of targets
_UNK 3 Unknown word, words do not exist in vocabulary will be marked as 3

For digits, the normalize_digits of creating vocabularies and tokenized dataset must be consistent, if
normalize_digits=True all digits will be replaced by 0. Like 123 to 000", 9 to 0 and 71990-05 to 0000-
00, then 000, 0 and 0000-00 etc will be the words in the vocabulary (see vocab40000 . en).

Otherwise, if normalize_digits=False, different digits will be seem in the vocabulary, then the vocabulary

36 Chapter 1. User Guide

TensorLayer Documentation, Release 1.5.4

size will be very big. The regular expression to find digits is _DIGIT_RE = re.compile (br"\d"). (see tl.
nlp.create_vocabulary () andtl.nlp.data_to_token_ids())

For word split, the regular expression is _WORD_SPLIT = re.compile(b" ([.,!2\"":;) (1)"), this
means use the symbols like [. , ! 2 " ' : ;) (1 and space to split the sentence, see t1.nlp.
basic_tokenizer () which is the default tokenizer of t1.nlp.create_vocabulary () and tl.nlp.
data_to_token_ids ().

All punctuation marks, suchas . ,) (are all reserved in the vocabularies of both English and French.

Sampled softmax

Sampled softmax is a method to reduce the computation of cost so as to handle large output vocabulary. Instead of
compute the cross-entropy of large output, we compute the loss from samples of num_samples.

Dataset iteration

The iteration is done by EmbeddingAttentionSeg2segWrapper.get_batch, which get a random batch of
data from the specified bucket, prepare for step. The data

Loss and update expressions

The EmbeddingAttentionSeg2segWrapper has built in SGD optimizer.

What Next?

Try other applications.

1.2.13 More info

For more information on what you can do with TensorLayer, just continue reading through readthedocs. Finally, the
reference lists and explains as follow.

layers (tensorlayer. layers),

activation (tensorlayer.activation),

natural language processing (tensorlayer.nlp),
reinforcement learning (tensorlayer. rein),

cost expressions and regularizers (tensorlayer. cost),
load and save files (tensorlayer. files),

operating system (tensorlayer. ops),

helper functions (tensorlayer.utils),

visualization (tensorlayer.visualize),

iteration functions (tensorlayer. iterate),

preprocessing functions (tensorlayer.prepro),

1.2. Tutorial 37

TensorLayer Documentation, Release 1.5.4

1.3 Example

1.3.1 Basics

* Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see

tutorial_mnist_simple.py on GitHub.

1.3.2 Computer Vision

Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see
tutorial_mnist.py on GitHub.

Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for
MNIST classification task, see tutorial_mnist.py on GitHub.

Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST
dataset, see tutorial_mnist .py on GitHub.

Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10
dataset, see tutorial_cifarl0.py and ‘‘tutorial_cifar10_tfrecord.py‘‘on GitHub.

VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see
tutorial_vgglé6.py on GitHub.

VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see
tutorial_vggl9.py on GitHub.

InceptionV3 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see
tutorial_inceptionV3_tfslim.py on GitHub.

Wide ResNet (CIFAR) by ritchieng.
More CNN implementations of TF-Slim can be connected to TensorLayer via SlimNetsLayer.
Spatial Transformer Networks by zsdonghao.

U-Net for brain tumor segmentation by zsdonghao.

1.3.3 Natural Language Processing

Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see
tutorial_ptb_lstm_state_is_tuple.py on GitHub.

Word Embedding - Word2vec. Train a word embedding matrix, see tutorial_word2vec_basic.py on
GitHub.

Restore Embedding matrix. Restore a pre-train embedding matrix, see tutorial_generate_text.py on
GitHub.

Text Generation. Generates new text scripts, using LSTM network, see tutorial_generate_text.py
on GitHub.

Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT
English-to-French translation data, see tutorial_translate.py on GitHub.

38

Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/ritchieng/wideresnet-tensorlayer
https://github.com/tensorflow/models/tree/master/slim#pre-trained-models
https://arxiv.org/abs/1506.02025
https://github.com/zsdonghao/Spatial-Transformer-Nets
https://github.com/zsdonghao/u-net-brain-tumor
https://github.com/zsdonghao/u-net-brain-tumor
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer

TensorLayer Documentation, Release 1.5.4

1.3.4 Adversarial Learning

DCGAN - Generating images by Deep Convolutional Generative Adversarial Networks by zsdonghao.
* Generative Adversarial Text to Image Synthesis by zsdonghao.
* Unsupervised Image to Image Translation with Generative Adversarial Networks by zsdonghao.

* Super Resolution GAN by zsdonghao.

1.3.5 Reinforcement Learning
e Deep Reinforcement Learning - Pong Game. Teach a machine to play Pong games, see
tutorial_atari_pong.py on GitHub.

* Asynchronous Deep Reinforcement Learning - Pong Game by nebulaV.

1.3.6 Applications

* Image Captioning - Reimplementation of Google’s im2txt by zsdonghao.

* A simple web service - TensorFlask by JoelKronander.

1.3.7 Special Examples

* Merge TF-Slim into TensorLayer. tutorial_inceptionV3_tfslim.py on GitHub.
* Merge Keras into TensorLayer. tutorial_keras.py on GitHub.
e MultiplexerLayer. tutorial_mnist_multiplexer.py on GitHub.

* Data augmentation with TFRecord. Effective way to load and pre-process data, see tutorial_tfrecordx.
py and tutorial_cifarlO_tfrecord.py on GitHub.

* Data augmentation with TensorLayer, see tutorial_image_preprocess.py on GitHub.

* TensorDB by fangde see here.

1.4 Development

TensorLayer is a major ongoing research project in Data Science Institute, Imperial College London. The goal of the
project is to develop a compositional language while complex learning systems can be build through composition of
neural network modules. The whole development is now participated by numerous contributors on Release. As an
open-source project by we highly welcome contributions! Every bit helps and will be credited.

1.4.1 What to contribute

Your method and example
If you have a new method or example in term of Deep learning and Reinforcement learning, you are welcome to
contribute.

* Provide your layer or example, so everyone can use it.

» Explain how it would work, and link to a scientific paper if applicable.

1.4. Development 39

http://arxiv.org/abs/1511.06434
https://github.com/zsdonghao/dcgan
https://github.com/zsdonghao/text-to-image
https://github.com/zsdonghao/text-to-image
https://github.com/zsdonghao/Unsup-Im2Im
https://github.com/zsdonghao/Unsup-Im2Im
https://arxiv.org/abs/1609.04802
https://github.com/zsdonghao/SRGAN
https://github.com/zsdonghao/tensorlayer
https://github.com/akaraspt/tl_paper
https://github.com/tensorflow/models/tree/master/im2txt
https://github.com/zsdonghao/Image-Captioning
https://github.com/JoelKronander/TensorFlask
https://github.com/JoelKronander
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/fangde
https://github.com/akaraspt/tl_paper
https://github.com/zsdonghao/tensorlayer/releases

TensorLayer Documentation, Release 1.5.4

* Keep the scope as narrow as possible, to make it easier to implement.

Report bugs

Report bugs at the GitHub, we normally will fix it in 5 hours. If you are reporting a bug, please include:
* your TensorLayer, TensorFlow and Python version.
* steps to reproduce the bug, ideally reduced to a few Python commands.
* the results you obtain, and the results you expected instead.

If you are unsure whether the behavior you experience is a bug, or if you are unsure whether it is related to TensorLayer
or TensorFlow, please just ask on our mailing list first.

Fix bugs
Look through the GitHub issues for bug reports. Anything tagged with “bug” is open to whoever wants to implement

it. If you discover a bug in TensorLayer you can fix yourself, by all means feel free to just implement a fix and not
report it first.

Write documentation
Whenever you find something not explained well, misleading, glossed over or just wrong, please update it! The Edit

on GitHub link on the top right of every documentation page and the [source] link for every documented entity in the
API reference will help you to quickly locate the origin of any text.

1.4.2 How to contribute

Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit on GitHub link on the top right of a
documentation page or the [source] link of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser and send us a Pull Request. All you need for
this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup TensorLayer for development.

Documentation

The documentation is generated with Sphinx. To build it locally, run the following commands:

pip install Sphinx
sphinx—quickstart

cd docs
make html

If you want to re-generate the whole docs, run the following commands:

cd docs
make clean
make html

40 Chapter 1. User Guide

https://github.com/zsdonghao/tensorlayer
mailto:hao.dong11@imperial.ac.uk
http://sphinx-doc.org/latest/index.html

TensorLayer Documentation, Release 1.5.4

To write the docs, we recommend you to install Local RTD VM.

Afterwards, open docs/_build/html/index.html to view the documentation as it would appear on readthe-
docs. If you changed a lot and seem to get misleading error messages or warnings, run make clean html to force
Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to ensure consistency throughout the
library. For additional information on the syntax and conventions used, please refer to the following documents:

e reStructuredText Primer
* Sphinx reST markup constructs

¢ A Guide to NumPy/SciPy Documentation

Testing

TensorLayer has a code coverage of 100%, which has proven very helpful in the past, but also creates some duties:

e Whenever you change any code, you should test whether it breaks existing features by just running the test
scripts.

* Every bug you fix indicates a missing test case, so a proposed bug fix should come with a new test that fails
without your fix.

Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation looks good without any markup errors,
commit your changes to a new branch, push that branch to your fork and send us a Pull Request via GitHub’s web
interface.

All these steps are nicely explained on GitHub: https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to help us reviewing it. If it is fixing an
open issue, say, issue #123, add Fixes #123, Resolves #123 or Closes #123 to the description text, so GitHub will close
it when your request is merged.

1.5 More

1.5.1 FQA

How to effectively learn TensorLayer

No matter what stage you are in, we recommend you to spend just 10 minutes to read the source code of TensorLayer
and the Understand layer / Your layer in this website, you will find the abstract methods are very simple for everyone.
Reading the source codes helps you to better understand TensorFlow and allows you to implement your own methods
easily. For discussion, we recommend Gitter, Help Wanted Issues, QQ group and Wechat group.

Beginner

For people who new to deep learning, the contirbutors provided a number of tutorials in this website, these tutorials
will guide you to understand autoencoder, convolutional neural network, recurrent neural network, word embedding
and deep reinforcement learning and etc. If your already understand the basic of deep learning, we recommend you to
skip the tutorials and read the example codes on Github , then implement an example from scratch.

1.5. More 4

http://docs.readthedocs.io/en/latest/custom_installs/local_rtd_vm.html
http://tensorlayer.readthedocs.org/
http://tensorlayer.readthedocs.org/
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://guides.github.com/introduction/flow/
http://tensorlayer.readthedocs.io/en/stable/modules/layers.html
https://gitter.im/tensorlayer/Lobby#?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://waffle.io/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer/blob/master/img/img_qq.png
mailto:tensorlayer@gmail.com
https://github.com/zsdonghao/tensorlayer

TensorLayer Documentation, Release 1.5.4

Engineer

For people from industry, the contirbutors provided mass format-consistent examples covering computer vision, nat-
ural language processing and reinforcement learning. Besides, there are also many TensorFlow users already im-
plemented product-level examples including image captioning, semantic/instance segmentation, machine translation,
chatbot and etc, which can be found online. It is worth noting that a wrapper especially for computer vision Tf-Slim
can be connected with TensorLayer seamlessly. Therefore, you may able to find the examples that can be used in your
project.

Researcher

For people from academic, TensorLayer was originally developed by PhD students who facing issues with other
libraries on implement novel algorithm. Installing TensorLayer in editable mode is recommended, so you can extend
your methods in TensorLayer. For researches related to image such as image captioning, visual QA and etc, you may
find it is very helpful to use the existing Tf-Slim pre-trained models with TensorLayer (a specially layer for connecting
Tf-Slim is provided).

Exclude some layers from training

You may need to get the list of variables you want to update, TensorLayer provides two ways to get the variables list.

The first way is to use the all_params of a network, by default, it will store the variables in order. You can print
the variables information via t1l.layers.print_all_variables (train_only=True) or network.
print_params (details=False). To choose which variables to update, you can do as below.

train_params = network.all_ params[3:]

The second way is to get the variables by a given name. For example, if you want to get all variables which the layer
name contain dense, you can do as below.

train_params = tl.layers.get_variables_with_name('dense', train_only=True,
—printable=True)

After you get the variable list, you can define your optimizer like that so as to update only a part of the variables.

train_op = tf.train.AdamOptimizer (0.001) .minimize (cost, var_list= train_params)

Visualization

Cannot Save Image

If you run the script via SSH control, sometime you may find the following error.

_tkinter.TclError: no display name and no S$SDISPLAY environment variable

If happen, use import matplotlib and matplotlib.use ('Agg') before import tensorlayer as
t 1. Alternatively, add the following code into the top of visualize.py orin your own code.

import matplotlib
matplotlib.use ('Agg")
import matplotlib.pyplot as plt

42 Chapter 1. User Guide

https://github.com/tensorflow/models/tree/master/slim#Pretrained
https://github.com/tensorflow/models/tree/master/slim#Pretrained

TensorLayer Documentation, Release 1.5.4

Install Master Version

To use all new features of TensorLayer, you need to install the master version from Github. Before that, you need to
make sure you already installed git.

[stable version] pip install tensorlayer
[master version] pip install git+https://github.com/zsdonghao/tensorlayer.git

Editable Mode

e 1. Download the TensorLayer folder from Github.
e 2. Before editing the TensorLayer . py file.

e If your script and TensorLayer folder are in the same folder, when you edit the . py inside Tensor-
Layer folder, your script can access the new features.

 If your script and TensorLayer folder are not in the same folder, you need to run the following
command in the folder contains setup . py before you edit . py inside TensorLayer folder.

pip install -e

Load Model

Note that,the t1.files.load_npz () can only able to load the npz model saved by t1.files.save_npz ().
If you have a model want to load into your TensorLayer network, you can first assign your parameters into a list in
order, thenuse t1.files.assign_params () to load the parameters into your TensorLayer model.

1.5.2 Recruitment

TensorLayer Contributors

TensorLayer contributors are from Imperial College, Tsinghua University, Carnegie Mellon University, Google, Mi-
crosoft, Bloomberg and etc. There are many functions need to be contributed such as Maxout, Neural Turing Machine,
Attention, TensorLayer Mobile and etc. Please push on GitHub, every bit helps and will be credited. If you are inter-
ested in working with us, please contact us.

Data Science Institute, Imperial College London

Data science is therefore by nature at the core of all modern transdisciplinary scientific activities, as it involves the
whole life cycle of data, from acquisition and exploration to analysis and communication of the results. Data science
is not only concerned with the tools and methods to obtain, manage and analyse data: it is also about extracting value
from data and translating it from asset to product.

Launched on 1st April 2014, the Data Science Institute at Imperial College London aims to enhance Imperial’s excel-
lence in data-driven research across its faculties by fulfilling the following objectives.

The Data Science Institute is housed in purpose built facilities in the heart of the Imperial College campus in South
Kensington. Such a central location provides excellent access to collabroators across the College and across London.

* To act as a focal point for coordinating data science research at Imperial College by facilitating access to funding,
engaging with global partners, and stimulating cross-disciplinary collaboration.

1.5. More 43

https://github.com/zsdonghao/tensorlayer
mailto:hao.dong11@imperial.ac.uk

TensorLayer Documentation, Release 1.5.4

To develop data management and analysis technologies and services for supporting data driven research in the
College.

To promote the training and education of the new generation of data scientist by developing and coordinating
new degree courses, and conducting public outreach programmes on data science.

To advise College on data strategy and policy by providing world-class data science expertise.

To enable the translation of data science innovation by close collaboration with industry and supporting com-
mercialization.

If you are interested in working with us, please check our vacancies and other ways to get involved , or feel free to
contact us.

44

Chapter 1. User Guide

https://www.imperial.ac.uk/data-science/get-involved/vacancies/
https://www.imperial.ac.uk/data-science/get-involved/
https://www.imperial.ac.uk/data-science/get-involved/contact-us/

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API - Layers

To make TensorLayer simple, we minimize the number of layer classes as much as we can. So we encourage you to
use TensorFlow’s function. For example, we provide layer for local response normalization, but we still suggest users
toapply tf.nn.lrnon network.outputs. More functions can be found in TensorFlow API.

2.1.1 Understand Basic layer

All TensorLayer layers have a number of properties in common:

* layer.outputs : a Tensor, the outputs of current layer.

e layer.all_params : alist of Tensor, all network variables in order.

* layer.all_layers : alist of Tensor, all network outputs in order.

* layer.all drop: adictionary of {placeholder : float}, all keeping probabilities of noise layer.
All TensorLayer layers have a number of methods in common:

e layer.print_params () : print the network variables information in order (after t1.layers.
initialize_global_variables (sess)). alternatively, print all variables by tl.layers.
print_all variables().

e layer.print_layers () : print the network layers information in order.
* layer.count_params () : print the number of parameters in the network.

The initialization of a network is done by input layer, then we can stacked layers as follow, a network is a Layer
class. The most important properties of a network are network.all params, network.all layers and
network.all_drop. The all_params is a list which store all pointers of all network parameters in order, the
following script define a 3 layer network, then:

45

https://www.tensorflow.org/versions/master/api_docs/index.html

TensorLayer Documentation, Release 1.5.4

all_params =[WI, bl, W2, b2, W_out, b_out]

To get specified variables, you can use network.all_params[2:3] or get_variables_with_name ().
Asthe all_layers is alist which store all pointers of the outputs of all layers, in the following network:

all_layers = [drop(?,784), relu(?,800), drop(?,800), relu(?,800), drop(?,800)], identity(?,10)]

where ? reflects any batch size. You can print the layer information and parameters information by using network.
print_layers () and network.print_params (). To count the number of parameters in a network, run
network.count_params ().

sess = tf.InteractiveSession ()

x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder(tf.int64, shape=[None,], name='y_ ')

network = tl.layers.Inputlayer (x, name='input_ layer')
network = tl.layers.Dropoutlayer (network, keep=0.8, name='dropl")
network = tl.layers.Denselayer (network, n_units=800,

act = tf.nn.relu, name='relul')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop2')
network = tl.layers.Denselayer (network, n_units=800,

act = tf.nn.relu, name='relu2')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop3')
network = tl.layers.Denselayer (network, n_units=10,

act = tl.activation.identity,

name="'output_layer")

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)

cost = tl.cost.cross_entropy(y, y_)

train_params = network.all_ params

train_op = tf.train.AdamOptimizer (learning_rate, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_list,

—= train_params)

tl.layers.initialize_global_variables (sess)

network.print_params ()
network.print_layers ()

In addition, network.all_drop is a dictionary which stores the keeping probabilities of all noise layer. In the
above network, they are the keeping probabilities of dropout layers.

So for training, enable all dropout layers as follow.

feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update(network.all_drop)

loss, _ = sess.run([cost, train_opl], feed_dict=feed_dict)
feed_dict.update(network.all_drop)

For evaluating and testing, disable all dropout layers as follow.

feed_dict = {x: X_val, y_: y_val}
feed_dict.update (dp_dict)

o

print (" val loss: " % sess.run(cost, feed_dict=feed_dict))

(continues on next page)

46 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

o

print (" val acc: " % np.mean(y_val ==
sess.run(y_op, feed_dict=feed_dict)))

For more details, please read the MNIST examples on Github.

2.1.2 Understand Dense layer

Before creating your own TensorLayer layer, let’s have a look at Dense layer. It creates a weights matrix and biases
vector if not exists, then implement the output expression. At the end, as a layer with parameter, we also need to
append the parameters into all_params.

class MyDenselayer (Layer) :

def _ init_ (
self,
layer = None,
n_units = 100,
act = tf.nn.relu,
name ='simple_dense',

check layer name (fixed)
Layer.__init__ (self, name=name)

the input of this layer is the output of previous layer (fixed)
self.inputs = layer.outputs

print out info (customized)
print (" MyDenselayer : , " % (self.name, n_units, act))

operation (customized)
n_in = int(self.inputs._shapel[-1])
with tf.variable_scope (name) as vs:
create new parameters
W = tf.get_variable (name='W', shape=(n_in, n_units))
b = tf.get_variable(name='b', shape=(n_units))
tensor operation
self.outputs = act (tf.matmul (self.inputs, W) + b)

get stuff from previous layer (fixed)
self.all_layers = list (layer.all_layers)
self.all_params = list (layer.all_params)
self.all_drop = dict(layer.all_drop)

update layer (customized)
self.all_layers.extend([self.outputs])
self.all_params.extend([W, b])

2.1.3 Your layer
A simple layer

To implement a custom layer in TensorLayer, you will have to write a Python class that subclasses Layer and implement
the outputs expression.

The following is an example implementation of a layer that multiplies its input by 2:

2.1. API - Layers 47

TensorLayer Documentation, Release 1.5.4

class Doublelayer (Layer) :

def _ init_ (
self,
layer = None,
name ='double_layer',

check layer name (fixed)
Layer.__init__ (self, name=name)

the input of this layer is the output of previous layer (fixed)
self.inputs = layer.outputs

operation (customized)
self.outputs = self.inputs * 2

get stuff from previous layer (fixed)
self.all_layers = list (layer.all_layers)
self.all _params = list (layer.all_params)
self.all_drop = dict(layer.all_drop)

update layer (customized)
self.all_layers.extend([self.outputs])

Modifying Pre-train Behaviour

Greedy layer-wise pretraining is an important task for deep neural network initialization, while there are many kinds
of pre-training methods according to different network architectures and applications.

For example, the pre-train process of Vanilla Sparse Autoencoder can be implemented by using KL divergence (for
sigmoid) as the following code, but for Deep Rectifier Network, the sparsity can be implemented by using the L1
regularization of activation output.

Vanilla Sparse Autoencoder

beta = 4
rho = 0.15
p_hat = tf.reduce_mean (activation_out, reduction_indices = 0)

KLD = beta » tf.reduce_sum(rho » tf.log(tf.div(rho, p_hat))
+ (1- rho) * tf.log((l- rho)/ (tf.sub(float(l), p_hat))))

There are many pre-train methods, for this reason, TensorLayer provides a simple way to modify or design
your own pre-train method. For Autoencoder, TensorLayer uses ReconLayer.__init__ () to define the re-
construction layer and cost function, to define your own cost function, just simply modify the self.cost
in ReconLayer.__init__ (). To creat your own cost expression please read Tensorflow Math. By de-
fault, ReconLayer only updates the weights and biases of previous 1 layer by using self.train_params
= self.all _params[-4:], where the 4 parameters are [W_encoder, b_encoder, W_decoder,
b_decoder], where W_encoder, b_encoder belong to previous DenseLayer, W_decoder, b_decoder
belong to this ReconlLayer. In addition, if you want to update the parameters of previous 2 layers at the same time,
simply modify [-4:] to [-6:].

Reconlayer.__init__ (...):
self.train_params = self.all_params[—4:]

self.cost = mse + Ll_a + L2_w

48 Chapter 2. API Reference

http://deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html

TensorLayer Documentation, Release 1.5.4

2.1.4 Layer list

get_variables with_ name(name[,

)

train_only,

Get variable list by a given name scope.

get_layers_with_name([network, name, print-
able])

Get layer list in a network by a given name scope.

set_name_reuse([enable])

Enable or disable reuse layer name.

print_all_variables([train_only])

Print all trainable and non-trainable variables without
tl.layers.initialize_global_variables(sess)

initialize_global_variables([sess])

Excute sess.run (tf.
global_variables_initializer()) for
TF12+ or sess.run(tf.initialize_all_variables()) for
TF11.

Layer([inputs, name])

The Layer class represents a single layer of a neural
network.

InputLayer([inputs, name])

The InputLayer class is the starting layer of a neural
network.

OneHot Input Layer([inputs, depth, on_value, ...])

The OneHot InputLayer class is the starting layer
of a neural network, see t £.one_hot.

Word2vecEmbeddingInputlayer([inputs,...])

The Word2vecEmbeddingInputlayer class is a
fully connected layer, for Word Embedding.

EmbeddingInputlayer([inputs, ...])

The EmbeddingInputlayer class is a fully con-
nected layer, for Word Embedding.

DenseLayer([layer, n_units, act, W_init, ...])

The DenseLayer class is a fully connected layer.

ReconLayer([layer, x_recon, name, n_units, act])

The ReconLayer class is a reconstruction layer
DenseLayer which use to pre-train a DenseLayer.

Dropout Layer([layer, keep, is_fix, ...])

The DropoutLayer class is a noise layer which ran-
domly set some values to zero by a given keeping prob-
ability.

GaussianNoiseLayer([layer, mean, stddev, ...])

The GaussianNoiseLayer class is noise layer that
adding noise with normal distribution to the activation.

DropconnectDenseLayer([layer, keep, ...])

The DropconnectDenselLayer class is
DenseLayer with DropConnect behaviour which
randomly remove connection between this layer to
previous layer by a given keeping probability.

ConvldLayer([layer, act, shape, stride, ...])

The ConvidLayer class is a 1D CNN layer, see
tf.nn.convolution.

Conv2dLayer([layer, act, shape, strides, ...])

The Conv2dLayer class is a 2D CNN layer, see
tf.nn.conv2d.

DeConvZ2dLayer([layer, act, shape, ...])

The DeConvZdLayer class is deconvolutional 2D
layer, see tf.nn.conv2d_transpose.

Conv3dLayer([layer, act, shape, strides, ...])

The Conv3dLayer class is a 3D CNN layer, see
tf.nn.conv3d.

DeConv3dLayer([layer, act, shape, ...])

The DeConv3dLayer class is deconvolutional 3D
layer, see tf.nn.conv3d_transpose.

PoolLayer([layer, ksize, strides, padding, ...])

The PoolLayer class is a Pooling layer, you can
choose tf.nn.max_pool and tf.nn.avg_pool
for 2D or tf.nn.max_pool3d and tf.nn.
avg_pool3d for 3D.

PadLayer([layer, paddings, mode, name])

The PadLayer class is a Padding layer for any modes
and dimensions.

Continued on next page

2.1. API - Layers

49

https://www.tensorflow.org/api_docs/python/tf/nn/convolution
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv2d
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv2d_transpose
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv3d
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv3d_transpose

TensorLayer Documentation, Release 1.5.4

Table 1 — continued from previous page

UpSampling2dLayer([layer, size, is_scale, ...])

The UpSampling2dLayer class is upSampling 2d
layer, see tf.image.resize_images.

DownSampling2dLayer([layer, size, is_scale, ...])

The DownSamplingZdLayer class is downSam-
pling 2d layer, see tf.image.resize_images.

AtrousConvldLayer(net[, n_filter, ...])

Wrapper for At rousConvidLayer, if you don’t un-
derstand how to use ConvildLayer, this function may
be easier.

AtrousConv2dLayer([layer, n_filter, ...])

The At rousConv2dLayer class is Atrous convolu-
tion (a.k.a.

SeparableConv2dLayer([layer, filters, ...])

class is
filters, see

The SeparableConv2dLayer
2-D convolution with separable
tf.layers.separable_conv2d.

Convld(net[, n_filter, filter_size, stride, ...])

Wrapper for ConvidLayer, if you don’t understand
how touse ConvidLayer, this function may be easier.

Conv2d(net[, n_filter, filter_size, ...])

Wrapper for Conv2dLayer, if you don’t understand
how to use Conv2dLayer, this function may be easier.

DeConvZ2d(net[, n_out_channel, filter_size, ...])

Wrapper for DeConv2dLayer, if you don’t under-
stand how to use DeConv2dLayer, this function may
be easier.

MaxPoolld(net, filter_size, strides[, ...])

Wrapper for tf.layers.max_poolingld .

MeanPool1d(net, filter_size, strides], ...])

Wrapper for tf.layers.average_poolingld .

MaxPoolZ2d(net[, filter_size, strides, ...])

Wrapper for PoolLayer.

MeanPoolZ2d(net|, filter_size, strides, ...])

Wrapper for PoolLayer.

MaxPool3d(net, filter_size, strides[, ...])

Wrapper for tf.layers.max_pooling3d .

MeanPool3d(net, filter_size, strides][, ...])

Wrapper for tf.layers.average_pooling3d

SubpixelConvZ2d(net[, scale, n_out_channel, ...])

The SubpixelConv2d class is a sub-pixel 2d convo-
lutional ayer, usually be used for Super-Resolution ap-
plications, example code.

SpatialTransformer2dAffineLayer([layer,

D

The SpatialTransformer2dAffinelayer
class is a Spatial Transformer Layer for 2D Affine
Transformation.

transformer(U, theta, out_size[, name])

Spatial Transformer Layer for
2D Affine Transformation s see
SpatialTransformer2dAffinelLayer class.

batch_transformer(U, thetas, out_size[, name])

Batch Spatial Transformer function for 2D Affine
Transformation.

BatchNormLayer([layer, decay, epsilon, act, ...])

The BatchNormLayer class is a normalization layer,
see tf.nn.batch_normalizationand tf.nn.

LocalResponseNormLayer([layer, ...])

moments.
The LocalResponseNormLayer class is for
Local Response Normalization, see tf.nn.

local_response_normalization or tf.

nn.lrn for new TF version.

TimeDistributedLayer([layer, layer_class, ...])

The TimeDistributedLayer class that applies a
function to every timestep of the input tensor.

RNNLayer([layer, cell_fn, cell_init_args, ...])

The RNNLayer class is a RNN layer, you can imple-
ment vanilla RNN, LSTM and GRU with it.

BiRNNLayer([layer, cell_fn, cell_init_args, ...])

The BiRNNLayer class is a Bidirectional RNN layer.

Continued on next page

50

Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/python/image/resizing#resize_images
https://www.tensorflow.org/versions/master/api_docs/python/image/resizing#resize_images
https://www.tensorflow.org/api_docs/python/tf/layers/separable_conv2d
https://www.tensorflow.org/api_docs/python/tf/layers/max_pooling1d
https://www.tensorflow.org/api_docs/python/tf/layers/average_pooling1d
https://www.tensorflow.org/api_docs/python/tf/layers/max_pooling3d
https://www.tensorflow.org/api_docs/python/tf/layers/average_pooling3d
https://github.com/zsdonghao/SRGAN/
https://arxiv.org/abs/1506.02025
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation

TensorLayer Documentation, Release 1.5.4

Table 1 — continued from previous page

advanced_indexing_op(input, index)

Advanced Indexing for Sequences, returns the outputs
by given sequence lengths.

retrieve seq length_op(data)

An op to compute the length of a sequence from input
shape of [batch_size, n_step(max), n_features], it can be
used when the features of padding (on right hand side)
are all zeros.

retrieve seq_ length_ opZ2(data)

An op to compute the length of a sequence, from input
shape of [batch_size, n_step(max)], it can be used when
the features of padding (on right hand side) are all zeros.

DynamicRNNLayer([layer, cell_fn,...])

The DynamicRNNLayer class is a Dynamic RNN
layer, see t £ . nn.dynamic_rnn.

BiDynamicRNNLayer([layer, cell_fn,...])

The BiDynamicRNNLayer class is a RNN layer, you
can implement vanilla RNN, LSTM and GRU with it.

Seqg2Seq([net_encode_in, net_decode_in, ...])

The Seg2Seq class is a simple DynamicRNNLayer
based Seq2seq layer, both encoder and decoder are
DynamicRNNLayer, network details see Model and
Sequence to Sequence Learning with Neural Networks

PeekySeqg2Seqg([net_encode_in, net_decode_in,

)

Waiting for contribution.

AttentionSeqg2Seq([net_encode_in, ...])

Waiting for contribution.

FlattenLayer([layer, name])

The FlattenLayer class is layer which reshape
high-dimension input to a vector.

ReshapeLayer([layer, shape, name])

The ReshapeLayer class is layer which reshape the
tensor.

LambdaLayer([layer, fn, fn_args, name])

The LambdaLayer class is a layer which is able to use
the provided function.

Concat Layer([layer, concat_dim, name])

The ConcatLayer class is layer which concat
(merge) two or more DenselLayer to a single
class:DenseLayer.

ElementwiseLayer([layer, combine_fn, name])

The ElementwiseLayer class combines multiple
Layer which have the same output shapes by a given
elemwise-wise operation.

ExpandDimsLayer([layer, axis, name])

The ExpandDimsLayer class inserts a dimension of
1 into a tensor’s shape, see tf.expand_dims() .

TileLayer([layer, multiples, name])

The TileLayer class constructs a tensor by tiling a
given tensor, see tf.tile() .

EstimatorLayer([layer, model_fn, args, name])

The EstimatorLayer class accepts model_ fn that
described the model.

S1imNetsLayer([layer, slim_layer, ...])

The S1imNetsLayer class can be used to merge all
TF-Slim nets into TensorLayer.

KerasLayer([layer, keras_layer, keras_args, ...])

The KerasLayer class can be used to merge all Keras
layers into TensorLayer.

PReluLayer([layer, channel_shared, a_init, ...])

The PReluLayer class is Parametric Rectified Linear
layer.

MultiplexerLayer([layer, name])

The MultiplexerLayer selects one of several in-
put and forwards the selected input into the output, see
tutorial_mnist_multiplexer.py.

EmbeddingAttentionSeqgZsegWrapper(...[,
-1

Sequence-to-sequence model with attention and for
multiple buckets (Deprecated after TF0.12).

flatten_ reshape(variable[, name])

Reshapes high-dimension input to a vector.

Continued on next page

2.1. API - Layers

51

https://camo.githubusercontent.com/242210d7d0151cae91107ee63bff364a860db5dd/687474703a2f2f6936342e74696e797069632e636f6d2f333031333674652e706e67
https://arxiv.org/abs/1409.3215
https://www.tensorflow.org/api_docs/python/array_ops/shapes_and_shaping#expand_dims
https://www.tensorflow.org/api_docs/python/array_ops/slicing_and_joining#tile

TensorLayer Documentation, Release 1.5.4

Table 1 — continued from previous page

clear_layers_name() Clear all layer names in set_keep[‘_layers_name_list’],
enable layer name reuse.

initialize_ rnn_state(state) Return the initialized RNN state.

list_remove_repeat([l]) Remove the repeated items in a list, and return the pro-

cessed list.

2.1.5 Name Scope and Sharing Parameters

These functions help you to reuse parameters for different inference (graph), and get a list of parameters by given
name. About TensorFlow parameters sharing click here.

Get variables with name

tensorlayer.layers.get_variables_with_name (name, train_only=True, printable=False)
Get variable list by a given name scope.

Examples

>>> dense_vars = tl.layers.get_variable_with_name ('dense', True, True)

Get layers with name

tensorlayer.layers.get_layers_with_name (network=None, name=", printable=False)
Get layer list in a network by a given name scope.

Examples

>>> layers = tl.layers.get_layers_with_name (network, "CNN", True)

Enable layer name reuse

tensorlayer.layers.set_name_reuse (enable=True)
Enable or disable reuse layer name. By default, each layer must has unique name. When you want two or more
input placeholder (inference) share the same model parameters, you need to enable layer name reuse, then allow
the parameters have same name scope.

Parameters

enable [boolean, enable name reuse. (None means False).]

Examples

>>> def embed_seqg(input_seqgs, is_train, reuse):

>>> with tf.variable_scope ("model", reuse=reuse):
>>> tl.layers.set_name_reuse (reuse)
>>> network = tl.layers.EmbeddingInputlayer (

(continues on next page)

52 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/how_tos/variable_scope/index.html

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

inputs = input_segs,
vocabulary_size = vocab_size,
embedding_size = embedding_size,
name = 'e_embedding')
>>> network = tl.layers.DynamicRNNLayer (network,
cell_fn = tf.nn.rnn_cell.BasicLSTMCell,
n_hidden = embedding_size,
dropout = (0.7 if is_train else None),
initializer = w_init,
sequence_length = tl.layers.retrieve_seq_length_op2 (input_

—seqs),
return_last = True,
. name = 'e_dynamicrnn',)
>>> return network
>>>

>>> net_train = embed_seq(t_caption, is_train=True, reuse=False)
>>> net_test = embed_seqg(t_caption, is_train=False, reuse=True)

e see tutorial_ptb_lstm.py for example.

Print variables
tensorlayer.layers.print_all_variables (train_only=False)
Print all trainable and non-trainable variables without tl.layers.initialize_global_variables(sess)
Parameters

train_only [boolean] If True, only print the trainable variables, otherwise, print all variables.

Initialize variables

tensorlayer.layers.initialize_global_variables (sess=None)
Excute sess.run(tf.global_variables_initializer()) for TF12+ or
sess.run(tf.initialize_all_variables()) for TF11.

Parameters

sess [a Session]

2.1.6 Basic layer

class tensorlayer.layers.Layer (inputs=None, name="layer’)
The Layer class represents a single layer of a neural network. It should be subclassed when implementing new
types of layers. Because each layer can keep track of the layer(s) feeding into it, a network’s output Layer
instance can double as a handle to the full network.

Parameters
inputs [a Layer instance] The Layer class feeding into this layer.

name [a string or None] An optional name to attach to this layer.

2.1. API - Layers 53

TensorLayer Documentation, Release 1.5.4

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.7 Input layer
class tensorlayer.layers.InputLayer (inputs=None, name="input_layer’)
The InputLayer class is the starting layer of a neural network.
Parameters
inputs [a placeholder or tensor] The input tensor data.

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.8 One-hot layer

class tensorlayer.layers.OneHotInputLayer (inputs=None, depth=None, on_value=None,
off _value=None, axis=None, dtype=None,
name="input_layer’)
The OneHot InputLayer class is the starting layer of a neural network, see t £ . one_hot.

Parameters
inputs [a placeholder or tensor] The input tensor data.
name [a string or None] An optional name to attach to this layer.

depth [If the input indices is rank N, the output will have rank N+1. The new axis is created at
dimension axis (default: the new axis is appended at the end).]

on_value [If on_value is not provided, it will default to the value 1 with type dtype.] default,
None

off_value [If off_value is not provided, it will default to the value O with type dtype.] default,
None

axis [default, None]

dtype [default, None]

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network

Continued on next page

54 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

Table 4 — continued from previous page
print_params([details]) Print all info of parameters in the network

2.1.9 Word Embedding Input layer

Word2vec layer for training

class tensorlayer.layers.Word2vecEmbeddingInputlayer (inputs=None,
train_labels=None, vo-
cabulary_size=80000,
embedding_size=200,
num_sampled=64,
nce_loss_args={},
E_init=<tensorflow.python.ops.init_ops.RandomUnifor
object>, E_init_args={},
nce_W_init=<tensorflow.python.ops.init_ops.Truncated
object>, nce_W_init_args={},
nce_b_init=<tensorflow.python.ops.init_ops.Constant
object>, nce_b_init_args={},
name="word2vec_layer’)

The Word2vecEmbeddingInputlayer class is a fully connected layer, for Word Embedding. Words are

input as integer index. The output is the embedded word vector.
Parameters
inputs [placeholder] For word inputs. integer index format.
train_labels [placeholder] For word labels. integer index format.
vocabulary_size [int] The size of vocabulary, number of words.
embedding_size [int] The number of embedding dimensions.
num_sampled [int] The Number of negative examples for NCE loss.
nce_loss_args [a dictionary] The arguments for tf.nn.nce_loss()
E_init [embedding initializer] The initializer for initializing the embedding matrix.
E_init_args [a dictionary] The arguments for embedding initializer

nce_W_init [NCE decoder biases initializer] The initializer for initializing the nce decoder
weight matrix.

nce_W_init_args [a dictionary] The arguments for initializing the nce decoder weight matrix.

nce_b_init [NCE decoder biases initializer] The initializer for tf.get_variable() of the nce de-
coder bias vector.

nce_b_init_args [a dictionary] The arguments for tf.get_variable() of the nce decoder bias vec-
tor.

name [a string or None] An optional name to attach to this layer.

References

* tensorflow/examples/tutorials/word2vec/word2vec_basic.py

2.1. API - Layers 55

https://github.com/tensorflow/tensorflow/blob/r0.7/tensorflow/examples/tutorials/word2vec/word2vec_basic.py

TensorLayer Documentation, Release 1.5.4

Examples

» Without TensorLayer : see tensorflow/examples/tutorials/word2vec/word2vec_basic.py

>>> train_inputs = tf.placeholder(tf.int32,
train_labels tf.placeholder (tf.int32,
embeddings tf.Variable (
tf.random_uniform([vocabulary_size, embedding_size],
embed tf.nn.embedding_lookup (embeddings, train_inputs)
nce_weights tf.Variable (
tf.truncated_normal ([vocabulary_size, embedding_size]
stddev=1.0 / math.sqgrt (embedding_size)
nce_biases tf.Variable (tf.zeros ([vocabulary_size]))
cost tf.reduce_mean (
tf.nn.nce_loss (weights=nce_weights,

inputs=embed,

shape=[batch_size])
shape=[batch_size,

>>>

17)

>>>

-1.0, 1.0))

>>> =

>>>

..))
>>> =

>>> =
biases=nce_biases,
labels=train_labels,
num_sampled=num_sampled, num_classes=vocabulary_size,

num_true=1))

With TensorLayer : see tutorial_word2vec_basic.py

>>> train_inputs = tf.placeholder (tf.int32, shape=[batch_size])
train_labels tf.placeholder (tf.int32, shape=[batch_size,
emb_net tl.layers.Word2vecEmbeddingInputlayer (
inputs train_inputs,
train_labels train_labels,
vocabulary_size
embedding_size embedding_size,
num_sampled num_sampled,

name ='word2vec_layer',

>>>

11)

>>>

vocabulary_size,

)
cost emb_net .nce_cost
train_params
train_op tf.train.GradientDescentOptimizer (learning_rate) .minimize (
cost, var_list=train_params)
emb_net .normalized_embeddings

>>>

>>>

emb_net.all_params

>>>

>>> normalized_embeddings

Methods

count_params() Return the number of parameters in the network

print_layers() Print all info of layers in the network

print_params([details]) Print all info of parameters in the network

Embedding Input layer

class tensorlayer.layers.EmbeddingInputlayer (inputs=None,

vocabu-

The EmbeddingInputlayer class

lary_size=80000, embedding_size=200,
E_init=<tensorflow.python.ops.init_ops.RandomUniform
object>, E_init_args={},
name="embedding_layer’)

is a fully connected layer, for Word Embedding. Words are input as

integer index. The output is the embedded word vector.

56

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

If you have a pre-train matrix, you can assign the matrix into it. To train a word embedding matrix, you can
used class:Word2vecEmbeddingInputlayer.

Note that, do not update this embedding matrix.
Parameters

inputs [placeholder] For word inputs. integer index format. a 2D tensor : [batch_size,
num_steps(num_words)]

vocabulary_size [int] The size of vocabulary, number of words.

embedding_size [int] The number of embedding dimensions.

E_init [embedding initializer] The initializer for initializing the embedding matrix.
E_init_args [a dictionary] The arguments for embedding initializer

name [a string or None] An optional name to attach to this layer.

Examples

>>> vocabulary_size = 50000

>>> embedding_size = 200

>>> model_file_name = "model word2vec_50k_200"

>>> batch_size = None

>>> all_var = tl.files.load_npy_to_any(name=model_file_name+'.npy"')

>>> data = all_var(['data']l; count = all_var['count']
>>> dictionary = all_var|['dictionary']
>>> reverse_dictionary = all_var(['reverse_dictionary']

>>> tl.files.save_vocab (count, name='vocab_'+model_file_name+'.txt")
>>> del all_var, data, count

>>> load_params = tl.files.load_npz (name=model_file_name+'.npz'")
>>> x = tf.placeholder (tf.int32, shape=[batch_size])
>>> vy = tf.placeholder (tf.int32, shape=[batch_size, 11])
>>> emb_net = tl.layers.EmbeddingInputlayer (
inputs = x,
vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
. name ='embedding_layer')
>>> tl.layers.initialize_global_variables (sess)
>>> tl.files.assign_params (sess, [load_params[0]], emb_net)
>>> word = b'hello'

>>> word_id = dictionary[word]
>>> print ('word_id:', word_id)
6428
>>> words = [b'i', b'am', b'hao', b'dong']
>>> word_ids = tl.files.words_to_word_ids (words, dictionary)
>>> context = tl.files.word_ids_to_words (word_ids, reverse_dictionary)

>>> print ('word_ids:', word_ids)
[72, 1226, 46744, 20048]

>>> print ('context:', context)
[b'1', b'am', b'hao', b'dong']

>>> vector = sess.run(emb_net.outputs, feed_dict={x : [word_id]})
>>> print ('vector:', vector.shape)

(continues on next page)

2.1. API - Layers 57

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

(1, 200)
>>> vectors = sess.run(emb_net.outputs, feed_dict={x : word_ids})
>>> print ('vectors:', vectors.shape)
(4, 200)
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.10 Dense layer

Dense layer

class tensorlayer.layers.DenseLayer (layer=None, n_units=100, act=<function identity>,

W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name=’dense_layer’)

The DenseLayer class is a fully connected layer.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
n_units [int] The number of units of the layer.
act [activation function] The function that is applied to the layer activations.
W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer or None] The initializer for initializing the bias vector. If None, skip
biases.

W_init_args [dictionary] The arguments for the weights tf.get_variable.
b_init_args [dictionary] The arguments for the biases tf.get_variable.

name [a string or None] An optional name to attach to this layer.

Notes

If the input to this layer has more than two axes, it need to flatten the input by using FlattenLayer in this
case.

Examples

>>> network = tl.layers.Inputlayer (x, name='input_ layer')
>>> network = tl.layers.Denselayer (

network,

n_units=800,

(continues on next page)

58

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

act = tf.nn.reluy,
W_init=tf.truncated_normal_initializer (stddev=0.1),
name ='relu_layer'

)

>>> Without TensorlLayer, you can do as follow.
>>> W = tf.Variable (
tf.random_uniform([n_in, n_units], -1.0, 1.0), name='W")
>>> b = tf.Variable(tf.zeros (shape=[n_units]), name='b'")
>>> y = tf.nn.relu(tf.matmul (inputs, W) + b)

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Reconstruction layer for Autoencoder

class tensorlayer.layers.ReconlLayer (layer=None, x_recon=None, name='recon_layer’,
n_units=784, act=<function softplus>)
The ReconLayer class is a reconstruction layer DenseLayer which use to pre-train a DenseLayer.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
x_recon [tensorflow variable] The variables used for reconstruction.
name |[a string or None] An optional name to attach to this layer.
n_units [int] The number of units of the layer, should be equal to x_recon

act [activation function] The activation function that is applied to the reconstruction layer. Nor-
mally, for sigmoid layer, the reconstruction activation is sigmoid; for rectifying layer, the
reconstruction activation is softplus.

Notes

The input layer should be DenseLayer or a layer has only one axes. You may need to modify this part to define
your own cost function. By default, the cost is implemented as follow: - For sigmoid layer, the implementation
can be UFLDL - For rectifying layer, the implementation can be Glorot (2011). Deep Sparse Rectifier Neural
Networks

Examples

>>> network = tl.layers.Inputlayer (x, name='input_layer")

>>> network = tl.layers.Denselayer (network, n_units=196,

C act=tf.nn.sigmoid, name='sigmoidl")

>>> recon_layerl = tl.layers.ReconlLayer (network, x_recon=x, n_units=784,
act=tf.nn.sigmoid, name='recon_layerl')

(continues on next page)

2.1. API - Layers 59

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
http://doi.org/10.1.1.208.6449
http://doi.org/10.1.1.208.6449

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

>>> recon_layerl.pretrain(sess, x=x, X_train=X_train, X_val=X_val,
denoise_name=None, n_epoch=1200, batch_size=128,
print_freg=10, save=True, save_name='wlpre_ ')

Methods

pretrain(self, sess, x, X _train, X_val, denoise_name=None, | Start to pre-train the parame-
n_epoch=100, batch_size=128, print_freq=10, save=True, | ters of previous DenseLayer.
save_name="wlpre_’)

2.1.11 Noise layer

Dropout layer

class tensorlayer.layers.DropoutLayer (layer=None, keep=0.5, is_fix=False, is_train=True,
seed=None, name="dropout_layer’)
The Dropout Layer class is a noise layer which randomly set some values to zero by a given keeping proba-

bility.
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
keep [float] The keeping probability, the lower more values will be set to zero.

is_fix [boolean] Default False, if True, the keeping probability is fixed and cannot be changed
via feed_dict.

is_train [boolean] If False, skip this layer, default is True.
seed [int or None] An integer or None to create random seed.

name [a string or None] An optional name to attach to this layer.

Notes

e A frequent question regarding DropoutLayer 1is that why it donot have is_train like
BatchNormLayer.

In many simple cases, user may find it is better to use one inference instead of two inferences for training and
testing seperately, Dropout Layer allows you to control the dropout rate via feed_dict. However, you can fix
the keeping probability by setting is_fix to True.

Examples

¢ Define network

60 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

>>> network = tl.layers.Inputlayer (x, name='input_ layer'")

>>> network = tl.layers.DropoutLayer (network, keep=0.8, name='dropl'")

>>> network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name=
—'relul'")

>>>

* For training, enable dropout as follow.

>>> feed_dict = {x: X_train_a, y_: y_train_a}

>>> feed_dict.update(network.all_drop) # enable noise layers
>>> sess.run(train_op, feed_dict=feed_dict)

>>>

* For testing, disable dropout as follow.

>>> dp_dict = tl.utils.dict_to_one(network.all _drop) # disable noise layers

>>> feed_dict = {x: X_val_a, y_: y_val_a}

>>> feed_dict.update (dp_dict)

>>> err, ac = sess.run([cost, acc], feed_dict=feed_dict)

>>>

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Gaussian noise layer

class tensorlayer.layers.GaussianNoiseLayer (layer=None, mean=0.0, std-
dev=1.0, is_train=True, seed=None,

name=’gaussian_noise_layer’)
The GaussianNoiseLayer class is noise layer that adding noise with normal distribution to the activation.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
mean [float]
stddev [float]
is_train [boolean] If False, skip this layer, default is True.
seed [int or None] An integer or None to create random seed.

name [a string or None] An optional name to attach to this layer.

Methods

count_params() Return the number of parameters in the network
Continued on next page

2.1. API - Layers 61

TensorLayer Documentation, Release 1.5.4

Table 9 — continued from previous page
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Dropconnect + Dense layer

class tensorlayer.layers.DropconnectDenselLayer (layer=None, keep=0.5, n_units=100,
act=<function identity>,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>,
b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={},
b_init_args={},
name="dropconnect_layer’)

The DropconnectDenseLayer class is DenseLayer with DropConnect behaviour which randomly re-

move connection between this layer to previous layer by a given keeping probability.
Parameters

layer [a Layer instance] The Layer class feeding into this layer.
keep [float] The keeping probability, the lower more values will be set to zero.
n_units [int] The number of units of the layer.
act [activation function] The function that is applied to the layer activations.
W_init [weights initializer] The initializer for initializing the weight matrix.
b_init [biases initializer] The initializer for initializing the bias vector.
W_init_args [dictionary] The arguments for the weights tf.get_variable().
b_init_args [dictionary] The arguments for the biases tf.get_variable().

name [a string or None] An optional name to attach to this layer.

References

e Wan, L. (2013). Regularization of neural networks using dropconnect

Examples

>>> network = tl.layers.Inputlayer (x, name='input_layer")

>>> network = tl.layers.DropconnectDenselayer (network, keep = 0.8,

C n_units=800, act = tf.nn.relu, name='dropconnect_relul')

>>> network = tl.layers.DropconnectDenselayer (network, keep = 0.5,
n_units=800, act = tf.nn.relu, name='dropconnect_relu2")

>>> network = tl.layers.DropconnectDenselayer (network, keep = 0.5,
n_units=10, act = tl.activation.identity, name='output_layer')

Methods

62 Chapter 2. API Reference

http://machinelearning.wustl.edu/mlpapers/papers/icml2013_wan13

TensorLayer Documentation, Release 1.5.4

count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.12 Convolutional layer (Pro)

1D Convolutional layer

class tensorlayer.layers.ConvldLayer (layer=None, act=<function identity>, shape=/[5,
1, 5], stride=1, dilation_rate=1, padding="SAME’,
use_cudnn_on_gpu=None, data_format="NWC(C’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name="cnn_layer’)
The ConvidLayer class is a 1D CNN layer, see tf.nn.convolution.

Parameters

layer [a Layer instance] The Layer class feeding into this layer, [batch, in_width,
in_channels].

act [activation function, None for identity.]

shape [list of shape] shape of the filters, [filter_length, in_channels, out_channels].
stride [an int.] The number of entries by which the filter is moved right at each step.
dilation_rate [an int.] Specifies the filter upsampling/input downsampling rate.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
use_cudnn_on_gpu [An optional bool. Defaults to True.]

data_format [As it is 1D conv, default is ‘NWC’.]

W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer or None] The initializer for initializing the bias vector. If None, skip
biases.

W_init_args [dictionary] The arguments for the weights tf.get_variable().
b_init_args [dictionary] The arguments for the biases tf.get_variable().

name |[a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1. API - Layers 63

https://www.tensorflow.org/api_docs/python/tf/nn/convolution

TensorLayer Documentation, Release 1.5.4

2D Convolutional layer

class tensorlayer.layers.Conv2dLayer (layer=None, act=<function identity>, shape=[5,
5, 1, 100], strides=[1, 1, 1, 1], padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
use_cudnn_on_gpu=None, data_format=None,
name="cnn_layer’)

The Conv2dLayer class is a 2D CNN layer, see tf.nn.conv2d.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.
shape [list of shape] shape of the filters, [filter_height, filter_width, in_channels, out_channels].
strides [a list of ints.] The stride of the sliding window for each dimension of input.
It Must be in the same order as the dimension specified with format.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer or None] The initializer for initializing the bias vector. If None, skip
biases.

W_init_args [dictionary] The arguments for the weights tf.get_variable().

b_init_args [dictionary] The arguments for the biases tf.get_variable().
use_cudnn_on_gpu [an optional string from: “NHWC”, “NCHW”. Defaults to “NHWC”.]
data_format [an optional bool. Defaults to True.]

name [a string or None] An optional name to attach to this layer.

Notes

¢ shape = [h, w, the number of output channel of previous layer, the number of output channels]

* the number of output channel of a layer is its last dimension.

Examples

>>> x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])

>>> network = tl.layers.Inputlayer (x, name='input_ layer'")
>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
shape = [5, 5, 1, 321, # 32 features for each 5x5 patch

strides=[1, 1, 1, 11,

padding="'SAME',
W_init=tf.truncated_normal_initializer (stddev=5e-2),
W_init_args={},

b_init = tf.constant_initializer (value=0.0),
b_init_args = {},

(continues on next page)

64 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv2d

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

. name ='cnn_layerl'") # output: (?, 28, 28, 32)
>>> network = tl.layers.Poollayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 11,
padding="'SAME",
pool = tf.nn.max_pool,
name ='pool_layerl',) # output: (?, 14, 14, 32)

>>> Without Tensorlayer, you can implement 2d convolution as follow.
>>> W = tf.Variable (W_init (shape=[5, 5, 1, 32],), name='W_conv")
>>> b = tf.Variable (b_init (shape=[32],), name='b_conv")
>>> outputs = tf.nn.relu(tf.nn.conv2d (inputs, W,

strides=[1, 1, 1, 1],

padding="'SAME') + b)

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D Deconvolutional layer

class tensorlayer.layers.DeConv2dLayer (layer=None, act=<function identity>, shape=[3,
3, 128, 256], output_shape=[I, 256, 256,
128], strides=[1, 2, 2, 1], padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name=’decnn2d_layer’)

The DeConv2dLayer class is deconvolutional 2D layer, see tf.nn.conv2d_transpose.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.

shape [list of shape] shape of the filters, [height, width, output_channels, in_channels], filter’s
in_channels dimension must match that of value.

output_shape [list of output shape] representing the output shape of the deconvolution op.
strides [a list of ints.] The stride of the sliding window for each dimension of the input tensor.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.

W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer] The initializer for initializing the bias vector. If None, skip biases.
W_init_args [dictionary] The arguments for the weights initializer.

b_init_args [dictionary] The arguments for the biases initializer.

name [a string or None] An optional name to attach to this layer.

2.1. API - Layers 65

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv2d_transpose

TensorLayer Documentation, Release 1.5.4

Notes

¢ shape = [h, w, the number of output channels of this layer, the number of output channel of previous layer]
* output_shape = [batch_size, any, any, the number of output channels of this layer]

¢ the number of output channel of a layer is its last dimension.

Examples

* A part of the generator in DCGAN example

>>> batch_size = 64
>>> inputs = tf.placeholder (tf.float32, [batch_size, 100], name='z_noise')
>>> net_in = tl.layers.InputlLayer (inputs, name='g/in')
>>> net_hO0 = tl.layers.Denselayer (net_in, n_units = 8192,
W_init = tf.random_normal_initializer (stddev=0.02),

C act = tf.identity, name='g/h0/lin")
>>> print (net_hO0.outputs._shape)
... (64, 8192)
>>> net_h0 = tl.layers.Reshapelayer (net_h0O, shape = [-1, 4, 4, 512], name='g/h0/
—reshape')
>>> net_hO = tl.layers.BatchNormLayer (net_h0O, act=tf.nn.relu, is_train=is_train,
—name="'qg/h0/batch_norm")
>>> print (net_hO.outputs._shape)
(64, 4, 4, 512)
>>> net_hl = tl.layers.DeConv2dLayer (net_hO,
shape = [5, 5, 256, 51217,
output_shape = [batch_size, 8, 8, 256],
strides=[1, 2, 2, 11,
. act=tf.identity, name='g/hl/decon2d")
>>> net_hl = tl.layers.BatchNormLayer (net_hl, act=tf.nn.relu, is_train=is_train,
—name="'g/hl/batch_norm")
>>> print (net_hl.outputs._shape)
(64, 8, 8, 256)

¢ U-Net

>>> ...
>>> convl0 = tl.layers.Conv2dLayer (conv9, act=tf.nn.relu,
shape=[3,3,1024,1024], strides=[1,1,1,1], padding='SAME',
.. W_init=w_init, b_init=b_init, name='convl10")
>>> print (conv10.outputs)
(batch_size, 32, 32, 1024)
>>> deconvl = tl.layers.DeConv2dLayer (convl0, act=tf.nn.relu,
... shape=[3,3,512,1024], strides=[1,2,2,1], output_shape=[batch_size, 64,
~64,512],

padding='"'SAME', W_init=w_init, b_init=b_init, name='devconl 1")
Methods
count_params() Return the number of parameters in the network

Continued on next page

66 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

Table 13 — continued from previous page
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

3D Convolutional layer

class tensorlayer.layers.Conv3dLayer (layer=None, act=<function identity>, shape=[2, 2,
2, 64, 128], strides=[1, 2, 2, 2, 1], padding="SAME",
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name="cnn3d_layer’)
The Conv3dLayer class is a 3D CNN layer, see tf.nn.conv3d.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.

shape [list of shape] shape of the filters, [filter_depth, filter_height, filter_width, in_channels,
out_channels].

strides [a list of ints. 1-D of length 4.] The stride of the sliding window for each dimension of
input. Must be in the same order as the dimension specified with format.

padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer] The initializer for initializing the bias vector.

W_init_args [dictionary] The arguments for the weights initializer.

b_init_args [dictionary] The arguments for the biases initializer.

name |[a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

3D Deconvolutional layer

class tensorlayer.layers.DeConv3dLayer (layer=None, act=<function identity>, shape=[2,
2, 2, 128, 256], output_shape=[1, 12, 32, 32,
128], strides=[1, 2, 2, 2, 1], padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name=’"decnn3d_layer’)

The DeConv3dLayer class is deconvolutional 3D layer, see tf.nn.conv3d_transpose.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

2.1. API - Layers 67

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv3d
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#conv3d_transpose

TensorLayer Documentation, Release 1.5.4

act [activation function] The function that is applied to the layer activations.

shape [list of shape] shape of the filters, [depth, height, width, output_channels, in_channels],
filter’s in_channels dimension must match that of value.

output_shape [list of output shape] representing the output shape of the deconvolution op.
strides [a list of ints.] The stride of the sliding window for each dimension of the input tensor.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.

W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer] The initializer for initializing the bias vector.

W_init_args [dictionary] The arguments for the weights initializer.

b_init_args [dictionary] The arguments for the biases initializer.

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D UpSampling layer

class tensorlayer.layers.UpSampling2dLayer (layer=None, size=[], is_scale=True,
method=0, align_corners=False,
name="upsample2d_layer’)
The UpSampling2dLayer class is upSampling 2d layer, see tf.image.resize_images.

Parameters

layer [a layer class with 4-D Tensor of shape [batch, height, width, channels] or 3-D Tensor of
shape [height, width, channels].]

size [a tuple of int or float.] (height, width) scale factor or new size of height and width.

is_scale [boolean, if True (default), size is scale factor, otherwise, size is number of pixels of
height and width.]

method [0, 1, 2, 3. ResizeMethod. Defaults to ResizeMethod.BILINEAR.]
* ResizeMethod.BILINEAR, Bilinear interpolation.
* ResizeMethod. NEAREST_NEIGHBOR, Nearest neighbor interpolation.
* ResizeMethod.BICUBIC, Bicubic interpolation.
* ResizeMethod. AREA, Area interpolation.

align_corners [bool. If true, exactly align all 4 corners of the input and output. Defaults to
false.]

name [a string or None] An optional name to attach to this layer.

68 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/python/image/resizing#resize_images

TensorLayer Documentation, Release 1.5.4

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D DownSampling layer

class tensorlayer.layers.DownSampling2dLayer (layer=None, size=[], is_scale=True,
method=0, align_corners=False,

name="downsample2d_layer’)
The DownSampling2dLayer class is downSampling 2d layer, see tf.image.resize_images.

Parameters

layer [a layer class with 4-D Tensor of shape [batch, height, width, channels] or 3-D Tensor of
shape [height, width, channels].]

size [a tupe of int or float.] (height, width) scale factor or new size of height and width.

is_scale [boolean, if True (default), size is scale factor, otherwise, size is number of pixels of
height and width.]

method [0, 1, 2, 3. ResizeMethod. Defaults to ResizeMethod.BILINEAR.]
* ResizeMethod.BILINEAR, Bilinear interpolation.
* ResizeMethod. NEAREST_NEIGHBOR, Nearest neighbor interpolation.
* ResizeMethod.BICUBIC, Bicubic interpolation.
* ResizeMethod.AREA, Area interpolation.

align_corners [bool. If true, exactly align all 4 corners of the input and output. Defaults to
false.]

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

1D Atrous convolutional layer

tensorlayer.layers.AtrousConvldLayer (nef, n_filter=32, filter_size=2, stride=1,
dilation=1, act=None, padding="SAME",
use_cudnn_on_gpu=None, data_format="NWC’,

W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},

) name="convld’)))
Wrapper for At rousConvidLayer, if you don’t understand how to use ConvldLayer, this function may

be easier.

Parameters

2.1. API - Layers 69

https://www.tensorflow.org/versions/master/api_docs/python/image/resizing#resize_images

TensorLayer Documentation, Release 1.5.4

net [TensorLayer layer.]

n_filter [number of filter.]
filter_size [an int.]

stride [an int.]

dilation [an int, filter dilation size.]
act [None or activation function.]

others [see ConvidLayer.]

2D Atrous convolutional layer

class tensorlayer.layers.AtrousConv2dLayer (layer=None, n_filter=32, filter_size=(3,
3), rate=2, act=None, padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},

) _ name=’atrou2d’)))
The At rousConv2dLayer class is Atrous convolution (a.k.a. convolution with holes or dilated convolution)

2D layer, see tf.nn.atrous_conv2d.
Parameters
layer [a layer class with 4-D Tensor of shape [batch, height, width, channels].]

filters [A 4-D Tensor with the same type as value and shape [filter_height, filter_width,
in_channels, out_channels]. filters’ in_channels dimension must match that of value. Atrous
convolution is equivalent to standard convolution with upsampled filters with effective
height filter_height + (filter_height - 1) * (rate - 1) and effective width filter_width + (fil-
ter_width - 1) * (rate - 1), produced by inserting rate - 1 zeros along consecutive elements
across the filters’ spatial dimensions.]

n_filter [number of filter.]
filter_size [tuple (height, width) for filter size.]

rate [A positive int32. The stride with which we sample input values across the height and width
dimensions. Equivalently, the rate by which we upsample the filter values by inserting zeros
across the height and width dimensions. In the literature, the same parameter is sometimes
called input stride or dilation.]

act [activation function, None for linear.]
padding [A string, either ‘VALID’ or ‘SAME’. The padding algorithm.]
W_init [weights initializer. The initializer for initializing the weight matrix.]

b_init [biases initializer or None. The initializer for initializing the bias vector. If None, skip
biases.]

W_init_args [dictionary. The arguments for the weights tf.get_variable().]
b_init_args [dictionary. The arguments for the biases tf.get_variable().]

name [a string or None, an optional name to attach to this layer.]

70 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#atrous_conv2d

TensorLayer Documentation, Release 1.5.4

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D Separable convolutional layer

class tensorlayer.layers.SeparableConv2dLayer (layer=None, filters=None, kernel_size=35,
strides=(1, 1), padding="valid’,

data_format="channels_last’, dila-
tion_rate=(1, 1), depth_multiplier=1,
act=None, use_bias=True,

depthwise_initializer=None,
pointwise_initializer=None,
bias_initializer=<class ‘tensor-
flow.python.ops.init_ops.Zeros’>,
depthwise_regularizer=None,
pointwise_regularizer=None,
bias_regularizer=None, activ-

ity_regularizer=None, name="atrou2d’)
The SeparableConv2dLayer class is 2-D convolution with separable filters,

tf.layers.separable_conv2d.
Parameters
layer [a layer class]

filters [integer, the dimensionality of the output space (i.e. the number output of filters in the
convolution).]

kernel_size [a tuple or list of N positive integers specifying the spatial dimensions of of the
filters. Can be a single integer to specify the same value for all spatial dimensions.]

strides [a tuple or list of N positive integers specifying the strides of the convolution. Can be
a single integer to specify the same value for all spatial dimensions. Specifying any stride
value != 1 is incompatible with specifying any dilation_rate value !=1.]

padding [one of “valid” or “same” (case-insensitive).]

data_format [A string, one of channels_last (default) or channels_first. The ordering of the
dimensions in the inputs. channels_last corresponds to inputs with shapedata_format =
‘NWHC’ (batch, width, height, channels) while channels_first corresponds to inputs with
shape (batch, channels, width, height).]

dilation_rate [an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated
convolution. Can be a single integer to specify the same value for all spatial dimensions.
Currently, specifying any dilation_rate value != 1 is incompatible with specifying any stride
value !=1.]

depth_multiplier [The number of depthwise convolution output channels for each input
channel. The total number of depthwise convolution output channels will be equal to
num_filters_in * depth_multiplier.]

act (activation) [Activation function. Set it to None to maintain a linear activation.]

use_bias [Boolean, whether the layer uses a bias.]

see

2.1. API - Layers

71

https://www.tensorflow.org/api_docs/python/tf/layers/separable_conv2d

TensorLayer Documentation, Release 1.5.4

depthwise_initializer [An initializer for the depthwise convolution kernel.]
pointwise_initializer [An initializer for the pointwise convolution kernel.]
bias_initializer [An initializer for the bias vector. If None, no bias will be applied.]
depthwise_regularizer [Optional regularizer for the depthwise convolution kernel.]
pointwise_regularizer [Optional regularizer for the pointwise convolution kernel.]
bias_regularizer [Optional regularizer for the bias vector.]

activity_regularizer [Regularizer function for the output.]

name [a string or None, an optional name to attach to this layer.]

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.13 Convolutional layer (Simplified)

For users don’t familiar with TensorFlow, the following simplified functions may easier for you. We will provide more
simplified functions later, but if you are good at TensorFlow, the professional APIs may better for you.

1D Convolutional layer

tensorlayer.layers.Convld (net, n_filter=32, filter_size=5, stride=1, dilation_rate=1, act=None,
padding="SAME’, use_cudnn_on_gpu=None, data_format="NWC’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal ob-
Ject>, b_init=<tensorflow.python.ops.init_ops.Constant object>,
W_init_args={}, b_init_args={}, name="convild’)
Wrapper for ConvidLayer, if you don’t understand how to use ConvidLayer, this function may be easier.

Parameters
net [TensorLayer layer.]
n_filter [number of filter.]
filter_size [an int.]
stride [an int.]
dilation_rate [As itis 1D conv, the default is “NWC”.]
act [None or activation function.]

others [see ConvidLayer.]

72 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

2D Convolutional layer

tensorlayer.layers.Conv2d (net, n_filter=32, filter_size=(3, 3),
strides=(1, 1), act=None, padding="SAME",
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal ob-
Ject>, b_init=<tensorflow.python.ops.init_ops.Constant object>,
W_init_args={}, b_init_args={}, use_cudnn_on_gpu=None,
data_format=None, name="conv2d’)

Wrapper for Conv2dLayer, if you don’t understand how to use Conv2dLayer, this function may be easier.

Parameters
net [TensorLayer layer.]
n_filter [number of filter.]
filter_size [tuple (height, width) for filter size.]
strides [tuple (height, width) for strides.]
act [None or activation function.]

others [see Conv2dLayer.]

Examples

>>> w_init = tf.truncated_normal_initializer (stddev=0.01)
>>> b_init = tf.constant_initializer (value=0.0)

>>> inputs = Inputlayer (x, name='inputs')

>>> convl = Conv2d(inputs, 64, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_
—init, b_init=b_init, name='convl_1")

>>> convl = Conv2d(convl, 64, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_
—init, b_init=b_init, name='convl_2")

>>> pooll = MaxPool2d(convl, (2, 2), padding='SAME', name='pooll")

>>> conv2 = Conv2d(pooll, 128, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_
—init, b_init=b_init, name='conv2_1")

>>> conv2 = Conv2d(conv2, 128, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_
—init, b_init=b_init, name='conv2_2")

>>> pool2 = MaxPool2d(conv2, (2, 2), padding='SAME', name='pool2")

2D Deconvolutional layer

tensorlayer.layers.DeConv2d (net, n_out_channel=32, filter_size=(3, 3), out_size=(30, 30),
strides=(2, 2), padding="SAME’, batch_size=None, act=None,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal ob-
Jject>, b_init=<tensorflow.python.ops.init_ops.Constant object>,
W_init_args={}, b_init_args={}, name="decnn2d’)

Wrapper for DeConv2dLayer, if you don’t understand how to use DeConv2dLayer, this function may be
easier.

Parameters
net [TensorLayer layer.]
n_out_channel [int, number of output channel.]
filter_size [tuple of (height, width) for filter size.]
out_size [tuple of (height, width) of output.]

2.1. API - Layers 73

TensorLayer Documentation, Release 1.5.4

batch_size [int or None, batch_size. If None, try to find the batch_size from the first dim of
net.outputs (you should tell the batch_size when define the input placeholder).]

strides [tuple of (height, width) for strides.]
act [None or activation function.]

others [see DeConv2dLayer.]

1D Max pooling layer

tensorlayer.layers.MaxPoolld (net, filter_size, strides, padding="valid’,

data_format="channels_last’, name=None)
Wrapper for tf.layers.max_poolingld .

Parameters
net [TensorLayer layer, the tensor over which to pool. Must have rank 3.]

filter_size (pool_size) [An integer or tuple/list of a single integer, representing the size of the
pooling window.]

strides [An integer or tuple/list of a single integer, specifying the strides of the pooling opera-
tion.]

padding [A string. The padding method, either ‘valid’ or ‘same’. Case-insensitive.]

data_format [A string, one of channels_last (default) or channels_first. The ordering of the
dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length,
channels) while channels_first corresponds to inputs with shape (batch, channels, length).]

name [A string, the name of the layer.]
Returns

- A :class:‘Layer‘ which the output tensor, of rank 3.

1D Mean pooling layer

tensorlayer.layers.MeanPoolld (net, filter_size, strides, padding="valid’,

data_format="channels_last’, name=None)
Wrapper for tf.layers.average_poolingld .

Parameters
net [TensorLayer layer, the tensor over which to pool. Must have rank 3.]

filter_size (pool_size) [An integer or tuple/list of a single integer, representing the size of the
pooling window.]

strides [An integer or tuple/list of a single integer, specifying the strides of the pooling opera-
tion.]

padding [A string. The padding method, either ‘valid’ or ‘same’. Case-insensitive.]

data_format [A string, one of channels_last (default) or channels_first. The ordering of the
dimensions in the inputs. channels_last corresponds to inputs with shape (batch, length,
channels) while channels_first corresponds to inputs with shape (batch, channels, length).]

name [A string, the name of the layer.]

Returns

74 Chapter 2. API Reference

https://www.tensorflow.org/api_docs/python/tf/layers/max_pooling1d
https://www.tensorflow.org/api_docs/python/tf/layers/average_pooling1d

TensorLayer Documentation, Release 1.5.4

- A :class:‘Layer* which the output tensor, of rank 3.

2D Max pooling layer

tensorlayer.layers.MaxPool2d (net, filter_size=(2, 2), strides=None, padding="SAME’,

name="maxpool’)
Wrapper for PoolLayer.

Parameters
net [TensorLayer layer.]
filter_size [tuple of (height, width) for filter size.]
strides [tuple of (height, width). Default is the same with filter_size.]

others [see PoolLayer.]

2D Mean pooling layer

tensorlayer.layers.MeanPool2d (net, filter_size=(2, 2), strides=None, padding="SAME’,

name="meanpool’)
Wrapper for PoolLayer.

Parameters
net [TensorLayer layer.]
filter_size [tuple of (height, width) for filter size.]
strides [tuple of (height, width). Default is the same with filter_size.]

others [see PoolLayer.]

3D Max pooling layer

tensorlayer.layers.MaxPool3d (net, filter_size, strides, padding="valid’,

data_format="channels_last’, name=None)
Wrapper for tf.layers.max_pooling3d .

Parameters
net [TensorLayer layer, the tensor over which to pool. Must have rank 5.]

filter_size (pool_size) [An integer or tuple/list of 3 integers: (pool_depth, pool_height,
pool_width) specifying the size of the pooling window. Can be a single integer to spec-
ify the same value for all spatial dimensions.]

strides [An integer or tuple/list of 3 integers, specifying the strides of the pooling operation.
Can be a single integer to specify the same value for all spatial dimensions.]

padding [A string. The padding method, either ‘valid’ or ‘same’. Case-insensitive.]

data_format [A string. The ordering of the dimensions in the inputs. channels_last (default)
and channels_first are supported. channels_last corresponds to inputs with shape (batch,
depth, height, width, channels) while channels_first corresponds to inputs with shape (batch,
channels, depth, height, width).]

name [A string, the name of the layer.]

2.1. API - Layers 75

https://www.tensorflow.org/api_docs/python/tf/layers/max_pooling3d

TensorLayer Documentation, Release 1.5.4

3D Mean pooling layer

tensorlayer.layers.MeanPool3d (net, filter_size, strides, padding="valid’,

data_format="channels_last’, name=None)
Wrapper for tf.layers.average_pooling3d

Parameters
net [TensorLayer layer, the tensor over which to pool. Must have rank 5.]

filter_size (pool_size) [An integer or tuple/list of 3 integers: (pool_depth, pool_height,
pool_width) specifying the size of the pooling window. Can be a single integer to spec-
ify the same value for all spatial dimensions.]

strides [An integer or tuple/list of 3 integers, specifying the strides of the pooling operation.
Can be a single integer to specify the same value for all spatial dimensions.]

padding [A string. The padding method, either ‘valid’ or ‘same’. Case-insensitive.]

data_format [A string. The ordering of the dimensions in the inputs. channels_last (default)
and channels_first are supported. channels_last corresponds to inputs with shape (batch,
depth, height, width, channels) while channels_first corresponds to inputs with shape (batch,
channels, depth, height, width).]

name [A string, the name of the layer.]

Super-resolution layer

tensorlayer.layers.SubpixelConv2d (net, scale=2, n_out_channel=None, act=<function iden-
tity>, name="subpixel_conv2d’)
The SubpixelConvZ2d class is a sub-pixel 2d convolutional ayer, usually be used for Super-Resolution ap-

plications, example code.
Parameters
net [TensorLayer layer.]
scale [int, upscaling ratio, a wrong setting will lead to Dimension size error.]

n_out_channel [int or None, the number of output channels.] Note that, the number of input
channels == (scale x scale) x The number of output channels. If None, automatically set
n_out_channel == the number of input channels / (scale x scale).

act [activation function.]

name [string.] An optional name to attach to this layer.

References

* Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural
Network

Examples

>>> # examples here just want to tell you how to set the n_out_channel.
>>> x = np.random.rand (2, 16, 16, 4)
>>> X = tf.placeholder ("float32", shape=(2, 16, 16, 4), name="X")

(continues on next page)

76 Chapter 2. API Reference

https://www.tensorflow.org/api_docs/python/tf/layers/average_pooling3d
https://github.com/zsdonghao/SRGAN/
https://arxiv.org/pdf/1609.05158.pdf
https://arxiv.org/pdf/1609.05158.pdf

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

>>> print (x.shape, y.shape)

... (2, 16, 16, 4) (2, 32, 32, 1)
>>>
>>> x = np.random.rand(2, 16, 16,
>>> X = tf.placeholder("float32",

4%10)
shape=(2, 16, 16,

>>> print (x.shape, y.shape)
... (2, 16, 16, 40) (2, 32, 32, 10)
>>>
>>> x = np.random.rand(2, 16, 16,
>>> X = tf.placeholder("float32",

25%10)
shape=(2, 16, 16,

>>> print (x.shape, y.shape)
(2, 16, 16, 250) (2, 80, 80, 10)

>>> net = Inputlayer (X, name='input')
>>> net = SubpixelConv2d(net, scale=2, n_out_channel=1,
>>> y = sess.run(net.outputs, feed_dict={X: x})

4%x10),

>>> net = Inputlayer (X, name='"input2')
>>> net = SubpixelConv2d(net, scale=2, n_out_channel=10,
>>> y = sess.run (net.outputs, feed_dict={X: x})

25%10),

>>> net = Inputlayer (X, name='input3'")

>>> net = SubpixelConv2d(net, scale=5, n_out_channel=None,
=)

>>> y = sess.run (net.outputs, feed_dict={X: x})

name="'"subpixel_ conv2d")

name="XxX")

name="'subpixel_conv2d2")

name="X")

name="'subpixel_conv2d3

2.1.14 Spatial Transformer

2D Affine Transformation layer

class tensorlayer.layers.SpatialTransformer2dAffineLayer (layer=None,

theta_layer=None,
out_size=[40, 40],
name="sapatial_trans_2d_affine’)

The SpatialTransformer2dAffineLayer classis a Spatial Transformer Layer for 2D Affine Transfor-

mation.
Parameters
layer [a layer class with 4-D Tensor of shape [batch, height, width, channels]]
theta_layer [a layer class for the localisation network.] In this layer, we will use a
DenseLayer to make the theta size to [batch, 6], value range to [0, 1] (via tanh).
out_size [tuple of two ints.] The size of the output of the network (height, width), the feature
maps will be resized by this.
References

e Spatial Transformer Networks

¢ TensorFlow/Models

Methods

2.1. API - Layers

77

https://arxiv.org/abs/1506.02025
https://en.wikipedia.org/wiki/Affine_transformation
https://en.wikipedia.org/wiki/Affine_transformation
https://arxiv.org/abs/1506.02025
https://github.com/tensorflow/models/tree/master/transformer

TensorLayer Documentation, Release 1.5.4

count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D Affine Transformation function

tensorlayer.layers.transformer (U, theta, out_size, name="SpatialTransformer2dAffine’,

**kwargs)
Spatial Transformer Layer for 2D Affine Transformation , see SpatialTransformer2dAffinelayer
class.
Parameters
U [float] The output of a convolutional net should have the shape [num_batch, height, width,
num_channels].
theta: float The output of the localisation network should be [num_batch, 6], value range
should be [0, 1] (via tanh).
out_size: tuple of two ints The size of the output of the network (height, width)
Notes

* To initialize the network to the identity transform init.

>>> " “theta' " to

>>> identity = np.array([[1l., 0., 0.],
(0., 1., 0.11)

>>> identity = identity.flatten()

>>> theta = tf.Variable(initial_ value=identity)

References

¢ Spatial Transformer Networks

¢ TensorFlow/Models

Batch 2D Affine Transformation function
tensorlayer.layers.batch_transformer (U, thetas, out_size, name="BatchSpatialTransformer2dAffine’)
Batch Spatial Transformer function for 2D Affine Transformation.
Parameters
U [float] tensor of inputs [batch, height, width, num_channels]
thetas [float] a set of transformations for each input [batch, num_transforms, 6]
out_size [int] the size of the output [out_height, out_width]

Returns: float Tensor of size [batch * num_transforms, out_height, out_width, num_channels]

78 Chapter 2. API Reference

https://en.wikipedia.org/wiki/Affine_transformation
https://arxiv.org/abs/1506.02025
https://github.com/tensorflow/models/tree/master/transformer
https://en.wikipedia.org/wiki/Affine_transformation

TensorLayer Documentation, Release 1.5.4

2.1.15 Pooling layer

Pooling layer for any dimensions and any pooling functions.

class tensorlayer.layers.Poollayer (layer=None, ksize=[1, 2, 2, 1], strides=[1, 2, 2,
1], padding="SAME’, pool=<function max_pool>,
name="pool_layer’)
The PoolLayer class is a Pooling layer, you can choose t f.nn.max_pool and tf.nn.avg_pool for
2Dor tf.nn.max_pool3dand tf.nn.avg_pool3d for 3D.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.

ksize [a list of ints that has length >= 4.] The size of the window for each dimension of the
input tensor.

strides [a list of ints that has length >= 4.] The stride of the sliding window for each dimension
of the input tensor.

padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
pool [a pooling function]

* see TensorFlow pooling APIs

e class tf.nn.max_pool

e classtf.nn.avg_pool

e class tf.nn.max_pool3d

e classtf.nn.avg_pool3d

name [a string or None] An optional name to attach to this layer.

Examples

* see ConvZdLayer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.16 Padding layer

Padding layer for any modes.

class tensorlayer.layers.PadLayer (layer=None, paddings=None, mode="CONSTANT",
name="pad_layer’)
The PadLayer class is a Padding layer for any modes and dimensions. Please see tf.pad for usage.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.

padding [a Tensor of type int32.]

2.1. API - Layers 79

https://www.tensorflow.org/versions/master/api_docs/python/nn.html#pooling
https://www.tensorflow.org/api_docs/python/tf/pad

TensorLayer Documentation, Release 1.5.4

mode [one of “CONSTANT”, “REFLECT”, or “SYMMETRIC” (case-insensitive)]

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.17 Normalization layer

For local response normalization as it does not have any weights and arguments, you can also apply t £ .nn.lrn on
network.outputs.

Batch Normalization

class tensorlayer.layers.BatchNormLayer (layer=None, decay=0.9, epsilon=1e-
05, act=<function identity>,
is_train=False, beta_init=<class ‘ten-

sorflow.python.ops.init_ops.Zeros’ >,
gamma_init=<tensorflow.python.ops.init_ops.RandomNormal

object>, name="batchnorm_layer’)
The Bat chNormLayer class is a normalization layer, see t £ . nn.batch_normalizationandtf.nn.

moments.
Batch normalization on fully-connected or convolutional maps.
Parameters
layer [a Layer instance] The Layer class feeding into this layer.

decay [float, default is 0.9.] A decay factor for ExponentialMovingAverage, use larger value
for large dataset.

epsilon [float] A small float number to avoid dividing by 0.

act [activation function.]

is_train [boolean] Whether train or inference.

beta_init [beta initializer] The initializer for initializing beta
gamma_init [gamma initializer] The initializer for initializing gamma

name [a string or None] An optional name to attach to this layer.

References

¢ Source

¢ stackoverflow

80 Chapter 2. API Reference

https://github.com/ry/tensorflow-resnet/blob/master/resnet.py
http://stackoverflow.com/questions/38312668/how-does-one-do-inference-with-batch-normalization-with-tensor-flow

TensorLayer Documentation, Release 1.5.4

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Local Response Normalization

class tensorlayer.layers.LocalResponseNormLayer (layer=None, depth_radius=None,
bias=None, alpha=None, beta=None,

name="Ilrn_layer’)
The LocalResponseNormLayer class is for Local Response Normalization, see tf.nn.

local_response_normalization or tf.nn.lrn for new TF version. The 4-D input tensor is
treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently.
Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius.

Parameters
layer [a layer class. Must be one of the following types: float32, half. 4-D.]

depth_radius [An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization win-
dow.]

bias [An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).]
alpha [An optional float. Defaults to 1. A scale factor, usually positive.]
beta [An optional float. Defaults to 0.5. An exponent.]

name [A string or None, an optional name to attach to this layer.]

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.18 Time distributed layer

class tensorlayer.layers.TimeDistributedLayer (layer=None, layer_class=None, args={},

) _ name="time_distributed’)
The TimeDistributedLayer class that applies a function to every timestep of the input tensor. For ex-

ample, if using DenselLayer as the layer_class, inputs [batch_size , length, dim] outputs [batch_size ,
length, new_dim].

Parameters
layer [a Layer instance] The Layer class feeding into this layer, [batch_size , length, dim]
layer_class [a Layer class]
args [dictionary] The arguments for the layer_class.

name |[a string or None] An optional name to attach to this layer.

2.1. API - Layers 81

TensorLayer Documentation, Release 1.5.4

Examples

>>> batch_size = 32
timestep = 20

input_dim = 100

>>>
>>>
>>> x =
— name="encode_seqgs")

tf.placeholder (dtype=tf.float32,

shape=[batch_size, timestep, input_dim],

>>> net = Inputlayer (x, name='input')
>>> net = TimeDistributedLayer (net, layer_class=Denselayer, args={'n_units':50,
—'name':'dense'}, name='time_dense')

[TL] Inputlayer input: (32, 20, 100)

[TL] TimeDistributedLayer time_dense: layer_class:Denselayer
>>> print (net.outputs._shape)

(32, 20, 50)
>>> net.print_params (False)

param 0: (100, 50) time_dense/dense/W:0

param 1: (50,) time_dense/dense/b:0

num of params: 5050
Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1.19 Fixed Length Recurrent layer

All recurrent layers can implement any type of RNN cell by feeding different cell function (LSTM, GRU etc).

RNN layer

class tensorlayer.layers.RNNLayer (layer=None,

cell_fn=None,

cell_init_args={}, n_hidden=100, initial-

izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, n_steps=3, initial_state=None, return_last=False,
return_seq_2d=False, name="rnn_layer’)

The RNNLayer class is a RNN layer, you can implement vanilla RNN, LSTM and GRU with it.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.

initializer [initializer] The initializer for initializing the parameters.

n_steps [a int] The sequence length.

initial_state [None or RNN State] If None, initial_state is zero_state.

82

Chapter 2. API Reference

https://www.tensorflow.org/api_docs/python/

TensorLayer Documentation, Release 1.5.4

return_last [boolean]

e If True, return the last output, “Sequence input and single output”

« If False, return all outputs, “Synced sequence input and output”

¢ In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]

* When return_last = False

e If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.

* If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple
RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

Input dimension should be rank 3 : [batch_size, n_steps, n_features], if no, please see ReshapeLayer.

References

¢ Neural Network RNN Cells in TensorFlow
* tensorflow/python/ops/rnn.py
¢ tensorflow/python/ops/rnn_cell.py

¢ see TensorFlow tutorial ptb_word_1m.py, TensorLayer tutorials tutorial_ptb_lstm«.py and
tutorial_generate_text.py

Examples

¢ For words

>>> input_data = tf.placeholder (tf.int32, [batch_size, num_steps])
>>> network = tl.layers.EmbeddingInputlayer (
inputs = input_data,
vocabulary_size = vocab_size,
embedding_size = hidden_size,
C. E_init = tf.random_uniform_initializer (-init_scale, init_
—scale),
.. name ='embedding_layer')
>>> if is_training:
>>> network = tl.layers.DropoutlLayer (network, keep=keep_prob, name='dropl')
>>> network = tl.layers.RNNLayer (network,
cell_fn=tf.nn.rnn_cell.BasicLSTMCell,
cell_init_args={'forget_bias': 0.0}, # 'state_is_tuple': True},
n_hidden=hidden_size,
C. initializer=tf.random_uniform_initializer (-init_scale, init_
—scale),
n_steps=num_steps,
return_last=False,
name='basic_lstm_layerl")

(continues on next page)

2.1.

API - Layers 83

https://www.tensorflow.org/api_docs/python/rnn_cell/
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn_cell.py

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

>>> 1lstml = network
>>> if is_training:
>>> network = tl.layers.Dropoutlayer (network, keep=keep_prob, name='drop2')
>>> network = tl.layers.RNNLayer (network,
cell_fn=tf.nn.rnn_cell.BasicLSTMCell,
cell_init_args={'forget_bias': 0.0}, # 'state is_tuple': True},
n_hidden=hidden_size,
e initializer=tf.random_uniform_initializer (-init_scale, init_
—scale),
n_steps=num_steps,
return_last=False,
return_seq_2d=True,
name='basic_lstm_layer2")
>>> 1lstm2 = network
>>> if is_training:
>>> network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop3')
>>> network = tl.layers.Denselayer (network,
n_units=vocab_size,
W_init=tf.random_uniform_initializer(-init_scale, init_scale),
b_init=tf.random_uniform_initializer (-init_scale, init_scale),
act = tl.activation.identity, name='output_layer')

e For CNN+LSTM

>>> x = tf.placeholder(tf.float32, shape=[batch_size, image_size, image_size, 11])
>>> network = tl.layers.InputlLayer (x, name='input_layer")
>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
. shape = [5, 5, 1, 321, # 32 features for each 5x5_
—patch
strides=[1, 2, 2, 11,
padding="'SAME',
C. name ='cnn_layerl")
>>> network = tl.layers.Poollayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 11,
padding="'SAME"',
pool = tf.nn.max_pool,
name ='pool_ layerl')
tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
shape = [5, 5, 32, 10], # 10 features for each 5x5

>>> network

—patch
strides=[1, 2, 2, 1],
padding="'SAME"',
. name ='cnn_layer2")
>>> network = tl.layers.Poollayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 11,
padding="'SAME',
pool = tf.nn.max_pool,
. name ='pool_ layer2')
>>> network = tl.layers.FlattenlLayer (network, name='flatten_layer')
>>> network
—outputs._shape[-1]1)1)

tl.layers.Reshapelayer (network, shape=[-1, num_steps, int (network.

(continues on next page)

84

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

>>> rnnl = tl.layers.RNNLayer (network,
cell_fn=tf.nn.rnn_cell.LSTMCell,
cell _init_args={},
n_hidden=200,
initializer=tf.random_uniform_initializer(-0.1, 0.1),
n_steps=num_steps,
return_last=False,
return_seq_2d=True,
C. name='"rnn_layer"')
>>> network = tl.layers.Denselayer (rnnl, n_units=3,

act = tl.activation.identity, name='output_layer')
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
Bidirectional layer
class tensorlayer.layers.BiRNNLayer (layer=None, cell_fn=None,
cell_init_args={’state_is_tuple’: True,
‘use_peepholes’: True}, n_hidden=100, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, n_steps=3, fw_initial_state=None,
bw_initial_state=None, dropout=None, n_layer=1,
return_last=Fualse, return_seq_2d=False,

name="birnn_layer’)
The BiRNNLayer class is a Bidirectional RNN layer.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.

initializer [initializer] The initializer for initializing the parameters.

n_steps [a int] The sequence length.

fw_initial_state [None or forward RNN State] If None, initial_state is zero_state.

bw_initial_state [None or backward RNN State] If None, initial_state is zero_state.

dropout [tuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_last [boolean]

* If True, return the last output, “Sequence input and single output”

2.1. API - Layers 85

https://www.tensorflow.org/api_docs/python/

TensorLayer Documentation, Release 1.5.4

* If False, return all outputs, “Synced sequence input and output”

* In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]

* When return_last = False

e If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.

* If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple
RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

¢ Input dimension should be rank 3 : [batch_size, n_steps, n_features], if no, please see ReshapeLayer.

* For predicting, the sequence length has to be the same with the sequence length of training, while, for
normal

RNN, we can use sequence length of 1 for predicting.

References
¢ Source
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.20 Advanced Ops for Dynamic RNN

These operations usually be used inside Dynamic RNN layer, they can compute the sequence lengths for different
situation and get the last RNN outputs by indexing.

Output indexing

tensorlayer.layers.advanced_indexing_ op (input, index)
Advanced Indexing for Sequences, returns the outputs by given sequence lengths. When return the last output
DynamicRNNLayer uses it to get the last outputs with the sequence lengths.

Parameters
input [tensor for data] [batch_size, n_step(max), n_features]

index [tensor for indexing, i.e. sequence_length in Dynamic RNN.] [batch_size]

86 Chapter 2. API Reference

https://github.com/akaraspt/deepsleep/blob/master/deepsleep/model.py

TensorLayer Documentation, Release 1.5.4

References

* Modified from TFlearn (the original code is used for fixed length rnn), references.

Examples
>>> batch_size, max_length, n_features = 3, 5, 2
>>> 7z = np.random.uniform(low=-1, high=1, size=[batch_size, max_length, n_
—features]) .astype (np.float32)
>>> b_z = tf.constant (z)
>>> sl = tf.placeholder (dtype=tf.int32, shape=[batch_size])
>>> o = advanced_indexing_op(b_z, sl)
>>>
>>> sess = tf.InteractiveSession|()
>>> tl.layers.initialize_global_variables (sess)
>>>
>>> order = np.asarray([1l,1,2])
>>> print ("real",z[0] [order[0]-1], z[l][order[1]-1], z[2][order[2]-11])
>>> y = sess.run([o], feed_dict={sl:order})
>>> print ("given", order)
>>> print ("out", y)
. real [-0.93021595 0.53820813] [-0.92548317 -0.77135968] [0.89952248 0.
ﬁ19149846]

given [1 1 2]

out [array([[-0.93021595, 0.53820813],

[-0.92548317, -0.77135968],
[0.89952248, 0.19149846]], dtype=float32)]

Compute Sequence length 1

tensorlayer.layers.retrieve_seq length_op (data)

An op to compute the length of a sequence from input shape of [batch_size, n_step(max), n_features], it can be

used when the features of padding (on right hand side) are all zeros.

Parameters

data [tensor] [batch_size, n_step(max), n_features] with zero padding on right hand side.

References

¢ Borrow from TFlearn.

Examples

>>> data = [[[1],12],[0],10], '
(ril, [2],[31,[0],[11,

cee (f11, 021,061,011, 10111

>>> data = np.asarray (data)

>>> print (data.shape)
(3, 5, 1)
>>> data = tf.constant (data)

(continues on next page)

2.1. API - Layers

87

https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py
https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

>>> sl = retrieve_seqg length_op (data)
>>> sess = tf.InteractiveSession ()
>>> tl.layers.initialize_global_variables (sess)
>>> y = sl.eval()
[2 3 4]

* Multiple features

>>> data = [[I[1,2],12,2],(1,2],(1,2],(0,011,

>>> sl

Compute Sequence length 2

tensorlayer.layers.retrieve_seq length_op2 (data)

An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)], it can be used when

the features of padding (on right hand side) are all zeros.
Parameters

data [tensor] [batch_size, n_step(max)] with zero padding on right hand side.

Examples
>>> data = [[1,2,0,0,0],
[1,2,3,0,01,
.. [1,2,6,1,0]1]
>>> o0 = retrieve_seq length_op2 (data)
>>> sess = tf.InteractiveSession ()

>>> tl.layers.initialize_global_variables (sess)
>>> print (o.eval())
[2 3 4]

2.1.21 Dynamic RNN layer

RNN layer

class tensorlayer.layers.DynamicRNNLayer (layer=None, cell_fn=None,
cell_init_args={"state_is_tuple’:
True}, n_hidden=256, initial-

izer=<tensorflow.python.ops.init_ops.RandomUniform

object>, sequence_length=None, ini-

tial_state=None, dropout=None, n_layer=1,

return_last=False, return_seq_2d=False, dy-

namic_rnn_init_args={}, name="dyrnn_layer’)
The DynamicRNNLayer class is a Dynamic RNN layer, see t £ . nn.dynamic_rnn.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

88 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.

initializer [initializer] The initializer for initializing the parameters.

sequence_length [a tensor, array or None. The sequence length of each row of input data, see
Advanced Ops for Dynamic RNN.]

 If None, it uses retrieve_seq_length_op to compute the sequence_length, i.e.
when the features of padding (on right hand side) are all zeros.

e If using word embedding, you may need to compute the sequence_length
from the ID array (the integer features before word embedding) by using
retrieve_seq_length_op2orretrieve_seq_length_op.

* You can also input an numpy array.
* More details about TensorFlow dynamic_rnn in Wild-ML Blog.
initial_state [None or RNN State] If None, initial_state is zero_state.

dropout [tuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_last [boolean]

o If True, return the last output, “Sequence input and single output”

* If False, return all outputs, “Synced sequence input and output”

* In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]

¢ When return_last = False

e If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer or computing
cost after it.

« If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), n_hidden], for stack-
ing multiple RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

Input dimension should be rank 3 : [batch_size, n_steps(max), n_features], if no, please see ReshapelLayer.

References

¢ Wild-ML Blog
¢ dynamic_rnn.ipynb
e tf.nn.dynamic_rnn

¢ tflearn rnn

. API - Layers 89

https://www.tensorflow.org/api_docs/python/
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
https://github.com/dennybritz/tf-rnn/blob/master/dynamic_rnn.ipynb
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard8/tf.nn.dynamic_rnn.md
https://github.com/tflearn/tflearn/blob/master/tflearn/layers/recurrent.py

TensorLayer Documentation, Release 1.5.4

e tutorial_dynamic_rnn.py

Examples

>>> input_seqgs =
—"input_seqgs")
>>> network = tl.layers.Embedding
inputs = input_se
vocabulary_size =
embedding_size =
. name =
>>> network =

. cell_fn = tf.cont
—~cell.BasicLSTMCell,
n_hidden =
dropout = 0.7,

sequence_length =
C return_seq_2d = T
—after it

tf.placeholder (dtype=tf.int64,

'seq_embedding')
tl.layers.DynamicRNNLayer (network,

embedding_size,

shape=[batch_size, None], name=
Inputlayer (

as,

vocab_size,

embedding_size,

rib.rnn.BasicLSTMCell, # for TF0.2 tf.nn.rnn_

tl.layers.retrieve_seq_length_op2 (input_seqgs),
rue, # stack denselayer or compute cost,,

name = 'dynamic_rnn')
network = tl.layers.Denselayer (network, n_units=vocab_size,
act=tf.identity, name="output")
Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

Bidirectional layer

class tensorlayer.layers.BiDynamicRNNLayer (layer=None,

cell_fn=None,
cell_init_args={"state_is_tuple’:

True}, n_hidden=256, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, sequence_length=None,
fw_initial_state=None,
bw_initial_state=None,
n_layer=1,
return_seq_2d=False,
namic_rnn_init_args={},
name="bi_dyrnn_layer’)

dropout=None,
return_last=Fualse,
dy-

The BiDynamicRNNLayer class is a RNN layer, you can implement vanilla RNN, LSTM and GRU with it.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.

90

Chapter 2. API Reference

https://www.tensorflow.org/api_docs/python/

TensorLayer Documentation, Release 1.5.4

initializer [initializer] The initializer for initializing the parameters.
sequence_length [a tensor, array or None]

The sequence length of each row of input data, see Advanced Ops for Dynamic RNN.

* If None, it uses retrieve_seq_length_op to compute the sequence_length, i.e.
when the features of padding (on right hand side) are all zeros.

e If using word embedding, you may need to compute the sequence_length
from the ID array (the integer features before word embedding) by using
retrieve_seq length_op2 orretrieve_seq_length_op.

* You can also input an numpy array.

* More details about TensorFlow dynamic_rnn in Wild-ML Blog.
fw_initial_state [None or forward RNN State] If None, initial_state is zero_state.
bw_initial_state [None or backward RNN State] If None, initial_state is zero_state.

dropout [tuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_last [boolean] If True, return the last output, “Sequence input and single output”
If False, return all outputs, “Synced sequence input and output”
In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]
¢ When return_last = False

e If True, return 2D Tensor [n_example, 2 * n_hidden], for stacking DenseLayer or com-
puting cost after it.

* If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), 2 * n_hidden], for
stacking multiple RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

Input dimension should be rank 3 : [batch_size, n_steps(max), n_features], if no, please see ReshapelLayer.

References

* Wild-ML Blog

* bidirectional_rnn.ipynb

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network

Continued on next page

2.1. API - Layers 91

http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
https://github.com/dennybritz/tf-rnn/blob/master/bidirectional_rnn.ipynb

TensorLayer Documentation, Release 1.5.4

Table 29 — continued from previous page
print_params([details]) Print all info of parameters in the network

2.1.22 Sequence to Sequence
Simple Seq2Seq

class tensorlayer.layers.Seq2Seq (net_encode_in=None, net_decode_in=None, cell_fn=None,
cell_init_args={ state_is_tuple’: True}, n_hidden=256,
initializer=<tensorflow.python.ops.init_ops.RandomUniform
object>, encode_sequence_length=None, de-
code_sequence_length=None, initial_state=None,
dropout=None, n_layer=1, return_seq_2d=False,
name="’seq2seq’)
The Seg2Seq class is a simple DynamicRNNLayer based Seq2seq layer, both encoder and decoder are
DynamicRNNLayer, network details see Model and Sequence to Sequence Learning with Neural Networks .

Parameters
net_encode_in [a Layer instance] Encode sequences, [batch_size, None, n_features].
net_decode_in [a Layer instance] Decode sequences, [batch_size, None, n_features].
cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]

e see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.
n_hidden [a int] The number of hidden units in the layer.
initializer [initializer] The initializer for initializing the parameters.
encode_sequence_length [tensor for encoder sequence length, see DynamicRNNLayer .]
decode_sequence_length [tensor for decoder sequence length, see DynamicRNNLayer .]
initial_state [None or forward RNN State] If None, initial_state is of encoder zero_state.

dropout [fuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_seq_2d [boolean]
¢ When return_last = False

e If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer or computing
cost after it.

« If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), n_hidden], for stack-
ing multiple RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

* How to feed data: Sequence to Sequence Learning with Neural Networks

e input_seqs: ['how', 'are', 'you', '<PAD_ID'>]

e decode_seqs: ['<START_ID>', 'I', 'am', 'fine', '<PAD_ID'>]

92 Chapter 2. API Reference

https://camo.githubusercontent.com/242210d7d0151cae91107ee63bff364a860db5dd/687474703a2f2f6936342e74696e797069632e636f6d2f333031333674652e706e67
https://arxiv.org/abs/1409.3215
https://www.tensorflow.org/api_docs/python/
https://arxiv.org/pdf/1409.3215v3.pdf

TensorLayer Documentation, Release 1.5.4

e target_seqs: ['I', 'am', 'fine', '<END_ID']
e target_mask: (1, 1, 1, 1, 0]

» related functions : tl.prepro <pad_sequences, precess_sequences, sequences_add_start_id, se-
quences_get_mask>

Examples

>>> from tensorlayer.layers import x
>>> batch_size = 32
>>> encode_seqgs = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"encode_seqgs")
>>> decode_seqgs = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"decode_seqgs")
>>> target_seqgs = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"target_seqgs")
>>> target_mask = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"target_mask") # tl.prepro.sequences_get_mask ()
>>> with tf.variable_scope ("model") :

for chatbot, you can use the same embedding layer,

for translation, you may want to use 2 seperated embedding layers

>>> with tf.variable_scope ("embedding") as vs:

>>> net_encode = EmbeddingInputlayer (
inputs = encode_seqgs,
vocabulary_size = 10000,
embedding_size = 200,
name = 'seq embedding')

>>> vs.reuse_variables ()

>>> tl.layers.set_name_reuse (True)

>>> net_decode = EmbeddingInputlayer (
inputs = decode_segs,
vocabulary_size = 10000,
embedding_size = 200,
name = 'seqg_embedding')

>>> net = Seg2Seq(net_encode, net_decode,

cell_fn = tf.contrib.rnn.BasicLSTMCell,
n_hidden = 200,
initializer = tf.random_uniform_initializer(-0.1, 0.1),
encode_sequence_length = retrieve_seq_length_op2 (encode_seqgs),
decode_sequence_length = retrieve_seq_ length_op2 (decode_seqgs),
initial_state = None,
dropout = None,
n_layer = 1,
return_seqg_2d = True,
S name = 'seqg2Zseq')
>>> net_out = Denselayer (net, n_units=10000, act=tf.identity, name='output')
>>> e_loss = tl.cost.cross_entropy_seq with_mask (logits=net_out.outputs, target_
—segs=target_seqgs, input_mask=target_mask, return_details=False, name='cost')
>>> y = tf.nn.softmax (net_out.outputs)
>>> net_out.print_params (False)

Methods

2.1. API - Layers 93

TensorLayer Documentation, Release 1.5.4

count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
PeekySeq2Seq
class tensorlayer.layers.PeekySeq2Seq (net_encode_in=None, net_decode_in=None,
cell_fn=None, cell_init_args={’state_is_tuple’:
True}, n_hidden=256, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, in_sequence_length=None,
out_sequence_length=None, initial_state=None,

dropout=None, n_layer=1, return_seq_2d=False,
name="peeky_seq2seq’)
Waiting for contribution. The PeckySeg2Seq class, see Model and Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation .

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

AttentionSeq2Seq

class tensorlayer.layers.AttentionSeq2Seq (net_encode_in=None, net_decode_in=None,

cell_fn=None, cell_init_args={’state_is_tuple’:
True}, n_hidden=256, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, in_sequence_length=None,
out_sequence_length=None, ini-
tial_state=None, dropout=None,
n_layer=1, return_seq_2d=False,
name="attention_seq2seq’)

Waiting for contribution. The AttentionSeg2Seq class, see Model and Neural Machine Translation by

Jointly Learning to Align and Translate .

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

94 Chapter 2. API Reference

https://camo.githubusercontent.com/7f690d451036938a51e62feb77149c8bb4be6675/687474703a2f2f6936342e74696e797069632e636f6d2f333032617168692e706e67
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
https://camo.githubusercontent.com/0e2e4e5fb2dd47846c2fe027737a5df5e711df1b/687474703a2f2f6936342e74696e797069632e636f6d2f6132727733642e706e67
https://arxiv.org/pdf/1409.0473v6.pdf
https://arxiv.org/pdf/1409.0473v6.pdf

TensorLayer Documentation, Release 1.5.4

2.1.23 Shape layer

Flatten layer

class tensorlayer.layers.FlattenLayer (layer=None, name="flatten_layer’)
The FlattenLayer class is layer which reshape high-dimension input to a vector. Then we can apply Dense-
Layer, RNNLayer, ConcatLayer and etc on the top of it.

[batch_size, mask_row, mask_col, n_mask] —> [batch_size, mask_row * mask_col * n_mask]
Parameters
layer [a Layer instance] The Layer class feeding into this layer.

name [a string or None] An optional name to attach to this layer.

Examples

>>> x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
>>> network = tl.layers.Inputlayer (x, name='input_ layer')
>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
shape = [5, 5, 32, 647,
strides=[1, 1, 1, 1],
padding="'SAME"',
name ='cnn_layer')
>>> network = tl.layers.Pool2dLayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 1],
padding="'SAME',
pool = tf.nn.max_pool,

C name ='pool_ layer',)

>>> network = tl.layers.Flattenlayer (network, name='flatten_ layer')

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Reshape layer
class tensorlayer.layers.Reshapelayer (layer=None, shape=[], name="reshape_layer’)
The ReshapeLayer class is layer which reshape the tensor.
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
shape [a list] The output shape.

name [a string or None] An optional name to attach to this layer.

2.1. API - Layers 95

TensorLayer Documentation, Release 1.5.4

Examples

* The core of this layer is t £ . reshape.

* Use TensorFlow only :

>>> x =
y = tf.reshape (x,
sess =

>>>
>>>
>>> print (sess.run(y,

—=6111}1))

tf.placeholder (tf.float32,

shape=[None,
31

31)
shape=[-1, 3,

tf.InteractiveSession|()

feed_dict={x:[[1,1,1],[2,2,2],1[3,3,3],[4,4,4]1,[5,5,5],1[6,6,

(rp 1. 1. 1.1
[2. 2. 2.]
[3. 3. 3.]1]
([4. 4. 4.1
[5. 5. 5.]
[6. 6. 6.11]
Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1.24 Lambda layer

class tensorlayer.layers.Lambdalayer (layer=None,

fn=None,

fn_args={},

name="lambda_layer’)
The LambdaLayer class is a layer which is able to use the provided function.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
fn [a function] The function that applies to the outputs of previous layer.
fn_args [a dictionary] The arguments for the function (option).

name [a string or None] An optional name to attach to this layer.

Examples
>>> x = tf.placeholder(tf.float32, shape=[None, 1], name='x")
>>> network = tl.layers.Inputlayer (x, name='input_layer'")
>>> network = Lambdalayer (network, lambda x: 2xx, name='lambda_ layer')
>>> y = network.outputs
>>> sess = tf.InteractiveSession|()
>>> out = sess.run(y, feed_dict={x [[1]1,[2]111)
[([21,1041]
Methods

96

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1.25 Merge layer

Concat layer

class tensorlayer.layers.Concatlayer (layer=[], concat_dim=1, name="concat_layer’)
The ConcatLayer class is layer which concat (merge) two or more DenselLayer to a single

class:DenseLayer.

Parameters

layer [alist of Layer instances] The Layer class feeding into this layer.

concat_dim [int] Dimension along which to concatenate.

name [a string or None] An optional name to attach to this layer.

Examples
>>> sess = tf.InteractiveSession|()
>>> x = tf.placeholder (tf.float32, shape=[None, 784])
>>> inputs = tl.layers.Inputlayer (x, name='input_layer')
>>> netl = tl.layers.Denselayer (inputs, n_units=800, act = tf.nn.relu, name=
—'relul_1")
>>> net2 = tl.layers.Denselayer (inputs, n_units=300, act = tf.nn.relu, name=
—'reluz_1")
>>> network = tl.layers.ConcatLayer (layer = [netl, net2], name ='concat_layer')
[TL] InputLayer input_layer (?, 784)
[TL] Denselayer relul_1: 800, <function relu at 0x1108e4le0>
[TL] Denselayer relu2_1: 300, <function relu at 0x1108e41e0>
[TL] ConcatLayer concat_layer, 1100
>>> tl.layers.initialize_global_variables (sess)
>>> network.print_params ()
param O: (784, 800) (mean: 0.000021, median: -0.000020 std: 0.035525)
param 1: (800,) (mean: 0.000000, median: 0.000000 std: 0.000000)
param 2: (784, 300) (mean: 0.000000, median: -0.000048 std: 0.042947)
param 3: (300,) (mean: 0.000000, median: 0.000000 std: 0.000000)
. num of params: 863500
>>> network.print_layers ()
layer 0: Tensor ("Relu:0", shape=(?, 800), dtype=float32)
layer 1: Tensor ("Relu_1:0", shape=(?, 300), dtype=float32)
Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1. API - Layers

97

TensorLayer Documentation, Release 1.5.4

Element-wise layer

class tensorlayer.layers.Elementwiselayer (layer=[], combine_fn=<function minimum>,

name="elementwise_layer’)
The ElementwiseLayer class combines multiple Layer which have the same output shapes by a given

elemwise-wise operation.
Parameters
layer [alist of Layer instances] The Layer class feeding into this layer.

combine_fn [a TensorFlow elemwise-merge function] e.g. ANDistf.minimum; ORistf.
maximum ; ADDis tf.add ; MULis tf.multiply and so on. See TensorFlow Math
API .

name |[a string or None] An optional name to attach to this layer.

Examples
* AND Logic
>>> net_0 = tl.layers.Denselayer (net_0, n_units=500,
c act = tf.nn.relu, name='net_0")
>>> net_1 = tl.layers.Denselayer (net_1, n_units=500,
act = tf.nn.relu, name='net_1")
>>> net_com = tl.layers.Elementwiselayer (layer = [net_0, net_1],
combine_fn = tf.minimum,
name = 'combine_layer')
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.26 Extend layer

Expand dims layer
class tensorlayer.layers.ExpandDimsLayer (layer=None, axis=None, name="expand_dims’)
The ExpandDimsLayer class inserts a dimension of 1 into a tensor’s shape, see tf.expand_dims() .
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
axis [int, 0-D (scalar).] Specifies the dimension index at which to expand the shape of input.

name [a string or None] An optional name to attach to this layer.

Methods

98 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#math
https://www.tensorflow.org/versions/master/api_docs/python/math_ops.html#math
https://www.tensorflow.org/api_docs/python/array_ops/shapes_and_shaping#expand_dims

TensorLayer Documentation, Release 1.5.4

count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Tile layer

class tensorlayer.layers.TileLayer (layer=None, multiples=None, name="tile’)
The TileLayer class constructs a tensor by tiling a given tensor, see tf.tile() .

Parameters
layer [a Layer instance] The Layer class feeding into this layer.

multiples: a list of int Must be one of the following types: int32, int64. 1-D. Length must be
the same as the number of dimensions in input

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.27 Estimator layer

class tensorlayer.layers.EstimatorLayer (layer=None, model_fn=None, args={},

name="estimator_layer’)
The Est imatorLayer class accepts model_fn that described the model. It is similar with KerasLayer,

see tutorial_keras.py
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
model_fn [a function that described the model.]
args [dictionary] The arguments for the model_fn.

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.28 Connect TF-Slim

Yes ! TF-Slim models can be connected into TensorLayer, all Google’s Pre-trained model can be used easily , see
Slim-model .

2.1. API - Layers 99

https://www.tensorflow.org/api_docs/python/array_ops/slicing_and_joining#tile
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py
https://github.com/tensorflow/models/tree/master/slim#Install

TensorLayer Documentation, Release 1.5.4

class tensorlayer.layers.SlimNetsLayer (layer=None, slim_layer=None, slim_args={},
name="tfslim_layer’)
The S1imNetsLayer class can be used to merge all TF-Slim nets into TensorLayer. Model can be found in
slim-model , more about slim see slim-git .

Parameters
layer [a Layer instance] The Layer class feeding into this layer.

slim_layer [a slim network function] The network you want to stack onto, end with return
net, end_points.

slim_args [dictionary] The arguments for the slim model.

name [a string or None] An optional name to attach to this layer.

Notes

The due to TF-Slim stores the layers as dictionary, the all_layers in this network is not in order ! Fortu-
nately, the all_params are in order.

Examples

* see Inception V3 example on Github

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.29 Connect Keras

Yes ! Keras models can be connected into TensorLayer! see tutorial_keras.py .

class tensorlayer.layers.KerasLayer (layer=None, keras_layer=None, keras_args={},
name="keras_layer’)
The KerasLayer class can be used to merge all Keras layers into TensorLayer. Example can be found here

tutorial_keras.py
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
keras_layer [a keras network function]
keras_args [dictionary] The arguments for the keras model.

name [a string or None] An optional name to attach to this layer.

Methods

100 Chapter 2. API Reference

https://github.com/tensorflow/models/tree/master/slim#pre-trained-models
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py
https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py

TensorLayer Documentation, Release 1.5.4

count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.30 Parametric activation layer

class tensorlayer.layers.PRelulLayer (layer=None, channel_shared=False,
a_init=<tensorflow.python.ops.init_ops.Constant ob-

ject>, a_init_args={}, name="prelu_layer’)
The PReluLayer class is Parametric Rectified Linear layer.

Parameters
x [A Tensor with type float, double, int32, int64, uint8,)] int16, or int8.
channel_shared [bool. Single weight is shared by all channels]
a_init [alpha initializer, default zero constant.] The initializer for initializing the alphas.
a_init_args [dictionary] The arguments for the weights initializer.

name [A name for this activation op (optional).]

References

* Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.31 Flow control layer

class tensorlayer.layers.MultiplexerLayer (layer=[], name="mux_layer’)
The MultiplexerLayer selects one of several input and forwards the selected input into the output, see
tutorial_mnist_multiplexer.py.

Parameters
layer [alist of Layer instances] The Layer class feeding into this layer.

name [a string or None] An optional name to attach to this layer.

References

e See tf.pack() for TF0.12 or tf.stack() for TF1.0 and tf.gather () at Tensor-
Flow - Slicing and Joining

2.1. API - Layers 101

http://arxiv.org/pdf/1502.01852v1.pdf
https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#slicing-and-joining
https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#slicing-and-joining

TensorLayer Documentation,

Release 1.5.4

Examples
>>> x = tf.placeholder(tf.float32, shape=[None, 784], name='x")
>>> y_ = tf.placeholder(tf.int64, shape=[None,], name='y_ ')
>>> # define the network
>>> net_in = tl.layers.Inputlayer (x, name='input_layer")
>>> net_in = tl.layers.Dropoutlayer (net_in, keep=0.8, name='dropl')
>>> # net 0
>>> net_0 = tl.layers.Denselayer (net_in, n_units=800,

act = tf.nn.relu, name='net0/relul')
>>> net_0 = tl.layers.DropoutLayer (net_0, keep=0.5, name='net0/drop2")
>>> net_0 = tl.layers.Denselayer (net_0, n_units=800,
. act = tf.nn.relu, name='net0/relu2')
>>> # net 1
>>> net_1 = tl.layers.Denselayer (net_in, n_units=800,
C act = tf.nn.relu, name='netl/relul')
>>> net_1 = tl.layers.DropoutLayer (net_1, keep=0.8, name='netl/drop2")
>>> net_1 = tl.layers.Denselayer (net_1, n_units=800,

act = tf.nn.relu, name='netl/relu2')
>>> net_1 = tl.layers.DropoutLayer (net_1, keep=0.8, name='netl/drop3")
>>> net_1 = tl.layers.Denselayer (net_1, n_units=800,
C act = tf.nn.relu, name='netl/relu3")
>>> # multiplexer
>>> net_mux = tl.layers.MultiplexerlLayer (layer = [net_0, net_1], name='mux_layer')
>>> network = tl.layers.Reshapelayer (net_mux, shape=[-1, 800], name='reshape_ layer
") #

>>> network
>>> # output layer
>>> network

tl.layers.DropoutlLayer (network, keep=0.5,

tl.layers.Denselayer (network,

act

name="drop3")

n_units=10,
tf.identity,

name="'output_layer")

Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1.32 Wrapper

Embedding + Attention + Seq2seq

class tensorlayer.layers.EmbeddingAttentionSeq2seqWrapper (source_vocab_size, tar-

get_vocab_size, buck-
ets, size, num_layers,
max_gradient_norm,
batch_size, learn-
ing_rate, learn-
ing_rate_decay_factor,
use_lstm=False,
num_samples=512,
forward_only=False,
name="wrapper’)

Sequence-to-sequence model with attention and for multiple buckets (Deprecated after TF0.12).

102

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

This example implements a multi-layer recurrent neural network as encoder, and an attention-based decoder.
This is the same as the model described in this paper: - Grammar as a Foreign Language please look there for
details, or into the seq2seq library for complete model implementation. This example also allows to use GRU
cells in addition to LSTM cells, and sampled softmax to handle large output vocabulary size. A single-layer
version of this model, but with bi-directional encoder, was presented in - Neural Machine Translation by Jointly
Learning to Align and Translate The sampled softmax is described in Section 3 of the following paper. - On
Using Very Large Target Vocabulary for Neural Machine Translation

Parameters
source_vocab_size [size of the source vocabulary.]
target_vocab_size [size of the target vocabulary.]

buckets [a list of pairs (I, O), where I specifies maximum input length] that will be processed
in that bucket, and O specifies maximum output length. Training instances that have in-
puts longer than I or outputs longer than O will be pushed to the next bucket and padded
accordingly. We assume that the list is sorted, e.g., [(2, 4), (8, 16)].

size [number of units in each layer of the model.]
num_layers [number of layers in the model.]
max_gradient_norm [gradients will be clipped to maximally this norm.]

batch_size [the size of the batches used during training;] the model construction is independent
of batch_size, so it can be changed after initialization if this is convenient, e.g., for decoding.

learning_rate [learning rate to start with.]

learning_rate_decay_factor [decay learning rate by this much when needed.]
use_lstm [if true, we use LSTM cells instead of GRU cells.]

num_samples [number of samples for sampled softmax.]

forward_only [if set, we do not construct the backward pass in the model.]

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
get_batch(data, bucket_id[, PAD_ID, GO_ID, Getarandom batch of data from the specified bucket,
...D prepare for step.
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
step(session, encoder_inputs, ...) Run a step of the model feeding the given inputs.

get_batch (data, bucket_id, PAD_ID=0, GO_ID=1, EOS_ID=2, UNK_ID=3)
Get a random batch of data from the specified bucket, prepare for step.

To feed data in step(..) it must be a list of batch-major vectors, while data here contains single length-major
cases. So the main logic of this function is to re-index data cases to be in the proper format for feeding.

Parameters

data [a tuple of size len(self.buckets) in which each element contains] lists of pairs of input
and output data that we use to create a batch.

bucket_id [integer, which bucket to get the batch for.]

2.1.

API - Layers 103

http://arxiv.org/abs/1412.7449
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1412.2007
http://arxiv.org/abs/1412.2007

TensorLayer Documentation, Release 1.5.4

PAD_ID [int] Index of Padding in vocabulary
GO_ID [int] Index of GO in vocabulary
EOS_ID [int] Index of End of sentence in vocabulary
UNK_ID [int] Index of Unknown word in vocabulary
Returns
The triple (encoder_inputs, decoder_inputs, target_weights) for
the constructed batch that has the proper format to call step(...) later.

step (session, encoder_inputs, decoder_inputs, target_weights, bucket_id, forward_only)
Run a step of the model feeding the given inputs.

Parameters
session [tensorflow session to use.]
encoder_inputs [list of numpy int vectors to feed as encoder inputs.]
decoder_inputs [list of numpy int vectors to feed as decoder inputs.]
target_weights [list of numpy float vectors to feed as target weights.]
bucket_id [which bucket of the model to use.]
forward_only [whether to do the backward step or only forward.]
Returns
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the outputs.
Raises

ValueError [if length of encoder_inputs, decoder_inputs, or] target_weights disagrees with
bucket size for the specified bucket_id.

2.1.33 Helper functions
Flatten tensor

tensorlayer.layers.flatten_reshape (variable, name=")
Reshapes high-dimension input to a vector. [batch_size, mask_row, mask_col, n_mask] —> [batch_size,
mask_row * mask_col * n_mask]

Parameters
variable [a tensorflow variable]

name [a string or None] An optional name to attach to this layer.

Examples
>>> W_conv2 = weight_variable([5, 5, 100, 32]) # 64 features for each 5x5 patch
>>> b_conv2 = bias_variable([32])

>>> W_fcl = weight_variable([7 « 7 = 32, 256])

104 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

C [batch_size, mask_row = mask_col
>>> h_pool2_flat_drop = tf.nn.dropout (h_pool

+ n_mask]

>>> h_conv2 = tf.nn.relu(conv2d(h_pooll, W_conv2) + b_conv2)
>>> h_pool2 = max_pool_2x2 (h_conv2)

>>> h_pool2.get_shape()[:].as_list () = [batch_size, 7, 7, 32]
C. [batch_size, mask_row, mask_col, n_mask]

>>> h_pool2_flat = tl.layers.flatten_reshape (h_pool2)

2_flat, keep_prob)

Permanent clear existing layer names

tensorlayer.layers.clear_layers_name ()

Clear all layer names in set_keep[‘_layers_name_list’], enable layer name reuse.

Examples

>>> network = tl.layers.Inputlayer (x, name='input_ layer')

>>> network = tl.layers.Denselayer (network, n_units=800, name='relul')
>>> tl.layers.clear_layers_name ()

>>>

network2 =

tl.layers.Inputlayer (x,

name="input_layer"')

>>> network2 = tl.layers.Denselayer (network2, n_units=800, name='relul')

Initialize RNN state

tensorlayer.layers.initialize_rnn_state (state)
Return the initialized RNN state. The input is LSTMStateTuple or State of RNNCells.

Parameters
state [a RNN state.]

Remove repeated items in a list

tensorlayer.layers.list_remove_repeat (I=None)

Remove the repeated items in a list, and return the processed list. You may need it to create merged layer like

Concat, Elementwise and etc.

Parameters
1 [alist]
Examples
>>> 1 = [2, 3, 4, 2, 3]
>>> 1 = list_remove_repeat (1)
(2, 3, 4]

2.1. API - Layers

105

TensorLayer Documentation, Release 1.5.4

2.2 API - Cost

To make TensorLayer simple, we minimize the number of cost functions as much as we can. So we encour-
age you to use TensorFlow’s function. For example, you can implement L1, L2 and sum regularization by tf.
nn.l1l2_loss,tf.contrib.layers.ll_regularizer,tf.contrib.layers.l2_regularizer and
tf.contrib.layers.sum_regularizer, see TensorFlow API.

2.2.1 Your cost function

TensorLayer provides a simple way to create you own cost function. Take a MLP below for example.

network = Inputlayer (x, name='input')
network = Dropoutlayer (network, keep=0.8, name='dropl')
network = Denselayer (network, n_units=800, act=tf.nn.relu, name='relul')

network = Dropoutlayer (network, keep=0.5, name='drop2')

network = Denselayer (network, n_units=800, act=tf.nn.relu, name='relu2')
network = DropoutLayer (network, keep=0.5, name='drop3"')

network = Denselayer (network, n_units=10, act=tf.identity, name='output')

The network parameters will be [W1, bl, W2, b2, W_out, b_out], then you can apply L2 regularization
on the weights matrix of first two layer as follow.

cost = tl.cost.cross_entropy(y, y_)
cost = cost + tf.contrib.layers.1l2_regularizer (0.001) (network.all_params([0]) + tf.
—contrib.layers.1l2_regularizer (0.001) (network.all params[2])

Besides, TensorLayer provides a easy way to get all variables by a given name, so you can also apply L2 regularization
on some weights as follow.

12 = 0
for w in tl.layers.get_variables_with_name ('W_conv2d', train_only=True,
—printable=False) :
12 += tf.contrib.layers.l1l2_reqgularizer (le—-4) (w)
cost = tl.cost.cross_entropy(y, y_) + 12

Regularization of Weights

After initializing the variables, the informations of network parameters can be observed by using network.
print_params ().

tl.layers.initialize_global_variables (sess)
network.print_params ()

param 0 (784, 800) (mean: -0.000000, median: 0.000004 std: 0.035524)
param 1 (800,) (mean: 0.000000, median: 0.000000 std: 0.000000)
param 2: (800, 800) (mean: 0.000029, median: 0.000031 std: 0.035378)
param 3: (800,) (mean: 0.000000, median: 0.000000 std: 0.000000)
param 4 (800, 10) (mean: 0.000673, median: 0.000763 std: 0.049373)
param 5 (10,) (mean: 0.000000, median: 0.000000 std: 0.000000)

num of params: 1276810

The output of network is network.outputs, then the cross entropy can be defined as follow. Besides, to regu-
larize the weights, the network.all_params contains all parameters of the network. In this case, network.

106 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/index.html

TensorLayer Documentation, Release 1.5.4

all_params = [Wl, bl, W2, b2, Wout, bout] according to param O, 1 ... 5 shown by network.
print_params (). Then max-norm regularization on W1 and W2 can be performed as follow.

y = network.outputs

Alternatively, y._) instead.

cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(y,

cost = cross_entropy

cost = cost + tl.cost.maxnorm_regularizer(1.0) (network.all_params[0]) +
tl.cost.maxnorm_regularizer (1.0) (network.all_params[2])

you can use tl.cost.cross_entropy(y,
v_))

In addition, all TensorFlow’s regularizers like t £ . contrib.layers.1l2_regularizer can be used with Ten-
sorLayer.

Regularization of Activation outputs

Instance method network.print_layers () prints all outputs of different layers in order. To achieve regular-
ization on activation output, you can use network.all_layers which contains all outputs of different layers.
If you want to apply L1 penalty on the activations of first hidden layer, just simply add tf.contrib.layers.
12_regularizer (lambda_11) (network.all_layers[1l]) to the cost function.

network.print_layers()

layer 0: Tensor ("dropout/mul_1:0", shape=(?,
layer 1: Tensor ("Relu:0", shape=(?, 800),
layer 2: Tensor ("dropout_1/mul_1:0", shape=(?,
layer 3: Tensor ("Relu_1:0", shape=(?, 800),
layer 4: Tensor ("dropout_2/mul_1:0", shape=(?,
layer 5: Tensor ("add_2:0", shape=(?, 10),

784), dtype=float32)

dtype=float32)

800), dtype=float32)

dtype=float32)

800), dtype=float32)

dtype=float32)

cross_entropy(output, target[, name])

It is a softmax cross-entropy operation, returns the Ten-
sorFlow expression of cross-entropy of two distribu-
tions, implement softmax internally.

sigmoid_cross_entropy(output, target[, name])

It is a sigmoid cross-entropy operation, see tf.nn.
sigmoid_cross_entropy_with_logits.

binary cross_entropy(output, target|, ...])

Computes binary cross entropy given output.

mean_squared_error(output, target[, is_mean])

Return the TensorFlow expression of mean-squre-error
of two distributions.

normalized _mean_ square_error(output, tar-

get)

Return the TensorFlow expression of normalized mean-
squre-error of two distributions.

dice_coe(output, target[, loss_type, axis, ...])

Soft dice (Sgrensen or Jaccard) coefficient for compar-
ing the similarity of two batch of data, usually be used
for binary image segmentation i.e.

dice_hard_coe(output, target[, threshold, ...])

Non-differentiable Sgrensen—Dice coefficient for com-
paring the similarity of two batch of data, usually be
used for binary image segmentation i.e.

1ou_coe(output, target[, threshold, axis, ...])

Non-differentiable Intersection over Union (IoU) for
comparing the similarity of two batch of data, usually
be used for evaluating binary image segmentation.

cross_entropy_seqg(logits, target_seqs|, ...])

Returns the expression of cross-entropy of two se-
quences, implement softmax internally.

cross_entropy_seq_with_mask(logits, ...[,

)

Returns the expression of cross-entropy of two se-
quences, implement softmax internally.

Continued on next page

2.2. API - Cost

107

TensorLayer Documentation, Release 1.5.4

Table 46 — continued from previous page

cosine _similarity(vl,v2) Cosine similarity [-1, 1], wiki.

1i_regularizer(scale[, scope]) li regularization removes the neurons of previous layer,
i represents inputs.

lo_regularizer(scale[, scope]) lo regularization removes the neurons of current layer, o
represents outputs

maxnorm_reqgularizer([scale, scope]) Max-norm regularization returns a function that can be
used to apply max-norm regularization to weights.

maxnorm_o_regularizer(scale, scope) Max-norm output regularization removes the neurons of
current layer.

maxnorm_1i_regularizer(scale[, scope]) Max-norm input regularization removes the neurons of

previous layer.

2.2.2 Softmax cross entropy

tensorlayer.cost.cross_entropy (output, target, name=None)
It is a softmax cross-entropy operation, returns the TensorFlow expression of cross-entropy of two distributions,
implement softmax internally. See t £ .nn.sparse_softmax_cross_entropy_with_logits.

Parameters
output [Tensorflow variable] A distribution with shape: [batch_size, n_feature].
target [Tensorflow variable] A batch of index with shape: [batch_size,].

name [string] Name of this loss.

References

* About cross-entropy: wiki.

¢ The code is borrowed from: here.

Examples

>>> ce = tl.cost.cross_entropy(y_logits, y_target_logits, 'my_loss")

2.2.3 Sigmoid cross entropy

tensorlayer.cost.sigmoid_cross_entropy (output, target, name=None)
It is a sigmoid cross-entropy operation, see t £ .nn.sigmoid_cross_entropy_with_logits.

2.2.4 Binary cross entropy

tensorlayer.cost .binary_cross_entropy (output, target, epsilon=1e-08, name="bce_loss’)
Computes binary cross entropy given output.

For brevity, let x = output, z = target. The binary cross entropy loss is

loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

Parameters

108 Chapter 2. API Reference

https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy

TensorLayer Documentation, Release 1.5.4

output [tensor of type float32 or float64.]
target [tensor of the same type and shape as output.]
epsilon [float] A small value to avoid output is zero.

name [string] An optional name to attach to this layer.

References

* DRAW

2.2.5 Mean squared error
tensorlayer.cost .mean_squared_error (output, target, is_mean=False)
Return the TensorFlow expression of mean-squre-error of two distributions.
Parameters
output [2D or 4D tensor.]
target [2D or 4D tensor.]

is_mean [boolean, if True, use t £ . reduce_mean to compute the loss of one data, otherwise,
use tf.reduce_sum (default).]

References

¢ Wiki Mean Squared Error

2.2.6 Normalized mean square error
tensorlayer.cost.normalized mean_square_error (output, target)
Return the TensorFlow expression of normalized mean-squre-error of two distributions.
Parameters
output [2D or 4D tensor.]
target [2D or 4D tensor.]

2.2.7 Dice coefficient

tensorlayer.cost.dice_coe (output, target, loss_type=’jaccard’, axis=[1, 2, 3], smooth=1e-05)
Soft dice (Sgrensen or Jaccard) coefficient for comparing the similarity of two batch of data, usually be used for
binary image segmentation i.e. labels are binary. The coefficient between 0 to 1, 1 means totally match.

Parameters
output [tensor] A distribution with shape: [batch_size,], (any dimensions).
target [tensor] A distribution with shape: [batch_size,], (any dimensions).
loss_type [string] jaccard or sorensen, defaultis jaccard.

axis [list of integer] All dimensions are reduced, default [1, 2, 37.

2.2. API - Cost 109

https://github.com/ericjang/draw/blob/master/draw.py#L73
https://en.wikipedia.org/wiki/Mean_squared_error

TensorLayer Documentation, Release 1.5.4

smooth [float] This small value will be added to the numerator and denominator. If both output
and target are empty, it makes sure dice is 1. If either output or target are empty (all pixels
are background), dice = * smooth/ (small_value + smooth), thenif smooth is very
small, dice close to 0 (even the image values lower than the threshold), so in this case, higher
smooth can have a higher dice.

References

» Wiki-Dice

Examples

>>> outputs = tl.act.pixel_wise_softmax (network.outputs)
>>> dice_loss = 1 - tl.cost.dice_coe (outputs, vy_)

2.2.8 Hard Dice coefficient

tensorlayer.cost.dice_hard_coe (output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-05)
Non-differentiable Sgrensen—Dice coefficient for comparing the similarity of two batch of data, usually be used
for binary image segmentation i.e. labels are binary. The coefficient between O to 1, 1 if totally match.

Parameters
output [tensor] A distribution with shape: [batch_size,], (any dimensions).
target [tensor] A distribution with shape: [batch_size,], (any dimensions).
threshold [float] The threshold value to be true.
axis [list of integer] All dimensions are reduced, default (1,2, 3].

smooth [float] This small value will be added to the numerator and denominator, see
dice_coe.

References

¢ Wiki-Dice

2.2.9 10U coefficient

tensorlayer.cost.iou_coe (output, target, threshold=0.5, axis=[1, 2, 3], smooth=1e-05)
Non-differentiable Intersection over Union (IoU) for comparing the similarity of two batch of data, usually be
used for evaluating binary image segmentation. The coefficient between 0 to 1, 1 means totally match.

Parameters
output [tensor] A distribution with shape: [batch_size,], (any dimensions).
target [tensor] A distribution with shape: [batch_size,], (any dimensions).
threshold [float] The threshold value to be true.

axis [list of integer] All dimensions are reduced, default [1, 2, 37].

110 Chapter 2. API Reference

https://en.wikipedia.org/wiki/S\T1\o rensen\T1\textendash {}Dice_coefficient
https://en.wikipedia.org/wiki/S\T1\o rensen\T1\textendash {}Dice_coefficient

TensorLayer Documentation, Release 1.5.4

smooth [float] This small value will be added to the numerator and denominator, see
dice_coe.

Notes

* JoU cannot be used as training loss, people usually use dice coefficient for training, IoU and hard-dice for
evaluating.

2.2.10 Cross entropy for sequence

tensorlayer.cost.cross_entropy_sedq (logits, target_seqs, batch_size=None)
Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for
Fixed Length RNN outputs.

Parameters

logits [Tensorflow variable] 2D tensor, network.outputs, [batch_size*n_steps
(n_examples), number of output units]

target_seqs [Tensorflow variable] target : 2D tensor [batch_size, n_steps], if the number of step
is dynamic, please use cross_entropy_seq_with_mask instead.

batch_size [None or int.] If not None, the return cost will be divided by batch_size.

Examples

>>> see PTB tutorial for more details

>>> input_data = tf.placeholder (tf.int32, [batch_size, num_steps])
>>> targets = tf.placeholder (tf.int32, [batch_size, num_steps])
>>> cost = tl.cost.cross_entropy_seg(network.outputs, targets)

2.2.11 Cross entropy with mask for sequence

tensorlayer.cost.cross_entropy_seq with_mask (logits, target_seqs, input_mask, re-

turn_details=False, name=None)
Returns the expression of cross-entropy of two sequences, implement softmax internally. Normally be used for

Dynamic RNN outputs.
Parameters

logits [network identity outputs] 2D tensor, network . outputs, [batch_size, number of out-
put units].

target_seqs [int of tensor, like word ID.] [batch_size, 7]
input_mask [the mask to compute loss] The same size with target_seqs, normally 0 and 1.
return_details [boolean]

* If False (default), only returns the loss.

* If True, returns the loss, losses, weights and targets (reshape to one vetcor).

2.2. API - Cost 111

TensorLayer Documentation, Release 1.5.4

Examples

* see Image Captioning Example.

2.2.12 Cosine similarity
tensorlayer.cost.cosine_similarity (vI,v2)
Cosine similarity [-1, 1], wiki.
Parameters
vl, v2 [tensor of [batch_size, n_feature], with the same number of features.]
Returns

a tensor of [batch_size,]

2.2.13 Regularization functions

For tf.nn.12_loss, tf.contrib.layers.ll_regularizer, tf.contrib.layers.
12_regularizerand tf.contrib.layers.sum_regularizer, see TensorFlow API.

Maxnorm

tensorlayer.cost .maxnorm_regularizer (scale=1.0, scope=None)
Max-norm regularization returns a function that can be used to apply max-norm regularization to weights. About
max-norm: wiki.

The implementation follows TensorFlow contrib.
Parameters
scale [float] A scalar multiplier Tensor. 0.0 disables the regularizer.
scope: An optional scope name.
Returns
A function with signature ‘mn(weights, name=None)‘ that apply Lo regularization.
Raises

ValueError [If scale is outside of the range [0.0, 1.0] or if scale is not a float.]

Special
tensorlayer.cost.li_regularizer (scale, scope=None)
li regularization removes the neurons of previous layer, i represents inputs.
Returns a function that can be used to apply group li regularization to weights.
The implementation follows TensorFlow contrib.
Parameters
scale [float] A scalar multiplier Tensor. 0.0 disables the regularizer.

scope: An optional scope name for TF12+.

112 Chapter 2. API Reference

https://en.wikipedia.org/wiki/Cosine_similarity
https://www.tensorflow.org/versions/master/api_docs/index.html
https://en.wikipedia.org/wiki/Matrix_norm#Max_norm
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py

TensorLayer Documentation, Release 1.5.4

Returns

A function with signature ‘li(weights, name=None)‘ that apply Li regularization.
Raises

ValueError [if scale is outside of the range [0.0, 1.0] or if scale is not a float.]

tensorlayer.cost.lo_regularizer (scale, scope=None)
lo regularization removes the neurons of current layer, o represents outputs

Returns a function that can be used to apply group lo regularization to weights.
The implementation follows TensorFlow contrib.
Parameters
scale [float] A scalar multiplier Tensor. 0.0 disables the regularizer.
scope: An optional scope name for TF12+.
Returns
A function with signature ‘lo(weights, name=None)‘ that apply Lo regularization.
Raises
ValueError [If scale is outside of the range [0.0, 1.0] or if scale is not a float.]

tensorlayer.cost.maxnorm_o_regularizer (scale, scope)
Max-norm output regularization removes the neurons of current layer.

Returns a function that can be used to apply max-norm regularization to each column of weight matrix.
The implementation follows TensorFlow contrib.
Parameters
scale [float] A scalar multiplier Tensor. 0.0 disables the regularizer.
scope: An optional scope name.
Returns
A function with signature ‘mn_o(weights, name=None)‘ that apply Lo regularization.
Raises
ValueError [If scale is outside of the range [0.0, 1.0] or if scale is not a float.]

tensorlayer.cost.maxnorm_i_regularizer (scale, scope=None)
Max-norm input regularization removes the neurons of previous layer.

Returns a function that can be used to apply max-norm regularization to each row of weight matrix.
The implementation follows TensorFlow contrib.
Parameters
scale [float] A scalar multiplier Tensor. 0.0 disables the regularizer.
scope: An optional scope name.
Returns
A function with signature ‘mn_i(weights, name=None)‘ that apply Lo regularization.
Raises

ValueError [If scale is outside of the range [0.0, 1.0] or if scale is not a float.]

2.2. API - Cost 113

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/layers/python/layers/regularizers.py

TensorLayer Documentation, Release 1.5.4

2.3 API - Preprocessing

We provide abundant data augmentation and processing functions by using Numpy, Scipy, Threading and Queue.
However, we recommend you to use TensorFlow operation function like t £ . image.central_crop, more Ten-
sorFlow data augmentation method can be found here and tutorial_cifarl0_tfrecord.py. Some of the

code in this package are borrowed from Keras.

threading_ data([data, fn])

Return a batch of result by given data.

rotation(x[, rg, is_random, row_index, ...])

Rotate an image randomly or non-randomly.

rotation_multi(x[, rg, is_random, ...])

Rotate multiple images with the same arguments, ran-
domly or non-randomly.

crop(x, wrg, hrg[, is_random, row_index, ...])

Randomly or centrally crop an image.

crop_multi(x, wrg, hrg[, is_random, ...])

Randomly or centrally crop multiple images.

flip_axis(X, axis[, is_random])

Flip the axis of an image, such as flip left and right, up
and down, randomly or non-randomly,

flip axis_multi(X, axis[, is_random])

Flip the axises of multiple images together, such as flip
left and right, up and down, randomly or non-randomly,

shift(x[, wrg, hrg, is_random, row_index, ...])

Shift an image randomly or non-randomly.

shift_multi(x[, wrg, hrg, is_random,...])

Shift images with the same arguments, randomly or
non-randomly.

shear(x[, intensity, is_random, row_index, ...])

Shear an image randomly or non-randomly.

shear_mult i(x[, intensity, is_random, ...])

Shear images with the same arguments, randomly or
non-randomly.

swirl(x[, center, strength, radius, ...])

Swirl an image randomly or non-randomly, see scikit-
image swirl API and example.

swirl_multi(x[, center, strength, radius, ...])

Swirl multiple images with the same arguments, ran-
domly or non-randomly.

elastic_transform(x, alpha, sigma[, mode, ...])

Elastic deformation of images as described in

[Simard2003] .

elastic _transform multi(x, sigmal,

D

alpha,

Elastic deformation of images as described in

[Simard2003].

zoom(X[, zoom_range, is_random, row_index, ...])

Zoom in and out of a single image, randomly or non-
randomly.

zoom_multi(x[, zoom_range, is_random, ...])

Zoom in and out of images with the same arguments,
randomly or non-randomly.

brightness(x[, gamma, gain, is_random])

Change the brightness of a single image, randomly or
non-randomly.

brightness_multi(x[, gamma, gain, is_random])

Change the brightness of multiply images, randomly or
non-randomly.

imresize(x|[, size, interp, mode])

Resize an image by given output size and method.

samplewise_norm(x[, rescale, ...])

Normalize an image by rescale, samplewise centering
and samplewise centering in order.

featurewise_norm(X[, mean, std, epsilon])

Normalize every pixels by the same given mean and std,
which are usually compute from all examples.

channel_shift(x, intensity[, is_random, ...])

Shift the channels of an image, randomly or non-
randomly, see numpy.rollaxis.

channel_shift_multi(x, intensity[,...])

Shift the channels of images with the same arguments,
randomly or non-randomly, see numpy.rollaxis .

Continued on next page

114

Chapter 2. API Reference

https://www.tensorflow.org/api_guides/python/image.html
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl
http://scikit-image.org/docs/dev/auto_examples/plot_swirl.html
http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf
http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html

TensorLayer Documentation, Release 1.5.4

Table 47 — continued from previous page

drop(x[, keep])

Randomly set some pixels to zero by a given keeping
probability.

transform matrix_ offset_center(matrix, X,

y)

Return transform matrix offset center.

apply_transform(x, transform_matrix[, ...])

Return transformed images by given transform_matrix
from transform matrix_offset center.

projective transform by points(Xx,
dst)

src,

Projective transform by given coordinates, usually 4 co-
ordinates.

array_to_img(x[, dim_ordering, scale])

Converts a numpy array to PIL image object (uint8 for-
mat).

find_contours(x[, level, fully_connected, ...])

Find iso-valued contours in a 2D array for a given
level value, returns list of (n, 2)-ndarrays see skim-
age.measure.find_contours .

pt2map([list_points, size, val])

Inputs a list of points, return a 2D image.

binary dilation(X[, radius])

Return fast binary morphological dilation of an image.

dilation(x[, radius])

Return greyscale morphological dilation of an image,
see skimage.morphology.dilation.

pad_sequences(sequences[, maxlen, dtype, ...])

Pads each sequence to the same length: the length of the
longest sequence.

process_sequences(sequences[, end_id, ...])

Set all tokens(ids) after END token to the padding value,
and then shorten (option) it to the maximum sequence
length in this batch.

sequences_add_start_id(sequences|, ...])

Add special start token(id) in the beginning of each se-
quence.

sequences_get_mask(sequences[, pad_val])

Return mask for sequences.

distorted_images([images, height, width])

Distort images for generating more training data.

crop_central_whiten_images([images,

height, ...])

Crop the central of image, and normailize it for test data.

2.3.1 Threading

tensorlayer.prepro.threading data (data=None, fn=None, **kwargs)
Return a batch of result by given data. Usually be used for data augmentation.

Parameters

data [numpy array, file names and etc, see Examples below.]

fn [the function for data processing.]

more args [the args for fn, see Examples below.]

References

e python queue

* run with limited queue

Examples

* Single array

2.3. API - Preprocessing

115

http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours
http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.dilation
https://pymotw.com/2/Queue/index.html#module-Queue
http://effbot.org/librarybook/queue.htm

TensorLayer Documentation, Release 1.5.4

>>> X ——> [batch_size, row, col, 1] greyscale
>>> results = threading_data (X, zoom, zoom_range=[0.5, 1], is_random=True)
results ——> [batch_size, row, col, channel]

>>> tl.visualize.images2d(images=np.asarray (results), second=0.01, saveable=True,
—name="'after', dtype=None)

>>> tl.visualize.images2d(images=np.asarray (X), second=0.01, saveable=True, name=
— 'before', dtype=None)

 List of array (e.g. functions with multi)

>>> X, Y ——> [batch_size, row, col, 1] greyscale
>>> data = threading_data([_ for _ in zip (X, Y)], zoom_multi, zoom_range=[0.5, 1],
<, 1s_random=True)
data --> [batch_size, 2, row, col, 1]
>>> X_, Y_ = data.transpose((1,0,2,3,4))
X_, Y_ ——> [batch_size, row, col, 1]

>>> tl.visualize.images2d(images=np.asarray (X_), second=0.01, saveable=True, name=
—'after', dtype=None)

>>> tl.visualize.images2d(images=np.asarray(Y_), second=0.01, saveable=True, name=
—'before', dtype=None)

» Customized function for image segmentation

>>> def distort_img(data) :
x, y = data
x, v = flip_axis_multi([x, y], axis=0, is_random=True)
x, y = flip_axis_multi([x, y], axis=1, is_random=True)
X, y = crop_multi([x, y], 100, 100, is_random=True)

.. return x, vy

>>> X, Y ——> [batch_size, row, col, channel]

>>> data = threading_data([_ for _ in zip(X, Y)], distort_img)

>>> X _, Y_ = data.transpose((1,0,2,3,4))

2.3.2 Images

* These functions only apply on a single image, use threading_data to apply multiple threading see
tutorial_image_preprocess.py.

 All functions have argument i s_random.

* All functions end with multi , usually be used for image segmentation i.e. the input and output image should be
matched.

Rotation

tensorlayer.prepro.rotation (x, rg=20, is_random=False, row_index=0, col_index=1, chan-

nel_index=2, fill_mode="nearest’, cval=0.0)
Rotate an image randomly or non-randomly.

Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).

rg [int or float] Degree to rotate, usually O ~ 180.

116 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

is_random [boolean, default False] If True, randomly rotate.

row_index, col_index, channel_index [int] Index of row, col and channel, default (0, 1, 2), for
theano (1, 2, 0).

fill_mode [string] Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘re-
flect’ or ‘wrap’

* scipy ndimage affine_transform

cval [scalar, optional] Value used for points outside the boundaries of the input if
mode="constant’. Default is 0.0

* scipy ndimage affine_transform

Examples

>>> x ——> [row, col, 1] greyscale

>>> x = rotation(x, rg=40, is_random=False)

>>> tl.visualize.frame(x[:,:,0], second=0.01, saveable=True, name='temp', cmap=
—'gray')

tensorlayer.prepro.rotation _multi (x, rg=20, is_random=False, row_index=0, col_index=1,

channel_index=2, fill_mode="nearest’, cval=0.0)
Rotate multiple images with the same arguments, randomly or non-randomly. Usually be used for image seg-

mentation which x=[X, Y], X and Y should be matched.
Parameters

x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see rotation.]

Examples
>>> x, y ——> [row, col, 1] greyscale
>>> x, y = rotation_multi([x, y], rg=90, is_random=False)

>>> tl.visualize.frame(x[:,:,0], second=0.01, saveable=True, name='x',cmap='gray')
>>> tl.visualize.frame(y[:,:,0], second=0.01, saveable=True, name='y',6 cmap='gray')

Crop

tensorlayer.prepro.crop (x, wrg, hrg, is_random=False, row_index=0, col_index=1, chan-
nel_index=2)
Randomly or centrally crop an image.
Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
wrg [float] Size of weight.
hrg [float] Size of height.

is_random [boolean, default False] If True, randomly crop, else central crop.

row_index, col_index, channel_index [int] Index of row, col and channel, default (0, 1, 2), for
theano (1, 2, 0).

2.3. API - Preprocessing 117

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html

TensorLayer Documentation, Release 1.5.4

tensorlayer.prepro.crop_multi (x, wrg, hrg, is_random=False, row_index=0, col_index=1, chan-

nel_index=2)
Randomly or centrally crop multiple images.

Parameters
x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see crop.]

Flip
tensorlayer.prepro.flip_axis (x, axis, is_random=False)
Flip the axis of an image, such as flip left and right, up and down, randomly or non-randomly,
Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
axis [int]
¢ 0, flip up and down
* 1, flip left and right
* 2, flip channel
is_random [boolean, default False] If True, randomly flip.

tensorlayer.prepro.flip_axis_multi (x, axis, is_random=False)
Flip the axises of multiple images together, such as flip left and right, up and down, randomly or non-randomly,

Parameters
x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see flip_axis.]

Shift

tensorlayer.prepro.shift (x, wrg=0.1, hrg=0.1, is_random=False, row_index=0, col_index=1,
channel_index=2, fill_mode="nearest’, cval=0.0)
Shift an image randomly or non-randomly.

Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
wrg [float] Percentage of shift in axis x, usually -0.25 ~ 0.25.
hrg [float] Percentage of shift in axis y, usually -0.25 ~ 0.25.
is_random [boolean, default False] If True, randomly shift.

row_index, col_index, channel_index [int] Index of row, col and channel, default (0, 1, 2), for
theano (1, 2, 0).

fill_mode [string] Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘re-
flect’ or ‘wrap’.

* scipy ndimage affine_transform

cval [scalar, optional] Value used for points outside the boundaries of the input if
mode="constant’. Default is 0.0.

118 Chapter 2. API Reference

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html

TensorLayer Documentation, Release 1.5.4

* scipy ndimage affine_transform

tensorlayer.prepro.shift_multi (x, wrg=0.1, hrg=0.1, is_random=False, row_index=0,

col_index=1, channel_index=2, fill_mode="nearest’, cval=0.0)
Shift images with the same arguments, randomly or non-randomly. Usually be used for image segmentation
which x=[X, Y], X and Y should be matched.

Parameters

x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see shift.]

Shear

tensorlayer.prepro.shear (x, intensity=0.1, is_random=False, row_index=0, col_index=1, chan-

nel_index=2, fill_mode="nearest’, cval=0.0)
Shear an image randomly or non-randomly.

Parameters

X [numpy array] An image with dimension of [row, col, channel] (default).

intensity [float] Percentage of shear, usually -0.5 ~ 0.5 (is_random==True), 0 ~ 0.5
(is_random==False), you can have a quick try by shear(X, 1).

is_random [boolean, default False] If True, randomly shear.

row_index, col_index, channel_index [int] Index of row, col and channel, default (0, 1, 2), for
theano (1, 2, 0).

fill_mode [string] Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘re-
flect’ or ‘wrap’.

e scipy ndimage affine_transform

cval [scalar, optional] Value used for points outside the boundaries of the input if
mode="constant’. Default is 0.0.

* scipy ndimage affine_transform

tensorlayer.prepro.shear_multi (x, intensity=0.1, is_random=False, row_index=0, col_index=1,

channel_index=2, fill_mode="nearest’, cval=0.0)
Shear images with the same arguments, randomly or non-randomly. Usually be used for image segmentation
which x=[X, Y], X and Y should be matched.

Parameters

x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see shear.]

Swirl

tensorlayer.prepro.swirl (x, center=None, strength=1, radius=100, rotation=0, out-
put_shape=None, order=1, mode="constant’, cval=0, clip=True,

preserve_range="False, is_random=False)
Swirl an image randomly or non-randomly, see scikit-image swirl API and example.

Parameters

X [numpy array] An image with dimension of [row, col, channel] (default).

2.3. API - Preprocessing 119

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.swirl
http://scikit-image.org/docs/dev/auto_examples/plot_swirl.html

TensorLayer Documentation, Release 1.5.4

center [(row, column) tuple or (2,) ndarray, optional] Center coordinate of transformation.
strength [float, optional] The amount of swirling applied.

radius [float, optional] The extent of the swirl in pixels. The effect dies out rapidly beyond
radius.

rotation [float, (degree) optional] Additional rotation applied to the image, usually [0, 360],
relates to center.

output_shape [tuple (rows, cols), optional] Shape of the output image generated. By default
the shape of the input image is preserved.

order [int, optional] The order of the spline interpolation, default is 1. The order has to be in
the range 0-5. See skimage.transform.warp for detail.

mode [{‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional] Points outside the bound-
aries of the input are filled according to the given mode, with ‘constant’ used as the default.
Modes match the behaviour of numpy.pad.

cval [float, optional] Used in conjunction with mode ‘constant’, the value outside the image
boundaries.

clip [bool, optional] Whether to clip the output to the range of values of the input image. This
is enabled by default, since higher order interpolation may produce values outside the given
input range.

preserve_range [bool, optional] Whether to keep the original range of values. Otherwise, the
input image is converted according to the conventions of img_as_float.

is_random [boolean, default False]
If True, random swirl.
* random center = [(0 ~ x.shape[0]), (0 ~ x.shape[1])]
» random strength = [0, strength]
e random radius = [1e-10, radius]

¢ random rotation = [-rotation, rotation]

Examples
>>> x ——> [row, col, 1] greyscale
>>> x = swirl(x, strength=4, radius=100)

tensorlayer.prepro.swirl _multi (x, center=None, strength=1, radius=100, rotation=0, out-
put_shape=None, order=1, mode="constant’, cval=0,
clip=True, preserve_range=False, is_random=False)
Swirl multiple images with the same arguments, randomly or non-randomly. Usually be used for image seg-

mentation which x=[X, Y], X and Y should be matched.
Parameters
x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see swirl.]

120 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

Elastic transform

tensorlayer.prepro.elastic_transform(x, alpha, sigma, mode="constant’;, cval=0,

is_random=Fulse)
Elastic deformation of images as described in [Simard2003] .

Parameters
X [numpy array, a greyscale image.]
alpha [scalar factor.]

sigma [scalar or sequence of scalars, the smaller the sigma, the more transformation.] Standard
deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for
each axis as a sequence, or as a single number, in which case it is equal for all axes.

mode [default constant, see scipy.ndimage.filters.gaussian_filter.]

cval [float, optional. Used in conjunction with mode ‘constant’, the value outside the image
boundaries.]

is_random [boolean, default False]

References

* Github.
* Kaggle

Examples

>>> x = elastic_transform(x, alpha = x.shapel[l] = 3, sigma = x.shapel[l] = 0.07)

tensorlayer.prepro.elastic_transform multi (x, alpha, sigma, mode=’constant’, cval=0,

is_random=Fualse)
Elastic deformation of images as described in [Simard2003].

Parameters
x [list of numpy array]

others [see elastic_transform.]

Zoom

tensorlayer.prepro.zoom (x, zoom_range=(0.9, 1.1), is_random=False, row_index=0, col_index=1,
channel_index=2, fill_mode="nearest’, cval=0.0)
Zoom in and out of a single image, randomly or non-randomly.

Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
zoom_range [list or tuple]

e If is_random=False, (h, w) are the fixed zoom factor for row and column axies, factor
small than one is zoom in.

e If is_random=True, (min zoom out, max zoom out) for x and y with different random
zoom in/out factor.

2.3. API - Preprocessing 121

http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html
https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a
https://www.kaggle.com/pscion/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation-0878921a
http://deeplearning.cs.cmu.edu/pdfs/Simard.pdf

TensorLayer Documentation, Release 1.5.4

e.g (0.5, 1) zoom in 1~2 times.
is_random [boolean, default False] If True, randomly zoom.

row_index, col_index, channel_index [int] Index of row, col and channel, default (0, 1, 2), for
theano (1, 2, 0).

fill_mode [string] Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘re-
flect’ or ‘wrap’.

* scipy ndimage affine_transform

cval [scalar, optional] Value used for points outside the boundaries of the input if
mode="constant’. Default is 0.0.

* scipy ndimage affine_transform

tensorlayer.prepro.zoom_multi (x, zoom_range=(0.9, 1.1), is_random=False, row_index=0,

col_index=1, channel_index=2, fill_mode="nearest’, cval=0.0)
Zoom in and out of images with the same arguments, randomly or non-randomly. Usually be used for image
segmentation which x=[X, Y], X and Y should be matched.
Parameters
x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see zoom.]

Brightness

tensorlayer.prepro.brightness (x, gamma=1, gain=1, is_random=False)
Change the brightness of a single image, randomly or non-randomly.

Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
gamma [float, small than 1 means brighter.] Non negative real number. Default value is 1.
e Ifis_random is True, gamma in a range of (1-gamma, 1+gamma).
gain [float] The constant multiplier. Default value is 1.
is_random [boolean, default False]

e If True, randomly change brightness.
References

¢ skimage.exposure.adjust_gamma

* chinese blog

tensorlayer.prepro.brightness_multi (x, gamma=1, gain=1, is_random=False)

Change the brightness of multiply images, randomly or non-randomly. Usually be used for image segmentation
which x=[X, Y], X and Y should be matched.

Parameters

x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see brightness.]

122 Chapter 2. API Reference

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
http://scikit-image.org/docs/dev/api/skimage.exposure.html
http://www.cnblogs.com/denny402/p/5124402.html

TensorLayer Documentation, Release 1.5.4

Resize
tensorlayer.prepro.imresize (x, size=[100, 100], interp="bilinear’, mode=None)
Resize an image by given output size and method. Warning, this function will rescale the value to [0, 255].
Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
size [int, float or tuple (h, w)]
* int, Percentage of current size.
¢ float, Fraction of current size.
* tuple, Size of the output image.

interp [str, optional] Interpolation to use for re-sizing (‘nearest’, ‘lanczos’, ‘bilinear’, ‘bicubic’
or ‘cubic’).

mode [str, optional] The PIL image mode (‘P’, ‘L’, etc.) to convert arr before resizing.
Returns
imresize [ndarray]

The resized array of image.

References

* scipy.misc.imresize

Normalization

tensorlayer.prepro.samplewise_norm(x, rescale=None, samplewise_center=False, sam-
plewise_std_normalization=False, channel_index=2,
epsilon=1e-07)
Normalize an image by rescale, samplewise centering and samplewise centering in order.

Parameters
x [numpy array] An image with dimension of [row, col, channel] (default).

rescale [rescaling factor.] If None or 0, no rescaling is applied, otherwise we multiply the data
by the value provided (before applying any other transformation)

samplewise_center [set each sample mean to 0.]
samplewise_std_normalization [divide each input by its std.]

epsilon [small position value for dividing standard deviation.]

Notes

When samplewise_center and samplewise_std_normalization are True.
* For greyscale image, every pixels are subtracted and divided by the mean and std of whole image.

» For RGB image, every pixels are subtracted and divided by the mean and std of this pixel i.e. the mean
and std of a pixel is 0 and 1.

2.3. API - Preprocessing 123

https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imresize.html

TensorLayer Documentation, Release 1.5.4

Examples
>>> x = samplewise_norm(x, samplewise_center=True, samplewise_std_
—normalization=True)
>>> print (x.shape, np.mean(x), np.std(x))
(le0, 176, 1), 0.0, 1.0

tensorlayer.prepro.featurewise_norm (x, mean=None, std=None, epsilon=1e-07)
Normalize every pixels by the same given mean and std, which are usually compute from all examples.

Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
mean [value for subtraction.]
std [value for division.]

epsilon [small position value for dividing standard deviation.]

Channel shift
tensorlayer.prepro.channel_shift (x, intensity, is_random=False, channel_index=2)
Shift the channels of an image, randomly or non-randomly, see numpy.rollaxis.
Parameters
X [numpy array] An image with dimension of [row, col, channel] (default).
intensity [float] Intensity of shifting.
is_random [boolean, default False] If True, randomly shift.
channel_index [int] Index of channel, default 2.

tensorlayer.prepro.channel_shift_multi (x, intensity, channel_index=2)
Shift the channels of images with the same arguments, randomly or non-randomly, see numpy.rollaxis . Usually
be used for image segmentation which x=[X, Y], X and Y should be matched.

Parameters
x [list of numpy array] List of images with dimension of [n_images, row, col, channel] (default).

others [see channel_shift.]

Noise
tensorlayer.prepro.drop (x, keep=0.5)
Randomly set some pixels to zero by a given keeping probability.
Parameters
X [numpy array] An image with dimension of [row, col, channel] or [row, col].

keep [float (0, 1)] The keeping probability, the lower more values will be set to zero.

124 Chapter 2. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.rollaxis.html

TensorLayer Documentation, Release 1.5.4

Manual transform
tensorlayer.prepro.transform matrix_ offset_center (matrix, x, y)
Return transform matrix offset center.
Parameters
matrix [numpy array] Transform matrix

X, y [int] Size of image.

Examples

e See rotation, shear, zoom.

tensorlayer.prepro.apply_transform(x, transform_matrix, channel_index=2,

fill_mode="nearest’, cval=0.0)
Return transformed images by given transform_matrix from transform _matrix_offset_center.

Parameters
x [numpy array] Batch of images with dimension of 3, [batch_size, row, col, channel].

transform_matrix [numpy array] Transform matrix (offset center), can be generated by
transform matrix_offset_center

channel_index [int] Index of channel, default 2.

fill_mode [string] Method to fill missing pixel, default ‘nearest’, more options ‘constant’, ‘re-
flect’ or ‘wrap’

* scipy ndimage affine_transform

cval [scalar, optional] Value used for points outside the boundaries of the input if
mode="constant’. Default is 0.0

* scipy ndimage affine_transform

Examples

e See rotation, shift, shear, zoom.

tensorlayer.prepro.projective_transform by points (x, src, dst, map_args={}, out-
put_shape=None, order=1,
mode="constant’, cval=0.0,

clip=True, preserve_range=False)
Projective transform by given coordinates, usually 4 coordinates. see scikit-image.

Parameters
x [numpy array] An image with dimension of [row, col, channel] (default).
src [list or numpy] The original coordinates, usually 4 coordinates of (x, y).

dst [list or numpy] The coordinates after transformation, the number of coordinates is the same
with src.

map_args [dict, optional] Keyword arguments passed to inverse_map.

2.3. API - Preprocessing 125

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.interpolation.affine_transform.html
http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html

TensorLayer Documentation, Release 1.5.4

output_shape [tuple (rows, cols), optional] Shape of the output image generated. By default
the shape of the input image is preserved. Note that, even for multi-band images, only rows
and columns need to be specified.

order [int, optional] The order of interpolation. The order has to be in the range 0-5:
* 0 Nearest-neighbor
¢ 1 Bi-linear (default)
2 Bi-quadratic
* 3 Bi-cubic
* 4 Bi-quartic
* 5 Bi-quintic

mode [{‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional] Points outside the bound-
aries of the input are filled according to the given mode. Modes match the behaviour of
numpy.pad.

cval [float, optional] Used in conjunction with mode ‘constant’, the value outside the image
boundaries.

clip [bool, optional] Whether to clip the output to the range of values of the input image. This
is enabled by default, since higher order interpolation may produce values outside the given
input range.

preserve_range [bool, optional] Whether to keep the original range of values. Otherwise, the
input image is converted according to the conventions of img_as_float.

References

* scikit-image : geometric transformations

* scikit-image : examples

Examples
>>> Assume X is an image from CIFAR 10, i.e. shape == (32, 32, 3)
>>> src = [[0,0],([0,32],132,01,1[32,32]1]

>>> dst = [[10,10],[0,32],132,0]1,1[32,32]]
>>> x = projective_transform by_points (X, src, dst)

Numpy and PIL
tensorlayer.prepro.array_to_img (x, dim_ordering=(0, 1, 2), scale=True)
Converts a numpy array to PIL image object (uint8 format).
Parameters
X [numpy array] A image with dimension of 3 and channels of 1 or 3.

dim_ordering [list or tuple of 3 int] Index of row, col and channel, default (0, 1, 2), for theano
(1,2,0).

scale [boolean, default is True] If True, converts image to [0, 255] from any range of value like
[-1, 2].

126 Chapter 2. API Reference

http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html
http://scikit-image.org/docs/dev/auto_examples/index.html

TensorLayer Documentation, Release 1.5.4

References

¢ PIL Image.fromarray

Find contours

tensorlayer.prepro.find_contours (x, level=0.8, fully_connected="low’, posi-

))) tive_orientation="low’)))
Find iso-valued contours in a 2D array for a given level value, returns list of (n, 2)-ndarrays see skim-

age.measure.find_contours .
Parameters
x [2D ndarray of double. Input data in which to find contours.]
level [float. Value along which to find contours in the array.]

fully_connected [str, { ‘low’, ‘high’}. Indicates whether array elements below the given level
value are to be considered fully-connected (and hence elements above the value will only be
face connected), or vice-versa. (See notes below for details.)]

positive_orientation [either ‘low’ or ‘high’. Indicates whether the output contours will produce
positively-oriented polygons around islands of low- or high-valued elements. If ‘low’ then
contours will wind counter-clockwise around elements below the iso-value. Alternately, this
means that low-valued elements are always on the left of the contour.]

Points to Image
tensorlayer.prepro.pt2map (list_points=[], size=(100, 100), val=1)
Inputs a list of points, return a 2D image.
Parameters
list_points [list of [X, y].]
size [tuple of (w, h) for output size.]

val [float or int for the contour value.]

Binary dilation
tensorlayer.prepro.binary dilation (x, radius=3)
Return fast binary morphological dilation of an image. see skimage.morphology.binary_dilation.
Parameters
x [2D array image.]

radius [int for the radius of mask.]

Greyscale dilation
tensorlayer.prepro.dilation (x, radius=3)
Return greyscale morphological dilation of an image, see skimage.morphology.dilation.
Parameters

x [2D array image.]

2.3. API - Preprocessing 127

http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=fromarray
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours
http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.find_contours
http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_dilation
http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.dilation

TensorLayer Documentation, Release 1.5.4

radius [int for the radius of mask.]

2.3.3 Sequence

More related functions can be found in tensorlayer.nlp.

Padding

tensorlayer.prepro.pad_sequences (sequences, maxlen=None, dtype="int32’, padding=’post’,

truncating="pre’, value=0.0)
Pads each sequence to the same length: the length of the longest sequence. If maxlen is provided, any sequence

longer than maxlen is truncated to maxlen. Truncation happens off either the beginning (default) or the end of
the sequence. Supports post-padding and pre-padding (default).

Parameters
sequences [list of lists where each element is a sequence]
maxlen [int, maximum length]
dtype [type to cast the resulting sequence.]
padding [‘pre’ or ‘post’, pad either before or after each sequence.]

truncating [‘pre’ or ‘post’, remove values from sequences larger than] maxlen either in the
beginning or in the end of the sequence

value [float, value to pad the sequences to the desired value.]
Returns

X [numpy array with dimensions (number_of_sequences, maxlen)]

Examples

>>> sequences = [[1,1,1,1,11,12,2,21,103,31]
>>> sequences = pad_sequences (sequences, maxlen=None, dtype='int32',
padding='post', truncating='pre', value=0.)

Process

tensorlayer.prepro.process_sequences (sequences, end_id=0, pad_val=0, is_shorten=True, re-

main_end_id=False)
Set all tokens(ids) after END token to the padding value, and then shorten (option) it to the maximum sequence

length in this batch.
Parameters
sequences [numpy array or list of list with token IDs.] e.g. [[4,3,5,3,2,2,2,2], [5,3,9,4,9,2,2,3]]
end_id [int, the special token for END.]
pad_val [int, replace the end_id and the ids after end_id to this value.]

is_shorten [boolean, default True.] Shorten the sequences.

128 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

remain_end_id [boolean, default False.] Keep an end_id in the end.

Examples

>>> sentences_ids

>>> sentences_ids
<~>Val:O,
[[4,

3, 5, 3,

[r4, 3, 5, 3, 2, 2, 2, 21, <-— end_id is 2
[5, 3, 9, 4, 9, 2, 2, 3] <-— end_id is 2
precess_sequences (sentences_ids, end_id=vocab.end_id, pad_

is_shorten=True)

01, [5, 3, 9, 4, 9]]

Add Start ID

tensorlayer.prepro.sequences_add_start_id (sequences, start_id=0, remove_last=False)
Add special start token(id) in the beginning of each sequence.

Examples

>>> sentences_ids
>>> sentences_ids

(04,3,5/3,2,2,2,21, [5,3,9,4,9,2,2,3]]

sequences_add_start_id(sentences_ids, start_id=2)

(12, 4, 3, 5 3, 2, 2, 2, 21, [2, 5 3, 9, 4, 9, 2, 2, 311
>>> sentences_ids = sequences_add_start_id(sentences_ids, start_id=2, remove_
—~last=True)

(2, 4, 3, 5 3, 2, 2, 21, (2, 5, 3, 9, 4, 9, 2, 2]]

* For Seq2seq
>>> input [a, b, c]
>>> target = [x, vy, z]
>>> decode_seq = [start_id, a, b] <-— sequences_add_start_id(input, start_id,
—True)
Get Mask

tensorlayer.prepro.sequences_get_mask (sequences, pad_val=0)
Return mask for sequences.

Examples

>>> sentences_ids

>>> mask
[[1 1T 1 1 0 0]
[1 11 110]

sequences_get_mask (sentences_ids,

L4,
(5,

0,
3,

5,
9,

3,
4,

0,
9,

01,
011
pad_val=0)

]

2.3. API - Preprocessing

129

TensorLayer Documentation, Release 1.5.4

2.3.4 Tensor Opt

Note: These functions will be deprecated, see tutorial_cifarl0_tfrecord.py for new information.

tensorlayer.prepro.distorted_images (images=None, height=24, width=24)
Distort images for generating more training data.

Parameters
images [4D Tensor] The tensor or placeholder of images
height [int] The height for random crop.
width [int] The width for random crop.

Returns

result [tuple of Tensor] (Tensor for distorted images, Tensor for while loop index)

Notes

* The first image in ‘distorted_images’ should be removed.

References

* tensorflow.models.image.cifar10.cifar10_input

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_cifarl0_dataset (shape=(-1
32, 32, 3), plotable=False)

>>> sess = tf.InteractiveSession ()

>>> batch_size = 128

>>> x = tf.placeholder(tf.float32, shape=[batch_size, 32, 32, 31)

>>> distorted_images_op = tl.preprocess.distorted_images (images=x, height=24,
—width=24)

>>> gess.run(tf.initialize_all_variables())

>>> feed_dict={x: X_train[O:batch_size,:,:,:1}

>>> distorted_images, idx = sess.run(distorted_images_op, feed_dict=feed_dict)
>>> tl.visualize.images2d(X_train[0:9,:,:,:], second=2, saveable=False, name=

—'cifarl0', dtype=np.uint8, fig_idx=20212)

>>> tl.visualize.images2d(distorted_images([1:10,:,:,:], second=10, saveable=False,
— name='distorted_images', dtype=None, fig_idx=23012)

o

tensorlayer.prepro.crop_central_whiten_images (images=None, height=24, width=24)
Crop the central of image, and normailize it for test data.

They are cropped to central of height * width pixels.
Whiten (Normalize) the images.
Parameters
images [4D Tensor] The tensor or placeholder of images

height [int] The height for central crop.

130 Chapter 2. API Reference

https://github.com/tensorflow/tensorflow/blob/r0.9/tensorflow/models/image/cifar10/cifar10_input.py

TensorLayer Documentation, Release 1.5.4

width [int] The width for central crop.
Returns

result [tuple Tensor] (Tensor for distorted images, Tensor for while loop index)

Notes

The first image in ‘central_images’ should be removed.

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_cifarl0O_dataset (shape=(-1
—32, 32, 3), plotable=False)

>>> sess = tf.InteractiveSession()

>>> batch_size = 128

>>> x = tf.placeholder(tf.float32, shape=[batch_size, 32, 32, 31)

>>> central_images_op = tl.preprocess.crop_central_whiten_images (images=x,
—height=24, width=24)

>>> sess.run(tf.initialize_all_variables())

>>> feed_dict={x: X_train[0O:batch_size,:,:,:1}

>>> central_images, idx = sess.run(central_images_op, feed_dict=feed_dict)

>>> tl.visualize.images2d(X_train[0:9,:,:,:], second=2, saveable=False, name=
—'cifarl0', dtype=np.uint8, fig_idx=20212)

>>> tl.visualize.images2d(central_images[1:10,:,:,:], second=10, saveable=False,
—name="'"central_ images', dtype=None, fig_idx=23012)

o

2.4 API - Iteration

Data iteration.

minibatches([inputs, targets, batch_size, ...]) Generate a generator that input a group of example in
numpy.array and their labels, return the examples and
labels by the given batchsize.

seq_minibatches(inputs, targets, batch_size, ...) Generate a generator that return a batch of sequence in-
puts and targets.

seq_minibatches2(inputs, targets, ...) Generate a generator that iterates on two list of words.

pth_iterator(raw_data, batch_size, num_steps) Generate a generator that iterates on a list of words, see
PTB tutorial.

2.4.1 Non-time series

tensorlayer.iterate.minibatches (inputs=None, targets=None, batch_size=None, shuffle=False)
Generate a generator that input a group of example in numpy.array and their labels, return the examples and
labels by the given batchsize.

Parameters
inputs [numpy.array]

24. The input features, every row is a example.

2.4. API - lteration 131

TensorLayer Documentation, Release 1.5.4

targets [numpy.array]
25. The labels of inputs, every row is a example.
batch_size [int] The batch size.

shuffle [boolean] Indicating whether to use a shuffling queue, shuffle the dataset before return.

Examples
>>> X = np.asarray([['a','a"], ['b"','bD"], ['c','c"'], ['d',"'d"], ['e','e'], ['E£"','E
="'11)

>>> y = np.asarray([0,1,2,3,4,5])
>>> for batch in tl.iterate.minibatches (inputs=X, targets=y, batch_size=2,
—shuffle=False) :

>>> print (batch)

(array([['a', 'a'l,

['b', 'B']I,

dtype='<Ul"), array ([0, 11))
(array ([['c', 'c'],

('da, 'd'll,

dtype='<Ul"), array([2, 31))
(array([['e', 'e'],

("¢, '"£'11,
dtype='<Ul"), array([4, 51))

2.4.2 Time series
Sequence iteration 1

tensorlayer.iterate.seq _minibatches (inputs, targets, batch_size, seq_length, stride=1)

Generate a generator that return a batch of sequence inputs and targets. If batch_size = 100,

seq_length = 5, one return will have 500 rows (examples).

Examples

» Synced sequence input and output.

="'11)
>>> y = np.asarray ([0, 1, 2, 3, 4, 5])
>>> for batch in tl.iterate.seq_minibatches (inputs=X, targets=y, batch_size=2,
—seq_length=2, stride=1):
>>> print (batch)
(array([['a', 'a'l,

['b', 'b']l

['b'y 'D'],

['c'y 'c']],

dtype='<U1"), array ([0, 1, 1, 21))
['c'y 'c'],
[rdv, 'd'il,
('a+, 'd'i,
['e', 'e'll,

>>> X = np.asarray([['a','a"], ['b','D"], ['c",'c"], ['d','d"], ['e','e"], ['£','f

(continues on next page)

132 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

dtype='<Ul"), array([2, 3, 3, 41))

e Many to One

>>> return_last = True

>>> num_steps = 2

>>> X = np.asarray([['a','a']l, ['b','D'], ['c','c'], ['d",'d"], ['e','e"], ['f','£f
—"'11)

>>> Y = np.asarray([0,1,2,3,4,5])

>>> for batch in tl.iterate.seqg_minibatches (inputs=X, targets=Y, batch_size=2,
—seqg_length=num_steps, stride=1):

>>> x, y = batch

>>> if return_last:

>>> tmp_y = y.reshape((-1, num_steps) + y.shape[l:])

>>> y = tmp_y[:, —-1]

>>> print (x, vy)

Sequence iteration 2

tensorlayer.iterate.seq minibatches2 (inputs, targets, batch_size, num_steps)
Generate a generator that iterates on two list of words. Yields (Returns) the source contexts and the target context
by the given batch_size and num_steps (sequence_length), see PTB tutorial. In TensorFlow’s tutorial, this
generates the batch_size pointers into the raw PTB data, and allows minibatch iteration along these pointers.

* Hint, if the input data are images, you can modify the code as follow.

from
data = np.zeros([batch_size, batch_len)
to
data = np.zeros([batch_size, batch_len, inputs.shape[l], inputs.shape[2], inputs.
—shape[3]])
Parameters
inputs [a list] the context in list format; note that context usually be represented by splitting by
space, and then convert to unique word IDs.
targets [a list] the context in list format; note that context usually be represented by splitting by
space, and then convert to unique word IDs.
batch_size [int] the batch size.
num_steps [int] the number of unrolls. i.e. sequence_length
Yields

2.4. API - lteration 133

TensorLayer Documentation, Release 1.5.4

Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
Raises

ValueError [if batch_size or num_steps are too high.]

Examples
>>> X = [i for i in range(20)]
>>> Y = [i for i in range(20,40)]

>>> for batch in tl.iterate.seg_minibatches2 (X, Y, batch_size=2, num_steps=3):
X, y = batch
print(x, vy)

[[O. 1. 2.1
[10. 11. 12.11
[[20. 21. 22.]
[30. 31. 32.]]

[. -1
[13. 14. 15.]]
[[23. 24. 25.]
[33. 34. 35.11

[26. 27. 28.

[. .
[16. 17. 18.1]
[]
[36. 37. 38.1]

PTB dataset iteration

tensorlayer.iterate.ptb_iterator (raw_data, batch_size, num_steps)
Generate a generator that iterates on a list of words, see PTB tutorial. Yields (Returns) the source contexts and
the target context by the given batch_size and num_steps (sequence_length).

see PTB tutorial.
e.g. x=[0,1,2]y=1[1, 2, 3], when batch_size = 1, num_steps = 3, raw_data = [i for i in range(100)]

In TensorFlow’s tutorial, this generates batch_size pointers into the raw PTB data, and allows minibatch iteration
along these pointers.

Parameters

raw_data [a list] the context in list format; note that context usually be represented by splitting
by space, and then convert to unique word IDs.

batch_size [int] the batch size.
num_steps [int] the number of unrolls. i.e. sequence_length
Yields
Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
The second element of the tuple is the same data time-shifted to the
right by one.

Raises

134 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

ValueError [if batch_size or num_steps are too high.]

Examples
>>> train_data = [i1i for i in range (20)]
>>> for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3):
>>> X, = batch
>>> print(x, vy)
[l 0 1 2] <———x 1st subset/ iteration
[10 11 12]]
([1 2 3] <—y
[11 12 13]]
[[3 4 5] <-—- 1st batch input 2nd subset/ iteration
[13 14 15]] <-—- 2nd batch input
[l 4 5 6] <-—— 1lst batch target
[14 15 16]] <-—- 2nd batch target
[[6 7 8] 3rd subset/ iteration
[16 17 181]
(r 7 8 91
[17 18 19]]

2.5 API - Utility

£1t(sess, network, train_op, cost, X_train, ...

Traing a given non time-series network by the given cost
function, training data, batch_size, n_epoch etc.

test(sess, network, acc, X_test, y_test, X, ...

Test a given non time-series network by the given test
data and metric.

predict(sess, network, X, x, y_op[, batch_size]) Return the predict results of given non time-series net-

work.

evaluation([y_test, y_predict, n_classes])

Input the predicted results, targets results and the num-
ber of class, return the confusion matrix, F1-score of
each class, accuracy and macro F1-score.

class_balancing oversample([X_train,...]) Input the features and labels, return the features and la-

bels after oversampling.

get_random_int([min, max, number, seed]) Return a list of random integer by the given range and

quantity.

dict_to_one([dp_dict])

Input a dictionary, return a dictionary that all items are
set to one, use for disable dropout, dropconnect layer
and so on.

flatten 11ist([list_of_list])

Input a list of list, return a list that all items are in a list.

2.5. API - Utility

135

TensorLayer Documentation, Release 1.5.4

2.5.1 Training, testing and predicting
Training

tensorlayer.utils.fit (sess, network, train_op, cost, X_train, y_train, x, y_, acc=None,
batch_size=100, n_epoch=100, print_freq=5, X_val=None, y_val=None,
eval_train=True, tensorboard=False, tensorboard_epoch_freq=5, tensor-

board_weight_histograms=True, tensorboard_graph_vis=True)
Traing a given non time-series network by the given cost function, training data, batch_size, n_epoch etc.

Parameters
sess [TensorFlow session] sess = tf.InteractiveSession()
network [a TensorLayer layer] the network will be trained
train_op [a TensorFlow optimizer] like tf.train. AdamOptimizer
X_train [numpy array] the input of training data
y_train [numpy array] the target of training data
x [placeholder] for inputs
y_ [placeholder] for targets

acc [the TensorFlow expression of accuracy (or other metric) or None] if None, would not
display the metric

batch_size [int] batch size for training and evaluating

n_epoch [int] the number of training epochs

print_freq [int] display the training information every print_freq epochs
X_val [numpy array or None] the input of validation data

y_val [numpy array or None] the target of validation data

eval_train [boolean] if X_val and y_val are not None, it refects whether to evaluate the training
data

tensorboard [boolean] if True summary data will be stored to the log/ direcory for visualization
with tensorboard. See also detailed tensorboard_X settings for specific configurations of
features. (default False) Also runs tl.layers.initialize_global_variables(sess) internally in
fit() to setup the summary nodes, see Note:

tensorboard_epoch_freq [int] how many epochs between storing tensorboard checkpoint for
visualization to log/ directory (default 5)

tensorboard_weight_histograms [boolean] if True updates tensorboard data in the logs/ direc-
tory for visulaization of the weight histograms every tensorboard_epoch_freq epoch (default
True)

tensorboard_graph_vis [boolean] if True stores the graph in the tensorboard summaries saved
to log/ (default True)

Examples

136 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

>>> see tutorial_mnist_simple.py

>>> tl.utils.fit (sess, network, train_op, cost, X_train, y_train, x,
acc=acc, batch_size=500, n_epoch=200, print_freg=5,

C. X_val=X_val, y_val=y_val, eval_train=False)

>>> tl.utils.fit (sess, network, train_op, cost, X_train, y_train, x,
acc=acc, batch_size=500, n_epoch=200, print_freg=5,
X_val=X_val, y_val=y_val, eval_train=False,

C. tensorboard=True, tensorboard_weight_histograms=True,

—graph_vis=True)

tensorboard_

Evaluation
tensorlayer.utils.test (sess, network, acc, X_test, y_test, x, y_, batch_size, cost=None)
Test a given non time-series network by the given test data and metric.
Parameters
sess [TensorFlow session] sess = tf.InteractiveSession()

network [a TensorLayer layer] the network will be trained

acc [the TensorFlow expression of accuracy (or other metric) or None] if None, would not

display the metric
X_test [numpy array] the input of test data
y_test [numpy array] the target of test data
x [placeholder] for inputs

y_ [placeholder] for targets

batch_size [int or None] batch size for testing, when dataset is large, we should use minibatche

for testing. when dataset is small, we can set it to None.

cost [the TensorFlow expression of cost or None] if None, would not display the cost

Examples

>>> see tutorial_mnist_simple.py

—cost=cost)

>>> tl.utils.test (sess, network, acc, X_test, y_test, x, y_, batch_size=None,

Prediction
tensorlayer.utils.predict (sess, network, X, x, y_op, batch_size=None)
Return the predict results of given non time-series network.
Parameters
sess [TensorFlow session] sess = tf.InteractiveSession()
network [a TensorLayer layer] the network will be trained
X [numpy array] the input
x [placeholder] for inputs

y_op [placeholder] the argmax expression of softmax outputs

2.5. API - Utility

137

TensorLayer Documentation, Release 1.5.4

batch_size [int or None] batch size for prediction, when dataset is large, we should use mini-
batche for prediction. when dataset is small, we can set it to None.

Examples

>>> see tutorial _mnist_simple.py

>>> y = network.outputs

>>> y_op = tf.argmax(tf.nn.softmax(y), 1)

>>> print (tl.utils.predict (sess, network, X_test, x, y_op))

2.5.2 Evaluation functions

tensorlayer.utils.evaluation (y_test=None, y_predict=None, n_classes=None)
Input the predicted results, targets results and the number of class, return the confusion matrix, F1-score of each
class, accuracy and macro F1-score.

Parameters
y_test [numpy.array or list] target results
y_predict [numpy.array or list] predicted results

n_classes [int] number of classes

Examples

>>> c_mat, fl, acc, fl_macro = evaluation(y_test, y_predict, n_classes)

2.5.3 Class balancing functions

tensorlayer.utils.class_balancing oversample (X_train=None, y_train=None, print-

able=True)
Input the features and labels, return the features and labels after oversampling.

Parameters
X_train [numpy.array] Features, each row is an example

y_train [numpy.array] Labels

Examples

¢ One X

>>> X_train, y_train = class_balancing_oversample (X_train, y_train,
—printable=True)

e Two X

138 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

>>> X, y = tl.utils.class_balancing_oversample (X_train=np.hstack ((X1, X2)), y_
—~train=y, printable=False)

>>> X1 = X[:, 0:5]

>>> X2 = X[:, 5:]

2.5.4 Random functions

tensorlayer.utils.get_random_int (min=0, max=10, number=35, seed=None)

Return a list of random integer by the given range and quantity.

Examples

>>> r = get_random_int (min=0, max=10, number=5)
(10, 2, 3, 3, 7]

2.5.5 Helper functions

Set all items in dictionary to one

tensorlayer.utils.dict_to_one (dp_dict={})

Input a dictionary, return a dictionary that all items are set to one, use for disable dropout, dropconnect layer
and so on.

Parameters

dp_dict [dictionary] keeping probabilities

Examples

>>> dp_dict = dict_to_one(network.all_ drop)
>>> dp_dict = dict_to_one(network.all_drop)
>>> feed_dict.update (dp_dict)

Flatten a list

tensorlayer.utils.flatten_list (list_of list=[[], []])

Input a list of list, return a list that all items are in a list.
Parameters

list_of_list [a list of list]

Examples

>>> tl.utils.flatten_list([[1, 2, 31,([4, 5],1611)
(1, 2, 3, 4, 5, 6]

2.5. API - Utility 139

TensorLayer Documentation, Release 1.5.4

2.6 API - Natural Language Processing

Natural Language Processing and Word Representation.

generate skip gram batch(data, batch_size,

.2)

Generate a training batch for the Skip-Gram model.

sample([a, temperature])

Sample an index from a probability array.

sample_top([a, top_k])

Sample from t op_k probabilities.

SimpleVocabulary(vocab, unk_id)

Simple vocabulary wrapper, see create_vocab().

Vocabulary(vocab_file[, start_word, ...])

Create Vocabulary class from a given vocabulary and
its id-word, word-id convert, see create_vocab() and
tutorial_tfrecord3.py.

process_sentence(sentence[, start_word, ...])

Converts a sentence string into a list of string words, add
start_word and end_word, see create_vocab () and
tutorial_tfrecord3.py.

create_vocab(sentences, word_counts_output_file)

Creates the vocabulary of word to word_id, see cre-
ate_vocab() and tutorial_tfrecord3.py.

simple_read_ words([filename])

Read context from file without any preprocessing.

read_words([filename, replace])

File to list format context.

read_analogies_file([eval_file, word2id])

Reads through an analogy question file, return its id for-
mat.

build_ vocab(data)

Build vocabulary.

build reverse dictionary(word_to_id)

Given a dictionary for converting word to integer id.

build words dataset([words,...])

Build the words dictionary and replace rare words with
‘UNK” token.

save_vocab([count, name])

Save the vocabulary to a file so the model can be
reloaded.

words_to_word_ids([data, word_to_id, unk_key])

Given a context (words) in list format and the vocabu-
lary, Returns a list of IDs to represent the context.

word_ids_ to_words(data, id_to_word)

Given a context (ids) in list format and the vocabulary,
Returns a list of words to represent the context.

basic_tokenizer(sentence[, _WORD_SPLIT])

Very basic tokenizer: split the sentence into a list of to-
kens.

create_vocabulary(vocabulary_path, ...[,...])

Create vocabulary file (if it does not exist yet) from data
file.

initialize vocabulary(vocabulary_path)

Initialize vocabulary from file, return the word_to_id
(dictionary) and id_to_word (list).

sentence_to_token_ids(sentence, vocabulary)

Convert a string to list of integers representing token-
ids.

data_to_token_ids(data_path, target_path, ...)

Tokenize data file and turn into token-ids using given
vocabulary file.

2.6.1 lteration function for training embedding matrix

tensorlayer.nlp.generate_skip_gram_batch (data,

Generate a training batch for the Skip-Gram model.

Parameters
data [a list] To present context.

batch_size [an int] Batch size to return.

batch_size,
data_index=0)

num_skips, skip_window,

140

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

num_skips [an int] How many times to reuse an input to generate a label.
skip_window [an int] How many words to consider left and right.

data_index [an int] Index of the context location. without using yield, this code use data_index
to instead.

Returns
batch [a list] Inputs
labels [a list] Labels

data_index [an int] Index of the context location.

References

¢ TensorFlow word2vec tutorial

Examples

>>> Setting num_skips=2, skip_window=1, use the right and left words.
>>> In the same way, num_skips=4, skip_window=2 means use the nearby 4 words.

>>> data = [1,2,3,4,5,6,7,8,9,10,11]
>>> batch, labels, data_index = tl.nlp.generate_skip_gram_batch (data=data, batch_
—size=8, num_skips=2, skip_window=1, data_index=0)
>>> print (batch)
[2 2 33 445 5]
>>> print (labels)
[[3]

2.6.2 Sampling functions
Simple sampling
tensorlayer.nlp.sample (a=[], temperature=1.0)
Sample an index from a probability array.
Parameters
a [a list] List of probabilities.
temperature [float or None] The higher the more uniform.
When a =[0.1, 0.2, 0.7],

temperature = 0.7, the distribution will be sharpen [0.05048273 0.13588945
0.81362782]

2.6. API - Natural Language Processing 141

https://www.tensorflow.org/versions/r0.9/tutorials/word2vec/index.html#vector-representations-of-words

TensorLayer Documentation, Release 1.5.4

temperature = 1.0, the distribution will be the same [0.1 0.2 0.7]

temperature = 1.5, the distribution will be filtered [0.16008435 0.25411807
0.58579758]

If None, it will be np.argmax (a)

Notes

No matter what is the temperature and input list, the sum of all probabilities will be one. Even if input list = [1,
100, 200], the sum of all probabilities will still be one.

For large vocabulary_size, choice a higher temperature to avoid error.

Sampling from top k
tensorlayer.nlp.sample_top (a=/[], top_k=10)
Sample from t op_k probabilities.
Parameters
a [a list] List of probabilities.

top_k [int] Number of candidates to be considered.

2.6.3 Vector representations of words

Simple vocabulary class
class tensorlayer.nlp.SimpleVocabulary (vocab, unk_id)
Simple vocabulary wrapper, see create_vocab().
Parameters
vocab [A dictionary of word to word_id.]

unk_id [Id of the special ‘unknown’ word.]

Methods

word_to_id(word) Returns the integer id of a word string.

Vocabulary class

class tensorlayer.nlp.Vocabulary (vocab_file, start_word="<S>", end_word="</5>",

unk_word="<UNK>’, pad_word="<PAD>")
Create Vocabulary class from a given vocabulary and its id-word, word-id convert, see create_vocab() and

tutorial_tfrecord3.py.
Parameters

vocab_file [File containing the vocabulary, where the words are the first] whitespace-separated
token on each line (other tokens are ignored) and the word ids are the corresponding line
numbers.

142 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

start_word [Special word denoting sentence start.]
end_word [Special word denoting sentence end.]

unk_word [Special word denoting unknown words.]

Methods
id_to_word(word_id) Returns the word string of an integer word id.
word_to_id(word) Returns the integer word id of a word string.

Process sentence

tensorlayer.nlp.process_sentence (sentence, start_word="<S>’, end_word="</5>")
Converts a sentence string into a list of string words, add start_word and end_word, see create_vocab ()
and tutorial_tfrecord3.py.

Returns

A list of strings; the processed caption.

Notes

* You have to install the following package.
¢ Installing NLTK
e Installing NLTK data

Examples

>>> ¢ = "how are you?"
>>> ¢ = tl.nlp.process_sentence (c)
>>> print (c)
['<S>', 'how', 'are', 'you', '?', '</S>'"]

Create vocabulary
tensorlayer.nlp.create_vocab (sentences, word_counts_output_file, min_word_count=1)
Creates the vocabulary of word to word_id, see create_vocab() and tutorial_tfrecord3.py.

The vocabulary is saved to disk in a text file of word counts. The id of each word in the file is its corresponding
0-based line number.

Parameters
sentences [a list of lists of strings.]
word_counts_output_file [A string] The file name.
min_word_count [a int] Minimum number of occurrences for a word.
Returns

- tl.nlp.SimpleVocabulary object.

2.6. API - Natural Language Processing 143

http://www.nltk.org/install.html
http://www.nltk.org/data.html

TensorLayer Documentation, Release 1.5.4

Examples

>>> captions = ["one two , three", "four five five"]

>>> processed_capts = []

>>> for c in captions:

>>> c = tl.nlp.process_sentence(c, start_word="<S>", end_word="</S>")
>>> processed_capts.append (c)

>>> print (processed_capts)
.[['<S>'", 'one', 'two', ',', 'three', '</S>'], ['<S>', 'four', 'five', 'five', '
</5>"11]

>>> tl.nlp.create_vocab (processed_capts, word_counts_output_file='vocab.txt', min_
—word_count=1)
[TL] Creating vocabulary.
Total words: 8
Words in vocabulary: 8
Wrote vocabulary file: vocab.txt
>>> vocab = tl.nlp.Vocabulary('vocab.txt', start_word="<S>", end_word="</S>", unk_
—word="<UNK>")
INFO:tensorflow:Initializing vocabulary from file: vocab.txt
[TL] Vocabulary from vocab.txt : <S> </S> <UNK>
vocabulary with 10 words (includes start_word, end_word, unk_word)
start_id: 2

end_id: 3
unk_id: 9
pad_id: O

2.6.4 Read words from file

Simple read file

tensorlayer.nlp.simple_read_words (filename="nietzsche.txt’)

Read context from file without any preprocessing.

Parameters
filename [a string] A file path (like .txt file)
Returns

The context in a string

Read file

tensorlayer.nlp.read_words (filename="nietzsche.txt’, replace=["\n’, '<eos>’])

File to list format context. Note that, this script can not handle punctuations. For customized read_words

method, see tutorial_generate_text.py.

Parameters
filename [a string]

A file path (like .txt file),

replace [a list] [original string, target string], to disable replace use [, *’]

144

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

Returns

(134

The context in a list, split by space by default, and use ‘‘’<eo0s>’*‘ to represent ‘¢’

“eg [... 'how', 'useful', '"it', "'s" ...].

2.6.5 Read analogy question file
tensorlayer.nlp.read_analogies_file (eval_file="questions-words.txt’, word2id={})
Reads through an analogy question file, return its id format.
Parameters
eval_data [a string] The file name.
word2id [a dictionary] Mapping words to unique IDs.
Returns

analogy_questions [a [n, 4] numpy array containing the analogy question’s] word ids. ques-
tions_skipped: questions skipped due to unknown words.

Examples

>>> eval_file should be in this format
>>> : capital-common-countries

>>> Athens Greece Baghdad Iraqg

>>> Athens Greece Bangkok Thailand
>>> Athens Greece Beijing China

>>> Athens Greece Berlin Germany

>>> Athens Greece Bern Switzerland
>>> Athens Greece Cairo Egypt

>>> Athens Greece Canberra Australia
>>> Athens Greece Hanoi Vietnam

>>> Athens Greece Havana Cuba

>>> words = tl.files.load _matt_mahoney_text8_dataset ()

>>> data, count, dictionary, reverse_dictionary = tl.nlp.build_
—words_dataset (words, vocabulary_size, True)
>>> analogy_dguestions = tl.nlp.read_analogies_file(eval_file=

—'questions-words.txt', word2id=dictionary)
>>> print (analogy_questions)

[[3068 1248 7161 1581]

[3068 1248 28683 5642]

[3068 1248 3878 486]

[1216 4309 19982 25506]

[1216 4309 3194 8650]

[1216 4309 140 31211

2.6. API - Natural Language Processing 145

TensorLayer Documentation, Release 1.5.4

2.6.6 Build vocabulary, word dictionary and word tokenization
Build dictionary from word to id

tensorlayer.nlp.build_vocab (data)
Build vocabulary. Given the context in list format. Return the vocabulary, which is a dictionary for word to id.
e.g. { ‘campbell’: 2587, ‘atlantic’: 2247, ‘aoun’: 6746 }

Parameters
data [a list of string] the context in list format
Returns

word_to_id [a dictionary] mapping words to unique IDs. e.g. {‘campbell’: 2587, ‘atlantic’:
2247, ‘aoun’: 6746 }

Examples

>>> data_path = os.getcwd() + '/simple-examples/data'
>>> train_path = os.path.join(data_path, "ptb.train.txt")
>>> word_to_id = build_vocab (read_txt_words (train_path))

Build dictionary from id to word
tensorlayer.nlp.build_reverse_dictionary (word_to_id)
Given a dictionary for converting word to integer id. Returns a reverse dictionary for converting a id to word.
Parameters
word_to_id [dictionary] mapping words to unique ids
Returns

reverse_dictionary [a dictionary] mapping ids to words

Build dictionaries for id to word etc

tensorlayer.nlp.build_words_dataset (words=[], vocabulary_size=50000, printable=True,

unk_key="UNK’)
Build the words dictionary and replace rare words with ‘UNK’ token. The most common word has the smallest
integer id.
Parameters

words [a list of string or byte] The context in list format. You may need to do preprocessing on
the words, such as lower case, remove marks etc.

vocabulary_size [an int] The maximum vocabulary size, limiting the vocabulary size. Then the
script replaces rare words with ‘UNK” token.

printable [boolean] Whether to print the read vocabulary size of the given words.
unk_key [a string] Unknown words = unk_key
Returns

data [a list of integer] The context in a list of ids

146 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

count [a list of tuple and list] count[0] is a list : the number of rare words
count[1:] are tuples : the number of occurrence of each word

e.g. [[‘'UNK’, 418391], (b’the’, 1061396), (b’of’, 593677), (b’and’, 416629), (b’one’,
411764)]

dictionary [a dictionary] word_to_id, mapping words to unique IDs.

reverse_dictionary [a dictionary] id_to_word, mapping id to unique word.

Examples
>>> words = tl.files.load_matt_mahoney_text8_dataset ()
>>> vocabulary_size = 50000

>>> data, count, dictionary, reverse_dictionary = tl.nlp.build_words_
—dataset (words, vocabulary_size)

Save vocabulary
tensorlayer.nlp.save_vocab (count=[], name="vocab.txt’)
Save the vocabulary to a file so the model can be reloaded.
Parameters
count [a list of tuple and list] count[0] is a list : the number of rare words
count[1:] are tuples : the number of occurrence of each word

e.g. [[F'UNK’, 418391], (b’the’, 1061396), (b’of’, 593677), (b’and’, 416629), (b’one’,
411764)]

Examples

>>> words = tl.files.load _matt_mahoney_text8_dataset ()
>>> vocabulary_size = 50000
>>> data, count, dictionary, reverse_dictionary = . tl.nlp.build_words_
—dataset (words, vocabulary_size, True)
>>> tl.nlp.save_vocab (count, name='vocab_ text8.txt')
>>> vocab_text8.txt

UNK 418391

the 1061396

of 593677

and 416629

one 411764

in 372201

a 325873

to 316376

2.6.7 Convert words to IDs and IDs to words

These functions can be done by Vocabulary class.

2.6. API - Natural Language Processing 147

TensorLayer Documentation, Release 1.5.4

List of Words to IDs
tensorlayer.nlp.words_to_word_ids (data=[], word_to_id={}, unk_key="UNK")
Given a context (words) in list format and the vocabulary, Returns a list of IDs to represent the context.
Parameters
data [a list of string or byte] the context in list format
word_to_id [a dictionary] mapping words to unique IDs.
unk_key [a string] Unknown words = unk_key
Returns

A list of IDs to represent the context.

Examples

>>> words = tl.files.load_matt_mahoney_text8_dataset ()
>>> vocabulary_size = 50000
>>> data, count, dictionary, reverse_dictionary = . tl.nlp.build_
—words_dataset (words, vocabulary_size, True)
>>> context = [b'hello', b'how', b'are', b'you']
>>> ids = tl.nlp.words_to_word_ids (words, dictionary)
>>> context = tl.nlp.word_ids_to_words (ids, reverse_dictionary)
>>> print (ids)
... [6434, 311, 26, 207]
>>> print (context)
[b'hello', b'how', b'are', b'you']

List of IDs to Words
tensorlayer.nlp.word_ids_to_words (data, id_to_word)
Given a context (ids) in list format and the vocabulary, Returns a list of words to represent the context.
Parameters
data [a list of integer] the context in list format
id_to_word [a dictionary] mapping id to unique word.
Returns

A list of string or byte to represent the context.

Examples

>>> see words_to_word_ids

148 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

2.6.8 Functions for translation

Word Tokenization

tensorlayer.nlp.basic_tokenizer (sentence, _WORD_SPLIT=re.compile(b’([.,!?"\’:;)(])’))
Very basic tokenizer: split the sentence into a list of tokens.

Parameters
sentence [tensorflow.python.platform.gfile.GFile Object]
_WORD_SPLIT [regular expression for word spliting.]

References

¢ Code from /tensorflow/models/rnn/translation/data_utils.py

Examples

>>> see create_vocabulary
>>> from tensorflow.python.platform import gfile

>>> train_path = "wmt/giga-fren.release2"

>>> with gfile.GFile(train_path + ".en", mode="rb") as f:
>>> for line in f:

>>> tokens = tl.nlp.basic_tokenizer (line)

>>> print (tokens)

>>> exit ()

[b'Changing', b'Lives', b'|', b'Changing', b'Society', b'|"', b'How',
b'It', b'Works', b'|', b'Technology', b'Drives', b'Change', b'Home',
b'|', b'Concepts', b'|', b'Teachers', b'|"', b'Search', b'|', b'Overview',
b'|', b'Credits', b'|', b'HHCC', b'Web', b'|', b'Reference', b'|"',
b'Feedback', b'Virtual', b'Museum', b'of', b'Canada', b'Home', b'Page']

Create or read vocabulary

tensorlayer.nlp.create_vocabulary (vocabulary_path, data_path, max_vocabulary_size,
tokenizer=None, normalize_digits=True,
_DIGIT_RE=re.compile(b’\d’),
_START_VOCAB=[b’_PAD’, b’_GO’, b’_EOS’,
b’_UNK’])

Create vocabulary file (if it does not exist yet) from data file.

Data file is assumed to contain one sentence per line. Each sentence is tokenized and digits are normalized (if
normalize_digits is set). Vocabulary contains the most-frequent tokens up to max_vocabulary_size. We write it
to vocabulary_path in a one-token-per-line format, so that later token in the first line gets id=0, second line gets
id=1, and so on.

Parameters
vocabulary_path [path where the vocabulary will be created.]
data_path [data file that will be used to create vocabulary.]

max_vocabulary_size [limit on the size of the created vocabulary.]

2.6. API - Natural Language Processing 149

TensorLayer Documentation, Release 1.5.4

tokenizer [a function to use to tokenize each data sentence.] if None, basic_tokenizer will be
used.

normalize_digits [Boolean] if true, all digits are replaced by Os.

References

¢ Code from /tensorflow/models/rnn/translation/data_utils.py
tensorlayer.nlp.initialize_vocabulary (vocabulary_path)
Initialize vocabulary from file, return the word_to_id (dictionary) and id_to_word (list).
We assume the vocabulary is stored one-item-per-line, so a file:
dog
cat

will result in a vocabulary {“dog”: 0, “cat”: 1}, and this function will also return the reversed-vocabulary [“dog”,

“cat”].
Parameters
vocabulary_path [path to the file containing the vocabulary.]
Returns
vocab [a dictionary] Word to id. A dictionary mapping string to integers.
rev_vocab [a list] Id to word. The reversed vocabulary (a list, which reverses the vocabulary
mapping).
Raises
ValueError [if the provided vocabulary_path does not exist.]
Examples

>>> Assume 'test' contains
dog

.. cat

. bird
>>> vocab, rev_vocab = tl.nlp.initialize_vocabulary ("test")
>>> print (vocab)
>>> {b'cat': 1, b'dog': 0, b'bird': 2}
>>> print (rev_vocab)
>>> [b'dog', b'cat', b'bird']

Convert words to IDs and IDs to words

tensorlayer.nlp.sentence_to_token_ids (sentence, vocabulary, tokenizer=None,
normalize_digits=True, UNK_ID=3,

_DIGIT_RE=re.compile(b’\d’))
Convert a string to list of integers representing token-ids.

For example, a sentence “I have a dog” may become tokenized into [“I”, “have”, “a”, “dog”] and with vocabulary
{“T’: 1, “have™: 2, “a”: 4, “dog”: 77} this function will return [1, 2, 4, 7].

150 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

Parameters

sentence [tensorflow.python.platform.gfile.GFile Object] The sentence in bytes format to con-
vert to token-ids.

see basic_tokenizer(), data_to_token_ids()
vocabulary [a dictionary mapping tokens to integers.]
tokenizer [a function to use to tokenize each sentence;] If None, basic_tokenizer will be used.
normalize_digits [Boolean] If true, all digits are replaced by Os.
Returns
A list of integers, the token-ids for the sentence.

tensorlayer.nlp.data_to_token_ids (data_path, target_path, vocabulary_path, tok-
enizer=None, normalize_digits=True, UNK_ID=3,
_DIGIT_RE=re.compile(b’\d’))
Tokenize data file and turn into token-ids using given vocabulary file.

This function loads data line-by-line from data_path, calls the above sentence_to_token_ids, and saves the result
to target_path. See comment for sentence_to_token_ids on the details of token-ids format.

Parameters
data_path [path to the data file in one-sentence-per-line format.]
target_path [path where the file with token-ids will be created.]
vocabulary_path [path to the vocabulary file.]
tokenizer [a function to use to tokenize each sentence;] if None, basic_tokenizer will be used.

normalize_digits [Boolean; if true, all digits are replaced by 0s.]

References

¢ Code from /tensorflow/models/rnn/translation/data_utils.py

2.7 API - Reinforcement Learning

Reinforcement Learning.

discount_episode_ rewards([rewards, gamma, Take 1D float array of rewards and compute discounted
mode]) rewards for an episode.
cross_entropy_reward_loss(logits, actions, Calculate the loss for Policy Gradient Network.

)

2.7.1 Reward functions

tensorlayer.rein.discount_episode_rewards (rewards=[], gamma=0.99, mode=0)
Take 1D float array of rewards and compute discounted rewards for an episode. When encount a non-zero value,
consider as the end a of an episode.

Parameters

2.7. API - Reinforcement Learning 151

TensorLayer Documentation, Release 1.5.4

rewards [numpy list] a list of rewards
gamma [float] discounted factor

mode [int] if mode == 0, reset the discount process when encount a non-zero reward (Ping-pong
game). if mode == 1, would not reset the discount process.

Examples
>>> rewards = np.asarray([(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 117)
>>> gamma = 0.9
>>> discount_rewards = tl.rein.discount_episode_rewards (rewards, gamma)
>>> print (discount_rewards)
[0.72899997 0.81 0.89999998 1. 0.72899997 0.81
.. 0.89999998 1. 0.72899997 0.81 0.89999998 1.]
>>> discount_rewards = tl.rein.discount_episode_rewards (rewards, gamma, mode=1)

>>> print (discount_rewards)
[1.52110755 1.69011939 1.87791049 2.08656716 1.20729685 1.34144104
1.49048996 1.65610003 0.72899997 0.81 0.89999998 1.]

2.7.2 Cost functions

tensorlayer.rein.cross_entropy_ reward_loss (logits, actions, rewards, name=None)

Calculate the loss for Policy Gradient Network.
Parameters
logits [tensor] The network outputs without softmax. This function implements softmax inside.
actions [tensor/ placeholder] The agent actions.

rewards [tensor/ placeholder] The rewards.

Examples

>>> states_batch_pl = tf.placeholder(tf.float32, shape=[None, D]) # observation_,
—for training
>>> network = tl.layers.Inputlayer (states_batch_pl, name='input_ layer'")

>>> network = tl.layers.Denselayer (network, n_units=H, act = tf.nn.relu, name=
—'relul')

>>> network = tl.layers.Denselayer (network, n_units=3, act = tl.activation.
—identity, name='output_layer")

>>> probs = network.outputs

>>> sampling_prob = tf.nn.softmax (probs)

>>> actions_batch_pl = tf.placeholder(tf.int32, shape=[None])

>>> discount_rewards_batch_pl = tf.placeholder(tf.float32, shape=[None])

>>> loss = cross_entropy_reward_loss (probs, actions_batch_pl, discount_rewards_
—batch_pl)

>>> train_op = tf.train.RMSPropOptimizer (learning_rate, decay_rate) .minimize (loss)

152

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

2.8 API - Load, Save Model and Data

Load benchmark dataset, save and restore model, save and load variables. TensorFlow provides . ckpt file format to
save and restore the models, while we suggest to use standard python file format . npz to save models for the sake of
cross-platform.

save model as .ckpt

saver = tf.train.Saver ()

save_path = saver.save(sess, "model.ckpt")
restore model from .ckpt

saver = tf.train.Saver ()

saver.restore (sess, "model.ckpt")

save model as .npz
tl.files.save_npz (network.all_params , name='model.npz")

restore model from .npz
load_params = tl.files.load_npz (path='"', name='model.npz")
tl.files.assign_params (sess, load_params, network)

you can assign the pre-trained parameters as follow
lst parameter

tl.files.assign_params (sess, [load_params[0]], network)
the first three parameters
tl.files.assign_params (sess, load_params[:3], network)

load_mnist_dataset([shape, path]) Automatically download MNIST dataset and return the
training, validation and test set with 50000, 10000 and
10000 digit images respectively.

load_cifarl(0_dataset([shape, path,...]) The CIFAR-10 dataset consists of 60000 32x32 colour
images in 10 classes, with 6000 images per class.
load _ptb_dataset([path]) Penn TreeBank (PTB) dataset is used in many LAN-

GUAGE MODELING papers, including “Empirical
Evaluation and Combination of Advanced Language
Modeling Techniques”, “Recurrent Neural Network
Regularization”.

load_matt_mahoney_text8_dataset([path]) Download a text file from Matt Mahoney’s website if
not present, and make sure it’s the right size.

load_imdb_dataset([path, nb_words, ...]) Load IMDB dataset
load_nietzsche_dataset([path]) Load Nietzsche dataset.
load_wmt_en_fr_dataset([path]) It will download English-to-French translation data

from the WMT*15 Website (10"9-French-English cor-
pus), and the 2013 news test from the same site as de-
velopment set.

load flickr25k_dataset([tag, path,...]) Returns a list of images by a given tag from Flick25k
dataset, it will download Flickr25k from the official
website at the first time you use it.

load_flickrlM dataset([tag, size, path,...]) Returns a list of images by a given tag from FlickrIM
dataset, it will download Flickr1M from the official
website at the first time you use it.

save_npz([save_list, name, sess]) Input parameters and the file name, save parameters into
.npz file.

Continued on next page

2.8. API - Load, Save Model and Data 153

http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html

TensorLayer Documentation, Release 1.5.4

Table 54 — continued from previous page

save_ npz_dict([save_list, name, sess])

Input parameters and the file name, save parameters as
a dictionary into .npz file.

load_npz([path, name])

Load the parameters of a Model saved by
tl.files.save_npz().

load_npz_dict([path, name])

Load the parameters of a Model saved by
tl.files.save_npz_dict().

assign_params(sess, params, network)

Assign the given parameters to the TensorLayer net-
work.

load _and_assign_npz([sess, name, network])

Load model from npz and assign to a network.

save_any_to_npy([save_dict, name])

Save variables to .npy file.

load_npy_to_any([path, name])

Load .npy file.

file exists(filepath)

Check whether a file exists by given file path.

folder._exists(folderpath)

Check whether a folder exists by given folder path.

del_file(filepath)

Delete a file by given file path.

del_ folder(folderpath)

Delete a folder by given folder path.

read_f11e(filepath)

Read a file and return a string.

load_file_11ist([path, regx, printable])

Return a file list in a folder by given a path and regular
expression.

load_folder._1ist([path])

Return a folder list in a folder by given a folder path.

exists_or_mkdir(path[, verbose])

Check a folder by given name, if not exist, create the
folder and return False, if directory exists, return True.

maybe_download_and_extract(filename,

D

"[’

Checks if file exists in working_directory otherwise
tries to dowload the file, and optionally also tries to ex-
tract the file if format is “.zip” or “.tar”

natural_keys(text)

Sort list of string with number in human order.

npz_to_W_pdf([path, regx])

Convert the first weight matrix of .npz file to .pdf by
using tl.visualize.W().

2.8.1 Load dataset functions

MNIST

tensorlayer.files.load _mnist_dataset (shape=(-1, 784), path="data/mnist/’)
Automatically download MNIST dataset and return the training, validation and test set with 50000, 10000 and

10000 digit images respectively.

Parameters

shape [tuple] The shape of digit images, defaults is (-1,784)

path [string] The path that the data is downloaded to, defaults is data/mnist/.

Examples

>>> X_train, y_train,

>>> X_train, y_train,
—dataset (shape= (-1,

X_val, y_val,
—dataset (shape=(-1,784))
X_val, y_val,

28,

28,

1))

X_test, y_test = tl.files.load_mnist_

X_test, y_test = tl.files.load_mnist_

154

Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

CIFAR-10

tensorlayer.files.load_cifarl0_dataset (shape=(-1, 32, 32, 3), path="data/cifarl0/,

plotable=False, second=3)
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There

are 50000 training images and 10000 test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch
contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining
images in random order, but some training batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images from each class.

Parameters
shape [tupe] The shape of digit images: e.g. (-1, 3, 32, 32), (-1, 32, 32, 3) , (-1, 32%32%3)
plotable [True, False] Whether to plot some image examples.
second [int] If plotable is True, second is the display time.

path [string] The path that the data is downloaded to, defaults is data/cifar10/.

Notes

CIFAR-10 images can only be display without color change under uint8. >>> X _train =
np.asarray(X_train, dtype=np.uint§) >>> pltion() >>> fig = pltfigure(1232) >>> count = 1 >>>
for row in range(10): >>> for col in range(10): >>> a = fig.add_subplot(10, 10, count) >>>
plt.imshow(X_train[count-1], interpolation="nearest’) >>> plt.gca().xaxis.set_major_locator(plt.NullLocator())
(tick) >>> plt.gca().yaxis.set_major_locator(plt.NullLocator()) >>> count = count + 1 >>> plt.draw() >>>
plt.pause(3)

References

¢ CIFAR website
¢ Data download link

¢ Code references

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_cifarl0O_dataset (shape= (-1
32, 32, 3), plotable=True)

o

Penn TreeBank (PTB)

tensorlayer.files.load_ptb_dataset (path='data/ptb/’)
Penn TreeBank (PTB) dataset is used in many LANGUAGE MODELING papers, including “Empirical Eval-
uation and Combination of Advanced Language Modeling Techniques”, “Recurrent Neural Network Regular-
ization”. It consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its
vocabulary.

Parameters

path [: string] The path that the data is downloaded to, defaults is data/ptb/.

2.8. API - Load, Save Model and Data 155

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
https://teratail.com/questions/28932

TensorLayer Documentation, Release 1.5.4

Returns

train_data, valid_data, test_data, vocabulary size

Examples

>>> train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset ()

Matt Mahoney’s text8

tensorlayer.files.load_matt_mahoney_text8_dataset (path="data/mm_testS/’)
Download a text file from Matt Mahoney’s website if not present, and make sure it’s the right size. Extract the
first file enclosed in a zip file as a list of words. This dataset can be used for Word Embedding.

Parameters

path [: string] The path that the data is downloaded to, defaults is data/mm_test8/.
Returns

word_list [a list] a list of string (word).

e.g. [.... ‘their’, ‘families’, ‘who’, ‘were’, ‘expelled’, ‘from’, ‘jerusalem’, ...]

Examples

>>> words = tl.files.load _matt_mahoney_text8_dataset ()
>>> print ('Data size', len(words))

IMBD

tensorlayer.files.load_ imdb_dataset (path='data/imdb/’, nb_words=None, skip_top=0,
maxlen=None, test_split=0.2, seed=113, start_char=1,

oov_char=2, index_from=3)
Load IMDB dataset

Parameters

path [: string] The path that the data is downloaded to, defaults is data/imdb/.

References

¢ Modified from keras.

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_imbd_dataset (
c nb_words=20000, test_split=0.2)
>>> print ('X_train.shape', X_train.shape)
(20000,) [(1, 62, 74, ... 1033, 507, 271,I[1, 60, 33, ... 13, 1053, 71..1

(continues on next page)

156 Chapter 2. API Reference

https://github.com/fchollet/keras/blob/master/keras/datasets/imdb.py

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

>>> print ('y_train.shape', y_train.shape)
(20000,) [T 00 ..., 1 01]

Nietzsche

tensorlayer.files.load_nietzsche_dataset (path='data/nietzsche/’)
Load Nietzsche dataset. Returns a string.

Parameters

path [string] The path that the data is downloaded to, defaults is data/nietzsche/.

Examples

>>> see tutorial_generate_text.py

>>> words = tl.files.load_nietzsche_dataset ()
>>> words = basic_clean_str (words)

>>> words = words.split ()

English-to-French translation data from the WMT‘15 Website

tensorlayer.files.load _wmt_en_f£fr_dataset (path="data/wmt_en_fr/’)
It will download English-to-French translation data from the WMT*15 Website (1079-French-English corpus),
and the 2013 news test from the same site as development set. Returns the directories of training data and test
data.

Parameters

path [string] The path that the data is downloaded to, defaults is data/wmt_en_fr/.

Notes

Usually, it will take a long time to download this dataset.

References

* Code modified from /tensorflow/models/rnn/translation/data_utils.py

Flickr25k

tensorlayer.files.load_flickr25k_dataset (tag="sky’, path="data/flickr25k’, n_threads=>50,

printable=False)
Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from the official

website at the first time you use it.
Parameters

tag [string or None] If you want to get images with tag, use string like ‘dog’, ‘red’, see Flickr
Search. If you want to get all images, set to None.

path [string] The path that the data is downloaded to, defaults is data/flickr25k/.

2.8. API - Load, Save Model and Data 157

http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html
https://www.flickr.com/search/
https://www.flickr.com/search/

TensorLayer Documentation, Release 1.5.4

n_threads [int, number of thread to read image.]

printable [bool, print infomation when reading images, default is False.]

Examples

* Get images with tag of sky

>>> images = tl.files.load_flickr25k_dataset (tag='sky')

¢ Get all images

>>> images = tl.files.load_flickr25k_dataset (tag=None, n_threads=100,
—printable=True)

FlickriM

tensorlayer.files.load_flickrlM dataset (fag="sky’, size=10, path="data/flickrIM’,

n_threads=>50, printable=False)
Returns a list of images by a given tag from FlickrIM dataset, it will download Flickr1M from the official

website at the first time you use it.
Parameters

tag [string or None] If you want to get images with tag, use string like ‘dog’, ‘red’, see Flickr
Search. If you want to get all images, set to None.

size [int 1 to 10.] 1 means 100k images ... 5 means 500k images, 10 means all 1 million
images. Default is 10.

path [string] The path that the data is downloaded to, defaults is data/flickr25k/.
n_threads [int, number of thread to read image.]

printable [bool, print infomation when reading images, default is False.]

Examples

* Use 200k images

’>>> images = tl.files.load_flickrlM dataset (tag='zebra', size=2)

» Use 1 Million images

’>>> images = tl.files.load_flickrlM _dataset (tag='zebra')

2.8.2 Load and save network

Save network into list (npz)

tensorlayer.files.save_npz (save_list=[], name="model.npz’, sess=None)
Input parameters and the file name, save parameters into .npz file. Use tl.utils.load_npz() to restore.

158 Chapter 2. API Reference

http://press.liacs.nl/mirflickr/mirdownload.html
http://press.liacs.nl/mirflickr/mirdownload.html
https://www.flickr.com/search/
https://www.flickr.com/search/

TensorLayer Documentation, Release 1.5.4

Parameters
save_list [a list] Parameters want to be saved.
name |[a string or None] The name of the .npz file.

sess [None or Session]

Notes

If you got session issues, you can change the value.eval() to value.eval(session=sess)

References

 Saving dictionary using numpy

Examples

>>> tl.files.save_npz(network.all_params, name='model test.npz', sess=sess)
.. File saved to: model_test.npz

>>> load_params = tl.files.load_npz (name='model_ test.npz'")
Loading paramO, (784, 800)
Loading paraml, (800,)
Loading param2, (800, 800)
Loading param3, (800,)
Loading param4, (800, 10)
Loading param5, (10,)

>>> put parameters into a TensorLayer network, please see assign_params ()

Save network into dict (npz)

tensorlayer.files.save_npz_dict (save_list=[], name="model.npz’, sess=None)
Input parameters and the file name, save parameters as a dictionary into .npz file. Use tl.utils.load_npz_dict() to

restore.
Parameters
save_list [a list] Parameters want to be saved.
name [a string or None] The name of the .npz file.
sess [None or Session]
Notes

This function tries to avoid a potential broadcasting error raised by numpy.

Load network from save_npz

tensorlayer.files.load_npz (path=", name="model.npz’)
Load the parameters of a Model saved by tl.files.save_npz().

Parameters

2.8. API - Load, Save Model and Data 159

http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez

TensorLayer Documentation, Release 1.5.4

path [a string] Folder path to .npz file.
name [a string or None] The name of the .npz file.
Returns

params [list] A list of parameters in order.

References

» Saving dictionary using numpy

Examples

* See save_npz and assign_params

Load network from save _npz_dict
tensorlayer.files.load npz_dict (path=", name="model.npz’)
Load the parameters of a Model saved by tl.files.save_npz_dict().
Parameters
path [a string] Folder path to .npz file.
name |[a string or None] The name of the .npz file.
Returns

params [list] A list of parameters in order.

Assign parameters to network
tensorlayer.files.assign_params (sess, params, network)
Assign the given parameters to the TensorLayer network.
Parameters
sess [TensorFlow Session. Automatically run when sess is not None.]
params [a list] A list of parameters in order.
network [a Layer class] The network to be assigned
Returns

ops [list] A list of tf ops in order that assign params. Support sess.run(ops) manually.

References

¢ Assign value to a TensorFlow variable

160 Chapter 2. API Reference

http://stackoverflow.com/questions/22315595/saving-dictionary-of-header-information-using-numpy-savez
http://stackoverflow.com/questions/34220532/how-to-assign-value-to-a-tensorflow-variable

TensorLayer Documentation, Release 1.5.4

Examples

>>> Save your network as follow:
>>> tl.files.save_npz (network.all_params, name='model test.npz')
>>> network.print_params ()

Next time, load and assign your network as follow:
>>> tl.layers.initialize_global_variables (sess)
>>> load_params = tl.files.load_npz (name='model_ test.npz')
>>> tl.files.assign_params (sess, load_params, network)
>>> network.print_params ()

Load and assign parameters to network
tensorlayer.files.load_and_assign_npz (sess=None, name=None, network=None)
Load model from npz and assign to a network.
Parameters
sess [TensorFlow Session]
name [string] Model path.
network [a Layer class] The network to be assigned
Returns

Returns False if faild to model is not exist.

Examples

>>> tl.files.load_and_assign_npz (sess=sess, name='net.npz', network=net)

2.8.3 Load and save variables

Save variables as .npy

tensorlayer.files.save_any_to_npy (save_dict={}, name="file.npy’)
Save variables to .npy file.

Examples

>>> tl.files.save_any_to_npy(save_dict={'data': ['a','b']}, name='test.npy')
>>> data = tl.files.load_npy_to_any(name='test.npy"')
>>> print (data)

{'data': ['a','b"]}

Load variables from .npy

tensorlayer.files.load npy_ to_any (path=", name="file.npy’)
Load .npy file.

2.8. API - Load, Save Model and Data

TensorLayer Documentation, Release 1.5.4

Examples

* see save_any_to_npy()

2.8.4 Folder/File functions

Check file exists

tensorlayer.files.file_exists (filepath)
Check whether a file exists by given file path.

Check folder exists

tensorlayer.files.folder_exists (folderpath)
Check whether a folder exists by given folder path.

Delete file

tensorlayer.files.del_£ile (filepath)
Delete a file by given file path.

Delete folder

tensorlayer.files.del_folder (folderpath)
Delete a folder by given folder path.

Read file

tensorlayer.files.read_file (filepath)
Read a file and return a string.

Examples

>>> data = tl.files.read_file('data.txt")

Load file list from folder
tensorlayer.files.load_file_1list (path=None, regx="\\npz’, printable=True)
Return a file list in a folder by given a path and regular expression.
Parameters
path [a string or None] A folder path.
regx [a string] The regx of file name.

printable [boolean, whether to print the files infomation.]

162 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

Examples

>>> file_list = tl.files.load_file_list (path=None, regx='wlpre_[0-9]+\. (npz)")

Load folder list from folder
tensorlayer.files.load folder_list (path=")
Return a folder list in a folder by given a folder path.
Parameters

path [a string or None] A folder path.

Check and Create folder
tensorlayer.files.exists_or_mkdir (path, verbose=True)
Check a folder by given name, if not exist, create the folder and return False, if directory exists, return True.
Parameters
path [a string] A folder path.
verbose [boolean] If True, prints results, deaults is True
Returns

True if folder exist, otherwise, returns False and create the folder

Examples

>>> tl.files.exists_or_mkdir ("checkpoints/train™)

Download or extract

tensorlayer.files.maybe download and extract (filename, working directory, url_source,

extract=False, expected_bytes=None)
Checks if file exists in working_directory otherwise tries to dowload the file, and optionally also tries to extract

the file if format is “.zip” or “.tar”
Parameters
filename [string] The name of the (to be) dowloaded file.
working_directory [string] A folder path to search for the file in and dowload the file to
url [string] The URL to download the file from

extract [bool, defaults is False] If True, tries to uncompress the dowloaded file is
“ tar.gz/.tar.bz2” or “.zip” file

expected_bytes [int/None] If set tries to verify that the downloaded file is of the specified size,
otherwise raises an Exception, defaults is None which corresponds to no check being per-
formed

Returns

filepath to dowloaded (uncompressed) file

2.8. API - Load, Save Model and Data 163

TensorLayer Documentation, Release 1.5.4

Examples
>>> down_file = tl.files.maybe_download_and_extract (filename = 'train-images—idx3-
—ubyte.gz',
working_directory = 'data/"',
url_source = 'http://yann.
—lecun.com/exdb/mnist/")
>>> tl.files.maybe_download_and_extract (filename = 'ADEChallengeData20l16.zip',
working_directory = 'data/',
url_source = 'http://sceneparsing.csail.

—mit.edu/data/"',

extract=True)

2.8.5 Sort

List of string with number in human order

tensorlayer.files.natural_keys (fext)
Sort list of string with number in human order.

Examples

>>> 1 = ['iml.jpg', 'im31l.jpg', 'imll.jpg', 'im2l.jpg', 'im03.Jjpg', 'im05.Jpg']
>>> 1.sort (key=tl.files.natural_keys)

["iml.Jpg', '"im03.Jjpg', 'im05', 'imll.jpg', 'im2l.jpg', 'im31l.jpg']
>>> l.sort () # that 1s what we dont want

['im03.Jjpg', 'im05', 'iml.jpg', 'imll.jpg', 'im2l.jpg', 'im31l.Jpg']

2.8.6 Visualizing npz file
tensorlayer.files.npz_to_W_pdf (path=None, regx="wipre_[0-9]+\(npz)’)
Convert the first weight matrix of .npz file to .pdf by using tl.visualize.W().
Parameters
path [a string or None] A folder path to npz files.

regx [a string] Regx for the file name.

Examples

>>> Convert the first weight matrix of wl_pre...npz file to wl_pre...pdf.
>>> tl.files.npz_to_W_pdf (path="'/Users/.../npz_file/', regx='wlpre_[0-9]+\. (npz)")

2.9 API - Visualize Model and Data

TensorFlow provides TensorBoard to visualize the model, activations etc. Here we provide more functions for data
visualization.

164 Chapter 2. API Reference

https://www.tensorflow.org/versions/master/how_tos/summaries_and_tensorboard/index.html

TensorLayer Documentation, Release 1.5.4

read_image(imagel, path]) Read one image.

read_images(img_list[, path, n_threads, ...]) Returns all images in list by given path and name of
each image file.

save_image(image[, image_path]) Save one image.

save_images(images, size[, image_path]) Save mutiple images into one single image.

w([W, second, saveable, shape, name, fig_idx]) Visualize every columns of the weight matrix to a group
of Greyscale img.

CNN2d([CNN, second, saveable, name, fig_idx]) Display a group of RGB or Greyscale CNN masks.

frame([l, second, saveable, name, cmap, fig_idx]) Display a frame(image).

imagesZ2d([images, second, saveable, name, ...]) Display a group of RGB or Greyscale images.

t sne_embedding(embeddings, reverse_dictionary) Visualize the embeddings by using t-SNE.

2.9.1 Save and read images

Read one image
tensorlayer.visualize.read_image (image, path="")
Read one image.
Parameters
images [string, file name.]

path [string, path.]

Read multiple images
tensorlayer.visualize.read_images (img_list, path=", n_threads=10, printable=True)
Returns all images in list by given path and name of each image file.
Parameters
img _list [list of string, the image file names.]
path [string, image folder path.]
n_threads [int, number of thread to read image.]

printable [bool, print infomation when reading images, default is True.]

Save one image
tensorlayer.visualize.save_image (image, image_path="")
Save one image.
Parameters
images [numpy array [w, h, c]]

image_path [string.]

Save multiple images

tensorlayer.visualize.save_images (images, size, image_path="")
Save mutiple images into one single image.

2.9. API - Visualize Model and Data 165

TensorLayer Documentation, Release 1.5.4

Parameters
images [numpy array [batch, w, h, c]]

size [list of two int, row and column number.] number of images should be equal or less than
size[0] * size[1]

image_path [string.]

Examples

>>> images = np.random.rand (64, 100, 100, 3)
>>> tl.visualize.save_images (images, [8, 8], 'temp.png')

2.9.2 Visualize model parameters

Visualize weight matrix

tensorlayer.visualize.W(W=None, second=10, saveable=True, shape=[28, 28], name=’mnist’,

fig_idx=2396512)
Visualize every columns of the weight matrix to a group of Greyscale img.

Parameters
W [numpy.array] The weight matrix
second [int] The display second(s) for the image(s), if saveable is False.
saveable [boolean] Save or plot the figure.
shape [a list with 2 int] The shape of feature image, MNIST is [28, 80].
name [a string] A name to save the image, if saveable is True.

fig_idx [int] matplotlib figure index.

Examples

>>> tl.visualize.W(network.all params[0].eval(), second=10, saveable=True, name=
—'weight_of_1st_layer', fig_idx=2012)

Visualize CNN 2d filter

tensorlayer.visualize.CNN2d (CNN=None, second=10, saveable=True, name="cnn’,

fig_idx=3119362)
Display a group of RGB or Greyscale CNN masks.

Parameters
CNN [numpy.array] The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).
second [int] The display second(s) for the image(s), if saveable is False.
saveable [boolean] Save or plot the figure.

name [a string] A name to save the image, if saveable is True.

166 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

fig_idx [int] matplotlib figure index.

Examples

—name='cnnl _mnist', fig_idx=2012)

>>> tl.visualize.CNN2d (network.all_params([0].eval(), second=10, saveable=True,

2.9.3 Visualize images

Image by matplotlib

tensorlayer.visualize.frame (I=None, second=5, saveable=True, name="frame’, cmap=None,

fig_idx=12836)
Display a frame(image). Make sure OpenAl Gym render() is disable before using it.

Parameters
I [numpy.array] The image
second [int] The display second(s) for the image(s), if saveable is False.
saveable [boolean] Save or plot the figure.
name [a string] A name to save the image, if saveable is True.
cmap [None or string] ‘gray’ for greyscale, None for default, etc.

fig_idx [int] matplotlib figure index.

Examples
>>> env = gym.make ("Pong-v0")
>>> observation = env.reset ()

>>> tl.visualize.frame (observation)

Images by matplotlib

tensorlayer.visualize.images2d (images=None, second=10, saveable=True, name=’images’,

dtype=None, fig_idx=3119362)
Display a group of RGB or Greyscale images.

Parameters
images [numpy.array] The images.
second [int] The display second(s) for the image(s), if saveable is False.
saveable [boolean] Save or plot the figure.
name [a string] A name to save the image, if saveable is True.
dtype [None or numpy data type] The data type for displaying the images.

fig_idx [int] matplotlib figure index.

2.9. API - Visualize Model and Data

167

TensorLayer Documentation, Release 1.5.4

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_cifarl0_dataset (shape=(-1
32, 32, 3), plotable=False)

>>> tl.visualize.images2d(X_train[0:100,:,:,:], second=10, saveable=False, name=
—'cifarl0', dtype=np.uint8, fig_idx=20212)

r

2.9.4 Visualize embeddings

tensorlayer.visualize.tsne_embedding (embeddings, reverse_dictionary, plot_only=500, sec-

ond=35, saveable=False, name="tsne’, fig_idx=9862)
Visualize the embeddings by using t-SNE.

Parameters
embeddings [a matrix] The images.
reverse_dictionary [a dictionary] id_to_word, mapping id to unique word.
plot_only [int] The number of examples to plot, choice the most common words.
second [int] The display second(s) for the image(s), if saveable is False.
saveable [boolean] Save or plot the figure.
name [a string] A name to save the image, if saveable is True.

fig_idx [int] matplotlib figure index.

Examples

>>> see 'tutorial_ word2vec_basic.py'
>>> final_ embeddings = normalized_embeddings.eval ()
>>> tl.visualize.tsne_embedding (final_embeddings, labels, reverse_dictionary,

plot_only=500, second=5, saveable=False, name='tsne')

2.10 API - Operation System

Operation system, more functions can be found in TensorFlow APIL.

exit_tr([sess])

Close tensorboard and nvidia-process if available

clear_all([printable])

Clears all the placeholder variables of keep prob, in-
cluding keeping probabilities of all dropout, denoising,
dropconnect etc.

set_gpu_fraction([sess, gpu_fraction])

Set the GPU memory fraction for the application.

disable_print()

Disable console output, suppress_stdout is rec-
ommended.

enable_print()

Enable console output, suppress_stdout is recom-
mended.

suppress_stdout()

Temporarily disable console output.

get_site packages_directory()

Print and return the site-packages directory.

empty._trash()

Empty trash folder.

168

Chapter 2. API Reference

https://www.tensorflow.org/versions/master/api_docs/index.html

TensorLayer Documentation, Release 1.5.4

2.10.1 TensorFlow functions

Kill nvidia process

tensorlayer.ops.exit_tf£ (sess=None)
Close tensorboard and nvidia-process if available

Parameters

sess [a session instance of TensorFlow] TensorFlow session
Delete placeholder
tensorlayer.ops.clear_all (printable=True)

Clears all the placeholder variables of keep prob, including keeping probabilities of all dropout, denoising,
dropconnect etc.

Parameters

printable [boolean] If True, print all deleted variables.

2.10.2 GPU functions

tensorlayer.ops.set_gpu_£fraction (sess=None, gpu_fraction=0.3)
Set the GPU memory fraction for the application.

Parameters
sess [a session instance of TensorFlow] TensorFlow session

gpu_fraction [a float] Fraction of GPU memory, (0 ~ 1]

References

* TensorFlow using GPU

2.10.3 Console display

Disable print

tensorlayer.ops.disable_print ()
Disable console output, suppress_stdout is recommended.

Examples

>>> print ("You can see me")
>>> tl.ops.disable_print ()

>>> print (" You can't see me")
>>> tl.ops.enable_print ()

>>> print ("You can see me")

2.10. API - Operation System 169

https://www.tensorflow.org/versions/r0.9/how_tos/using_gpu/index.html

TensorLayer Documentation, Release 1.5.4

Enable print

tensorlayer.ops.enable_print ()
Enable console output, suppress_stdout is recommended.

Examples

* see tl.ops.disable_print()

Temporary disable print

tensorlayer.ops.suppress_stdout ()
Temporarily disable console output.

References

¢ stackoverflow

Examples

>>> print ("You can see me")
>>> with tl.ops.suppress_stdout () :
>>> print ("You can't see me")
>>> print ("You can see me")

2.10.4 Site packages information

tensorlayer.ops.get_site_packages_directory ()
Print and return the site-packages directory.

Examples

>>> loc = tl.ops.get_site_packages_directory()

2.10.5 Trash

tensorlayer.ops.empty_trash ()
Empty trash folder.

2.11 API - Activations

To make TensorLayer simple, we minimize the number of activation functions as much as we can. So we encourage
you to use TensorFlow’s function. TensorFlow provides tf.nn.relu, tf.nn.relu6, tf.nn.elu, tf.nn.
softplus, tf.nn.softsign and so on. More TensorFlow official activation functions can be found here. For

parametric activation, please read the layer APIs.

170

Chapter 2. API Reference

http://stackoverflow.com/questions/2125702/how-to-suppress-console-output-in-python
https://www.tensorflow.org/versions/master/api_docs/python/nn.html#activation-functions

TensorLayer Documentation, Release 1.5.4

The shortcut of tensorlayer.activationis tensorlayer.act.

2.11.1 Your activation

Customizes activation function in TensorLayer is very easy. The following example implements an activation that

multiplies its input by 2. For more complex activation, TensorFlow API will be required.

def double_activation (x) :
return x * 2

ident it y(x[, name]) The identity activation function, Shortcut is 1inear.
ramp([x, v_min, v_max, name]) The ramp activation function.

leaky_relu([Xx, alpha, name]) The LeakyReL.U, Shortcut is 1relu.
pixel_wise_softmax(output[, name]) Return the softmax outputs of images, every pixels have

multiple label, the sum of a pixel is 1.

2.11.2 Identity
tensorlayer.activation.identity (x, name=None)
The identity activation function, Shortcut is 1inear.
Parameters
x [a tensor input] input(s)
Returns

A ‘Tensor‘ with the same type as ‘x‘.

2.11.3 Ramp

tensorlayer.activation.ramp (x=None, v_min=0, v_max=1, name=None)
The ramp activation function.

Parameters
x [a tensor input] input(s)
v_min [float] if input(s) smaller than v_min, change inputs to v_min

v_max [float] if input(s) greater than v_max, change inputs to v_max

name [a string or None] An optional name to attach to this activation function.

Returns

A ‘Tensor‘ with the same type as ‘x‘.

2.11.4 Leaky Relu

tensorlayer.activation.leaky_relu (x=None, alpha=0.1, name=’"LeakyReLU’)
The LeakyReLU, Shortcut is 1relu.
Modified version of ReL.U, introducing a nonzero gradient for negative input.

Parameters

2.11. API - Activations

171

TensorLayer Documentation, Release 1.5.4

X [A Tensor with type float, double, int32, int64, uint8,] int16, or int8.
alpha [float. slope.]

name |[a string or None] An optional name to attach to this activation function.

References

» Rectifier Nonlinearities Improve Neural Network Acoustic Models, Maas et al. (2013)

Examples

>>> network = tl.layers.Denselayer (network, n_units=100, name = 'dense_ lrelu',
act= lambda x : tl.act.lrelu(x, 0.2))

2.11.5 Pixel-wise Softmax

tensorlayer.activation.pixel_wise_softmax (output, name="pixel_wise_softmax’)
Return the softmax outputs of images, every pixels have multiple label, the sum of a pixel is 1. Usually be used
for image segmentation.

Parameters
output [tensor]
* For 2d image, 4D tensor [batch_size, height, weight, channel], channel >= 2.

» For 3d image, 5D tensor [batch_size, depth, height, weight, channel], channel >= 2.

References

o tf.reverse

Examples

>>> outputs = pixel_wise_softmax (network.outputs)
>>> dice_loss = 1 - dice_coe (outputs, y_, epsilon=le-5)

2.11.6 Parametric activation

See tensorlayer.layers.

2.12 API - Database

This is the alpha version of database management system. If you have trouble, you can ask for help on
fangde.liu@imperial.ac.uk .

172 Chapter 2. API Reference

http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#reverse
mailto:fangde.liu@imperial.ac.uk

TensorLayer Documentation, Release 1.5.4

Note: We are writing up the documentation, please wait in patient.

2.12.1 Why TensorDB

TensorLayer is designed for production, aiming to be applied large scale machine learning application. TensorDB
introduce the database infracture to address the many challenges in large scale machine learning project, such as:

1. How to mangage the training data and load the training datasets

2. When the dataset is so large that beyonds the storage limitation of one computer

3. How shoud we managment different models and version, and comparing different models.

4. How to automate the whole training, evaluaiton and deploy machine learning model automatically.
In TensorLayer system, we introduce the database technology to the issues above.

TensorDB is designed by following three principles.

Everything is Data

TensorDB is a data warehouse that stores that capture the whole machine learning development process. the data
inside tensordb can be catagloried as:

1. Data and Labels: Which includes all the data for training, validation and prediction. The labels can be manually
labelled or generated by machine

2. Model Architecture: This group store the different model architecture, which user can select to use
3. Model Parameters: This tables stores all the model parameters of echo in the training step.

4. Jobs: All the computation is cutted into several jobs. Each jobs constains some computing work load. for
training , the jobs includes training data , the model parameter, the model architecture, how many epochs the
training want to do. Similarity are the validation jobs and inference jobs.

5. Logs: The logs store all the step time and accuracy and other metric of each training steps and also the time
stamps.

TensorDB in principal is a key-word based search engine. Each model, parameters, or training data are assigned many
tags. The data are stored in two layers. On the top, there is the index layer, which instore the blob storage reference
with all the tags assigned to the data, which is implemented based on NoSQL document database such as Mongodb.
The second layer is used store big chunk of data, such as videos, medical images or image mask, which is usually
implemented as file system. Our open source implementation is implemented based MongoDB. The blob data is in
store in the gridfs while the tag index is stored in the documents.

Everying is identified by Query

Within TensorDB framework, any entity within the data warehouse, such as the data, model or jobs are specified by the
database query language. The first advantage is the query is more efficient in space and can specify multiple objects
in a concise way. The advantage such a design is to enable a highly flexible software system. data, model architecture
and training are interchangeable. Many work can be implemented by simply rewire different components. This enable
us to develop many new application just by change the query without change any applicaition code.

2.12. API - Database 173

TensorLayer Documentation, Release 1.5.4

An pulling based Stream processing pipeline.

Also with a large dataset, we can assume that the data is unlimited. TensorDB provides a streaming interface, imple-
mented in python as generators, it keeps return the new data during training. Also the training system have no clue of
epochs, instead, it knows batchize and store parameters after how many steps.

Many techniques are introduced behind the streaming interface. The stream is implemented based on the database
cursor technology, so for every search, only the cursors are returned, not the actual data. Only when the generator is
evaluated, the acutal data is loaded. The data loading is further optimise:

1. Data are compressed and decompressed,

2. The dataloaded in bulk model to optimise the IO traffic

3. The argumentation or random sample are computed on the fly after the data are loaded into the local computer.
4. To optimise the space, the will also be a cache system that only store the recent blob data.

Based on streaming interface, TensorLayer can be implemented as a continuous machine learning. On the distributed
system, the model training, validation and deployment can be running on different computers which all running con-
tinuously. The trainer can keeps on optimising the models, the evaluation keeps evaluating the recent added models
and the deployment system keeps pulling the best models from the TensorDB warehouse.

2.12.2 Preparation

In principle, TensorDB is can be implemented on any documents NoSQL database system. The exisitng implementa-
tion is based on Mongodb. Further implementaiton on other database will be released depends on progress. It will be
stragihtford to port the tensorDB system to google cloud , aws and azure.

The following tutorials are based on the MongoDb implmenetation.

Install MongoDB

The installation instruction of Mongodb can be found at MongoDB Docs there are also managed mongodb service
from amazon or gcp, or mongo atlas from mongodb
User can also user docker, which is a powerful tool for deploy software .

After install mongodb, a mongod db management tool with graphic user interface will be extremely valuale.

Users can install the Studio3T(mongochef), which is free for none commerical user interface. studio3t

Start MongoDB service

After mongodb is installed, you shoud start the database.
mongod start

You can specificy the path the database files with —d flag

2.12.3 Quick Start

A fully working example with mnist training set is the _TensorLabDemo.ipnb_

174 Chapter 2. API Reference

https://docs.mongodb.com/manual/installation/
https://hub.docker.com/_/mongo/
https://studio3t.com/

TensorLayer Documentation, Release 1.5.4

Connect to database

To use TensorDB mongodb implmentaiton, you need pymongo client.

you can install it by

pip install pymongo
pip install 1z4

it is very strateford to connected to the TensorDB system. you can try the following code

from tensorlayer.db import TensorDB
db = TensorDB(ip='127.0.0.1", port=27017, db_name='your_ db', user_name=None,
—password=None, studyID='ministMLP")

The ip is the ip address of the database, and port number is number of mongodb. You may need to specificy the
database name and studyid. The study id is an unique identifier for an experiement.

TensorDB stores different study in one data warehouse. This has pros and cons, the benefits is that suppose the each
study we try a different model architecutre, it is very easy for us to evaluate different model architecture.

log and parameters

The basic application is use TensorDB to save the model parameters and training/evaluation/testing logs. to use
tensorDB, this can be easily done by replacing the print function by the db.log function

For save the trainning log, we have db.train_log

and

db. save_parameter

methods

Suppose we save the log each step and save the parameters each epoch, we can have the code like this

for epoch in range (0, epoch_count) :
[~,ac]=sess.run([train_op,loss], feed_dict ({x:x,y:y_}
db.train_log({'accuracy':ac})

db.save_parameter (sess.run (network.all_parameters), {'acc':ac})

the code for save validation log and test log are similar.

Model Architecture and Jobs

TensorDb also supporting the model architecture and jobs system in the current version, both the model architecture
and job are just simply strings. it is up to the user to specifiy how to convert the string back to models or job. for
example, in many our our cases, we just simpliy specify the python code.

code= """
print "hello

db.save_model_architecutre (code, { 'name': 'print'}

c,fid = db.find_model_architecutre ({'name':'print'})
exec c

(continues on next page)

2.12. API - Database 175

TensorLayer Documentation, Release 1.5.4

(continued from previous page)

db.push_job(code, {"type':"train'})

worker
code = db.pop_job ()
exec code

Database Interface
The trainning set is managed by a seperate database. each application has its own database. However, all the database
interface should support two interface, 1. find_data, 2. data_generator

and example for minist dataset is include in the TensorLabDemo code

Data Importing

With a database, the development workflow is very flexible. As long as the comtent in the database in the same, user
can use whatever tools to write into the database

the TesorLabDemo has an import data interface, which allow the user to injecting data in future

user can import data by the following code

db.import_data(X,y,{'type':"'train'})

2.12.4 Application Framework
In fact, in real application, we rarely code everything from scrach and using the tensorDB interface directly. as
demostrate in the TensorLabDemo

we implemented 4 class each with a well defined interace. 1. The dataset. 2. The TensorDb 3. The Model, model is
loggically a full compoment can be trained, evaluate and deployed. It has property like parameters 4. The DBLogger,
which is connecttor from model to tensorDB, which is implemented as callback functions, automatically called at each
batch_step and each epoch.

users can based on the TensorLabDemo code, overrite the interface to suits their own applicaions needs.

when training, the overall archtiecture is first, find a data generator from the dataset module

’g:datase.data_generator({"type":[your typel})

then intialize a model with a name

’m:model(’mytes')

during training, connected the db logger and tensordb togehter

’m.fit_generator(g,dblogger(tensordb,m),1000,100)

if the work is distributed, we have to save the model archtiecture and reload and excute it

db.save_model_architecture (code, { 'name':'mlp'})
db.push_job ({'name': 'mlp'}, {'type' :XXXX}, {'batch:1000", "epoch':100)

the worker will run the job as the following code

176 Chapter 2. API Reference

TensorLayer Documentation, Release 1.5.4

j=job.pop

g=dataset.data_generator (j.filter)
c=tensordb.load_model_architecutre(j.march)

exec cC

m=model ()
m.fit_generator (g,dblooger (tensordb,m), j.bach_size, j.epoch}

Experimental Database Management System.
Latest Version

class tensorlayer.db.TensorDB (ip=’localhost’, port=27017, db_name="db_name’,

user_name=None, password="password’, studyID=None)
TensorDB is a MongoDB based manager that help you to manage data, network topology, parameters and

logging.
Parameters
ip [string, localhost or IP address.]
port [int, port number.]
db_name [string, database name.]
user_name [string, set to None if it donnot need authentication.]
password [string.]
Methods
save_params([params, args]) Save parameters into MongoDB Buckets, and save

the file ID into Params Collections.

del_job

del_params

del_test_log
del_train_log
del_valid_log
find_all_params
find_one_job
find_one_params
load_model_architecture
peek_job

push_job

run_job

save_job
save_model_architecture
test_log

train_log

valid_log

save_params (params=[], args={})
Save parameters into MongoDB Buckets, and save the file ID into Params Collections.

Parameters

2.12. API - Database 177

TensorLayer Documentation, Release 1.5.4

params [a list of parameters]
args [dictionary, item meta data.]
Returns

f id [the Buckets ID of the parameters.]

178

Chapter 2. API Reference

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

179

TensorLayer Documentation, Release 1.5.4

180 Chapter 3. Indices and tables

Python Module Index

t

tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
tensorlayer.
.visualize, 164

tensorlayer

activation, 171
cost, 107
db, 177
files, 153
iterate, 131
layers, 49
nlp, 140

ops, 168
prepro, 114
rein, 151
utils, 135

181

TensorLayer Documentation, Release 1.5.4

182 Python Module Index

Index

A

advanced_indexing_op() (in module tensorlayer.layers),
86
apply_transform() (in module tensorlayer.prepro), 125
array_to_img() (in module tensorlayer.prepro), 126
assign_params() (in module tensorlayer.files), 160
AtrousConv1dLayer() (in module tensorlayer.layers), 69
AtrousConv2dLayer (class in tensorlayer.layers), 70
AttentionSeq2Seq (class in tensorlayer.layers), 94

B

basic_tokenizer() (in module tensorlayer.nlp), 149
batch_transformer() (in module tensorlayer.layers), 78
BatchNormLayer (class in tensorlayer.layers), 80
BiDynamicRNNLayer (class in tensorlayer.layers), 90
binary_cross_entropy() (in module tensorlayer.cost), 108
binary_dilation() (in module tensorlayer.prepro), 127
BiRNNLayer (class in tensorlayer.layers), 85
brightness() (in module tensorlayer.prepro), 122
brightness_multi() (in module tensorlayer.prepro), 122
build_reverse_dictionary() (in module tensorlayer.nlp),
146
build_vocab() (in module tensorlayer.nlp), 146
build_words_dataset() (in module tensorlayer.nlp), 146

C

channel_shift() (in module tensorlayer.prepro), 124

channel_shift_multi() (in module tensorlayer.prepro), 124

class_balancing_oversample() (in module tensor-
layer.utils), 138

clear_all() (in module tensorlayer.ops), 169

clear_layers_name() (in module tensorlayer.layers), 105

CNN2d() (in module tensorlayer.visualize), 166

ConcatLayer (class in tensorlayer.layers), 97

Conv1d() (in module tensorlayer.layers), 72

ConvldLayer (class in tensorlayer.layers), 63

Conv2d() (in module tensorlayer.layers), 73

Conv2dLayer (class in tensorlayer.layers), 64

Conv3dLayer (class in tensorlayer.layers), 67

cosine_similarity() (in module tensorlayer.cost), 112
create_vocab() (in module tensorlayer.nlp), 143
create_vocabulary() (in module tensorlayer.nlp), 149
crop() (in module tensorlayer.prepro), 117
crop_central_whiten_images() (in module
layer.prepro), 130
crop_multi() (in module tensorlayer.prepro), 117
cross_entropy() (in module tensorlayer.cost), 108
cross_entropy_reward_loss() (in module
layer.rein), 152
cross_entropy_seq() (in module tensorlayer.cost), 111
cross_entropy_seq_with_mask() (in module tensor-
layer.cost), 111

tensor-

tensor-

D

data_to_token_ids() (in module tensorlayer.nlp), 151
DeConv2d() (in module tensorlayer.layers), 73
DeConv2dLayer (class in tensorlayer.layers), 65
DeConv3dLayer (class in tensorlayer.layers), 67
del_file() (in module tensorlayer.files), 162
del_folder() (in module tensorlayer.files), 162
DenseLayer (class in tensorlayer.layers), 58
dice_coe() (in module tensorlayer.cost), 109
dice_hard_coe() (in module tensorlayer.cost), 110
dict_to_one() (in module tensorlayer.utils), 139
dilation() (in module tensorlayer.prepro), 127
disable_print() (in module tensorlayer.ops), 169
discount_episode_rewards() (in module tensorlayer.rein),
151
distorted_images() (in module tensorlayer.prepro), 130
DownSampling2dLayer (class in tensorlayer.layers), 69
drop() (in module tensorlayer.prepro), 124
DropconnectDenseLayer (class in tensorlayer.layers), 62
DropoutLayer (class in tensorlayer.layers), 60
DynamicRNNLayer (class in tensorlayer.layers), 88

E

elastic_transform() (in module tensorlayer.prepro), 121
elastic_transform_multi() (in module tensorlayer.prepro),
121

183

TensorLayer Documentation, Release 1.5.4

ElementwiseLayer (class in tensorlayer.layers), 98
EmbeddingAttentionSeq2seqWrapper (class in tensor-
layer.layers), 102
EmbeddingInputlayer (class in tensorlayer.layers), 56
empty_trash() (in module tensorlayer.ops), 170
enable_print() (in module tensorlayer.ops), 170
EstimatorLayer (class in tensorlayer.layers), 99
evaluation() (in module tensorlayer.utils), 138
exists_or_mkdir() (in module tensorlayer.files), 163
exit_tf() (in module tensorlayer.ops), 169
ExpandDimsLayer (class in tensorlayer.layers), 98

F

featurewise_norm() (in module tensorlayer.prepro), 124
file_exists() (in module tensorlayer.files), 162
find_contours() (in module tensorlayer.prepro), 127
fit() (in module tensorlayer.utils), 136

flatten_list() (in module tensorlayer.utils), 139
flatten_reshape() (in module tensorlayer.layers), 104
FlattenLayer (class in tensorlayer.layers), 95
flip_axis() (in module tensorlayer.prepro), 118
flip_axis_multi() (in module tensorlayer.prepro), 118
folder_exists() (in module tensorlayer.files), 162
frame() (in module tensorlayer.visualize), 167

G

GaussianNoiseLayer (class in tensorlayer.layers), 61
generate_skip_gram_batch() (in module tensorlayer.nlp),
140

L

LambdaLayer (class in tensorlayer.layers), 96

Layer (class in tensorlayer.layers), 53

leaky_relu() (in module tensorlayer.activation), 171

li_regularizer() (in module tensorlayer.cost), 112

list_remove_repeat() (in module tensorlayer.layers), 105

lo_regularizer() (in module tensorlayer.cost), 113

load_and_assign_npz() (in module tensorlayer.files), 161

load_cifar10_dataset() (in module tensorlayer.files), 155

load_file_list() (in module tensorlayer.files), 162

load_flickr1M_dataset() (in module tensorlayer.files), 158

load_flickr25k_dataset() (in module tensorlayer.files),
157

load_folder_list() (in module tensorlayer.files), 163

load_imdb_dataset() (in module tensorlayer.files), 156

load_matt_mahoney_text8_dataset() (in module tensor-
layer.files), 156

load_mnist_dataset() (in module tensorlayer.files), 154

load_nietzsche_dataset() (in module tensorlayer.files),
157

load_npy_to_any() (in module tensorlayer.files), 161

load_npz() (in module tensorlayer.files), 159

load_npz_dict() (in module tensorlayer.files), 160

load_ptb_dataset() (in module tensorlayer.files), 155

load_wmt_en_fr_dataset() (in module tensorlayer.files),
157

LocalResponseNormLayer (class in tensorlayer.layers),
81

get_batch() (tensorlayer.layers.EmbeddingAttentionSeq2seqM|rapper

method), 103

get_layers_with_name() (in module tensorlayer.layers),
52

get_random_int() (in module tensorlayer.utils), 139

get_site_packages_directory() (in module tensor-
layer.ops), 170
get_variables_with_name() (in module tensor-

layer.layers), 52

identity() (in module tensorlayer.activation), 171

images2d() (in module tensorlayer.visualize), 167

imresize() (in module tensorlayer.prepro), 123

initialize_global_variables() (in module
layer.layers), 53

initialize_rnn_state() (in module tensorlayer.layers), 105

initialize_vocabulary() (in module tensorlayer.nlp), 150

InputLayer (class in tensorlayer.layers), 54

iou_coe() (in module tensorlayer.cost), 110

K

KerasLayer (class in tensorlayer.layers), 100

tensor-

maxnorm_i_regularizer() (in module tensorlayer.cost),
113
maxnorm_o_regularizer() (in module tensorlayer.cost),
113
maxnorm_regularizer() (in module tensorlayer.cost), 112
MaxPool1d() (in module tensorlayer.layers), 74
MaxPool2d() (in module tensorlayer.layers), 75
MaxPool3d() (in module tensorlayer.layers), 75
maybe_download_and_extract() (in module
layer.files), 163
mean_squared_error() (in module tensorlayer.cost), 109
MeanPool1d() (in module tensorlayer.layers), 74
MeanPool2d() (in module tensorlayer.layers), 75
MeanPool3d() (in module tensorlayer.layers), 76
minibatches() (in module tensorlayer.iterate), 131
MultiplexerLayer (class in tensorlayer.layers), 101

N

natural_keys() (in module tensorlayer.files), 164

normalized_mean_square_error() (in module tensor-
layer.cost), 109

npz_to_W_pdf() (in module tensorlayer.files), 164

tensor-

184

Index

TensorLayer Documentation, Release 1.5.4

O

OneHotInputLayer (class in tensorlayer.layers), 54

P

pad_sequences() (in module tensorlayer.prepro), 128

PadLayer (class in tensorlayer.layers), 79

PeekySeq2Seq (class in tensorlayer.layers), 94

pixel_wise_softmax() (in module tensorlayer.activation),
172

PoolLayer (class in tensorlayer.layers), 79

predict() (in module tensorlayer.utils), 137

PReluLayer (class in tensorlayer.layers), 101

print_all_variables() (in module tensorlayer.layers), 53

process_sentence() (in module tensorlayer.nlp), 143

process_sequences() (in module tensorlayer.prepro), 128

projective_transform_by_points() (in module tensor-
layer.prepro), 125

pt2map() (in module tensorlayer.prepro), 127

ptb_iterator() (in module tensorlayer.iterate), 134

R

ramp() (in module tensorlayer.activation), 171
read_analogies_file() (in module tensorlayer.nlp), 145
read_file() (in module tensorlayer.files), 162
read_image() (in module tensorlayer.visualize), 165
read_images() (in module tensorlayer.visualize), 165
read_words() (in module tensorlayer.nlp), 144
ReconLayer (class in tensorlayer.layers), 59
ReshapeLayer (class in tensorlayer.layers), 95
retrieve_seq_length_op() (in module tensorlayer.layers),
87
retrieve_seq_length_op2() (in module tensorlayer.layers),
88
RNNLayer (class in tensorlayer.layers), 82
rotation() (in module tensorlayer.prepro), 116
rotation_multi() (in module tensorlayer.prepro), 117

S

sample() (in module tensorlayer.nlp), 141

sample_top() (in module tensorlayer.nlp), 142
samplewise_norm() (in module tensorlayer.prepro), 123
save_any_to_npy() (in module tensorlayer.files), 161
save_image() (in module tensorlayer.visualize), 165
save_images() (in module tensorlayer.visualize), 165
save_npz() (in module tensorlayer.files), 158
save_npz_dict() (in module tensorlayer.files), 159
save_params() (tensorlayer.db.TensorDB method), 177
save_vocab() (in module tensorlayer.nlp), 147
sentence_to_token_ids() (in module tensorlayer.nlp), 150
SeparableConv2dLayer (class in tensorlayer.layers), 71
Seq2Seq (class in tensorlayer.layers), 92
seq_minibatches() (in module tensorlayer.iterate), 132
seq_minibatches2() (in module tensorlayer.iterate), 133

sequences_add_start_id() (in module tensorlayer.prepro),
129

sequences_get_mask() (in module tensorlayer.prepro),
129

set_gpu_fraction() (in module tensorlayer.ops), 169

set_name_reuse() (in module tensorlayer.layers), 52

shear() (in module tensorlayer.prepro), 119

shear_multi() (in module tensorlayer.prepro), 119

shift() (in module tensorlayer.prepro), 118

shift_multi() (in module tensorlayer.prepro), 119

sigmoid_cross_entropy() (in module tensorlayer.cost),
108

simple_read_words() (in module tensorlayer.nlp), 144

SimpleVocabulary (class in tensorlayer.nlp), 142

SlimNetsLayer (class in tensorlayer.layers), 99

Spatial Transformer2dAffineLayer (class in
layer.layers), 77

step() (tensorlayer.layers. EmbeddingAttentionSeq2seqWrapper
method), 104

SubpixelConv2d() (in module tensorlayer.layers), 76

suppress_stdout() (in module tensorlayer.ops), 170

swirl() (in module tensorlayer.prepro), 119

swirl_multi() (in module tensorlayer.prepro), 120

T

TensorDB (class in tensorlayer.db), 177

tensorlayer.activation (module), 171

tensorlayer.cost (module), 107

tensorlayer.db (module), 177

tensorlayer.files (module), 153

tensorlayer.iterate (module), 131

tensorlayer.layers (module), 49

tensorlayer.nlp (module), 140

tensorlayer.ops (module), 168

tensorlayer.prepro (module), 114

tensorlayer.rein (module), 151

tensorlayer.utils (module), 135

tensorlayer.visualize (module), 164

test() (in module tensorlayer.utils), 137

threading_data() (in module tensorlayer.prepro), 115

TileLayer (class in tensorlayer.layers), 99

TimeDistributedLayer (class in tensorlayer.layers), 81

transform_matrix_offset_center() (in module tensor-
layer.prepro), 125

transformer() (in module tensorlayer.layers), 78

tsne_embedding() (in module tensorlayer.visualize), 168

U

UpSampling2dLayer (class in tensorlayer.layers), 68

V

Vocabulary (class in tensorlayer.nlp), 142

tensor-

Index

185

TensorLayer Documentation, Release 1.5.4

W

W() (in module tensorlayer.visualize), 166

Word2vecEmbeddingInputlayer (class in tensor-
layer.layers), 55

word_ids_to_words() (in module tensorlayer.nlp), 148

words_to_word_ids() (in module tensorlayer.nlp), 148

Z

zoom() (in module tensorlayer.prepro), 121
zoom_multi() (in module tensorlayer.prepro), 122

186

Index

	User Guide
	Installation
	Tutorial
	Example
	Development
	More

	API Reference
	API - Layers
	API - Cost
	API - Preprocessing
	API - Iteration
	API - Utility
	API - Natural Language Processing
	API - Reinforcement Learning
	API - Load, Save Model and Data
	API - Visualize Model and Data
	API - Operation System
	API - Activations
	API - Database

	Indices and tables
	Python Module Index

