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T N
TensorLayer
TensorLayer is a Deep Learning (DL) and Reinforcement Learning (RL) library extended from Google

TensorFlow. It provides popular DL and RL modules that can be easily customized and assembled for tackling real-
world machine learning problems.

Note: If you got problem to read the docs online, you could download the repository on GitHub, then go to /docs/
_build/html/index.html to read the docs offline. The _build folder can be generated in docs using make
html.
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https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer/
https://www.tensorflow.org
https://www.tensorflow.org
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CHAPTER 1

User Guide

The TensorLayer user guide explains how to install TensorFlow, CUDA and cuDNN, how to build and train neural
networks using TensorLayer, and how to contribute to the library as a developer.

1.1 Installation

TensorLayer has some prerequisites that need to be installed first, including TensorFlow , numpy and matplotlib. For
GPU support CUDA and cuDNN are required.

If you run into any trouble, please check the TensorFlow installation instructions which cover installing the TensorFlow
for a range of operating systems including Mac OX, Linux and Windows, or ask for help on tensorlayer @ gmail.com
or FQA.

1.1.1 Step 1 : Install dependencies

TensorLayer is build on the top of Python-version TensorFlow, so please install Python first.

Note: We highly recommend python3 instead of python2 for the sake of future.

Python includes pip command for installing additional modules is recommended. Besides, a virtual environment via
virtualenv can help you to manage python packages.

Take Python3 on Ubuntu for example, to install Python includes pip, run the following commands:

sudo apt—-get install python3
sudo apt-get install python3-pip
sudo pip3 install virtualenv

To build a virtual environment and install dependencies into it, run the following commands: (You can also skip to
Step 3, automatically install the prerequisites by TensorLayer)



https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://www.tensorflow.org/versions/master/get_started/os_setup.html
mailto:tensorlayer@gmail.com
http://tensorlayer.readthedocs.io/en/latest/user/more.html
http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
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virtualenv env

env/bin/pip install matplotlib
env/bin/pip install numpy
env/bin/pip install scipy
env/bin/pip install scikit-image

To check the installed packages, run the following command:

’env/bin/pip list

After that, you can run python script by using the virtual python as follow.

’env/bin/python *.pYy

1.1.2 Step 2 : TensorFlow

The installation instructions of TensorFlow are written to be very detailed on TensorFlow website. However, there are
something need to be considered. For example, TensorFlow officially supports GPU acceleration for Linux, Mac OX
and Windows at present.

Warning: For ARM processor architecture, you need to install TensorFlow from source.

1.1.3 Step 3 : TensorLayer

The simplest way to install TensorLayer is as follow, it will also install the numpy and matplotlib automatically.

[stable version] pip install tensorlayer
[master version] pip install git+https://github.com/zsdonghao/tensorlayer.git

However, if you want to modify or extend TensorLayer, you can download the repository from Github and install it as
follow.

cd to the root of the git tree
pip install -e .

This command will run the setup . py to install TensorLayer. The —e reflects editable, then you can edit the source
code in tensorlayer folder, and import the edited TensorLayer.

1.1.4 Step 4 : GPU support

Thanks to NVIDIA supports, training a fully connected network on a GPU, which may be 10 to 20 times faster than
training them on a CPU. For convolutional network, may have 50 times faster. This requires an NVIDIA GPU with
CUDA and cuDNN support.

CUDA

The TensorFlow website also teach how to install the CUDA and cuDNN, please see TensorFlow GPU Support.
Download and install the latest CUDA is available from NVIDIA website:
¢ CUDA download and install
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https://www.tensorflow.org/versions/master/get_started/os_setup.html
https://github.com/zsdonghao/tensorlayer
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If CUDA is set up correctly, the following command should print some GPU information on the terminal:

python —-c "import tensorflow"

cuDNN

Apart from CUDA, NVIDIA also provides a library for common neural network operations that especially speeds up
Convolutional Neural Networks (CNNs). Again, it can be obtained from NVIDIA after registering as a developer (it
take a while):

Download and install the latest cuDNN is available from NVIDIA website:
¢ cuDNN download and install

To install it, copy the = .h files to /usr/local/cuda/include and the 1ib« files to /usr/local/cuda/
1ib64.

1.1.5 Issue

If you get the following output when import tensorlayer, please read FQA.

_tkinter.TclError: no display name and no S$DISPLAY environment variable

1.2 Tutorial

For deep learning, this tutorial will walk you through building handwritten digits classifiers using the MNIST dataset,
arguably the “Hello World” of neural networks. For reinforcement learning, we will let computer learns to play Pong
game from the original screen inputs. For nature language processing, we start from word embedding, and then
describe language modeling and machine translation.

This tutorial includes all modularized implementation of Google TensorFlow Deep Learning tutorial, so you could
read TensorFlow Deep Learning tutorial as the same time [en] [cn] .

Note: For experts: Read the source code of InputLayer and DenseLayer, you will understand how TensorLayer
work. After that, we recommend you to read the codes on Github directly.

1.2.1 Before we start

The tutorial assumes that you are somewhat familiar with neural networks and TensorFlow (the library which Tensor-
Layer is built on top of). You can try to learn the basic of neural network from the Deeplearning Tutorial.

For a more slow-paced introduction to artificial neural networks, we recommend Convolutional Neural Networks for
Visual Recognition by Andrej Karpathy et al., Neural Networks and Deep Learning by Michael Nielsen.

To learn more about TensorFlow, have a look at the TensorFlow tutorial. You will not need all of it, but a basic
understanding of how TensorFlow works is required to be able to use TensorLayer. If you’re new to TensorFlow,
going through that tutorial.
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http://tensorlayer.readthedocs.io/en/latest/user/more.html
https://www.tensorflow.org/versions/master/tutorials/index.html
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http://cs231n.github.io/
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http://neuralnetworksanddeeplearning.com/
https://www.tensorflow.org/versions/master/tutorials/index.html
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1.2.2 TensorLayer is simple

The following code shows a simple example of TensorLayer, see tutorial_mnist_simple.py . We provide
a lot of simple functions like £it () , test () ), however, if you want to understand the details and be a ma-
chine learning expert, we suggest you to train the network by using TensorFlow’s methods like sess.run (), see
tutorial_mnist.py for more details.

import tensorflow as tf
import tensorlayer as tl

sess = tf.InteractiveSession ()

# prepare data
X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1,784))

# define placeholder
x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None, ], name='y_ ')

# define the network
network = tl.layers.Inputlayer (x, name='input_ layer')
network = tl.layers.Dropoutlayer (network, keep=0.8, name='dropl")
network = tl.layers.Denselayer (network, n_units=800,
act = tf.nn.relu, name='relul')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop2')
network = tl.layers.Denselayer (network, n_units=800,
act = tf.nn.relu, name='relu2')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop3')
# the softmax is implemented internally in tl.cost.cross_entropy(y, y_) to
# speed up computation, so we use identity here.
# see tf.nn.sparse_softmax_cross_entropy_with_ logits()
network = tl.layers.Denselayer (network, n_units=10,
act = tf.identity,
name="'output_layer")
# define cost function and metric.
y = network.outputs
cost = tl.cost.cross_entropy(y, v_)
correct_prediction = tf.equal(tf.argmax(y, 1), y_)
acc = tf.reduce_mean (tf.cast (correct_prediction, tf.float32))
y_op = tf.argmax(tf.nn.softmax(y), 1)

# define the optimizer

train_params = network.all_params

train_op = tf.train.AdamOptimizer (learning_rate=0.0001, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_

—~list=train_params)

# initialize all variables in the session
tl.layers.initialize_global_variables (sess)

# print network information
network.print_params ()
network.print_layers()

# train the network
tl.utils.fit (sess, network, train_op, cost, X_train, y_train, x, y_,
acc=acc, batch_size=500, n_epoch=500, print_freqg=5,

(continues on next page)
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(continued from previous page)

X_val=X_val, y_val=y_val, eval_train=False)

# evaluation

tl.utils.test (sess, network, acc, X_test, y_test, x, y_, batch_size=None, cost=cost)
# save the network to .npz file

tl.files.save_npz (network.all params , name='model.npz')

sess.close ()

1.2.3 Run the MNIST example

In the first part of the tutorial, we will just run the MNIST example that’s included in the source distribution of
TensorLayer. MNIST dataset contains 60000 handwritten digits that is commonly used for training various image
processing systems, each of digit has 28x28 pixels.

We assume that you have already run through the Installation. If you haven’t done so already, get a copy of
the source tree of TensorLayer, and navigate to the folder in a terminal window. Enter the folder and run the
tutorial_mnist.py example script:

python tutorial_mnist.py

If everything is set up correctly, you will get an output like the following:

tensorlayer: GPU MEM Fraction 0.300000
Downloading train-images-idx3-ubyte.gz
Downloading train-labels-idxl-ubyte.gz
Downloading tlO0k-images-idx3-ubyte.gz
Downloading tl0k-labels-idxl-ubyte.gz

X_train.shape (50000, 784)
y_train.shape (50000,)
X_val.shape (10000, 784)
y_val.shape (10000,)
X_test.shape (10000, 784)
y_test.shape (10000,)

X float32 y int64

tensorlayer:Instantiate InputLayer input_layer (2, 784)
tensorlayer:Instantiate DropoutLayer dropl: keep: 0.800000
tensorlayer:Instantiate Denselayer relul: 800, relu

(continues on next page)
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tensorlayer:Instantiate DropoutLayer drop2: keep: 0.500000
tensorlayer:Instantiate Denselayer reluz: 800, relu
tensorlayer:Instantiate DropoutlLayer drop3: keep: 0.500000
tensorlayer:Instantiate Denselayer output_layer: 10, identity

param O: (784, 800) (mean: -0.000053, median: -0.000043 std: 0.035558)
param 1: (800,) (mean 0.000000, median: 0.000000 std: 0.000000)
param 2: (800, 800) (mean: 0.000008, median: 0.000041 std: 0.035371)
param 3: (800,) (mean 0.000000, median: 0.000000 std: 0.000000)
param 4: (800, 10) (mean 0.000469, median: 0.000432 std: 0.049895)
param 5: (10,) (mean: 0.000000, median: 0.000000 std: 0.000000)

num of params: 1276810

layer 0: Tensor ("dropout/mul_1:0", shape=(?, 784), dtype=float32)
layer 1: Tensor ("Relu:0", shape=(?, 800), dtype=float32)

layer 2: Tensor ("dropout_1/mul_1:0", shape=(?, 800), dtype=float32)
layer 3: Tensor ("Relu_1:0", shape=(?, 800), dtype=float32)

layer 4: Tensor ("dropout_2/mul_1:0", shape=(?, 800), dtype=float32)
layer 5: Tensor("add_2:0", shape=(?, 10), dtype=float32)

learning_rate: 0.000100
batch_size: 128

Epoch 1 of 500 took 0.342539s
train loss: 0.330111
val loss: 0.298098
val acc: 0.910700

Epoch 10 of 500 took 0.356471s
train loss: 0.085225
val loss: 0.097082
val acc: 0.971700

Epoch 20 of 500 took 0.352137s
train loss: 0.040741
val loss: 0.070149
val acc: 0.978600

Epoch 30 of 500 took 0.350814s
train loss: 0.022995
val loss: 0.060471
val acc: 0.982800

Epoch 40 of 500 took 0.350996s
train loss: 0.013713
val loss: 0.055777
val acc: 0.983700

The example script allows you to try different models, including Multi-Layer Perceptron, Dropout, Dropconnect,
Stacked Denoising Autoencoder and Convolutional Neural Network. Select different models from if ___name_

== '__main__ "':.

main_test_layers (model="relu')
main_test_denoise_AE (model='relu')
main_test_stacked_denoise_ AE (model='relu')
main_test_cnn_layer()
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1.2.4 Understand the MNIST example

Let’s now investigate what’s needed to make that happen! To follow along, open up the source code.

Preface

The first thing you might notice is that besides TensorLayer, we also import numpy and tensorflow:

import tensorflow as tf

import tensorlayer as tl

from tensorlayer.layers import set_keep
import numpy as np

import time

As we know, TensorLayer is built on top of TensorFlow, it is meant as a supplement helping with some tasks, not as a
replacement. You will always mix TensorLayer with some vanilla TensorFlow code. The set_keep is used to access
the placeholder of keeping probabilities when using Denoising Autoencoder.

Loading data

The first piece of code defines a function load_mnist_dataset (). Its purpose is to download the MNIST dataset
(if it hasn’t been downloaded yet) and return it in the form of regular numpy arrays. There is no TensorLayer involved
at all, so for the purpose of this tutorial, we can regard it as:

X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1,784))

X_train.shape is (50000, 784), to be interpreted as: 50,000 images and each image has 784 pixels.
y_train.shape is simply (50000, ), which is a vector the same length of X_train giving an integer class
label for each image — namely, the digit between 0 and 9 depicted in the image (according to the human annotator who
drew that digit).

For Convolutional Neural Network example, the MNIST can be load as 4D version as follow:

X_train, y_train, X_val, y_val, X_test, y_test = \
tl.files.load_mnist_dataset (shape=(-1, 28, 28, 1))

X_train.shapeis (50000, 28, 28, 1) which represents 50,000 images with 1 channel, 28 rows and 28
columns each. Channel one is because it is a grey scale image, every pixel have only one value.

Building the model

This is where TensorLayer steps in. It allows you to define an arbitrarily structured neural network by creating and
stacking or merging layers. Since every layer knows its immediate incoming layers, the output layer (or output layers)
of a network double as a handle to the network as a whole, so usually this is the only thing we will pass on to the rest
of the code.

As mentioned above, tutorial_mnist.py supports four types of models, and we implement that via easily
exchangeable functions of the same interface. First, we’ll define a function that creates a Multi-Layer Percep-
tron (MLP) of a fixed architecture, explaining all the steps in detail. We’ll then implement a Denosing Autoen-
coder (DAE), after that we will then stack all Denoising Autoencoder and supervised fine-tune them. Finally, we’ll
show how to create a Convolutional Neural Network (CNN). In addition, a simple example for MNIST dataset in
tutorial_mnist_simple.py,a CNN example for CIFAR-10 dataset in tutorial_cifarl0_tfrecord.

py.
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Multi-Layer Perceptron (MLP)

The first script, main_test_layers (), creates an MLP of two hidden layers of 800 units each, followed by a
softmax output layer of 10 units. It applies 20% dropout to the input data and 50% dropout to the hidden layers.

To feed data into the network, TensofFlow placeholders need to be defined as follow. The None here means the
network will accept input data of arbitrary batchsize after compilation. The x is used to hold the X_train data
and y__ is used to hold the y_train data. If you know the batchsize beforehand and do not need this flexibility,
you should give the batchsize here — especially for convolutional layers, this can allow TensorFlow to apply some
optimizations.

x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder (tf.int64, shape=[None, ], name='y_ ")

The foundation of each neural network in TensorLayer is an TnputLayer instance representing the input data that
will subsequently be fed to the network. Note that the InputLayer is not tied to any specific data yet.

’network = tl.layers.Inputlayer (x, name='"input_layer")

Before adding the first hidden layer, we’ll apply 20% dropout to the input data. This is realized viaa DropoutLayer
instance:

’network = tl.layers.DropoutLayer (network, keep=0.8, name='dropl')

Note that the first constructor argument is the incoming layer, the second argument is the keeping probability for the
activation value. Now we’ll proceed with the first fully-connected hidden layer of 800 units. Note that when stacking
a DenselLayer.

’network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name='relul')

Again, the first constructor argument means that we’re stacking network on top of network. n_units simply
gives the number of units for this fully-connected layer. act takes an activation function, several of which are defined
in tensorflow.nn and tensorlayer.activation. Here we’ve chosen the rectifier, so we’ll obtain ReLUs. We’ll now
add dropout of 50%, another 800-unit dense layer and 50% dropout again:

network = tl.layers.DropoutlLayer (network, keep=0.5, name='drop2'")
network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name='relu2')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop3")

Finally, we’ll add the fully-connected output layer which the n_units equals to the number of classes. Note that,
the softmax is implemented internally in tf.nn.sparse_softmax_cross_entropy_with_logits () to
speed up computation, so we used identity in the last layer, more details in t1.cost.cross_entropy ().

network = tl.layers.Denselayer (network,
n_units=10,
act = tf.identity,
name="'output_layer")

As mentioned above, each layer is linked to its incoming layer(s), so we only need the output layer(s) to access a
network in TensorLayer:

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)
cost = tf.reduce_mean (tf.nn.sparse_softmax_cross_entropy_with_logits(y, vy_))

Here, network.outputs is the 10 identity outputs from the network (in one hot format), yv_op is the integer output
represents the class index. While cost is the cross-entropy between target and predicted labels.
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Denoising Autoencoder (DAE)

Autoencoder is a unsupervised learning models which able to extract representative features, it has become more
widely used for learning generative models of data and Greedy layer-wise pre-train. For vanilla Autoencoder see
Deeplearning Tutorial.

The script main_test_denoise_AE () implements a Denoising Autoencoder with corrosion rate of 50%. The
Autoencoder can be defined as follow, where an Autoencoder is represented by a DenseLayer:

network = tl.layers.Inputlayer (x, name='input_layer")
network = tl.layers.DropoutLayer (network, keep=0.5, name='denoisingl')
network = tl.layers.Denselayer (network, n_units=200, act=tf.nn.sigmoid, name='sigmoidl
=)
recon_layerl = tl.layers.Reconlayer (network,
X_recon=x,
n_units=784,
act=tf.nn.sigmoid,
name='recon_layerl")

To train the DenseLayer, simply run ReconlLayer.pretrain (), if using denoising Autoencoder, the name
of corrosion layer (a DropoutLayer) need to be specified as follow. To save the feature images, set save to
True. There are many kinds of pre-train metrices according to different architectures and applications. For sigmoid
activation, the Autoencoder can be implemented by using KL divergence, while for rectifer, L1 regularization of
activation outputs can make the output to be sparse. So the default behaviour of ReconLayer only provide KLD
and cross-entropy for sigmoid activation function and L1 of activation outputs and mean-squared-error for rectifing
activation function. We recommend you to modify ReconLayer to achieve your own pre-train metrice.

recon_layerl.pretrain(sess,
X=X,
X_train=X_train,
X_val=X_val,
denoise_name='denoisingl',
n_epoch=200,
batch_size=128,
print_freg=10,
save=True,
save_name="wlpre_")

In addition, the scriptmain_test_stacked_denoise_AE () shows how to stacked multiple Autoencoder to one
network and then fine-tune.

Convolutional Neural Network (CNN)

Finally, the main_test_cnn_layer () script creates two CNN layers and max pooling stages, a fully-connected
hidden layer and a fully-connected output layer. More CNN examples can be found in the tutorial scripts, like
tutorial_cifarl0_tfrecord.py.

At the begin, we add a Conv2dLayer with 32 filters of size 5x5 on top, follow by max-pooling of factor 2 in both
dimensions. And then apply a Conv2dLayer with 64 filters of size 5x5 again and follow by a max_pool again. After
that, flatten the 4D output to 1D vector by using FlattenLayer, and apply a dropout with 50% to last hidden layer.
The 2 represents arbitrary batch_size.

Note, tutorial_mnist.py introduces the simplified CNN API for beginner.

network = tl.layers.InputlLayer (x, name='input_layer")
network = tl.layers.Conv2dLayer (network,

(continues on next page)
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act = tf.nn.reluy,

shape = [5, 5, 1, 3217, # 32 features for each 5x5 patch

strides=[1, 1, 1, 11,

padding="'SAME',

name ='cnn_layerl") # output: (2, 28, 28, 32)
network = tl.layers.PoolLayer (network,

ksize=[1, 2, 2, 11,

strides=[1, 2, 2, 1],

padding='SAME',

pool = tf.nn.max_pool,

name ='pool_layerl',) # output: (2, 14, 14, 32)
network = tl.layers.Conv2dLayer (network,

act = tf.nn.reluy,

shape = [5, 5, 32, 64], # 64 features for each 5x5 patch

strides=[1, 1, 1, 1],
padding="'SAME",
name ='cnn_layer2") # output: (2, 14, 14, 64)
network = tl.layers.PoolLayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 11,
padding="'SAME',
pool = tf.nn.max_pool,
name ='pool_layer2',) # output: (2, 7, 7, 64)
network = tl.layers.FlattenlLayer (network, name='flatten layer')
# output: (?, 3136)
network = tl.layers.Dropoutlayer (network, keep=0.5, name='dropl')
# output: (?, 3136)
network = tl.layers.Denselayer (network, n_units=256, act = tf.nn.relu, name='relul')
# output: (?, 256)
network = tl.layers.DropoutlLayer (network, keep=0.5, name='drop2')
# output: (?, 256)
network = tl.layers.Denselayer (network, n_units=10,
act = tf.identity, name='output_layer')
# output: (2, 10)

Note: For experts: Conv2dLayer will create a convolutional layer using tensorflow.nn.conv2d, Tensor-
Flow’s default convolution.

Training the model

The remaining part of the tutorial_mnist.py script copes with setting up and running a training loop over the
MNIST dataset by using cross-entropy only.

Dataset iteration

An iteration function for synchronously iterating over two numpy arrays of input data and targets, respectively, in
mini-batches of a given number of items. More iteration function can be found in tensorlayer.iterate

tl.iterate.minibatches (inputs, targets, batchsize, shuffle=False)
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Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)
cost = tf.reduce_mean (tf.nn.sparse_softmax_cross_entropy_with_logits(y, vy_))

More cost or regularization can be applied here, take main_test_layers () for example, to apply max-norm on
the weight matrices, we can add the following line:

cost = cost + tl.cost.maxnorm_regularizer(1.0) (network.all_params[0]) +
tl.cost.maxnorm_regularizer (1.0) (network.all_params[2])

Depending on the problem you are solving, you will need different loss functions, see tensorlayer.cost for
more.

Having the model and the loss function defined, we create update expressions for training the network. TensorLayer
do not provide many optimizer, we used TensorFlow’s optimizer instead:

train_params = network.all_ params
train_op = tf.train.AdamOptimizer (learning_rate, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_list=train_params)

For training the network, we fed data and the keeping probabilities to the feed_dict.

feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update( network.all_drop )
sess.run(train_op, feed_dict=feed_dict)

While, for validation and testing, we use slightly different way. All dropout, dropconnect, corrosion layers need to be
disable. t1.utils.dict_to_onesetall network.all_droptol.

dp_dict = tl.utils.dict_to_one( network.all_drop )
feed_dict = {x: X_test_a, y_: y_test_a}
feed_dict.update (dp_dict)

err, ac = sess.run([cost, acc], feed_dict=feed_dict)

As an additional monitoring quantity, we create an expression for the classification accuracy:

correct_prediction = tf.equal(tf.argmax(y, 1), v_)
acc = tf.reduce_mean (tf.cast (correct_prediction, tf.float32))

What Next?

We also have a more advanced image classification example in tutorial_cifarl0_tfrecord.py. Please read
the code and notes, figure out how to generate more training data and what is local response normalization. After that,
try to implement Residual Network (Hint: you may want to use the Layer.outputs).

1.2.5 Run the Pong Game example

In the second part of the tutorial, we will run the Deep Reinforcement Learning example that is introduced by Karpathy
in Deep Reinforcement Learning: Pong from Pixels.
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python tutorial_atari_pong.py

Before running the tutorial code, you need to install OpenAl gym environment which is a benchmark for Reinforce-
ment Learning. If everything is set up correctly, you will get an output like the following:

[2016-07-12 09:31:59,760] Making new env: Pong-v0
tensorlayer:Instantiate InputlLayer input_layer (?, 6400)
tensorlayer:Instantiate Denselayer relul: 200, relu
tensorlayer:Instantiate Denselayer output_layer: 3, identity
param O0: (6400, 200) (mean: -0.000009, median: -0.000018 std: 0.017393)
param 1: (200,) (mean: 0.000000, median: 0.000000 std: 0.000000)
param 2: (200, 3) (mean: 0.002239, median: 0.003122 std: 0.096611)
param 3: (3,) (mean: 0.000000, median: 0.000000 std: 0.000000)
num of params: 1280803

layer 0: Tensor ("Relu:0", shape=(?, 200), dtype=float32)
layer 1: Tensor("add_1:0", shape=(?, 3), dtype=float32)

episode 0: game 0 took 0.1738ls, reward: -1.000000
episode 0: game 1 took 0.12629s, reward: 1.000000 !!!irrrtnt
episode 0: game 2 took 0.17082s, reward: —-1.000000
episode 0: game 3 took 0.08944s, reward: -1.000000
episode 0: game 4 took 0.09446s, reward: -1.000000
episode 0: game 5 took 0.09440s, reward: —-1.000000
episode 0: game 6 took 0.32798s, reward: -1.000000
episode 0: game 7 took 0.74437s, reward: -1.000000
episode 0: game 8 took 0.43013s, reward: —-1.000000
episode 0: game 9 took 0.42496s, reward: -1.000000
episode 0: game 10 took 0.37128s, reward: -1.000000
episode 0: game 11 took 0.08979s, reward: —-1.000000
episode 0: game 12 took 0.09138s, reward: -1.000000
episode 0: game 13 took 0.09142s, reward: -1.000000
episode 0: game 14 took 0.09639s, reward: -1.000000
episode 0: game 15 took 0.09852s, reward: -1.000000
episode 0: game 16 took 0.09984s, reward: -1.000000
episode 0: game 17 took 0.09575s, reward: -1.000000
episode 0: game 18 took 0.09416s, reward: -1.000000
episode 0: game 19 took 0.08674s, reward: -1.000000
episode 0: game 20 took 0.09628s, reward: -1.000000
resetting env. episode reward total was -20.000000. running mean: -20.000000
episode 1: game 0 took 0.09910s, reward: -1.000000
episode 1: game 1 took 0.17056s, reward: -1.000000
episode 1: game 2 took 0.09306s, reward: -1.000000
episode 1: game 3 took 0.09556s, reward: -1.000000
episode 1: game 4 took 0.12520s, reward: 1.000000 !!!itrrtt
episode 1: game 5 took 0.17348s, reward: -1.000000
episode 1: game 6 took 0.09415s, reward: -1.000000

This example allow computer to learn how to play Pong game from the screen inputs, just like human behavior. After
training for 15,000 episodes, the computer can win 20% of the games. The computer win 35% of the games at 20,000
episode, we can seen the computer learn faster and faster as it has more winning data to train. If you run it for 30,000
episode, it start to win.

render = False
resume = False

Setting render to True, if you want to display the game environment. When you run the code again, you can set
resume to True, the code will load the existing model and train the model basic on it.
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1.2.6 Understand Reinforcement learning

Pong Game

To understand Reinforcement Learning, we let computer to learn how to play Pong game from the original screen
inputs. Before we start, we highly recommend you to go through a famous blog called Deep Reinforcement Learning:
Pong from Pixels which is a minimalistic implementation of Deep Reinforcement Learning by using python-numpy
and OpenAl gym environment.

python tutorial_atari_pong.py

Policy Network

In Deep Reinforcement Learning, the Policy Network is the same with Deep Neural Network, it is our player (or
“agent”) who output actions to tell what we should do (move UP or DOWN); in Karpathy’s code, he only defined 2
actions, UP and DOWN and using a single simgoid output; In order to make our tutorial more generic, we defined 3
actions which are UP, DOWN and STOP (do nothing) by using 3 softmax outputs.

# observation for training
states_batch_pl = tf.placeholder(tf.float32, shape=[None, D])

(continues on next page)
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(continued from previous page)

network = tl.layers.Inputlayer (states_batch_pl, name='"input_layer')
network = tl.layers.Denselayer (network, n_units=H,
act = tf.nn.relu, name='relul')
network = tl.layers.Denselayer (network, n_units=3,
act = tf.identity, name='output_layer')
probs = network.outputs
sampling_prob = tf.nn.softmax (probs)

Then when our agent is playing Pong, it calculates the probabilities of different actions, and then draw sample (action)
from this uniform distribution. As the actions are represented by 1, 2 and 3, but the softmax outputs should be start
from 0, we calculate the label value by minus 1.

prob = sess.run/(
sampling_prob,
feed_dict={states_batch_pl: x}
)
# action. 1: STOP 2: UP 3: DOWN
action = np.random.choice([1l,2,3], p=prob.flatten())

ys.append(action - 1)

Policy Gradient

Policy gradient methods are end-to-end algorithms that directly learn policy functions mapping states to actions. An
approximate policy could be learned directly by maximizing the expected rewards. The parameters of a policy function
(e.g. the parameters of a policy network used in the pong example) could be trained and learned under the guidance of
the gradient of expected rewards. In other words, we can gradually tune the policy function via updating its parameters,
such that it will generate actions from given states towards higher rewards.

An alternative method to policy gradient is Deep Q-Learning (DQN). It is based on Q-Learning that tries to learn a
value function (called Q function) mapping states and actions to some value. DQN employs a deep neural network to
represent the Q function as a function approximator. The training is done by minimizing temporal-difference errors. A
neurobiologically inspired mechanism called “experience replay” is typically used along with DQN to help improve
its stability caused by the use of non-linear function approximator.

You can check the following papers to gain better understandings about Reinforcement Learning.
* Reinforcement Learning: An Introduction. Richard S. Sutton and Andrew G. Barto
* Deep Reinforcement Learning. David Silver, Google DeepMind
e UCL Course on RL

The most successful applications of Deep Reinforcement Learning in recent years include DQN with experience replay
to play Atari games and AlphaGO that for the first time beats world-class professional GO players. AlphaGO used the
policy gradient method to train its policy network that is similar to the example of Pong game.

 Atari - Playing Atari with Deep Reinforcement Learning
* Atari - Human-level control through deep reinforcement learning

* AlphaGO - Mastering the game of Go with deep neural networks and tree search
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Dataset iteration

In Reinforcement Learning, we consider a final decision as an episode. In Pong game, a episode is a few dozen games,
because the games go up to score of 21 for either player. Then the batch size is how many episode we consider to
update the model. In the tutorial, we train a 2-layer policy network with 200 hidden layer units using RMSProp on
batches of 10 episodes.

Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

actions_batch_pl = tf.placeholder (tf.int32, shape=[None])

discount_rewards_batch_pl = tf.placeholder (tf.float32, shape=[None])

loss = tl.rein.cross_entropy_reward_loss (probs, actions_batch_pl,
discount_rewards_batch_pl)

sess.run (
train_op,
feed_dict={
states_batch_pl: epx,
actions_batch_pl: epy,
discount_rewards_batch_pl: disR

The loss in a batch is relate to all outputs of Policy Network, all actions we made and the corresponding discounted
rewards in a batch. We first compute the loss of each action by multiplying the discounted reward and the cross-entropy
between its output and its true action. The final loss in a batch is the sum of all loss of the actions.

What Next?
The tutorial above shows how you can build your own agent, end-to-end. While it has reasonable quality, the default
parameters will not give you the best agent model. Here are a few things you can improve.

First of all, instead of conventional MLP model, we can use CNNs to capture the screen information better as Playing
Atari with Deep Reinforcement Learning describe.

Also, the default parameters of the model are not tuned. You can try changing the learning rate, decay, or initializing
the weights of your model in a different way.

Finally, you can try the model on different tasks (games).

1.2.7 Run the Word2Vec example

In this part of the tutorial, we train a matrix for words, where each word can be represented by a unique row vector in
the matrix. In the end, similar words will have similar vectors. Then as we plot out the words into a two-dimensional
plane, words that are similar end up clustering nearby each other.

python tutorial_word2vec_basic.py

If everything is set up correctly, you will get an output in the end.
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1.2.8 Understand Word Embedding

Word Embedding

We highly recommend you to read Colah’s blog Word Representations to understand why we want to use a vector
representation, and how to compute the vectors. (For chinese reader please click. More details about word2vec can be

found in Word2vec Parameter Learning Explained.

Bascially, training an embedding matrix is an unsupervised learning. As every word is refected by an unique ID, which
is the row index of the embedding matrix, a word can be converted into a vector, it can better represent the meaning.
For example, there seems to be a constant male-female difference vector: woman

means one dimension in the vector represents gender.

The model can be created as follow.

queen - king, this

18
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# train_inputs is a row vector, a input is an integer id of single word.

# train_labels is a column vector, a label is an integer id of single word.

# valid_dataset is a column vector, a valid set is an integer id of single word.
train_inputs = tf.placeholder (tf.int32, shape=[batch_size])

train_labels = tf.placeholder (tf.int32, shape=[batch_size, 1])

valid_dataset = tf.constant (valid_examples, dtype=tf.int32)

# Look up embeddings for inputs.
emb_net = tl.layers.Word2vecEmbeddingInputlayer (
inputs = train_inputs,
train_labels = train_labels,
vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
num_sampled = num_sampled,
nce_loss_args = {},
E_init = tf.random_uniform_initializer (minval=-1.0, maxval=1.0),
E_init_args = {},
nce_W_init = tf.truncated_normal_initializer(
stddev=float (1.0/np.sqgrt (embedding_size))),
nce_W_init_args = {},
nce_b_init = tf.constant_initializer (value=0.0),
nce_b_init_args = {},
name ='word2vec_layer',

Dataset iteration and loss

Word2vec uses Negative Sampling and Skip-Gram model for training. Noise-Contrastive Estimation Loss (NCE) can
help to reduce the computation of loss. Skip-Gram inverts context and targets, tries to predict each context word
from its target word. We use t1.nlp.generate_skip_gram_batch to generate training data as follow, see
tutorial_generate_text.py.

# NCE cost expression 1s provided by Word2vecEmbeddingInputlayer
cost = emb_net.nce_cost
train_params = emb_net.all_params

train_op = tf.train.AdagradOptimizer (learning_rate, initial_accumulator_value=0.1,
use_locking=False) .minimize (cost, var_list=train_params)

data_index = 0
while (step < num_steps):
batch_inputs, batch_labels, data_index = tl.nlp.generate_skip_gram_batch (
data=data, batch_size=batch_size, num_skips=num_skips,
skip_window=skip_window, data_index=data_index)
feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}
loss_val = sess.run([train_op, cost], feed_dict=feed_dict)

—

Restore existing Embedding matrix

In the end of training the embedding matrix, we save the matrix and corresponding dictionaries. Then next
time, we can restore the matrix and directories as follow. (see main_restore_embedding_layer () in
tutorial_generate_text.py)
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vocabulary_size = 50000

embedding_size = 128

model_file_name = "model word2vec_50k_128"
batch_size = None

print ("Load existing embedding matrix and dictionaries")
all_var = tl.files.load_npy_to_any (name=model_file_name+'.npy')
data = all_var['data']; count = all_var(['count']

dictionary = all_var(['dictionary']

reverse_dictionary = all_var|['reverse_dictionary']
tl.nlp.save_vocab (count, name='vocab_ '+model_file_name+'.txt')
del all_var, data, count

load_params = tl.files.load_npz (name=model_file_name+'.npz")

x = tf.placeholder (tf.int32, shape=[batch_size])
y_ = tf.placeholder (tf.int32, shape=[batch_size, 1])

emb_net = tl.layers.EmbeddingInputlayer (

inputs = x,

vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
name ='embedding_ layer')

tl.layers.initialize_global_variables (sess)

tl.files.assign_params (sess, [load_params([0]], emb_net)

1.2.9 Run the PTB example

Penn TreeBank (PTB) dataset is used in many LANGUAGE MODELING papers, including “Empirical Evaluation
and Combination of Advanced Language Modeling Techniques”, “Recurrent Neural Network Regularization”. It
consists of 929k training words, 73k validation words, and 82k test words. It has 10k words in its vocabulary.

The PTB example is trying to show how to train a recurrent neural network on a challenging task of language modeling.

Given a sentence “I am from Imperial College London”, the model can learn to predict “Imperial College London”
from “from Imperial College”. In other word, it predict next words in a text given a history of previous words. In
previous example , num_steps (sequence length) is3.

python tutorial_ptb_lstm.py

The script provides three settings (small, medium, large), larger model has better performance, you can choice different
setting in:

flags.DEFINE_string(
"model", "small",
"A type of model. Possible options are: small, medium, large.")

If you choice small setting, you can see:

Epoch: 1 Learning rate: 1.000
0.004 perplexity: 5220.213 speed: 7635 wps
0.104 perplexity: 828.871 speed: 8469 wps

(continues on next page)
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(continued from previous page)

.204 perplexity: 614.071 speed: 8839 wps
.304 perplexity: 495.485 speed: 8889 wps
.404 perplexity: 427.381 speed: 8940 wps
.504 perplexity: 383.063 speed: 8920 wps
.604 perplexity: 345.135 speed: 8920 wps
.703 perplexity: 319.263 speed: 8949 wps
.803 perplexity: 298.774 speed: 8975 wps
.903 perplexity: 279.817 speed: 8986 wps
Epoch: 1 Train Perplexity: 265.558

Epoch: 1 Valid Perplexity: 178.436

O O O O O O O o

=1
O .
o -
Q
jng

13 Learning rate: 0.004
0.004 perplexity: 56.122 speed: 8594 wps
0.104 perplexity: 40.793 speed: 9186 wps
0.204 perplexity: 44.527 speed: 9117 wps
0.304 perplexity: 42.668 speed: 9214 wps
0.404 perplexity: 41.943 speed: 9269 wps
0.504 perplexity: 41.286 speed: 9271 wps
0.604 perplexity: 39.989 speed: 9244 wps
0.703 perplexity: 39.403 speed: 9236 wps
0.803 perplexity: 38.742 speed: 9229 wps
0.903 perplexity: 37.430 speed: 9240 wps

Epoch: 13 Train Perplexity: 36.643
Epoch: 13 Valid Perplexity: 121.475
Test Perplexity: 116.716

The PTB example proves RNN is able to modeling language, but this example did not do something practical. How-
ever, you should read through this example and “Understand LSTM” in order to understand the basic of RNN. After
that, you learn how to generate text, how to achieve language translation and how to build a questions answering
system by using RNN.

1.2.10 Understand LSTM
Recurrent Neural Network
We personally think Andrey Karpathy’s blog is the best material to Understand Recurrent Neural Network , after

reading that, Colah’s blog can help you to Understand LSTM Network [chinese] which can solve The Problem of
Long-Term Dependencies. We do not describe more about RNN, please read through these blogs before you go on.
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one to one one to many many to one many to many many to many
Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in
blue and green vectors hold the RNN's state (more on this soon). From left to right: (1) Vanilla mode of processing without RNN,
from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes an
image and outputs a sentence of words). (8) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification

where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths
sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

e
|—|
|—|

Image by Andrey Karpathy

Synced sequence input and output

The model in PTB example is a typically type of synced sequence input and output, which was described by Karpathy
as “(5) Synced sequence input and output (e.g. video classification where we wish to label each frame of the video).
Notice that in every case are no pre-specified constraints on the lengths sequences because the recurrent transformation
(green) is fixed and can be applied as many times as we like.”

The model is built as follow. Firstly, transfer the words into word vectors by looking up an embedding matrix, in
this tutorial, no pre-training on embedding matrix. Secondly, we stacked two LSTMs together use dropout among the
embedding layer, LSTM layers and output layer for regularization. In the last layer, the model provides a sequence of
softmax outputs.

The first LSTM layer outputs [batch_size, num_steps, hidden_size] for stacking another LSTM after it. The second
LSTM layer outputs [batch_size*num_steps, hidden_size] for stacking DenseLayer after it, then compute the softmax
outputs of each example n_examples = batch_size*num_steps).

To understand the PTB tutorial, you can also read TensorFlow PTB tutorial.

(Note that, TensorLayer supports DynamicRNNLayer after v1.1, so you can set the input/output dropouts, number of
RNN layer in one single layer)

network = tl.layers.EmbeddingInputlayer (
inputs = x,
vocabulary_size = vocab_size,
embedding_size = hidden_size,
E_init = tf.random_uniform_initializer (-init_scale, init_scale),
name ='embedding_layer")
if is_training:
network = tl.layers.Dropoutlayer (network, keep=keep_prob, name='dropl')
network = tl.layers.RNNLayer (network,
cell_fn=tf.nn.rnn_cell.BasicLSTMCell,
cell _init_args={'forget_bias': 0.0},

(continues on next page)
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(continued from previous page)

n_hidden=hidden_size,
initializer=tf.random_uniform_initializer(-init_scale, init_scale),
n_steps=num_steps,
return_last=False,
name='basic_lstm_layerl"')

lstml = network

if is_training:

network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop2')

network = tl.layers.RNNLayer (network,
cell_fn=tf.nn.rnn_cell.BasicLSTMCell,
cell_init_args={'forget_bias': 0.0},
n_hidden=hidden_size,
initializer=tf.random_uniform_initializer(-init_scale, init_scale),
n_steps=num_steps,
return_last=False,
return_seq_2d=True,
name='basic_lstm_layer2"')

lstm2 = network

if is_training:

network = tl.layers.Dropoutlayer (network, keep=keep_prob, name='drop3')

network = tl.layers.Denselayer (network,
n_units=vocab_size,
W_init=tf.random_uniform_initializer (-init_scale, init_scale),
b_init=tf.random_uniform_initializer (-init_scale, init_scale),
act = tf.identity, name='output_layer')

Dataset iteration

The batch_size can be seem as how many concurrent computations. As the following example shows, the first batch
learn the sequence information by using 0 to 9. The second batch learn the sequence information by using 10 to 19.
So it ignores the information from 9 to 10 !n If only if we set the batch_size = 1, it will consider all information from
0 to 20.

The meaning of batch_size here is not the same with the batch_size in MNIST example. In MNIST example,
batch_size reflects how many examples we consider in each iteration, while in PTB example, batch_size is how many
concurrent processes (segments) for speed up computation.

Some Information will be ignored if batch_size > 1, however, if your dataset is “long” enough (a text corpus usually
has billions words), the ignored information would not effect the final result.

In PTB tutorial, we set batch_size = 20, so we cut the dataset into 20 segments. At the beginning of each epoch, we
initialize (reset) the 20 RNN states for 20 segments, then go through 20 segments separately.

A example of generating training data as follow:

train_data = [i for i in range (20)]

for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3):
X, y = batch
print (x, '\n',y)

[T O 1 2] <—-———x lst subset/ iteration
[10 11 12]]

[[1 2 3] <=y

[11 12 1371]

(continues on next page)
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[[ 3 4 5] <--- 1lst batch input 2nd subset/ iteration
[13 14 15]] <-—-- 2nd batch input

[l 4 5 6] <-—— 1lst batch target

[14 15 16]] <-—- 2nd batch target

[[ 6 7 8] 3rd subset/ iteration
[16 17 18]]

[[ 7 8 9]

[17 18 19]]

Note: This example can also be considered as pre-training of the word embedding matrix.

Loss and update expressions

The cost function is the averaged cost of each mini-batch:

# See tensorlayer.cost.cross_entropy_seq() for more details
def loss_fn (outputs, targets, batch_size, num_steps):
# Returns the cost function of Cross—-entropy of two sequences, implement

# softmax internally.

# outputs : 2D tensor [batch_size*num _steps, n_units of output layer]
# targets : 2D tensor [batch_size, num _steps], need to be reshaped.

# n_examples = batch_size * num_steps

# so

# cost 1s the averaged cost of each mini-batch (concurrent process).

loss = tf.nn.seg2seqg.sequence_loss_by_example (
[outputs],
[tf.reshape(targets, [-1]1)],
[tf.ones ([batch_size » num_steps])])
cost = tf.reduce_sum(loss) / batch_size
return cost

# Cost for Training
cost = loss_fn(network.outputs, targets, batch_size, num_steps)

For updating, this example decreases the initial learning rate after several epochs (defined by max_epoch), by multi-
plying a 1r_decay. In addition, truncated backpropagation clips values of gradients by the ratio of the sum of their
norms, so as to make the learning process tractable.

# Truncated Backpropagation for training
with tf.variable_scope('learning rate'):
lr = tf.Variable (0.0, trainable=False)
tvars = tf.trainable_variables ()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer (1lr)
train_op = optimizer.apply_gradients(zip(grads, tvars))

If the epoch index greater than max_epoch, decrease the learning rate by multipling 1r_decay.

new_lr_decay = lr_decay »* max (i - max_epoch, 0.0)
sess.run(tf.assign(lr, learning_rate * new_lr_decay))
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At the beginning of each epoch, all states of LSTMs need to be reseted (initialized) to zero states, then after each
iteration, the LSTMSs’ states is updated, so the new LSTM states (final states) need to be assigned as the initial states
of next iteration:

# set all states to zero states at the beginning of each epoch
statel = tl.layers.initialize_rnn_state(lstml.initial_state)
state2 = tl.layers.initialize_rnn_state(lstm2.initial_state)
for step, (x, y) in enumerate(tl.iterate.ptb_iterator (train_data,
batch_size, num_steps)):
feed_dict = {input_data: x, targets: vy,
lstml.initial_state: statel,
lstm2.initial_state: state2,
}
# For training, enable dropout
feed_dict.update( network.all_drop )
# use the new states as the initial state of next iteration
_cost, statel, state2, _ = sess.run([cost,
lstml.final_state,
lstm2.final_state,
train_opl,
feed_dict=feed_dict
)

costs += _cost; iters += num_steps

Predicting

After training the model, when we predict the next output, we no long consider the number of steps (sequence length),
i.e. batch_size, num_steps are 1. Then we can output the next word step by step, instead of predict a sequence
of words from a sequence of words.

input_data_test = tf.placeholder(tf.int32, [1, 11)
targets_test = tf.placeholder(tf.int32, [1, 11])

network_test, lstml_test, lstm2_test = inference (input_data_test,
is_training=False, num_steps=1l, reuse=True)

cost_test = loss_fn(network_test.outputs, targets_test, 1, 1)

print ("Evaluation")

# Testing

# go through the test set step by step, it will take a while.
start_time = time.time ()

costs = 0.0; iters = 0

# reset all states at the beginning

statel = tl.layers.initialize_rnn_state(lstml_test.initial_state)
state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state)

for step, (x, y) in enumerate(tl.iterate.ptb_iterator (test_data,
batch_size=1, num_steps=1)):
feed_dict = {input_data_test: x, targets_test: vy,
lstml_test.initial_state: statel,
lstm2_test.initial_state: state2,
}

_cost, statel, state2 = sess.run([cost_test,
lstml_test.final_state,
lstm2_test.final_state],
feed_dict=feed_dict

(continues on next page)

1.2. Tutorial 25




TensorLayer Documentation, Release 1.3.7

(continued from previous page)

costs += _cost; iters += 1
test_perplexity = np.exp(costs / iters)
print ("Test Perplexity: took s" % (test_perplexity, time.time() - start_
—time))
What Next?

Now, you understand Synced sequence input and output. Let think about Many to one (Sequence input and one output),
LSTM is able to predict the next word “English” from “I am from London, I speak ..”.

Please read and understand the code of tutorial_generate_text.py, it show you how to restore a pre-trained
Embedding matrix and how to learn text generation from a given context.

Karpathy’s blog : “(3) Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing
positive or negative sentiment). “

1.2.11 Run the Translation example

python tutorial_translate.py

This script is going to training a neural network to translate English to French. If everything is correct, you will see.
* Download WMT English-to-French translation data, includes training and testing data.
* Create vocabulary files for English and French from training data.

¢ Create the tokenized training and testing data from original training and testing data.

Prepare raw data

Load or Download WMT English-to-French translation > wmt
Training data : wmt/giga-fren.release?

Testing data : wmt/newstest2013

Create vocabularies
Vocabulary of French : wmt/vocab40000.fr
Vocabulary of English : wmt/vocab40000.en
Creating vocabulary wmt/vocab40000.fr from data wmt/giga-fren.releasel2.fr

processing line 100000

processing line 200000

processing line 300000

processing line 400000

processing line 500000

processing line 600000

processing line 700000

processing line 800000

processing line 900000

processing line 1000000

processing line 1100000

processing line 1200000

processing line 22500000
Creating vocabulary wmt/vocab40000.en from data wmt/giga-fren.release2.en
processing line 100000

(continues on next page)
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processing line 22500000

Firstly, we download English-to-French translation data from the WMT*‘15 Website. The training and testing data as
follow. The training data is used to train the model, the testing data is used to evaluate the model.

wmt /training-giga-fren.tar <-- Training data for English-to-French (2.6GB)
glga-fren.release2.x are extracted from it.

wnt /dev-v2.tgz <-- Testing data for different language (21.4MB)
newstest2013.% are extracted from it.

wnt /giga-fren.release2.fr <-- Training data of French (4.57GB)
wmt /giga-fren.release2.en <-- Training data of English (3.79GB)

wmt /newstest2013.fr <-— Testing data of French (393KB)
wmt /newstest2013.en <-- Testing data of English (333KB)

As giga—-fren.release?2. « are the training data, the context of giga—-fren.release2. fr look as follow.

Il a transformé notre vie | Il a transformé la société | Son fonctionnement | La_
—technologie, moteur du changement Accueil | Concepts | Enseignants | Recherche |
—Apercu | Collaborateurs | Web HHCC | Ressources | Commentaires Musée virtuel du,,
—Canada

Plan du site

Rétroaction

Crédits

English

Qu’est-ce que la lumiere?

La découverte du spectre de la lumiere blanche Des codes dans la lumiere Le spectre,,
—électromagnétique Les spectres d’émission Les spectres d’absorption Les années-
—lumiére La pollution lumineuse

Le ciel des premiers habitants La vision contemporaine de 1'Univers L’astronomie pour,
—tous

Bande dessinée

Liens

Glossaire

Observatoires

While giga-fren.release?2.en look as follow, we can see words or sentences are separated by | or \n.

Changing Lives | Changing Society | How It Works | Technology Drives Change Home |,
—Concepts | Teachers | Search | Overview | Credits | HHCC Web | Reference | Feedback,,
—Virtual Museum of Canada Home Page

Site map

Feedback

Credits

Francais

What is light ?

The white light spectrum Codes in the light The electromagnetic spectrum Emission
—spectra Absorption spectra Light-years Light pollution

The sky of the first inhabitants A contemporary vison of the Universe Astronomy for
—everyone

Cartoon

Links

(continues on next page)
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Glossary
Observatories

The testing data newstest2013.en and newstest2013. fr look as follow.

newstest2013.en

A Republican strategy to counter the re-election of Obama

Republican leaders justified their policy by the need to combat electoral fraud.
However, the Brennan Centre considers this a myth, stating that electoral fraud is_
—rarer in the United States than the number of people killed by lightning.

newstest2013.fr

Une stratégie républicaine pour contrer la réélection d'Obama

Les dirigeants républicains justifierent leur politique par la nécessité de lutter
—contre la fraude électorale.

Or, le Centre Brennan consideére cette derniére comme un mythe, affirmant que la
—fraude électorale est plus rare aux Etats-Unis que le nombre de personnes tuées par,
—la foudre.

After downloading the dataset, it start to create vocabulary files, vocab40000. fr and vocab40000 . en from the
training data giga-fren.release2.fr and giga—-fren.release?2.en, usually it will take a while. The
number 40000 reflects the vocabulary size.

The vocab40000. £fr (381KB) stores one-item-per-line as follow.

_PAD
_GO
_EOS
_UNK
de

’

la
et
des
les

pour
dans
un
que
une
sur
au
0000

par
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The vocab40000 . en (344KB) stores one-item-per-line as follow as well.

_PAD
_GO
_EOS
_UNK
the

of
and

that
is
on
The
0000

by

with

as

000
are

And then, we start to create the tokenized training and testing data for both English and French. It will take a while as

well.

Tokenize data
Tokenizing data in wmt/giga-fren.release2.fr
tokenizing line 100000
tokenizing line 200000
tokenizing line 300000
tokenizing line 400000

tokenizing line 22500000
Tokenizing data in wmt/giga-fren.release2.en
tokenizing line 100000
tokenizing line 200000
tokenizing line 300000
tokenizing line 400000

tokenizing line 22500000
Tokenizing data in wmt/newstest2013.fr
Tokenizing data in wmt/newstest2013.en

<-- Training data of French

<-- Training data of English

<-- Testing data of French
<-- Testing data of English

In the end, all files we have as follow.
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wmt /training-giga-fren.tar <-- Compressed Training data for English-to-French (2.6GB)
giga-fren.release2.x are extracted from it.
wmt /dev-v2.tgz <-— Compressed Testing data for different language (21.
—4MB)
newstest2013.* are extracted from it.
wmt /giga-fren.release2.fr <-- Training data of French (4.57GB)
wnt /giga-fren.release2.en <-- Training data of English (3.79GB)
wmt /newstest2013. fr <-- Testing data of French (393KB)
wmt /newstest2013.en <—— Testing data of English (333KB)
wmt /vocab40000.fr <-— Vocabulary of French (381KB)
wnt /vocab40000.en <-- Vocabulary of English (344KB)
wmt /giga-fren.release2.i1ds40000.fr <-- Tokenized Training data of French (2.81GB)
wnt /giga-fren.release2.ids40000.en <-— Tokenized Training data of English (2.38GB)
wmt /newstest2013.1ids40000.fr <-- Tokenized Testing data of French (268KB)
wnt /newstest2013.1ds40000.en <-- Tokenized Testing data of English (232KB)

Now, read all tokenized data into buckets and compute the number of data of each bucket.

Read development (test) data into buckets

dev data: (5, 10) [[13388, 4, 949], [23113, 8,
en word_ids: [13388, 4, 949]
context: [b'Preventing', b'the',
word_ids: [23113, 8, 910, 2]
context: [b'Pr\xc3\xa9venir',

910, 271]

b'disease']

b'la', b'maladie', b'_EO0S']

Read training data into buckets (limit: 0)

reading data line 100000

reading data line 200000

reading data line 300000

reading data line 400000

reading data line 500000

reading data line 600000

reading data line 700000

reading data line 800000

reading data line 22400000
reading data line 22500000

train_bucket_sizes: [239121,

train_total size: 17268326.0

train_buckets_scale: [0.013847375825543252,

1344322, 5239557, 10445326]

0.09169638099257565, 0.3951164693091849,

—1.0]

train data: (5, 10) [[1368, 3344], [1089, 14, 261, 2]]

en word_ids: [1368, 3344]

en context: [b'Site', b'map']

fr word_ids: [1089, 14, 261, 2]

fr context: [b'Plan', b'du', b'site', b'_EO0S']

the num of training data in each buckets: [239121, 1344322, 5239557, 10445326]

the num of training data: 17268326
train_buckets_scale: [0.013847375825543252,
—1.0]

0.09169638099257565, 0.3951164693091849,

Start training by using the tokenized bucket data, the training process can only be terminated by stop the program.
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When steps_per_checkpoint

= 10 you will see.

Create Embedding Attention SegZseq Model

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:
eval:

global

eval:
eval:
eval:

step 10 learning rate 0.5000 step-time 22.26 perplexity 12761.50

bucket
bucket
bucket
bucket

0 perplexity 5887.75
1 perplexity 3891.96
2 perplexity 3748.77
3 perplexity 4940.10

step 20 learning rate 0.5000 step-time 20.38 perplexity 28761.36

bucket 0 perplexity
bucket 1 perplexity
bucket 2 perplexity
bucket 3 perplexity

10137.01
12809.90
15758.65
26760.93

step 30
bucket
bucket
bucket
bucket

step 40
bucket
bucket
bucket
bucket

step 50
bucket
bucket
bucket
bucket

step 60
bucket
bucket
bucket
bucket

step 70
bucket
bucket
bucket
bucket

step 80
bucket
bucket
bucket
bucket

step 90
bucket
bucket
bucket
bucket

learning rate 0.5000
0 perplexity 1789.80
1 perplexity 1690.00
2 perplexity 2190.18
3 perplexity 3808.12
learning rate 0.5000
0 perplexity 4778.76
1 perplexity 3698.90
2 perplexity 3902.37
3 perplexity 22612.44
learning rate 0.5000
0 perplexity 644.72
1 perplexity 759.16
2 perplexity 984.18
3 perplexity 1585.68
learning rate 0.5000
0 perplexity 1724.84
1 perplexity 2292.24
2 perplexity 2698.52
3 perplexity 3189.30
learning rate 0.5000
0 perplexity 298.55
1 perplexity 502.04
2 perplexity 645.44
3 perplexity 604.29
learning rate 0.5000
0 perplexity 2056.23
1 perplexity 1344.26
2 perplexity 767.82
3 perplexity 649.38
learning rate 0.5000
0 perplexity 180.86
1 perplexity 350.99
2 perplexity 326.85
3 perplexity 383.22

step-time

step-time

step-time

step-time

step-time

step-time

step-time

20.

16.

14.

19.

17.

18.

12.

64

10

84

76

16

50

61

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

perplexity

6372.95

3418.93

1811.02

1580.55

1250.57

793.90

541.57

step 100 learning rate 0.5000 step-time 18.42 perplexity 471.12

bucket 0 perplexity
bucket 1 perplexity
bucket 2 perplexity
bucket 3 perplexity

216.63
348.96
318.20
389.92

step 110 learning rate 0.5000 step-time 18.39 perplexity 474.89

bucket 0 perplexity
bucket 1 perplexity
bucket 2 perplexity

8049.85
1677.24
936.98

(continues on next page)
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eval: bucket 3 perplexity 657.46
global step 120 learning rate 0.5000 step-time 18.81 perplexity 832.11
eval: bucket 0 perplexity 189.22
eval: bucket 1 perplexity 360.69
eval: bucket 2 perplexity 410.57
eval: bucket 3 perplexity 456.40
global step 130 learning rate 0.5000 step-time 20.34 perplexity 452.27
eval: bucket 0 perplexity 196.93
eval: bucket 1 perplexity 655.18
eval: bucket 2 perplexity 860.44
eval: bucket 3 perplexity 1062.36
global step 140 learning rate 0.5000 step-time 21.05 perplexity 847.11
eval: bucket 0 perplexity 391.88
eval: bucket 1 perplexity 339.09
eval: bucket 2 perplexity 320.08
eval: bucket 3 perplexity 376.44
global step 150 learning rate 0.4950 step-time 15.53 perplexity 590.03
eval: bucket 0 perplexity 269.16
eval: bucket 1 perplexity 286.51
eval: bucket 2 perplexity 391.78
eval: bucket 3 perplexity 485.23
global step 160 learning rate 0.4950 step-time 19.36 perplexity 400.80
eval: bucket 0 perplexity 137.00
eval: bucket 1 perplexity 198.85
eval: bucket 2 perplexity 276.58
eval: bucket 3 perplexity 357.78
global step 170 learning rate 0.4950 step-time 17.50 perplexity 541.79
eval: bucket 0 perplexity 1051.29
eval: bucket 1 perplexity 626.64
eval: bucket 2 perplexity 496.32
eval: bucket 3 perplexity 458.85
global step 180 learning rate 0.4950 step-time 16.69 perplexity 400.65
eval: bucket 0 perplexity 178.12
eval: bucket 1 perplexity 299.86
eval: bucket 2 perplexity 294.84
eval: bucket 3 perplexity 296.46
global step 190 learning rate 0.4950 step-time 19.93 perplexity 886.73
eval: bucket 0 perplexity 860.60
eval: bucket 1 perplexity 910.16
eval: bucket 2 perplexity 909.24
eval: bucket 3 perplexity 786.04
global step 200 learning rate 0.4901 step-time 18.75 perplexity 449.64
eval: bucket 0 perplexity 152.13
eval: bucket 1 perplexity 234.41
eval: bucket 2 perplexity 249.66
eval: bucket 3 perplexity 285.95
global step 980 learning rate 0.4215 step-time 18.31 perplexity 208.74
eval: bucket 0 perplexity 78.45
eval: bucket 1 perplexity 108.40
eval: bucket 2 perplexity 137.83
eval: bucket 3 perplexity 173.53
global step 990 learning rate 0.4173 step-time 17.31 perplexity 175.05
eval: bucket 0 perplexity 78.37
eval: bucket 1 perplexity 119.72
eval: bucket 2 perplexity 169.11
eval: bucket 3 perplexity 202.89
(continues on next page)
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global step 1000 learning rate 0.4173 step-time 15.85 perplexity 174.33
eval: bucket 0 perplexity 76.52
eval: bucket 1 perplexity 125.97
eval: bucket 2 perplexity 150.13
eval: bucket 3 perplexity 181.07

After training the model for 350000 steps, you can play with the translation by switch main_train () to
main_decode (). You type in a English sentence, the program will outputs a French sentence.

Reading model parameters from wmt/translate.ckpt-350000
> Who is the president of the United States?
Qui est le président des Etats-Unis ?

1.2.12 Understand Translation

Seqg2seq

Sequence to sequence model is commonly be used to translate a language to another. Actually it can do many thing
you can’t imagine, we can translate a long sentence into short and simple sentence, for example, translation going
from Shakespeare to modern English. With CNN, we can also translate a video into a sentence, i.e. video captioning.

If you just want to use Seq2seq but not going to design a new algorithm, the only think you need to consider is the
data format including how to split the words, how to tokenize the words etc. In this tutorial, we described a lot about
data formating.

Basics

Sequence to sequence model is a type of “Many to many” but different with Synced sequence input and output in
PTB tutorial. Seq2seq generates sequence output after feeding all sequence inputs. The following two methods can
improve the accuracy:

* Reversing the inputs
 Attention mechanism

To speed up the computation, we used:
* Sampled softmax

Karpathy’s blog described Seq2seq as: “(4) Sequence input and sequence output (e.g. Machine Translation: an RNN
reads a sentence in English and then outputs a sentence in French).”

<eos>

T
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A B C < go > W
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\4
A 4

v

\4

X—s —s<
<— |}—>aN

As the above figure shows, the encoder inputs, decoder inputs and targets are:
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encoder_input = A B C
decoder_input = <go> W X Y Z
targets = W X Y Z <eos>

Note: in the code, the size of targets is one smaller than the size
of decoder_input, not like this figure. More details will be show later.

Papers

The English-to-French example implements a multi-layer recurrent neural network as encoder, and an Attention-based
decoder. It is the same as the model described in this paper:

e Grammar as a Foreign Language

The example uses sampled softmax to handle large output vocabulary size. In this example, as
target_vocab_size=4000, for vocabularies smaller than 512, it might be a better idea to just use a standard
softmax loss. Sampled softmax is described in Section 3 of the this paper:

* On Using Very Large Target Vocabulary for Neural Machine Translation

Reversing the inputs and Multi-layer cells have been successfully used in sequence-to-sequence models for translation
has beed described in this paper:

* Sequence to Sequence Learning with Neural Networks
Attention mechanism allows the decoder more direct access to the input, it was described in this paper:
* Neural Machine Translation by Jointly Learning to Align and Translate

Alternatively, the model can also be implemented by a single-layer version, but with Bi-directional encoder, was
presented in this paper:

* Neural Machine Translation by Jointly Learning to Align and Translate

Implementation

Bucketing and Padding

(Note that, TensorLayer supports Dynamic RNN layer after v1.2, so bucketing is not longer necessary in many cases)

Bucketing is a method to efficiently handle sentences of different length. When translating English to French, we will
have English sentences of different lengths L1 on input, and French sentences of different lengths L2 on output. We
should in principle create a seq2seq model for every pair (L1, L2+1) (prefixed by a GO symbol) of lengths of an
English and French sentence.

To minimize the number of buckets and find the closest bucket for each pair, then we could just pad every sentence
with a special PAD symbol in the end if the bucket is bigger than the sentence

We use a number of buckets and pad to the closest one for efficiency. In this example, we used 4 buckets as follow.

buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]

If the input is an English sentence with 3 tokens, and the corresponding output is a French sentence with 6 tokens,
then they will be put in the first bucket and padded to length 5 for encoder inputs (English sentence), and length 10 for
decoder inputs. If we have an English sentence with 8 tokens and the corresponding French sentence has 18 tokens,
then they will be fitinto (20, 25) bucket.

In other word, bucket (I, O) is (encoder_input_size, decoder_inputs_size).
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Given a pairof [["I", "go", "."], ["Je", "vais", "."]1] in tokenized format, we fit it into bucket
(5, 10). The training data of encoder inputs representing [PAD PAD "." "go" "I"] and decoder inputs
[GO "Je" "vais"™ "." EOS PAD PAD PAD PAD PAD]. The targets are decoder inputs shifted by one. The

target_weights is the mask of targets.

bucket = (I, O0) = (5, 10)

encoder_inputs = [PAD PAD "." "go" "I"] <-- 5 x batch_size
decoder_inputs = [GO "Je" "vais"™ "." EOS PAD PAD PAD PAD PAD] <-- 10 x batch_size
target_weights = [1 1 1 1 00 000 0 0] <—— 10 x batch_size
targets = ["Je" "vais"™ "." EOS PAD PAD PAD PAD PAD] <--— 9 x batch_size

In this example, one sentence is represented by one column, so assume batch_size = 3,bucket = (5, 10)

the training data will look like:

encoder_inputs decoder_inputs target_weights targets
0 0 0 1 1 1 1 1 1 87 71 16748
0 0 0 87 71 16748 1 1 1 2 3 14195
0 0 0 2 3 14195 0 1 1 0 2
0 0 3233 0 2 2 0 0 0 0 0 0
3 698 4061 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
where 0 : _PAD 1 : _GO 2 : _EOS 3 : _UNK

During training, the decoder inputs are the targets, while during prediction, the next decoder input is the last decoder
output.

Special vocabulary symbols, punctuations and digits

The special vocabulary symbols in this example are:

_PAD = b"_PAD"
_GO = b"_GOo"

_EOS = b"_EOS"
UNK = b"_ UNK"

PAD_ID = O <-— index (row number) in vocabulary
GO_ID = 1
EOS_ID = 2
UNK_ID = 3
_START_VOCAB = [_PAD, _GO, _EOS, _UNK]
ID MEANINGS
_PAD 0 Padding, empty word
_GO 1 1st element of decoder_inputs
_EOS 2 End of Sentence of targets
_UNK 3 Unknown word, words do not exist in vocabulary will be marked as 3

For digits, the normalize_digits of creating vocabularies and tokenized dataset must be consistent, if
normalize_digits=True all digits will be replaced by 0. Like 123 to 000", 9 to 0 and 71990-05 to 0000-
00, then 000, 0 and 0000-00 etc will be the words in the vocabulary (see vocab40000 . en).

Otherwise, if normalize_digits=False, different digits will be seem in the vocabulary, then the vocabulary
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size will be very big. The regular expression to find digits is _DIGIT_RE = re.compile (br"\d"). (see tl.
nlp.create_vocabulary () andtl.nlp.data_to_token_ids())

For word split, the regular expression is _WORD_SPLIT = re.compile(b" ([.,!2\"":;) (1)"), this
means use the symbols like [ . , ! 2 " ' : ; ) ( 1 and space to split the sentence, see t1.nlp.
basic_tokenizer () which is the default tokenizer of t1.nlp.create_vocabulary () and tl.nlp.
data_to_token_ids ().

All punctuation marks, suchas . , ) ( are all reserved in the vocabularies of both English and French.

Sampled softmax

Sampled softmax is a method to reduce the computation of cost so as to handle large output vocabulary. Instead of
compute the cross-entropy of large output, we compute the loss from samples of num_samples.

Dataset iteration

The iteration is done by EmbeddingAttentionSeg2segWrapper.get_batch, which get a random batch of
data from the specified bucket, prepare for step. The data

Loss and update expressions

The EmbeddingAttentionSeg2segWrapper has built in SGD optimizer.

What Next?

Try other applications.

1.2.13 More info

For more information on what you can do with TensorLayer, just continue reading through readthedocs. Finally, the
reference lists and explains as follow.

layers (tensorlayer. layers),

activation (tensorlayer.activation),

natural language processing (tensorlayer.nlp),
reinforcement learning (tensorlayer. rein),

cost expressions and regularizers (tensorlayer. cost),
load and save files (tensorlayer. files),

operating system (tensorlayer. ops),

helper functions (tensorlayer.utils),

visualization (tensorlayer.visualize),

iteration functions (tensorlayer. iterate),

preprocessing functions (tensorlayer.prepro),
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1.3 Example

1.3.1 Basics

* Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see
tutorial_mnist_simple.py on GitHub.

1.3.2 Computer Vision
* Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see
tutorial_mnist.py on GitHub.

» Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for
MNIST classification task, see tutorial_mnist.py on GitHub.

* Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST
dataset, see tutorial_mnist .py on GitHub.

* Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10
dataset, see tutorial_cifarl0.py and ‘‘tutorial_cifar10_tfrecord.py‘‘on GitHub.

* VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see
tutorial_vgglé6.py on GitHub.

* VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see
tutorial_vggl9.py on GitHub.

¢ InceptionV3 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see
tutorial_inceptionV3_tfslim.py on GitHub.

* Wide ResNet (CIFAR) by ritchieng.

* More CNN implementations of TF-Slim can be connected to TensorLayer via SlimNetsLayer.

1.3.3 Natural Language Processing
e Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see
tutorial_ptb_lstm_state_is_tuple.py on GitHub.

* Word Embedding - Word2vec. Train a word embedding matrix, see tutorial_word2vec_basic.py on
GitHub.

* Restore Embedding matrix. Restore a pre-train embedding matrix, see tutorial_generate_text.py on
GitHub.

o Text Generation. Generates new text scripts, using LSTM network, see tutorial_generate_text.py
on GitHub.

e Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT
English-to-French translation data, see tutorial_translate.py on GitHub.

1.3.4 Reinforcement Learning

e Deep Reinforcement Learning - Pong Game. Teach a machine to play Pong games, see
tutorial_atari_pong.py on GitHub.
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1.3.5 Applications

» Image Captioning - Reimplementation of Google’s im2txt by zsdonghao.

¢ DCGAN - Generating images by Deep Convolutional Generative Adversarial Networks by zsdonghao.

1.3.6 Special Examples

¢ Merge TF-Slim into TensorLayer. tutorial_inceptionV3_tfslim.py on GitHub.
* MultiplexerLayer. tutorial_mnist_multiplexer.py on GitHub.

» Data augmentation with TFRecord. Effective way to load and pre-process data, see tutorial_tfrecordsx.
py and tutorial_cifarlO_tfrecord.py on GitHub.

* Data augmentation with TensorLayer, see tutorial_image_preprocess.py on GitHub.

1.4 Development

TensorLayer is a major ongoing research project in Data Science Institute, Imperial College London. The goal of the
project is to develop a compositional language while complex learning systems can be build through composition of
neural network modules. The whole development is now participated by numerous contributors on Release. As an
open-source project by we highly welcome contributions! Every bit helps and will be credited.

1.4.1 What to contribute

Your method and example
If you have a new method or example in term of Deep learning and Reinforcement learning, you are welcome to
contribute.

* Provide your layer or example, so everyone can use it.

» Explain how it would work, and link to a scientific paper if applicable.

» Keep the scope as narrow as possible, to make it easier to implement.

Report bugs

Report bugs at the GitHub, we normally will fix it in 5 hours. If you are reporting a bug, please include:
* your TensorLayer, TensorFlow and Python version.
* steps to reproduce the bug, ideally reduced to a few Python commands.
* the results you obtain, and the results you expected instead.

If you are unsure whether the behavior you experience is a bug, or if you are unsure whether it is related to TensorLayer
or TensorFlow, please just ask on our mailing list first.

Fix bugs

Look through the GitHub issues for bug reports. Anything tagged with “bug” is open to whoever wants to implement
it. If you discover a bug in TensorLayer you can fix yourself, by all means feel free to just implement a fix and not
report it first.

38 Chapter 1. User Guide


https://github.com/tensorflow/models/tree/master/im2txt
https://github.com/zsdonghao/Image-Captioning
http://arxiv.org/abs/1511.06434
https://github.com/zsdonghao/dcgan
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer
https://github.com/zsdonghao/tensorlayer/releases
https://github.com/zsdonghao/tensorlayer
mailto:hao.dong11@imperial.ac.uk

TensorLayer Documentation, Release 1.3.7

Write documentation
Whenever you find something not explained well, misleading, glossed over or just wrong, please update it! The Edit

on GitHub link on the top right of every documentation page and the [source] link for every documented entity in the
API reference will help you to quickly locate the origin of any text.

1.4.2 How to contribute

Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit on GitHub link on the top right of a
documentation page or the [source] link of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser and send us a Pull Request. All you need for
this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup TensorLayer for development.

Documentation

The documentation is generated with Sphinx. To build it locally, run the following commands:

pip install Sphinx
sphinx—-quickstart

cd docs
make html

If you want to re-generate the whole docs, run the following commands:

cd docs
make clean
make html

To write the docs, we recommend you to install Local RTD VM.

Afterwards, open docs/_build/html/index.html to view the documentation as it would appear on readthe-
docs. If you changed a lot and seem to get misleading error messages or warnings, run make clean html to force
Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to ensure consistency throughout the
library. For additional information on the syntax and conventions used, please refer to the following documents:

e reStructuredText Primer
 Sphinx reST markup constructs

* A Guide to NumPy/SciPy Documentation

Testing

TensorLayer has a code coverage of 100%, which has proven very helpful in the past, but also creates some duties:

e Whenever you change any code, you should test whether it breaks existing features by just running the test
scripts.

* Every bug you fix indicates a missing test case, so a proposed bug fix should come with a new test that fails
without your fix.
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Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation looks good without any markup errors,
commit your changes to a new branch, push that branch to your fork and send us a Pull Request via GitHub’s web
interface.

All these steps are nicely explained on GitHub: https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to help us reviewing it. If it is fixing an
open issue, say, issue #123, add Fixes #123, Resolves #123 or Closes #123 to the description text, so GitHub will close
it when your request is merged.

1.5 More

1.5.1 FQA

How to effectively learn TensorLayer

No matter what stage you are in, we recommend you to spend just 10 minutes to read the source code of TensorLayer
and the Understand layer / Your layer in this website, you will find the abstract methods are very simple for everyone.
Reading the source codes helps you to better understand TensorFlow and allows you to implement your own methods
easily. For discussion, we recommend Gitter, Help Wanted Issues, QQ group and Wechat group.

Beginner

For people who new to deep learning, the contirbutors provided a number of tutorials in this website, these tutorials
will guide you to understand autoencoder, convolutional neural network, recurrent neural network, word embedding
and deep reinforcement learning and etc. If your already understand the basic of deep learning, we recommend you to
skip the tutorials and read the example codes on Github , then implement an example from scratch.

Engineer

For people from industry, the contirbutors provided mass format-consistent examples covering computer vision, nat-
ural language processing and reinforcement learning. Besides, there are also many TensorFlow users already im-
plemented product-level examples including image captioning, semantic/instance segmentation, machine translation,
chatbot and etc, which can be found online. It is worth noting that a wrapper especially for computer vision Tf-Slim
can be connected with TensorLayer seamlessly. Therefore, you may able to find the examples that can be used in your
project.

Researcher

For people from academic, TensorLayer was originally developed by PhD students who facing issues with other
libraries on implement novel algorithm. Installing TensorLayer in editable mode is recommended, so you can extend
your methods in TensorLayer. For researches related to image such as image captioning, visual QA and etc, you may
find it is very helpful to use the existing Tf-Slim pre-trained models with TensorLayer (a specially layer for connecting
Tf-Slim is provided).
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Exclude some layers from training

You may need to get the list of variables you want to update, TensorLayer provides two ways to get the variables list.

The first way is to use the all_params of a network, by default, it will store the variables in order. You can print
the variables information via t1.layers.print_all_variables (train_only=True) or network.
print_params (details=False). To choose which variables to update, you can do as below.

train_params = network.all_params[3:]

The second way is to get the variables by a given name. For example, if you want to get all variables which the layer
name contain dense, you can do as below.

train_params = tl.layers.get_variables_with_name ('dense', train_only=True,
—printable=True)

After you get the variable list, you can define your optimizer like that so as to update only a part of the variables.

train_op = tf.train.AdamOptimizer (0.001) .minimize (cost, var_list= train_params)

Visualization

Cannot Save Image

If you run the script via SSH control, sometime you may find the following error.

_tkinter.TclError: no display name and no S$SDISPLAY environment variable

If happen, use import matplotlib and matplotlib.use ('Agg') before import tensorlayer as
t 1. Alternatively, add the following code into the top of visualize.py.

import matplotlib
matplotlib.use ('Agg')
import matplotlib.pyplot as plt

Install Master Version

To use all new features of TensorLayer, you need to install the master version from Github. Before that, you need to
make sure you already installed git.

[stable version] pip install tensorlayer
[master version] pip install git+https://github.com/zsdonghao/tensorlayer.git

Editable Mode

e 1. Download the TensorLayer folder from Github.
» 2. Before editing the TensorLayer . py file.

e If your script and TensorLayer folder are in the same folder, when you edit the . py inside Tensor-
Layer folder, your script can access the new features.

 If your script and TensorLayer folder are not in the same folder, you need to run the following
command in the folder contains setup . py before you edit . py inside TensorLayer folder.
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pip install -e

Load Model

Note that,the t1.files.load_npz () canonly able to load the npz model saved by t1.files.save_npz ().
If you have a model want to load into your TensorLayer network, you can first assign your parameters into a list in
order,thenuse t1.files.assign_params () to load the parameters into your TensorLayer model.

1.5.2 Recruitment

TensorLayer Contributors

TensorLayer contributors are from Imperial College, Tsinghua University, Carnegie Mellon University, Google, Mi-
crosoft, Bloomberg and etc. There are many functions need to be contributed such as Maxout, Neural Turing Machine,
Attention, TensorLayer Mobile and etc. Please push on GitHub, every bit helps and will be credited. If you are inter-
ested in working with us, please contact us.

Data Science Institute, Imperial College London

Data science is therefore by nature at the core of all modern transdisciplinary scientific activities, as it involves the
whole life cycle of data, from acquisition and exploration to analysis and communication of the results. Data science
is not only concerned with the tools and methods to obtain, manage and analyse data: it is also about extracting value
from data and translating it from asset to product.

Launched on 1st April 2014, the Data Science Institute at Imperial College London aims to enhance Imperial’s excel-
lence in data-driven research across its faculties by fulfilling the following objectives.

The Data Science Institute is housed in purpose built facilities in the heart of the Imperial College campus in South
Kensington. Such a central location provides excellent access to collabroators across the College and across London.

* To act as a focal point for coordinating data science research at Imperial College by facilitating access to funding,
engaging with global partners, and stimulating cross-disciplinary collaboration.

* To develop data management and analysis technologies and services for supporting data driven research in the
College.

* To promote the training and education of the new generation of data scientist by developing and coordinating
new degree courses, and conducting public outreach programmes on data science.

* To advise College on data strategy and policy by providing world-class data science expertise.

* To enable the translation of data science innovation by close collaboration with industry and supporting com-
mercialization.

If you are interested in working with us, please check our vacancies and other ways to get involved , or feel free to
contact us.
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CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API - Layers

To make TensorLayer simple, we minimize the number of layer classes as much as we can. So we encourage you to
use TensorFlow’s function. For example, we provide layer for local response normalization, but we still suggest users
toapply tf.nn.lrnon network.outputs. More functions can be found in TensorFlow API.

2.1.1 Understand Basic layer

All TensorLayer layers have a number of properties in common:

* layer.outputs : a Tensor, the outputs of current layer.

e layer.all_params : alist of Tensor, all network variables in order.

* layer.all_layers : alist of Tensor, all network outputs in order.

* layer.all drop: adictionary of {placeholder : float}, all keeping probabilities of noise layer.
All TensorLayer layers have a number of methods in common:

e layer.print_params () : print the network variables information in order (after t1.layers.
initialize_global_variables (sess)). alternatively, print all variables by tl.layers.
print_all variables().

e layer.print_layers () : print the network layers information in order.
* layer.count_params () : print the number of parameters in the network.

The initialization of a network is done by input layer, then we can stacked layers as follow, a network is a Layer
class. The most important properties of a network are network.all params, network.all layers and
network.all_drop. The all_params is a list which store all pointers of all network parameters in order, the
following script define a 3 layer network, then:
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all_params =[WI, bl, W2, b2, W_out, b_out]

To get specified variables, you can use network.all_params[2:3] or get_variables_with_name ().
Asthe all_layers is alist which store all pointers of the outputs of all layers, in the following network:

all_layers = [drop(?,784), relu(?,800), drop(?,800), relu(?,800), drop(?,800)], identity(?,10)]

where ? reflects any batch size. You can print the layer information and parameters information by using network.
print_layers () and network.print_params (). To count the number of parameters in a network, run
network.count_params ().

sess = tf.InteractiveSession ()

x = tf.placeholder (tf.float32, shape=[None, 784], name='x")
y_ = tf.placeholder(tf.int64, shape=[None, ], name='y_ ')

network = tl.layers.Inputlayer (x, name='input_ layer')
network = tl.layers.Dropoutlayer (network, keep=0.8, name='dropl")
network = tl.layers.Denselayer (network, n_units=800,

act = tf.nn.relu, name='relul')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop2')
network = tl.layers.Denselayer (network, n_units=800,

act = tf.nn.relu, name='relu2')
network = tl.layers.Dropoutlayer (network, keep=0.5, name='drop3')
network = tl.layers.Denselayer (network, n_units=10,

act = tl.activation.identity,

name="'output_layer")

y = network.outputs
y_op = tf.argmax(tf.nn.softmax(y), 1)

cost = tl.cost.cross_entropy(y, y_)

train_params = network.all_ params

train_op = tf.train.AdamOptimizer (learning_rate, betal=0.9, beta2=0.999,
epsilon=1e-08, use_locking=False) .minimize (cost, var_list,

—= train_params)

tl.layers.initialize_global_variables (sess)

network.print_params ()
network.print_layers ()

In addition, network.all_drop is a dictionary which stores the keeping probabilities of all noise layer. In the
above network, they are the keeping probabilities of dropout layers.

So for training, enable all dropout layers as follow.

feed_dict = {x: X_train_a, y_: y_train_a}
feed_dict.update( network.all_drop )

loss, _ = sess.run([cost, train_opl], feed_dict=feed_dict)
feed_dict.update( network.all_drop )

For evaluating and testing, disable all dropout layers as follow.

feed_dict = {x: X_val, y_: y_val}
feed_dict.update (dp_dict)

o

print (" val loss: " % sess.run(cost, feed_dict=feed_dict))

(continues on next page)
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(continued from previous page)

o

print (" val acc: %" % np.mean(y_val ==
sess.run(y_op, feed_dict=feed_dict)))

For more details, please read the MNIST examples on Github.

2.1.2 Understand Dense layer

Before creating your own TensorLayer layer, let’s have a look at Dense layer. It creates a weights matrix and biases
vector if not exists, then implement the output expression. At the end, as a layer with parameter, we also need to
append the parameters into all_params.

class Denselayer (Layer) :

mon

The :class: DenselLayer class 1s a fully connected layer.

Parameters
layer : a :class: Layer 1instance

The 'Layer ' class feeding into this layer.
n_units : int

The number of units of the layer.
act : activation function

The function that is applied to the layer activations.
W_init : weights initializer

The initializer for initializing the weight matrix.
b _init : biases initializer

The initializer for initializing the bias vector. If None, skip biases.
W_init_args : dictionary

The arguments for the weights tf.get_variable.
b_init_args : dictionary

The arguments for the biases tf.get_variable.
name : a string or None

An optional name to attach to this layer.
mirrmn

def _ init_ (
self,
layer = None,
n_units = 100,
act = tf.nn.relu,
W_init = tf.truncated_normal_initializer (stddev=0.1),
b_init = tf.constant_initializer (value=0.0),
W_init_args = {},
b_init_args = {},
name ='dense_layer',
)t
Layer.__init self, name=name)

_(
self.inputs = layer.outputs
if self.inputs.get_shape() .ndims != 2:
raise Exception("The input dimension must be rank 2")
n_in = int (self.inputs._shape[-1])
self.n_units = n_units
print (" tensorlayer:Instantiate Denselayer ¢s: %d, $s" % (self.name, self.n_
—units, act))
with tf.variable_scope (name) as vs:
W = tf.get_variable (name='W', shape=(n_in, n_units), initializer=W_init,

++W_1'n1'1—_;1‘r‘rj )

(continues on next page)
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(continued from previous page)

if b_init:
b = tf.get_variable (name='b', shape=(n_units), initializer=b_init,
—**b_init_args )
self.outputs = act (tf.matmul (self.inputs, W) + b)#, name=name)
else:
self.outputs = act (tf.matmul (self.inputs, W))

# Hint : 1list (), dict() 1is pass by value (shallow).
self.all_layers = list (layer.all_layers)
self.all_params list (layer.all_params)
self.all _drop = dict (layer.all_drop)
self.all_layers.extend( [self.outputs] )
if b_init:

self.all_params.extend( [W, b] )
else:

self.all_params.extend( [W] )

2.1.3 Your layer
A simple layer

To implement a custom layer in TensorLayer, you will have to write a Python class that subclasses Layer and implement
the outputs expression.

The following is an example implementation of a layer that multiplies its input by 2:

class Doublelayer (Layer) :
def _ init_ (

self,
layer = None,
name ='double_layer',
)t
Layer.__init self, name=name)

—(
self.inputs = layer.outputs
self.outputs = self.inputs * 2

self.all_layers = list(layer.all_layers)
self.all_params list (layer.all_params)
self.all_drop = dict (layer.all_drop)

self.all_layers.extend( [self.outputs] )

Modifying Pre-train Behaviour

Greedy layer-wise pretraining is an important task for deep neural network initialization, while there are many kinds
of pre-training methods according to different network architectures and applications.

For example, the pre-train process of Vanilla Sparse Autoencoder can be implemented by using KL divergence (for
sigmoid) as the following code, but for Deep Rectifier Network, the sparsity can be implemented by using the L1
regularization of activation output.

# Vanilla Sparse Autoencoder
beta = 4
rho = 0.15

(continues on next page)
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(continued from previous page)

p_hat =
KLD = beta * tf.reduce_sum/(
+ (1- rho)

tf.reduce_mean (activation_out, reduction_indices = 0)
rho » tf.log(tf.div(rho, p_hat))
x» tf.log((1l- rho)/ (tf.sub(float(l), p_hat))) )

There are many pre-train methods, for this reason, TensorLayer provides a simple way to modify or design
your own pre-train method. For Autoencoder, TensorLayer uses ReconLayer.__init__ () to define the re-
construction layer and cost function, to define your own cost function, just simply modify the self.cost
in ReconLayer.__init__ (). To creat your own cost expression please read Tensorflow Math. By de-
fault, ReconLayer only updates the weights and biases of previous 1 layer by using self.train_params
= self.all _params[-4:], where the 4 parameters are [W_encoder, b_encoder, W_decoder,
b_decoder], where W_encoder, b_encoder belong to previous DenseLayer, W_decoder, b_decoder
belong to this ReconLayer. In addition, if you want to update the parameters of previous 2 layers at the same time,

simply modify [-4:] to [-6:].

Reconlayer.__init__ (...):
self.train_params =

self.cost = mse + Ll_a + L2_w

self.all_params[—4:]

2.1.4 Layer list

get_variables with_name(name[,

D

train_only,

Get variable list by a given name scope.

set_name_reuse([enable])

Enable or disable reuse layer name.

print_all_variables([train_only])

Print all trainable and non-trainable variables without
tl.layers.initialize_global_variables(sess)

initialize_global_variables([sess])

Excute sess.run (tf.
global_variables_initializer()) for
TF12+ or sess.run(tf.initialize_all_variables()) for
TF11.

Layer([inputs, name])

The Layer class represents a single layer of a neural
network.

InputLayer([inputs, n_features, name])

The InputLayer class is the starting layer of a neural
network.

Word2vecEmbeddingInputlayer([inputs,...])

The Word2vecEmbeddingInputlayer class is a
fully connected layer, for Word Embedding.

EmbeddingInputlayer([inputs, ...])

The EmbeddingInputlayer class is a fully con-
nected layer, for Word Embedding.

DenseLayer([layer, n_units, act, W_init, ...])

The DenseLayer class is a fully connected layer.

ReconLayer([layer, x_recon, name, n_units, act])

The ReconLayer class is a reconstruction layer
DenseLayer which use to pre-train a DenseLayer.

Dropout Layer([layer, keep, is_fix, ...])

The DropoutLayer class is a noise layer which ran-
domly set some values to zero by a given keeping prob-
ability.

GaussianNoiseLayer([layer, mean, stddev, ...])

The GaussianNoiseLayer class is noise layer that
adding noise with normal distribution to the activation.

Continued on next page
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Table 1 — continued from previous page

DropconnectDenseLayer([layer, keep, ...])

The DropconnectDenselLayer class is
Denselayer with DropConnect behaviour which
randomly remove connection between this layer to
previous layer by a given keeping probability.

ConvldLayer([layer, act, shape, strides, ...]) The ConvidLayer class is a 1D CNN layer, see
tf.nn.convld.
Conv2dLayer([layer, act, shape, strides, ...]) The Conv2dLayer class is a 2D CNN layer, see

tf.nn.conv2d.

DeConvZ2dLayer([layer, act, shape, ...])

The DeConv2dLayer class is deconvolutional 2D

layer, see tf.nn.conv2d_transpose.

Conv3dLayer([layer, act, shape, strides, ...])

The Conv3dLayer class is a 3D CNN layer, see

tf.nn.conv3d.

DeConv3dLayer([layer, act, shape, ...])

The DeConv3dLayer class is deconvolutional 3D
layer, see tf.nn.conv3d_transpose.

PoolLayer([layer, ksize, strides, padding, ...])

The PoolLayer class is a Pooling layer, you can
choose tf.nn.max_pool and tf.nn.avg_pool
for 2D or tf.nn.max_pool3d() and tf.nn.
avg_pool3d () for 3D.

UpSampling2dLayer([layer, size, is_scale, ...])

The UpSampling2dLayer class is upSampling 2d
layer, see tf.image.resize_images.

DownSampling2dLayer([layer, size, is_scale, ...

The DownSamplingZdLayer class is downSam-
pling 2d layer, see tf.image.resize_images.

AtrousConv2dLayer([layer, n_filter, ...])

The At rousConv2dLayer class is Atrous convolu-
tion (a.k.a.

LocalResponseNormLayer([layer, ...])

is for
tf.nn.

The LocalResponseNormLayer class
Local Response Normalization, see
local_response_normalization.

Conv2d(net[, n_filter, filter_size, ...])

Wrapper for Conv2dLayer, if you don’t understand
how to use Conv2dLayer, this function may be easier.

DeConvZ2d(net[, n_out_channel, filter_size, ...])

Wrapper for DeConv2dLayer, if you don’t under-
stand how to use DeConv2dLayer, this function may
be easier.

MaxPoolZ2d(net[, filter_size, strides, ...])

Wrapper for PoolLayer.

MeanPoolZ2d(net|, filter_size, strides, ...])

Wrapper for PoolLayer.

BatchNormLayer([layer, decay, epsilon, act, ...])

The Bat chNormLayer class is a normalization layer,
see tf.nn.batch_normalizationand tf.nn.
moments.

LocalResponseNormLayer([layer, ...])

The LocalResponseNormLayer class is for
Local Response Normalization, see tf.nn.
local_response_normalization.

RNNLayer([layer, cell_fn, cell_init_args, ...])

The RNNLayer class is a RNN layer, you can imple-
ment vanilla RNN, LSTM and GRU with it.

BiRNNLayer([layer, cell_fn, cell_init_args, ...])

The Bi RNNLayer class is a Bidirectional RNN layer.

advanced_indexing_op(input, index)

Advanced Indexing for Sequences, returns the outputs
by given sequence lengths.

retrieve seq length_op(data)

An op to compute the length of a sequence from input
shape of [batch_size, n_step(max), n_features], it can be
used when the features of padding (on right hand side)
are all zeros.

Continued on next page
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Table 1 — continued from previous page

retrieve seq length opZ2(data)

An op to compute the length of a sequence, from input
shape of [batch_size, n_step(max)], it can be used when
the features of padding (on right hand side) are all zeros.

DynamicRNNLayer([layer, cell_fn,...])

The DynamicRNNLayer class is a Dynamic RNN
layer, see t £ .nn.dynamic_rnn.

BiDynamicRNNLayer([layer, cell_fn,...])

The BiDynamicRNNLayer class is a RNN layer, you
can implement vanilla RNN, LSTM and GRU with it.

Seqg2Seqg([net_encode_in, net_decode_in, ...])

The Seg2Seq class is a simple DynamicRNNLayer
based Seq2seq layer, both encoder and decoder are
DynamicRNNLayer, network details see Model and
Sequence to Sequence Learning with Neural Networks

PeekySeqg2Seq([net_encode_in, net_decode_in,

)

Waiting for contribution.

AttentionSeqg2Seqg([net_encode_in, ...])

Waiting for contribution.

FlattenLayer([layer, name])

The FlattenLayer class is layer which reshape
high-dimension input to a vector.

ReshapeLayer([layer, shape, name])

The ReshapeLayer class is layer which reshape the
tensor.

LambdaLayer([layer, fn, fn_args, name])

The LambdaLayer class is a layer which is able to use
the provided function.

Concat Layer([layer, concat_dim, name])

The ConcatLayer class is layer which concat
(merge) two or more Denselayer to a single
class:DenseLayer.

ElementwiseLayer([layer, combine_fn, name])

The ElementwiseLayer class combines multiple
Layer which have the same output shapes by a given
elemwise-wise operation.

ExpandDimsLayer([layer, axis, name])

The ExpandDimsLayer class inserts a dimension of
1 into a tensor’s shape, see tf.expand_dims() .

T1ileLayer([layer, multiples, name])

The TileLayer class constructs a tensor by tiling a
given tensor, see tf.tile() .

S1imNetsLayer([layer, slim_layer, ...])

The S1imNetsLayer class can be used to merge all
TF-Slim nets into TensorLayer.

PReluLayer([layer, channel_shared, a_init, ...])

The PRelulLayer class is Parametric Rectified Linear
layer.

MultiplexerLayer([layer, name])

The MultiplexerLayer selects one of several in-
put and forwards the selected input into the output, see
tutorial_mnist_multiplexer.py.

EmbeddingAttentionSegZsegiWrapper(...[,
)

Sequence-to-sequence model with attention and for
multiple buckets.

flatten reshape(variable[, name])

Reshapes high-dimension input to a vector.

clear_layers_name()

Clear all layer names in set_keep[‘_layers_name_list’],
enable layer name reuse.

initialize rnn_state(state)

Return the initialized RNN state.

list_remove_repeat([l])

Remove the repeated items in a list, and return the pro-
cessed list.

2.1.5 Name Scope and Sharing Parameters

These functions help you to reuse parameters for different inference (graph), and get a list of parameters by given

name. About TensorFlow parameters sharing click here.
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Get variables with name

tensorlayer.layers.get_variables_with_name (name, train_only=True, printable=False)
Get variable list by a given name scope.

Examples

>>> dense_vars = get_variable_with_name ('dense', True, True)

Enable layer name reuse

tensorlayer.layers.set_name_ reuse (enable=True)
Enable or disable reuse layer name. By default, each layer must has unique name. When you want two or more
input placeholder (inference) share the same model parameters, you need to enable layer name reuse, then allow
the parameters have same name scope.

Parameters

enable [boolean, enable name reuse.]

Examples

>>> def embed_seqg(input_seqgs, is_train, reuse):

>>> with tf.variable_scope ("model", reuse=reuse):

>>> tl.layers.set_name_reuse (reuse)

>>> network = tl.layers.EmbeddingInputlayer (
inputs = input_segs,
vocabulary_size = vocab_size,
embedding_size = embedding_size,

C. name = 'e_embedding')

>>> network = tl.layers.DynamicRNNLayer (network,

cell_fn = tf.nn.rnn_cell.BasicLSTMCell,

n_hidden = embedding_size,

dropout = (0.7 if is_train else None),

initializer = w_init,

.. sequence_length = tl.layers.retrieve_seq_length_op2 (input_
—seqgs) ,

return_last = True,
. name = 'e_dynamicrnn',)
>>> return network
>>>
>>> net_train = embed_seqg(t_caption, is_train=True, reuse=False)
>>> net_test = embed_seq(t_caption, is_train=False, reuse=True)

* see tutorial_ptb_lstm.py for example.

Print variables

tensorlayer.layers.print_all_variables (train_only=False)
Print all trainable and non-trainable variables without tl.layers.initialize_global_variables(sess)

Parameters
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train_only [boolean] If True, only print the trainable variables, otherwise, print all variables.

Initialize variables

tensorlayer.layers.initialize_global_variables (sess=None)
Excute sess.run(tf.global_variables_initializer()) for TF12+ or
sess.run(tf.initialize_all_variables()) for TF11.

Parameters

sess [a Session]

2.1.6 Basic layer

class tensorlayer.layers.Layer (inputs=None, name="layer’)
The Layer class represents a single layer of a neural network. It should be subclassed when implementing new
types of layers. Because each layer can keep track of the layer(s) feeding into it, a network’s output Layer
instance can double as a handle to the full network.

Parameters
inputs [a Layer instance] The Layer class feeding into this layer.

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.7 Input layer
class tensorlayer.layers.InputLayer (inputs=None, n_features=None, name="input_layer’)
The InputLayer class is the starting layer of a neural network.
Parameters
inputs [a TensorFlow placeholder] The input tensor data.
name [a string or None] An optional name to attach to this layer.

n_features [a int] The number of features. If not specify, it will assume the input is with the
shape of [batch_size, n_features], then select the second element as the n_features. It is
used to specify the matrix size of next layer. If apply Convolutional layer after InputLayer,
n_features is not important.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
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2.1.8 Word Embedding Input layer

Word2vec layer for training

class tensorlayer.layers.Word2vecEmbeddingInputlayer (inputs=None,

train_labels=None, vo-
cabulary_size=80000,
embedding_size=200,
num_sampled=64,
nce_loss_args={},

E_init=<tensorflow.python.ops.init_ops.RandomUnifori

object>, E_init_args={},

nce_W_init=<tensorflow.python.ops.init_ops.Truncated

object>, nce_W_init_args={},

nce_b_init=<tensorflow.python.ops.init_ops.Constant

object>, nce_b_init_args={},
name="word2vec_layer’)

The Word2vecEmbeddingInputlayer class is a fully connected layer, for Word Embedding. Words are
input as integer index. The output is the embedded word vector.

Parameters

inputs [placeholder] For word inputs. integer index format.

train_labels [placeholder] For word labels. integer index format.
vocabulary_size [int] The size of vocabulary, number of words.

embedding_size [int] The number of embedding dimensions.

num_sampled [int] The Number of negative examples for NCE loss.
nce_loss_args [a dictionary] The arguments for tf.nn.nce_loss()

E_init [embedding initializer] The initializer for initializing the embedding matrix.
E_init_args [a dictionary] The arguments for embedding initializer

nce_W_init [NCE decoder biases initializer] The initializer for initializing the nce decoder
weight matrix.

nce_W_init_args [a dictionary] The arguments for initializing the nce decoder weight matrix.

nce_b_init [NCE decoder biases initializer] The initializer for tf.get_variable() of the nce de-
coder bias vector.

nce_b_init_args [a dictionary] The arguments for tf.get_variable() of the nce decoder bias vec-
tor.

name [a string or None] An optional name to attach to this layer.

References

* tensorflow/examples/tutorials/word2vec/word2vec_basic.py

Examples

* Without TensorLayer : see tensorflow/examples/tutorials/word2vec/word2vec_basic.py
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>>> train_inputs = tf.placeholder(tf.int32,

>>> train_labels = tf.placeholder(tf.int32,

>>> embeddings = tf.Variable(
tf.random_uniform([vocabulary_size,

shape=[batch_size])
shape=[batch_size, 11])

embedding_size], -1.0, 1.0))

>>> embed = tf.nn.embedding_lookup (embeddings,
>>> nce_weights = tf.Variable(
tf.truncated_normal ([vocabulary_size,

train_inputs)

embedding_size]

’
S stddev=1.0 / math.sqgrt (embedding_size)))
>>> nce_biases = tf.Variable (tf.zeros([vocabulary_size]))

>>> cost = tf.reduce_mean (
tf.nn.nce_loss (weights=nce_weights,

num_sampled=num_sampled,
num_true=1))

biases=nce_biases,

inputs=embed, labels=train_labels,

num_classes=vocabulary_size,

» With TensorLayer : see tutorial_word2vec_basic.py

>>> train_inputs = tf.placeholder(tf.int32,
>>> train_labels = tf.placeholder(tf.int32,

inputs = train_inputs,
train_labels = train_labels,

shape=[batch_size])
shape=[batch_size, 1])

>>> emb_net = tl.layers.Word2vecEmbeddingInputlayer (

vocabulary_size = vocabulary_size,
embedding_size = embedding_size,

num_sampled = num_sampled,
name ='word2Z2vec_layer',
)

>>> cost = emb_net.nce_cost
>>> train_params = emb_net.all_params
>>> train _op = tf.train.GradientDescentOptimizer (learning rate) .minimize (
.. cost, var_list=train_params)
>>> normalized_embeddings = emb_net.normalized_embeddings

Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

Embedding Input layer

class tensorlayer.layers.EmbeddingInputlayer (inputs=None,

vocabu-
lary_size=80000,  embedding_size=200,
E_init=<tensorflow.python.ops.init_ops.RandomUniform
object>, E_init_args={},
name="embedding_layer’)

The EmbeddingInputlayer class is a fully connected layer, for Word Embedding. Words are input as
integer index. The output is the embedded word vector.

If you have a pre-train matrix, you can assign the matrix into it. To train a word embedding matrix, you can

used class:Word2vecEmbeddingInputlayer.

Note that, do not update this embedding matrix.
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Parameters

inputs [placeholder] For word inputs. integer index format. a 2D tensor :
num_steps(num_words)]

vocabulary_size [int] The size of vocabulary, number of words.

embedding_size [int] The number of embedding dimensions.

E_init [embedding initializer] The initializer for initializing the embedding matrix.
E_init_args [a dictionary] The arguments for embedding initializer

name [a string or None] An optional name to attach to this layer.

[batch_size,

Examples

>>> vocabulary_size = 50000

>>> embedding_size = 200

>>> model_file_name = "model word2vec_ 50k _200"
>>> batch_size = None

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>

all_var = tl.files.load_npy_to_any (name=model_file_name+'.npy')
data = all_var(['data']l; count = all_var|['count']

dictionary = all_var(['dictionary']

reverse_dictionary = all_var|['reverse_dictionary']
tl.files.save_vocab (count, name='vocab_'+model_file_name+'.txt"')

del all_var, data, count

load_params = tl.files.load_npz (name=model_file_name+'.npz")
x = tf.placeholder (tf.int32, shape=[batch_size])
y_ = tf.placeholder (tf.int32, shape=[batch_size, 11)
emb_net = tl.layers.EmbeddingInputlayer (
inputs = x,
vocabulary_size = vocabulary_size,
embedding_size = embedding_size,
name ='embedding_layer')
tl.layers.initialize_global_variables (sess)

tl.files.assign_params (sess, [load_params[0]], emb_net)
word = b'hello'

word_id = dictionary[word]

print ('word_id:"', word_id)

6428
words = [b'i', b'am', b'hao', b'dong']
word_ids = tl.files.words_to_word_ids (words, dictionary)

context = tl.files.word_ids_to_words (word_ids, reverse_dictionary)
print ('word_ids:', word_ids)

[72, 1226, 46744, 20048]

print ('context:', context)

[b'1', b'am', b'hao', b'dong']

vector = sess.run (emb_net.outputs, feed_dict={x : [word_id]})
print ('vector:', vector.shape)

(1, 200)

vectors = sess.run (emb_net.outputs, feed_ dict={x : word_ids})
print ('vectors:', vectors.shape)

(4, 200)
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Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.9 Dense layer

Dense layer

class tensorlayer.layers.DenseLayer (layer=None, n_units=100, act=<function identity>,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name=’dense_layer’)
The DenseLayer class is a fully connected layer.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
n_units [int] The number of units of the layer.
act [activation function] The function that is applied to the layer activations.
W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer or None] The initializer for initializing the bias vector. If None, skip
biases.

W_init_args [dictionary] The arguments for the weights tf.get_variable.
b_init_args [dictionary] The arguments for the biases tf.get_variable.

name [a string or None] An optional name to attach to this layer.

Notes

If the input to this layer has more than two axes, it need to flatten the input by using FlattenLayer in this
case.

Examples

>>> network = tl.layers.InputlLayer (x, name='input_layer")

>>> network = tl.layers.Denselayer (
network,
n_units=800,
act = tf.nn.relu,
W_init=tf.truncated_normal_initializer (stddev=0.1),
name ='relu_layer'

)
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>>> Without Tensorlayer, you can do as follow.
>>> W = tf.Variable(
tf.random_uniform([n_in, n_units], -1.0, 1.0), name='W")
>>> b = tf.Variable(tf.zeros (shape=[n_units]), name='b'")
>>> y = tf.nn.relu(tf.matmul (inputs, W) + b)

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Reconstruction layer for Autoencoder

class tensorlayer.layers.ReconlLayer (layer=None, x_recon=None, name='recon_layer’,

n_units=784, act=<function softplus>)
The ReconLayer class is a reconstruction layer DenseLayer which use to pre-train a DenseLayer.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
x_recon [tensorflow variable] The variables used for reconstruction.
name [a string or None] An optional name to attach to this layer.
n_units [int] The number of units of the layer, should be equal to x_recon

act [activation function] The activation function that is applied to the reconstruction layer. Nor-
mally, for sigmoid layer, the reconstruction activation is sigmoid; for rectifying layer, the
reconstruction activation is softplus.

Notes

The input layer should be DenseLayer or a layer has only one axes. You may need to modify this part to define
your own cost function. By default, the cost is implemented as follow: - For sigmoid layer, the implementation
can be UFLDL - For rectifying layer, the implementation can be Glorot (2011). Deep Sparse Rectifier Neural
Networks

Examples

>>> network = tl.layers.Inputlayer (x, name='input_ layer')

>>> network = tl.layers.Denselayer (network, n_units=196,
act=tf.nn.sigmoid, name='sigmoidl")
>>> recon_layerl = tl.layers.ReconlLayer (network, x_recon=x, n_units=784,

act=tf.nn.sigmoid, name='recon_layerl')
>>> recon_layerl.pretrain(sess, x=x, X_train=X_train, X _val=X_val,
denoise_name=None, n_epoch=1200, batch_size=128,
print_freg=10, save=True, save_name='wlpre_ ')
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Methods

pretrain(self, sess, x, X _train, X_val, denoise_name=None, | Start to pre-train the parame-
n_epoch=100, batch_size=128, print_freq=10, save=True, | ters of previous DenseLayer.
save_name="wlpre_’)

2.1.10 Noise layer
Dropout layer

class tensorlayer.layers.DropoutLayer (layer=None, keep=0.5, is_fix=False, is_train=True,

name="dropout_layer’)
The Dropout Layer class is a noise layer which randomly set some values to zero by a given keeping proba-
bility.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
keep [float] The keeping probability, the lower more values will be set to zero.

is_fix [boolean] Default False, if True, the keeping probability is fixed and cannot be changed
via feed_dict.

is_train [boolean] If False, skip this layer, default is True.

name [a string or None] An optional name to attach to this layer.

Notes

e A frequent question regarding DropoutLayer 1is that why it donot have is_train like
BatchNormLayer.

In many simple cases, user may find it is better to use one inference instead of two inferences for training and
testing seperately, Dropout Layer allows you to control the dropout rate via feed_dict. However, you can fix
the keeping probability by setting is_fix to True.

Examples

¢ Define network

>>> network = tl.layers.Inputlayer (x, name='input_ layer')

>>> network = tl.layers.DropoutlLayer (network, keep=0.8, name='dropl'")

>>> network = tl.layers.Denselayer (network, n_units=800, act = tf.nn.relu, name=
—'relul'")

>>>

¢ For training, enable dropout as follow.
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>>> feed_dict = {x: X_train_a, y_: y_train_a}

>>> feed_dict.update( network.all_drop ) # enable noise layers
>>> sess.run(train_op, feed_dict=feed_dict)

>>>

* For testing, disable dropout as follow.

>>> dp_dict = tl.utils.dict_to_one( network.all_drop ) # disable noise layers

>>> feed_dict = {x: X_val_a, y_: y_val_a}

>>> feed_dict.update (dp_dict)

>>> err, ac = sess.run([cost, acc], feed_dict=feed_dict)

>>>

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Gaussian noise layer

class tensorlayer.layers.GaussianNoiseLayer (layer=None, mean=0.0, std-
dev=1.0, is_train=True,
name=’gaussian_noise_layer’)
The GaussianNoiseLayer class is noise layer that adding noise with normal distribution to the activation.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
mean [float]
stddev [float]
is_train [boolean] If False, skip this layer, default is True.

name |[a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
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Dropconnect + Dense layer

class tensorlayer.layers.DropconnectDenseLayer (layer=None, n_units=100,

act=<function identity>,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>,
b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={},
b_init_args={},
name="dropconnect_layer’)

The DropconnectDenseLayer class is DenseLayer with DropConnect behaviour which randomly re-

move connection between this layer to previous layer by a given keeping probability.

keep=0.5,

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
keep [float] The keeping probability, the lower more values will be set to zero.
n_units [int] The number of units of the layer.
act [activation function] The function that is applied to the layer activations.
W_init [weights initializer] The initializer for initializing the weight matrix.
b_init [biases initializer] The initializer for initializing the bias vector.
W_init_args [dictionary] The arguments for the weights tf.get_variable().
b_init_args [dictionary] The arguments for the biases tf.get_variable().

name [a string or None] An optional name to attach to this layer.

References

e Wan, L. (2013). Regularization of neural networks using dropconnect

Examples

>>> network = tl.layers.Inputlayer (x, name='input layer')

>>> network = tl.layers.DropconnectDenselayer (network, keep = 0.8,
.. n_units=800, act = tf.nn.relu, name='dropconnect_relul')
>>> network = tl.layers.DropconnectDenselayer (network, keep = 0.5,

n_units=800, act = tf.nn.relu, name='dropconnect_relu2")
>>> network = tl.layers.DropconnectDenselayer (network, keep = 0.5,
n_units=10, act = tl.activation.identity, name='output_layer')

Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network
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2.1.11 Convolutional layer (Pro)

1D Convolutional layer

class tensorlayer.layers.ConvldLayer (layer=None, act=<function identity>,
shape=[5, 5, 1], strides=1, padding="SAME’,
use_cudnn_on_gpu=None, data_format=None,

W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name="cnn_layer’)

The ConvldLayer classis a 1D CNN layer, see tf.nn.convld.

Parameters

layer [a Layer instance] The Layer class feeding into this layer, [batch, in_width,
in_channels].

act [activation function, None for identity.]

shape [list of shape] shape of the filters, [filter_length, in_channels, out_channels].
strides [an int.] The number of entries by which the filter is moved right at each step.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
use_cudnn_on_gpu [An optional bool. Defaults to True.]

data_format [An optional string from “NHWC”, “NCHW”. Defaults to “NHWC?”, the data is
stored in the order of [batch, in_width, in_channels]. The “NCHW?” format stores data as
[batch, in_channels, in_width].]

W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer or None] The initializer for initializing the bias vector. If None, skip
biases.

W_init_args [dictionary] The arguments for the weights tf.get_variable().
b_init_args [dictionary] The arguments for the biases tf.get_variable().

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D Convolutional layer

class tensorlayer.layers.Conv2dLayer (layer=None, act=<function identity>, shape=/[5,
5, 1, 100], strides=[1, 1, 1, 1], padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name="cnn_layer’)
The Conv2dLayer class is a 2D CNN layer, see tf.nn.conv2d.
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Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.
shape [list of shape] shape of the filters, [filter_height, filter_width, in_channels, out_channels].
strides [a list of ints.] The stride of the sliding window for each dimension of input.
It Must be in the same order as the dimension specified with format.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer or None] The initializer for initializing the bias vector. If None, skip
biases.

W_init_args [dictionary] The arguments for the weights tf.get_variable().
b_init_args [dictionary] The arguments for the biases tf.get_variable().

name [a string or None] An optional name to attach to this layer.

Notes

* shape = [h, w, the number of output channel of previous layer, the number of output channels]

¢ the number of output channel of a layer is its last dimension.

Examples

>>> x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])

>>> network = tl.layers.InputlLayer (x, name='input_layer")

>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
shape = [5, 5, 1, 3217, # 32 features for each 5x5 patch
strides=(1, 1, 1, 1],
padding="'SAME',
W_init=tf.truncated_normal_initializer (stddev=5e-2),
W_init_args={},

b_init = tf.constant_initializer (value=0.0),
b_init_args = {},
C name ='cnn_layerl") # output: (72, 28, 28, 32)
>>> network = tl.layers.PoollLayer (network,

ksize=[1, 2, 2, 11,

strides=[1, 2, 2, 1],

padding="'SAME',

pool = tf.nn.max_pool,

name ='pool_ layerl',) # output: (?, 14, 14, 32)

>>> Without TensorLayer, you can implement 2d convolution as follow.
>>> W = tf.Variable (W_init (shape=I[5, 5, 1, 32], ), name='W_conv')
>>> b = tf.Variable(b_init (shape=[32], ), name='b_ conv')
>>> outputs = tf.nn.relu( tf.nn.conv2d(inputs, W,

strides=[1, 1, 1, 11,

padding="'SAME'") + b )
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Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D Deconvolutional layer

class tensorlayer.layers.DeConv2dLayer (layer=None, act=<function identity>, shape=[3,
3, 128, 256], output_shape=[I1, 256, 256,
128], strides=[1, 2, 2, 1], padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name="decnn2d_layer’)

The DeConv2dLayer class is deconvolutional 2D layer, see tf.nn.conv2d_transpose.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.

shape [list of shape] shape of the filters, [height, width, output_channels, in_channels], filter’s
in_channels dimension must match that of value.

output_shape [list of output shape] representing the output shape of the deconvolution op.
strides [a list of ints.] The stride of the sliding window for each dimension of the input tensor.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.

W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer] The initializer for initializing the bias vector. If None, skip biases.
W_init_args [dictionary] The arguments for the weights initializer.

b_init_args [dictionary] The arguments for the biases initializer.

name [a string or None] An optional name to attach to this layer.

Notes

* shape = [h, w, the number of output channels of this layer, the number of output channel of previous layer]
* output_shape = [batch_size, any, any, the number of output channels of this layer]

* the number of output channel of a layer is its last dimension.

Examples

* A part of the generator in DCGAN example
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>>> batch_size = 64
>>> inputs = tf.placeholder (tf.float32, [batch_size, 100], name='z_noise')
>>> net_in = tl.layers.Inputlayer (inputs, name='g/in')
>>> net_hO0 = tl.layers.Denselayer (net_in, n_units = 8192,
W_init = tf.random_normal_initializer (stddev=0.02),

act = tf.identity, name='g/h0/lin")
>>> print (net_hO0.outputs._shape)

... (64, 8192)

>>> net_h0 = tl.layers.Reshapelayer (net_h0O, shape = [-1, 4, 4, 512], name='g/h0/
—reshape')

>>> net_hO = tl.layers.BatchNormLayer (net_h0O, act=tf.nn.relu, is_train=is_train,

—name="'g/h0/batch_norm")
>>> print (net_hO0.outputs._shape)
(64, 4, 4, 512)
>>> net_hl = tl.layers.DeConv2dLayer (net_hO,
shape = [5, 5, 256, 512],
output_shape = [batch_size, 8, 8, 256],
strides=[1, 2, 2, 11,
L. act=tf.identity, name='g/hl/decon2d")
>>> net_hl = tl.layers.BatchNormLayer (net_hl, act=tf.nn.relu, is_train=is_train,
—name="'g/hl/batch_norm")
>>> print (net_hl.outputs._shape)
(64, 8, 8, 256)

¢ U-Net

>>> ...
>>> convl0 = tl.layers.Conv2dLayer (conv9, act=tf.nn.relu,
shape=[3,3,1024,1024], strides=[1,1,1,1], padding='SAME',

. W_init=w_init, b_init=b_init, name='conv10")
>>> print (convl0.outputs)

. (batch_size, 32, 32, 1024)
>>> deconvl = tl.layers.DeConv2dLayer (convl1l0, act=tf.nn.relu,
... shape=[3,3,512,1024], strides=[1,2,2,1], output_shape=[batch_size, 64,
64,5121,

padding='SAME', W_init=w_init, b_init=b_init, name='devconl_ 1")
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

3D Convolutional layer

class tensorlayer.layers.Conv3dLayer (layer=None, act=<function identity>, shape=[2, 2,
2, 64, 128], strides=[1, 2, 2, 2, 1], padding="SAME”’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name=’"cnn3d_layer’)
The Conv3dLayer class is a 3D CNN layer, see tf.nn.conv3d.
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Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.

shape [list of shape] shape of the filters, [filter_depth, filter_height, filter_width, in_channels,
out_channels].

strides [a list of ints. 1-D of length 4.] The stride of the sliding window for each dimension of
input. Must be in the same order as the dimension specified with format.

padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer] The initializer for initializing the bias vector.

W_init_args [dictionary] The arguments for the weights initializer.

b_init_args [dictionary] The arguments for the biases initializer.

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

3D Deconvolutional layer

class tensorlayer.layers.DeConv3dLayer (layer=None, act=<function identity>, shape=[2,
2, 2, 128, 256], output_shape=[1, 12, 32, 32,
128], strides=[1, 2, 2, 2, 1], padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},
name="decnn3d_layer’)

The DeConv3dLayer class is deconvolutional 3D layer, see tf.nn.conv3d_transpose.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
act [activation function] The function that is applied to the layer activations.

shape [list of shape] shape of the filters, [depth, height, width, output_channels, in_channels],
filter’s in_channels dimension must match that of value.

output_shape [list of output shape] representing the output shape of the deconvolution op.
strides [a list of ints.] The stride of the sliding window for each dimension of the input tensor.
padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.

W_init [weights initializer] The initializer for initializing the weight matrix.

b_init [biases initializer] The initializer for initializing the bias vector.

W_init_args [dictionary] The arguments for the weights initializer.
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b_init_args [dictionary] The arguments for the biases initializer.

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D UpSampling layer

class tensorlayer.layers.UpSampling2dLayer (layer=None, size=[], is_scale=True,
method=0, align_corners=False,

name="upsample2d_layer’)
The UpSampling2dLayer class is upSampling 2d layer, see tf.image.resize_images.

Parameters

layer [a layer class with 4-D Tensor of shape [batch, height, width, channels] or 3-D Tensor of
shape [height, width, channels].]

size [a tupe of int or float.] (height, width) scale factor or new size of height and width.

is_scale [boolean, if True (default), size is scale factor, otherwise, size is number of pixels of
height and width.]

method [0, 1, 2, 3. ResizeMethod. Defaults to ResizeMethod. BILINEAR.]
* ResizeMethod.BILINEAR, Bilinear interpolation.
* ResizeMethod. NEAREST_NEIGHBOR, Nearest neighbor interpolation.
* ResizeMethod.BICUBIC, Bicubic interpolation.
* ResizeMethod.AREA, Area interpolation.

align_corners [bool. If true, exactly align all 4 corners of the input and output. Defaults to
false.]

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D DownSampling layer

class tensorlayer.layers.DownSampling2dLayer (layer=None, size=[], is_scale=True,
method=0, align_corners=False,
name="downsample2d_layer’)
The DownSampling2dLayer class is downSampling 2d layer, see tf.image.resize_images.

Parameters
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layer [a layer class with 4-D Tensor of shape [batch, height, width, channels] or 3-D Tensor of
shape [height, width, channels].]

size [a tupe of int or float.] (height, width) scale factor or new size of height and width.

is_scale [boolean, if True (default), size is scale factor, otherwise, size is number of pixels of
height and width.]

method [0, 1, 2, 3. ResizeMethod. Defaults to ResizeMethod. BILINEAR.]
* ResizeMethod.BILINEAR, Bilinear interpolation.
* ResizeMethod. NEAREST_NEIGHBOR, Nearest neighbor interpolation.
* ResizeMethod.BICUBIC, Bicubic interpolation.
* ResizeMethod.AREA, Area interpolation.

align_corners [bool. If true, exactly align all 4 corners of the input and output. Defaults to
false.]

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2D Atrous convolutional layer

class tensorlayer.layers.AtrousConv2dLayer (layer=None, n_filter=32, filter_size=(3,
3), rate=2, act=None, padding="SAME’,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal
object>, b_init=<tensorflow.python.ops.init_ops.Constant
object>, W_init_args={}, b_init_args={},

) ~ name=’atrou2d’) ) )
The At rousConv2dLayer class is Atrous convolution (a.k.a. convolution with holes or dilated convolution)

2D layer, see tf.nn.atrous_conv2d.
Parameters
layer: a layer class with 4-D Tensor of shape [batch, height, width, channels].

# filters [A 4-D Tensor with the same type as value and shape [filter_height, filter_width,
in_channels, out_channels]. filters’ in_channels dimension must match that of value. Atrous
convolution is equivalent to standard convolution with upsampled filters with effective
height filter_height + (filter_height - 1) * (rate - 1) and effective width filter_width + (fil-
ter_width - 1) * (rate - 1), produced by inserting rate - 1 zeros along consecutive elements
across the filters’ spatial dimensions.]

n_filter [number of filter.]
filter_size [tuple (height, width) for filter size.]

rate [A positive int32. The stride with which we sample input values across the height and width
dimensions. Equivalently, the rate by which we upsample the filter values by inserting zeros
across the height and width dimensions. In the literature, the same parameter is sometimes
called input stride or dilation.]
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act [activation function, None for linear.]
padding [A string, either “VALID’ or ‘SAME’. The padding algorithm.]
W_init [weights initializer. The initializer for initializing the weight matrix.]

b_init [biases initializer or None. The initializer for initializing the bias vector. If None, skip
biases.]

W_init_args [dictionary. The arguments for the weights tf.get_variable().]
b_init_args [dictionary. The arguments for the biases tf.get_variable().]

name [a string or None, an optional name to attach to this layer.]

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.12 Convolutional layer (Simplified)

For users don’t familiar with TensorFlow, the following simplified functions may easier for you. We will provide more
simplified functions later, but if you are good at TensorFlow, the professional APIs may better for you.

2D Convolutional layer

tensorlayer.layers.Conv2d (net, n_filter=32, filter_size=(3, 3),
strides=(1, 1), act=None, padding="SAME”,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal ob-
Jject>, b_init=<tensorflow.python.ops.init_ops.Constant  object>,

W_init_args={}, b_init_args={}, name="conv2d’)

Wrapper for Conv2dLayer, if you don’t understand how to use Conv2dLayer, this function may be easier.

Parameters

net [TensorLayer layer.]

n_filter [number of filter.]

filter_size [tuple (height, width) for filter size.]
strides [tuple (height, width) for strides.]

act [None or activation function.]

others [see ConvZdLayer.]

Examples

>>> w_init = tf.truncated_normal_initializer (stddev=0.01)
>>> b_init = tf.constant_initializer (value=0.0)

>>> inputs = Inputlayer (x, name='inputs')

;»init,

>>> convl = Conv2d(inputs, 64, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_

b_init=b_init, name='convl_1")

(continues on next page)
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(continued from previous page)

>>> convl = Conv2d(convl, 64, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_

—init, b_init=b_init, name='convl_2")

>>> pooll = MaxPool2d(convl, (2, 2), padding='SAME', name='pooll")

>>> conv2 = Conv2d(pooll, 128, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_
—init, b_init=b_init, name='conv2_1")

>>> conv2 = Conv2d(conv2, 128, (3, 3), act=tf.nn.relu, padding='SAME', W_init=w_
—init, b_init=b_init, name='conv2_2")

>>> pool2 = MaxPool2d(conv2, (2, 2), padding='SAME', name='pool2"')

2D Deconvolutional layer

tensorlayer.layers.DeConv2d (net, n_out_channel=32, (filter_size=(3, 3), out_size=(30, 30),
strides=(2, 2), padding="SAME’, batch_size=None, act=None,
W_init=<tensorflow.python.ops.init_ops.TruncatedNormal ob-
ject>,  b_init=<tensorflow.python.ops.init_ops.Constant object>,
W_init_args={}, b_init_args={}, name="decnn2d’)

Wrapper for DeConv2dLayer, if you don’t understand how to use DeConv2dLayer, this function may be
easier.

Parameters
net [TensorLayer layer.]
n_out_channel [int, number of output channel.]
filter_size [tuple of (height, width) for filter size.]
out_size [tuple of (height, width) of output.]

batch_size [int or None, batch_size. If None, try to find the batch_size from the first dim of
net.outputs (you should tell the batch_size when define the input placeholder).]

strides [tuple of (height, width) for strides.]
act [None or activation function.]

others [see DeConv2dLayer.]

2D Max pooling layer

tensorlayer.layers.MaxPool2d (net, filter_size=(2, 2), strides=None, padding="SAME’,

name="maxpool’)
Wrapper for PoolLayer.

Parameters
net [TensorLayer layer.]
filter_size [tuple of (height, width) for filter size.]
strides [tuple of (height, width). Default is the same with filter_size.]

others [see PoolLayer.]
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2D Mean pooling layer

tensorlayer.layers.MeanPool2d (net, filter_size=(2, 2), strides=None, padding="SAME’,

name="meanpool’)
Wrapper for PoolLayer.

Parameters
net [TensorLayer layer.]
filter_size [tuple of (height, width) for filter size.]
strides [tuple of (height, width). Default is the same with filter_size.]

others [see PoolLayer.]

2.1.13 Pooling layer

Pooling layer for any dimensions and any pooling functions

class tensorlayer.layers.Poollayer (layer=None, ksize=[1, 2, 2, 1], strides=[1, 2, 2,
1], padding="SAME’, pool=<function max_pool>,

name="pool_layer’)
The PoolLayer class is a Pooling layer, you can choose t f.nn.max_pool and tf.nn.avg_pool for
2Dortf.nn.max_pool3d() and tf.nn.avg_pool3d() for 3D.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.

ksize [a list of ints that has length >= 4.] The size of the window for each dimension of the
input tensor.

strides [a list of ints that has length >= 4.] The stride of the sliding window for each dimension
of the input tensor.

padding [a string from: “SAME”, “VALID”.] The type of padding algorithm to use.
pool [a pooling function]

* see TensorFlow pooling APIs

e class tf.nn.max_pool

e classtf.nn.avg_pool

e class tf.nn.max_pool3d

e classtf.nn.avg_pool3d

name [a string or None] An optional name to attach to this layer.

Examples

* see ConvZdLayer.

Methods
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count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.14 Normalization layer

For local response normalization as it does not have any weights and arguments, you can also apply t £ .nn.lrn on
network.outputs.

Batch Normalization

class tensorlayer.layers.BatchNormLayer (layer=None, decay=0.9, epsilon=1e-
05, act=<function identity>,
is_train=False, beta_init=<class 'ten-

sorflow.python.ops.init_ops.Zeros’>,
gamma_init=<tensorflow.python.ops.init_ops.RandomNormal

object>, name="batchnorm_layer’)
The Bat chNormLayer class is a normalization layer, see t f .nn.batch_normalizationandtf.nn.

moments.
Batch normalization on fully-connected or convolutional maps.
Parameters
layer [a Layer instance] The Layer class feeding into this layer.

decay [float, default is 0.9.] A decay factor for ExponentialMovingAverage, use larger value
for large dataset.

epsilon [float] A small float number to avoid dividing by 0.

act [activation function.]

is_train [boolean] Whether train or inference.

beta_init [beta initializer] The initializer for initializing beta
gamma_init [gamma initializer] The initializer for initializing gamma

name [a string or None] An optional name to attach to this layer.

References

¢ Source

¢ stackoverflow

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
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Local Response Normalization

class tensorlayer.layers.LocalResponseNormLayer (layer=None, depth_radius=None,
bias=None, alpha=None, beta=None,
name="Ilrn_layer’)
The LocalResponseNormLayer class is for Local Response Normalization, see tf.nn.
local_response_normalization. The 4-D input tensor is treated as a 3-D array of 1-D vectors
(along the last dimension), and each vector is normalized independently. Within a given vector, each component
is divided by the weighted, squared sum of inputs within depth_radius.

Parameters
layer [a layer class. Must be one of the following types: float32, half. 4-D.]

depth_radius [An optional int. Defaults to 5. 0-D. Half-width of the 1-D normalization win-
dow.]

bias [An optional float. Defaults to 1. An offset (usually positive to avoid dividing by 0).]
alpha [An optional float. Defaults to 1. A scale factor, usually positive.]
beta [An optional float. Defaults to 0.5. An exponent.]

name [A string or None, an optional name to attach to this layer.]

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.15 Fixed Length Recurrent layer

All recurrent layers can implement any type of RNN cell by feeding different cell function (LSTM, GRU etc).

RNN layer

class tensorlayer.layers.RNNLayer (layer=None, cell_fn=None,
cell_init_args={}, n_hidden=100, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, n_steps=3, initial_state=None, return_last=False,

return_seq_2d=False, name="rnn_layer’)
The RNNLayer class is a RNN layer, you can implement vanilla RNN, LSTM and GRU with it.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow
cell_init_args [a dictionary] The arguments for the cell initializer.
n_hidden [a int] The number of hidden units in the layer.
initializer [initializer] The initializer for initializing the parameters.

n_steps [a int] The sequence length.
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initial_state [None or RNN State] If None, initial_state is zero_state.
return_last [boolean]

« If True, return the last output, “Sequence input and single output”

* If False, return all outputs, “Synced sequence input and output”

* In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]

e When return_last = False

e If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.

* If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple
RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

Input dimension should be rank 3 : [batch_size, n_steps, n_features], if no, please see ReshapeLayer.

References

¢ Neural Network RNN Cells in TensorFlow
e tensorflow/python/ops/rnn.py
* tensorflow/python/ops/rnn_cell.py

* see TensorFlow tutorial ptb_word_1lm.py, TensorLayer tutorials tutorial_ptb_lstm«.py and
tutorial_generate_text.py

Examples

¢ For words

>>> input_data = tf.placeholder (tf.int32, [batch_size, num_steps])
>>> network = tl.layers.EmbeddingInputlayer (

inputs = input_data,
vocabulary_size = vocab_size,
embedding_size = hidden_size,
.. E_init = tf.random_uniform_initializer (-init_scale, init_
—scale),
C. name ='embedding_layer')
>>> if is_training:
>>> network = tl.layers.Dropoutlayer (network, keep=keep_prob, name='dropl')
>>> network = tl.layers.RNNLayer (network,

cell_fn=tf.nn.rnn_cell.BasicLSTMCell,

cell_init_args={'forget_bias': 0.0}, # 'state_is_tuple': True},

n_hidden=hidden_size,

.. initializer=tf.random_uniform_initializer (-init_scale, init_

—scale),
n_steps=num_steps,

(continues on next page)
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(continued from previous page)

return_last=False,
L. name='basic_lstm_layerl")
>>> 1lstml = network
>>> if is_training:
>>> network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop2')
>>> network = tl.layers.RNNLayer (network,
cell_fn=tf.nn.rnn_cell.BasicLSTMCell,
cell_init_args={'forget_bias': 0.0}, # 'state_ is_tuple': True},
n_hidden=hidden_size,
.. initializer=tf.random_uniform_initializer (-init_scale, init_
—scale),

n_steps=num_steps,
return_last=False,
return_seq_2d=True,
e name='basic_lstm_layer2"')
>>> lstm2 = network
>>> if is_training:
>>> network = tl.layers.DropoutLayer (network, keep=keep_prob, name='drop3')

>>> network = tl.layers.Denselayer (network,
n_units=vocab_size,
W_init=tf.random_uniform_initializer (-init_scale, init_scale),
b_init=tf.random_uniform_initializer(-init_scale, init_scale),
act = tl.activation.identity, name='output_layer')

e For CNN+LSTM

>>> x = tf.placeholder (tf.float32, shape=[batch_size, image_size, image_size, 1])
>>> network = tl.layers.Inputlayer (x, name='input_ layer')
>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
. shape = [5, 5, 1, 321, # 32 features for each 5xb5_
—patch
strides=[1, 2, 2, 11,
padding="'SAME"',
name ='cnn_layerl")
tl.layers.Poollayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 11,
padding="'SAME"',
pool = tf.nn.max_pool,
. name ='pool_ layerl")
>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.relu,
shape = [5, 5, 32, 101, # 10 features for each 5x5

>>> network

—patch
strides=[1, 2, 2, 11,
padding="'SAME',
name ='cnn_layer2")
tl.layers.PoolLayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 1],
padding="'SAME"',
pool = tf.nn.max_pool,
. name ='pool_ layer2')
>>> network = tl.layers.FlattenlLayer (network, name='flatten_layer')

>>> network

(continues on next page)

2.1. API - Layers 73



TensorLayer Documentation, Release 1.3.7
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>>> network = tl.layers.Reshapelayer (network, shape=[-1, num_steps, int (network.
—outputs._shape[-11)1])
>>> rnnl = tl.layers.RNNLayer (network,

cell_fn=tf.nn.rnn_cell.LSTMCell,
cell_init_args={},
n_hidden=200,
initializer=tf.random uniform_initializer(-0.1, 0.1),
n_steps=num_steps,
return_last=False,
return_seq_2d=True,
ce name='rnn_layer')
>>> network = tl.layers.Denselayer (rnnl, n_units=3,

act = tl.activation.identity, name='output_layer')
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Bidirectional layer

class tensorlayer.layers.BiRNNLayer (layer=None, cell_fn=None,
cell_init_args={’state_is_tuple’: True,
‘use_peepholes’: True}, n_hidden=100, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, n_steps=35, fw_initial_state=None,
bw_initial_state=None,  dropout=None, n_layer=1,
return_last=Fualse, return_seq_2d=False,

name="birnn_layer’)
The BiRNNLayer class is a Bidirectional RNN layer.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.

initializer [initializer] The initializer for initializing the parameters.

n_steps [a int] The sequence length.

fw_initial_state [None or forward RNN State] If None, initial_state is zero_state.

bw_initial_state [None or backward RNN State] If None, initial_state is zero_state.

dropout [tuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.

return_last [boolean]
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e If True, return the last output, “Sequence input and single output”

* If False, return all outputs, “Synced sequence input and output”

* In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]

¢ When return_last = False

¢ If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer after it.

« If False, return 3D Tensor [n_example/n_steps, n_steps, n_hidden], for stacking multiple
RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

* Input dimension should be rank 3 : [batch_size, n_steps, n_features], if no, please see ReshapelLayer.

* For predicting, the sequence length has to be the same with the sequence length of training, while, for
normal

RNN, we can use sequence length of 1 for predicting.

References
¢ Source
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.16 Advanced Ops for Dynamic RNN

These operations usually be used inside Dynamic RNN layer, they can compute the sequence lengths for different
situation and get the last RNN outputs by indexing.

Output indexing

tensorlayer.layers.advanced_indexing_ op (input, index)

Advanced Indexing for Sequences, returns the outputs by given sequence lengths. When return the last output
DynamicRNNLayer uses it to get the last outputs with the sequence lengths.

Parameters
input [tensor for data] [batch_size, n_step(max), n_features]

index [tensor for indexing, i.e. sequence_length in Dynamic RNN.] [batch_size]
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References

* Modified from TFlearn (the original code is used for fixed length rnn), references.

Examples
>>> batch_size, max_length, n_features = 3, 5, 2
>>> 7z = np.random.uniform(low=-1, high=1, size=[batch_size, max_length, n_
—features]) .astype (np.float32)
>>> b_z = tf.constant (z)
>>> sl = tf.placeholder (dtype=tf.int32, shape=[batch_size])
>>> o = advanced_indexing_op(b_z, sl)
>>>
>>> sess = tf.InteractiveSession|()
>>> tl.layers.initialize_global_variables (sess)
>>>
>>> order = np.asarray([1l,1,2])
>>> print ("real",z[0] [order[0]-1], z[l][order[1]-1], z[2][order[2]-11])
>>> y = sess.run([o], feed_dict={sl:order})
>>> print ("given", order)
>>> print ("out", y)
. real [-0.93021595 0.53820813] [-0.92548317 -0.77135968] [ 0.89952248 0.
ﬁ19149846]

given [1 1 2]

out [array([[-0.93021595, 0.53820813],

[-0.92548317, -0.77135968],
[ 0.89952248, 0.19149846]], dtype=float32)]

Compute Sequence length 1

tensorlayer.layers.retrieve_seq length_op (data)

An op to compute the length of a sequence from input shape of [batch_size, n_step(max), n_features], it can be

used when the features of padding (on right hand side) are all zeros.

Parameters

data [tensor] [batch_size, n_step(max), n_features] with zero padding on right hand side.

References

¢ Borrow from TFlearn.

Examples

>>> data = [[[1],12],[0],10], '
(ril, [2],[31,[0],[ 11,

cee (f11, 021,061,011, 10111

>>> data = np.asarray (data)

>>> print (data.shape)
(3, 5, 1)
>>> data = tf.constant (data)

(continues on next page)
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(continued from previous page)

>>> sl = retrieve_seqg length_op (data)
>>> sess = tf.InteractiveSession ()
>>> tl.layers.initialize_global_variables (sess)
>>> y = sl.eval()
[2 3 4]

* Multiple features

>>> data = [[I[1,2],12,2],(1,2],(1,2],(0,011,

>>> sl

Compute Sequence length 2

tensorlayer.layers.retrieve_seq length_op2 (data)

An op to compute the length of a sequence, from input shape of [batch_size, n_step(max)], it can be used when

the features of padding (on right hand side) are all zeros.
Parameters

data [tensor] [batch_size, n_step(max)] with zero padding on right hand side.

Examples
>>> data = [[1,2,0,0,0],
[1,2,3,0,01,
.. [1,2,6,1,0]1]
>>> o0 = retrieve_seq length_op2 (data)
>>> sess = tf.InteractiveSession ()

>>> tl.layers.initialize_global_variables (sess)
>>> print (o.eval())
[2 3 4]

2.1.17 Dynamic RNN layer

RNN layer

class tensorlayer.layers.DynamicRNNLayer (layer=None, cell_fn=None,
cell_init_args={"state_is_tuple’:
True}, n_hidden=256, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, sequence_length=None, ini-
tial_state=None, dropout=None, n_layer=1,
return_last=Fualse, return_seq_2d=False,

name="dyrnn_layer’)
The DynamicRNNLayer class is a Dynamic RNN layer, see t £ . nn.dynamic_rnn.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.
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cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.

initializer [initializer] The initializer for initializing the parameters.

sequence_length [a tensor, array or None]

The sequence length of each row of input data, see Advanced Ops for Dynamic RNN.

* If None, it uses retrieve_seq_length_op to compute the sequence_length, i.e.
when the features of padding (on right hand side) are all zeros.

e If using word embedding, you may need to compute the sequence_length
from the ID array (the integer features before word embedding) by using
retrieve_seq length_op2orretrieve_seq_length_op.

* You can also input an numpy array.
* More details about TensorFlow dynamic_rnn in Wild-ML Blog.
initial_state [None or RNN State] If None, initial_state is zero_state.

dropout [tuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_last [boolean]

e If True, return the last output, “Sequence input and single output”

* If False, return all outputs, “Synced sequence input and output”

¢ In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]

¢ When return_last = False

e If True, return 2D Tensor [n_example, n_hidden], for stacking DenseLayer or computing
cost after it.

* If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), n_hidden], for stack-
ing multiple RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

Input dimension should be rank 3 : [batch_size, n_steps(max), n_features], if no, please see ReshapelLayer.

References

e Wild-ML Blog
¢ dynamic_rnn.ipynb

¢ tf.nn.dynamic_rnn
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¢ tflearn rnn

e tutorial_dynamic_rnn.py

Examples

>>> input_seqgs tf.placeholder (

—"input_seqgs")

>>> network tl.layers.Embeddin
inputs input_s
vocabulary_size
embedding_size

. name = 'seqg_embe
>>> network = tl.layers.
c cell_fn = tf.con
—~cell.BasicLSTMCell,
n_hidden = embed
dropout = 0.7,

sequence_length
return_seq_2d

—after it

DynamicRNNLayer (network,

dtype=tf.int64, shape=[batch_size, None], name=
gInputlayer (

eqgs,

vocab_size,

embedding_size,

dding")

trib.rnn.BasicLSTMCell, # for TF0.2 tf.nn.rnn_

ding_size,

tl.layers.retrieve_seq_length_op2 (input_seqgs),
True,

# stack denselayer or compute cost,,

name = 'dynamic_rnn')
network = tl.layers.Denselayer (network, n_units=vocab_size,
act=tf.identity, name="output")
Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

Bidirectional layer

class tensorlayer.layers.BiDynamicRNNLayer (layer=None,

cell_fn=None,
cell_init_args={’state_is_tuple’:
True}, n_hidden=256,
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, sequence_length=None,
fw_initial_state=None,

bw_initial_state=None, dropout=None,
n_layer=1, return_last=Fualse,
turn_seq_2d=False, name="bi_dyrnn_layer’)

initial-

re-

The BiDynamicRNNLayer class is a RNN layer, you can implement vanilla RNN, LSTM and GRU with it.

Parameters

layer [a Layer instance] The Layer class feeding into this layer.

cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]
* see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.

n_hidden [a int] The number of hidden units in the layer.
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initializer [initializer] The initializer for initializing the parameters.
sequence_length [a tensor, array or None]

The sequence length of each row of input data, see Advanced Ops for Dynamic RNN.

* If None, it uses retrieve_seq_length_op to compute the sequence_length, i.e.
when the features of padding (on right hand side) are all zeros.

e If using word embedding, you may need to compute the sequence_length
from the ID array (the integer features before word embedding) by using
retrieve_seq length_op2 orretrieve_seq_length_op.

* You can also input an numpy array.

* More details about TensorFlow dynamic_rnn in Wild-ML Blog.
fw_initial_state [None or forward RNN State] If None, initial_state is zero_state.
bw_initial_state [None or backward RNN State] If None, initial_state is zero_state.

dropout [tuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_last [boolean] If True, return the last output, “Sequence input and single output”
If False, return all outputs, “Synced sequence input and output”
In other word, if you want to apply one or more RNN(s) on this layer, set to False.
return_seq_2d [boolean]
¢ When return_last = False

e If True, return 2D Tensor [n_example, 2 * n_hidden], for stacking DenseLayer or com-
puting cost after it.

* If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), 2 * n_hidden], for
stacking multiple RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

Input dimension should be rank 3 : [batch_size, n_steps(max), n_features], if no, please see ReshapelLayer.

References

* Wild-ML Blog

* bidirectional_rnn.ipynb

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network

Continued on next page
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Table 24 — continued from previous page
print_params([details]) Print all info of parameters in the network

2.1.18 Sequence to Sequence
Simple Seq2Seq

class tensorlayer.layers.Seq2Seq (net_encode_in=None, net_decode_in=None, cell_fn=None,
cell_init_args={ state_is_tuple’: True}, n_hidden=256,
initializer=<tensorflow.python.ops.init_ops.RandomUniform
object>, encode_sequence_length=None, de-
code_sequence_length=None, initial_state=None,
dropout=None, n_layer=1, return_seq_2d=False,

name="’seq2seq’)
The Seg2Seq class is a simple DynamicRNNLayer based Seq2seq layer, both encoder and decoder are
DynamicRNNLayer, network details see Model and Sequence to Sequence Learning with Neural Networks .

Parameters
net_encode_in [a Layer instance] Encode sequences, [batch_size, None, n_features].
net_decode_in [a Layer instance] Decode sequences, [batch_size, None, n_features].
cell_fn [a TensorFlow’s core RNN cell as follow (Note TF1.0+ and TF1.0- are different).]

e see RNN Cells in TensorFlow

cell_init_args [a dictionary] The arguments for the cell initializer.
n_hidden [a int] The number of hidden units in the layer.
initializer [initializer] The initializer for initializing the parameters.
encode_sequence_length [tensor for encoder sequence length, see DynamicRNNLayer .]
decode_sequence_length [tensor for decoder sequence length, see DynamicRNNLayer .]
initial_state [None or forward RNN State] If None, initial_state is of encoder zero_state.

dropout [fuple of float: (input_keep_prob, output_keep_prob).] The input and output keep
probability.

n_layer [a int, default is 1.] The number of RNN layers.
return_seq_2d [boolean]
¢ When return_last = False

e If True, return 2D Tensor [n_example, 2 * n_hidden], for stacking DenseLayer or com-
puting cost after it.

« If False, return 3D Tensor [n_example/n_steps(max), n_steps(max), 2 * n_hidden], for
stacking multiple RNN after it.

name [a string or None] An optional name to attach to this layer.

Notes

* How to feed data: Sequence to Sequence Learning with Neural Networks

e input_seqs: [ 'how', 'are', 'you', '<PAD_ID'>]

e decode_seqs: [ '<START_ID>', 'I', 'am', 'fine', '<PAD_ID'>]
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e target_seqs: ['I', 'am', 'fine', '<END_ID']
e target_mask: (1, 1, 1, 1, 0]

» related functions : tl.prepro <pad_sequences, precess_sequences, sequences_add_start_id, se-
quences_get_mask>

Examples

>>> batch_size = 32

>>> encode_seqgs = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"encode_seqgs")

>>> decode_seqgs = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=

—"decode_seqgs")
>>> target_seqgs = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"target_seqgs")
>>> target_mask = tf.placeholder (dtype=tf.int64, shape=[batch_size, None], name=
—"target_mask") # tl.prepro.sequences_get_mask()
>>> with tf.variable_scope ("model") as vs:#, reuse=reuse):
# for chatbot, you can use the same embedding layer,
# for translation, you may want to use 2 seperated embedding layers
>>> net_encode = EmbeddingInputlayer (
inputs = encode_segs,
vocabulary_size = 10000,
embedding_size = 200,
name = 'seq_embedding')
>>> vs.reuse_variables ()
>>> tl.layers.set_name_reuse (True)
>>> net_decode = EmbeddingInputlayer (
inputs = decode_seqgs,
vocabulary_size = 10000,
embedding_size = 200,
. name = 'seq_embedding')
>>> net = Seg2Seqg(net_encode, net_decode,
cell _fn = tf.nn.rnn_cell.LSTMCell,
n_hidden = 200,
initializer = tf.random_uniform_initializer(-0.1, 0.1),
encode_sequence_length = retrieve_seq_length_op2 (encode_seqgs),
decode_sequence_length = retrieve_seq length_op2 (decode_seqgs),
initial_state = None,
dropout = None,

n_layer = 1,
return_seqg_2d = True,
. name = 'seqgZseq')
>>> net_out = Denselayer (net, n_units=10000, act=tf.identity, name='output')
>>> e_loss = tl.cost.cross_entropy_seq with_mask (logits=net_out.outputs, target_

—segs=target_seqgs, input_mask=target_mask, return_details=False)
>>> y = tf.nn.softmax (net_out.outputs)
>>> net_out.print_params (False)

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network

Continued on next page
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Table 25 — continued from previous page

print_params([details]) Print all info of parameters in the network

PeekySeq2Seq

class tensorlayer.layers.PeekySeq2Seq (net_encode_in=None, net_decode_in=None,
cell_fn=None, cell_init_args={’state_is_tuple’:
True}, n_hidden=256, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, in_sequence_length=None,
out_sequence_length=None, initial_state=None,

dropout=None, n_layer=1, return_seq_2d=False,

name="peeky_seq2seq’)
Waiting for contribution. The PeckySeg2Seq class, see Model and Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation .

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
AttentionSeq2Seq

class tensorlayer.layers.AttentionSeq2Seq (net_encode_in=None, net_decode_in=None,

cell_fn=None, cell_init_args={’state_is_tuple’:
True}, n_hidden=256, initial-
izer=<tensorflow.python.ops.init_ops.RandomUniform
object>, in_sequence_length=None,
out_sequence_length=None, ini-
tial_state=None, dropout=None,
n_layer=1, return_seq_2d=False,
name="attention_seq2seq’)

Waiting for contribution. The AttentionSeg2Seq class, see Model and Neural Machine Translation by

Jointly Learning to Align and Translate .

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.19 Shape layer

Flatten layer

class tensorlayer.layers.FlattenLayer (layer=None, name="flatten_layer’)
The FlattenLayer class is layer which reshape high-dimension input to a vector. Then we can apply Dense-
Layer, RNNLayer, ConcatLayer and etc on the top of it.
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[batch_size, mask_row, mask_col, n_mask] —> [batch_size, mask_row * mask_col * n_mask]
Parameters
layer [a Layer instance] The Layer class feeding into this layer.

name [a string or None] An optional name to attach to this layer.

Examples

>>> x = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
>>> network = tl.layers.Inputlayer (x, name='input_ layer')
>>> network = tl.layers.Conv2dLayer (network,
act = tf.nn.reluy,
shape = [5, 5, 32, 6417,
strides=[1, 1, 1, 1],
padding="'SAME',
name ='cnn_layer'")
>>> network = tl.layers.Pool2dLayer (network,
ksize=[1, 2, 2, 11,
strides=[1, 2, 2, 1],
padding="'SAME"',
pool = tf.nn.max_pool,

ce name ='pool layer',)

>>> network = tl.layers.Flattenlayer (network, name='flatten_ layer')

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Reshape layer
class tensorlayer.layers.Reshapelayer (layer=None, shape=[], name="reshape_layer’)
The ReshapeLayer class is layer which reshape the tensor.
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
shape [a list] The output shape.

name [a string or None] An optional name to attach to this layer.

Examples

* The core of this layer is t £ . reshape.

* Use TensorFlow only :

>>> x = tf.placeholder(tf.float32, shape=[None, 3])
>>> y = tf.reshape(x, shape=[-1, 3, 31])

(continues on next page)

84 Chapter 2. API Reference



TensorLayer Documentation, Release 1.3.7

(continued from previous page)
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>>> sess = tf.InteractiveSession ()
>>> print (sess.run(y,

feed_dict={x:[[1,1,1],12,2,2],13,3,31,[4,4,41,[5,5,5]1,1[6,6,

Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1.20 Lambda layer

class tensorlayer.layers.Lambdalayer (layer=None, fn=None, fn_args={},

name="lambda_layer’)
The LambdaLayer class is a layer which is able to use the provided function.

Parameters
layer [a Layer instance] The Layer class feeding into this layer.
fn [a function] The function that applies to the outputs of previous layer.
fn_args [a dictionary] The arguments for the function (option).

name [a string or None] An optional name to attach to this layer.

Examples

>>> x = tf.placeholder(tf.float32, shape=[None, 1], name='x")

>>> network = tl.layers.Inputlayer (x, name='input_layer")

>>> network = Lambdalayer (network, lambda x: 2+x, name='lambda_layer')
>>> y = network.outputs

>>> sess = tf.InteractiveSession ()
>>> out = sess.run(y, feed_ dict={x : [[1],I[2]]1})
(021, [47]
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network

print_params([details]) Print all info of parameters in the network
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2.1.21 Merge layer

Concat layer

class tensorlayer.layers.Concatlayer (layer=[], concat_dim=1, name="concat_layer’)

The ConcatLayer class is layer which concat (merge) two or more DenseLayer to a single

class:DenseLayer.
Parameters
layer [a list of Layer instances] The Layer class feeding into this layer.
concat_dim [int] Dimension along which to concatenate.

name [a string or None] An optional name to attach to this layer.

Examples

>>> sess = tf.InteractiveSession|()

>>> x = tf.placeholder (tf.float32, shape=[None, 784])

>>> inputs = tl.layers.Inputlayer (x, name='input_layer')

>>> netl = tl.layers.Denselayer (inputs, n_units=800, act = tf.nn.relu, name=
—'relul_1")

>>> net2 = tl.layers.Denselayer (inputs, n_units=300, act = tf.nn.relu, name=
—~'relu2_1")

>>> network = tl.layers.ConcatLayer (layer = [netl, net2], name ='concat_layer')

tensorlayer:Instantiate InputLayer input_layer (?, 784)
. tensorlayer:Instantiate Denselayer relul_1: 800, <function relu at_
—0x1108e41e0>
. tensorlayer:Instantiate Denselayer relu2_1: 300, <function relu at_
—0x1108e41e0>

tensorlayer:Instantiate ConcatLayer concat_layer, 1100

>>> tl.layers.initialize_global_variables (sess)

>>> network.print_params ()
param O: (784, 800) (mean: 0.000021, median: -0.000020 std: 0.035525)
param 1: (800,) (mean: 0.000000, median: 0.000000 std: 0.000000)
param 2: (784, 300) (mean: 0.000000, median: -0.000048 std: 0.042947)
param 3: (300,) (mean: 0.000000, median: 0.000000 std: 0.000000)

. num of params: 863500

>>> network.print_layers ()
layer 0: Tensor ("Relu:0", shape=(?, 800), dtype=float32)
layer 1: Tensor ("Relu_1:0", shape=(?, 300), dtype=float32)

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
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Element-wise layer

class tensorlayer.layers.Elementwiselayer (layer=[], combine_fn=<function minimum>,

name="elementwise_layer’)
The ElementwiseLayer class combines multiple Layer which have the same output shapes by a given

elemwise-wise operation.
Parameters
layer [alist of Layer instances] The Layer class feeding into this layer.

combine_fn [a TensorFlow elemwise-merge function] e.g. ANDistf.minimum; ORistf.
maximum ; ADDis tf.add ; MULis tf.multiply and so on. See TensorFlow Math
API .

name |[a string or None] An optional name to attach to this layer.

Examples
* AND Logic
>>> net_0 = tl.layers.Denselayer (net_0, n_units=500,
c act = tf.nn.relu, name='net_0")
>>> net_1 = tl.layers.Denselayer (net_1, n_units=500,
act = tf.nn.relu, name='net_1")
>>> net_com = tl.layers.Elementwiselayer (layer = [net_0, net_1],
combine_fn = tf.minimum,
name = 'combine_layer')
Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.22 Extend layer

Expand dims layer
class tensorlayer.layers.ExpandDimsLayer (layer=None, axis=None, name="expand_dims’)
The ExpandDimsLayer class inserts a dimension of 1 into a tensor’s shape, see tf.expand_dims() .
Parameters
layer [a Layer instance] The Layer class feeding into this layer.
axis [int, 0-D (scalar).] Specifies the dimension index at which to expand the shape of input.

name [a string or None] An optional name to attach to this layer.

Methods
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count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

Tile layer

class tensorlayer.layers.TileLayer (layer=None, multiples=None, name="tile’)
The TileLayer class constructs a tensor by tiling a given tensor, see tf.tile() .

Parameters
layer [a Layer instance] The Layer class feeding into this layer.

multiples: a list of int Must be one of the following types: int32, int64. 1-D. Length must be
the same as the number of dimensions in input

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.23 Connect TF-Slim

Yes ! TF-Slim models can be connected into TensorLayer, all Google’s Pre-trained model can be used easily , see
Slim-model .

class tensorlayer.layers.SlimNetsLayer (layer=None,  slim_layer=None,  slim_args={},
name="InceptionV3’)
The S1imNetsLayer class can be used to merge all TF-Slim nets into TensorLayer. Model can be found in

slim-model , more about slim see slim-git .
Parameters
layer [alist of Layer instances] The Layer class feeding into this layer.

slim_layer [a slim network function] The network you want to stack onto, end with return
net, end_points.

slim_args [dictionary] The arguments for the slim model.

name [a string or None] An optional name to attach to this layer.

Notes

The due to TF-Slim stores the layers as dictionary, the al1_layers in this network is not in order ! Fortu-
nately, the al1l_params are in order.

Examples

* see Inception V3 example on Github
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Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.24 Parametric activation layer

class tensorlayer.layers.PRelulLayer (layer=None, channel_shared=Fualse,
a_init=<tensorflow.python.ops.init_ops.Constant ob-
ject>, a_init_args={}, name="prelu_layer’)
The PReluLayer class is Parametric Rectified Linear layer.

Parameters
x [A Tensor with type float, double, int32, int64, uint8,)] int16, or int8.
channel_shared [bool. Single weight is shared by all channels]
a_init [alpha initializer, default zero constant.] The initializer for initializing the alphas.
a_init_args [dictionary] The arguments for the weights initializer.

name [A name for this activation op (optional).]

References

¢ Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Methods
count_params() Return the number of parameters in the network
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network

2.1.25 Flow control layer

class tensorlayer.layers.MultiplexerLayer (layer=[], name="mux_layer’)
The MultiplexerLayer selects one of several input and forwards the selected input into the output, see
tutorial_mnist_multiplexer.py.

Parameters
layer [alist of Layer instances] The Layer class feeding into this layer.

name [a string or None] An optional name to attach to this layer.

References

e See tf.pack() for TF0.12 or tf.stack() for TF1.0 and tf.gather () at Tensor-
Flow - Slicing and Joining

2.1. API - Layers 89


http://arxiv.org/pdf/1502.01852v1.pdf
https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#slicing-and-joining
https://www.tensorflow.org/versions/master/api_docs/python/array_ops.html#slicing-and-joining

TensorLayer Documentation,

Release 1.3.7

Examples
>>> x = tf.placeholder(tf.float32, shape=[None, 784], name='x")
>>> y_ = tf.placeholder(tf.int64, shape=[None, ], name='y_ ')
>>> # define the network
>>> net_in = tl.layers.Inputlayer (x, name='input_layer")
>>> net_in = tl.layers.Dropoutlayer (net_in, keep=0.8, name='dropl')
>>> # net 0
>>> net_0 = tl.layers.Denselayer (net_in, n_units=800,

act = tf.nn.relu, name='net0/relul')
>>> net_0 = tl.layers.DropoutLayer (net_0, keep=0.5, name='net0/drop2")
>>> net_0 = tl.layers.Denselayer (net_0, n_units=800,
. act = tf.nn.relu, name='net0/relu2')
>>> # net 1
>>> net_1 = tl.layers.Denselayer (net_in, n_units=800,
. act = tf.nn.relu, name='netl/relul')
>>> net_1 = tl.layers.DropoutLayer (net_1, keep=0.8, name='netl/drop2")
>>> net_1 = tl.layers.Denselayer (net_1, n_units=800,

act = tf.nn.relu, name='netl/relu2')
>>> net_1 = tl.layers.DropoutLayer (net_1, keep=0.8, name='netl/drop3")
>>> net_1 = tl.layers.Denselayer (net_1, n_units=800,
. act = tf.nn.relu, name='netl/relu3")
>>> # multiplexer
>>> net_mux = tl.layers.MultiplexerlLayer (layer = [net_0, net_1], name='mux_layer')
>>> network = tl.layers.Reshapelayer (net_mux, shape=[-1, 800], name='reshape_ layer
') #

>>> network
>>> # output layer
>>> network

tl.layers.DropoutlLayer (network, keep=0.5,

tl.layers.Denselayer (network,

act

name="drop3")

n_units=10,
tf.identity,

name="'output_layer")

Methods

count_params()

Return the number of parameters in the network

print_layers()

Print all info of layers in the network

print_params([details])

Print all info of parameters in the network

2.1.26 Wrapper

Embedding + Attention + Seq2seq

class tensorlayer.layers.EmbeddingAttentionSeq2seqWrapper (source_vocab_size, tar-

get_vocab_size, buck-
ets, size, num_layers,
max_gradient_norm,
batch_size, learn-
ing_rate, learn-
ing_rate_decay_factor,
use_lstm=False,
num_samples=512,
forward_only=False,
name="wrapper’)

Sequence-to-sequence model with attention and for multiple buckets.
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This example implements a multi-layer recurrent neural network as encoder, and an attention-based decoder.
This is the same as the model described in this paper: - Grammar as a Foreign Language please look there for
details, or into the seq2seq library for complete model implementation. This example also allows to use GRU
cells in addition to LSTM cells, and sampled softmax to handle large output vocabulary size. A single-layer
version of this model, but with bi-directional encoder, was presented in - Neural Machine Translation by Jointly
Learning to Align and Translate The sampled softmax is described in Section 3 of the following paper. - On
Using Very Large Target Vocabulary for Neural Machine Translation

Parameters
source_vocab_size [size of the source vocabulary.]
target_vocab_size [size of the target vocabulary.]

buckets [a list of pairs (I, O), where I specifies maximum input length] that will be processed
in that bucket, and O specifies maximum output length. Training instances that have in-
puts longer than I or outputs longer than O will be pushed to the next bucket and padded
accordingly. We assume that the list is sorted, e.g., [(2, 4), (8, 16)].

size [number of units in each layer of the model.]
num_layers [number of layers in the model.]
max_gradient_norm [gradients will be clipped to maximally this norm.]

batch_size [the size of the batches used during training;] the model construction is independent
of batch_size, so it can be changed after initialization if this is convenient, e.g., for decoding.

learning_rate [learning rate to start with.]

learning_rate_decay_factor [decay learning rate by this much when needed.]
use_lstm [if true, we use LSTM cells instead of GRU cells.]

num_samples [number of samples for sampled softmax.]

forward_only [if set, we do not construct the backward pass in the model.]

name [a string or None] An optional name to attach to this layer.

Methods
count_params() Return the number of parameters in the network
get_batch(data, bucket_id[, PAD_ID, GO_ID, Getarandom batch of data from the specified bucket,
...D prepare for step.
print_layers() Print all info of layers in the network
print_params([details]) Print all info of parameters in the network
step(session, encoder_inputs, ... ) Run a step of the model feeding the given inputs.

get_batch (data, bucket_id, PAD_ID=0, GO_ID=1, EOS_ID=2, UNK_ID=3)
Get a random batch of data from the specified bucket, prepare for step.

To feed data in step(..) it must be a list of batch-major vectors, while data here contains single length-major
cases. So the main logic of this function is to re