

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/tensorflow/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/tensorflow/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Contributing guidelines

How to become a contributor and submit your own code

Contributor License Agreements

We’d love to accept your patches! Before we can take them, we have to jump a couple of legal hurdles.

Please fill out either the individual or corporate Contributor License Agreement (CLA).

	If you are an individual writing original source code and you’re sure you own the intellectual property, then you’ll need to sign an individual CLA [http://code.google.com/legal/individual-cla-v1.0.html].

	If you work for a company that wants to allow you to contribute your work, then you’ll need to sign a corporate CLA [http://code.google.com/legal/corporate-cla-v1.0.html].

Follow either of the two links above to access the appropriate CLA and instructions for how to sign and return it. Once we receive it, we’ll be able to accept your pull requests.

NOTE: Only original source code from you and other people that have signed the CLA can be accepted into the main repository.

Contributing code

We currently use Gerrit to host and handle code changes to TensorFlow. The main
site is
https://tensorflow-review.googlesource.com/.
See Gerrit docs [https://gerrit-review.googlesource.com/Documentation/] for
information on how Gerrit’s code review system works.

We are currently working on improving our external acceptance process, so
please be patient with us as we work out the details.

TensorFlow

	Home

	Getting Started

	Mechanics

	Tutorials

	Python API

	C++ API

	Other Resources

 #TensorFlow

TensorFlow is an open source software library for numerical computation using
data flow graphs. Nodes in the graph represent mathematical operations, while
the graph edges represent the multidimensional data arrays (tensors) that flow
between them. This flexible architecture lets you deploy computation to one
or more CPUs or GPUs in a desktop, server, or mobile device without rewriting
code. TensorFlow was originally developed by researchers and engineers
working on the Google Brain team within Google’s Machine Intelligence research
organization for the purposes of conducting machine learning and deep neural
networks research. The system is general enough to be applicable in a wide
variety of other domains, as well.

Note: Currently we do not accept pull requests on github – see
CONTRIBUTING.md for information on how to contribute code
changes to TensorFlow through
tensorflow.googlesource.com [https://tensorflow.googlesource.com/tensorflow]

We use github issues [https://github.com/tensorflow/tensorflow/issues] for
tracking requests and bugs, but please see
Community for general questions
and discussion.

Download and Setup

To install the CPU version of TensorFlow using a binary package, see the
instructions below. For more detailed installation instructions, including
installing from source, GPU-enabled support, etc., see
here.

Binary Installation

The TensorFlow Python API currently requires Python 2.7: we are
working [https://github.com/tensorflow/tensorflow/issues/1] on adding support
for Python 3.

The simplest way to install TensorFlow is using
pip [https://pypi.python.org/pypi/pip] for both Linux and Mac.

For the GPU-enabled version, or if you encounter installation errors, or for
more detailed installation instructions, see
here.

Ubuntu/Linux 64-bit

For CPU-only version
$ pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

Mac OS X

Only CPU-version is available at the moment.
$ pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl

Try your first TensorFlow program

$ python

>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> sess.run(hello)
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> sess.run(a+b)
42
>>>

##For more information

	TensorFlow website [http://tensorflow.org]

	TensorFlow whitepaper [http://download.tensorflow.org/paper/whitepaper2015.pdf]

Eigen Tensors

Tensors are multidimensional arrays of elements. Elements are typically scalars,
but more complex types such as strings are also supported.

[TOC]

Tensor Classes

You can manipulate a tensor with one of the following classes. They all are in
the namespace ::Eigen.

Class Tensor<

data_type, rank>

This is the class to use to create a tensor and allocate memory for it. The
class is templatized with the tensor datatype, such as float or int, and the
tensor rank. The rank is the number of dimensions, for example rank 2 is a
matrix.

Tensors of this class are resizable. For example, if you assign a tensor of a
different size to a Tensor, that tensor is resized to match its new value.

Constructor Tensor<

data_type, rank>

(size0, size1, ...)

Constructor for a Tensor. The constructor must be passed rank integers
indicating the sizes of the instance along each of the the rank
dimensions.

// Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
// memory to hold 24 floating point values (24 = 2 x 3 x 4).
Tensor<float, 3> t_3d(2, 3, 4);

// Resize t_3d by assigning a tensor of different sizes, but same rank.
t_3d = Tensor<float, 3>(3, 4, 3);

Constructor Tensor<

data_type, rank>

(size_array)

Constructor where the sizes for the constructor are specified as an array of
values instead of an explicitly list of parameters. The array type to use is
Eigen::array<Eigen::Index>. The array can be constructed automatically
from an initializer list.

// Create a tensor of strings of rank 2 with sizes 5, 7.
Tensor<string, 2> t_2d({5, 7});

Class TensorFixedSize<

data_type, Sizes<

size0, size1, ...>

>

Class to use for tensors of fixed size, where the size is known at compile
time. Fixed sized tensors can provide very fast computations because all their
dimensions are known by the compiler. FixedSize tensors are not resizable.

If the total number of elements in a fixed size tensor is small enough the
tensor data is held onto the stack and does not cause heap allocation and free.

// Create a 4 x 3 tensor of floats.
TensorFixedSize<float, Sizes<4, 3>> t_4x3;

Class TensorMap<

Tensor<

data_type, rank>

>

This is the class to use to create a tensor on top of memory allocated and
owned by another part of your code. It allows to view any piece of allocated
memory as a Tensor. Instances of this class do not own the memory where the
data are stored.

A TensorMap is not resizable because it does not own the memory where its data
are stored.

Constructor TensorMap<

Tensor<

data_type, rank>

>

(data, size0, size1, ...)

Constructor for a Tensor. The constructor must be passed a pointer to the
storage for the data, and “rank” size attributes. The storage has to be
large enough to hold all the data.

// Map a tensor of ints on top of stack-allocated storage.
int storage[128]; // 2 x 4 x 2 x 8 = 128
TensorMap<int, 4> t_4d(storage, 2, 4, 2, 8);

// The same storage can be viewed as a different tensor.
// You can also pass the sizes as an array.
TensorMap<int, 2> t_2d(storage, 16, 8);

// You can also map fixed-size tensors. Here we get a 1d view of
// the 2d fixed-size tensor.
TensorFixedSize<float, Sizes<4, 5>> t_4x3;
TensorMap<float, 1> t_12(t_4x3, 12);

Class TensorRef

See Assigning to a TensorRef below.

Accessing Tensor Elements

<

data_type>

 tensor(index0, index1...)

Return the element at position (index0, index1...) in tensor
tensor. You must pass as many parameters as the rank of tensor.
The expression can be used as an l-value to set the value of the element at the
specified position. The value returned is of the datatype of the tensor.

// Set the value of the element at position (0, 1, 0);
Tensor<float, 3> t_3d(2, 3, 4);
t_3d(0, 1, 0) = 12.0f;

// Initialize all elements to random values.
for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 3; ++j) {
 for (int k = 0; k < 4; ++k) {
 t_3d(i, j, k) = ...some random value...;
 }
 }
}

// Print elements of a tensor.
for (int i = 0; i < 2; ++i) {
 LOG(INFO) << t_3d(i, 0, 0);
}

TensorLayout

The tensor library supports 2 layouts: ColMajor (the default) and
RowMajor. Only the default column major layout is currently fully
supported, and it is therefore not recommended to attempt to use the row major
layout at the moment.

The layout of a tensor is optionally specified as part of its type. If not
specified explicitly column major is assumed.

Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);

All the arguments to an expression must use the same layout. Attempting to mix
different layouts will result in a compilation error.

It is possible to change the layout of a tensor or an expression using the
swap_layout() method. Note that this will also reverse the order of the
dimensions.

Tensor<float, 2, ColMajor> col_major(2, 4);
Tensor<float, 2, RowMajor> row_major(2, 4);

Tensor<float, 2> col_major_result = col_major; // ok, layouts match
Tensor<float, 2> col_major_result = row_major; // will not compile

// Simple layout swap
col_major_result = row_major.swap_layout();
eigen_assert(col_major_result.dimension(0) == 4);
eigen_assert(col_major_result.dimension(1) == 2);

// Swap the layout and preserve the order of the dimensions
array<int, 2> shuffle(1, 0);
col_major_result = row_major.swap_layout().shuffle(shuffle);
eigen_assert(col_major_result.dimension(0) == 2);
eigen_assert(col_major_result.dimension(1) == 4);

Tensor Operations

The Eigen Tensor library provides a vast library of operations on Tensors:
numerical operations such as addition and multiplication, geometry operations
such as slicing and shuffling, etc. These operations are available as methods
of the Tensor classes, and in some cases as operator overloads. For example
the following code computes the elementwise addition of two tensors:

Tensor<float, 3> t1(2, 3, 4);
...set some values in t1...
Tensor<float, 3> t2(2, 3, 4);
...set some values in t2...
// Set t3 to the element wise sum of t1 and t2
Tensor<float, 3> t3 = t1 + t2;

While the code above looks easy enough, it is important to understand that the
expression t1 + t2 is not actually adding the values of the tensors. The
expression instead constructs a “tensor operator” object of the class
TensorCwiseBinaryOp<

scalar_sum>

, which has references to the tensors
t1 and t2. This is a small C++ object that knows how to add
t1 and t2. It is only when the value of the expression is assigned
to the tensor t3 that the addition is actually performed. Technically,
this happens through the overloading of operator=() in the Tensor class.

This mechanism for computing tensor expressions allows for lazy evaluation and
optimizations which are what make the tensor library very fast.

Of course, the tensor operators do nest, and the expression t1 + t2 * 0.3f is actually represented with the (approximate) tree of operators:

TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))

Tensor Operations and C++ “auto”

Because Tensor operations create tensor operators, the C++ auto keyword
does not have its intuitive meaning. Consider these 2 lines of code:

Tensor<float, 3> t3 = t1 + t2;
auto t4 = t1 + t2;

In the first line we allocate the tensor t3 and it will contain the
result of the addition of t1 and t2. In the second line, t4
is actually the tree of tensor operators that will compute the addition of
t1 and t2. In fact, t4 is not a tensor and you cannot get
the values of its elements:

Tensor<float, 3> t3 = t1 + t2;
cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0)

auto t4 = t1 + t2;
cout << t4(0, 0, 0); // Compilation error!

When you use auto you do not get a Tensor as a result but instead a
non-evaluated expression. So only use auto to delay evaluation.

Unfortunately, there is no single underlying concrete type for holding
non-evaluated expressions, hence you have to use auto in the case when you do
want to hold non-evaluated expressions.

When you need the results of a set of tensor computations you have to assign the
result to a Tensor that will be capable of holding them. This can be
either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing
piece of memory. All the following will work:

auto t4 = t1 + t2;

Tensor<float, 3> result = t4; // Could also be: result(t4);
cout << result(0, 0, 0);

TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4;
cout << result(0, 0, 0);

TensorFixedSize<float, Sizes<size0, ...>> result = t4;
cout << result(0, 0, 0);

Until you need the results, you can keep the operation around, and even reuse
it for additional operations. As long as you keep the expression as an
operation, no computation is performed.

// One way to compute exp((t1 + t2) * 0.2f);
auto t3 = t1 + t2;
auto t4 = t3 * 0.2f;
auto t5 = t4.exp();
Tensor<float, 3> result = t5;

// Another way, exactly as efficient as the previous one:
Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();

Controlling When Expression are Evaluated

There are several ways to control when expressions are evaluated:

	Assignment to a Tensor, TensorFixedSize, or TensorMap.

	Use of the eval() method.

	Assignment to a TensorRef.

Assigning to a Tensor, TensorFixedSize, or TensorMap.

The most common way to evaluate an expression is to assign it to a Tensor. In
the example below, the auto declarations make the intermediate values
“Operations”, not Tensors, and do not cause the expressions to be evaluated.
The assignment to the Tensor result causes the evaluation of all the
operations.

auto t3 = t1 + t2; // t3 is an Operation.
auto t4 = t3 * 0.2f; // t4 is an Operation.
auto t5 = t4.exp(); // t5 is an Operation.
Tensor<float, 3> result = t5; // The operations are evaluated.

If you know the ranks and sizes of the Operation value you can assign the
Operation to a TensorFixedSize instead of a Tensor, which is a bit more
efficient.

// We know that the result is a 4x4x2 tensor!
TensorFixedSize<float, Sizes<4, 4, 2>> result = t5;

Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
have the rank and sizes of the expression that are assigned to them.

Calling eval().

When you compute large composite expressions, you sometimes want to tell Eigen
that an intermediate value in the expression tree is worth evaluating ahead of
time. This is done by inserting a call to the eval() method of the
expression Operation.

// The previous example could have been written:
Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();

// If you want to compute (t1 + t2) once ahead of time you can write:
Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp();

Semantically, calling eval() is equivalent to materializing the value of
the expression in a temporary Tensor of the right size. The code above in
effect does:

// .eval() knows the size!
TensorFixedSize<float, Sizes<4, 4, 2>> tmp = t1 + t2;
Tensor<float, 3> result = (tmp * 0.2f).exp();

Note that the return value of eval() is itself an Operation, so the
following code does not do what you may think:

// Here t3 is an evaluation Operation. t3 has not been evaluated yet.
auto t3 = (t1 + t2).eval();

// You can use t3 in another expression. Still no evaluation.
auto t4 = (t3 * 0.2f).exp();

// The value is evaluated when you assign the Operation to a Tensor, using
// an intermediate tensor to represent t3.x
Tensor<float, 3> result = t4;

While in the examples above calling eval() does not make a difference in
performance, in other cases it can make a huge difference. In the expression
below the broadcast() expression causes the X.maximum() expression
to be evaluated many times:

Tensor<...> X ...;
Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast))
 * beta).exp();

Inserting a call to eval() between the maximum() and
reshape() calls guarantees that maximum() is only computed once and
greatly speeds-up execution:

Tensor<...> Y =
 ((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast))
 * beta).exp();

In the other example below, the tensor Y is both used in the expression
and its assignment. This is an aliasing problem and if the evaluation is not
done in the right order Y will be updated incrementally during the evaluation
resulting in bogus results:

 Tensor<...> Y ...;
 Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast));

Inserting a call to eval() between the sum() and reshape()
expressions ensures that the sum is computed before any updates to Y are
done.

 Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));

Note that an eval around the full right hand side expression is not needed
because the generated has to compute the i-th value of the right hand side
before assigning it to the left hand side.

However, if you were assigning the expression value to a shuffle of Y
then you would need to force an eval for correctness by adding an eval()
call for the right hand side:

 Y.shuffle(...) =
 (Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();

Assigning to a TensorRef.

If you need to access only a few elements from the value of an expression you
can avoid materializing the value in a full tensor by using a TensorRef.

A TensorRef is a small wrapper class for any Eigen Operation. It provides
overloads for the () operator that let you access individual values in
the expression. TensorRef is convenient, because the Operation themselves do
not provide a way to access individual elements.

// Create a TensorRef for the expression. The expression is not
// evaluated yet.
TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp();

// Use "ref" to access individual elements. The expression is evaluated
// on the fly.
float at_0 = ref(0, 0, 0);
cout << ref(0, 1, 0);

Only use TensorRef when you need a subset of the values of the expression.
TensorRef only computes the values you access. However note that if you are
going to access all the values it will be much faster to materialize the
results in a Tensor first.

In some cases, if the full Tensor result would be very large, you may save
memory by accessing it as a TensorRef. But not always. So don’t count on it.

Controlling How Expressions Are Evaluated

The tensor library provides several implementations of the various operations
such as contractions and convolutions. The implementations are optimized for
different environments: single threaded on CPU, multi threaded on CPU, or on a
GPU using cuda. Additional implementations may be added later.

You can choose which implementation to use with the device() call. If
you do not choose an implementation explicitly the default implementation that
uses a single thread on the CPU is used.

The default implementation has been optimized for recent Intel CPUs, taking
advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the
library on ARM CPUs. Note that you need to pass compiler-dependent flags
to enable the use of SSE, AVX, and other instructions.

For example, the following code adds two tensors using the default
single-threaded CPU implementation:

Tensor<float, 2> a(30, 40);
Tensor<float, 2> b(30, 40);
Tensor<float, 2> c = a + b;

To choose a different implementation you have to insert a device() call
before the assignment of the result. For technical C++ reasons this requires
that the Tensor for the result be declared on its own. This means that you
have to know the size of the result.

Eigen::Tensor<float, 2> c(30, 40);
c.device(...) = a + b;

The call to device() must be the last call on the left of the operator=.

You must pass to the device() call an Eigen device object. There are
presently three devices you can use: DefaultDevice, ThreadPoolDevice and
GpuDevice.

Evaluating With the DefaultDevice

This is exactly the same as not inserting a device() call.

DefaultDevice my_device;
c.device(my_device) = a + b;

Evaluating with a Thread Pool

#include "thread/threadpool.h"

// Create a threadpool and start the threads. This is the Google way,
// other environments use different mechanism to create a thread pool.
ThreadPool my_pool(4 /* number of threads in the pool */);
my_pool.StartWorkers();

// Create the Eigen ThreadPoolDevice.
// You typically use up to all the available threads in the pool.
Eigen::ThreadPoolDevice my_device(&my_pool, 4 /* number of threads to use */);

// Now just use the device when evaluating expressions.
Eigen::Tensor<float, 2> c(30, 50);
c.device(my_device) = a.contract(b, dot_product_dims);

Evaluating On GPU

This is presently a bit more complicated than just using a thread pool device.
You need to create a GPU device but you also need to explicitly allocate the
memory for tensors with cuda.

API Reference

Datatypes

In the documentation of the tensor methods and Operation we mention datatypes
that are tensor-type specific:

<

Tensor-Type>

::Dimensions

Acts like an array of ints. Has an int size attribute, and can be
indexed like an array to access individual values. Used to represent the
dimensions of a tensor. See dimensions().

<

Tensor-Type>

::Index

Acts like an int. Used for indexing tensors along their dimensions. See
operator(), dimension(), and size().

<

Tensor-Type>

::Scalar

Represents the datatype of individual tensor elements. For example, for a
Tensor<float>, Scalar is the type float. See
setConstant().

<

Operation>

We use this pseudo type to indicate that a tensor Operation is returned by a
method. We indicate in the text the type and dimensions of the tensor that the
Operation returns after evaluation.

The Operation will have to be evaluated, for example by assigning it to a
tensor, before you can access the values of the resulting tensor. You can also
access the values through a TensorRef.

Built-in Tensor Methods

These are usual C++ methods that act on tensors immediately. They are not
Operations which provide delayed evaluation of their results. Unless specified
otherwise, all the methods listed below are available on all tensor classes:
Tensor, TensorFixedSize, and TensorMap.

Metadata

int NumDimensions

Constant value indicating the number of dimensions of a Tensor. This is also
known as the tensor “rank”.

 Eigen::Tensor<float, 2> a(3, 4);
 cout << "Dims " << a.NumDimensions;
 => Dims 2

Dimensions dimensions()

Returns an array-like object representing the dimensions of the tensor.
The actual type of the dimensions() result is <Tensor-Type>::Dimensions.

Eigen::Tensor<float, 2> a(3, 4);
const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
cout << "Dim size: " << d.size << ", dim 0: " << d[0]
 << ", dim 1: " << d[1];
=> Dim size: 2, dim 0: 3, dim 1: 4

If you use a C++11 compiler, you can use auto to simplify the code:

const auto& d = a.dimensions();
cout << "Dim size: " << d.size << ", dim 0: " << d[0]
 << ", dim 1: " << d[1];
=> Dim size: 2, dim 0: 3, dim 1: 4

Index dimension(Index n)

Returns the n-th dimension of the tensor. The actual type of the
dimension() result is <Tensor-Type>::Index, but you can
always use it like an int.

 Eigen::Tensor<float, 2> a(3, 4);
 int dim1 = a.dimension(1);
 cout << "Dim 1: " << dim1;
 => Dim 1: 4

Index size()

Returns the total number of elements in the tensor. This is the product of all
the tensor dimensions. The actual type of the size() result is
<Tensor-Type>::Index, but you can always use it like an int.

Eigen::Tensor<float, 2> a(3, 4);
cout << "Size: " << a.size();
=> Size: 12

Getting Dimensions From An Operation

A few operations provide dimensions() directly,
e.g. TensorReslicingOp. Most operations defer calculating dimensions
until the operation is being evaluated. If you need access to the dimensions
of a deferred operation, you can wrap it in a TensorRef (see Assigning to a
TensorRef above), which provides dimensions() and dimension() as
above.

TensorRef can also wrap the plain Tensor types, so this is a useful idiom in
templated contexts where the underlying object could be either a raw Tensor
or some deferred operation (e.g. a slice of a Tensor). In this case, the
template code can wrap the object in a TensorRef and reason about its
dimensionality while remaining agnostic to the underlying type.

Constructors

Tensor

Creates a tensor of the specified size. The number of arguments must be equal
to the rank of the tensor. The content of the tensor is not initialized.

Eigen::Tensor<float, 2> a(3, 4);
cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
=> NumRows: 3 NumCols: 4

TensorFixedSize

Creates a tensor of the specified size. The number of arguments in the Size<>
template parameter determines the rank of the tensor. The content of the tensor
is not initialized.

Eigen::TensorFixedSize<float, Sizes<3, 4>> a;
cout << "Rank: " << a.rank() << endl;
=> Rank: 2
cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
=> NumRows: 3 NumCols: 4

TensorMap

Creates a tensor mapping an existing array of data. The data must not be freed
until the TensorMap is discarded, and the size of the data must be large enough
to accomodate the coefficients of the tensor.

float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
Eigen::TensorMap<float, 2> a(data, 3, 4);
cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
=> NumRows: 3 NumCols: 4
cout << "a(1, 2): " << a(1, 2) << endl;
=> a(1, 2): 9

Contents Initialization

When a new Tensor or a new TensorFixedSize are created, memory is allocated to
hold all the tensor elements, but the memory is not initialized. Similarly,
when a new TensorMap is created on top of non-initialized memory, its
contents are not initialized.

You can use one of the methods below to initialize the tensor memory. These
have an immediate effect on the tensor and return the tensor itself as a
result. These are not tensor Operations which delay evaluation.

<

Tensor-Type>

 setConstant(const Scalar& val)

Sets all elements of the tensor to the constant value val. Scalar
is the type of data stored in the tensor. You can pass any value that is
convertible to that type.

Returns the tensor itself in case you want to chain another call.

a.setConstant(12.3f);
cout << "Constant: " << endl << a << endl << endl;
=>
Constant:
12.3 12.3 12.3 12.3
12.3 12.3 12.3 12.3
12.3 12.3 12.3 12.3

Note that setConstant() can be used on any tensor where the element type
has a copy constructor and an operator=():

Eigen::Tensor<string, 2> a(2, 3);
a.setConstant("yolo");
cout << "String tensor: " << endl << a << endl << endl;
=>
String tensor:
yolo yolo yolo
yolo yolo yolo

<

Tensor-Type>

 setZero()

Fills the tensor with zeros. Equivalent to setConstant(Scalar(0)).
Returns the tensor itself in case you want to chain another call.

a.setZero();
cout << "Zeros: " << endl << a << endl << endl;
=>
Zeros:
0 0 0 0
0 0 0 0
0 0 0 0

<

Tensor-Type>

 setValues({..initializer_list})

Fills the tensor with explicit values specified in a std::initializer_list.
The type of the initializer list depends on the type and rank of the tensor.

If the tensor has rank N, the initializer list must be nested N times. The
most deeply nested lists must contains P scalars of the Tensor type where P is
the size of the last dimension of the Tensor.

For example, for a TensorFixedSize<float, Sizes<2, 3>> the initializer list must
contains 2 lists of 3 floats each.

setValues() returns the tensor itself in case you want to chain another
call.

Eigen::Tensor<float, 2> a(2, 3);
a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
cout << "a" << endl << a << endl << endl;
=>
a
0 1 2
3 4 5

If a list is too short, the corresponding elements of the tensor will not be
changed. This is valid at each level of nesting. For example the following
code only sets the values of the first row of the tensor.

Eigen::Tensor<int, 2> a(2, 3);
a.setConstant(1000);
a.setValues({{10, 20, 30}});
cout << "a" << endl << a << endl << endl;
=>
a
10 20 30
1000 1000 1000

<

Tensor-Type>

 setRandom()

Fills the tensor with random values. Returns the tensor itself in case you
want to chain another call.

a.setRandom();
cout << "Random: " << endl << a << endl << endl;
=>
Random:
 0.680375 0.59688 -0.329554 0.10794
 -0.211234 0.823295 0.536459 -0.0452059
 0.566198 -0.604897 -0.444451 0.257742

You can customize setRandom() by providing your own random number
generator as a template argument:

a.setRandom<MyRandomGenerator>();

Here, MyRandomGenerator must be a struct with the following member
functions, where Scalar and Index are the same as <Tensor-Type>::Scalar
and <Tensor-Type>::Index.

See struct UniformRandomGenerator in TensorFunctors.h for an example.

// Custom number generator for use with setRandom().
struct MyRandomGenerator {
 // Default and copy constructors. Both are needed
 MyRandomGenerator() { }
 MyRandomGenerator(const MyRandomGenerator&) { }

 // Return a random value to be used. "element_location" is the
 // location of the entry to set in the tensor, it can typically
 // be ignored.
 Scalar operator()(Eigen::DenseIndex element_location,
 Eigen::DenseIndex /*unused*/ = 0) const {
 return <randomly generated value of type T>;
 }

 // Same as above but generates several numbers at a time.
 typename internal::packet_traits<Scalar>::type packetOp(
 Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
 return <a packet of randomly generated values>;
 }
};

You can also use one of the 2 random number generators that are part of the
tensor library:

	UniformRandomGenerator

	NormalRandomGenerator

Data Access

The Tensor, TensorFixedSize, and TensorRef classes provide the following
accessors to access the tensor coefficients:

const Scalar& operator()(const array<Index, NumIndices>& indices)
const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
Scalar& operator()(const array<Index, NumIndices>& indices)
Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)

The number of indices must be equal to the rank of the tensor. Moreover, these
accessors are not available on tensor expressions. In order to access the
values of a tensor expression, the expression must either be evaluated or
wrapped in a TensorRef.

Scalar* data() and const Scalar* data() const

Returns a pointer to the storage for the tensor. The pointer is const if the
tensor was const. This allows direct access to the data. The layout of the
data depends on the tensor layout: RowMajor or ColMajor.

This access is usually only needed for special cases, for example when mixing
Eigen Tensor code with other libraries.

Scalar is the type of data stored in the tensor.

Eigen::Tensor<float, 2> a(3, 4);
float* a_data = a.data();
a_data[0] = 123.45f;
cout << "a(0, 0): " << a(0, 0);
=> a(0, 0): 123.45

Tensor Operations

All the methods documented below return non evaluated tensor Operations.
These can be chained: you can apply another Tensor Operation to the value
returned by the method.

The chain of Operation is evaluated lazily, typically when it is assigned to a
tensor. See “Controlling when Expressions are Evaluated” for more details about
their evaluation.

<

Operation>

 constant(const Scalar& val)

Returns a tensor of the same type and dimensions as the original tensor but
where all elements have the value val.

This is useful, for example, when you want to add or subtract a constant from a
tensor, or multiply every element of a tensor by a scalar.

Eigen::Tensor<float, 2> a(2, 3);
a.setConstant(1.0f);
Eigen::Tensor<float, 2> b = a + a.constant(2.0f);
Eigen::Tensor<float, 2> c = b * b.constant(0.2f);
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
cout << "c" << endl << c << endl << endl;
=>
a
1 1 1
1 1 1

b
3 3 3
3 3 3

c
0.6 0.6 0.6
0.6 0.6 0.6

<

Operation>

 random()

Returns a tensor of the same type and dimensions as the current tensor
but where all elements have random values.

This is for example useful to add random values to an existing tensor.
The generation of random values can be customized in the same manner
as for setRandom().

Eigen::Tensor<float, 2> a(2, 3);
a.setConstant(1.0f);
Eigen::Tensor<float, 2> b = a + a.random();
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 1 1
1 1 1

b
1.68038 1.5662 1.82329
0.788766 1.59688 0.395103

Unary Element Wise Operations

All these operations take a single input tensor as argument and return a tensor
of the same type and dimensions as the tensor to which they are applied. The
requested operations are applied to each element independently.

<

Operation>

 operator-()

Returns a tensor of the same type and dimensions as the original tensor
containing the opposite values of the original tensor.

Eigen::Tensor<float, 2> a(2, 3);
a.setConstant(1.0f);
Eigen::Tensor<float, 2> b = -a;
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 1 1
1 1 1

b
-1 -1 -1
-1 -1 -1

<

Operation>

 sqrt()

Returns a tensor of the same type and dimensions as the original tensor
containing the square roots of the original tensor.

<

Operation>

 rsqrt()

Returns a tensor of the same type and dimensions as the original tensor
containing the inverse square roots of the original tensor.

<

Operation>

 square()

Returns a tensor of the same type and dimensions as the original tensor
containing the squares of the original tensor values.

<

Operation>

 inverse()

Returns a tensor of the same type and dimensions as the original tensor
containing the inverse of the original tensor values.

<

Operation>

 exp()

Returns a tensor of the same type and dimensions as the original tensor
containing the exponential of the original tensor.

<

Operation>

 log()

Returns a tensor of the same type and dimensions as the original tensor
containing the natural logarithms of the original tensor.

<

Operation>

 abs()

Returns a tensor of the same type and dimensions as the original tensor
containing the absolute values of the original tensor.

<

Operation>

 pow(Scalar exponent)

Returns a tensor of the same type and dimensions as the original tensor
containing the coefficients of the original tensor to the power of the
exponent.

The type of the exponent, Scalar, is always the same as the type of the
tensor coefficients. For example, only integer exponents can be used in
conjuntion with tensors of integer values.

You can use cast() to lift this restriction. For example this computes
cubic roots of an int Tensor:

Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 1, 8}, {27, 64, 125}});
Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
0 1 8
27 64 125

b
0 1 2
3 4 5

<

Operation>

 operator * (Scalar scale)

Multiplies all the coefficients of the input tensor by the provided scale.

<

Operation>

 cwiseMax(Scalar threshold)

TODO

<

Operation>

 cwiseMin(Scalar threshold)

TODO

<

Operation>

 unaryExpr(const CustomUnaryOp& func)

TODO

Binary Element Wise Operations

These operations take two input tensors as arguments. The 2 input tensors should
be of the same type and dimensions. The result is a tensor of the same
dimensions as the tensors to which they are applied, and unless otherwise
specified it is also of the same type. The requested operations are applied to
each pair of elements independently.

<

Operation>

 operator+(const OtherDerived& other)

Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise sums of the inputs.

<

Operation>

 operator-(const OtherDerived& other)

Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise differences of the inputs.

<

Operation>

 operator*(const OtherDerived& other)

Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise products of the inputs.

<

Operation>

 operator/(const OtherDerived& other)

Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise quotients of the inputs.

This operator is not supported for integer types.

<

Operation>

 cwiseMax(const OtherDerived& other)

Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise maximums of the inputs.

<

Operation>

 cwiseMin(const OtherDerived& other)

Returns a tensor of the same type and dimensions as the input tensors
containing the coefficient wise mimimums of the inputs.

<

Operation>

 Logical operators

The following logical operators are supported as well:

	operator&&(const OtherDerived& other)

	operator||(const OtherDerived& other)

	operator<(const OtherDerived& other)

	operator<=(const OtherDerived& other)

	operator>(const OtherDerived& other)

	operator>=(const OtherDerived& other)

	operator==(const OtherDerived& other)

	operator!=(const OtherDerived& other)

They all return a tensor of boolean values.

Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor)

Selection is a coefficient-wise ternary operator that is the tensor equivalent
to the if-then-else operation.

Tensor<bool, 3> if = ...;
Tensor<float, 3> then = ...;
Tensor<float, 3> else = ...;
Tensor<float, 3> result = if.select(then, else);

The 3 arguments must be of the same dimensions, which will also be the dimension
of the result. The ‘if’ tensor must be of type boolean, the ‘then’ and the
‘else’ tensor must be of the same type, which will also be the type of the
result.

Each coefficient in the result is equal to the corresponding coefficient in the
‘then’ tensor if the corresponding value in the ‘if’ tensor is true. If not, the
resulting coefficient will come from the ‘else’ tensor.

Contraction

Tensor contractions are a generalization of the matrix product to the
multidimensional case.

// Create 2 matrices using tensors of rank 2
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{1, 2, 3}, {6, 5, 4}});
Eigen::Tensor<int, 2> b(3, 2);
a.setValues({{1, 2}, {4, 5}, {5, 6}});

// Compute the traditional matrix product
array<IndexPair<int>, 1> product_dims = { IndexPair(1, 0) };
Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);

// Compute the product of the transpose of the matrices
array<IndexPair<int>, 1> transpose_product_dims = { IndexPair(0, 1) };
Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);

Reduction Operations

A Reduction operation returns a tensor with fewer dimensions than the
original tensor. The values in the returned tensor are computed by applying a
reduction operator to slices of values from the original tensor. You specify
the dimensions along which the slices are made.

The Eigen Tensor library provides a set of predefined reduction operators such
as maximum() and sum() and lets you define additional operators by
implementing a few methods from a reductor template.

Reduction Dimensions

All reduction operations take a single parameter of type
<TensorType>::Dimensions which can always be specified as an array of
ints. These are called the “reduction dimensions.” The values are the indices
of the dimensions of the input tensor over which the reduction is done. The
parameter can have at most as many element as the rank of the input tensor;
each element must be less than the tensor rank, as it indicates one of the
dimensions to reduce.

Each dimension of the input tensor should occur at most once in the reduction
dimensions as the implementation does not remove duplicates.

The order of the values in the reduction dimensions does not affect the
results, but the code may execute faster if you list the dimensions in
increasing order.

Example: Reduction along one dimension.

// Create a tensor of 2 dimensions
Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{1, 2, 3}, {6, 5, 4}});
// Reduce it along the second dimension (1)...
Eigen::array<int, 1> dims({1 /* dimension to reduce */});
// ...using the "maximum" operator.
// The result is a tensor with one dimension. The size of
// that dimension is the same as the first (non-reduced) dimension of a.
Eigen::Tensor<int, 1> b = a.maximum(dims);
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
1 2 3
6 5 4

b
3
6

Example: Reduction along two dimensions.

Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
 {7.0f, 6.0f, 5.0f, 4.0f},
 {8.0f, 9.0f, 10.0f, 11.0f}},
 {{12.0f, 13.0f, 14.0f, 15.0f},
 {19.0f, 18.0f, 17.0f, 16.0f},
 {20.0f, 21.0f, 22.0f, 23.0f}}});
// The tensor a has 3 dimensions. We reduce along the
// first 2, resulting in a tensor with a single dimension
// of size 4 (the last dimension of a.)
// Note that we pass the array of reduction dimensions
// directly to the maximum() call.
Eigen::Tensor<float, 1, Eigen::ColMajor> b =
 a.maximum(Eigen::array<int, 2>({0, 1}));
cout << "b" << endl << b << endl << endl;
=>
b
20
21
22
23

Reduction along all dimensions

As a special case, if you pass no parameter to a reduction operation the
original tensor is reduced along all its dimensions. The result is a
one-dimension tensor with a single value.

Eigen::Tensor<float, 3> a(2, 3, 4);
a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
 {7.0f, 6.0f, 5.0f, 4.0f},
 {8.0f, 9.0f, 10.0f, 11.0f}},
 {{12.0f, 13.0f, 14.0f, 15.0f},
 {19.0f, 18.0f, 17.0f, 16.0f},
 {20.0f, 21.0f, 22.0f, 23.0f}}});
// Reduce along all dimensions using the sum() operator.
Eigen::Tensor<float, 1> b = a.sum();
cout << "b" << endl << b << endl << endl;
=>
b
276

<

Operation>

 sum(const Dimensions& new_dims)

<

Operation>

 sum()

Reduce a tensor using the sum() operator. The resulting values
are the sum of the reduced values.

<

Operation>

 mean(const Dimensions& new_dims)

<

Operation>

 mean()

Reduce a tensor using the mean() operator. The resulting values
are the mean of the reduced values.

<

Operation>

 maximum(const Dimensions& new_dims)

<

Operation>

 maximum()

Reduce a tensor using the maximum() operator. The resulting values are the
largest of the reduced values.

<

Operation>

 minimum(const Dimensions& new_dims)

<

Operation>

 minimum()

Reduce a tensor using the minimum() operator. The resulting values
are the smallest of the reduced values.

<

Operation>

 prod(const Dimensions& new_dims)

<

Operation>

 prod()

Reduce a tensor using the prod() operator. The resulting values
are the product of the reduced values.

<

Operation>

 all(const Dimensions& new_dims)

<

Operation>

 all()

Reduce a tensor using the all() operator. Casts tensor to bool and then checks
whether all elements are true. Runs through all elements rather than
short-circuiting, so may be significantly inefficient.

<

Operation>

 any(const Dimensions& new_dims)

<

Operation>

 any()

Reduce a tensor using the any() operator. Casts tensor to bool and then checks
whether any element is true. Runs through all elements rather than
short-circuiting, so may be significantly inefficient.

<

Operation>

 reduce(const Dimensions& new_dims, const Reducer& reducer)

Reduce a tensor using a user-defined reduction operator. See SumReducer
in TensorFunctors.h for information on how to implement a reduction operator.

Convolutions

<

Operation>

 convolve(const KernelDerived& kernel, const Dimensions& dims)

Returns a tensor that is the output of the convolution of the of the input tensor with the kernel,
along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
which were part of the convolution will be reduced by the formula:
output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
The dimension sizes for dimensions that were not part of the convolution will remain the same.
Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor’s shortest stride is
for the last dimension).

// Compute convolution along the second and third dimension.
Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
Tensor<float, 2, DataLayout> kernel(2, 2);
Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
input.setRandom();
kernel.setRandom();

Eigen::array<Eigen::DenseIndex, 2> dims({1, 2}); // Specify second and third dimension for convolution.
output = input.convolve(kernel, dims);

for (int i = 0; i < 3; ++i) {
 for (int j = 0; j < 2; ++j) {
 for (int k = 0; k < 6; ++k) {
 for (int l = 0; l < 11; ++l) {
 const float result = output(i,j,k,l);
 const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
 input(i,j+1,k+0,l) * kernel(1,0) +
 input(i,j+0,k+1,l) * kernel(0,1) +
 input(i,j+1,k+1,l) * kernel(1,1);
 VERIFY_IS_APPROX(result, expected);
 }
 }
 }
}

Geometrical Operations

These operations return a Tensor with different dimensions than the original
Tensor. They can be used to access slices of tensors, see them with different
dimensions, or pad tensors with additional data.

<

Operation>

 reshape(const Dimensions& new_dims)

Returns a view of the input tensor that has been reshaped to the specified
new dimensions. The argument new_dims is an array of Index values. The
rank of the resulting tensor is equal to the number of elements in new_dims.

The product of all the sizes in the new dimension array must be equal to
the number of elements in the input tensor.

// Increase the rank of the input tensor by introducing a new dimension
// of size 1.
Tensor<float, 2> input(7, 11);
array<int, 3> three_dims{{7, 11, 1}};
Tensor<float, 3> result = input.reshape(three_dims);

// Decrease the rank of the input tensor by merging 2 dimensions;
array<int, 1> one_dim{{7 * 11}};
Tensor<float, 1> result = input.reshape(one_dim);

This operation does not move any data in the input tensor, so the resulting
contents of a reshaped Tensor depend on the data layout of the original Tensor.

For example this is what happens when you reshape() a 2D ColMajor tensor
to one dimension:

Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
cout << "b" << endl << b << endl;
=>
b
 0
300
100
400
200
500

This is what happens when the 2D Tensor is RowMajor:

Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
cout << "b" << endl << b << endl;
=>
b
 0
100
200
300
400
500

The reshape operation is a lvalue. In other words, it can be used on the left
side of the assignment operator.

The previous example can be rewritten as follow:

Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
Eigen::Tensor<float, 1, Eigen::ColMajor> b;
b.reshape(two_dim) = a;
cout << "b" << endl << b << endl;
=>
b
 0
300
100
400
200
500

Note that “b” itself was not reshaped but that instead the assignment is done to
the reshape view of b.

<

Operation>

 shuffle(const Shuffle& shuffle)

Returns a copy of the input tensor whose dimensions have been
reordered according to the specified permutation. The argument shuffle
is an array of Index values. Its size is the rank of the input
tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
dimension of the output tensor equals to the size of the shuffle[i]-th
dimension of the input tensor. For example:

// Shuffle all dimensions to the left by 1.
Tensor<float, 3> input(20, 30, 50);
// ... set some values in input.
Tensor<float, 3> output = input.shuffle({1, 2, 0})

eigen_assert(output.dimension(0) == 30);
eigen_assert(output.dimension(1) == 50);
eigen_assert(output.dimension(2) == 20);

Indices into the output tensor are shuffled accordingly to formulate
indices into the input tensor. For example, one can assert in the above
code snippet that:

eigen_assert(output(3, 7, 11) == input(11, 3, 7));

In general, one can assert that

eigen_assert(output(..., indices[shuffle[i]], ...) ==
 input(..., indices[i], ...))

The shuffle operation results in a lvalue, which means that it can be assigned
to. In other words, it can be used on the left side of the assignment operator.

Let’s rewrite the previous example to take advantage of this feature:

// Shuffle all dimensions to the left by 1.
Tensor<float, 3> input(20, 30, 50);
// ... set some values in input.
Tensor<float, 3> output(30, 50, 20);
output.shuffle({2, 0, 1}) = input;

<

Operation>

 stride(const Strides& strides)

Returns a view of the input tensor that strides (skips stride-1
elements) along each of the dimensions. The argument strides is an
array of Index values. The dimensions of the resulting tensor are
ceil(input_dimensions[i] / strides[i]).

For example this is what happens when you stride() a 2D tensor:

Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
Eigen::Tensor<int, 2> b = a.stride(strides);
cout << "b" << endl << b << endl;
=>
b
 0 200
 900 1100

It is possible to assign a tensor to a stride:
Tensor<float, 3> input(20, 30, 50);
// ... set some values in input.
Tensor<float, 3> output(40, 90, 200);
output.stride({2, 3, 4}) = input;

<

Operation>

 inflate(const Strides& strides)

Returns a view of an “inflated” tensor of the input tensor by inserting zeros
between the original elements in the input tensor. The argument strides is an
array of Index values, indicating how much “inflation” there is. The dimensions
of the resulting tensor are (input_dimensions[i] - 1) * strides[i] + 1. In
some sense it is the inverse of the stride() operation.

For example this is what happens when you inflate() a 2D tensor:

Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}});
Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
Eigen::Tensor<int, 2> b = a.inflate(strides);
cout << "b" << endl << b << endl;
=>
b
 0 0 0 100 0 0 200
 0 0 0 0 0 0 0
 300 0 0 400 0 0 500

The inflate() operation is an r-value only operation as it doesn’t make
sense to assign a value to an inflated tensor in positions where the values are
hardwired to zero.

<

Operation>

 slice(const StartIndices& offsets, const Sizes& extents)

Returns a sub-tensor of the given tensor. For each dimension i, the slice is
made of the coefficients stored between offset[i] and offset[i] + extents[i] in
the input tensor.

Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
 {600, 700, 800}, {900, 1000, 1100}});
Eigen::array<int, 2> offsets = {1, 0};
Eigen::array<int, 2> extents = {2, 2};
Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
cout << "a" << endl << a << endl;
=>
a
 0 100 200
 300 400 500
 600 700 800
 900 1000 1100
cout << "slice" << endl << slice << endl;
=>
slice
 300 400
 600 700

<

Operation>

 chip(const Index offset, const Index dim)

A chip is a special kind of slice. It is the subtensor at the given offset in
the dimension dim. The returned tensor has one fewer dimension than the input
tensor: the dimension dim is removed.

For example, a matrix chip would be either a row or a column of the input
matrix.

Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
 {600, 700, 800}, {900, 1000, 1100}});
Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
cout << "a" << endl << a << endl;
=>
a
 0 100 200
 300 400 500
 600 700 800
 900 1000 1100
cout << "row_3" << endl << row_3 << endl;
=>
row_3
 600 700 800
cout << "col_2" << endl << col_2 << endl;
=>
col_2
 100 400 700 1000

It is possible to assign values to a tensor chip since the chip operation is a
lvalue. For example:

Eigen::Tensor<int, 1> a(3);
a.setValues({{100, 200, 300}});
Eigen::Tensor<int, 2> b(2, 3);
b.setZero();
b.chip(0, 0) = a;
cout << "a" << endl << a << endl;
=>
a
 100
 200
 300
cout << "b" << endl << b << endl;
=>
b
 100 200 300
 0 0 0

<

Operation>

 reverse(const ReverseDimensions& reverse)

Returns a view of the input tensor that reverses the order of the coefficients
along a subset of the dimensions. The argument reverse is an array of boolean
values that indicates whether or not the order of the coefficients should be
reversed along each of the dimensions. This operation preserves the dimensions
of the input tensor.

For example this is what happens when you reverse() the first dimension
of a 2D tensor:

Eigen::Tensor<int, 2> a(4, 3);
a.setValues({{0, 100, 200}, {300, 400, 500},
 {600, 700, 800}, {900, 1000, 1100}});
Eigen::array<bool, 2> reverse({true, false});
Eigen::Tensor<int, 2> b = a.reverse(reverse);
cout << "a" << endl << a << endl << "b" << endl << b << endl;
=>
a
 0 100 200
 300 400 500
 600 700 800
 900 1000 1100
b
 900 1000 1100
 600 700 800
 300 400 500
 0 100 200

<

Operation>

 broadcast(const Broadcast& broadcast)

Returns a view of the input tensor in which the input is replicated one to many
times.
The broadcast argument specifies how many copies of the input tensor need to be
made in each of the dimensions.

Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}});
Eigen::array<int, 2> bcast({3, 2});
Eigen::Tensor<int, 2> b = a.broadcast(bcast);
cout << "a" << endl << a << endl << "b" << endl << b << endl;
=>
a
 0 100 200
 300 400 500
b
 0 100 200 0 100 200
 300 400 500 300 400 500
 0 100 200 0 100 200
 300 400 500 300 400 500
 0 100 200 0 100 200
 300 400 500 300 400 500

<

Operation>

 concatenate(const OtherDerived& other, Axis axis)

TODO

<

Operation>

 pad(const PaddingDimensions& padding)

Returns a view of the input tensor in which the input is padded with zeros.

Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 100, 200}, {300, 400, 500}});
Eigen::array<std::pair<int, int>, 2> paddings;
paddings[0] = make_pair(0, 1);
paddings[1] = make_pair(2, 3);
Eigen::Tensor<int, 2> b = a.pad(paddings);
cout << "a" << endl << a << endl << "b" << endl << b << endl;
=>
a
 0 100 200
 300 400 500
b
 0 0 0 0
 0 0 0 0
 0 100 200 0
 300 400 500 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

<

Operation>

 extract_patches(const PatchDims& patch_dims)

Returns a tensor of coefficient patches extracted from the input tensor, where
each patch is of dimension specified by ‘patch_dims’. The returned tensor has
one greater dimension than the input tensor, which is used to index each patch.
The patch index in the output tensor depends on the data layout of the input
tensor: the patch index is the last dimension ColMajor layout, and the first
dimension in RowMajor layout.

For example, given the following input tensor:

Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
 {4.0f, 5.0f, 6.0f, 7.0f},
 {8.0f, 9.0f, 10.0f, 11.0f}});

cout << "tensor: " << endl << tensor << endl;
=>
tensor:
0 1 2 3
4 5 6 7
8 9 10 11

Six 2x2 patches can be extracted and indexed using the following code:

Eigen::Tensor<float, 3, DataLayout> patch;
Eigen::array<Eigen::DenseIndex, 2> patch_dims;
patch_dims[0] = 2;
patch_dims[1] = 2;
patch = tensor.extract_patches(patch_dims);
for (int k = 0; k < 6; ++k) {
 cout << "patch index: " << k << endl;
 for (int i = 0; i < 2; ++i) {
 for (int j = 0; j < 2; ++j) {
 if (DataLayout == ColMajor) {
 cout << patch(i, j, k) << " ";
 } else {
 cout << patch(k, i, j) << " ";
 }
 }
 cout << endl;
 }
}

This code results in the following output when the data layout is ColMajor:

patch index: 0
0 1
4 5
patch index: 1
4 5
8 9
patch index: 2
1 2
5 6
patch index: 3
5 6
9 10
patch index: 4
2 3
6 7
patch index: 5
6 7
10 11

This code results in the following output when the data layout is RowMajor:
(NOTE: the set of patches is the same as in ColMajor, but are indexed differently).

patch index: 0
0 1
4 5
patch index: 1
1 2
5 6
patch index: 2
2 3
6 7
patch index: 3
4 5
8 9
patch index: 4
5 6
9 10
patch index: 5
6 7
10 11

<

Operation>

 extract_image_patches(const Index patch_rows, const Index patch_cols,

 const Index row_stride, const Index col_stride,
 const Index in_row_stride, const Index in_col_stride,
 const Index row_inflate_stride, const Index col_inflate_stride,
 const PaddingType padding_type, const Scalar padding_value)

Returns a tensor of coefficient image patches extracted from the input tensor,
which is expected to have dimensions ordered as follows (depending on the data
layout of the input tensor, and the number of additional dimensions ‘N’):

	ColMajor
	1st dimension: channels (of size d)

	2nd dimension: rows (of size r)

	3rd dimension: columns (of size c)

	4th-Nth dimension: time (for video) or batch (for bulk processing).

	RowMajor (reverse order of ColMajor)
	1st-Nth dimension: time (for video) or batch (for bulk processing).

	N+1’th dimension: columns (of size c)

	N+2’th dimension: rows (of size r)

	N+3’th dimension: channels (of size d)

The returned tensor has one greater dimension than the input tensor, which is
used to index each patch. The patch index in the output tensor depends on the
data layout of the input tensor: the patch index is the 4’th dimension in
ColMajor layout, and the 4’th from the last dimension in RowMajor layout.

For example, given the following input tensor with the following dimension
sizes:

	depth: 2

	rows: 3

	columns: 5

	batch: 7

Tensor<float, 4> tensor(2,3,5,7);
Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();

2x2 image patches can be extracted and indexed using the following code:

	2D patch: ColMajor (patch indexed by second-to-last dimension)

Tensor<float, 5> twod_patch;
twod_patch = tensor.extract_image_patches<2, 2>();
// twod_patch.dimension(0) == 2
// twod_patch.dimension(1) == 2
// twod_patch.dimension(2) == 2
// twod_patch.dimension(3) == 3*5
// twod_patch.dimension(4) == 7

	2D patch: RowMajor (patch indexed by the second dimension)

Tensor<float, 5, RowMajor> twod_patch_row_major;
twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
// twod_patch_row_major.dimension(0) == 7
// twod_patch_row_major.dimension(1) == 3*5
// twod_patch_row_major.dimension(2) == 2
// twod_patch_row_major.dimension(3) == 2
// twod_patch_row_major.dimension(4) == 2

Input parameters:

	patch_rows, patch_cols: Spatial extent of the extracted patches.

	row_stride, col_stride: Image Displacement (in pixels) between the
upper-left coordinates of consecutive patches.

	in_row_stride, in_col_stride: Image displacement (in pixels) between
two consecutive patch samples. If larger than 1 (default), they allow
for sparsely sampling the input image.

	row_inflate_stride, col_inflate_stride: If larger than 1 (default), “inflates”
the inputs by inserting zeros between the original elements. This is useful
for backward convolution.

	padding_type: Boundary conditions. Either PADDING_SAME (default)
or PADDING_VALID.

	padding_value: the value used in padding, defaults to 0.

Special Operations

<

Operation>

 cast<

T>

()

Returns a tensor of type T with the same dimensions as the original tensor.
The returned tensor contains the values of the original tensor converted to
type T.

Eigen::Tensor<float, 2> a(2, 3);
Eigen::Tensor<int, 2> b = a.cast<int>();

This can be useful for example if you need to do element-wise division of
Tensors of integers. This is not currently supported by the Tensor library
but you can easily cast the tensors to floats to do the division:

Eigen::Tensor<int, 2> a(2, 3);
a.setValues({{0, 1, 2}, {3, 4, 5}});
Eigen::Tensor<int, 2> b =
 (a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
cout << "a" << endl << a << endl << endl;
cout << "b" << endl << b << endl << endl;
=>
a
0 1 2
3 4 5

b
0 0 1
1 2 2

<

Operation>

 eval()

TODO

Representation of scalar values

Scalar values are often represented by tensors of size 1 and rank 1. It would be
more logical and user friendly to use tensors of rank 0 instead. For example
Tensor<

T, N>

::maximum() currently returns a Tensor<

T, 1>

. Similarly, the inner
product of 2 1d tensors (through contractions) returns a 1d tensor. In the
future these operations might be updated to return 0d tensors instead.

GPU Support

NVidia GPU support can be enabled using:

#define EIGEN_USE_GPU

To speedup operations on GPU, it is also recommended to use 32 bit indices. This
prevents Eigen from using 64 bit loop indices, which have to be emulated in
software and make any operation extremely slow.

This can be achieved globally by using the EIGEN_DEFAULT_DENSE_INDEX_TYPE define
as follow:

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int

This can also be done individually for each tensor by using the Index32Bit
option as follow:

Eigen::Tensor<DataType, Rank, Eigen::Index32Bit> t;
Eigen::TensorMap<Eigen::Tensor<DataType, Rank, Eigen::Index32Bit> > t_map;

Limitations

	The number of tensor dimensions is currently limited to 250 when using a
compiler that supports cxx11. It is limited to only 5 for older compilers.

	The IndexList class requires a cxx11 compliant compiler. You can use an
array of indices instead if you don’t have access to a modern compiler.

	TensorVarDims are only partially supported

	On GPUs only floating point values are properly tested and optimized for.

	Complex and integer values are known to be broken on GPUs. If you try to use
them you’ll most likely end up triggering a static assertion failure such as
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)

TensorFlow Event Processing

This folder contains classes useful for analyzing and visualizing TensorFlow
events files. The code is primarily being developed to support TensorBoard,
but it can be used by anyone who wishes to analyze or visualize TensorFlow
events files.

If you wish to load TensorFlow events, you should use an EventAccumulator
(to load from a single events file) or an EventMultiplexer (to load from
multiple events files).

The API around these tools has not solidified, and we may make backwards-
incompatible changes without warning.

If you have questions or requests, please contact danmane@google.com

Using TensorFlow via Docker

This directory contains Dockerfiles to make it easy to get up and running with
TensorFlow via Docker [http://www.docker.com/].

Installing Docker

General installation instructions are
on the Docker site [https://docs.docker.com/installation/], but we give some
quick links here:

	OSX [https://docs.docker.com/installation/mac/]: docker toolbox [https://www.docker.com/toolbox]

	ubuntu [https://docs.docker.com/installation/ubuntulinux/]

Which containers exist?

We currently maintain three Docker container images:

	b.gcr.io/tensorflow/tensorflow, which is a minimal VM with TensorFlow and
all dependencies.

	b.gcr.io/tensorflow/tensorflow-full, which contains a full source
distribution and all required libraries to build and run TensorFlow from
source.

	b.gcr.io/tensorflow/tensorflow-full-gpu, which is the same as the previous
container, but built with GPU support.

Running the container

Each of the containers is published to a Docker registry; for the non-GPU
containers, running is as simple as

$ docker run -it b.gcr.io/tensorflow/tensorflow

For the container with GPU support, we require the user to make the appropriate
NVidia libraries available on their system, as well as providing mappings so
that the container can see the host’s GPU. For most purposes, this can be
accomplished via

$ export CUDA_SO=$(\ls /usr/lib/x86_64-linux-gnu/libcuda* | xargs -I{} echo '-v {}:{}')
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ export CUDA_SRCS="-v /usr/local/cuda:/usr/local/cuda -v /usr/share/nvidia:/usr/share/nvidia"
$ docker run -it $CUDA_SO $CUDA_SRCS $DEVICES b.gcr.io/tensorflow/tensorflow-full-gpu

Alternately, you can use the docker_run_gpu.sh script in this directory.

Rebuilding the containers

tensorflow/tensorflow

This one requires no extra setup – just

$ docker build -t $USER/tensorflow -f Dockerfile.lite .

tensorflow/tensorflow-full

This one requires a copy of the tensorflow source tree at ./tensorflow (since
we don’t keep the Dockerfiles at the top of the tree). With that in place,
just run

$ git clone https://github.com/tensorflow/tensorflow
$ docker build -t $USER/tensorflow-full -f Dockerfile.cpu .

tensorflow/tensorflow-gpu

This one requires a few steps, since we need the NVidia headers to be available
during the build step, but we don’t want them included in the final container
image. We need to start by installing the NVidia libraries as described in the
CUDA setup instructions. With that
complete, we can build via

$ cp -a /usr/local/cuda .
$ docker build -t $USER/tensorflow-gpu-base -f Dockerfile.gpu_base .
Flatten the image
$ export TC=$(docker create $USER/tensorflow-gpu-base)
$ docker export $TC | docker import - $USER/tensorflow-gpu-flat
$ docker rm $TC
$ export TC=$(docker create $USER/tensorflow-gpu-flat /bin/bash)
$ docker commit --change='CMD ["/bin/bash"]' --change='ENV CUDA_PATH /usr/local/cuda' --change='ENV LD_LIBRARY_PATH /usr/local/cuda/lib64' --change='WORKDIR /root' $TC $USER/tensorflow-full-gpu
$ docker rm $TC

This final image is a full TensorFlow image with GPU support.

Tensorboard client-server HTTP API

Runs, Tags, and Tag Types

TensorBoard data is organized around the concept of a run, which represents
all the related data thrown off by a single execution of TensorFlow, a tag,
which groups values of data that come from the same source within a TensorFlow
run, and tag types, which are our way of distinguishing different types of
data that have fundamentally different representations and should be processed
on different code paths. For example, a “train” run may have a scalars
tag that represents the learning rate, another scalars tag that
represents the value of the objective function, a histograms tag that reveals
information on weights in a particular layer over time, and an images tag that
shows input images flowing into the system. The “eval” run might have an
entirely different set of tag names, or some duplicated tag names.

The currently supported tag types are scalars, images, histograms and
graph. Each tag type corresponds to a route (documented below) for
retrieving tag data of that type.

All of the data provided comes from TensorFlow events files (‘*.tfevents*‘),
which are written using the SummaryWriter class
(tensorflow/python/training/summary_writer.py), and the data is generated by
summary ops (tensorflow/python/ops/summary_ops.py). The scalars come from
the ScalarSummary op, the histograms from the HistogramSummary, and the
images from ImageSummary. The tag type graph is special in that it is not
a collection of tags of that type, but a boolean denoting if there is a graph
definition associated with the run. The tag is provided to the summary
op (usually as a constant).

/runs

Returns a dictionary mapping from run name (quoted string) to dictionaries
mapping from all available tagTypes to a list of tags of that type available for
the run. Think of this as a comprehensive index of all of the data available
from the TensorBoard server. Here is an example:

{
“train_run”: {
“histograms”: [“foo_histogram”, “bar_histogram”],
“scalars”: [“xent”, “loss”, “learning_rate”],
“images”: [“input”],
“graph”: true
},
“eval”: {
“histograms”: [“foo_histogram”, “bar_histogram”],
“scalars”: [“precision”, “recall”],
“images”: [“input”],
“graph”: false
}
}

Note that the same tag may be present for many runs. It is not guaranteed that
they will have the same meaning across runs. It is also not guaranteed that they
will have the same tag type across different runs.

‘/scalars?run=foo&tag=bar’

Returns an array of event_accumulator.SimpleValueEvents ([wall_time, step,
value]) for the given run and tag. wall_time is seconds since epoch.

Example:
[
[1443856985.705543, 1448, 0.7461960315704346], # wall_time, step, value
[1443857105.704628, 3438, 0.5427092909812927],
[1443857225.705133, 5417, 0.5457325577735901],
...
]

If the format parameter is set to ‘csv’, the response will instead be in CSV
format:

Wall time,step,value
1443856985.705543,1448,0.7461960315704346
1443857105.704628,3438,0.5427092909812927
1443857225.705133,5417,0.5457325577735901

‘/histograms?run=foo&tag=bar’

Returns an array of event_accumulator.HistogramEvents ([wall_time, step,
HistogramValue]) for the given run and tag. A HistogramValue is [min, max, num,
sum, sum_squares, bucket_limit, bucket]. wall_time is seconds since epoch.

Annotated Example: (note - real data is higher precision)

[
[
1443871386.185149, # wall_time
235166, # step
[
-0.66, # minimum value
0.44, # maximum value
8.0, # number of items in the histogram
-0.80, # sum of items in the histogram
0.73, # sum of squares of items in the histogram
[-0.68, -0.62, -0.292, -0.26, -0.11, -0.10, -0.08, -0.07, -0.05,
-0.0525, -0.0434, -0.039, -0.029, -0.026, 0.42, 0.47, 1.8e+308],
the right edge of each bucket
[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0,
1.0, 0.0] # the number of elements within each bucket
]
]
]

‘/compressedHistograms?run=foo&tag=bar’

Returns an array of event_accumulator.CompressedHistogramEvents ([wall_time,
step, CompressedHistogramValues]) for the given run and tag.

CompressedHistogramValues is a list of namedtuples with each tuple specifying
a basis point (bps) as well as an interpolated value of the histogram value
at that basis point. A basis point is 1/100 of a percent.

The current compression strategy is to choose basis points that correspond to
the median and bands of 1SD, 2SD, and 3SDs around the median. Note that the
current compression strategy does not work well for representing multimodal
data – this is something that will be improved in a later iteration.

Annotated Example: (note - real data is higher precision)

[
[
1441154832.580509, # wall_time
5, # step
[[0, -3.67], # CompressedHistogramValue for 0th percentile
[2500, -4.19], # CompressedHistogramValue for 25th percentile
[5000, 6.29],
[7500, 1.64],
[10000, 3.67]
]
],
...
]

/images?run=foo&tag=bar

Gets a sample of ImageMetadatas for the given run and tag.

Returns an array of objects containing information about available images,
crucially including the query parameter that may be used to retrieve that image.
(See /individualImage for details.)

For example:
{
“width”: 28, # width in pixels
“height”: 28, # height in pixels
“wall_time”: 1440210599.246, # time in seconds since epoch
“step”: 63702821, # number of steps that have passed
“query”: “index=0&tagname=input%2Fimage%2F2&run=train”
param for /individualImage
}

/individualImage?{{query}}

Retrieves an individual image. The image query should not be generated by the
frontend, but instead acquired from calling the /images route (the image
metadata objects contain the query to use). The response is the image itself
with mime-type ‘image/png’.

Note that the query is not guaranteed to always refer to the same image even
within a single run, as images may be removed from the sampling reservoir and
replaced with other images. (See Notes for details on the reservoir sampling.)

An example call to this route would look like this:
/individualImage?index=0&tagname=input%2Fimage%2F2&run=train

/graph?run=foo

Returns the graph definition for the given run in gzipped pbtxt format. The
graph is composed of a list of nodes, where each node is a specific TensorFlow
operation which takes as inputs other nodes (operations).

An example pbtxt response of graph with 3 nodes:
node {
op: “Input”
name: “A”
}
node {
op: “Input”
name: “B”
}
node {
op: “MatMul”
name: “C”
input: “A”
input: “B”
}

Notes

All returned values, histograms, and images are returned in the order they were
written by Tensorflow (which should correspond to increasing wall_time order,
but may not necessarily correspond to increasing step count if the process had
to restart from a previous checkpoint).

The returned values may be downsampled using reservoir sampling, which is
configurable by the TensorBoard server. When downsampling occurs, the server
guarantees that different tags will all sample at the same sequence of indices,
so that if if there are two tags A and B which are related so that A[i] ~ B[i] for all i, then D(A)[i] ~ D(B)[i] for all i, where D represents
the downsampling operation.

The reservoir sampling puts an upper bound on the number of items that will be
returned for a given run-tag combination, and guarantees that all items are
equally likely to be in the final sample (ie it is a uniform distribution over
the values), with the proviso that the most recent individual item is always
included in the sample.

The reservoir sizes are configurable on a per-tag type basis.

TensorBoard

TensorBoard is a suite of web applications for inspecting and understanding your
TensorFlow runs and graphs.

Example Usage:

python tensorflow/tensorboard/tensorboard.py --logdir=path/to/logs
if installed via pip
tensorboard --logdir=path/to/logs

if building from source
bazel build tensorflow/tensorboard:tensorboard
./bazel-bin/tensorflow/tensorboard/tensorboard --logdir=path/to/logs

then connect to http://localhost:6006

Note that TensorBoard requires a logdir to read logs from. For info on
configuring TensorBoard, run tensorboard --help.

TensorBoard includes a backend (tensorboard.py) that reads TensorFlow event data
from the tfevents files, and then serves this data to the browser. It also
includes a frontend (app/tf-tensorboard.html) that contains html and javascript
for displaying this data in a UI.

Building the TensorBoard frontend

Install Node, npm, gulp, bower, and tsd in your machine

Get nodejs and npm through whatever package distribution system is appropriate
for your machine. For example, on Ubuntu 14.04, run
sudo apt-get install nodejs nodejs-legacy npm. Then, run
sudo npm install -g gulp bower tsd.

Install project dependencies

Inside this directory (tensorflow/tensorboard),
run the following commands.

npm install
bower install
tsd install

Run Gulp Vulcanize

Inside this directory, run gulp vulcanize. That will compile all of the
html/js/css dependencies for TensorBoard into a monolithic index.html file under
dist/. Once you’ve done this, you can locally run your own TensorBoard instance
and it will have a working frontend.

Frontend General Dev Instructions

To speed up the development process, we can run the frontend code independently
of the backend, and mock out the backend with static JSON files. This allows
testing the frontend’s correctness without needing to find real data and spin
up a real server. Look at app/demo/index.html for an example.

The following gulp commands are useful:

	gulp test - build, test, and lint the code

	gulp watch - build, test, and rebuild on change

	gulp server - start a livereload server on localhost:8000

	gulp - alias for gulp watch

	gulp vulcanize -

SparseTensor

Sparse Tensors are stored as two dense tensors and a shape:

	indices: a brain::Tensor storing a matrix, typically int64

	values: a brain::Tensor storing a vector with values of type T.

	shape: a TensorShape storing the bounds of the underlying tensor

	order: (optional) a gtl::InlinedVector<int64,8> with the dimensions
along which the indices are ordered.

Let

ix = indices.matrix<int64>()
vals = values.vec<T>()

The shape of ix is N x NDIMS, and each row corresponds to the
index of a single element of the sparse tensor.

The length of vals must be N, and vals(i) corresponds to the
value with index ix(i,:).

Shape must be a TensorShape with dims() == NDIMS.
The shape is the full shape of the dense tensor these indices
represent.

To be specific, the representation (pseudocode) is:

tensor[ix[i,:]] == vals[i] for i = 0, ..., N-1

Ordering

Indices need not be provided in order. For example, the following
index matrix is ordered according to dimension order {0, 1, 2}.

[0 0 1]
[0 1 1]
[2 0 2]

However, you can provide an unordered version:

[2 0 2]
[0 0 1]
[0 1 1]

If the SparseTensor is constructed without a provided order, then a
the default order is {-1, ..., -1}. Certain operations will fail or crash
when the order is not provided.

Resorting the SparseTensor in-place (which resorts the underlying index and
values tensors in-place) will update the order. The cost of reordering the
matrix is O(N*log(N)), and requires O(N) additional temporary space to store
a reordering index. If the default order is not specified and reordering is not
performed, the following will happen:

	group() will raise an assertion failure

	IndicesValid() will raise an assertion failure

To update the internal index ordering after construction, call
Reorder<T>() via, e.g., Reorder<T>({0,1,2}).
After this step, all the above methods should work correctly.

The method IndicesValid() checks to make sure:

	0 <= ix(i, d) < shape.dim_size(d)

	indices do not repeat

	indices are in order

Iterating

group({grouping dims})

	provides an iterator that groups entries according to
dimensions you care about

	may require a sort if your data isn’t presorted in a way that’s
compatible with grouping_dims

	for each group, returns the group index (values of the group
dims for this iteration), the subset of indices in this group,
and the subset of values in this group. these are lazy outputs
so to read them individually, copy them as per the example
below.

NOTE

group({dim0, ..., dimk}) will raise an assertion failure if the
order of the SparseTensor does not match the dimensions you wish to group by.
You must either have your indices in the correct order and construct the
SparseTensor with

order = {dim0, ..., dimk, ...}

or call

Reorder<T>({dim0, .., dimk, ...})

to sort the SparseTensor before grouping.

Example of grouping:

Tensor indices(DT_INT64, TensorShape({N, NDIMS});
Tensor values(DT_STRING, TensorShape({N});
TensorShape shape({dim0,...});
SparseTensor sp(indices, vals, shape);
sp.Reorder<string>({1, 2, 0, 3, ...}); // Must provide NDIMS dims.
// group according to dims 1 and 2
for (const auto& g : sp.group({1, 2})) {
 cout << "vals of ix[:, 1,2] for this group: "
 << g.group()[0] << ", " << g.group()[1];
 cout << "full indices of group:\n" << g.indices();
 cout << "values of group:\n" << g.values();

 TTypes<int64>::UnalignedMatrix g_ix = g.indices();
 TTypes<string>::UnalignedVec g_v = g.values();
 ASSERT(g_ix.dimension(0) == g_v.size()); // number of elements match.
}

ToDense

Converts sparse tensor to dense. You must provide a pointer to the
dense tensor (preallocated). ToDense() will optionally
preinitialize the tensor with zeros.

Shape checking is performed, as is boundary checking.

Tensor indices(DT_INT64, TensorShape({N, NDIMS});
Tensor values(DT_STRING, TensorShape({N});
TensorShape shape({dim0,...});
SparseTensor sp(indices, vals, shape);
ASSERT(sp.IndicesValid()); // checks ordering & index bounds.

Tensor dense(DT_STRING, shape);
// initialize other indices to zero. copy.
ASSERT(sp.ToDense<string>(&dense, true));

Concat

Concatenates multiple SparseTensors and returns a new SparseTensor.
This concatenation is with respect to the “dense” versions of these
SparseTensors. Concatenation is performed along dimension order[0]
of all tensors. As a result, shape[order[0]] may differ across
the inputs, but shape[d] for d != order[0] must match across all inputs.

We call order[0] the primary dimension.

Prerequisites

	The inputs’ ranks must all match.

	The inputs’ order[0] must all match.

	The inputs’ shapes must all match except for dimension order[0].

	The inputs’ values must all be of the same type.

If any of these are false, concat will die with an assertion failure.

Example:
Concatenate two sparse matrices along columns.

Matrix 1:

[0 0 1]
[2 0 0]
[3 0 4]

Matrix 2:

[0 0 0 0 0]
[0 1 0 0 0]
[2 0 0 1 0]

Concatenated Matrix:

[0 0 1 0 0 0 0 0]
[2 0 0 0 1 0 0 0]
[3 0 4 2 0 0 1 0]

Expected input shapes, orders, and nnz():

shape_1 = TensorShape({3, 3})
shape_2 = TensorShape({3, 8})
order_1 = {1, 0} // primary order is 1, columns
order_2 = {1, 0} // primary order is 1, must match
nnz_1 = 4
nnz_2 = 3

Output shapes and orders:

conc_shape = TensorShape({3, 11}) // primary dim increased, others same
conc_order = {1, 0} // Orders match along all inputs
conc_nnz = 7 // Sum of nonzeros of inputs

Coding Example:

Tensor ix1(DT_INT64, TensorShape({N1, 3});
Tensor vals1(DT_STRING, TensorShape({N1, 3});
Tensor ix2(DT_INT64, TensorShape({N2, 3});
Tensor vals2(DT_STRING, TensorShape({N2, 3});
Tensor ix3(DT_INT64, TensorShape({N3, 3});
Tensor vals3(DT_STRING, TensorShape({N3, 3});

SparseTensor st1(ix1, vals1, TensorShape({10, 20, 5}), {1, 0, 2});
SparseTensor st2(ix2, vals2, TensorShape({10, 10, 5}), {1, 0, 2});
// For kicks, st3 indices are out of order, but order[0] matches so we
// can still concatenate along this dimension.
SparseTensor st3(ix3, vals3, TensorShape({10, 30, 5}), {1, 2, 0});

SparseTensor conc = SparseTensor::Concat<string>({st1, st2, st3});
Tensor ix_conc = conc.indices();
Tensor vals_conc = conc.values();
EXPECT_EQ(conc.nnz(), st1.nnz() + st2.nnz() + st3.nnz());
EXPECT_EQ(conc.Shape(), TensorShape({10, 60, 5}));
EXPECT_EQ(conc.Order(), {-1, -1, -1});

// Reorder st3 so all input tensors have the exact same orders.
st3.Reorder<string>({1, 0, 2});
SparseTensor conc2 = SparseTensor::Concat<string>({st1, st2, st3});
EXPECT_EQ(conc2.Order(), {1, 0, 2});
// All indices' orders matched, so output is in order.
EXPECT_TRUE(conc2.IndicesValid());

TensorFlow

TensorFlow is a computational dataflow graph library.

Getting started

Python API example

The following is an example python code to do a simple matrix multiply
of two constants and get the result from a locally-running TensorFlow
process.

First, bring in tensorflow python dependency

//third_party/tensorflow:tensorflow_py

to get the python TensorFlow API.

Then:

import tensorflow as tf

with tf.Session("local"):
 input1 = tf.Constant(1.0, shape=[1, 1], name="input1")
 input2 = tf.Constant(2.0, shape=[1, 1], name="input2")
 output = tf.MatMul(input1, input2)

 # Run graph and fetch the output
 result = output.eval()
 print result

C++ API Example

If you are running TensorFlow locally, link your binary with

//third_party/tensorflow/core

and link in the operation implementations you want to supported, e.g.,

//third_party/tensorflow/core:kernels

An example program to take a GraphDef and run it using TensorFlow
using the C++ Session API:

#include <memory>
#include <string>
#include <vector>

#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/public/tensor.h"

int main(int argc, char** argv) {
 // Construct your graph.
 tensorflow::GraphDef graph = ...;

 // Create a Session running TensorFlow locally in process.
 std::unique_ptr<tensorflow::Session> session(tensorflow::NewSession({}));

 // Initialize the session with the graph.
 tensorflow::Status s = session->Create(graph);
 if (!s.ok()) { ... }

 // Specify the 'feeds' of your network if needed.
 std::vector<std::pair<string, tensorflow::Tensor>> inputs;

 // Run the session, asking for the first output of "my_output".
 std::vector<tensorflow::Tensor> outputs;
 s = session->Run(inputs, {"my_output:0"}, {}, &outputs);
 if (!s.ok()) { ... }

 // Do something with your outputs
 auto output_vector = outputs[0].vec<float>();
 if (output_vector(0) > 0.5) { ... }

 // Close the session.
 session->Close();

 return 0;
}

For a more fully-featured C++ example, see
tensorflow/cc/tutorials/example_trainer.cc

TensorFlow

Introduction

TensorFlow™

 is an open source software library for numerical computation
using data flow graphs. Nodes in the graph represent mathematical operations,
while the graph edges represent the multidimensional data arrays (tensors) that
flow between them. This flexible architecture allows you to deploy computation
to one or more CPUs or GPUs in a desktop, server, or mobile device without
rewriting code. TensorFlow was originally developed by researchers and
engineers working on the Google Brain team within Google’s Machine Intelligence
research organization for the purposes of conducting machine learning and deep
neural networks research. The system is general enough to be applicable in a
wide variety of other domains as well. The following documents show you how
to set up and use the TensorFlow system.

Table of Contents

Overview

MNIST For ML Beginners

If you’re new to machine learning, we recommend starting here. You’ll learn
about a classic problem, handwritten digit classification (MNIST), and get a
gentle introduction to multiclass classification.

View Tutorial

Deep MNIST for Experts

If you’re already familiar with other deep learning software packages, and are
already familiar with MNIST, this tutorial with give you a very brief primer on
TensorFlow.

View Tutorial

TensorFlow Mechanics 101

This is a technical tutorial, where we walk you through the details of using
TensorFlow infrastructure to train models at scale. We use again MNIST as the
example.

View Tutorial

Convolutional Neural Networks

An introduction to convolutional neural networks using the CIFAR-10 data set.
Convolutional neural nets are particularly tailored to images, since they
exploit translation invariance to yield more compact and effective
representations of visual content.

View Tutorial

Vector Representations of Words

This tutorial motivates why it is useful to learn to represent words as vectors
(called word embeddings). It introduces the word2vec model as an efficient
method for learning embeddings. It also covers the high-level details behind
noise-contrastive training methods (the biggest recent advance in training
embeddings).

View Tutorial

Recurrent Neural Networks

An introduction to RNNs, wherein we train an LSTM network to predict the next
word in an English sentence. (A task sometimes called language modeling.)

View Tutorial

Sequence-to-Sequence Models

A follow on to the RNN tutorial, where we assemble a sequence-to-sequence model
for machine translation. You will learn to build your own English-to-French
translator, entirely machine learned, end-to-end.

View Tutorial

Mandelbrot Set

TensorFlow can be used for computation that has nothing to do with machine
learning. Here’s a naive implementation of Mandelbrot set visualization.

View Tutorial

Partial Differential Equations

As another example of non-machine learning computation, we offer an example of
a naive PDE simulation of raindrops landing on a pond.

View Tutorial

MNIST Data Download

Details about downloading the MNIST handwritten digits data set. Exciting
stuff.

View Tutorial

Visual Object Recognition

We will be releasing our state-of-the-art Inception object recognition model,
complete and already trained.

COMING SOON

Deep Dream Visual Hallucinations

Building on the Inception recognition model, we will release a TensorFlow
version of the Deep Dream [https://github.com/google/deepdream] neural network
visual hallucination software.

COMING SOON

 Sequence-to-Sequence Models

Sequence-to-Sequence Models

Recurrent neural networks can learn to model language, as already discussed
in the RNN Tutorial
(if you did not read it, please go through it before proceeding with this one).
This raises an interesting question: could we condition the generated words on
some input and generate a meaningful response? For example, could we train
a neural network to translate from English to French? It turns out that
the answer is yes.

This tutorial will show you how to build and train such a system end-to-end.
You can start by running this binary.

bazel run -c opt <...>/models/rnn/translate:translate
 --data_dir [your_data_directory]

It will download English-to-French translation data from the
WMT‘15 Website [http://www.statmt.org/wmt15/translation-task.html]
prepare it for training and train. It takes about 20GB of disk space,
and a while to download and prepare (see later for details),
so you can start and leave it running while reading this tutorial.

This tutorial references the following files from models/rnn.

File | What’s in it?
— | —
seq2seq.py | Library for building sequence-to-sequence models.
translate/seq2seq_model.py | Neural translation sequence-to-sequence model.
translate/data_utils.py | Helper functions for preparing translation data.
translate/translate.py | Binary that trains and runs the translation model.

Sequence-to-Sequence Basics

A basic sequence-to-sequence model, as introduced in
Cho et al., 2014 [http://arxiv.org/pdf/1406.1078v3.pdf],
consists of two recurrent neural networks (RNNs): an encoder that
processes the input and a decoder that generates the output.
This basic architecture is depicted below.

Each box in the picture above represents a cell of the RNN, most commonly
a GRU cell or an LSTM cell (see the RNN Tutorial
for an explanation of those). Encoder and decoder can share weights or,
as is more common, use a different set of parameters. Mutli-layer cells
have been successfully used in sequence-to-sequence models too, e.g. for
translation Sutskever et al., 2014 [http://arxiv.org/abs/1409.3215].

In the basic model depicted above, every input has to be encoded into
a fixed-size state vector, as that is the only thing passed to the decoder.
To allow the decoder more direct access to the input, an attention mechanism
was introduced in Bahdanu et al., 2014 [http://arxiv.org/abs/1409.0473].
We will not go into the details of the attention mechanism (see the paper),
suffice it to say that it allows the decoder to peek into the input at every
decoding step. A multi-layer sequence-to-sequence network with LSTM cells and
attention mechanism in the decoder looks like this.

TensorFlow seq2seq Library

As you can see above, there are many different sequence-to-sequence
models. Each of these models can use different RNN cells, but all
of them accept encoder inputs and decoder inputs. This motivates
the interfaces in the TensorFlow seq2seq library (models/rnn/seq2seq.py).
The basic RNN encoder-decoder sequence-to-sequence model works as follows.

outputs, states = basic_rnn_seq2seq(encoder_inputs, decoder_inputs, cell)

In the above call, encoder_inputs are a list of tensors representing inputs
to the encoder, i.e., corresponding to the letters A, B, C in the first
picture above. Similarly, decoder_inputs are tensors representing inputs
to the decoder, GO, W, X, Y, Z on the first picture.

The cell argument is an instance of the models.rnn.rnn_cell.RNNCell class
that determines which cell will be used inside the model. You can use
an existing cell, such as GRUCell or LSTMCell, or you can write your own.
Moreover, rnn_cell provides wrappers to construct multi-layer cells,
add dropout to cell inputs or outputs, or to do other transformations,
see the RNN Tutorial for examples.

The call to basic_rnn_seq2seq returns two arguments: outputs and states.
Both of them are lists of tensors of the same length as decoder_inputs.
Naturally, outputs correspond to the outputs of the decoder in each time-step,
in the first picture above that would be W, X, Y, Z, EOS. The returned
states represent the internal state of the decoder at every time-step.

In many applications of sequence-to-sequence models, the output of the decoder
at time t is fed back and becomes the input of the decoder at time t+1. At test
time, when decoding a sequence, this is how the sequence is constructed.
During training, on the other hand, it is common to provide the correct input
to the decoder at every time-step, even if the decoder made a mistake before.
Functions in seq2seq.py support both modes using the feed_previous argument.
For example, let’s analyze the following use of an embedding RNN model.

outputs, states = embedding_rnn_seq2seq(
 encoder_inputs, decoder_inputs, cell,
 num_encoder_symbols, num_decoder_symbols,
 output_projection=None, feed_previous=False)

In the embedding_rnn_seq2seq model, all inputs (both encoder_inputs and
decoder_inputs) are integer-tensors that represent discrete values.
They will be embedded into a dense representation (see the
Vectors Representations Tutorial for more details
on embeddings), but to construct these embeddings we need to specify
the maximum number of discrete symbols that will appear: num_encoder_symbols
on the encoder side, and num_decoder_symbols on the decoder side.

In the above invocation, we set feed_previous to False. This means that the
decoder will use decoder_inputs tensors as provided. If we set feed_previous
to True, the decoder would only use the first element of decoder_inputs.
All other tensors from this list would be ignored, and instead the previous
output of the encoder would be used. This is used for decoding translations
in our translation model, but it can also be used during training, to make
the model more robust to its own mistakes, similar
to Bengio et al., 2015 [http://arxiv.org/pdf/1506.03099v2.pdf].

One more important argument used above is output_projection. If not specified,
the outputs of the embedding model will be tensors of shape batch-size by
num_decoder_symbols as they represent the logits for each generated symbol.
When training models with large output vocabularies, i.e., when
num_decoder_symbols is large, it is not practical to store these large
tensors. Instead, it is better to return smaller output tensors, which will
later be projected onto a large output tensor using output_projection.
This allows to use our seq2seq models with a sampled softmax loss, as described
in Jean et. al., 2015 [http://arxiv.org/pdf/1412.2007v2.pdf].

In addition to basic_rnn_seq2seq and embedding_rnn_seq2seq there are a few
more sequence-to-sequence models in seq2seq.py, take a look there. They all
have similar interfaces, so we will not describe them in detail. We will use
embedding_attention_seq2seq for our translation model below.

Neural Translation Model

While the core of the sequence-to-sequence model is constructed by
the functions in models/rnn/seq2seq.py, there are still a few tricks
that are worth mentioning that are used in our translation model in
models/rnn/translate/seq2seq_model.py.

Sampled softmax and output projection

For one, as already mentioned above, we want to use sampled softmax to
handle large output vocabulary. To decode from it, we need to keep track
of the output projection. Both the sampled softmax loss and the output
projections are constructed by the following code in seq2seq_model.py.

 if num_samples > 0 and num_samples < self.target_vocab_size:
 w = tf.get_variable("proj_w", [size, self.target_vocab_size])
 w_t = tf.transpose(w)
 b = tf.get_variable("proj_b", [self.target_vocab_size])
 output_projection = (w, b)

 def sampled_loss(inputs, labels):
 labels = tf.reshape(labels, [-1, 1])
 return tf.nn.sampled_softmax_loss(w_t, b, inputs, labels, num_samples,
 self.target_vocab_size)

First, note that we only construct a sampled softmax if the number of samples
(512 by default) is smaller that the target vocabulary size. For vocabularies
smaller than 512 it might be a better idea to just use a standard softmax loss.

Then, as you can see, we construct an output projection. It is a pair,
consisting of a weight matrix and a bias vector. If used, the rnn cell
will return vectors of shape batch-size by size, rather than batch-size
by target_vocab_size. To recover logits, we need to multiply by the weight
matrix and add the biases, as is done in lines 124-126 in seq2seq_model.py.

if output_projection is not None:
 self.outputs[b] = [tf.matmul(output, output_projection[0]) +
 output_projection[1] for ...]

Bucketing and padding

In addition to sampled softmax, our translation model also makes use
of bucketing, which is a method to efficiently handle sentences of
different lengths. Let us first clarify the problem. When translating
English to French, we will have English sentences of different lengths L1
on input, and French sentences of different lengths L2 on output. Since
the English sentence is passed as encoder_inputs, and the French sentence
comes as decoder_inputs (prefixed by a GO symbol), we should in principle
create a seq2seq model for every pair (L1, L2+1) of lengths of an English
and French sentence. This would result in an enormous graph consisting of
many very similar subgraphs. On the other hand, we could just pad every
sentence with a special PAD symbol. Then we’d need only one seq2seq model,
for the padded lengths. But on shorter sentence our model would be inefficient,
encoding and decoding many PAD symbols that are useless.

As a compromise between contructing a graph for every pair of lengths and
padding to a single length, we use a number of buckets and pad each sentence
to the length of the bucket above it. In translate.py we use the following
default buckets.

buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]

This means that if the input is an English sentence with 3 tokens,
and the corresponding output is a French sentence with 6 tokens,
then they will be put in the first bucket and padded to length 5 for
encoder inputs, and length 10 for decoder inputs. If we have an English
sentence with 8 tokens and the corresponding French sentence has 18 tokens,
then they will not fit into the (10, 15) bucket, and so the (20, 25) bucket
will be used, i.e. the English sentence will be padded to 20, and the French
one to 25.

Remember that when constructing decoder inputs we prepend the special GO
symbol to the input data. This is done in the get_batch() function in
seq2seq_model.py, which also reverses the input English sentence.
Reversing the inputs was shown to improve results for the neural translation
model in Sutskever et al., 2014 [http://arxiv.org/abs/1409.3215].
To put it all together, imagine we have the sentence “I go.”, tokenized
as ["I", "go", "."] as input and the sentence “Je vais.” as output,
tokenized ["Je", "vais", "."]. It will be put in the (5, 10) bucket,
with encoder inputs representing [PAD PAD "." "go" "I"] and decoder
inputs [GO "Je" "vais" "." EOS PAD PAD PAD PAD PAD].

Let’s Run It {#run_it}

To train the model described above, we need to a large English-French corpus.
We will use the 10^9-French-English corpus from the
WMT‘15 Website [http://www.statmt.org/wmt15/translation-task.html]
for training, and the 2013 news test from the same site as development set.
Both data-sets will be downloaded to data_dir and training will start,
saving checkpoints in train_dir, when this command is run.

bazel run -c opt <...>/models/rnn/translate:translate
 --data_dir [your_data_directory] --train_dir [checkpoints_directory]
 --en_vocab_size=40000 --fr_vocab_size=40000

It takes about 18GB of disk space and several hours to prepare the training
corpus. It is unpacked, vocabulary files are created in data_dir, and then
the corpus is tokenized and converted to integer ids. Note the parameters
that determine vocabulary sizes. In the example above, all words outside
the 40K most common ones will be converted to an UNK token representing
unknown words. So if you change vocabulary size, the binary will re-map
the corpus to token-ids again.

After the data is prepared, training starts. Default parameters in translate
are set to quite large values. Large models trained over a long time give good
results, but it might take too long or use too much memory for your GPU.
You can request to train a smaller model as in the following example.

bazel run -c opt <...>/models/rnn/translate:translate
 --data_dir [your_data_directory] --train_dir [checkpoints_directory]
 --size=256 --num_layers=2 --steps_per_checkpoint=50

The above command will train a model with 2 layers (the default is 3),
each layer with 256 units (default is 1024), and will save a checkpoint
every 50 steps (the default is 200). You can play with these parameters
to find out how large a model can be to fit into the memory of your GPU.

During training, every steps_per_checkpoint steps the binary will print
out statistics from recent steps. With the default parameters (3 layers
of size 1024), first messages look like this.

global step 200 learning rate 0.5000 step-time 1.39 perplexity 1720.62
 eval: bucket 0 perplexity 184.97
 eval: bucket 1 perplexity 248.81
 eval: bucket 2 perplexity 341.64
 eval: bucket 3 perplexity 469.04
global step 400 learning rate 0.5000 step-time 1.38 perplexity 379.89
 eval: bucket 0 perplexity 151.32
 eval: bucket 1 perplexity 190.36
 eval: bucket 2 perplexity 227.46
 eval: bucket 3 perplexity 238.66

You can see that each step takes just under 1.4 seconds, the perplexity
on the training set and the perplexities on the development set
for each bucket. After about 30K steps, we see perplexities on short
sentences (bucket 0 and 1) going into single digits.
Since the training corpus contains ~22M sentences, one epoch (going through
the training data once) takes about 340K steps with batch-size of 64. At this
point the model can be used for translating English sentences to French
using the --decode option.

bazel run -c opt <...>/models/rnn/translate:translate --decode
 --data_dir [your_data_directory] --train_dir [checkpoints_directory]

Reading model parameters from /tmp/translate.ckpt-340000
> Who is the president of the United States?
 Qui est le président des États-Unis ?

What Next?

The example above shows how you can build your own English-to-French
translator, end-to-end. Run it and see how the model performs for yourself.
While it has reasonable quality, the default parameters will not give you
the best translation model. Here are a few things you can improve.

First of all, we use a very primitive tokenizer, the basic_tokenizer function
in data_utils. A better tokenizer can be found on the
WMT‘15 Website [http://www.statmt.org/wmt15/translation-task.html].
Using that tokenizer, and a larger vocabulary, should improve your translations.

Also, the default parameters of the translation model are not tuned.
You can try changing the learning rate, decay, or initializing the weights
of your model in a different way. You can also change the default
GradientDescentOptimizer in seq2seq_model.py to a more advanced one, such
as AdagradOptimizer. Try these things and see how they improve your results!

Finally, the model presented above can be used for any sequence-to-sequence
task, not only for translation. Even if you want to transform a sequence to
a tree, for example to generate a parsing tree, the same model as above can
give state-of-the-art results, as demonstrated in
Vinyals & Kaiser et al., 2015 [http://arxiv.org/abs/1412.7449].
So you can not only build your own translator, you can also build a parser,
a chat-bot, or any program that comes to your mind. Experiment!

 Partial Differential Equations

Partial Differential Equations

TensorFlow isn’t just for machine learning. Here we give a (somewhat
pedestrian) example of using TensorFlow for simulating the behavior of a
partial differential equation. We’ll simulate the surface of square pond as a
few raindrops land on it.

Note: This tutorial was originally prepared as an IPython notebook.

Basic Setup

A few imports we’ll need.

#Import libraries for simulation
import tensorflow as tf
import numpy as np

#Imports for visualization
import PIL.Image
from cStringIO import StringIO
from IPython.display import clear_output, Image, display

A function for displaying the state of the pond’s surface as an image.

def DisplayArray(a, fmt='jpeg', rng=[0,1]):
 """Display an array as a picture."""
 a = (a - rng[0])/float(rng[1] - rng[0])*255
 a = np.uint8(np.clip(a, 0, 255))
 f = StringIO()
 PIL.Image.fromarray(a).save(f, fmt)
 display(Image(data=f.getvalue()))

Here we start an interactive TensorFlow session for convenience in playing
around. A regular session would work as well if we were doing this in an
executable .py file.

sess = tf.InteractiveSession()

Computational Convenience Functions

def make_kernel(a):
 """Transform a 2D array into a convolution kernel"""
 a = np.asarray(a)
 a = a.reshape(list(a.shape) + [1,1])
 return tf.constant(a, dtype=1)

def simple_conv(x, k):
 """A simplified 2D convolution operation"""
 x = tf.expand_dims(tf.expand_dims(x, 0), -1)
 y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
 return y[0, :, :, 0]

def laplace(x):
 """Compute the 2D laplacian of an array"""
 laplace_k = make_kernel([[0.5, 1.0, 0.5],
 [1.0, -6., 1.0],
 [0.5, 1.0, 0.5]])
 return simple_conv(x, laplace_k)

Define the PDE

Our pond is a perfect 500 x 500 square, as is the case for most ponds found in
nature.

N = 500

Here we create our pond and hit it with some rain drops.

Initial Conditions -- some rain drops hit a pond

Set everything to zero
u_init = np.zeros([N, N], dtype="float32")
ut_init = np.zeros([N, N], dtype="float32")

Some rain drops hit a pond at random points
for n in range(40):
 a,b = np.random.randint(0, N, 2)
 u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])

[image: jpeg]

Now let’s specify the details of the differential equation.

Parameters:
eps -- time resolution
damping -- wave damping
eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())

Create variables for simulation state
U = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

Operation to update the state
step = tf.group(
 U.assign(U_),
 Ut.assign(Ut_))

Run The Simulation

This is where it gets fun – running time forward with a simple for loop.

Initialize state to initial conditions
tf.initialize_all_variables().run()

Run 1000 steps of PDE
for i in range(1000):
 # Step simulation
 step.run({eps: 0.03, damping: 0.04})
 # Visualize every 50 steps
 if i % 50 == 0:
 clear_output()
 DisplayArray(U.eval(), rng=[-0.1, 0.1])

[image: jpeg]

Look! Ripples!

 Vector Representations of Words

Vector Representations of Words

In this tutorial we look at the word2vec model by
Mikolov et al. [http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf]
This model is used for learning vector representations of words, called “word
embeddings”.

Highlights

This tutorial is meant to highlight the interesting, substantive parts of
building a word2vec model in TensorFlow.

	We start by giving the motivation for why we would want to
represent words as vectors.

	We look at the intuition behind the model and how it is trained
(with a splash of math for good measure).

	We also show a simple implementation of the model in TensorFlow.

	Finally, we look at ways to make the naive version scale better.

We walk through the code later during the tutorial, but if you’d prefer to dive
straight in, feel free to look at the minimalistic implementation in
tensorflow/g3doc/tutorials/word2vec/word2vec_basic.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/word2vec/word2vec_basic.py]
This basic example contains the code needed to download some data, train on it a
bit and visualize the result. Once you get comfortable with reading and running
the basic version, you can graduate to
tensorflow/models/embedding/word2vec.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/embedding/word2vec.py]
which is a more serious implementation that showcases some more advanced
TensorFlow principles about how to efficiently use threads to move data into a
text model, how to checkpoint during training, etc.

But first, let’s look at why we would want to learn word embeddings in the first
place. Feel free to skip this section if you’re an Embedding Pro and you’d just
like to get your hands dirty with the details.

Motivation: Why Learn Word Embeddings?

Image and audio processing systems work with rich, high-dimensional datasets
encoded as vectors of the individual raw pixel-intensities for image data, or
e.g. power spectral density coefficients for audio data. For tasks like object
or speech recognition we know that all the information required to successfully
perform the task is encoded in the data (because humans can perform these tasks
from the raw data). However, natural language processing systems traditionally
treat words as discrete atomic symbols, and therefore ‘cat’ may be represented
as Id537 and ‘dog’ as Id143. These encodings are arbitrary, and provide
no useful information to the system regarding the relationships that may exist
between the individual symbols. This means that the model can leverage
very little of what it has learned about ‘cats’ when it is processing data about
‘dogs’ (such that they are both animals, four-legged, pets, etc.). Representing
words as unique, discrete ids furthermore leads to data sparsity, and usually
means that we may need more data in order to successfully train statistical
models. Using vector representations can overcome some of these obstacles.

 Recurrent Neural Networks

Recurrent Neural Networks

Introduction

Take a look at [this great article]
(http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for an introduction to recurrent neural networks and LSTMs in particular.

Language Modeling

In this tutorial we will show how to train a recurrent neural network on
a challenging task of language modeling. The goal of the problem is to fit a
probabilistic model which assigns probablities to sentences. It does so by
predicting next words in a text given a history of previous words. For this
purpose we will use the Penn Tree Bank (PTB) dataset, which is a popular
benchmark for measuring quality of these models, whilst being small and
relatively fast to train.

Language modeling is key to many interesting problems such as speech
recognition, machine translation, or image captioning. It is also fun, too –
take a look [here] (http://karpathy.github.io/2015/05/21/rnn-effectiveness/).

For the purpose of this tutorial, we will reproduce the results from
[Zaremba et al., 2014] (http://arxiv.org/abs/1409.2329), which achieves very
good results on the PTB dataset.

Tutorial Files

This tutorial references the following files from models/rnn/ptb:

File | Purpose
— | —
ptb_word_lm.py | The code to train a language model on the PTB dataset.
reader.py | The code to read the dataset.

Download and Prepare the Data

The data required for this tutorial is in the data/ directory of the
PTB dataset from Tomas Mikolov’s webpage:
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

The dataset is already preprocessed and contains overall 10000 different words,
including the end-of-sentence marker and a special symbol (<unk>) for rare
words. We convert all of them in the reader.py to unique integer identifiers
to make it easy for the neural network to process.

The Model

LSTM

The core of the model consists of an LSTM cell that processes one word at the
time and computes probabilities of the possible continuations of the sentence.
The memory state of the network is initialized with a vector of zeros and gets
updated after reading each word. Also, for computational reasons, we will
process data in mini-batches of size batch_size.

The basic pseudocode looks as follows:

lstm = rnn_cell.BasicLSTMCell(lstm_size)
Initial state of the LSTM memory.
state = tf.zeros([batch_size, lstm.state_size])

loss = 0.0
for current_batch_of_words in words_in_dataset:
 # The value of state is updated after processing each batch of words.
 output, state = lstm(current_batch_of_words, state)

 # The LSTM output can be used to make next word predictions
 logits = tf.matmul(output, softmax_w) + softmax_b
 probabilities = tf.nn.softmax(logits)
 loss += loss_function(probabilities, target_words)

Truncated Backpropagation

In order to make the learning process tractable, it is a common practice to
truncate the gradients for backpropagation to a fixed number (num_steps)
of unrolled steps.
This is easy to implement by feeding inputs of length num_steps at a time and
doing backward pass after each iteration.

A simplifed version of the code for the graph creation for truncated
backpropagation:

Placeholder for the inputs in a given iteration.
words = tf.placeholder(tf.int32, [batch_size, num_steps])

lstm = rnn_cell.BasicLSTMCell(lstm_size)
Initial state of the LSTM memory.
initial_state = state = tf.zeros([batch_size, lstm.state_size])

for i in range(len(num_steps)):
 # The value of state is updated after processing each batch of words.
 output, state = lstm(words[:, i], state)

 # The rest of the code.
 # ...

final_state = state

And this is how to implement an iteration over the whole dataset:

A numpy array holding the state of LSTM after each batch of words.
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:
 numpy_state, current_loss = session.run([final_state, loss],
 # Initialize the LSTM state from the previous iteration.
 feed_dict={initial_state: numpy_state, words: current_batch_of_words})
 total_loss += current_loss

Inputs

The word IDs will be embedded into a dense representation (see the
Vector Representations Tutorial) before feeding to
the LSTM. This allows the model to efficiently represent the knowledge about
particular words. It is also easy to write:

embedding_matrix is a tensor of shape [vocabulary_size, embedding size]
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)

The embedding matrix will be initialized randomly and the model will learn to
differentiate the meaning of words just by looking at the data.

Loss Fuction

We want to minimize the average negative log probability of the target words:

$$ \text{loss} = -\frac{1}{N}\sum_{i=1}^{N} \ln p_{\text{target}_i} $$

It is not very difficult to implement but the function
sequence_loss_by_example is already available, so we can just use it here.

The typical measure reported in the papers is average per-word perplexity (often
just called perplexity), which is equal to

$$e^{-\frac{1}{N}\sum_{i=1}^{N} \ln p_{\text{target}_i}} = e^{\text{loss}} $$

and we will monitor its value throughout the training process.

Stacking multiple LSTMs

To give the model more expressive power, we can add multiple layers of LSTMs
to process the data. The output of the first layer will become the input of
the second and so on.

We have a class called MultiRNNCell that makes the implementation seamless:

lstm = rnn_cell.BasicLSTMCell(lstm_size)
stacked_lstm = rnn_cell.MultiRNNCell([lstm] * number_of_layers)

initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)
for i in range(len(num_steps)):
 # The value of state is updated after processing each batch of words.
 output, state = stacked_lstm(words[:, i], state)

 # The rest of the code.
 # ...

final_state = state

Compile and Run the Code

First, the library needs to be built. To compile it on CPU:

bazel build -c opt tensorflow/models/rnn/ptb:ptb_word_lm

And if you have a fast GPU, run the following:

bazel build -c opt --config=cuda tensorflow/models/rnn/ptb:ptb_word_lm

Now we can run the model:

bazel-bin/tensorflow/models/rnn/ptb/ptb_word_lm \
 --data_path=/tmp/simple-examples/data/ --model small

There are 3 supported model configurations in the tutorial code: “small”,
“medium” and “large”. The difference between them is in size of the LSTMs and
the set of hyperparameters used for training.

The larger the model, the better results it should get. The small model should
be able to reach perplexity below 120 on the test set and the large one below
80, though it might take several hours to train.

What Next?

There are several tricks that we haven’t mentioned that make the model better,
including:

	decreasing learning rate schedule,

	dropout between the LSTM layers.

Study the code and modify it to improve the model even further.

 Mandelbrot Set

Mandelbrot Set

Visualizing the Mandelbrot set doesn’t have anything to do with machine
learning, but it makes for a fun example of how one can use TensorFlow for
general mathematics. This is actually a pretty naive implementation of the
visualization, but it makes the point. (We may end up providing a more
elaborate implementation down the line to produce more truly beautiful images.)

Note: This tutorial was originally prepared as an IPython notebook.

Basic Setup

We’ll need a few imports to get started.

Import libraries for simulation
import tensorflow as tf
import numpy as np

Imports for visualization
import PIL.Image
from cStringIO import StringIO
from IPython.display import clear_output, Image, display
import scipy.ndimage as nd

Now we’ll define a function to actually display the image once we have
iteration counts.

def DisplayFractal(a, fmt='jpeg'):
 """Display an array of iteration counts as a
 colorful picture of a fractal."""
 a_cyclic = (6.28*a/20.0).reshape(list(a.shape)+[1])
 img = np.concatenate([10+20*np.cos(a_cyclic),
 30+50*np.sin(a_cyclic),
 155-80*np.cos(a_cyclic)], 2)
 img[a==a.max()] = 0
 a = img
 a = np.uint8(np.clip(a, 0, 255))
 f = StringIO()
 PIL.Image.fromarray(a).save(f, fmt)
 display(Image(data=f.getvalue()))

Session and Variable Initialization

For playing around like this, we often use an interactive session, but a regular
session would work as well.

 sess = tf.InteractiveSession()

It’s handy that we can freely mix NumPy and TensorFlow.

Use NumPy to create a 2D array of complex numbers on [-2,2]x[-2,2]

Y, X = np.mgrid[-1.3:1.3:0.005, -2:1:0.005]
Z = X+1j*Y

Now we define and initialize TensorFlow tensors.

xs = tf.constant(Z.astype("complex64"))
zs = tf.Variable(xs)
ns = tf.Variable(tf.zeros_like(xs, "float32"))

TensorFlow requires that you explicitly initialize variables before using them.

tf.initialize_all_variables().run()

Defining and Running the Computation

Now we specify more of the computation...

Compute the new values of z: z^2 + x
zs_ = zs*zs + xs

Have we diverged with this new value?
not_diverged = tf.complex_abs(zs_) < 4

Operation to update the zs and the iteration count.
#
Note: We keep computing zs after they diverge! This
is very wasteful! There are better, if a little
less simple, ways to do this.
#
step = tf.group(
 zs.assign(zs_),
 ns.assign_add(tf.cast(not_diverged, "float32"))
)

... and run it for a couple hundred steps

for i in range(200): step.run()

Let’s see what we’ve got.

DisplayFractal(ns.eval())

[image: jpeg]

Not bad!

 TensorFlow Mechanics 101

TensorFlow Mechanics 101

Code: tensorflow/g3doc/tutorials/mnist/ [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/]

The goal of this tutorial is to show how to use TensorFlow to train and
evaluate a simple feed-forward neural network for handwritten digit
classification using the (classic) MNIST data set. The intended audience for
this tutorial is experienced machine learning users interested in using
TensorFlow.

These tutorials are not intended for teaching Machine Learning in general.

Please ensure you have followed the instructions to install TensorFlow.

Tutorial Files

This tutorial references the following files:

File | Purpose
— | —
mnist.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/mnist.py] | The code to build a fully-connected MNIST model.
fully_connected_feed.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/fully_connected_feed.py] | The main code to train the built MNIST model against the downloaded dataset using a feed dictionary.

Simply run the fully_connected_feed.py file directly to start training:

python fully_connected_feed.py

Prepare the Data

MNIST is a classic problem in machine learning. The problem is to look at
greyscale 28x28 pixel images of handwritten digits and determine which digit
the image represents, for all the digits from zero to nine.

[image: MNIST Digits]

For more information, refer to Yann LeCun’s MNIST page [http://yann.lecun.com/exdb/mnist/]
or Chris Olah’s visualizations of MNIST [http://colah.github.io/posts/2014-10-Visualizing-MNIST/].

Download

At the top of the run_training() method, the input_data.read_data_sets()
function will ensure that the correct data has been downloaded to your local
training folder and then unpack that data to return a dictionary of DataSet
instances.

data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data)

NOTE: The fake_data flag is used for unit-testing purposes and may be
safely ignored by the reader.

Dataset | Purpose
— | —
data_sets.train | 55000 images and labels, for primary training.
data_sets.validation | 5000 images and labels, for iterative validation of training accuracy.
data_sets.test | 10000 images and labels, for final testing of trained accuracy.

For more information about the data, please read the Download
tutorial.

Inputs and Placeholders

The placeholder_inputs() function creates two tf.placeholder
ops that define the shape of the inputs, including the batch_size, to the
rest of the graph and into which the actual training examples will be fed.

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
 IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))

Further down, in the training loop, the full image and label datasets are
sliced to fit the batch_size for each step, matched with these placeholder
ops, and then passed into the sess.run() function using the feed_dict
parameter.

Build the Graph

After creating placeholders for the data, the graph is built from the
mnist.py file according to a 3-stage pattern: inference(), loss(), and
training().

	inference() - Builds the graph as far as is required for running
the network forward to make predictions.

	loss() - Adds to the inference graph the ops required to generate
loss.

	training() - Adds to the loss graph the ops required to compute
and apply gradients.

 MNIST Data Download

MNIST Data Download

Code: tensorflow/g3doc/tutorials/mnist/ [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/]

The goal of this tutorial is to show how to download the dataset files required
for handwritten digit classification using the (classic) MNIST data set.

Tutorial Files

This tutorial references the following files:

File | Purpose
— | —
input_data.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/input_data.py] | The code to download the MNIST dataset for training and evaluation.

Prepare the Data

MNIST is a classic problem in machine learning. The problem is to look at
greyscale 28x28 pixel images of handwritten digits and determine which digit
the image represents, for all the digits from zero to nine.

[image: MNIST Digits]

For more information, refer to Yann LeCun’s MNIST page [http://yann.lecun.com/exdb/mnist/]
or Chris Olah’s visualizations of MNIST [http://colah.github.io/posts/2014-10-Visualizing-MNIST/].

Download

Yann LeCun’s MNIST page [http://yann.lecun.com/exdb/mnist/]
also hosts the training and test data for download.

File | Purpose
— | —
train-images-idx3-ubyte.gz [http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz] | training set images - 55000 training images, 5000 validation images
train-labels-idx1-ubyte.gz [http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz] | training set labels matching the images
t10k-images-idx3-ubyte.gz [http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz] | test set images - 10000 images
t10k-labels-idx1-ubyte.gz [http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz] | test set labels matching the images

In the input_data.py file, the maybe_download() function will ensure these
files are downloaded into a local data folder for training.

The folder name is specified in a flag variable at the top of the
fully_connected_feed.py file and may be changed to fit your needs.

Unpack and Reshape

The files themselves are not in any standard image format and are manually
unpacked (following the instructions available at the website) by the
extract_images() and extract_labels() functions in input_data.py.

The image data is extracted into a 2d tensor of: [image index, pixel index]
where each entry is the intensity value of a specific pixel in a specific
image, rescaled from [0, 255] to [-0.5, 0.5]. The “image index” corresponds
to an image in the dataset, counting up from zero to the size of the dataset.
And the “pixel index” corresponds to a specific pixel in that image, ranging
from zero to the number of pixels in the image.

The 60000 examples in the train-* files are then split into 55000 examples
for training and 5000 examples for validation. For all of the 28x28
pixel greyscale images in the datasets the image size is 784 and so the output
tensor for the training set images is of shape [55000, 784].

The label data is extracted into a 1d tensor of: [image index]
with the class identifier for each example as the value. For the training set
labels, this would then be of shape [55000].

DataSet Object

The underlying code will download, unpack, and reshape images and labels for
the following datasets:

Dataset | Purpose
— | —
data_sets.train | 55000 images and labels, for primary training.
data_sets.validation | 5000 images and labels, for iterative validation of training accuracy.
data_sets.test | 10000 images and labels, for final testing of trained accuracy.

The read_data_sets() function will return a dictionary with a DataSet
instance for each of these three sets of data. The DataSet.next_batch()
method can be used to fetch a tuple consisting of batch_size lists of images
and labels to be fed into the running TensorFlow session.

images_feed, labels_feed = data_set.next_batch(FLAGS.batch_size)

 MNIST For ML Beginners

MNIST For ML Beginners

This tutorial is intended for readers who are new to both machine learning and
TensorFlow. If you already
know what MNIST is, and what softmax (multinomial logistic) regression is,
you might prefer this faster paced tutorial.

When one learns how to program, there’s a tradition that the first thing you do
is print “Hello World.” Just like programming has Hello World, machine learning
has MNIST.

MNIST is a simple computer vision dataset. It consists of images of handwritten
digits like these:

 Deep MNIST for Experts

Deep MNIST for Experts

TensorFlow is a powerful library for doing large-scale numerical computation.
One of the tasks at which it excels is implementing and training deep neural
networks.
In this tutorial we will learn the basic building blocks of a TensorFlow model
while constructing a deep convolutional MNIST classifier.

This introduction assumes familiarity with neural networks and the MNIST
dataset. If you don’t have
a background with them, check out the
introduction for beginners.

Setup

Before we create our model, we will first load the MNIST dataset, and start a
TensorFlow session.

Load MNIST Data

For your convenience, we’ve included
a script [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/input_data.py]
which automatically downloads and imports the MNIST dataset. It will create a
directory 'MNIST_data' in which to store the data files.

import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

Here mnist is a lightweight class which stores the training, validation, and
testing sets as NumPy arrays.
It also provides a function for iterating through data minibatches, which we
will use below.

Start TensorFlow InteractiveSession

Tensorflow relies on a highly efficient C++ backend to do its computation. The
connection to this backend is called a session. The common usage for TensorFlow
programs is to first create a graph and then launch it in a session.

Here we instead use the convenient InteractiveSession class, which
makes TensorFlow more flexible about how you
structure your code.
It allows you to interleave operations which build a
computation graph
with ones that run the graph.
This is particularly convenient when working in interactive contexts like
iPython.
If you are not using an InteractiveSession, then you should build
the entire computation graph before starting a session and launching the
graph.

import tensorflow as tf
sess = tf.InteractiveSession()

Computation Graph

To do efficient numerical computing in Python, we typically use libraries like
NumPy that do expensive operations such as matrix multiplication outside Python,
using highly efficient code implemented in another language.
Unfortunately, there can still be a lot of overhead from switching back to
Python every operation. This overhead is especially bad if you want to run
computations on GPUs or in a distributed manner, where there can be a high cost
to transferring data.

TensorFlow also does its heavy lifting outside Python,
but it takes things a step further to avoid this overhead.
Instead of running a single expensive operation independently
from Python, TensorFlow lets us describe a graph of interacting operations that
run entirely outside Python.
This approach is similar to that used in Theano or Torch.

The role of the Python code is therefore to build this external computation
graph, and to dictate which parts of the computation graph should be run. See
the
Computation Graph
section of
Basic Usage
for more detail.

Build a Softmax Regression Model

In this section we will build a softmax regression model with a single linear
layer. In the next section, we will extend this to the case of softmax
regression with a multilayer convolutional network.

Placeholders

We start building the computation graph by creating nodes for the
input images and target output classes.

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

Here x and y_ aren’t specific values. Rather, they are each a placeholder
– a value that we’ll input when we ask TensorFlow to run a computation.

The input images x will consist of a 2d tensor of floating point numbers.
Here we assign it a shape of [None, 784], where 784 is the dimensionality of
a single flattened MNIST image, and None indicates that the first dimension,
corresponding to the batch size, can be of any size.
The target output classes y_ will also consist of a 2d tensor,
where each row is a one-hot 10-dimensional vector indicating
which digit class the corresponding MNIST image belongs to.

The shape argument to placeholder is optional, but it allows TensorFlow
to automatically catch bugs stemming from inconsistent tensor shapes.

Variables

We now define the weights W and biases b for our model. We could imagine treating
these like additional inputs, but TensorFlow has an even better way to handle
them: Variable.
A Variable is a value that lives in TensorFlow’s computation graph.
It can be used and even modified by the computation. In machine
learning applications, one generally has the model paramaters be Variables.

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

We pass the initial value for each parameter in the call to tf.Variable.
In this case, we initialize both W and b as tensors full of
zeros. W is a 784x10 matrix (because we have 784 input features
and 10 outputs) and b is a 10-dimensional vector (because we have 10 classes).

Before Variables can be used within a session, they must be initialized using
that session.
This step takes the initial values (in this case tensors full of zeros) that
have already been specified, and assigns them to each Variable. This can be
done for all Variables at once.

sess.run(tf.initialize_all_variables())

Predicted Class and Cost Function

We can now implement our regression model. It only takes one line!
We multiply the vectorized input images x by the weight matrix W, add
the bias b, and compute the softmax probabilities that are assigned to each
class.

y = tf.nn.softmax(tf.matmul(x,W) + b)

The cost function to be minimized during training can be specified just as
easily. Our cost function will be the cross-entropy between the target and the
model’s prediction.

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

Note that tf.reduce_sum sums across all images in the minibatch, as well as
all classes. We are computing the cross entropy for the entire minibatch.

Train the Model

Now that we have defined our model and training cost function, it is
straightforward to train using TensorFlow.
Because TensorFlow knows the entire computation graph, it
can use automatic differentiation to find the gradients of the cost with
respect to each of the variables.
TensorFlow has a variety of
[builtin optimization algorithms]
(../../../api_docs/python/train.md#optimizers).
For this example, we will use steepest gradient descent, with a step length of
0.01, to descend the cross entropy.

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

What TensorFlow actually did in that single line was to add new operations to
the computation graph. These operations included ones to compute gradients,
compute parameter update steps, and apply update steps to the parameters.

The returned operation train_step, when run, will apply the gradient
descent updates to the parameters. Training the model can therefore be
accomplished by repeatedly running train_step.

for i in range(1000):
 batch = mnist.train.next_batch(50)
 train_step.run(feed_dict={x: batch[0], y_: batch[1]})

Each training iteration we load 50 training examples. We then run the
train_step operation, using feed_dict to replace the placeholder tensors
x and y_ with the training examples.
Note that you can replace any tensor in your computation graph using feed_dict
– it’s not restricted to just placeholders.

Evaluate the Model

How well did our model do?

First we’ll figure out where we predicted the correct label. tf.argmax
is an extremely useful function which gives you the index of the highest entry
in a tensor along some axis. For example, tf.argmax(y,1) is the label our
model thinks is most likely for each input, while tf.argmax(y_,1) is the
true label. We can use tf.equal to check if our prediction matches the
truth.

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

That gives us a list of booleans. To determine what fraction are correct, we
cast to floating point numbers and then take the mean. For example,
[True, False, True, True] would become [1,0,1,1] which would become 0.75.

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

Finally, we can evaluate our accuracy on the test data. This should be about
91% correct.

print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})

Build a Multilayer Convolutional Network

Getting 91% accuracy on MNIST is bad. It’s almost embarrassingly bad. In this
section, we’ll fix that, jumping from a very simple model to something
moderately sophisticated: a small convolutional neural network. This will get us
to around 99.2% accuracy – not state of the art, but respectable.

Weight Initialization

To create this model, we’re going to need to create a lot of weights and biases.
One should generally initialize weights with a small amount of noise for
symmetry breaking, and to prevent 0 gradients. Since we’re using ReLU neurons,
it is also good practice to initialize them with a slightly positive initial
bias to avoid “dead neurons.” Instead of doing this repeatedly while we build
the model, let’s create two handy functions to do it for us.

def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

Convolution and Pooling

TensorFlow also gives us a lot of flexibility in convolution and pooling
operations. How do we handle the boundaries? What is our stride size?
In this example, we’re always going to choose the vanilla version.
Our convolutions uses a stride of one and are zero padded so that the
output is the same size as the input. Our pooling is plain old max pooling
over 2x2 blocks. To keep our code cleaner, let’s also abstract those operations
into functions.

def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
 strides=[1, 2, 2, 1], padding='SAME')

First Convolutional Layer

We can now implement our first layer. It will consist of convolution, followed
by max pooling. The convolutional will compute 32 features for each 5x5 patch.
Its weight tensor will have a shape of [5, 5, 1, 32]. The first two
dimensions are the patch size, the next is the number of input channels, and
the last is the number of output channels. We will also have a bias vector with
a component for each output channel.

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

To apply the layer, we first reshape x to a 4d tensor, with the second and
third dimensions corresponding to image width and height, and the final
dimension corresponding to the number of color channels.

x_image = tf.reshape(x, [-1,28,28,1])

We then convolve x_image with the weight tensor, add the
bias, apply the ReLU function, and finally max pool.

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

Second Convolutional Layer

In order to build a deep network, we stack several layers of this type. The
second layer will have 64 features for each 5x5 patch.

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

Densely Connected Layer

Now that the image size has been reduced to 7x7, we add a fully-connected layer
with 1024 neurons to allow processing on the entire image. We reshape the tensor
from the pooling layer into a batch of vectors,
multiply by a weight matrix, add a bias, and apply a ReLU.

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Dropout

To reduce overfitting, we will apply dropout before the readout layer.
We create a placeholder for the probability that a neuron’s output is kept
during dropout. This allows us to turn dropout on during training, and turn it
off during testing.
TensorFlow’s tf.nn.dropout op automatically handles scaling neuron outputs in
addition to masking them, so dropout just works without any additional scaling.

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

Readout Layer

Finally, we add a softmax layer, just like for the one layer softmax regression
above.

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

Train and Evaluate the Model

How well does this model do?
To train and evaluate it we will use code that is nearly identical to that for
the simple one layer SoftMax network above.
The differences are that: we will replace the steepest gradient descent
optimizer with the more sophisticated ADAM optimizer; we will include the
additional parameter keep_prob in feed_dict to control the dropout rate;
and we will add logging to every 100th iteration in the training process.

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i%100 == 0:
 train_accuracy = accuracy.eval(feed_dict={
 x:batch[0], y_: batch[1], keep_prob: 1.0})
 print "step %d, training accuracy %g"%(i, train_accuracy)
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print "test accuracy %g"%accuracy.eval(feed_dict={
 x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})

The final test set accuracy after running this code should be approximately 99.2%.

We have learned how to quickly and easily build, train, and evaluate a
fairly sophisticated deep learning model using TensorFlow.

 Convolutional Neural Networks

Convolutional Neural Networks

NOTE: This tutorial is intended for advanced users of TensorFlow
and assumes expertise and experience in machine learning.

Overview

CIFAR-10 classification is a common benchmark problem in machine learning. The
problem is to classify RGB 32x32 pixel images across 10 categories:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

[image: CIFAR-10 Samples]

For more details refer to the CIFAR-10 page [http://www.cs.toronto.edu/~kriz/cifar.html]
and a Tech Report [http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf]
by Alex Krizhevsky.

Goals

The goal of this tutorial is to build a relatively small convolutional neural
network (CNN) for recognizing images. In the process, this tutorial:

	Highlights a canonical organization for network architecture,
training and evaluation.

	Provides a template for constructing larger and more sophisticated models.

The reason CIFAR-10 was selected was that it is complex enough to exercise
much of TensorFlow’s ability to scale to large models. At the same time,
the model is small enough to train fast, which is ideal for trying out
new ideas and experimenting with new techniques.

Highlights of the Tutorial

The CIFAR-10 tutorial demonstrates several important constructs for
designing larger and more sophisticated models in TensorFlow:

	Core mathematical components including convolution, rectified linear activations, max pooling and local response normalization.

	Visualization
of network activities during training, including input images,
losses and distributions of activations and gradients.

	Routines for calculating the
moving average
of learned parameters and using these averages
during evaluation to boost predictive performance.

	Implementation of a
learning rate schedule
that systematically decrements over time.

	Prefetching queues
for input
data to isolate the model from disk latency and expensive image pre-processing.

We also provide a multi-GPU version of the model which demonstrates:

	Configuring a model to train across multiple GPU cards in parallel.

	Sharing and updating variables among multiple GPUs.

We hope that this tutorial provides a launch point for building larger CNNs for
vision tasks on TensorFlow.

Model Architecture

The model in this CIFAR-10 tutorial is a multi-layer architecture consisting of
alternating convolutions and nonlinearities. These layers are followed by fully
connected layers leading into a softmax classifier. The model follows the
architecture described by
Alex Krizhevsky [https://code.google.com/p/cuda-convnet/], with a few
differences in the top few layers.

This model achieves a peak performance of about 86% accuracy within a few hours
of training time on a GPU. Please see below and the code
for details. It consists of 1,068,298 learnable parameters and requires about
19.5M multiply-add operations to compute inference on a single image.

Code Organization

The code for this tutorial resides in
tensorflow/models/image/cifar10/ [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/].

File | Purpose
— | —
cifar10_input.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10_input.py] | Reads the native CIFAR-10 binary file format.
cifar10.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10.py] | Builds the CIFAR-10 model.
cifar10_train.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10_train.py] | Trains a CIFAR-10 model on a CPU or GPU.
cifar10_multi_gpu_train.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10_multi_gpu_train.py] | Trains a CIFAR-10 model on multiple GPUs.
cifar10_eval.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10_eval.py] | Evaluates the predictive performance of a CIFAR-10 model.

CIFAR-10 Model

The CIFAR-10 network is largely contained in
cifar10.py [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/models/image/cifar10/cifar10.py].
The complete training
graph contains roughly 765 operations. We find that we can make the code most
reusable by constructing the graph with the following modules:

	Model inputs: inputs() and distorted_inputs() add
operations that read and preprocess CIFAR images for evaluation and training,
respectively.

	Model prediction: inference()
adds operations that perform inference, i.e. classification, on supplied images.

	Model training: loss() and train()
add operations that compute the loss,
gradients, variable updates and visualization summaries.

Model Inputs {#model-inputs}

The input part of the model is built by the functions inputs() and
distorted_inputs() which read images from the CIFAR-10 binary data files.
These files contain fixed byte length records, so we use
tf.FixedLengthRecordReader.
See Reading Data to
learn more about how the Reader class works.

The images are processed as follows:

	They are cropped to 24 x 24 pixels, centrally for evaluation or
randomly for training.

	They are approximately whitened
to make the model insensitive to dynamic range.

For training, we additionally apply a series of random distortions to
artificially increase the data set size:

	Randomly flip the image from left to right.

	Randomly distort the image brightness.

	Randomly distort the image contrast.

Please see the Images page for the list of
available distortions. We also attach an
image_summary to the images
so that we may visualize them in TensorBoard. This is a good practice to verify
that inputs are built correctly.

 Overview

Overview

TensorFlow has APIs available in several languages both for constructing and
executing a TensorFlow graph. The Python API is at present the most complete
and the easiest to use, but the C++ API may offer some performance advantages
in graph execution, and supports deployment to small devices such as Android.

Over time, we hope that the TensorFlow community will develop front ends for
languages like Go, Java, JavaScript, Lua R, and perhaps others. With
SWIG [http://swig.org], it’s relatively easy to develop a TensorFlow interface
for your favorite language.

Note: Many practical aspects of usage are covered in the Mechanics tab, and
some additional documentation not specific to any particular language API is
available in the Resources tab.

	Python API

	C++ API

 Sparse Tensors

Sparse Tensors

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Sparse Tensor Representation

Tensorflow supports a SparseTensor representation for data that is sparse
in multiple dimensions. Contrast this representation with IndexedSlices,
which is efficient for representing tensors that are sparse in their first
dimension, and dense along all other dimensions.

class tf.SparseTensor {#SparseTensor}

Represents a sparse tensor.

Tensorflow represents a sparse tensor as three separate dense tensors:
indices, values, and dense_shape. In Python, the three tensors are
collected into a SparseTensor class for ease of use. If you have separate
indices, values, and dense_shape tensors, wrap them in a SparseTensor
object before passing to the Ops below.

Concretely, the sparse tensor SparseTensor(values, indices, dense_shape) is

	indices: A 2-D int64 tensor of shape [N, ndims].

	values: A 1-D tensor of any type and shape [N].

	dense_shape: A 1-D int64 tensor of shape [ndims].

where N and ndims are the number of values, and number of dimensions in
the SparseTensor respectively.

The corresponding dense tensor satisfies

dense.shape = dense_shape
dense[tuple(indices[i])] = values[i]

By convention, indices should be sorted in row-major order (or equivalently
lexigraphic order on the tuples indices[i]). This is not enforced when
SparseTensor objects are constructed, but most Ops assume correct ordering.
If the ordering is wrong, it can be fixed by calling sparse_reorder on the
misordered SparseTensor.

Example: The sparse tensor

 SparseTensor(values=[1, 2], indices=[[0, 0], [1, 2]], shape=[3, 4])

represents the dense tensor

 [[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]

tf.SparseTensor.__init__(indices, values, shape) {#SparseTensor.init}

Creates a SparseTensor.

Args:

	indices: A 2-D int64 tensor of shape [N, ndims].

	values: A 1-D tensor of any type and shape [N].

	dense_shape: A 1-D int64 tensor of shape [ndims].

Returns:

A SparseTensor

tf.SparseTensor.indices {#SparseTensor.indices}

The indices of non-zero values in the represented dense tensor.

Returns:

A 2-D Tensor of int64 with shape [N, ndims], where N is the
number of non-zero values in the tensor, and ndims is the rank.

tf.SparseTensor.values {#SparseTensor.values}

The non-zero values in the represented dense tensor.

Returns:

A 1-D Tensor of any data type.

tf.SparseTensor.dtype {#SparseTensor.dtype}

The DType of elements in this tensor.

tf.SparseTensor.shape {#SparseTensor.shape}

A 1-D Tensor of int64 representing the shape of the dense tensor.

tf.SparseTensor.graph {#SparseTensor.graph}

The Graph that contains the index, value, and shape tensors.

class tf.SparseTensorValue {#SparseTensorValue}

SparseTensorValue(indices, values, shape)

tf.SparseTensorValue.indices {#SparseTensorValue.indices}

Alias for field number 0

tf.SparseTensorValue.shape {#SparseTensorValue.shape}

Alias for field number 2

tf.SparseTensorValue.values {#SparseTensorValue.values}

Alias for field number 1

Sparse to Dense Conversion

tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value, name=None) {#sparse_to_dense}

Converts a sparse representation into a dense tensor.

Builds an array dense with shape output_shape such that

If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)

If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]

If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]

All other values in dense are set to default_value. If sparse_values is a
scalar, all sparse indices are set to this single value.

Args:

	sparse_indices: A Tensor. Must be one of the following types: int32, int64.
0-D, 1-D, or 2-D. sparse_indices[i] contains the complete
index where sparse_values[i] will be placed.

	output_shape: A Tensor. Must have the same type as sparse_indices.
1-D. Shape of the dense output tensor.

	sparse_values: A Tensor.
1-D. Values corresponding to each row of sparse_indices,
or a scalar value to be used for all sparse indices.

	default_value: A Tensor. Must have the same type as sparse_values.
Scalar value to set for indices not specified in
sparse_indices.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as sparse_values.
Dense output tensor of shape output_shape.

tf.sparse_tensor_to_dense(sp_input, default_value, name=None) {#sparse_tensor_to_dense}

Converts a SparseTensor into a dense tensor.

This op is a convenience wrapper around sparse_to_dense for SparseTensors.

For example, if sp_input has shape [3, 5] and non-empty string values:

[0, 1]: a
[0, 3]: b
[2, 0]: c

and default_value is x, then the output will be a dense [3, 5]
string tensor with values:

[[x a x b x]
 [x x x x x]
 [c x x x x]]

Args:

	sp_input: The input SparseTensor.

	default_value: Scalar value to set for indices not specified in
sp_input.

	name: A name prefix for the returned tensors (optional).

Returns:

A dense tensor with shape sp_input.shape and values specified by
the non-empty values in sp_input. Indices not in sp_input are assigned
default_value.

Raises:

	TypeError: If sp_input is not a SparseTensor.

tf.sparse_to_indicator(sp_input, vocab_size, name=None) {#sparse_to_indicator}

Converts a SparseTensor of ids into a dense bool indicator tensor.

The last dimension of sp_input is discarded and replaced with the values of
sp_input. If sp_input.shape = [D0, D1, ..., Dn, K], then
output.shape = [D0, D1, ..., Dn, vocab_size], where

output[d_0, d_1, ..., d_n, sp_input[d_0, d_1, ..., d_n, k]] = True

and False elsewhere in output.

For example, if sp_input.shape = [2, 3, 4] with non-empty values:

[0, 0, 0]: 0
[0, 1, 0]: 10
[1, 0, 3]: 103
[1, 1, 2]: 112
[1, 1, 3]: 113
[1, 2, 1]: 121

and vocab_size = 200, then the output will be a [2, 3, 200] dense bool
tensor with False everywhere except at positions

(0, 0, 0), (0, 1, 10), (1, 0, 103), (1, 1, 112), (1, 1, 113), (1, 2, 121).

This op is useful for converting SparseTensors into dense formats for
compatibility with ops that expect dense tensors.

The input SparseTensor must be in row-major order.

Args:

	sp_input: A SparseTensor of type int32 or int64.

	vocab_size: The new size of the last dimension, with
all(0 <= sp_input.values < vocab_size).

	name: A name prefix for the returned tensors (optional)

Returns:

A dense bool indicator tensor representing the indices with specified value.

Raises:

	TypeError: If sp_input is not a SparseTensor.

Manipulation

tf.sparse_concat(concat_dim, sp_inputs, name=None) {#sparse_concat}

Concatenates a list of SparseTensor along the specified dimension.

Concatenation is with respect to the dense versions of each sparse input.
It is assumed that each inputs is a SparseTensor whose elements are ordered
along increasing dimension number.

All inputs’ shapes must match, except for the concat dimension. The
indices, values, and shapes lists must have the same length.

The output shape is identical to the inputs’, except along the concat
dimension, where it is the sum of the inputs’ sizes along that dimension.

The output elements will be resorted to preserve the sort order along
increasing dimension number.

This op runs in O(M log M) time, where M is the total number of non-empty
values across all inputs. This is due to the need for an internal sort in
order to concatenate efficiently across an arbitrary dimension.

For example, if concat_dim = 1 and the inputs are

sp_inputs[0]: shape = [2, 3]
[0, 2]: "a"
[1, 0]: "b"
[1, 1]: "c"

sp_inputs[1]: shape = [2, 4]
[0, 1]: "d"
[0, 2]: "e"

then the output will be

shape = [2, 7]
[0, 2]: "a"
[0, 4]: "d"
[0, 5]: "e"
[1, 0]: "b"
[1, 1]: "c"

Graphically this is equivalent to doing

[a] concat [d e] = [a d e]
[b c] [] [b c]

Args:

	concat_dim: Dimension to concatenate along.

	sp_inputs: List of SparseTensor to concatenate.

	name: A name prefix for the returned tensors (optional).

Returns:

A SparseTensor with the concatenated output.

Raises:

	TypeError: If sp_inputs is not a list of SparseTensor.

tf.sparse_reorder(sp_input, name=None) {#sparse_reorder}

Reorders a SparseTensor into the canonical, row-major ordering.

Note that by convention, all sparse ops preserve the canonical ordering
along increasing dimension number. The only time ordering can be violated
is during manual manipulation of the indices and values to add entries.

Reordering does not affect the shape of the SparseTensor.

For example, if sp_input has shape [4, 5] and indices / values:

[0, 3]: b
[0, 1]: a
[3, 1]: d
[2, 0]: c

then the output will be a SparseTensor of shape [4, 5] and
indices / values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

Args:

	sp_input: The input SparseTensor.

	name: A name prefix for the returned tensors (optional)

Returns:

A SparseTensor with the same shape and non-empty values, but in
canonical ordering.

Raises:

	TypeError: If sp_input is not a SparseTensor.

tf.sparse_retain(sp_input, to_retain) {#sparse_retain}

Retains specified non-empty values within a SparseTensor.

For example, if sp_input has shape [4, 5] and 4 non-empty string values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

and to_retain = [True, False, False, True], then the output will
be a SparseTensor of shape [4, 5] with 2 non-empty values:

[0, 1]: a
[3, 1]: d

Args:

	sp_input: The input SparseTensor with N non-empty elements.

	to_retain: A bool vector of length N with M true values.

Returns:

A SparseTensor with the same shape as the input and M non-empty
elements corresponding to the true positions in to_retain.

Raises:

	TypeError: If sp_input is not a SparseTensor.

tf.sparse_fill_empty_rows(sp_input, default_value, name=None) {#sparse_fill_empty_rows}

Fills empty rows in the input 2-D SparseTensor with a default value.

This op adds entries with the specified default_value at index
[row, 0] for any row in the input that does not already have a value.

For example, suppose sp_input has shape [5, 6] and non-empty values:

[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d

Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:

[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value

Note that the input may have empty columns at the end, with no effect on
this op.

The output SparseTensor will be in row-major order and will have the
same shape as the input.

This op also returns an indicator vector such that

empty_row_indicator[i] = True iff row i was an empty row.

Args:

	sp_input: A SparseTensor with shape [N, M].

	default_value: The value to fill for empty rows, with the same type as
sp_input.

	name: A name prefix for the returned tensors (optional)

Returns:

	sp_ordered_output: A SparseTensor with shape [N, M], and with all empty
rows filled in with default_value.

	empty_row_indicator: A bool vector of length N indicating whether each
input row was empty.

Raises:

	TypeError: If sp_input is not a SparseTensor.

 Images

Images

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Encoding and Decoding

TensorFlow provides Ops to decode and encode JPEG and PNG formats. Encoded
images are represented by scalar string Tensors, decoded images by 3-D uint8
tensors of shape [height, width, channels].

The encode and decode Ops apply to one image at a time. Their input and output
are all of variable size. If you need fixed size images, pass the output of
the decode Ops to one of the cropping and resizing Ops.

Note: The PNG encode and decode Ops support RGBA, but the conversions Ops
presently only support RGB, HSV, and GrayScale.

tf.image.decode_jpeg(contents, channels=None, ratio=None, fancy_upscaling=None, try_recover_truncated=None, acceptable_fraction=None, name=None) {#decode_jpeg}

Decode a JPEG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:

	0: Use the number of channels in the JPEG-encoded image.

	1: output a grayscale image.

	3: output an RGB image.

If needed, the JPEG-encoded image is transformed to match the requested number
of color channels.

The attr ratio allows downscaling the image by an integer factor during
decoding. Allowed values are: 1, 2, 4, and 8. This is much faster than
downscaling the image later.

Args:

	contents: A Tensor of type string. 0-D. The JPEG-encoded image.

	channels: An optional int. Defaults to 0.
Number of color channels for the decoded image.

	ratio: An optional int. Defaults to 1. Downscaling ratio.

	fancy_upscaling: An optional bool. Defaults to True.
If true use a slower but nicer upscaling of the
chroma planes (yuv420/422 only).

	try_recover_truncated: An optional bool. Defaults to False.
If true try to recover an image from truncated input.

	acceptable_fraction: An optional float. Defaults to 1.
The minimum required fraction of lines before a truncated
input is accepted.

	name: A name for the operation (optional).

Returns:

A Tensor of type uint8. 3-D with shape [height, width, channels]..

tf.image.encode_jpeg(image, format=None, quality=None, progressive=None, optimize_size=None, chroma_downsampling=None, density_unit=None, x_density=None, y_density=None, xmp_metadata=None, name=None) {#encode_jpeg}

JPEG-encode an image.

image is a 3-D uint8 Tensor of shape [height, width, channels].

The attr format can be used to override the color format of the encoded
output. Values can be:

	'': Use a default format based on the number of channels in the image.

	grayscale: Output a grayscale JPEG image. The channels dimension
of image must be 1.

	rgb: Output an RGB JPEG image. The channels dimension
of image must be 3.

If format is not specified or is the empty string, a default format is picked
in function of the number of channels in image:

	1: Output a grayscale image.

	3: Output an RGB image.

Args:

	image: A Tensor of type uint8.
3-D with shape [height, width, channels].

	format: An optional string from: "", "grayscale", "rgb". Defaults to "".
Per pixel image format.

	quality: An optional int. Defaults to 95.
Quality of the compression from 0 to 100 (higher is better and slower).

	progressive: An optional bool. Defaults to False.
If True, create a JPEG that loads progressively (coarse to fine).

	optimize_size: An optional bool. Defaults to False.
If True, spend CPU/RAM to reduce size with no quality change.

	chroma_downsampling: An optional bool. Defaults to True.
See http://en.wikipedia.org/wiki/Chroma_subsampling.

	density_unit: An optional string from: "in", "cm". Defaults to "in".
Unit used to specify x_density and y_density:
pixels per inch ('in') or centimeter ('cm').

	x_density: An optional int. Defaults to 300.
Horizontal pixels per density unit.

	y_density: An optional int. Defaults to 300.
Vertical pixels per density unit.

	xmp_metadata: An optional string. Defaults to "".
If not empty, embed this XMP metadata in the image header.

	name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. JPEG-encoded image.

tf.image.decode_png(contents, channels=None, name=None) {#decode_png}

Decode a PNG-encoded image to a uint8 tensor.

The attr channels indicates the desired number of color channels for the
decoded image.

Accepted values are:

	0: Use the number of channels in the PNG-encoded image.

	1: output a grayscale image.

	3: output an RGB image.

	4: output an RGBA image.

If needed, the PNG-encoded image is transformed to match the requested number
of color channels.

Args:

	contents: A Tensor of type string. 0-D. The PNG-encoded image.

	channels: An optional int. Defaults to 0.
Number of color channels for the decoded image.

	name: A name for the operation (optional).

Returns:

A Tensor of type uint8. 3-D with shape [height, width, channels].

tf.image.encode_png(image, compression=None, name=None) {#encode_png}

PNG-encode an image.

image is a 3-D uint8 Tensor of shape [height, width, channels] where
channels is:

	1: for grayscale.

	3: for RGB.

	4: for RGBA.

The ZLIB compression level, compression, can be -1 for the PNG-encoder
default or a value from 0 to 9. 9 is the highest compression level, generating
the smallest output, but is slower.

Args:

	image: A Tensor of type uint8.
3-D with shape [height, width, channels].

	compression: An optional int. Defaults to -1. Compression level.

	name: A name for the operation (optional).

Returns:

A Tensor of type string. 0-D. PNG-encoded image.

Resizing

The resizing Ops accept input images as tensors of several types. They always
output resized images as float32 tensors.

The convenience function resize_images() supports both 4-D
and 3-D tensors as input and output. 4-D tensors are for batches of images,
3-D tensors for individual images.

Other resizing Ops only support 3-D individual images as input:
resize_area, resize_bicubic,
resize_bilinear,
resize_nearest_neighbor.

Example:

Decode a JPG image and resize it to 299 by 299.
image = tf.image.decode_jpeg(...)
resized_image = tf.image.resize_bilinear(image, [299, 299])

Maybe refer to the Queue examples that show how to add images to a Queue
after resizing them to a fixed size, and how to dequeue batches of resized
images from the Queue.

tf.image.resize_images(images, new_height, new_width, method=0) {#resize_images}

Resize images to new_width, new_height using the specified method.

Resized images will be distorted if their original aspect ratio is not
the same as new_width, new_height. To avoid distortions see
resize_image_with_crop_or_pad.

method can be one of:

	ResizeMethod.BILINEAR: [Bilinear interpolation.]
(https://en.wikipedia.org/wiki/Bilinear_interpolation)

	ResizeMethod.NEAREST_NEIGHBOR: [Nearest neighbor interpolation.]
(https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)

	ResizeMethod.BICUBIC: [Bicubic interpolation.]
(https://en.wikipedia.org/wiki/Bicubic_interpolation)

	ResizeMethod.AREA: Area interpolation.

Args:

	images: 4-D Tensor of shape [batch, height, width, channels] or
3-D Tensor of shape [height, width, channels].

	new_height: integer.

	new_width: integer.

	method: ResizeMethod. Defaults to ResizeMethod.BILINEAR.

Raises:

	ValueError: if the shape of images is incompatible with the
shape arguments to this function

	ValueError: if an unsupported resize method is specified.

Returns:

If images was 4-D, a 4-D float Tensor of shape
[batch, new_height, new_width, channels].
If images was 3-D, a 3-D float Tensor of shape
[new_height, new_width, channels].

tf.image.resize_area(images, size, name=None) {#resize_area}

Resize images to size using area interpolation.

Input images can be of different types but output images are always float.

Args:

	images: A Tensor. Must be one of the following types: uint8, int8, int32, float32, float64.
4-D with shape [batch, height, width, channels].

	size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

tf.image.resize_bicubic(images, size, name=None) {#resize_bicubic}

Resize images to size using bicubic interpolation.

Input images can be of different types but output images are always float.

Args:

	images: A Tensor. Must be one of the following types: uint8, int8, int32, float32, float64.
4-D with shape [batch, height, width, channels].

	size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

tf.image.resize_bilinear(images, size, name=None) {#resize_bilinear}

Resize images to size using bilinear interpolation.

Input images can be of different types but output images are always float.

Args:

	images: A Tensor. Must be one of the following types: uint8, int8, int32, float32, float64.
4-D with shape [batch, height, width, channels].

	size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32. 4-D with shape
[batch, new_height, new_width, channels].

tf.image.resize_nearest_neighbor(images, size, name=None) {#resize_nearest_neighbor}

Resize images to size using nearest neighbor interpolation.

Input images can be of different types but output images are always float.

Args:

	images: A Tensor. Must be one of the following types: uint8, int8, int32, float32, float64.
4-D with shape [batch, height, width, channels].

	size: A 1-D int32 Tensor of 2 elements: new_height, new_width. The
new size for the images.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as images. 4-D with shape
[batch, new_height, new_width, channels].

Cropping

tf.image.resize_image_with_crop_or_pad(image, target_height, target_width) {#resize_image_with_crop_or_pad}

Crops and/or pads an image to a target width and height.

Resizes an image to a target width and height by either centrally
cropping the image or padding it evenly with zeros.

If width or height is greater than the specified target_width or
target_height respectively, this op centrally crops along that dimension.
If width or height is smaller than the specified target_width or
target_height respectively, this op centrally pads with 0 along that
dimension.

Args:

	image: 3-D tensor of shape [height, width, channels]

	target_height: Target height.

	target_width: Target width.

Raises:

	ValueError: if target_height or target_width are zero or negative.

Returns:

Cropped and/or padded image of shape
[target_height, target_width, channels]

tf.image.pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width) {#pad_to_bounding_box}

Pad image with zeros to the specified height and width.

Adds offset_height rows of zeros on top, offset_width columns of
zeros on the left, and then pads the image on the bottom and right
with zeros until it has dimensions target_height, target_width.

This op does nothing if offset_* is zero and the image already has size
target_height by target_width.

Args:

	image: 3-D tensor with shape [height, width, channels]

	offset_height: Number of rows of zeros to add on top.

	offset_width: Number of columns of zeros to add on the left.

	target_height: Height of output image.

	target_width: Width of output image.

Returns:

3-D tensor of shape [target_height, target_width, channels]

Raises:

	ValueError: If the shape of image is incompatible with the offset_* or
target_* arguments

tf.image.crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width) {#crop_to_bounding_box}

Crops an image to a specified bounding box.

This op cuts a rectangular part out of image. The top-left corner of the
returned image is at offset_height, offset_width in image, and its
lower-right corner is at
offset_height + target_height, offset_width + target_width.

Args:

	image: 3-D tensor with shape [height, width, channels]

	offset_height: Vertical coordinate of the top-left corner of the result in
the input.

	offset_width: Horizontal coordinate of the top-left corner of the result in
the input.

	target_height: Height of the result.

	target_width: Width of the result.

Returns:

3-D tensor of image with shape [target_height, target_width, channels]

Raises:

	ValueError: If the shape of image is incompatible with the offset_* or
target_* arguments

tf.image.random_crop(image, size, seed=None, name=None) {#random_crop}

Randomly crops image to size [target_height, target_width].

The offset of the output within image is uniformly random. image always
fully contains the result.

Args:

	image: 3-D tensor of shape [height, width, channels]

	size: 1-D tensor with two elements, specifying target [height, width]

	seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

	name: A name for this operation (optional).

Returns:

A cropped 3-D tensor of shape [target_height, target_width, channels].

tf.image.extract_glimpse(input, size, offsets, centered=None, normalized=None, uniform_noise=None, name=None) {#extract_glimpse}

Extracts a glimpse from the input tensor.

Returns a set of windows called glimpses extracted at location offsets
from the input tensor. If the windows only partially overlaps the inputs, the
non overlapping areas will be filled with random noise.

The result is a 4-D tensor of shape [batch_size, glimpse_height, glimpse_width, channels]. The channels and batch dimensions are the same as that
of the input tensor. The height and width of the output windows are
specified in the size parameter.

The argument normalized and centered controls how the windows are built:

	If the coordinates are normalized but not centered, 0.0 and 1.0
correspond to the minimum and maximum of each height and width dimension.

	If the coordinates are both normalized and centered, they range from -1.0 to
1.0. The coordinates (-1.0, -1.0) correspond to the upper left corner, the
lower right corner is located at (1.0, 1.0) and the center is at (0, 0).

	If the coordinates are not normalized they are interpreted as numbers of pixels.

Args:

	input: A Tensor of type float32.
A 4-D float tensor of shape [batch_size, height, width, channels].

	size: A Tensor of type int32.
A 1-D tensor of 2 elements containing the size of the glimpses to extract.
The glimpse height must be specified first, following by the glimpse width.

	offsets: A Tensor of type float32.
A 2-D integer tensor of shape [batch_size, 2] containing the x, y
locations of the center of each window.

	centered: An optional bool. Defaults to True.
indicates if the offset coordinates are centered relative to
the image, in which case the (0, 0) offset is relative to the center of the
input images. If false, the (0,0) offset corresponds to the upper left corner
of the input images.

	normalized: An optional bool. Defaults to True.
indicates if the offset coordinates are normalized.

	uniform_noise: An optional bool. Defaults to True.
indicates if the noise should be generated using a
uniform distribution or a gaussian distribution.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32.
A tensor representing the glimpses [batch_size, glimpse_height, glimpse_width, channels].

Flipping and Transposing

tf.image.flip_up_down(image) {#flip_up_down}

Flip an image horizontally (upside down).

Outputs the contents of image flipped along the first dimension, which is
height.

See also reverse().

Args:

	image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

	ValueError: if the shape of image not supported.

tf.image.random_flip_up_down(image, seed=None) {#random_flip_up_down}

Randomly flips an image vertically (upside down).

With a 1 in 2 chance, outputs the contents of image flipped along the first
dimension, which is height. Otherwise output the image as-is.

Args:

	image: A 3-D tensor of shape [height, width, channels].

	seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

	ValueError: if the shape of image not supported.

tf.image.flip_left_right(image) {#flip_left_right}

Flip an image horizontally (left to right).

Outputs the contents of image flipped along the second dimension, which is
width.

See also reverse().

Args:

	image: A 3-D tensor of shape [height, width, channels].

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

	ValueError: if the shape of image not supported.

tf.image.random_flip_left_right(image, seed=None) {#random_flip_left_right}

Randomly flip an image horizontally (left to right).

With a 1 in 2 chance, outputs the contents of image flipped along the
second dimension, which is width. Otherwise output the image as-is.

Args:

	image: A 3-D tensor of shape [height, width, channels].

	seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

A 3-D tensor of the same type and shape as image.

Raises:

	ValueError: if the shape of image not supported.

tf.image.transpose_image(image) {#transpose_image}

Transpose an image by swapping the first and second dimension.

See also transpose().

Args:

	image: 3-D tensor of shape [height, width, channels]

Returns:

A 3-D tensor of shape [width, height, channels]

Raises:

	ValueError: if the shape of image not supported.

Image Adjustments

TensorFlow provides functions to adjust images in various ways: brightness,
contrast, hue, and saturation. Each adjustment can be done with predefined
parameters or with random parameters picked from predefined intervals. Random
adjustments are often useful to expand a training set and reduce overfitting.

tf.image.adjust_brightness(image, delta, min_value=None, max_value=None) {#adjust_brightness}

Adjust the brightness of RGB or Grayscale images.

The value delta is added to all components of the tensor image. image
and delta are cast to float before adding, and the resulting values are
clamped to [min_value, max_value]. Finally, the result is cast back to
images.dtype.

If min_value or max_value are not given, they are set to the minimum and
maximum allowed values for image.dtype respectively.

Args:

	image: A tensor.

	delta: A scalar. Amount to add to the pixel values.

	min_value: Minimum value for output.

	max_value: Maximum value for output.

Returns:

A tensor of the same shape and type as image.

tf.image.random_brightness(image, max_delta, seed=None) {#random_brightness}

Adjust the brightness of images by a random factor.

Equivalent to adjust_brightness() using a delta randomly picked in the
interval [-max_delta, max_delta).

Note that delta is picked as a float. Because for integer type images,
the brightness adjusted result is rounded before casting, integer images may
have modifications in the range [-max_delta,max_delta].

Args:

	image: 3-D tensor of shape [height, width, channels].

	max_delta: float, must be non-negative.

	seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

3-D tensor of images of shape [height, width, channels]

Raises:

	ValueError: if max_delta is negative.

tf.image.adjust_contrast(images, contrast_factor, min_value=None, max_value=None) {#adjust_contrast}

Adjust contrast of RGB or grayscale images.

images is a tensor of at least 3 dimensions. The last 3 dimensions are
interpreted as [height, width, channels]. The other dimensions only
represent a collection of images, such as [batch, height, width, channels].

Contrast is adjusted independently for each channel of each image.

For each channel, this Op first computes the mean of the image pixels in the
channel and then adjusts each component x of each pixel to
(x - mean) * contrast_factor + mean.

The adjusted values are then clipped to fit in the [min_value, max_value]
interval. If min_value or max_value is not given, it is replaced with the
minimum and maximum values for the data type of images respectively.

The contrast-adjusted image is always computed as float, and it is
cast back to its original type after clipping.

Args:

	images: Images to adjust. At least 3-D.

	contrast_factor: A float multiplier for adjusting contrast.

	min_value: Minimum value for clipping the adjusted pixels.

	max_value: Maximum value for clipping the adjusted pixels.

Returns:

The constrast-adjusted image or images.

Raises:

	ValueError: if the arguments are invalid.

tf.image.random_contrast(image, lower, upper, seed=None) {#random_contrast}

Adjust the contrase of an image by a random factor.

Equivalent to adjust_constrast() but uses a contrast_factor randomly
picked in the interval [lower, upper].

Args:

	image: 3-D tensor of shape [height, width, channels].

	lower: float. Lower bound for the random contrast factor.

	upper: float. Upper bound for the random contrast factor.

	seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

Returns:

3-D tensor of shape [height, width, channels].

Raises:

	ValueError: if upper <= lower or if lower < 0.

tf.image.per_image_whitening(image) {#per_image_whitening}

Linearly scales image to have zero mean and unit norm.

This op computes (x - mean) / adjusted_stddev, where mean is the average
of all values in image, and
adjusted_stddev = max(stddev, 1.0/srqt(image.NumElements())).

stddev is the standard deviation of all values in image. It is capped
away from zero to protect against division by 0 when handling uniform images.

Note that this implementation is limited:

	It only whitens based on the statistics of an individual image.

	It does not take into account the covariance structure.

Args:

	image: 3-D tensor of shape [height, width, channels].

Returns:

The whitened image with same shape as image.

Raises:

	ValueError: if the shape of ‘image’ is incompatible with this function.

Other Functions and Classes

tf.image.resize_nearest_neighbor_grad(grads, size, name=None) {#resize_nearest_neighbor_grad}

Computes the gradient of nearest neighbor interpolation.

Args:

	grads: A Tensor. Must be one of the following types: uint8, int8, int32, float32, float64.
4-D with shape [batch, height, width, channels].

	size: A 1-D int32 Tensor of 2 elements: orig_height, orig_width. The
original input size.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as grads.
4-D with shape [batch, orig_height, orig_width, channels]. Gradients
with respect to the input image.

 Building Graphs

Building Graphs

[TOC]

Classes and functions for building TensorFlow graphs.

Core graph data structures

class tf.Graph {#Graph}

A TensorFlow computation, represented as a dataflow graph.

A Graph contains a set of
Operation objects,
which represent units of computation; and
Tensor objects, which represent
the units of data that flow between operations.

A default Graph is always registered, and accessible by calling
tf.get_default_graph().
To add an operation to the default graph, simply call one of the functions
that defines a new Operation:

c = tf.constant(4.0)
assert c.graph is tf.get_default_graph()

Another typical usage involves the
Graph.as_default()
context manager, which overrides the current default graph for the
lifetime of the context:

g = tf.Graph()
with g.as_default():
 # Define operations and tensors in `g`.
 c = tf.constant(30.0)
 assert c.graph is g

Important note: This class is not thread-safe for graph construction. All
operations should be created from a single thread, or external
synchronization must be provided. Unless otherwise specified, all methods
are not thread-safe.

tf.Graph.__init__() {#Graph.init}

Creates a new, empty Graph.

tf.Graph.as_default() {#Graph.as_default}

Returns a context manager that makes this Graph the default graph.

This method should be used if you want to create multiple graphs
in the same process. For convenience, a global default graph is
provided, and all ops will be added to this graph if you do not
create a new graph explicitly. Use this method the with keyword
to specify that ops created within the scope of a block should be
added to this graph.

The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

The following code examples are equivalent:

1. Using Graph.as_default():
g = tf.Graph()
with g.as_default():
 c = tf.constant(5.0)
 assert c.graph is g

2. Constructing and making default:
with tf.Graph().as_default() as g:
 c = tf.constant(5.0)
 assert c.graph is g

Returns:

A context manager for using this graph as the default graph.

tf.Graph.as_graph_def(from_version=None) {#Graph.as_graph_def}

Returns a serialized GraphDef representation of this graph.

The serialized GraphDef can be imported into another Graph
(using import_graph_def()) or used with the
C++ Session API.

This method is thread-safe.

Args:

	from_version: Optional. If this is set, returns a GraphDef
containing only the nodes that were added to this graph since
its version property had the given value.

Returns:

A GraphDef [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto]
protocol buffer.

Raises:

	ValueError: If the graph_def would be too large.

tf.Graph.finalize() {#Graph.finalize}

Finalizes this graph, making it read-only.

After calling g.finalize(), no new operations can be added to
g. This method is used to ensure that no operations are added
to a graph when it is shared between multiple threads, for example
when using a QueueRunner.

tf.Graph.finalized {#Graph.finalized}

True if this graph has been finalized.

tf.Graph.control_dependencies(control_inputs) {#Graph.control_dependencies}

Returns a context manager that specifies control dependencies.

Use with the with keyword to specify that all operations constructed
within the context should have control dependencies on
control_inputs. For example:

with g.control_dependencies([a, b, c]):
 # `d` and `e` will only run after `a`, `b`, and `c` have executed.
 d = ...
 e = ...

Multiple calls to control_dependencies() can be nested, and in
that case a new Operation will have control dependencies on the union
of control_inputs from all active contexts.

with g.control_dependencies([a, b]):
 # Ops declared here run after `a` and `b`.
 with g.control_dependencies([c, d]):
 # Ops declared here run after `a`, `b`, `c`, and `d`.

N.B. The control dependencies context applies only to ops that
are constructed within the context. Merely using an op or tensor
in the context does not add a control dependency. The following
example illustrates this point:

WRONG
def my_func(pred, tensor):
 t = tf.matmul(tensor, tensor)
 with tf.control_dependencies([pred]):
 # The matmul op is created outside the context, so no control
 # dependency will be added.
 return t

RIGHT
def my_func(pred, tensor):
 with tf.control_dependencies([pred]):
 # The matmul op is created in the context, so a control dependency
 # will be added.
 return tf.matmul(tensor, tensor)

Args:

	control_inputs: A list of Operation or Tensor objects, which
must be executed or computed before running the operations
defined in the context.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

Raises:

	TypeError: If control_inputs is not a list of Operation or
Tensor objects.

tf.Graph.device(device_name_or_function) {#Graph.device}

Returns a context manager that specifies the default device to use.

The device_name_or_function argument may either be a device name
string, a device function, or None:

	If it is a device name string, all operations constructed in
this context will be assigned to the device with that name.

	If it is a function, it will be treated as function from
Operation objects to device name strings, and invoked each time
a new Operation is created. The Operation will be assigned to
the device with the returned name.

	If it is None, the default device will be cleared.

For example:

with g.device('/gpu:0'):
 # All operations constructed in this context will be placed
 # on GPU 0.
 with g.device(None):
 # All operations constructed in this context will have no
 # assigned device.

Defines a function from `Operation` to device string.
def matmul_on_gpu(n):
 if n.type == "MatMul":
 return "/gpu:0"
 else:
 return "/cpu:0"

with g.device(matmul_on_gpu):
 # All operations of type "MatMul" constructed in this context
 # will be placed on GPU 0; all other operations will be placed
 # on CPU 0.

Args:

	device_name_or_function: The device name or function to use in
the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.Graph.name_scope(name) {#Graph.name_scope}

Returns a context manager that creates hierarchical names for operations.

A graph maintains a stack of name scopes. A with name_scope(...):
statement pushes a new name onto the stack for the lifetime of the context.

The name argument will be interpreted as follows:

	A string (not ending with ‘/’) will create a new name scope, in which
name is appended to the prefix of all operations created in the
context. If name has been used before, it will be made unique by
calling self.unique_name(name).

	A scope previously captured from a with g.name_scope(...) as scope: statement will be treated as an “absolute” name scope, which
makes it possible to re-enter existing scopes.

	A value of None or the empty string will reset the current name scope
to the top-level (empty) name scope.

For example:

with tf.Graph().as_default() as g:
 c = tf.constant(5.0, name="c")
 assert c_1.name == "c"
 c_1 = tf.constant(6.0, name="c")
 assert c_1.name == "c_1"

 # Creates a scope called "nested"
 with g.name_scope("nested") as scope:
 nested_c = tf.constant(10.0, name="c")
 assert nested_c.name == "nested/c"

 # Creates a nested scope called "inner".
 with g.name_scope("inner"):
 nested_inner_c = tf.constant(20.0, name="c")
 assert nested_inner_c.name == "nested/inner/c"

 # Create a nested scope called "inner_1".
 with g.name_scope("inner"):
 nested_inner_1_c = tf.constant(30.0, name="c")
 assert nested_inner_1_c.name == "nested/inner_1/c"

 # Treats `scope` as an absolute name scope, and
 # switches to the "nested/" scope.
 with g.name_scope(scope):
 nested_d = tf.constant(40.0, name="d")
 assert nested_d.name == "nested/d"

 with g.name_scope(""):
 e = tf.constant(50.0, name="e")
 assert e.name == "e"

The name of the scope itself can be captured by with g.name_scope(...) as scope:, which stores the name of the scope
in the variable scope. This value can be used to name an
operation that represents the overall result of executing the ops
in a scope. For example:

inputs = tf.constant(...)
with g.name_scope('my_layer') as scope:
 weights = tf.Variable(..., name="weights")
 biases = tf.Variable(..., name="biases")
 affine = tf.matmul(inputs, weights) + biases
 output = tf.nn.relu(affine, name=scope)

Args:

	name: A name for the scope.

Returns:

A context manager that installs name as a new name scope.

A Graph instance supports an arbitrary number of “collections”
that are identified by name. For convenience when building a large
graph, collections can store groups of related objects: for
example, the tf.Variable uses a collection (named
tf.GraphKeys.VARIABLES) for
all variables that are created during the construction of a graph. The caller
may define additional collections by specifying a new name.

tf.Graph.add_to_collection(name, value) {#Graph.add_to_collection}

Stores value in the collection with the given name.

Args:

	name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

	value: The value to add to the collection.

tf.Graph.get_collection(name, scope=None) {#Graph.get_collection}

Returns a list of values in the collection with the given name.

Args:

	key: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

	scope: (Optional.) If supplied, the resulting list is filtered to include
only items whose name begins with this string.

Returns:

The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.

tf.Graph.as_graph_element(obj, allow_tensor=True, allow_operation=True) {#Graph.as_graph_element}

Returns the object referred to by obj, as an Operation or Tensor.

This function validates that obj represents an element of this
graph, and gives an informative error message if it is not.

This function is the canonical way to get/validate an object of
one of the allowed types from an external argument reference in the
Session API.

This method may be called concurrently from multiple threads.

Args:

	obj: A Tensor, an Operation, or the name of a tensor or operation.
Can also be any object with an _as_graph_element() method that returns
a value of one of these types.

	allow_tensor: If true, obj may refer to a Tensor.

	allow_operation: If true, obj may refer to an Operation.

Returns:

The Tensor or Operation in the Graph corresponding to obj.

Raises:

	TypeError: If obj is not a type we support attempting to convert
to types.

	ValueError: If obj is of an appropriate type but invalid. For
example, an invalid string.

	KeyError: If obj is not an object in the graph.

tf.Graph.get_operation_by_name(name) {#Graph.get_operation_by_name}

Returns the Operation with the given name.

This method may be called concurrently from multiple threads.

Args:

	name: The name of the Operation to return.

Returns:

The Operation with the given name.

Raises:

	TypeError: If name is not a string.

	KeyError: If name does not correspond to an operation in this graph.

tf.Graph.get_tensor_by_name(name) {#Graph.get_tensor_by_name}

Returns the Tensor with the given name.

This method may be called concurrently from multiple threads.

Args:

	name: The name of the Tensor to return.

Returns:

The Tensor with the given name.

Raises:

	TypeError: If name is not a string.

	KeyError: If name does not correspond to a tensor in this graph.

tf.Graph.get_operations() {#Graph.get_operations}

Return the list of operations in the graph.

You can modify the operations in place, but modifications
to the list such as inserts/delete have no effect on the
list of operations known to the graph.

This method may be called concurrently from multiple threads.

Returns:

A list of Operations.

tf.Graph.get_default_device() {#Graph.get_default_device}

Returns the default device.

Returns:

A string.

tf.Graph.seed {#Graph.seed}

tf.Graph.unique_name(name) {#Graph.unique_name}

Return a unique operation name for name.

Note: You rarely need to call unique_name() directly. Most of
the time you just need to create with g.name_scope() blocks to
generate structured names.

unique_name is used to generate structured names, separated by
"/", to help identify operations when debugging a graph.
Operation names are displayed in error messages reported by the
TensorFlow runtime, and in various visualization tools such as
TensorBoard.

Args:

	name: The name for an operation.

Returns:

A string to be passed to create_op() that will be used
to name the operation being created.

tf.Graph.version {#Graph.version}

Returns a version number that increases as ops are added to the graph.

tf.Graph.create_op(op_type, inputs, dtypes, input_types=None, name=None, attrs=None, op_def=None, compute_shapes=True) {#Graph.create_op}

Creates an Operation in this graph.

This is a low-level interface for creating an Operation. Most
programs will not call this method directly, and instead use the
Python op constructors, such as tf.constant(), which add ops to
the default graph.

Args:

	op_type: The Operation type to create. This corresponds to the
OpDef.name field for the proto that defines the operation.

	inputs: A list of Tensor objects that will be inputs to the Operation.

	dtypes: A list of DType objects that will be the types of the tensors
that the operation produces.

	input_types: (Optional.) A list of DTypes that will be the types of
the tensors that the operation consumes. By default, uses the base
DType of each input in inputs. Operations that expect
reference-typed inputs must specify input_types explicitly.

	name: (Optional.) A string name for the operation. If not specified, a
name is generated based on op_type.

	attrs: (Optional.) A list of AttrValue protos for the attr field of
the NodeDef proto that will represent the operation.

	op_def: (Optional.) The OpDef proto that describes the op_type that
the operation will have.

	compute_shapes: (Optional.) If True, shape inference will be performed
to compute the shapes of the outputs.

Raises:

	TypeError: if any of the inputs is not a Tensor.

Returns:

An Operation object.

tf.Graph.gradient_override_map(op_type_map) {#Graph.gradient_override_map}

EXPERIMENTAL: A context manager for overriding gradient functions.

This context manager can be used to override the gradient function
that will be used for ops within the scope of the context.

For example:

@tf.RegisterGradient("CustomSquare")
def _custom_square_grad(op, inputs):
 # ...

with tf.Graph().as_default() as g:
 c = tf.constant(5.0)
 s_1 = tf.square(c) # Uses the default gradient for tf.square.
 with g.gradient_override_map({"Square": "CustomSquare"}):
 s_2 = tf.square(s_2) # Uses _custom_square_grad to compute the
 # gradient of s_2.

Args:

	op_type_map: A dictionary mapping op type strings to alternative op
type strings.

Returns:

A context manager that sets the alternative op type to be used for one
or more ops created in that context.

Raises:

	TypeError: If op_type_map is not a dictionary mapping strings to
strings.

class tf.Operation {#Operation}

Represents a graph node that performs computation on tensors.

An Operation is a node in a TensorFlow Graph that takes zero or
more Tensor objects as input, and produces zero or more Tensor
objects as output. Objects of type Operation are created by
calling a Python op constructor (such as
tf.matmul())
or Graph.create_op().

For example c = tf.matmul(a, b) creates an Operation of type
“MatMul” that takes tensors a and b as input, and produces c
as output.

After the graph has been launched in a session, an Operation can
be executed by passing it to
Session.run().
op.run() is a shortcut for calling tf.get_default_session().run(op).

tf.Operation.name {#Operation.name}

The full name of this operation.

tf.Operation.type {#Operation.type}

The type of the op (e.g. "MatMul").

tf.Operation.inputs {#Operation.inputs}

The list of Tensor objects representing the data inputs of this op.

tf.Operation.control_inputs {#Operation.control_inputs}

The Operation objects on which this op has a control dependency.

Before this op is executed, TensorFlow will ensure that the
operations in self.control_inputs have finished executing. This
mechanism can be used to run ops sequentially for performance
reasons, or to ensure that the side effects of an op are observed
in the correct order.

Returns:

A list of Operation objects.

tf.Operation.outputs {#Operation.outputs}

The list of Tensor objects representing the outputs of this op.

tf.Operation.device {#Operation.device}

The name of the device to which this op has been assigned, if any.

Returns:

The string name of the device to which this op has been
assigned, or None if it has not been assigned to a device.

tf.Operation.graph {#Operation.graph}

The Graph that contains this operation.

tf.Operation.run(feed_dict=None, session=None) {#Operation.run}

Runs this operation in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for this operation.

N.B. Before invoking Operation.run(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

	feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run()
for a description of the valid feed values.

	session: (Optional.) The Session to be used to run to this operation. If
none, the default session will be used.

tf.Operation.get_attr(name) {#Operation.get_attr}

Returns the value of the attr of this op with the given name.

Args:

	name: The name of the attr to fetch.

Returns:

The value of the attr, as a Python object.

Raises:

	ValueError: If this op does not have an attr with the given name.

tf.Operation.traceback {#Operation.traceback}

Returns the call stack from when this operation was constructed.

Other Methods

tf.Operation.__init__(node_def, g, inputs=None, output_types=None, control_inputs=None, input_types=None, original_op=None, op_def=None) {#Operation.init}

Creates an Operation.

NOTE: This constructor validates the name of the Operation (passed
as node_def.name). Valid Operation names match the following
regular expression:

[A-Za-z0-9.][A-Za-z0-9_.\-/]*

Args:

	node_def: graph_pb2.NodeDef. NodeDef for the Operation.
Used for attributes of graph_pb2.NodeDef, typically name,
op, and device. The input attribute is irrelevant here
as it will be computed when generating the model.

	g: Graph. The parent graph.

	inputs: list of Tensor objects. The inputs to this Operation.

	output_types: list of DType objects. List of the types of the
Tensors computed by this operation. The length of this list indicates
the number of output endpoints of the Operation.

	control_inputs: list of operations or tensors from which to have a
control dependency.

	input_types: List of DType objects representing the
types of the tensors accepted by the Operation. By default
uses [x.dtype.base_dtype for x in inputs]. Operations that expect
reference-typed inputs must specify these explicitly.

	original_op: Optional. Used to associate the new Operation with an
existing Operation (for example, a replica with the op that was
replicated).

	op_def: Optional. The op_def_pb2.OpDef proto that describes the
op type that this Operation represents.

Raises:

	TypeError: if control inputs are not Operations or Tensors,
or if node_def is not a NodeDef,
or if g is not a Graph,
or if inputs are not tensors,
or if inputs and input_types are incompatible.

	ValueError: if the node_def name is not valid.

tf.Operation.node_def {#Operation.node_def}

Returns a serialized NodeDef representation of this operation.

Returns:

A
NodeDef [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto]
protocol buffer.

tf.Operation.op_def {#Operation.op_def}

Returns the OpDef proto that represents the type of this op.

Returns:

An
OpDef [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/op_def.proto]
protocol buffer.

tf.Operation.values() {#Operation.values}

DEPRECATED: Use outputs.

class tf.Tensor {#Tensor}

Represents a value produced by an Operation.

A Tensor is a symbolic handle to one of the outputs of an
Operation. It does not hold the values of that operation’s output,
but instead provides a means of computing those values in a
TensorFlow Session.

This class has two primary purposes:

	A Tensor can be passed as an input to another Operation.
This builds a dataflow connection between operations, which
enables TensorFlow to execute an entire Graph that represents a
large, multi-step computation.

	After the graph has been launched in a session, the value of the
Tensor can be computed by passing it to
Session.run().
t.eval() is a shortcut for calling
tf.get_default_session().run(t).

In the following example, c, d, and e are symbolic Tensor
objects, whereas result is a numpy array that stores a concrete
value:

Build a dataflow graph.
c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
e = tf.matmul(c, d)

Construct a `Session` to execut the graph.
sess = tf.Session()

Execute the graph and store the value that `e` represents in `result`.
result = sess.run(e)

tf.Tensor.dtype {#Tensor.dtype}

The DType of elements in this tensor.

tf.Tensor.name {#Tensor.name}

The string name of this tensor.

tf.Tensor.value_index {#Tensor.value_index}

The index of this tensor in the outputs of its Operation.

tf.Tensor.graph {#Tensor.graph}

The Graph that contains this tensor.

tf.Tensor.op {#Tensor.op}

The Operation that produces this tensor as an output.

tf.Tensor.consumers() {#Tensor.consumers}

Returns a list of Operations that consume this tensor.

Returns:

A list of Operations.

tf.Tensor.eval(feed_dict=None, session=None) {#Tensor.eval}

Evaluates this tensor in a Session.

Calling this method will execute all preceding operations that
produce the inputs needed for the operation that produces this
tensor.

N.B. Before invoking Tensor.eval(), its graph must have been
launched in a session, and either a default session must be
available, or session must be specified explicitly.

Args:

	feed_dict: A dictionary that maps Tensor objects to feed values.
See Session.run() for a
description of the valid feed values.

	session: (Optional.) The Session to be used to evaluate this tensor. If
none, the default session will be used.

Returns:

A numpy array corresponding to the value of this tensor.

tf.Tensor.get_shape() {#Tensor.get_shape}

Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are
registered for each Operation type using tf.RegisterShape.
See TensorShape for more
details of what a shape represents.

The inferred shape of a tensor is used to provide shape
information without having to launch the graph in a session. This
can be used for debugging, and providing early error messages. For
example:

c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

print c.get_shape()
==> TensorShape([Dimension(2), Dimension(3)])

d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])

print d.get_shape()
==> TensorShape([Dimension(4), Dimension(2)])

Raises a ValueError, because `c` and `d` do not have compatible
inner dimensions.
e = tf.matmul(c, d)

f = tf.matmul(c, d, transpose_a=True, transpose_b=True)

print f.get_shape()
==> TensorShape([Dimension(3), Dimension(4)])

In some cases, the inferred shape may have unknown dimensions. If
the caller has additional information about the values of these
dimensions, Tensor.set_shape() can be used to augment the
inferred shape.

Returns:

A TensorShape representing the shape of this tensor.

tf.Tensor.set_shape(shape) {#Tensor.set_shape}

Updates the shape of this tensor.

This method can be called multiple times, and will merge the given
shape with the current shape of this tensor. It can be used to
provide additional information about the shape of this tensor that
cannot be inferred from the graph alone. For example, this can be used
to provide additional information about the shapes of images:

_, image_data = tf.TFRecordReader(...).read(...)
image = tf.image.decode_png(image_data, channels=3)

The height and width dimensions of `image` are data dependent, and
cannot be computed without executing the op.
print image.get_shape()
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print image.get_shape()
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])

Args:

	shape: A TensorShape representing the shape of this tensor.

Raises:

	ValueError: If shape is not compatible with the current shape of
this tensor.

Other Methods

tf.Tensor.__init__(op, value_index, dtype) {#Tensor.init}

Creates a new Tensor.

Args:

	op: An Operation. Operation that computes this tensor.

	value_index: An int. Index of the operation’s endpoint that produces
this tensor.

	dtype: A DType. Type of elements stored in this tensor.

Raises:

	TypeError: If the op is not an Operation.

tf.Tensor.device {#Tensor.device}

The name of the device on which this tensor will be produced, or None.

Tensor types

class tf.DType {#DType}

Represents the type of the elements in a Tensor.

The following DType objects are defined:

	tf.float32: 32-bit single-precision floating-point.

	tf.float64: 64-bit double-precision floating-point.

	tf.bfloat16: 16-bit truncated floating-point.

	tf.complex64: 64-bit single-precision complex.

	tf.int8: 8-bit signed integer.

	tf.uint8: 8-bit unsigned integer.

	tf.int32: 32-bit signed integer.

	tf.int64: 64-bit signed integer.

	tf.bool: Boolean.

	tf.string: String.

	tf.qint8: Quantized 8-bit signed integer.

	tf.quint8: Quantized 8-bit unsigned integer.

	tf.qint32: Quantized 32-bit signed integer.

In addition, variants of these types with the _ref suffix are
defined for reference-typed tensors.

The tf.as_dtype() function converts numpy types and string type
names to a DType object.

tf.DType.is_compatible_with(other) {#DType.is_compatible_with}

Returns True if the other DType will be converted to this DType.

The conversion rules are as follows:

DType(T) .is_compatible_with(DType(T)) == True
DType(T) .is_compatible_with(DType(T).as_ref) == True
DType(T).as_ref.is_compatible_with(DType(T)) == False
DType(T).as_ref.is_compatible_with(DType(T).as_ref) == True

Args:

	other: A DType (or object that may be converted to a DType).

Returns:

True if a Tensor of the other DType will be implicitly converted to
this DType.

tf.DType.name {#DType.name}

Returns the string name for this DType.

tf.DType.base_dtype {#DType.base_dtype}

Returns a non-reference DType based on this DType.

tf.DType.is_ref_dtype {#DType.is_ref_dtype}

Returns True if this DType represents a reference type.

tf.DType.as_ref {#DType.as_ref}

Returns a reference DType based on this DType.

tf.DType.is_integer {#DType.is_integer}

Returns whether this is a (non-quantized) integer type.

tf.DType.is_quantized {#DType.is_quantized}

Returns whether this is a quantized data type.

tf.DType.as_numpy_dtype {#DType.as_numpy_dtype}

Returns a numpy.dtype based on this DType.

tf.DType.as_datatype_enum {#DType.as_datatype_enum}

Returns a types_pb2.DataType enum value based on this DType.

Other Methods

tf.DType.__init__(type_enum) {#DType.init}

Creates a new DataType.

NOTE(mrry): In normal circumstances, you should not need to
construct a DataType object directly. Instead, use the
tf.as_dtype() function.

Args:

	type_enum: A types_pb2.DataType enum value.

Raises:

	TypeError: If type_enum is not a value types_pb2.DataType.

tf.DType.is_floating {#DType.is_floating}

Returns whether this is a (real) floating point type.

tf.DType.max {#DType.max}

Returns the maximum representable value in this data type.

Raises:

	TypeError: if this is a non-numeric, unordered, or quantized type.

tf.DType.min {#DType.min}

Returns the minimum representable value in this data type.

Raises:

	TypeError: if this is a non-numeric, unordered, or quantized type.

tf.as_dtype(type_value) {#as_dtype}

Converts the given type_value to a DType.

Args:

	type_value: A value that can be converted to a tf.DType
object. This may currently be a tf.DType object, a
DataType enum [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/types.proto],
a string type name, or a numpy.dtype.

Returns:

A DType corresponding to type_value.

Raises:

	TypeError: If type_value cannot be converted to a DType.

Utility functions

tf.device(dev) {#device}

Wrapper for Graph.device() using the default graph.

See
Graph.name_scope()
for more details.

Args:

	device_name_or_function: The device name or function to use in
the context.

Returns:

A context manager that specifies the default device to use for newly
created ops.

tf.name_scope(name) {#name_scope}

Wrapper for Graph.name_scope() using the default graph.

See
Graph.name_scope()
for more details.

Args:

	name: A name for the scope.

Returns:

A context manager that installs name as a new name scope in the
default graph.

tf.control_dependencies(control_inputs) {#control_dependencies}

Wrapper for Graph.control_dependencies() using the default graph.

See Graph.control_dependencies()
for more details.

Args:

	control_inputs: A list of Operation or Tensor objects, which
must be executed or computed before running the operations
defined in the context.

Returns:

A context manager that specifies control dependencies for all
operations constructed within the context.

tf.convert_to_tensor(value, dtype=None, name=None) {#convert_to_tensor}

Converts the given value to a Tensor.

This function converts Python objects of various types to Tensor
objects. It accepts Tensor objects, numpy arrays, Python lists,
and Python scalars. For example:

import numpy as np
array = np.random.rand((32, 100, 100))

def my_func(arg):
 arg = tf.convert_to_tensor(arg, dtype=tf.float32)
 return tf.matmul(arg, arg) + arg

The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))

This function can be useful when composing a new operation in Python
(such as my_func in the example above). All standard Python op
constructors apply this function to each of their Tensor-valued
inputs, which allows those ops to accept numpy arrays, Python lists,
and scalars in addition to Tensor objects.

Args:

	value: An object whose type has a registered Tensor conversion function.

	dtype: Optional element type for the returned tensor. If missing, the
type is inferred from the type of value.

	name: Optional name to use if a new Tensor is created.

Returns:

A Tensor based on value.

Raises:

	TypeError: If no conversion function is registered for value.

	RuntimeError: If a registered conversion function returns an invalid value.

tf.get_default_graph() {#get_default_graph}

Returns the default graph for the current thread.

The returned graph will be the innermost graph on which a
Graph.as_default() context has been entered, or a global default
graph if none has been explicitly created.

N.B. The default graph is a property of the current thread. If you
create a new thread, and wish to use the default graph in that
thread, you must explicitly add a with g.as_default(): in that
thread’s function.

Returns:

The default Graph being used in the current thread.

tf.import_graph_def(graph_def, input_map=None, return_elements=None, name=None, op_dict=None) {#import_graph_def}

Imports the TensorFlow graph in graph_def into the Python Graph.

This function provides a way to import a serialized TensorFlow
GraphDef [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/graph.proto]
protocol buffer, and extract individual objects in the GraphDef as
Tensor and Operation objects. See
Graph.as_graph_def() for a way to create a
GraphDef proto.

Args:

	graph_def: A GraphDef proto containing operations to be imported into
the default graph.

	input_map: A dictionary mapping input names (as strings) in graph_def
to Tensor objects. The values of the named input tensors in the
imported graph will be re-mapped to the respective Tensor values.

	return_elements: A list of strings containing operation names in
graph_def that will be returned as Operation objects; and/or
tensor names in graph_def that will be returned as Tensor objects.

	name: (Optional.) A prefix that will be prepended to the names in
graph_def. Defaults to "import".

	op_dict: (Optional.) A dictionary mapping op type names to OpDef protos.
Must contain an OpDef proto for each op type named in graph_def.
If omitted, uses the OpDef protos registered in the global registry.

Returns:

A list of Operation and/or Tensor objects from the imported graph,
corresponding to the names in return_elements.

Raises:

	TypeError: If graph_def is not a GraphDef proto,
input_map is not a dictionary mapping strings to Tensor objects,
or return_elements is not a list of strings.

	ValueError: If input_map, or return_elements contains names that
do not appear in graph_def, or graph_def is not well-formed (e.g.
it refers to an unknown tensor).

Graph collections

tf.add_to_collection(name, value) {#add_to_collection}

Wrapper for Graph.add_to_collection() using the default graph.

See Graph.add_to_collection()
for more details.

Args:

	name: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

	value: The value to add to the collection.

tf.get_collection(key, scope=None) {#get_collection}

Wrapper for Graph.get_collection() using the default graph.

See Graph.get_collection()
for more details.

Args:

	key: The key for the collection. For example, the GraphKeys class
contains many standard names for collections.

	scope: (Optional.) If supplied, the resulting list is filtered to include
only items whose name begins with this string.

Returns:

The list of values in the collection with the given name, or
an empty list if no value has been added to that collection. The
list contains the values in the order under which they were
collected.

class tf.GraphKeys {#GraphKeys}

Standard names to use for graph collections.

The standard library uses various well-known names to collect and
retrieve values associated with a graph. For example, the
tf.Optimizer subclasses default to optimizing the variables
collected under tf.GraphKeys.TRAINABLE_VARIABLES if none is
specified, but it is also possible to pass an explicit list of
variables.

The following standard keys are defined:

	VARIABLES: the Variable objects that comprise a model, and
must be saved and restored together. See
tf.all_variables()
for more details.

	TRAINABLE_VARIABLES: the subset of Variable objects that will
be trained by an optimizer. See
tf.trainable_variables()
for more details.

	SUMMARIES: the summary Tensor objects that have been created in the
graph. See
tf.merge_all_summaries()
for more details.

	QUEUE_RUNNERS: the QueueRunner objects that are used to
produce input for a computation. See
tf.start_queue_runners()
for more details.

Defining new operations

class tf.RegisterGradient {#RegisterGradient}

A decorator for registering the gradient function for an op type.

This decorator is only used when defining a new op type. For an op
with m inputs and n inputs, the gradient function is a function
that takes the original Operation and n Tensor objects
(representing the gradients with respect to each output of the op),
and returns m Tensor objects (representing the partial gradients
with respect to each input of the op).

For example, assuming that operations of type "Sub" take two
inputs x and y, and return a single output x - y, the
following gradient function would be registered:

@tf.RegisterGradient("Sub")
def _sub_grad(unused_op, grad):
 return grad, tf.Neg(grad)

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

tf.RegisterGradient.__init__(op_type) {#RegisterGradient.init}

Creates a new decorator with op_type as the Operation type.

Args:

	op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

tf.NoGradient(op_type) {#NoGradient}

Specifies that ops of type op_type do not have a defined gradient.

This function is only used when defining a new op type. It may be
used for ops such as tf.size() that are not differentiable. For
example:

tf.NoGradient("Size")

Args:

	op_type: The string type of an operation. This corresponds to the
OpDef.name field for the proto that defines the operation.

Raises:

	TypeError: If op_type is not a string.

class tf.RegisterShape {#RegisterShape}

A decorator for registering the shape function for an op type.

This decorator is only used when defining a new op type. A shape
function is a function from an Operation object to a list of
TensorShape objects, with one TensorShape for each output of the
operation.

For example, assuming that operations of type "Sub" take two
inputs x and y, and return a single output x - y, all with the
same shape, the following shape function would be registered:

@tf.RegisterShape("Sub")
def _sub_shape(op):
 return [op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]

The decorator argument op_type is the string type of an
operation. This corresponds to the OpDef.name field for the proto
that defines the operation.

tf.RegisterShape.__init__(op_type) {#RegisterShape.init}

Saves the op_type as the Operation type.

class tf.TensorShape {#TensorShape}

Represents the shape of a Tensor.

A TensorShape represents a possibly-partial shape specification for a
Tensor. It may be one of the following:

	Fully-known shape: has a known number of dimensions and a known size
for each dimension.

	Partially-known shape: has a known number of dimensions, and an unknown
size for one or more dimension.

	Unknown shape: has an unknown number of dimensions, and an unknown
size in all dimensions.

If a tensor is produced by an operation of type "Foo", its shape
may be inferred if there is a registered shape function for
"Foo". See tf.RegisterShape()
for details of shape
functions and how to register them. Alternatively, the shape may be set
explicitly using Tensor.set_shape().

tf.TensorShape.merge_with(other) {#TensorShape.merge_with}

Returns a TensorShape combining the information in self and other.

The dimensions in self and other are merged elementwise,
according to the rules defined for Dimension.merge_with().

Args:

	other: Another TensorShape.

Returns:

A TensorShape containing the combined information of self and
other.

Raises:

	ValueError: If self and other are not compatible.

tf.TensorShape.concatenate(other) {#TensorShape.concatenate}

Returns the concatenation of the dimension in self and other.

N.B. If either self or other is completely unknown,
concatenation will discard information about the other shape. In
future, we might support concatenation that preserves this
information for use with slicing.

Args:

	other: Another TensorShape.

Returns:

A TensorShape whose dimensions are the concatenation of the
dimensions in self and other.

tf.TensorShape.ndims {#TensorShape.ndims}

Returns the rank of this shape, or None if it is unspecified.

tf.TensorShape.dims {#TensorShape.dims}

Returns a list of Dimensions, or None if the shape is unspecified.

tf.TensorShape.as_list() {#TensorShape.as_list}

Returns a list of integers or None for each dimension.

tf.TensorShape.is_compatible_with(other) {#TensorShape.is_compatible_with}

Returns True iff self is compatible with other.

Two possibly-partially-defined shapes are compatible if there
exists a fully-defined shape that both shapes can represent. Thus,
compatibility allows the shape inference code to reason about
partially-defined shapes. For example:

	TensorShape(None) is compatible with all shapes.

	TensorShape([None, None]) is compatible with all two-dimensional
shapes, such as TensorShape([32, 784]), and also TensorShape(None). It is
not compatible with, for example, TensorShape([None]) or
TensorShape([None, None, None]).

	TensorShape([32, None]) is compatible with all two-dimensional shapes
with size 32 in the 0th dimension, and also TensorShape([None, None])
and TensorShape(None). It is not compatible with, for example,
TensorShape([32]), TensorShape([32, None, 1]) or TensorShape([64, None]).

	TensorShape([32, 784]) is compatible with itself, and also
TensorShape([32, None]), TensorShape([None, 784]), TensorShape([None,
None]) and TensorShape(None). It is not compatible with, for example,
TensorShape([32, 1, 784]) or TensorShape([None]).

The compatibility relation is reflexive and symmetric, but not
transitive. For example, TensorShape([32, 784]) is compatible with
TensorShape(None), and TensorShape(None) is compatible with
TensorShape([4, 4]), but TensorShape([32, 784]) is not compatible with
TensorShape([4, 4]).

Args:

	other: Another TensorShape.

Returns:

True iff self is compatible with other.

tf.TensorShape.is_fully_defined() {#TensorShape.is_fully_defined}

Returns True iff self is fully defined in every dimension.

tf.TensorShape.with_rank(rank) {#TensorShape.with_rank}

Returns a shape based on self with the given rank.

This method promotes a completely unknown shape to one with a
known rank.

Args:

	rank: An integer.

Returns:

A shape that is at least as specific as self with the given rank.

Raises:

	ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.with_rank_at_least(rank) {#TensorShape.with_rank_at_least}

Returns a shape based on self with at least the given rank.

Args:

	rank: An integer.

Returns:

A shape that is at least as specific as self with at least the given
rank.

Raises:

	ValueError: If self does not represent a shape with at least the given
rank.

tf.TensorShape.with_rank_at_most(rank) {#TensorShape.with_rank_at_most}

Returns a shape based on self with at most the given rank.

Args:

	rank: An integer.

Returns:

A shape that is at least as specific as self with at most the given
rank.

Raises:

	ValueError: If self does not represent a shape with at most the given
rank.

tf.TensorShape.assert_has_rank(rank) {#TensorShape.assert_has_rank}

Raises an exception if self is not compatible with the given rank.

Args:

	rank: An integer.

Raises:

	ValueError: If self does not represent a shape with the given rank.

tf.TensorShape.assert_same_rank(other) {#TensorShape.assert_same_rank}

Raises an exception if self and other do not have compatible ranks.

Args:

	other: Another TensorShape.

Raises:

	ValueError: If self and other do not represent shapes with the
same rank.

tf.TensorShape.assert_is_compatible_with(other) {#TensorShape.assert_is_compatible_with}

Raises exception if self and other do not represent the same shape.

This method can be used to assert that there exists a shape that both
self and other represent.

Args:

	other: Another TensorShape.

Raises:

	ValueError: If self and other do not represent the same shape.

tf.TensorShape.assert_is_fully_defined() {#TensorShape.assert_is_fully_defined}

Raises an exception if self is not fully defined in every dimension.

Raises:

	ValueError: If self does not have a known value for every dimension.

Other Methods

tf.TensorShape.__init__(dims) {#TensorShape.init}

Creates a new TensorShape with the given dimensions.

Args:

	dims: A list of Dimensions, or None if the shape is unspecified.

	DEPRECATED: A single integer is treated as a singleton list.

tf.TensorShape.as_dimension_list() {#TensorShape.as_dimension_list}

DEPRECATED: use as_list().

tf.TensorShape.num_elements() {#TensorShape.num_elements}

Returns the total number of elements, or none for incomplete shapes.

class tf.Dimension {#Dimension}

Represents the value of one dimension in a TensorShape.

tf.Dimension.__init__(value) {#Dimension.init}

Creates a new Dimension with the given value.

tf.Dimension.assert_is_compatible_with(other) {#Dimension.assert_is_compatible_with}

Raises an exception if other is not compatible with this Dimension.

Args:

	other: Another Dimension.

Raises:

	ValueError: If self and other are not compatible (see
is_compatible_with).

tf.Dimension.is_compatible_with(other) {#Dimension.is_compatible_with}

Returns true if other is compatible with this Dimension.

Two known Dimensions are compatible if they have the same value.
An unknown Dimension is compatible with all other Dimensions.

Args:

	other: Another Dimension.

Returns:

True if this Dimension and other are compatible.

tf.Dimension.merge_with(other) {#Dimension.merge_with}

Returns a Dimension that combines the information in self and other.

Dimensions are combined as follows:

Dimension(n) .merge_with(Dimension(n)) == Dimension(n)
Dimension(n) .merge_with(Dimension(None)) == Dimension(n)
Dimension(None).merge_with(Dimension(n)) == Dimension(n)
Dimension(None).merge_with(Dimension(None)) == Dimension(None)
Dimension(n) .merge_with(Dimension(m)) raises ValueError for n != m

Args:

	other: Another Dimension.

Returns:

A Dimension containing the combined information of self and
other.

Raises:

	ValueError: If self and other are not compatible (see
is_compatible_with).

tf.Dimension.value {#Dimension.value}

The value of this dimension, or None if it is unknown.

tf.op_scope(values, name, default_name) {#op_scope}

Returns a context manager for use when defining a Python op.

This context manager validates that the given values are from the
same graph, ensures that that graph is the default graph, and pushes a
name scope.

For example, to define a new Python op called my_op:

def my_op(a, b, c, name=None):
 with tf.op_scope([a, b, c], name, "MyOp") as scope:
 a = tf.convert_to_tensor(a, name="a")
 b = tf.convert_to_tensor(b, name="b")
 c = tf.convert_to_tensor(c, name="c")
 # Define some computation that uses `a`, `b`, and `c`.
 return foo_op(..., name=scope)

Args:

	values: The list of Tensor arguments that are passed to the op function.

	name: The name argument that is passed to the op function.

	default_name: The default name to use if the name argument is None.

Returns:

A context manager for use in defining a Python op.

tf.get_seed(op_seed) {#get_seed}

Returns the local seeds an operation should use given an op-specific seed.

Given operation-specific seed, op_seed, this helper function returns two
seeds derived from graph-level and op-level seeds. Many random operations
internally use the two seeds to allow user to change the seed globally for a
graph, or for only specific operations.

For details on how the graph-level seed interacts with op seeds, see
set_random_seed.

Args:

	op_seed: integer.

Returns:

A tuple of two integers that should be used for the local seed of this
operation.

 Tensor Transformations

Tensor Transformations

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Casting

TensorFlow provides several operations that you can use to cast tensor data
types in your graph.

tf.string_to_number(string_tensor, out_type=None, name=None) {#string_to_number}

Converts each string in the input Tensor to the specified numeric type.

(Note that int32 overflow results in an error while float overflow
results in a rounded value.)

Args:

	string_tensor: A Tensor of type string.

	out_type: An optional tf.DType from: tf.float32, tf.int32. Defaults to tf.float32.
The numeric type to interpret each string in string_tensor as.

	name: A name for the operation (optional).

Returns:

A Tensor of type out_type.
A Tensor of the same shape as the input string_tensor.

tf.to_double(x, name='ToDouble') {#to_double}

Casts a tensor to type float64.

Args:

	x: A Tensor or SparseTensor.

	name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float64.

Raises:

	TypeError: If x cannot be cast to the float64.

tf.to_float(x, name='ToFloat') {#to_float}

Casts a tensor to type float32.

Args:

	x: A Tensor or SparseTensor.

	name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type float32.

Raises:

	TypeError: If x cannot be cast to the float32.

tf.to_bfloat16(x, name='ToBFloat16') {#to_bfloat16}

Casts a tensor to type bfloat16.

Args:

	x: A Tensor or SparseTensor.

	name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type bfloat16.

Raises:

	TypeError: If x cannot be cast to the bfloat16.

tf.to_int32(x, name='ToInt32') {#to_int32}

Casts a tensor to type int32.

Args:

	x: A Tensor or SparseTensor.

	name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int32.

Raises:

	TypeError: If x cannot be cast to the int32.

tf.to_int64(x, name='ToInt64') {#to_int64}

Casts a tensor to type int64.

Args:

	x: A Tensor or SparseTensor.

	name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x with type int64.

Raises:

	TypeError: If x cannot be cast to the int64.

tf.cast(x, dtype, name=None) {#cast}

Casts a tensor to a new type.

The operation casts x (in case of Tensor) or x.values
(in case of SparseTensor) to dtype.

For example:

tensor `a` is [1.8, 2.2], dtype=tf.float
tf.cast(a, tf.int32) ==> [1, 2] # dtype=tf.int32

Args:

	x: A Tensor or SparseTensor.

	dtype: The destination type.

	name: A name for the operation (optional).

Returns:

A Tensor or SparseTensor with same shape as x.

Raises:

	TypeError: If x cannot be cast to the dtype.

Shapes and Shaping

TensorFlow provides several operations that you can use to determine the shape
of a tensor and change the shape of a tensor.

tf.shape(input, name=None) {#shape}

Returns the shape of a tensor.

This operation returns a 1-D integer tensor representing the shape of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape(t) ==> [2, 2, 3]

Args:

	input: A Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.size(input, name=None) {#size}

Returns the size of a tensor.

This operation returns an integer representing the number of elements in
input.

For example:

't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
size(t) ==> 12

Args:

	input: A Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.rank(input, name=None) {#rank}

Returns the rank of a tensor.

This operation returns an integer representing the rank of input.

For example:

't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
shape of tensor 't' is [2, 2, 3]
rank(t) ==> 3

Note: The rank of a tensor is not the same as the rank of a matrix. The rank
of a tensor is the number of indices required to uniquely select each element
of the tensor. Rank is also known as “order”, “degree”, or “ndims.”

Args:

	input: A Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor of type int32.

tf.reshape(tensor, shape, name=None) {#reshape}

Reshapes a tensor.

Given tensor, this operation returns a tensor that has the same values
as tensor with shape shape.

If shape is the special value [-1], then tensor is flattened and the
operation outputs a 1-D tensor with all elements of tensor.

If shape is 1-D or higher, then the operation returns a tensor with shape
shape filled with the values of tensor. In this case, the number of elements
implied by shape must be the same as the number of elements in tensor.

For example:

tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3]
 [4, 5, 6]
 [7, 8, 9]]

tensor 't' is [[[1, 1], [2, 2]]
[[3, 3], [4, 4]]]
tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2]
 [3, 3, 4, 4]]

tensor 't' is [[[1, 1, 1],
[2, 2, 2]],
[[3, 3, 3],
[4, 4, 4]],
[[5, 5, 5],
[6, 6, 6]]]
tensor 't' has shape [3, 2, 3]
pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

Args:

	tensor: A Tensor.

	shape: A Tensor of type int32. Defines the shape of the output tensor.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.squeeze(input, squeeze_dims=None, name=None) {#squeeze}

Removes dimensions of size 1 from the shape of a tensor.

Given a tensor input, this operation returns a tensor of the same type with
all dimensions of size 1 removed. If you don’t want to remove all size 1
dimensions, you can remove specific size 1 dimensions by specifying
squeeze_dims.

For example:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]

Or, to remove specific size 1 dimensions:

't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Args:

	input: A Tensor. The input to squeeze.

	squeeze_dims: An optional list of ints. Defaults to [].
If specified, only squeezes the dimensions listed. The dimension
index starts at 0. It is an error to squeeze a dimension that is not 1.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Contains the same data as input, but has one or more dimensions of
size 1 removed.

tf.expand_dims(input, dim, name=None) {#expand_dims}

Inserts a dimension of 1 into a tensor’s shape.

Given a tensor input, this operation inserts a dimension of 1 at the
dimension index dim of input‘s shape. The dimension index dim starts at
zero; if you specify a negative number for dim it is counted backward from
the end.

This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape [height, width, channels], you can make it a batch of 1 image with expand_dims(image, 0),
which will make the shape [1, height, width, channels].

Other examples:

't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

This operation requires that:

-1-input.dims() <= dim <= input.dims()

This operation is related to squeeze(), which removes dimensions of
size 1.

Args:

	input: A Tensor.

	dim: A Tensor of type int32.
0-D (scalar). Specifies the dimension index at which to
expand the shape of input.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Contains the same data as input, but its shape has an additional
dimension of size 1 added.

Slicing and Joining

TensorFlow provides several operations to slice or extract parts of a tensor,
or join multiple tensors together.

tf.slice(input_, begin, size, name=None) {#slice}

Extracts a slice from a tensor.

This operation extracts a slice of size size from a tensor input starting
at the location specified by begin. The slice size is represented as a
tensor shape, where size[i] is the number of elements of the ‘i’th dimension
of input that you want to slice. The starting location (begin) for the
slice is represented as an offset in each dimension of input. In other
words, begin[i] is the offset into the ‘i’th dimension of input that you
want to slice from.

begin is zero-based; size is one-based. If size[i] is -1,
all remaining elements in dimension i are included in the
slice. In other words, this is equivalent to setting:

size[i] = input.dim_size(i) - begin[i]

This operation requires that:

0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]

For example:

'input' is [[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]]
tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
 [4, 4, 4]]]
tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
 [[5, 5, 5]]]

Args:

	input_: A Tensor.

	begin: An int32 or int64 Tensor.

	size: An int32 or int64 Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor the same type as input.

tf.split(split_dim, num_split, value, name='split') {#split}

Splits a tensor into num_split tensors along one dimension.

Splits value along dimension split_dim into num_split smaller tensors.
Requires that num_split evenly divide value.shape[split_dim].

For example:

'value' is a tensor with shape [5, 30]
Split 'value' into 3 tensors along dimension 1
split0, split1, split2 = tf.split(1, 3, value)
tf.shape(split0) ==> [5, 10]

Args:

	split_dim: A 0-D int32 Tensor. The dimension along which to split.
Must be in the range [0, rank(value)).

	num_split: A Python integer. The number of ways to split.

	value: The Tensor to split.

	name: A name for the operation (optional).

Returns:

num_split Tensor objects resulting from splitting value.

tf.tile(input, multiples, name=None) {#tile}

Constructs a tensor by tiling a given tensor.

This operation creates a new tensor by replicating input multiples times.
The output tensor’s i’th dimension has input.dims(i) * multiples[i] elements,
and the values of input are replicated multiples[i] times along the ‘i’th
dimension. For example, tiling [a b c d] by [2] produces
[a b c d a b c d].

Args:

	input: A Tensor. 1-D or higher.

	multiples: A Tensor of type int32.
1-D. Length must be the same as the number of dimensions in input

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.pad(input, paddings, name=None) {#pad}

Pads a tensor with zeros.

This operation pads a input with zeros according to the paddings you
specify. paddings is an integer tensor with shape [Dn, 2], where n is the
rank of input. For each dimension D of input, paddings[D, 0] indicates
how many zeros to add before the contents of input in that dimension, and
paddings[D, 1] indicates how many zeros to add after the contents of input
in that dimension.

The padded size of each dimension D of the output is:

paddings(D, 0) + input.dim_size(D) + paddings(D, 1)

For example:

't' is [[1, 1], [2, 2]]
'paddings' is [[1, 1]], [2, 2]]
rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0]
 [0, 0, 0, 0, 0]
 [0, 1, 1, 0, 0]
 [[0, 2, 2, 0, 0]
 [0, 0, 0, 0, 0]]

Args:

	input: A Tensor.

	paddings: A Tensor of type int32.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.concat(concat_dim, values, name='concat') {#concat}

Concatenates tensors along one dimension.

Concatenates the list of tensors values along dimension concat_dim. If
values[i].shape = [D0, D1, ... Dconcat_dim(i), ...Dn], the concatenated
result has shape

[D0, D1, ... Rconcat_dim, ...Dn]

where

Rconcat_dim = sum(Dconcat_dim(i))

That is, the data from the input tensors is joined along the concat_dim
dimension.

The number of dimensions of the input tensors must match, and all dimensions
except concat_dim must be equal.

For example:

t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

tensor t3 with shape [2, 3]
tensor t4 with shape [2, 3]
tf.shape(tf.concat(0, [t3, t4])) ==> [4, 3]
tf.shape(tf.concat(1, [t3, t4])) ==> [2, 6]

Args:

	concat_dim: 0-D int32 Tensor. Dimension along which to concatenate.

	values: A list of Tensor objects or a single Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor resulting from concatenation of the input tensors.

tf.pack(values, name='pack') {#pack}

Packs a list of rank-R tensors into one rank-(R+1) tensor.

Packs tensors in values into a tensor with rank one higher than each tensor
in values and shape [len(values)] + values[0].shape. The output satisfies
output[i, ...] = values[i][...].

This is the opposite of unpack. The numpy equivalent is

tf.pack([x, y, z]) = np.asarray([x, y, z])

Args:

	values: A list of Tensor objects with the same shape and type.

	name: A name for this operation (optional).

Returns:

	output: A packed Tensor with the same type as values.

tf.unpack(value, num=None, name='unpack') {#unpack}

Unpacks the outer dimension of a rank-R tensor into rank-(R-1) tensors.

Unpacks num tensors from value along the first dimension.
If num is not specified (the default), it is inferred from value‘s shape.
If value.shape[0] is not known, ValueError is raised.

The ith tensor in output is the slice value[i, ...]. Each tensor in
output has shape value.shape[1:].

This is the opposite of pack. The numpy equivalent is

tf.unpack(x, n) = list(x)

Args:

	value: A rank R > 0 Tensor to be unpacked.

	num: An int. The first dimension of value. Automatically inferred if
None (the default).

	name: A name for the operation (optional).

Returns:

The list of Tensor objects unpacked from value.

Raises:

	ValueError: If num is unspecified and cannot be inferred.

tf.reverse_sequence(input, seq_lengths, seq_dim, name=None) {#reverse_sequence}

Reverses variable length slices in dimension seq_dim.

This op first slices input along the first dimension, and for each slice i,
reverses the first seq_lengths[i] elements along the dimension seq_dim.

The elements of seq_lengths must obey seq_lengths[i] < input.dims[seq_dim],
and seq_lengths must be a vector of length input.dims(0).

The output slice i along dimension 0 is then given by input slice i, with
the first seq_lengths[i] slices along dimension seq_dim reversed.

For example:

Given this:
seq_dim = 1
input.dims = (4, ...)
seq_lengths = [7, 2, 3, 5]

then slices of input are reversed on seq_dim, but only up to seq_lengths:
output[0, 0:7, :, ...] = input[0, 7:0:-1, :, ...]
output[1, 0:2, :, ...] = input[1, 2:0:-1, :, ...]
output[2, 0:3, :, ...] = input[2, 3:0:-1, :, ...]
output[3, 0:5, :, ...] = input[3, 5:0:-1, :, ...]

while entries past seq_lens are copied through:
output[0, 7:, :, ...] = input[0, 7:, :, ...]
output[1, 2:, :, ...] = input[1, 2:, :, ...]
output[2, 3:, :, ...] = input[2, 3:, :, ...]
output[3, 2:, :, ...] = input[3, 2:, :, ...]

Args:

	input: A Tensor. The input to reverse.

	seq_lengths: A Tensor of type int64.
1-D with length input.dims(0) and
max(seq_lengths) < input.dims(seq_dim)

	seq_dim: An int. The dimension which is partially reversed.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
The partially reversed input. It has the same shape as input.

tf.reverse(tensor, dims, name=None) {#reverse}

Reverses specific dimensions of a tensor.

Given a tensor, and a bool tensor dims representing the dimensions
of tensor, this operation reverses each dimension i of tensor where
dims[i] is True.

tensor can have up to 8 dimensions. The number of dimensions
of tensor must equal the number of elements in dims. In other words:

rank(tensor) = size(dims)

For example:

tensor 't' is [[[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]]
tensor 't' shape is [1, 2, 3, 4]

'dims' is [False, False, False, True]
reverse(t, dims) ==> [[[[3, 2, 1, 0],
 [7, 6, 5, 4],
 [11, 10, 9, 8]],
 [[15, 14, 13, 12],
 [19, 18, 17, 16],
 [23, 22, 21, 20]]]]

'dims' is [False, True, False, False]
reverse(t, dims) ==> [[[[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]
 [[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]]]

'dims' is [False, False, True, False]
reverse(t, dims) ==> [[[[8, 9, 10, 11],
 [4, 5, 6, 7],
 [0, 1, 2, 3]]
 [[20, 21, 22, 23],
 [16, 17, 18, 19],
 [12, 13, 14, 15]]]]

Args:

	tensor: A Tensor. Must be one of the following types: uint8, int8, int32, bool, float32, float64.
Up to 8-D.

	dims: A Tensor of type bool. 1-D. The dimensions to reverse.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor. The same shape as tensor.

tf.transpose(a, perm=None, name='transpose') {#transpose}

Transposes a. Permutes the dimensions according to perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]
[4 5 6]]
tf.transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
 [2 5]
 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [[[1 2 3]
[4 5 6]]
[[7 8 9]
[10 11 12]]]
Take the transpose of the matrices in dimension-0
tf.transpose(b, perm=[0, 2, 1]) ==> [[[1 4]
 [2 5]
 [3 6]]

 [[7 10]
 [8 11]
 [9 12]]]

Args:

	a: A Tensor.

	perm: A permutation of the dimensions of a.

	name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.gather(params, indices, name=None) {#gather}

Gather slices from params according to indices.

indices must be an integer tensor of any dimension (usually 0-D or 1-D).
Produces an output tensor with shape indices.shape + params.shape[1:] where:

Scalar indices
output[:, ..., :] = params[indices, :, ... :]

Vector indices
output[i, :, ..., :] = params[indices[i], :, ... :]

Higher rank indices
output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :]

If indices is a permutation and len(indices) == params.shape[0] then
this operation will permute params accordingly.

 TensorFlow Python reference documentation

TensorFlow Python reference documentation

	Building Graphs:
	add_to_collection

	as_dtype

	control_dependencies

	convert_to_tensor

	device

	Dimension

	DType

	get_collection

	get_default_graph

	get_seed

	Graph

	GraphKeys

	import_graph_def

	name_scope

	NoGradient

	op_scope

	Operation

	RegisterGradient

	RegisterShape

	Tensor

	TensorShape

	Constants, Sequences, and Random Values:
	constant

	fill

	linspace

	ones

	ones_like

	random_normal

	random_shuffle

	random_uniform

	range

	set_random_seed

	truncated_normal

	zeros

	zeros_like

	Variables:
	all_variables

	assert_variables_initialized

	assign

	assign_add

	assign_sub

	constant_initializer

	count_up_to

	device

	get_checkpoint_state

	get_variable

	get_variable_scope

	IndexedSlices

	initialize_all_variables

	initialize_variables

	latest_checkpoint

	random_normal_initializer

	random_uniform_initializer

	Saver

	scatter_add

	scatter_sub

	scatter_update

	sparse_mask

	trainable_variables

	truncated_normal_initializer

	uniform_unit_scaling_initializer

	update_checkpoint_state

	Variable

	variable_scope

	zeros_initializer

	Tensor Transformations:
	cast

	concat

	dynamic_partition

	dynamic_stitch

	expand_dims

	gather

	pack

	pad

	rank

	reshape

	reverse

	reverse_sequence

	shape

	size

	slice

	split

	squeeze

	string_to_number

	tile

	to_bfloat16

	to_double

	to_float

	to_int32

	to_int64

	transpose

	unpack

	Math:
	abs

	accumulate_n

	add

	add_n

	argmax

	argmin

	batch_cholesky

	batch_matmul

	batch_matrix_determinant

	batch_matrix_inverse

	ceil

	cholesky

	complex

	complex_abs

	conj

	cos

	diag

	div

	edit_distance

	exp

	floor

	floordiv

	imag

	inv

	invert_permutation

	listdiff

	log

	matmul

	matrix_determinant

	matrix_inverse

	maximum

	minimum

	mod

	mul

	neg

	pow

	real

	reduce_all

	reduce_any

	reduce_max

	reduce_mean

	reduce_min

	reduce_prod

	reduce_sum

	round

	rsqrt

	segment_max

	segment_mean

	segment_min

	segment_prod

	segment_sum

	sign

	sin

	sparse_segment_mean

	sparse_segment_sum

	sqrt

	square

	sub

	transpose

	truediv

	unique

	unsorted_segment_sum

	where

	Control Flow:
	add_check_numerics_ops

	Assert

	check_numerics

	count_up_to

	equal

	greater

	greater_equal

	group

	identity

	is_finite

	is_inf

	is_nan

	less

	less_equal

	logical_and

	logical_not

	logical_or

	logical_xor

	no_op

	not_equal

	Print

	select

	tuple

	verify_tensor_all_finite

	where

	Images:
	adjust_brightness

	adjust_contrast

	crop_to_bounding_box

	decode_jpeg

	decode_png

	encode_jpeg

	encode_png

	extract_glimpse

	flip_left_right

	flip_up_down

	pad_to_bounding_box

	per_image_whitening

	random_brightness

	random_contrast

	random_crop

	random_flip_left_right

	random_flip_up_down

	resize_area

	resize_bicubic

	resize_bilinear

	resize_image_with_crop_or_pad

	resize_images

	resize_nearest_neighbor

	resize_nearest_neighbor_grad

	transpose_image

	Sparse Tensors:
	shape

	sparse_concat

	sparse_fill_empty_rows

	sparse_reorder

	sparse_retain

	sparse_tensor_to_dense

	sparse_to_dense

	sparse_to_indicator

	SparseTensor

	SparseTensorValue

	Inputs and Readers:
	batch

	batch_join

	decode_csv

	decode_raw

	FIFOQueue

	FixedLengthRecordReader

	IdentityReader

	limit_epochs

	match_filenames_once

	matching_files

	parse_example

	parse_single_example

	placeholder

	QueueBase

	RandomShuffleQueue

	range_input_producer

	read_file

	ReaderBase

	shuffle_batch

	shuffle_batch_join

	size

	slice_input_producer

	string_input_producer

	TextLineReader

	TFRecordReader

	WholeFileReader

	Data IO (Python functions):
	tf_record_iterator

	TFRecordWriter

	Neural Network:
	avg_pool

	bias_add

	compute_accidental_hits

	conv2d

	depthwise_conv2d

	dropout

	embedding_lookup

	fixed_unigram_candidate_sampler

	in_top_k

	l2_loss

	l2_normalize

	learned_unigram_candidate_sampler

	local_response_normalization

	log_uniform_candidate_sampler

	max_pool

	max_pool_with_argmax

	moments

	nce_loss

	relu

	relu6

	sampled_softmax_loss

	separable_conv2d

	sigmoid

	sigmoid_cross_entropy_with_logits

	softmax

	softmax_cross_entropy_with_logits

	softplus

	tanh

	top_k

	uniform_candidate_sampler

	Running Graphs:
	AbortedError

	AlreadyExistsError

	CancelledError

	DataLossError

	DeadlineExceededError

	FailedPreconditionError

	get_default_session

	InteractiveSession

	InternalError

	InvalidArgumentError

	NotFoundError

	OpError

	OutOfRangeError

	PermissionDeniedError

	ResourceExhaustedError

	Session

	UnauthenticatedError

	UnavailableError

	UnimplementedError

	UnknownError

	Training:
	AdagradOptimizer

	AdamOptimizer

	add_queue_runner

	AggregationMethod

	clip_by_average_norm

	clip_by_global_norm

	clip_by_norm

	clip_by_value

	Coordinator

	exponential_decay

	ExponentialMovingAverage

	FtrlOptimizer

	global_norm

	global_step

	GradientDescentOptimizer

	gradients

	histogram_summary

	image_summary

	merge_all_summaries

	merge_summary

	MomentumOptimizer

	Optimizer

	QueueRunner

	RMSPropOptimizer

	scalar_summary

	start_queue_runners

	stop_gradient

	summary_iterator

	SummaryWriter

	write_graph

	zero_fraction

 Data IO (Python functions)

Data IO (Python functions)

[TOC]

Data IO (Python Functions)

A TFRecords file represents a sequence of (binary) strings. The format is not
random access, so it is suitable for streaming large amounts of data but not
suitable if fast sharding or other non-sequential access is desired.

class tf.python_io.TFRecordWriter {#TFRecordWriter}

A class to write records to a TFRecords file.

This class implements __enter__ and __exit__, and can be used
in with blocks like a normal file.

tf.python_io.TFRecordWriter.__init__(path) {#TFRecordWriter.init}

Opens file path and creates a TFRecordWriter writing to it.

Args:

	path: The path to the TFRecords file.

Raises:

	IOError: If path cannot be opened for writing.

tf.python_io.TFRecordWriter.write(record) {#TFRecordWriter.write}

Write a string record to the file.

Args:

	record: str

tf.python_io.TFRecordWriter.close() {#TFRecordWriter.close}

Close the file.

tf.python_io.tf_record_iterator(path) {#tf_record_iterator}

An iterator that read the records from a TFRecords file.

Args:

	path: The path to the TFRecords file.

Yields:

Strings.

Raises:

	IOError: If path cannot be opened for reading.

TFRecords Format Details

A TFRecords file contains a sequence of strings with CRC hashes. Each record
has the format

uint64 length
uint32 masked_crc32_of_length
byte data[length]
uint32 masked_crc32_of_data

and the records are concatenated together to produce the file. The CRC32s
are described here [https://en.wikipedia.org/wiki/Cyclic_redundancy_check],
and the mask of a CRC is

masked_crc = ((crc >> 15) | (crc << 17)) + 0xa282ead8ul

 Constants, Sequences, and Random Values

Constants, Sequences, and Random Values

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Constant Value Tensors

TensorFlow provides several operations that you can use to generate constants.

tf.zeros(shape, dtype=tf.float32, name=None) {#zeros}

Creates a tensor with all elements set to zero.

This operation returns a tensor of type dtype with shape shape and
all elements set to zero.

For example:

tf.zeros([3, 4], int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Args:

	shape: Either a list of integers, or a 1-D Tensor of type int32.

	dtype: The type of an element in the resulting Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.zeros_like(tensor, dtype=None, name=None) {#zeros_like}

Creates a tensor with all elements set to zero.

Given a single tensor (tensor), this operation returns a tensor of the
same type and shape as tensor with all elements set to zero. Optionally,
you can use dtype to specify a new type for the returned tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]

Args:

	tensor: A Tensor.

	dtype: A type for the returned Tensor. Must be float32, float64,
int8, int16, int32, int64, uint8, or complex64.

	name: A name for the operation (optional).

Returns:

A Tensor with all elements set to zero.

tf.ones(shape, dtype=tf.float32, name=None) {#ones}

Creates a tensor with all elements set to 1.

This operation returns a tensor of type dtype with shape shape and all
elements set to 1.

For example:

tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]]

Args:

	shape: Either a list of integers, or a 1-D Tensor of type int32.

	dtype: The type of an element in the resulting Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.ones_like(tensor, dtype=None, name=None) {#ones_like}

Creates a tensor with all elements set to 1.

Given a single tensor (tensor), this operation returns a tensor of the same
type and shape as tensor with all elements set to 1. Optionally, you can
specify a new type (dtype) for the returned tensor.

For example:

'tensor' is [[1, 2, 3], [4, 5, 6]]
tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]

Args:

	tensor: A Tensor.

	dtype: A type for the returned Tensor. Must be float32, float64,
int8, int16, int32, int64, uint8, or complex64.

	name: A name for the operation (optional).

Returns:

A Tensor with all elements set to 1.

tf.fill(dims, value, name=None) {#fill}

Creates a tensor filled with a scalar value.

This operation creates a tensor of shape dims and fills it with value.

For example:

output tensor shape needs to be [2, 3]
so 'dims' is [2, 3]
fill(dims, 9) ==> [[9, 9, 9]
 [9, 9, 9]]

Args:

	dims: A Tensor of type int32.
1-D. Represents the shape of the output tensor.

	value: A Tensor. 0-D (scalar). Value to fill the returned tensor.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as value.

tf.constant(value, dtype=None, shape=None, name='Const') {#constant}

Creates a constant tensor.

The resulting tensor is populated with values of type dtype, as
specified by arguments value and (optionally) shape (see examples
below).

The argument value can be a constant value, or a list of values of type
dtype. If value is a list, then the length of the list must be less
than or equal to the number of elements implied by the shape argument (if
specified). In the case where the list length is less than the number of
elements specified by shape, the last element in the list will be used
to fill the remaining entries.

The argument shape is optional. If present, it specifies the dimensions
of the resulting tensor. If not present, then the tensor is a scalar (0-D)
if value is a scalar, or 1-D otherwise.

If the argument dtype is not specified, then the type is inferred from
the type of value.

For example:

Constant 1-D Tensor populated with value list.
tensor = tf.constant([1, 2, 3, 4, 5, 6, 7]) => [1 2 3 4 5 6 7]

Constant 2-D tensor populated with scalar value -1.
tensor = tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.]
 [-1. -1. -1.]]

Args:

	value: A constant value (or list) of output type dtype.

	dtype: The type of the elements of the resulting tensor.

	shape: Optional dimensions of resulting tensor.

	name: Optional name for the tensor.

Returns:

A Constant Tensor.

Sequences

tf.linspace(start, stop, num, name=None) {#linspace}

Generates values in an interval.

A sequence of num evenly-spaced values are generated beginning at start.
If num > 1, the values in the sequence increase by stop - start / num - 1,
so that the last one is exactly stop.

For example:

tf.linspace(10.0, 12.0, 3, name="linspace") => [10.0 11.0 12.0]

Args:

	start: A Tensor. Must be one of the following types: float32, float64.
First entry in the range.

	stop: A Tensor. Must have the same type as start.
Last entry in the range.

	num: A Tensor of type int32. Number of values to generate.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as start. 1-D. The generated values.

tf.range(start, limit=None, delta=1, name='range') {#range}

Creates a sequence of integers.

Creates a sequence of integers that begins at start and extends by
increments of delta up to but not including limit.

Like the Python builtin range, start defaults to 0, so that
range(n) = range(0, n).

For example:

'start' is 3
'limit' is 18
'delta' is 3
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]

'limit' is 5
tf.range(limit) ==> [0, 1, 2, 3, 4]

Args:

	start: A 0-D (scalar) of type int32. First entry in sequence.
Defaults to 0.

	limit: A 0-D (scalar) of type int32. Upper limit of sequence,
exclusive.

	delta: A 0-D Tensor (scalar) of type int32. Optional. Default is 1.
Number that increments start.

	name: A name for the operation (optional).

Returns:

An 1-D int32 Tensor.

Random Tensors

TensorFlow has several ops that create random tensors with different
distributions. The random ops are stateful, and create new random values each
time they are evaluated.

The seed keyword argument in these functions acts in conjunction with
the graph-level random seed. Changing either the graph-level seed using
set_random_seed or the
op-level seed will change the underlying seed of these operations. Setting
neither graph-level nor op-level seed, results in a random seed for all
operations.
See set_random_seed
for details on the interaction between operation-level and graph-level random
seeds.

Examples:

Create a tensor of shape [2, 3] consisting of random normal values, with mean
-1 and standard deviation 4.
norm = tf.random_normal([2, 3], mean=-1, stddev=4)

Shuffle the first dimension of a tensor
c = tf.constant([[1, 2], [3, 4], [5, 6]])
shuff = tf.random_shuffle(c)

Each time we run these ops, different results are generated
sess = tf.Session()
print sess.run(norm)
print sess.run(norm)

Set an op-level seed to generate repeatable sequences across sessions.
c = tf.constant([[1, 2], [3, 4], [5, 6]])
sess = tf.Session()
norm = tf.random_normal(c, seed=1234)
print sess.run(norm)
print sess.run(norm)

Another common use of random values is the initialization of variables. Also see
the Variables How To.

Use random uniform values in [0, 1) as the initializer for a variable of shape
[2, 3]. The default type is float32.
var = tf.Variable(tf.random_uniform([2, 3]), name="var")
init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)
print sess.run(var)

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) {#random_normal}

Outputs random values from a normal distribution.

Args:

	shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

	mean: A 0-D Tensor or Python value of type dtype. The mean of the normal
distribution.

	stddev: A 0-D Tensor or Python value of type dtype. The standard deviation
of the normal distribution.

	dtype: The type of the output.

	seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

	name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random normal values.

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) {#truncated_normal}

Outputs random values from a truncated normal distribution.

The generated values follow a normal distribution with specified mean and
standard deviation, except that values whose magnitude is more than 2 standard
deviations from the mean are dropped and re-picked.

Args:

	shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

	mean: A 0-D Tensor or Python value of type dtype. The mean of the
truncated normal distribution.

	stddev: A 0-D Tensor or Python value of type dtype. The standard deviation
of the truncated normal distribution.

	dtype: The type of the output.

	seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

	name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random truncated normal values.

tf.random_uniform(shape, minval=0.0, maxval=1.0, dtype=tf.float32, seed=None, name=None) {#random_uniform}

Outputs random values from a uniform distribution.

The generated values follow a uniform distribution in the range
[minval, maxval). The lower bound minval is included in the range, while
the upper bound maxval is excluded.

Args:

	shape: A 1-D integer Tensor or Python array. The shape of the output tensor.

	minval: A 0-D Tensor or Python value of type dtype. The lower bound on the
range of random values to generate.

	maxval: A 0-D Tensor or Python value of type dtype. The upper bound on
the range of random values to generate.

	dtype: The type of the output.

	seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

	name: A name for the operation (optional).

Returns:

A tensor of the specified shape filled with random uniform values.

tf.random_shuffle(value, seed=None, name=None) {#random_shuffle}

Randomly shuffles a tensor along its first dimension.

The tensor is shuffled along dimension 0, such that each value[j] is mapped
to one and only one output[i]. For example, a mapping that might occur for a
3x2 tensor is:

[[1, 2], [[5, 6],
 [3, 4], ==> [1, 2],
 [5, 6]] [3, 4]]

Args:

	value: A Tensor to be shuffled.

	seed: A Python integer. Used to create a random seed for the distribution.
See
set_random_seed
for behavior.

	name: A name for the operation (optional).

Returns:

A tensor of same shape and type as value, shuffled along its first
dimension.

tf.set_random_seed(seed) {#set_random_seed}

Sets the graph-level random seed.

Operations that rely on a random seed actually derive it from two seeds:
the graph-level and operation-level seeds. This sets the graph-level seed.

Its interactions with operation-level seeds is as follows:

	If neither the graph-level nor the operation seed is set:
A random seed is used for this op.

	If the graph-level seed is set, but the operation seed is not:
The system deterministically picks an operation seed in conjunction
with the graph-level seed so that it gets a unique random sequence.

	If the graph-level seed is not set, but the operation seed is set:
A default graph-level seed and the specified operation seed are used to
determine the random sequence.

	If both the graph-level and the operation seed are set:
Both seeds are used in conjunction to determine the random sequence.

To illustrate the user-visible effects, consider these examples:

To generate different sequences across sessions, set neither
graph-level nor op-level seeds:

a = tf.random_uniform([1])
b = tf.random_normal([1])

print "Session 1"
with tf.Session() as sess1:
 print sess1.run(a) # generates 'A1'
 print sess1.run(a) # generates 'A2'
 print sess1.run(b) # generates 'B1'
 print sess1.run(b) # generates 'B2'

print "Session 2"
with tf.Session() as sess2:
 print sess2.run(a) # generates 'A3'
 print sess2.run(a) # generates 'A4'
 print sess2.run(b) # generates 'B3'
 print sess2.run(b) # generates 'B4'

To generate the same repeatable sequence for an op across sessions, set the
seed for the op:

a = tf.random_uniform([1], seed=1)
b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate the same
sequence of values for 'a', but different sequences of values for 'b'.
print "Session 1"
with tf.Session() as sess1:
 print sess1.run(a) # generates 'A1'
 print sess1.run(a) # generates 'A2'
 print sess1.run(b) # generates 'B1'
 print sess1.run(b) # generates 'B2'

print "Session 2"
with tf.Session() as sess2:
 print sess2.run(a) # generates 'A1'
 print sess2.run(a) # generates 'A2'
 print sess2.run(b) # generates 'B3'
 print sess2.run(b) # generates 'B4'

To make the random sequences generated by all ops be repeatable across
sessions, set a graph-level seed:

tf.set_random_seed(1234)
a = tf.random_uniform([1])
b = tf.random_normal([1])

Repeatedly running this block with the same graph will generate different
sequences of 'a' and 'b'.
print "Session 1"
with tf.Session() as sess1:
 print sess1.run(a) # generates 'A1'
 print sess1.run(a) # generates 'A2'
 print sess1.run(b) # generates 'B1'
 print sess1.run(b) # generates 'B2'

print "Session 2"
with tf.Session() as sess2:
 print sess2.run(a) # generates 'A1'
 print sess2.run(a) # generates 'A2'
 print sess2.run(b) # generates 'B1'
 print sess2.run(b) # generates 'B2'

Args:

	seed: integer.

 Inputs and Readers

Inputs and Readers

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Placeholders

TensorFlow provides a placeholder operation that must be fed with data
on execution. For more info, see the section on Feeding
data.

tf.placeholder(dtype, shape=None, name=None) {#placeholder}

Inserts a placeholder for a tensor that will be always fed.

Important: This tensor will produce an error if evaluated. Its value must
be fed using the feed_dict optional argument to Session.run(),
Tensor.eval(), or Operation.run().

For example:

x = tf.placeholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)

with tf.Session() as sess:
 print sess.run(y) # ERROR: will fail because x was not fed.

 rand_array = np.random.rand(1024, 1024)
 print sess.run(y, feed_dict={x: rand_array}) # Will succeed.

Args:

	dtype: The type of elements in the tensor to be fed.

	shape: The shape of the tensor to be fed (optional). If the shape is not
specified, you can feed a tensor of any shape.

	name: A name for the operation (optional).

Returns:

A Tensor that may be used as a handle for feeding a value, but not
evaluated directly.

Readers

TensorFlow provides a set of Reader classes for reading data formats.
For more information on inputs and readers, see Reading
data.

class tf.ReaderBase {#ReaderBase}

Base class for different Reader types, that produce a record every step.

Conceptually, Readers convert string ‘work units’ into records (key,
value pairs). Typically the ‘work units’ are filenames and the
records are extracted from the contents of those files. We want a
single record produced per step, but a work unit can correspond to
many records.

Therefore we introduce some decoupling using a queue. The queue
contains the work units and the Reader dequeues from the queue when
it is asked to produce a record (via Read()) but it has finished the
last work unit.

tf.ReaderBase.__init__(reader_ref, supports_serialize=False) {#ReaderBase.init}

Creates a new ReaderBase.

Args:

	reader_ref: The operation that implements the reader.

	supports_serialize: True if the reader implementation can
serialize its state.

tf.ReaderBase.num_records_produced(name=None) {#ReaderBase.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.num_work_units_completed(name=None) {#ReaderBase.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.ReaderBase.read(queue, name=None) {#ReaderBase.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

	queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

	name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

	key: A string scalar Tensor.

	value: A string scalar Tensor.

tf.ReaderBase.reader_ref {#ReaderBase.reader_ref}

Op that implements the reader.

tf.ReaderBase.reset(name=None) {#ReaderBase.reset}

Restore a reader to its initial clean state.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.restore_state(state, name=None) {#ReaderBase.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

	state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.ReaderBase.serialize_state(name=None) {#ReaderBase.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

	name: A name for the operation (optional).

Returns:

A string Tensor.

tf.ReaderBase.supports_serialize {#ReaderBase.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.TextLineReader {#TextLineReader}

A Reader that outputs the lines of a file delimited by newlines.

Newlines are stripped from the output.
See ReaderBase for supported methods.

tf.TextLineReader.__init__(skip_header_lines=None, name=None) {#TextLineReader.init}

Create a TextLineReader.

Args:

	skip_header_lines: An optional int. Defaults to 0. Number of lines
to skip from the beginning of every file.

	name: A name for the operation (optional).

tf.TextLineReader.num_records_produced(name=None) {#TextLineReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.num_work_units_completed(name=None) {#TextLineReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TextLineReader.read(queue, name=None) {#TextLineReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

	queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

	name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

	key: A string scalar Tensor.

	value: A string scalar Tensor.

tf.TextLineReader.reader_ref {#TextLineReader.reader_ref}

Op that implements the reader.

tf.TextLineReader.reset(name=None) {#TextLineReader.reset}

Restore a reader to its initial clean state.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.restore_state(state, name=None) {#TextLineReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

	state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.TextLineReader.serialize_state(name=None) {#TextLineReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

	name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TextLineReader.supports_serialize {#TextLineReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.WholeFileReader {#WholeFileReader}

A Reader that outputs the entire contents of a file as a value.

To use, enqueue filenames in a Queue. The output of Read will
be a filename (key) and the contents of that file (value).

See ReaderBase for supported methods.

tf.WholeFileReader.__init__(name=None) {#WholeFileReader.init}

Create a WholeFileReader.

Args:

	name: A name for the operation (optional).

tf.WholeFileReader.num_records_produced(name=None) {#WholeFileReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.num_work_units_completed(name=None) {#WholeFileReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.WholeFileReader.read(queue, name=None) {#WholeFileReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

	queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

	name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

	key: A string scalar Tensor.

	value: A string scalar Tensor.

tf.WholeFileReader.reader_ref {#WholeFileReader.reader_ref}

Op that implements the reader.

tf.WholeFileReader.reset(name=None) {#WholeFileReader.reset}

Restore a reader to its initial clean state.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.restore_state(state, name=None) {#WholeFileReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

	state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.WholeFileReader.serialize_state(name=None) {#WholeFileReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

	name: A name for the operation (optional).

Returns:

A string Tensor.

tf.WholeFileReader.supports_serialize {#WholeFileReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.IdentityReader {#IdentityReader}

A Reader that outputs the queued work as both the key and value.

To use, enqueue strings in a Queue. Read will take the front
work string and output (work, work).

See ReaderBase for supported methods.

tf.IdentityReader.__init__(name=None) {#IdentityReader.init}

Create a IdentityReader.

Args:

	name: A name for the operation (optional).

tf.IdentityReader.num_records_produced(name=None) {#IdentityReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.num_work_units_completed(name=None) {#IdentityReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.IdentityReader.read(queue, name=None) {#IdentityReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

	queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

	name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

	key: A string scalar Tensor.

	value: A string scalar Tensor.

tf.IdentityReader.reader_ref {#IdentityReader.reader_ref}

Op that implements the reader.

tf.IdentityReader.reset(name=None) {#IdentityReader.reset}

Restore a reader to its initial clean state.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.restore_state(state, name=None) {#IdentityReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

	state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.IdentityReader.serialize_state(name=None) {#IdentityReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

	name: A name for the operation (optional).

Returns:

A string Tensor.

tf.IdentityReader.supports_serialize {#IdentityReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.TFRecordReader {#TFRecordReader}

A Reader that outputs the records from a TFRecords file.

See ReaderBase for supported methods.

tf.TFRecordReader.__init__(name=None) {#TFRecordReader.init}

Create a TFRecordReader.

Args:

	name: A name for the operation (optional).

tf.TFRecordReader.num_records_produced(name=None) {#TFRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.num_work_units_completed(name=None) {#TFRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.TFRecordReader.read(queue, name=None) {#TFRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

	queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

	name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

	key: A string scalar Tensor.

	value: A string scalar Tensor.

tf.TFRecordReader.reader_ref {#TFRecordReader.reader_ref}

Op that implements the reader.

tf.TFRecordReader.reset(name=None) {#TFRecordReader.reset}

Restore a reader to its initial clean state.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.restore_state(state, name=None) {#TFRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

	state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.TFRecordReader.serialize_state(name=None) {#TFRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

	name: A name for the operation (optional).

Returns:

A string Tensor.

tf.TFRecordReader.supports_serialize {#TFRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.

class tf.FixedLengthRecordReader {#FixedLengthRecordReader}

A Reader that outputs fixed-length records from a file.

See ReaderBase for supported methods.

tf.FixedLengthRecordReader.__init__(record_bytes, header_bytes=None, footer_bytes=None, name=None) {#FixedLengthRecordReader.init}

Create a FixedLengthRecordReader.

Args:

	record_bytes: An int.

	header_bytes: An optional int. Defaults to 0.

	footer_bytes: An optional int. Defaults to 0.

	name: A name for the operation (optional).

tf.FixedLengthRecordReader.num_records_produced(name=None) {#FixedLengthRecordReader.num_records_produced}

Returns the number of records this reader has produced.

This is the same as the number of Read executions that have
succeeded.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.num_work_units_completed(name=None) {#FixedLengthRecordReader.num_work_units_completed}

Returns the number of work units this reader has finished processing.

Args:

	name: A name for the operation (optional).

Returns:

An int64 Tensor.

tf.FixedLengthRecordReader.read(queue, name=None) {#FixedLengthRecordReader.read}

Returns the next record (key, value pair) produced by a reader.

Will dequeue a work unit from queue if necessary (e.g. when the
Reader needs to start reading from a new file since it has
finished with the previous file).

Args:

	queue: A Queue or a mutable string Tensor representing a handle
to a Queue, with string work items.

	name: A name for the operation (optional).

Returns:

A tuple of Tensors (key, value).

	key: A string scalar Tensor.

	value: A string scalar Tensor.

tf.FixedLengthRecordReader.reader_ref {#FixedLengthRecordReader.reader_ref}

Op that implements the reader.

tf.FixedLengthRecordReader.reset(name=None) {#FixedLengthRecordReader.reset}

Restore a reader to its initial clean state.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.restore_state(state, name=None) {#FixedLengthRecordReader.restore_state}

Restore a reader to a previously saved state.

Not all Readers support being restored, so this can produce an
Unimplemented error.

Args:

	state: A string Tensor.
Result of a SerializeState of a Reader with matching type.

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.FixedLengthRecordReader.serialize_state(name=None) {#FixedLengthRecordReader.serialize_state}

Produce a string tensor that encodes the state of a reader.

Not all Readers support being serialized, so this can produce an
Unimplemented error.

Args:

	name: A name for the operation (optional).

Returns:

A string Tensor.

tf.FixedLengthRecordReader.supports_serialize {#FixedLengthRecordReader.supports_serialize}

Whether the Reader implementation can serialize its state.

Converting

TensorFlow provides several operations that you can use to convert various data
formats into tensors.

tf.decode_csv(records, record_defaults, field_delim=None, name=None) {#decode_csv}

Convert CSV records to tensors. Each column maps to one tensor.

RFC 4180 format is expected for the CSV records.
(https://tools.ietf.org/html/rfc4180)
Note that we allow leading and trailing spaces with int or float field.

Args:

	records: A Tensor of type string.
Each string is a record/row in the csv and all records should have
the same format.

	record_defaults: A list of Tensor objects with types from: float32, int32, int64, string.
One tensor per column of the input record, with either a
scalar default value for that column or empty if the column is required.

	field_delim: An optional string. Defaults to ",".
delimiter to separate fields in a record.

	name: A name for the operation (optional).

Returns:

A list of Tensor objects. Has the same type as record_defaults.
Each tensor will have the same shape as records.

tf.decode_raw(bytes, out_type, little_endian=None, name=None) {#decode_raw}

Reinterpret the bytes of a string as a vector of numbers.

Args:

	bytes: A Tensor of type string.
All the elements must have the same length.

	out_type: A tf.DType from: tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.int64.

	little_endian: An optional bool. Defaults to True.
Whether the input bytes are in little-endian order.
Ignored for out_type values that are stored in a single byte like
uint8.

	name: A name for the operation (optional).

Returns:

A Tensor of type out_type.
A Tensor with one more dimension than the input bytes. The
added dimension will have size equal to the length of the elements
of bytes divided by the number of bytes to represent out_type.

Example protocol buffer

TensorFlow’s recommended format for training
examples
is serialized Example protocol buffers, described
here [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/example/example.proto].
They contain Features, described
here [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/example/feature.proto].

tf.parse_example(serialized, names=None, sparse_keys=None, sparse_types=None, dense_keys=None, dense_types=None, dense_defaults=None, dense_shapes=None, name='ParseExample') {#parse_example}

Parses Example protos.

Parses a number of serialized [Example]
(https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/example/example.proto)
protos given in serialized.

names may contain descriptive names for the corresponding serialized protos.
These may be useful for debugging purposes, but they have no effect on the
output. If not None, names must be the same length as serialized.

This op parses serialized examples into a dictionary mapping keys to Tensor
and SparseTensor objects respectively, depending on whether the keys appear
in sparse_keys or dense_keys.

The key dense_keys[j] is mapped to a Tensor of type dense_types[j] and
of shape (serialized.size(),) + dense_shapes[j].

dense_defaults provides defaults for values referenced using dense_keys.
If a key is not present in this dictionary, the corresponding dense Feature
is required in all elements of serialized.

dense_shapes[j] provides the shape of each Feature entry referenced by
dense_keys[j]. The number of elements in the Feature corresponding to
dense_key[j] must always have np.prod(dense_shapes[j]) entries. The
returned Tensor for dense_key[j] has shape [N] + dense_shape[j], where
N is the number of Examples in serialized.

The key sparse_keys[j] is mapped to a SparseTensor of type
sparse_types[j]. The SparseTensor represents a ragged matrix.
Its indices are [batch, index] where batch is the batch entry the value
is from, and index is the value’s index in the list of values associated
with that feature and example.

Examples:

For example, if one expects a tf.float32 sparse feature ft and three
serialized Examples are provided:

serialized = [
 features
 { feature { key: "ft" value { float_list { value: [1.0, 2.0] } } } },
 features
 { feature []},
 features
 { feature { key: "ft" value { float_list { value: [3.0] } } }
]

then the output will look like:

{"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]],
 values=[1.0, 2.0, 3.0],
 shape=(3, 2)) }

Given two Example input protos in serialized:

[
 features {
 feature { key: "kw" value { bytes_list { value: ["knit", "big"] } } }
 feature { key: "gps" value { float_list { value: [] } } }
 },
 features {
 feature { key: "kw" value { bytes_list { value: ["emmy"] } } }
 feature { key: "dank" value { int64_list { value: [42] } } }
 feature { key: "gps" value { } }
 }
]

And arguments

 names: ["input0", "input1"],
 sparse_keys: ["kw", "dank", "gps"]
 sparse_types: [DT_STRING, DT_INT64, DT_FLOAT]

Then the output is a dictionary:

{
 "kw": SparseTensor(
 indices=[[0, 0], [0, 1], [1, 0]],
 values=["knit", "big", "emmy"]
 shape=[2, 2]),
 "dank": SparseTensor(
 indices=[[1, 0]],
 values=[42],
 shape=[2, 1]),
 "gps": SparseTensor(
 indices=[],
 values=[],
 shape=[2, 0]),
}

For dense results in two serialized Examples:

[
 features {
 feature { key: "age" value { int64_list { value: [0] } } }
 feature { key: "gender" value { bytes_list { value: ["f"] } } }
 },
 features {
 feature { key: "age" value { int64_list { value: [] } } }
 feature { key: "gender" value { bytes_list { value: ["f"] } } }
 }
]

We can use arguments:

names: ["input0", "input1"],
dense_keys: np.array(["age", "gender"]),
dense_types: [tf.int64, tf.string],
dense_defaults: {
 "age": -1 # "age" defaults to -1 if missing
 # "gender" has no specified default so it's required
}
dense_shapes: [(1,), (1,)], # age, gender, label, weight

And the expected output is:

{
 "age": [[0], [-1]],
 "gender": [["f"], ["f"]],
}

Args:

	serialized: A vector (1-D Tensor) of strings, a batch of binary
serialized Example protos.

	names: A vector (1-D Tensor) of strings (optional), the names of
the serialized protos.

	sparse_keys: A list of string keys in the examples’ features.
The results for these keys will be returned as SparseTensor objects.

	sparse_types: A list of DTypes of the same length as sparse_keys.
Only tf.float32 (FloatList), tf.int64 (Int64List),
and tf.string (BytesList) are supported.

	dense_keys: A list of string keys in the examples’ features.
The results for these keys will be returned as Tensors

	dense_types: A list of DTypes of the same length as dense_keys.
Only tf.float32 (FloatList), tf.int64 (Int64List),
and tf.string (BytesList) are supported.

	dense_defaults: A dict mapping string keys to Tensors.
The keys of the dict must match the dense_keys of the feature.

	dense_shapes: A list of tuples with the same length as dense_keys.
The shape of the data for each dense feature referenced by dense_keys.
Required for any input tensors identified by dense_keys whose shapes are
anything other than [] or [1].

	name: A name for this operation (optional).

Returns:

A dict mapping keys to Tensors and SparseTensors.

Raises:

	ValueError: If sparse and dense key sets intersect, or input lengths do not
match up.

tf.parse_single_example(serialized, names=None, sparse_keys=None, sparse_types=None, dense_keys=None, dense_types=None, dense_defaults=None, dense_shapes=None, name='ParseSingleExample') {#parse_single_example}

Parses a single Example proto.

Similar to parse_example, except:

For dense tensors, the returned Tensor is identical to the output of
parse_example, except there is no batch dimension, the output shape is the
same as the shape given in dense_shape.

For SparseTensors, the first (batch) column of the indices matrix is removed
(the indices matrix is a column vector), the values vector is unchanged, and
the first (batch_size) entry of the shape vector is removed (it is now a
single element vector).

See also parse_example.

Args:

	serialized: A scalar string Tensor, a single serialized Example.
See parse_example documentation for more details.

	names: (Optional) A scalar string Tensor, the associated name.
See parse_example documentation for more details.

	sparse_keys: See parse_example documentation for more details.

	sparse_types: See parse_example documentation for more details.

	dense_keys: See parse_example documentation for more details.

	dense_types: See parse_example documentation for more details.

	dense_defaults: See parse_example documentation for more details.

	dense_shapes: See parse_example documentation for more details.

	name: A name for this operation (optional).

Returns:

A dictionary mapping keys to Tensors and SparseTensors.

Raises:

	ValueError: if “scalar” or “names” have known shapes, and are not scalars.

Queues

TensorFlow provides several implementations of ‘Queues’, which are
structures within the TensorFlow computation graph to stage pipelines
of tensors together. The following describe the basic Queue interface
and some implementations. To see an example use, see Threading and
Queues.

class tf.QueueBase {#QueueBase}

Base class for queue implementations.

A queue is a TensorFlow data structure that stores tensors across
multiple steps, and exposes operations that enqueue and dequeue
tensors.

Each queue element is a tuple of one or more tensors, where each
tuple component has a static dtype, and may have a static shape. The
queue implementations support versions of enqueue and dequeue that
handle single elements, versions that support enqueuing and
dequeuing a batch of elements at once.

See tf.FIFOQueue and
tf.RandomShuffleQueue for concrete
implementations of this class, and instructions on how to create
them.

tf.QueueBase.enqueue(vals, name=None) {#QueueBase.enqueue}

Enqueues one element to this queue.

If the queue is full when this operation executes, it will block
until the element has been enqueued.

Args:

	vals: The tuple of Tensor objects to be enqueued.

	name: A name for the operation (optional).

Returns:

The operation that enqueues a new tuple of tensors to the queue.

tf.QueueBase.enqueue_many(vals, name=None) {#QueueBase.enqueue_many}

Enqueues zero or elements to this queue.

This operation slices each component tensor along the 0th dimension to
make multiple queue elements. All of the tensors in vals must have the
same size in the 0th dimension.

If the queue is full when this operation executes, it will block
until all of the elements have been enqueued.

Args:

	vals: The tensor or tuple of tensors from which the queue elements
are taken.

	name: A name for the operation (optional).

Returns:

The operation that enqueues a batch of tuples of tensors to the queue.

tf.QueueBase.dequeue(name=None) {#QueueBase.dequeue}

Dequeues one element from this queue.

If the queue is empty when this operation executes, it will block
until there is an element to dequeue.

Args:

	name: A name for the operation (optional).

Returns:

The tuple of tensors that was dequeued.

tf.QueueBase.dequeue_many(n, name=None) {#QueueBase.dequeue_many}

Dequeues and concatenates n elements from this queue.

This operation concatenates queue-element component tensors along
the 0th dimension to make a single component tensor. All of the
components in the dequeued tuple will have size n in the 0th dimension.

If the queue contains fewer than n elements when this operation
executes, it will block until n elements have been dequeued.

Args:

	n: A scalar Tensor containing the number of elements to dequeue.

	name: A name for the operation (optional).

Returns:

The tuple of concatenated tensors that was dequeued.

tf.QueueBase.size(name=None) {#QueueBase.size}

Compute the number of elements in this queue.

Args:

	name: A name for the operation (optional).

Returns:

A scalar tensor containing the number of elements in this queue.

tf.QueueBase.close(cancel_pending_enqueues=False, name=None) {#QueueBase.close}

Closes this queue.

This operation signals that no more elements will be enqueued in
the given queue. Subsequent enqueue and enqueue_many
operations will fail. Subsequent dequeue and dequeue_many
operations will continue to succeed if sufficient elements remain
in the queue. Subsequent dequeue and dequeue_many operations
that would block will fail immediately.

If cancel_pending_enqueues is True, all pending requests will also
be cancelled.

Args:

	cancel_pending_enqueues: (Optional.) A boolean, defaulting to
False (described above).

	name: A name for the operation (optional).

Returns:

The operation that closes the queue.

Other Methods

tf.QueueBase.__init__(dtypes, shapes, queue_ref) {#QueueBase.init}

Constructs a queue object from a queue reference.

Args:

	dtypes: A list of types. The length of dtypes must equal the number
of tensors in each element.

	shapes: Constraints on the shapes of tensors in an element:
A list of shape tuples or None. This list is the same length
as dtypes. If the shape of any tensors in the element are constrained,
all must be; shapes can be None if the shapes should not be constrained.

	queue_ref: The queue reference, i.e. the output of the queue op.

tf.QueueBase.dtypes {#QueueBase.dtypes}

The list of dtypes for each component of a queue element.

tf.QueueBase.from_list(index, queues) {#QueueBase.from_list}

Create a queue using the queue reference from queues[index].

Args:

	index: An integer scalar tensor that determines the input that gets
selected.

	queues: A list of QueueBase objects.

Returns:

A QueueBase object.

Raises:

	TypeError: When queues is not a list of QueueBase objects,
or when the data types of queues are not all the same.

tf.QueueBase.name {#QueueBase.name}

The name of the underlying queue.

tf.QueueBase.queue_ref {#QueueBase.queue_ref}

The underlying queue reference.

class tf.FIFOQueue {#FIFOQueue}

A queue implementation that dequeues elements in first-in-first out order.

See tf.QueueBase for a description of the methods on
this class.

tf.FIFOQueue.__init__(capacity, dtypes, shapes=None, shared_name=None, name='fifo_queue') {#FIFOQueue.init}

Creates a queue that dequeues elements in a first-in first-out order.

A FIFOQueue has bounded capacity; supports multiple concurrent
producers and consumers; and provides exactly-once delivery.

A FIFOQueue holds a list of up to capacity elements. Each
element is a fixed-length tuple of tensors whose dtypes are
described by dtypes, and whose shapes are optionally described
by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

Args:

	capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

	dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

	shapes: (Optional.) A list of fully-defined TensorShape objects,
with the same length as dtypes or None.

	shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

	name: Optional name for the queue operation.

class tf.RandomShuffleQueue {#RandomShuffleQueue}

A queue implementation that dequeues elements in a random order.

See tf.QueueBase for a description of the methods on
this class.

tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, seed=None, shared_name=None, name='random_shuffle_queue') {#RandomShuffleQueue.init}

Create a queue that dequeues elements in a random order.

A RandomShuffleQueue has bounded capacity; supports multiple
concurrent producers and consumers; and provides exactly-once
delivery.

A RandomShuffleQueue holds a list of up to capacity
elements. Each element is a fixed-length tuple of tensors whose
dtypes are described by dtypes, and whose shapes are optionally
described by the shapes argument.

If the shapes argument is specified, each component of a queue
element must have the respective fixed shape. If it is
unspecified, different queue elements may have different shapes,
but the use of dequeue_many is disallowed.

The min_after_dequeue argument allows the caller to specify a
minimum number of elements that will remain in the queue after a
dequeue or dequeue_many operation completes, to ensure a
minimum level of mixing of elements. This invariant is maintained
by blocking those operations until sufficient elements have been
enqueued. The min_after_dequeue argument is ignored after the
queue has been closed.

Args:

	capacity: An integer. The upper bound on the number of elements
that may be stored in this queue.

	min_after_dequeue: An integer (described above).

	dtypes: A list of DType objects. The length of dtypes must equal
the number of tensors in each queue element.

	shapes: (Optional.) A list of fully-defined TensorShape objects,
with the same length as dtypes or None.

	seed: A Python integer. Used to create a random seed. See
set_random_seed
for behavior.

	shared_name: (Optional.) If non-empty, this queue will be shared under
the given name across multiple sessions.

	name: Optional name for the queue operation.

Dealing with the filesystem

tf.matching_files(pattern, name=None) {#matching_files}

Returns the set of files matching a pattern.

Note that this routine only supports wildcard characters in the
basename portion of the pattern, not in the directory portion.

Args:

	pattern: A Tensor of type string. A (scalar) shell wildcard pattern.

	name: A name for the operation (optional).

Returns:

A Tensor of type string. A vector of matching filenames.

tf.read_file(filename, name=None) {#read_file}

Reads and outputs the entire contents of the input filename.

Args:

	filename: A Tensor of type string.

	name: A name for the operation (optional).

Returns:

A Tensor of type string.

Input pipeline

TensorFlow functions for setting up an input-prefetching pipeline.
Please see the reading data how-to
for context.

Beginning of an input pipeline

The “producer” functions add a queue to the graph and a corresponding
QueueRunner for running the subgraph that fills that queue.

tf.train.match_filenames_once(pattern, name=None) {#match_filenames_once}

Save the list of files matching pattern, so it is only computed once.

Args:

	pattern: A file pattern (glob).

	name: A name for the operations (optional).

Returns:

A variable that is initialized to the list of files matching pattern.

tf.train.limit_epochs(tensor, num_epochs=None, name=None) {#limit_epochs}

Returns tensor num_epochs times and then raises an OutOfRange error.

Args:

	tensor: Any Tensor.

	num_epochs: An integer (optional). If specified, limits the number
of steps the output tensor may be evaluated.

	name: A name for the operations (optional).

Returns:

tensor or OutOfRange.

tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None) {#range_input_producer}

Produces the integers from 0 to limit-1 in a queue.

Args:

	limit: An int32 scalar tensor.

	num_epochs: An integer (optional). If specified, range_input_producer
produces each integer num_epochs times before generating an
OutOfRange error. If not specified, range_input_producer can cycle
through the integers an unlimited number of times.

	shuffle: Boolean. If true, the integers are randomly shuffled within each
epoch.

	seed: An integer (optional). Seed used if shuffle == True.

	capacity: An integer. Sets the queue capacity.

	name: A name for the operations (optional).

Returns:

A Queue with the output integers. A QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

tf.train.slice_input_producer(tensor_list, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None) {#slice_input_producer}

Produces a slice of each Tensor in tensor_list.

Implemented using a Queue – a QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

Args:

	tensor_list: A list of Tensor objects. Every Tensor in
tensor_list must have the same size in the first dimension.

	num_epochs: An integer (optional). If specified, slice_input_producer
produces each slice num_epochs times before generating
an OutOfRange error. If not specified, slice_input_producer can cycle
through the slices an unlimited number of times.

	seed: An integer (optional). Seed used if shuffle == True.

	capacity: An integer. Sets the queue capacity.

	name: A name for the operations (optional).

Returns:

A list of tensors, one for each element of tensor_list. If the tensor
in tensor_list has shape [N, a, b, .., z], then the corresponding output
tensor will have shape [a, b, ..., z].

tf.train.string_input_producer(string_tensor, num_epochs=None, shuffle=True, seed=None, capacity=32, name=None) {#string_input_producer}

Output strings (e.g. filenames) to a queue for an input pipeline.

Args:

	string_tensor: A 1-D string tensor with the strings to produce.

	num_epochs: An integer (optional). If specified, string_input_producer
produces each string from string_tensor num_epochs times before
generating an OutOfRange error. If not specified, string_input_producer
can cycle through the strings in string_tensor an unlimited number of
times.

	shuffle: Boolean. If true, the strings are randomly shuffled within each
epoch.

	seed: An integer (optional). Seed used if shuffle == True.

	capacity: An integer. Sets the queue capacity.

	name: A name for the operations (optional).

Returns:

A queue with the output strings. A QueueRunner for the Queue
is added to the current Graph‘s QUEUE_RUNNER collection.

Batching at the end of an input pipeline

These functions add a queue to the graph to assemble a batch of
examples, with possible shuffling. They also add a QueueRunner for
running the subgraph that fills that queue.

Use batch or batch_join for batching
examples that have already been well shuffled. Use
shuffle_batch or
shuffle_batch_join for examples that would
benefit from additional shuffling.

Use batch or shuffle_batch if you want a
single thread producing examples to batch, or if you have a
single subgraph producing examples but you want to run it in N threads
(where you increase N until it can keep the queue full). Use
batch_join or shuffle_batch_join
if you have N different subgraphs producing examples to batch and you
want them run by N threads.

tf.train.batch(tensor_list, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, name=None) {#batch}

Creates batches of tensors in tensor_list.

This function is implemented using a queue. A QueueRunner for the
queue is added to the current Graph‘s QUEUE_RUNNER collection.

If enqueue_many is False, tensor_list is assumed to represent a
single example. An input tensor with shape [x, y, z] will be output
as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensor_list is assumed to represent a
batch of examples, where the first dimension is indexed by example,
and all members of tensor_list should have the same size in the
first dimension. If an input tensor has shape [*, x, y, z], the
output will have shape [batch_size, x, y, z]. The capacity argument
controls the how long the prefetching is allowed to grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

N.B.: You must ensure that either (i) the shapes argument is
passed, or (ii) all of the tensors in tensor_list must have
fully-defined shapes. ValueError will be raised if neither of
these conditions holds.

Args:

	tensor_list: The list of tensors to enqueue.

	batch_size: The new batch size pulled from the queue.

	num_threads: The number of threads enqueuing tensor_list.

	capacity: An integer. The maximum number of elements in the queue.

	enqueue_many: Whether each tensor in tensor_list is a single example.

	shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list.

	name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor_list.

Raises:

	ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensor_list.

tf.train.batch_join(tensor_list_list, batch_size, capacity=32, enqueue_many=False, shapes=None, name=None) {#batch_join}

Runs a list of tensors to fill a queue to create batches of examples.

Enqueues a different list of tensors in different threads.
Implemented using a queue – a QueueRunner for the queue
is added to the current Graph‘s QUEUE_RUNNER collection.

len(tensor_list_list) threads will be started,
with thread i enqueuing the tensors from
tensor_list_list[i]. tensor_list_list[i1][j] must match
tensor_list_list[i2][j] in type and shape, except in the first
dimension if enqueue_many is true.

If enqueue_many is False, each tensor_list_list[i] is assumed
to represent a single example. An input tensor x will be output as a
tensor with shape [batch_size] + x.shape.

If enqueue_many is True, tensor_list_list[i] is assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensor_list_list[i] should have the
same size in the first dimension. The slices of any input tensor
x are treated as examples, and the output tensors will have shape
[batch_size] + x.shape[1:].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

N.B.: You must ensure that either (i) the shapes argument is
passed, or (ii) all of the tensors in tensor_list_list must have
fully-defined shapes. ValueError will be raised if neither of
these conditions holds.

Args:

	tensor_list_list: A list of tuples of tensors to enqueue.

	batch_size: An integer. The new batch size pulled from the queue.

	capacity: An integer. The maximum number of elements in the queue.

	enqueue_many: Whether each tensor in tensor_list_list is a single
example.

	shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list_list[i].

	name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as
tensor_list_list[i].

Raises:

	ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensor_list_list.

tf.train.shuffle_batch(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None) {#shuffle_batch}

Creates batches by randomly shuffling tensors.

This function adds the following to the current Graph:

	A shuffling queue into which tensors from tensor_list are enqueued.

	A dequeue_many operation to create batches from the queue.

	A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors
from tensor_list.

If enqueue_many is False, tensor_list is assumed to represent a
single example. An input tensor with shape [x, y, z] will be output
as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensor_list is assumed to represent a
batch of examples, where the first dimension is indexed by example,
and all members of tensor_list should have the same size in the
first dimension. If an input tensor has shape [*, x, y, z], the
output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

For example:

Creates batches of 32 images and 32 labels.
image_batch, label_batch = tf.train.shuffle_batch(
 [single_image, single_label],
 batch_size=32,
 num_threads=4,
 capacity=50000,
 min_after_dequeue=10000)

N.B.: You must ensure that either (i) the shapes argument is
passed, or (ii) all of the tensors in tensor_list must have
fully-defined shapes. ValueError will be raised if neither of
these conditions holds.

Args:

	tensor_list: The list of tensors to enqueue.

	batch_size: The new batch size pulled from the queue.

	capacity: An integer. The maximum number of elements in the queue.

	min_after_dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

	num_threads: The number of threads enqueuing tensor_list.

	seed: Seed for the random shuffling within the queue.

	enqueue_many: Whether each tensor in tensor_list is a single example.

	shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list.

	name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor_list.

Raises:

	ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensor_list.

tf.train.shuffle_batch_join(tensor_list_list, batch_size, capacity, min_after_dequeue, seed=None, enqueue_many=False, shapes=None, name=None) {#shuffle_batch_join}

Create batches by randomly shuffling tensors.

This version enqueues a different list of tensors in different threads.
It adds the following to the current Graph:

	A shuffling queue into which tensors from tensor_list_list are enqueued.

	A dequeue_many operation to create batches from the queue.

	A QueueRunner to QUEUE_RUNNER collection, to enqueue the tensors
from tensor_list_list.

len(tensor_list_list) threads will be started, with thread i enqueuing
the tensors from tensor_list_list[i]. tensor_list_list[i1][j] must match
tensor_list_list[i2][j] in type and shape, except in the first dimension if
enqueue_many is true.

If enqueue_many is False, each tensor_list_list[i] is assumed
to represent a single example. An input tensor with shape [x, y, z] will be output as a tensor with shape [batch_size, x, y, z].

If enqueue_many is True, tensor_list_list[i] is assumed to
represent a batch of examples, where the first dimension is indexed
by example, and all members of tensor_list_list[i] should have the
same size in the first dimension. If an input tensor has shape [*, x, y, z], the output will have shape [batch_size, x, y, z].

The capacity argument controls the how long the prefetching is allowed to
grow the queues.

The returned operation is a dequeue operation and will throw
tf.errors.OutOfRangeError if the input queue is exhausted. If this
operation is feeding another input queue, its queue runner will catch
this exception, however, if this operation is used in your main thread
you are responsible for catching this yourself.

Args:

	tensor_list_list: A list of tuples of tensors to enqueue.

	batch_size: An integer. The new batch size pulled from the queue.

	capacity: An integer. The maximum number of elements in the queue.

	min_after_dequeue: Minimum number elements in the queue after a
dequeue, used to ensure a level of mixing of elements.

	seed: Seed for the random shuffling within the queue.

	enqueue_many: Whether each tensor in tensor_list_list is a single
example.

	shapes: (Optional) The shapes for each example. Defaults to the
inferred shapes for tensor_list_list[i].

	name: (Optional) A name for the operations.

Returns:

A list of tensors with the same number and types as tensor_list_list[i].

Raises:

	ValueError: If the shapes are not specified, and cannot be
inferred from the elements of tensor_list_list.

 Training

Training

[TOC]

This library provides a set of classes and functions that helps train models.

Optimizers

The Optimizer base class provides methods to compute gradients for a loss and
apply gradients to variables. A collection of subclasses implement classic
optimization algorithms such as GradientDescent and Adagrad.

You never instantiate the Optimizer class itself, but instead instantiate one
of the subclasses.

class tf.train.Optimizer {#Optimizer}

Base class for optimizers.

This class defines the API to add Ops to train a model. You never use this
class directly, but instead instantiate one of its subclasses such as
GradientDescentOptimizer, AdagradOptimizer, or MomentumOptimizer.

Usage

Create an optimizer with the desired parameters.
opt = GradientDescentOptimizer(learning_rate=0.1)
Add Ops to the graph to minimize a cost by updating a list of variables.
"cost" is a Tensor, and the list of variables contains variables.Variable
objects.
opt_op = opt.minimize(cost, <list of variables>)

In the training program you will just have to run the returned Op.

Execute opt_op to do one step of training:
opt_op.run()

Processing gradients before applying them.

Calling minimize() takes care of both computing the gradients and
applying them to the variables. If you want to process the gradients
before applying them you can instead use the optimizer in three steps:

	Compute the gradients with compute_gradients().

	Process the gradients as you wish.

	Apply the processed gradients with apply_gradients().

Example:

Create an optimizer.
opt = GradientDescentOptimizer(learning_rate=0.1)

Compute the gradients for a list of variables.
grads_and_vars = opt.compute_gradients(loss, <list of variables>)

grads_and_vars is a list of tuples (gradient, variable). Do whatever you
need to the 'gradient' part, for example cap them, etc.
capped_grads_and_vars = [(MyCapper(gv[0]), gv[1])) for gv in grads_and_vars]

Ask the optimizer to apply the capped gradients.
opt.apply_gradients(capped_grads_and_vars)

tf.train.Optimizer.__init__(use_locking, name) {#Optimizer.init}

Create a new Optimizer.

This must be called by the constructors of subclasses.

Args:

	use_locking: Bool. If True apply use locks to prevent concurrent updates
to variables.

	name: A non-empty string. The name to use for accumulators created
for the optimizer.

Raises:

	ValueError: if name is malformed.

tf.train.Optimizer.minimize(loss, global_step=None, var_list=None, gate_gradients=1, aggregation_method=None, name=None) {#Optimizer.minimize}

Add operations to minimize loss by updating var_list.

This method simply combines calls compute_gradients() and
apply_gradients(). If you want to process the gradient before applying
them call compute_gradients() and apply_gradients() explicitly instead
of using this function.

Args:

	loss: A Tensor containing the value to minimize.

	global_step: Optional Variable to increment by one after the
variables have been updated.

	var_list: Optional list of Variable objects to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKeys.TRAINABLE_VARIABLES.

	gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.

	aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.

	name: Optional name for the returned operation.

Returns:

An Operation that updates the variables in var_list. If global_step
was not None, that operation also increments global_step.

Raises:

	ValueError: if some of the variables are not Variable objects.

tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None) {#Optimizer.compute_gradients}

Compute gradients of loss for the variables in var_list.

This is the first part of minimize(). It returns a list
of (gradient, variable) pairs where “gradient” is the gradient
for “variable”. Note that “gradient” can be a Tensor, an
IndexedSlices, or None if there is no gradient for the
given variable.

Args:

	loss: A Tensor containing the value to minimize.

	var_list: Optional list of variables.Variable to update to minimize
loss. Defaults to the list of variables collected in the graph
under the key GraphKey.TRAINABLE_VARIABLES.

	gate_gradients: How to gate the computation of gradients. Can be
GATE_NONE, GATE_OP, or GATE_GRAPH.

	aggregation_method: Specifies the method used to combine gradient terms.
Valid values are defined in the class AggregationMethod.

Returns:

A list of (gradient, variable) pairs.

Raises:

	TypeError: If var_list contains anything else than Variable objects.

	ValueError: If some arguments are invalid.

tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None) {#Optimizer.apply_gradients}

Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that
applies gradients.

Args:

	grads_and_vars: List of (gradient, variable) pairs as returned by
compute_gradients().

	global_step: Optional Variable to increment by one after the
variables have been updated.

	name: Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.

Returns:

An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.

Raises:

	TypeError: if grads_and_vars is malformed.

Gating Gradients

Both minimize() and compute_gradients() accept a gate_gradient argument
that controls the degree of parallelism during the application of the
gradients.

The possible values are: GATE_NONE, GATE_OP, and GATE_GRAPH.

GATE_NONE: Compute and apply gradients in parallel. This provides
the maximum parallelism in execution, at the cost of some non-reproducibility
in the results. For example the two gradients of matmul depend on the input
values: With GATE_NONE one of the gradients could be applied to one of the
inputs before the other gradient is computed resulting in non-reproducible
results.

GATE_OP: For each Op, make sure all gradients are computed before
they are used. This prevents race conditions for Ops that generate gradients
for multiple inputs where the gradients depend on the inputs.

GATE_GRAPH: Make sure all gradients for all variables are computed
before any one of them is used. This provides the least parallelism but can
be useful if you want to process all gradients before applying any of them.

Slots

Some optimizer subclasses, such as MomentumOptimizer and AdagradOptimizer
allocate and manage additional variables associated with the variables to
train. These are called Slots. Slots have names and you can ask the
optimizer for the names of the slots that it uses. Once you have a slot name
you can ask the optimizer for the variable it created to hold the slot value.

This can be useful if you want to log debug a training algorithm, report stats
about the slots, etc.

tf.train.Optimizer.get_slot_names() {#Optimizer.get_slot_names}

Return a list of the names of slots created by the Optimizer.

See get_slot().

Returns:

A list of strings.

tf.train.Optimizer.get_slot(var, name) {#Optimizer.get_slot}

Return a slot named name created for var by the Optimizer.

Some Optimizer subclasses use additional variables. For example
Momentum and Adagrad use variables to accumulate updates. This method
gives access to these Variable objects if for some reason you need them.

Use get_slot_names() to get the list of slot names created by the
Optimizer.

Args:

	var: A variable passed to minimize() or apply_gradients().

	name: A string.

Returns:

The Variable for the slot if it was created, None otherwise.

class tf.train.GradientDescentOptimizer {#GradientDescentOptimizer}

Optimizer that implements the gradient descent algorithm.

tf.train.GradientDescentOptimizer.__init__(learning_rate, use_locking=False, name='GradientDescent') {#GradientDescentOptimizer.init}

Construct a new gradient descent optimizer.

Args:

	learning_rate: A Tensor or a floating point value. The learning
rate to use.

	use_locking: If True use locks for update operation.s

	name: Optional name prefix for the operations created when applying
gradients. Defaults to “GradientDescent”.

class tf.train.AdagradOptimizer {#AdagradOptimizer}

Optimizer that implements the Adagrad algorithm.

tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad') {#AdagradOptimizer.init}

Construct a new Adagrad optimizer.

Args:

	learning_rate: A Tensor or a floating point value. The learning rate.

	initial_accumulator_value: A floating point value.
Starting value for the accumulators, must be positive.

	use_locking: If True use locks for update operations.

	name: Optional name prefix for the operations created when applying
gradients. Defaults to “Adagrad”.

Raises:

	ValueError: If the initial_accumulator_value is invalid.

class tf.train.MomentumOptimizer {#MomentumOptimizer}

Optimizer that implements the Momentum algorithm.

tf.train.MomentumOptimizer.__init__(learning_rate, momentum, use_locking=False, name='Momentum') {#MomentumOptimizer.init}

Construct a new Momentum optimizer.

Args:

	learning_rate: A Tensor or a floating point value. The learning rate.

	momentum: A Tensor or a floating point value. The momentum.

	use_locking: If True use locks for update operations.

	name: Optional name prefix for the operations created when applying
gradients. Defaults to “Momentum”.

class tf.train.AdamOptimizer {#AdamOptimizer}

Optimizer that implements the Adam algorithm.

tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam') {#AdamOptimizer.init}

Construct a new Adam optimizer.

Implementation is based on: http://arxiv.org/pdf/1412.6980v7.pdf

Initialization:

m_0 <- 0 (Initialize initial 1st moment vector)
v_0 <- 0 (Initialize initial 2nd moment vector)
t <- 0 (Initialize timestep)

The update rule for variable with gradient g uses an optimization
described at the end of section2 of the paper:

t <- t + 1
lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * g
v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g
variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)

The default value of 1e-8 for epsilon might not be a good default in
general. For example, when training an Inception network on ImageNet a
current good choice is 1.0 or 0.1.

Args:

	learning_rate: A Tensor or a floating point value. The learning rate.

	beta1: A float value or a constant float tensor.
The exponential decay rate for the 1st moment estimates.

	beta2: A float value or a constant float tensor.
The exponential decay rate for the 2st moment estimates.

	epsilon: A small constant for numerical stability.

	use_locking: If True use locks for update operation.s

	name: Optional name for the operations created when applying gradients.
Defaults to “Adam”.

class tf.train.FtrlOptimizer {#FtrlOptimizer}

Optimizer that implements the FTRL algorithm.

tf.train.FtrlOptimizer.__init__(learning_rate, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, use_locking=False, name='Ftrl') {#FtrlOptimizer.init}

Construct a new FTRL optimizer.

The Ftrl-proximal algorithm, abbreviated for Follow-the-regularized-leader,
is described in the paper Ad Click Prediction: a View from the Trenches [https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf].

It can give a good performance vs. sparsity tradeoff.

Ftrl-proximal uses its own global base learning rate and can behave like
Adagrad with learning_rate_power=-0.5, or like gradient descent with
learning_rate_power=0.0.

The effective learning rate is adjusted per parameter, relative to this
base learning rate as:

effective_learning_rate_i = (learning_rate /
 pow(k + summed_squared_gradients_for_i, learning_rate_power));

where k is the small constant initial_accumulator_value.

Note that the real regularization coefficient of |w|^2 for objective
function is 1 / lambda_2 if specifying l2 = lambda_2 as argument when
using this function.

Args:

	learning_rate: A float value or a constant float Tensor.

	learning_rate_power: A float value, must be less or equal to zero.

	initial_accumulator_value: The starting value for accumulators.
Only positive values are allowed.

	l1_regularization_strength: A float value, must be greater than or
equal to zero.

	l2_regularization_strength: A float value, must be greater than or
equal to zero.

	use_locking: If True use locks for update operations.

	name: Optional name prefix for the operations created when applying
gradients. Defaults to “Ftrl”.

Raises:

	ValueError: if one of the arguments is invalid.

class tf.train.RMSPropOptimizer {#RMSPropOptimizer}

Optimizer that implements the RMSProp algorithm.

tf.train.RMSPropOptimizer.__init__(learning_rate, decay, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp') {#RMSPropOptimizer.init}

Construct a new RMSProp optimizer.

Args:

	learning_rate: A Tensor or a floating point value. The learning rate.

	decay: discounting factor for the history/coming gradient

	momentum: a scalar tensor.

	epsilon: small value to avoid zero denominator.

	use_locking: If True use locks for update operation.

	name: Optional name prefic for the operations created when applying
gradients. Defaults to “RMSProp”.

Gradient Computation

TensorFlow provides functions to compute the derivatives for a given
TensorFlow computation graph, adding operations to the graph. The
optimizer classes automatically compute derivatives on your graph, but
creators of new Optimizers or expert users can call the lower-level
functions below.

tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None) {#gradients}

Constructs symbolic partial derivatives of ys w.r.t. x in xs.

ys and xs are each a Tensor or a list of tensors. grad_ys
is a list of Tensor, holding the gradients received by the
ys. The list must be the same length as ys.

gradients() adds ops to the graph to output the partial
derivatives of ys with respect to xs. It returns a list of
Tensor of length len(xs) where each tensor is the sum(dy/dx)
for y in ys.

grad_ys is a list of tensors of the same length as ys that holds
the initial gradients for each y in ys. When grad_ys is None,
we fill in a tensor of ‘1’s of the shape of y for each y in ys. A
user can provide their own initial grad_ys to compute the
derivatives using a different initial gradient for each y (e.g., if
one wanted to weight the gradient differently for each value in
each y).

Args:

	ys: A Tensor or list of tensors to be differentiated.

	xs: A Tensor or list of tensors to be used for differentiation.

	grad_ys: Optional. A Tensor or list of tensors the same size as
ys and holding the gradients computed for each y in ys.

	name: Optional name to use for grouping all the gradient ops together.
defaults to ‘gradients’.

	colocate_gradients_with_ops: If True, try colocating gradients with
the corresponding op.

	gate_gradients: If True, add a tuple around the gradients returned
for an operations. This avoids some race conditions.

	aggregation_method: Specifies the method used to combine gradient terms.
Accepted values are constants defined in the class AggregationMethod.

Returns:

A list of sum(dy/dx) for each x in xs.

Raises:

	LookupError: if one of the operations between x and y does not
have a registered gradient function.

	ValueError: if the arguments are invalid.

class tf.AggregationMethod {#AggregationMethod}

A class listing aggregation methods used to combine gradients.

Computing partial derivatives can require aggregating gradient
contributions. This class lists the various methods that can
be used to combine gradients in the graph:

	ADD_N: All of the gradient terms are summed as part of one
operation using the “AddN” op. It has the property that all
gradients must be ready before any aggregation is performed.

	DEFAULT: The system-chosen default aggregation method.

tf.stop_gradient(input, name=None) {#stop_gradient}

Stops gradient computation.

When executed in a graph, this op outputs its input tensor as-is.

When building ops to compute gradients, this op prevents the contribution of
its inputs to be taken into account. Normally, the gradient generator adds ops
to a graph to compute the derivatives of a specified ‘loss’ by recursively
finding out inputs that contributed to its computation. If you insert this op
in the graph it inputs are masked from the gradient generator. They are not
taken into account for computing gradients.

This is useful any time you want to compute a value with TensorFlow but need
to pretend that the value was a constant. Some examples include:

	The EM algorithm where the M-step should not involve backpropagation
through the output of the E-step.

	Contrastive divergence training of Boltzmann machines where, when
differentiating the energy function, the training must not backpropagate
through the graph that generated the samples from the model.

	Adversarial training, where no backprop should happen through the adversarial
example generation process.

Args:

	input: A Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

Gradient Clipping

TensorFlow provides several operations that you can use to add clipping
functions to your graph. You can use these functions to perform general data
clipping, but they’re particularly useful for handling exploding or vanishing
gradients.

tf.clip_by_value(t, clip_value_min, clip_value_max, name=None) {#clip_by_value}

Clips tensor values to a specified min and max.

Given a tensor t, this operation returns a tensor of the same type and
shape as t with its values clipped to clip_value_min and clip_value_max.
Any values less than clip_value_min are set to clip_value_min. Any values
greater than clip_value_max are set to clip_value_max.

Args:

	t: A Tensor.

	clip_value_min: A 0-D (scalar) Tensor. The minimum value to clip by.

	clip_value_max: A 0-D (scalar) Tensor. The maximum value to clip by.

	name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_norm(t, clip_norm, name=None) {#clip_by_norm}

Clips tensor values to a maximum L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its L2-norm is less than or equal to clip_norm.
Specifically, if the L2-norm is already less than or equal to clip_norm,
then t is not modified. If the L2-norm is greater than clip_norm, then
this operation returns a tensor of the same type and shape as t with its
values set to:

t * clip_norm / l2norm(t)

In this case, the L2-norm of the output tensor is clip_norm.

This operation is typically used to clip gradients before applying them with
an optimizer.

Args:

	t: A Tensor.

	clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

	name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_average_norm(t, clip_norm, name=None) {#clip_by_average_norm}

Clips tensor values to a maximum average L2-norm.

Given a tensor t, and a maximum clip value clip_norm, this operation
normalizes t so that its average L2-norm is less than or equal to
clip_norm. Specifically, if the average L2-norm is already less than or
equal to clip_norm, then t is not modified. If the average L2-norm is
greater than clip_norm, then this operation returns a tensor of the same
type and shape as t with its values set to:

t * clip_norm / l2norm_avg(t)

In this case, the average L2-norm of the output tensor is clip_norm.

This operation is typically used to clip gradients before applying them with
an optimizer.

Args:

	t: A Tensor.

	clip_norm: A 0-D (scalar) Tensor > 0. A maximum clipping value.

	name: A name for the operation (optional).

Returns:

A clipped Tensor.

tf.clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None) {#clip_by_global_norm}

Clips values of multiple tensors by the ratio of the sum of their norms.

Given a tuple or list of tensors t_list, and a clipping ratio clip_norm,
this operation returns a list of clipped tensors list_clipped
and the global norm (global_norm) of all tensors in t_list. Optionally,
if you’ve already computed the global norm for t_list, you can specify
the global norm with use_norm.

To perform the clipping, the values t_list[i] are set to:

t_list[i] * clip_norm / max(global_norm, clip_norm)

where:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

If clip_norm > global_norm then the entries in t_list remain as they are,
otherwise they’re all shrunk by the global ratio.

Any of the entries of t_list that are of type None are ignored.

This is the correct way to perform gradient clipping (for example, see
R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
Recurrent Neural Networks”. http://arxiv.org/abs/1211.5063)

However, it is slower than clip_by_norm() because all the parameters must be
ready before the clipping operation can be performed.

Args:

	t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

	clip_norm: A 0-D (scalar) Tensor > 0. The clipping ratio.

	use_norm: A 0-D (scalar) Tensor of type float (optional). The global
norm to use. If not provided, global_norm() is used to compute the norm.

	name: A name for the operation (optional).

Returns:

	list_clipped: A list of Tensors of the same type as list_t.

	global_norm: A 0-D (scalar) Tensor representing the global norm.

Raises:

	TypeError: If t_list is not a sequence.

tf.global_norm(t_list, name=None) {#global_norm}

Computes the global norm of multiple tensors.

Given a tuple or list of tensors t_list, this operation returns the
global norm of the elements in all tensors in t_list. The global norm is
computed as:

global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))

Any entries in t_list that are of type None are ignored.

Args:

	t_list: A tuple or list of mixed Tensors, IndexedSlices, or None.

	name: A name for the operation (optional).

Returns:

A 0-D (scalar) Tensor of type float.

Raises:

	TypeError: If t_list is not a sequence.

Decaying the learning rate

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) {#exponential_decay}

Applies exponential decay to the learning rate.

When training a model, it is often recommended to lower the learning rate as
the training progresses. This function applies an exponential decay function
to a provided initial learning rate. It requires a global_step value to
compute the decayed learning rate. You can just pass a TensorFlow variable
that you increment at each training step.

The function returns the decayed learning rate. It is computed as:

decayed_learning_rate = learning_rate *
 decay_rate ^ (global_step / decay_steps)

If the argument staircase is True, then global_step /decay_steps is an
integer division and the decayed learning rate follows a staircase function.

Example: decay every 100000 steps with a base of 0.96:

...
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = 0.1
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step,
 100000, 0.96, staircase=True)
optimizer = tf.GradientDescentOptimizer(learning_rate)
Passing global_step to minimize() will increment it at each step.
optimizer.minimize(...my loss..., global_step=global_step)

Args:

	learning_rate: A scalar float32 or float64 Tensor or a
Python number. The initial learning rate.

	global_step: A scalar int32 or int64 Tensor or a Python number.
Global step to use for the decay computation. Must not be negative.

	decay_steps: A scalar int32 or int64 Tensor or a Python number.
Must be positive. See the decay computation above.

	decay_rate: A scalar float32 or float64 Tensor or a
Python number. The decay rate.

	staircase: Boolean. It True decay the learning rate at discrete intervals.

	name: string. Optional name of the operation. Defaults to ‘ExponentialDecay’

Returns:

A scalar Tensor of the same type as learning_rate. The decayed
learning rate.

Moving Averages

Some training algorithms, such as GradientDescent and Momentum often benefit
from maintaining a moving average of variables during optimization. Using the
moving averages for evaluations often improve results significantly.

class tf.train.ExponentialMovingAverage {#ExponentialMovingAverage}

Maintains moving averages of variables by employing an exponential decay.

When training a model, it is often beneficial to maintain moving averages of
the trained parameters. Evaluations that use averaged parameters sometimes
produce significantly better results than the final trained values.

The apply() method adds shadow copies of trained variables and add ops that
maintain a moving average of the trained variables in their shadow copies.
It is used when building the training model. The ops that maintain moving
averages are typically run after each training step.
The average() and average_name() methods give access to the shadow
variables and their names. They are useful when building an evaluation
model, or when restoring a model from a checkpoint file. They help use the
moving averages in place of the last trained values for evaluations.

The moving averages are computed using exponential decay. You specify the
decay value when creating the ExponentialMovingAverage object. The shadow
variables are initialized with the same initial values as the trained
variables. When you run the ops to maintain the moving averages, each
shadow variable is updated with the formula:

shadow_variable -= (1 - decay) * (shadow_variable - variable)

This is mathematically equivalent to the classic formula below, but the use
of an assign_sub op (the "-=" in the formula) allows concurrent lockless
updates to the variables:

shadow_variable = decay * shadow_variable + (1 - decay) * variable

Reasonable values for decay are close to 1.0, typically in the
multiple-nines range: 0.999, 0.9999, etc.

Example usage when creating a training model:

Create variables.
var0 = tf.Variable(...)
var1 = tf.Variable(...)
... use the variables to build a training model...
...
Create an op that applies the optimizer. This is what we usually
would use as a training op.
opt_op = opt.minimize(my_loss, [var0, var1])

Create an ExponentialMovingAverage object
ema = tf.train.ExponentialMovingAverage(decay=0.9999)

Create the shadow variables, and add ops to maintain moving averages
of var0 and var1.
maintain_averages_op = ema.apply([var0, var1])

Create an op that will update the moving averages after each training
step. This is what we will use in place of the usuall trainig op.
with tf.control_dependencies([opt_op]):
 training_op = tf.group(maintain_averages_op)

...train the model by running training_op...

There are two ways to use the moving averages for evaluations:

	Build a model that uses the shadow variables instead of the variables.
For this, use the average() method which returns the shadow variable
for a given variable.

	Build a model normally but load the checkpoint files to evaluate by using
the shadow variable names. For this use the average_name() method. See
the Saver class for more
information on restoring saved variables.

Example of restoring the shadow variable values:

Create a Saver that loads variables from their saved shadow values.
shadow_var0_name = ema.average_name(var0)
shadow_var1_name = ema.average_name(var1)
saver = tf.train.Saver({shadow_var0_name: var0, shadow_var1_name: var1})
saver.restore(...checkpoint filename...)
var0 and var1 now hold the moving average values

tf.train.ExponentialMovingAverage.__init__(decay, num_updates=None, name='ExponentialMovingAverage') {#ExponentialMovingAverage.init}

Creates a new ExponentialMovingAverage object.

The Apply() method has to be called to create shadow variables and add
ops to maintain moving averages.

The optional num_updates parameter allows one to tweak the decay rate
dynamically. . It is typical to pass the count of training steps, usually
kept in a variable that is incremented at each step, in which case the
decay rate is lower at the start of training. This makes moving averages
move faster. If passed, the actual decay rate used is:

min(decay, (1 + num_updates) / (10 + num_updates))

Args:

	decay: Float. The decay to use.

	num_updates: Optional count of number of updates applied to variables.

	name: String. Optional prefix name to use for the name of ops added in
Apply().

tf.train.ExponentialMovingAverage.apply(var_list=None) {#ExponentialMovingAverage.apply}

Maintains moving averages of variables.

var_list must be a list of Variable or Tensor objects. This method
creates shadow variables for all elements of var_list. Shadow variables
for Variable objects are initialized to the variable’s initial value.
For Tensor objects, the shadow variables are initialized to 0.

shadow variables are created with trainable=False and added to the
GraphKeys.ALL_VARIABLES collection. They will be returned by calls to
tf.all_variables().

Returns an op that updates all shadow variables as described above.

Note that apply() can be called multiple times with different lists of
variables.

Args:

	var_list: A list of Variable or Tensor objects. The variables
and Tensors must be of types float32 or float64.

Returns:

An Operation that updates the moving averages.

Raises:

	TypeError: If the arguments are not all float32 or float64.

	ValueError: If the moving average of one of the variables is already
being computed.

tf.train.ExponentialMovingAverage.average_name(var) {#ExponentialMovingAverage.average_name}

Returns the name of the Variable holding the average for var.

The typical scenario for ExponentialMovingAverage is to compute moving
averages of variables during training, and restore the variables from the
computed moving averages during evaluations.

To restore variables, you have to know the name of the shadow variables.
That name and the original variable can then be passed to a Saver() object
to restore the variable from the moving average value with:
saver = tf.train.Saver({ema.average_name(var): var})

average_name() can be called whether or not apply() has been called.

Args:

	var: A Variable object.

Returns:

A string: the name of the variable that will be used or was used
by the ExponentialMovingAverage class to hold the moving average of
var.

tf.train.ExponentialMovingAverage.average(var) {#ExponentialMovingAverage.average}

Returns the Variable holding the average of var.

Args:

	var: A Variable object.

Returns:

A Variable object or None if the moving average of var
is not maintained..

Coordinator and QueueRunner

See Threading and Queues
for how to use threads and queues. For documentation on the Queue API,
see Queues.

class tf.train.Coordinator {#Coordinator}

A coordinator for threads.

This class implements a simple mechanism to coordinate the termination of a
set of threads.

Usage:

Create a coordinator.
coord = Coordinator()
Start a number of threads, passing the coordinator to each of them.
...start thread 1...(coord, ...)
...start thread N...(coord, ...)
Wait for all the threads to terminate.
coord.join(threads)

Any of the threads can call coord.request_stop() to ask for all the threads
to stop. To cooperate with the requests, each thread must check for
coord.should_stop() on a regular basis. coord.should_stop() returns
True as soon as coord.request_stop() has been called.

A typical thread running with a Coordinator will do something like:

while not coord.should_stop():
 ...do some work...

Exception handling:

A thread can report an exception to the Coordinator as part of the
should_stop() call. The exception will be re-raised from the
coord.join() call.

Thread code:

try:
 while not coord.should_stop():
 ...do some work...
except Exception, e:
 coord.request_stop(e)

Main code:

try:
 ...
 coord = Coordinator()
 # Start a number of threads, passing the coordinator to each of them.
 ...start thread 1...(coord, ...)
 ...start thread N...(coord, ...)
 # Wait for all the threads to terminate.
 coord.join(threads)
except Exception, e:
 ...exception that was passed to coord.request_stop()

Grace period for stopping:

After a thread has called coord.request_stop() the other threads have a
fixed time to stop, this is called the ‘stop grace period’ and defaults to 2
minutes. If any of the threads is still alive after the grace period expires
coord.join() raises a RuntimeException reporting the laggards.

try:
 ...
 coord = Coordinator()
 # Start a number of threads, passing the coordinator to each of them.
 ...start thread 1...(coord, ...)
 ...start thread N...(coord, ...)
 # Wait for all the threads to terminate, give them 10s grace period
 coord.join(threads, stop_grace_period_secs=10)
except RuntimeException:
 ...one of the threads took more than 10s to stop after request_stop()
 ...was called.
except Exception:
 ...exception that was passed to coord.request_stop()

tf.train.Coordinator.__init__() {#Coordinator.init}

Create a new Coordinator.

tf.train.Coordinator.join(threads, stop_grace_period_secs=120) {#Coordinator.join}

Wait for threads to terminate.

Blocks until all threads have terminated or request_stop() is called.

After the threads stop, if an exc_info was passed to request_stop, that
exception is re-reaised.

Grace period handling: When request_stop() is called, threads are given
‘stop_grace_period_secs’ seconds to terminate. If any of them is still
alive after that period expires, a RuntimeError is raised. Note that if
an exc_info was passed to request_stop() then it is raised instead of
that RuntimeError.

Args:

	threads: List of threading.Threads. The started threads to join.

	stop_grace_period_secs: Number of seconds given to threads to stop after
request_stop() has been called.

Raises:

	RuntimeError: If any thread is still alive after request_stop()
is called and the grace period expires.

tf.train.Coordinator.request_stop(ex=None) {#Coordinator.request_stop}

Request that the threads stop.

After this is called, calls to should_stop() will return True.

Args:

	ex: Optional Exception, or Python exc_info tuple as returned by
sys.exc_info(). If this is the first call to request_stop() the
corresponding exception is recorded and re-raised from join().

tf.train.Coordinator.should_stop() {#Coordinator.should_stop}

Check if stop was requested.

Returns:

True if a stop was requested.

tf.train.Coordinator.wait_for_stop(timeout=None) {#Coordinator.wait_for_stop}

Wait till the Coordinator is told to stop.

Args:

	timeout: float. Sleep for up to that many seconds waiting for
should_stop() to become True.

Returns:

True if the Coordinator is told stop, False if the timeout expired.

class tf.train.QueueRunner {#QueueRunner}

Holds a list of enqueue operations for a queue, each to be run in a thread.

Queues are a convenient TensorFlow mechanism to compute tensors
asynchronously using multiple threads. For example in the canonical ‘Input
Reader’ setup one set of threads generates filenames in a queue; a second set
of threads read records from the files, processes them, and enqueues tensors
on a second queue; a third set of threads dequeues these input records to
construct batches and runs them through training operations.

There are several delicate issues when running multiple threads that way:
closing the queues in sequence as the input is exhausted, correctly catching
and reporting exceptions, etc.

The QueueRunner, combined with the Coordinator, helps handle these issues.

tf.train.QueueRunner.__init__(queue, enqueue_ops) {#QueueRunner.init}

Create a QueueRunner.

On construction the QueueRunner adds an op to close the queue. That op
will be run if the enqueue ops raise exceptions.

When you later call the create_threads() method, the QueueRunner will
create one thread for each op in enqueue_ops. Each thread will run its
enqueue op in parallel with the other threads. The enqueue ops do not have
to all be the same op, but it is expected that they all enqueue tensors in
queue.

Args:

	queue: A Queue.

	enqueue_ops: List of enqueue ops to run in threads later.

tf.train.QueueRunner.create_threads(sess, coord=None, daemon=False, start=False) {#QueueRunner.create_threads}

Create threads to run the enqueue ops.

This method requires a session in which the graph was launched. It creates
a list of threads, optionally starting them. There is one thread for each
op passed in enqueue_ops.

The coord argument is an optional coordinator, that the threads will use
to terminate together and report exceptions. If a coordinator is given,
this method starts an additional thread to close the queue when the
coordinator requests a stop.

This method may be called again as long as all threads from a previous call
have stopped.

Args:

	sess: A Session.

	coord: Optional Coordinator object for reporting errors and checking
stop conditions.

	daemon: Boolean. If True make the threads daemon threads.

	start: Boolean. If True starts the threads. If False the
caller must call the start() method of the returned threads.

Returns:

A list of threads.

Raises:

	RuntimeError: If threads from a previous call to create_threads() are
still running.

tf.train.QueueRunner.exceptions_raised {#QueueRunner.exceptions_raised}

Exceptions raised but not handled by the QueueRunner threads.

Exceptions raised in queue runner threads are handled in one of two ways
depending on whether or not a Coordinator was passed to
create_threads():

	With a Coordinator, exceptions are reported to the coordinator and
forgotten by the QueueRunner.

	Without a Coordinator, exceptions are captured by the QueueRunner and
made available in this exceptions_raised property.

Returns:

A list of Python Exception objects. The list is empty if no exception
was captured. (No exceptions are captured when using a Coordinator.)

tf.train.add_queue_runner(qr, collection='queue_runners') {#add_queue_runner}

Adds a QueueRunner to a collection in the graph.

When building a complex model that uses many queues it is often difficult to
gather all the queue runners that need to be run. This convenience function
allows you to add a queue runner to a well known collection in the graph.

The companion method start_queue_runners() can be used to start threads for
all the collected queue runners.

Args:

	qr: A QueueRunner.

	collection: A GraphKey specifying the graph collection to add
the queue runner to. Defaults to GraphKeys.QUEUE_RUNNERS.

tf.train.start_queue_runners(sess=None, coord=None, daemon=True, start=True, collection='queue_runners') {#start_queue_runners}

Starts all queue runners collected in the graph.

This is a companion method to add_queue_runner(). It just starts
threads for all queue runners collected in the graph. It returns
the list of all threads.

Args:

	sess: Session used to run the queue ops. Defaults to the
default session.

	coord: Optional Coordinator for coordinating the started threads.

	daemon: Whether the threads should be marked as daemons, meaning
they don’t block program exit.

	start: Set to False to only create the threads, not start them.

	collection: A GraphKey specifying the graph collection to
get the queue runners from. Defaults to GraphKeys.QUEUE_RUNNERS.

Returns:

A list of threads.

Summary Operations

The following ops output
Summary [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/summary.proto]
protocol buffers as serialized string tensors.

You can fetch the output of a summary op in a session, and pass it to
a SummaryWriter to append it
to an event file. Event files contain
Event [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/util/event.proto]
protos that can contain Summary protos along with the timestamp and
step. You can then use TensorBoard to visualize the contents of the
event files. See TensorBoard and
Summaries for more
details.

tf.scalar_summary(tags, values, collections=None, name=None) {#scalar_summary}

Outputs a Summary protocol buffer with scalar values.

The input tags and values must have the same shape. The generated
summary has a summary value for each tag-value pair in tags and values.

Args:

	tags: A 1-D string Tensor. Tags for the summaries.

	values: A 1-D float32 or float64 Tensor. Values for the summaries.

	collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

	name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.image_summary(tag, tensor, max_images=None, collections=None, name=None) {#image_summary}

Outputs a Summary protocol buffer with images.

The summary has up to max_images summary values containing images. The
images are built from tensor which must be 4-D with shape [batch_size, height, width, channels] and where channels can be:

	1: tensor is interpreted as Grayscale.

	3: tensor is interpreted as RGB.

	4: tensor is interpreted as RGBA.

The images have the same number of channels as the input tensor. Their values
are normalized, one image at a time, to fit in the range [0, 255]. The
op uses two different normalization algorithms:

	If the input values are all positive, they are rescaled so the largest one
is 255.

	If any input value is negative, the values are shifted so input value 0.0
is at 127. They are then rescaled so that either the smallest value is 0,
or the largest one is 255.

The tag argument is a scalar Tensor of type string. It is used to
build the tag of the summary values:

	If max_images is 1, the summary value tag is ‘tag/image’.

	If max_images is greater than 1, the summary value tags are
generated sequentially as ‘tag/image/0’, ‘tag/image/1’, etc.

Args:

	tag: A scalar Tensor of type string. Used to build the tag
of the summary values.

	tensor: A 4-D float32 Tensor of shape [batch_size, height, width, channels] where channels is 1, 3, or 4.

	max_images: Max number of batch elements to generate images for.

	collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [ops.GraphKeys.SUMMARIES]

	name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.histogram_summary(tag, values, collections=None, name=None) {#histogram_summary}

Outputs a Summary protocol buffer with a histogram.

The generated
Summary [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/summary.proto]
has one summary value containing a histogram for values.

This op reports an OutOfRange error if any value is not finite.

Args:

	tag: A string Tensor. 0-D. Tag to use for the summary value.

	values: A float32 or float64 Tensor. Any shape. Values to use to
build the histogram.

	collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

	name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer.

tf.nn.zero_fraction(value, name=None) {#zero_fraction}

Returns the fraction of zeros in value.

If value is empty, the result is nan.

This is useful in summaries to measure and report sparsity. For example,

z = tf.Relu(...)
summ = tf.scalar_summary('sparsity', tf.zero_fraction(z))

Args:

	value: A tensor of numeric type.

	name: A name for the operation (optional).

Returns:

The fraction of zeros in value, with type float32.

tf.merge_summary(inputs, collections=None, name=None) {#merge_summary}

Merges summaries.

This op creates a
Summary [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/summary.proto]
protocol buffer that contains the union of all the values in the input
summaries.

When the Op is run, it reports an InvalidArgument error if multiple values
in the summaries to merge use the same tag.

Args:

	inputs: A list of string Tensor objects containing serialized Summary
protocol buffers.

	collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to [GraphKeys.SUMMARIES].

	name: A name for the operation (optional).

Returns:

A scalar Tensor of type string. The serialized Summary protocol
buffer resulting from the merging.

tf.merge_all_summaries(key='summaries') {#merge_all_summaries}

Merges all summaries collected in the default graph.

Args:

	key: GraphKey used to collect the summaries. Defaults to
GraphKeys.SUMMARIES.

Returns:

If no summaries were collected, returns None. Otherwise returns a scalar
Tensor of typestring containing the serialized Summary protocol
buffer resulting from the merging.

Adding Summaries to Event Files

See Summaries and
TensorBoard for an
overview of summaries, event files, and visualization in TensorBoard.

class tf.train.SummaryWriter {#SummaryWriter}

Writes Summary protocol buffers to event files.

The SummaryWriter class provides a mechanism to create an event file in a
given directory and add summaries and events to it. The class updates the
file contents asynchronously. This allows a training program to call methods
to add data to the file directly from the training loop, without slowing down
training.

tf.train.SummaryWriter.__init__(logdir, graph_def=None, max_queue=10, flush_secs=120) {#SummaryWriter.init}

Creates a SummaryWriter and an event file.

On construction the summary writer creates a new event file in logdir.
This event file will contain Event protocol buffers constructed when you
call one of the following functions: add_summary(), add_event(), or
add_graph().

If you pass a graph_def protocol buffer to the constructor it is added to
the event file. (This is equivalent to calling add_graph() later).

TensorBoard will pick the graph from the file and display it graphically so
you can interactively explore the graph you built. You will usually pass
the graph from the session in which you launched it:

...create a graph...
Launch the graph in a session.
sess = tf.Session()
Create a summary writer, add the 'graph_def' to the event file.
writer = tf.train.SummaryWriter(<some-directory>, sess.graph_def)

The other arguments to the constructor control the asynchronous writes to
the event file:

	flush_secs: How often, in seconds, to flush the added summaries
and events to disk.

	max_queue: Maximum number of summaries or events pending to be
written to disk before one of the ‘add’ calls block.

Args:

	logdir: A string. Directory where event file will be written.

	graph_def: A GraphDef protocol buffer.

	max_queue: Integer. Size of the queue for pending events and summaries.

	flush_secs: Number. How often, in seconds, to flush the
pending events and summaries to disk.

tf.train.SummaryWriter.add_summary(summary, global_step=None) {#SummaryWriter.add_summary}

Adds a Summary protocol buffer to the event file.

This method wraps the provided summary in an Event procotol buffer
and adds it to the event file.

You can pass the result of evaluating any summary op, using
[Session.run()](client.md#Session.run] or
Tensor.eval(), to this
function. Alternatively, you can pass a tf.Summary protocol
buffer that you populate with your own data. The latter is
commonly done to report evaluation results in event files.

Args:

	summary: A Summary protocol buffer, optionally serialized as a string.

	global_step: Number. Optional global step value to record with the
summary.

tf.train.SummaryWriter.add_event(event) {#SummaryWriter.add_event}

Adds an event to the event file.

Args:

	event: An Event protocol buffer.

tf.train.SummaryWriter.add_graph(graph_def, global_step=None) {#SummaryWriter.add_graph}

Adds a GraphDef protocol buffer to the event file.

The graph described by the protocol buffer will be displayed by
TensorBoard. Most users pass a graph in the constructor instead.

Args:

	graph_def: A GraphDef protocol buffer.

	global_step: Number. Optional global step counter to record with the
graph.

tf.train.SummaryWriter.flush() {#SummaryWriter.flush}

Flushes the event file to disk.

Call this method to make sure that all pending events have been written to
disk.

tf.train.SummaryWriter.close() {#SummaryWriter.close}

Flushes the event file to disk and close the file.

Call this method when you do not need the summary writer anymore.

tf.train.summary_iterator(path) {#summary_iterator}

An iterator for reading Event protocol buffers from an event file.

You can use this function to read events written to an event file. It returns
a Python iterator that yields Event protocol buffers.

Example: Print the contents of an events file.

for e in tf.summary_iterator(path to events file):
 print e

Example: Print selected summary values.

This example supposes that the events file contains summaries with a
summary value tag 'loss'. These could have been added by calling
`add_summary()`, passing the output of a scalar summary op created with
with: `tf.scalar_summary(['loss'], loss_tensor)`.
for e in tf.summary_iterator(path to events file):
 for v in e.summary.value:
 if v.tag == 'loss':
 print v.simple_value

See the protocol buffer definitions of
Event [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/util/event.proto]
and
Summary [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/summary.proto]
for more information about their attributes.

Args:

	path: The path to an event file created by a SummaryWriter.

Yields:

Event protocol buffers.

Training utilities

tf.train.global_step(sess, global_step_tensor) {#global_step}

Small helper to get the global step.

Creates a variable to hold the global_step.
global_step_tensor = tf.Variable(10, trainable=False, name='global_step')
Creates a session.
sess = tf.Session()
Initializes the variable.
sess.run(global_step_tensor.initializer)
print 'global_step:', tf.train.global_step(sess, global_step_tensor)

global_step: 10

Args:

	sess: A brain Session object.

	global_step_tensor: Tensor or the name of the operation that contains
the global step.

Returns:

The global step value.

tf.train.write_graph(graph_def, logdir, name, as_text=True) {#write_graph}

Writes a graph proto on disk.

The graph is written as a binary proto unless as_text is True.

v = tf.Variable(0, name='my_variable')
sess = tf.Session()
tf.train.write_graph(sess.graph_def, '/tmp/my-model', 'train.pbtxt')

Args:

	graph_def: A GraphDef protocol buffer.

	logdir: Directory where to write the graph.

	name: Filename for the graph.

	as_text: If True, writes the graph as an ASCII proto.

 Variables

Variables

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Variables

class tf.Variable {#Variable}

See the Variables How To for a high
level overview.

A variable maintains state in the graph across calls to run(). You add a
variable to the graph by constructing an instance of the class Variable.

The Variable() constructor requires an initial value for the variable,
which can be a Tensor of any type and shape. The initial value defines the
type and shape of the variable. After construction, the type and shape of
the variable are fixed. The value can be changed using one of the assign
methods.

If you want to change the shape of a variable later you have to use an
assign Op with validate_shape=False.

Just like any Tensor, variables created with Variable() can be used as
inputs for other Ops in the graph. Additionally, all the operators
overloaded for the Tensor class are carried over to variables, so you can
also add nodes to the graph by just doing arithmetic on variables.

import tensorflow as tf

Create a variable.
w = tf.Variable(<initial-value>, name=<optional-name>)

Use the variable in the graph like any Tensor.
y = tf.matmul(w, ...another variable or tensor...)

The overloaded operators are available too.
z = tf.sigmoid(w + b)

Assign a new value to the variable with `assign()` or a related method.
w.assign(w + 1.0)
w.assign_add(1.0)

When you launch the graph, variables have to be explicitly initialized before
you can run Ops that use their value. You can initialize a variable by
running its initializer op, restoring the variable from a save file, or
simply running an assign Op that assigns a value to the variable. In fact,
the variable initializer op is just an assign Op that assigns the
variable’s initial value to the variable itself.

Launch the graph in a session.
with tf.Session() as sess:
 # Run the variable initializer.
 sess.run(w.initializer)
 # ...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience function
initialize_all_variables() to add an Op to the graph that initializes
all the variables. You then run that Op after launching the graph.

Add an Op to initialize all variables.
init_op = tf.initialize_all_variables()

Launch the graph in a session.
with tf.Session() as sess:
 # Run the Op that initializes all variables.
 sess.run(init_op)
 # ...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on another
variable, use the other variable’s initialized_value(). This ensures that
variables are initialized in the right order.

All variables are automatically collected in the graph where they are
created. By default, the constructor adds the new variable to the graph
collection GraphKeys.VARIABLES. The convenience function
all_variables() returns the contents of that collection.

When building a machine learning model it is often convenient to distinguish
betwen variables holding the trainable model parameters and other variables
such as a global step variable used to count training steps. To make this
easier, the variable constructor supports a trainable=<bool> parameter. If
True, the new variable is also added to the graph collection
GraphKeys.TRAINABLE_VARIABLES. The convenience function
trainable_variables() returns the contents of this collection. The
various Optimizer classes use this collection as the default list of
variables to optimize.

Creating a variable.

tf.Variable.__init__(initial_value, trainable=True, collections=None, validate_shape=True, name=None) {#Variable.init}

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections,
which defaults to [GraphKeys.VARIABLES].

If trainable is True the variable is also added to the graph collection
GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the
variable to its initial value.

Args:

	initial_value: A Tensor, or Python object convertible to a Tensor.
The initial value for the Variable. Must have a shape specified unless
validate_shape is set to False.

	trainable: If True, the default, also adds the variable to the graph
collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as
the default list of variables to use by the Optimizer classes.

	collections: List of graph collections keys. The new variable is added to
these collections. Defaults to [GraphKeys.VARIABLES].

	validate_shape: If False, allows the variable to be initialized with a
value of unknown shape. If True, the default, the shape of
initial_value must be known.

	name: Optional name for the variable. Defaults to 'Variable' and gets
uniquified automatically.

Returns:

A Variable.

Raises:

	ValueError: If the initial value does not have a shape and
validate_shape is True.

tf.Variable.initialized_value() {#Variable.initialized_value}

Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another
variable with a value that depends on the value of this variable.

Initialize 'v' with a random tensor.
v = tf.Variable(tf.truncated_normal([10, 40]))
Use `initialized_value` to guarantee that `v` has been
initialized before its value is used to initialize `w`.
The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)

Returns:

A Tensor holding the value of this variable after its initializer
has run.

Changing a variable value.

tf.Variable.assign(value, use_locking=False) {#Variable.assign}

Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).

Args:

	value: A Tensor. The new value for this variable.

	use_locking: If True, use locking during the assignment.

Returns:

A Tensor that will hold the new value of this variable after
the assignment has completed.

tf.Variable.assign_add(delta, use_locking=False) {#Variable.assign_add}

Adds a value to this variable.

This is essentially a shortcut for assign_add(self, delta).

Args:

	delta: A Tensor. The value to add to this variable.

	use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the addition has completed.

tf.Variable.assign_sub(delta, use_locking=False) {#Variable.assign_sub}

Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).

Args:

	delta: A Tensor. The value to subtract from this variable.

	use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the subtraction has completed.

tf.Variable.scatter_sub(sparse_delta, use_locking=False) {#Variable.scatter_sub}

Subtracts IndexedSlices from this variable.

This is essentially a shortcut for scatter_sub(self, sparse_delta.indices, sparse_delta.values).

Args:

	sparse_delta: IndexedSlices to be subtracted from this variable.

	use_locking: If True, use locking during the operation.

Returns:

A Tensor that will hold the new value of this variable after
the scattered subtraction has completed.

Raises:

	ValueError: if sparse_delta is not an IndexedSlices.

tf.Variable.count_up_to(limit) {#Variable.count_up_to}

Increments this variable until it reaches limit.

When that Op is run it tries to increment the variable by 1. If
incrementing the variable would bring it above limit then the Op raises
the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before
the increment.

This is essentially a shortcut for count_up_to(self, limit).

Args:

	limit: value at which incrementing the variable raises an error.

Returns:

A Tensor that will hold the variable value before the increment. If no
other Op modifies this variable, the values produced will all be
distinct.

tf.Variable.eval(session=None) {#Variable.eval}

In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph containing this
variable has been launched. If no session is passed, the default session is
used. See the Session class for more information on
launching a graph and on sessions.

v = tf.Variable([1, 2])
init = tf.initialize_all_variables()

with tf.Session() as sess:
 sess.run(init)
 # Usage passing the session explicitly.
 print v.eval(sess)
 # Usage with the default session. The 'with' block
 # above makes 'sess' the default session.
 print v.eval()

Args:

	session: The session to use to evaluate this variable. If
none, the default session is used.

Returns:

A numpy ndarray with a copy of the value of this variable.

Properties.

tf.Variable.name {#Variable.name}

The name of this variable.

tf.Variable.dtype {#Variable.dtype}

The DType of this variable.

tf.Variable.get_shape() {#Variable.get_shape}

The TensorShape of this variable.

Returns:

A TensorShape.

tf.Variable.device {#Variable.device}

The device of this variable.

tf.Variable.initializer {#Variable.initializer}

The initializer operation for this variable.

tf.Variable.graph {#Variable.graph}

The Graph of this variable.

tf.Variable.op {#Variable.op}

The Operation of this variable.

Variable helper functions

TensorFlow provides a set of functions to help manage the set of variables
collected in the graph.

tf.all_variables() {#all_variables}

Returns all variables collected in the graph.

The Variable() constructor automatically adds new variables to the graph
collection GraphKeys.VARIABLES. This convenience function returns the
contents of that collection.

Returns:

A list of Variable objects.

tf.trainable_variables() {#trainable_variables}

Returns all variables created with trainable=True.

When passed trainable=True, the Variable() constructor automatically
adds new variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES. This convenience function returns the
contents of that collection.

Returns:

A list of Variable objects.

tf.initialize_all_variables() {#initialize_all_variables}

Returns an Op that initializes all variables.

This is just a shortcut for initialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.

tf.initialize_variables(var_list, name='init') {#initialize_variables}

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op to
initialize all the variables in var_list. This Op runs all the
initializers of the variables in var_list in parallel.

Calling initialize_variables() is equivalent to passing the list of
initializers to Group().

If var_list is empty, however, the function still returns an Op that can
be run. That Op just has no effect.

Args:

	var_list: List of Variable objects to initialize.

	name: Optional name for the returned operation.

Returns:

An Op that run the initializers of all the specified variables.

tf.assert_variables_initialized(var_list=None) {#assert_variables_initialized}

Returns an Op to check if variables are initialized.

When run, the returned Op will raise the exception FailedPreconditionError
if any of the variables has not yet been initialized.

Note: This function is implemented by trying to fetch the values of the
variables. If one of the variables is not initialized a message may be
logged by the C++ runtime. This is expected.

Args:

	var_list: List of Variable objects to check. Defaults to the
value of all_variables().

Returns:

An Op, or None if there are no variables.

Saving and Restoring Variables

class tf.train.Saver {#Saver}

Saves and restores variables.

See Variables
for an overview of variables, saving and restoring.

The Saver class adds ops to save and restore variables to and from
checkpoints. It also provides convenience methods to run these ops.

Checkpoints are binary files in a proprietary format which map variable names
to tensor values. The best way to examine the contents of a checkpoint is to
load it using a Saver.

Savers can automatically number checkpoint filenames with a provided counter.
This lets you keep multiple checkpoints at different steps while training a
model. For example you can number the checkpoint filenames with the training
step number. To avoid filling up disks, savers manage checkpoint files
automatically. For example, they can keep only the N most recent files, or
one checkpoint for every N hours of training.

You number checkpoint filenames by passing a value to the optional
global_step argument to save():

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

Additionally, optional arguments to the Saver() constructor let you control
the proliferation of checkpoint files on disk:

	max_to_keep indicates the maximum number of recent checkpoint files to
keep. As new files are created, older files are deleted. If None or 0,
all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent
checkpoint files are kept.)

	keep_checkpoint_every_n_hours: In addition to keeping the most recent
max_to_keep checkpoint files, you might want to keep one checkpoint file
for every N hours of training. This can be useful if you want to later
analyze how a model progressed during a long training session. For
example, passing keep_checkpoint_every_n_hours=2 ensures that you keep
one checkpoint file for every 2 hours of training. The default value of
10,000 hours effectively disables the feature.

Note that you still have to call the save() method to save the model.
Passing these arguments to the constructor will not save variables
automatically for you.

A training program that saves regularly looks like:

...
Create a saver.
saver = tf.train.Saver(...variables...)
Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
 sess.run(..training_op..)
 if step % 1000 == 0:
 # Append the step number to the checkpoint name:
 saver.save(sess, 'my-model', global_step=step)

In addition to checkpoint files, savers keep a protocol buffer on disk with
the list of recent checkpoints. This is used to manage numbered checkpoint
files and by latest_checkpoint(), which makes it easy to discover the path
to the most recent checkpoint. That protocol buffer is stored in a file named
‘checkpoint’ next to the checkpoint files.

If you create several savers, you can specify a different filename for the
protocol buffer file in the call to save().

tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None) {#Saver.init}

Creates a Saver.

The constructor adds ops to save and restore variables.

var_list specifies the variables that will be saved and restored. It can
be passed as a dict or a list:

	A dict of names to variables: The keys are the names that will be
used to save or restore the variables in the checkpoint files.

	A list of variables: The variables will be keyed with their op name in
the checkpoint files.

For example:

v1 = tf.Variable(..., name='v1')
v2 = tf.Variable(..., name='v2')

Pass the variables as a dict:
saver = tf.train.Saver({'v1': v1, 'v2': v2})

Or pass them as a list.
saver = tf.train.Saver([v1, v2])
Passing a list is equivalent to passing a dict with the variable op names
as keys:
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]})

The optional reshape argument, if True, allows restoring a variable from
a save file where the variable had a different shape, but the same number
of elements and type. This is useful if you have reshaped a variable and
want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard
checkpoints per device.

Args:

	var_list: A list of Variable objects or a dictionary mapping names to
variables. If None, defaults to the list of all variables.

	reshape: If True, allows restoring parameters from a checkpoint
where the variables have a different shape.

	sharded: If True, shard the checkpoints, one per device.

	max_to_keep: maximum number of recent checkpoints to keep.
Defaults to 10,000 hours.

	keep_checkpoint_every_n_hours: How often to keep checkpoints.
Defaults to 10,000 hours.

	name: string. Optional name to use as a prefix when adding operations.

	restore_sequentially: A Bool, which if true, causes restore of different
variables to happen sequentially within each device. This can lower
memory usage when restoring very large models.

	saver_def: Optional SaverDef proto to use instead of running the
builder. This is only useful for specialty code that wants to recreate
a Saver object for a previously built Graph that had a Saver.
The saver_def proto should be the one returned by the
as_saver_def() call of the Saver that was created for that Graph.

	builder: Optional SaverBuilder to use if a saver_def was not provided.
Defaults to BaseSaverBuilder().

Raises:

	TypeError: If var_list is invalid.

	ValueError: If any of the keys or values in var_list are not unique.

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None) {#Saver.save}

Saves variables.

This method runs the ops added by the constructor for saving variables.
It requires a session in which the graph was launched. The variables to
save must also have been initialized.

The method returns the path of the newly created checkpoint file. This
path can be passed directly to a call to restore().

Args:

	sess: A Session to use to save the variables.

	save_path: string. Path to the checkpoint filename. If the saver is
sharded, this is the prefix of the sharded checkpoint filename.

	global_step: If provided the global step number is appended to
save_path to create the checkpoint filename. The optional argument
can be a Tensor, a Tensor name or an integer.

	latest_filename: Optional name for the protocol buffer file that will
contains the list of most recent checkpoint filenames. That file,
kept in the same directory as the checkpoint files, is automatically
managed by the saver to keep track of recent checkpoints. Defaults to
‘checkpoint’.

Returns:

A string: path at which the variables were saved. If the saver is
sharded, this string ends with: ‘-?????-of-nnnnn’ where ‘nnnnn’
is the number of shards created.

Raises:

	TypeError: If sess is not a Session.

tf.train.Saver.restore(sess, save_path) {#Saver.restore}

Restores previously saved variables.

This method runs the ops added by the constructor for restoring variables.
It requires a session in which the graph was launched. The variables to
restore do not have to have been initialized, as restoring is itself a way
to initialize variables.

The save_path argument is typically a value previously returned from a
save() call, or a call to latest_checkpoint().

Args:

	sess: A Session to use to restore the parameters.

	save_path: Path where parameters were previously saved.

Other utility methods.

tf.train.Saver.last_checkpoints {#Saver.last_checkpoints}

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.

tf.train.Saver.set_last_checkpoints(last_checkpoints) {#Saver.set_last_checkpoints}

Sets the list of old checkpoint filenames.

Args:

	last_checkpoints: A list of checkpoint filenames.

Raises:

	AssertionError: If the list of checkpoint filenames has already been set.

tf.train.Saver.as_saver_def() {#Saver.as_saver_def}

Generates a SaverDef representation of this saver.

Returns:

A SaverDef proto.

tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None) {#latest_checkpoint}

Finds the filename of latest saved checkpoint file.

Args:

	checkpoint_dir: Directory where the variables were saved.

	latest_filename: Optional name for the protocol buffer file that
contains the list of most recent checkpoint filenames.
See the corresponding argument to Saver.save().

Returns:

The full path to the latest checkpoint or None if no checkpoint was found.

tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None) {#get_checkpoint_state}

Returns CheckpointState proto from the “checkpoint” file.

If the “checkpoint” file contains a valid CheckpointState
proto, returns it.

Args:

	checkpoint_dir: The directory of checkpoints.

	latest_filename: Optional name of the checkpoint file. Default to
‘checkpoint’.

Returns:

A CheckpointState if the state was available, None
otherwise.

tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None) {#update_checkpoint_state}

Updates the content of the ‘checkpoint’ file.

This updates the checkpoint file containing a CheckpointState
proto.

Args:

	save_dir: Directory where the model was saved.

	model_checkpoint_path: The checkpoint file.

	all_model_checkpoint_paths: list of strings. Paths to all not-yet-deleted
checkpoints, sorted from oldest to newest. If this is a non-empty list,
the last element must be equal to model_checkpoint_path. These paths
are also saved in the CheckpointState proto.

	latest_filename: Optional name of the checkpoint file. Default to
‘checkpoint’.

Raises:

	RuntimeError: If the save paths conflict.

Sharing Variables

TensorFlow provides several classes and operations that you can use to
create variables contingent on certain conditions.

tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None, trainable=True, collections=None) {#get_variable}

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope
and performs reuse checks. See the
Variable Scope How To
for an extensive description of how reusing works. Here is a basic example:

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1]) # v.name == "foo/v:0"
 w = tf.get_variable("w", [1]) # w.name == "foo/w:0"
with tf.variable_scope("foo", reuse=True)
 v1 = tf.get_variable("v") # The same as v above.

If initializer is None (the default), the default initializer passed in
the constructor is used. If that one is None too, a
UniformUnitScalingInitializer will be used.

Args:

	name: the name of the new or existing variable.

	shape: shape of the new or existing variable.

	dtype: type of the new or existing variable (defaults to DT_FLOAT).

	initializer: initializer for the variable if one is created.

	trainable: If True also add the variable to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see variables.Variable).

	collections: List of graph collections keys to add the Variable to.
Defaults to [GraphKeys.VARIABLES] (see variables.Variable).

Returns:

The created or existing variable.

Raises:

	ValueError: when creating a new variable and shape is not declared,
or when violating reuse during variable creation. Reuse is set inside
variable_scope.

tf.get_variable_scope() {#get_variable_scope}

Returns the current variable scope.

tf.variable_scope(name_or_scope, reuse=None, initializer=None) {#variable_scope}

Returns a context for variable scope.

Variable scope allows to create new variables and to share already created
ones while providing checks to not create or share by accident. For details,
see the Variable Scope How To,
here we present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable_scope("foo"):
 with tf.variable_scope("bar"):
 v = tf.get_variable("v", [1])
 assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable_scope("foo"):
 v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
 v1 = tf.get_variable("v", [1])
assert v1 == v

Sharing a variable by capturing a scope and setting reuse:

with tf.variable_scope("foo") as scope.
 v = tf.get_variable("v", [1])
 scope.reuse_variables()
 v1 = tf.get_variable("v", [1])
assert v1 == v

To prevent accidental sharing of variables, we raise an exception when
getting an existing variable in a non-reusing scope.

with tf.variable_scope("foo") as scope.
 v = tf.get_variable("v", [1])
 v1 = tf.get_variable("v", [1])
 # Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that
does not exist in reuse mode.

with tf.variable_scope("foo", reuse=True):
 v = tf.get_variable("v", [1])
 # Raises ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope,
then all its sub-scopes become reusing as well.

Args:

	name_or_scope: string or VariableScope: the scope to open.

	reuse: True or None; if True, we go into reuse mode for this scope as
well as all sub-scopes; if None, we just inherit the parent scope reuse.

	initializer: default initializer for variables within this scope.

Yields:

A scope that can be to captured and reused.

Raises:

	ValueError: when trying to reuse within a create scope, or create within
a reuse scope, or if reuse is not None or True.

	TypeError: when the types of some arguments are not appropriate.

tf.constant_initializer(value=0.0) {#constant_initializer}

Returns an initializer that generates tensors with a single value.

Args:

	value: A Python scalar. All elements of the initialized variable
will be set to this value.

Returns:

An initializer that generates tensors with a single value.

tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None) {#random_normal_initializer}

Returns an initializer that generates tensors with a normal distribution.

Args:

	mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

	stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

	seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

Returns:

An initializer that generates tensors with a normal distribution.

tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None) {#truncated_normal_initializer}

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from a random_normal_initializer
except that values more than two standard deviations from the mean
are discarded and re-drawn. This is the recommended initializer for
neural network weights and filters.

Args:

	mean: a python scalar or a scalar tensor. Mean of the random values
to generate.

	stddev: a python scalar or a scalar tensor. Standard deviation of the
random values to generate.

	seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

Returns:

An initializer that generates tensors with a truncated normal
distribution.

tf.random_uniform_initializer(minval=0.0, maxval=1.0, seed=None) {#random_uniform_initializer}

Returns an initializer that generates tensors with a uniform distribution.

Args:

	minval: a python scalar or a scalar tensor. lower bound of the range
of random values to generate.

	maxval: a python scalar or a scalar tensor. upper bound of the range
of random values to generate.

	seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

Returns:

An initializer that generates tensors with a uniform distribution.

tf.uniform_unit_scaling_initializer(factor=1.0, seed=None) {#uniform_unit_scaling_initializer}

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep
the scale of the input variance constant, so it does not explode or diminish
by reaching the final layer. If the input is x and the operation x * W,
and we want to initialize W uniformly at random, we need to pick W from

[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = W.shape[0] (the size of the input).
A similar calculation for convolutional networks gives an analogous result
with dim equal to the product of the first 3 dimensions. When
nonlinearities are present, we need to multiply this by a constant factor.
See https://arxiv.org/pdf/1412.6558v3.pdf for deeper motivation, experiments
and the calculation of constants. In section 2.3 there, the constants were
numerically computed: for a linear layer it’s 1.0, relu: ~1.43, tanh: ~1.15.

Args:

	factor: Float. A multiplicative factor by which the values will be scaled.

	seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

Returns:

An initializer that generates tensors with unit variance.

tf.zeros_initializer(shape, dtype=tf.float32) {#zeros_initializer}

An adaptor for zeros() to match the Initializer spec.

Sparse Variable Updates

The sparse update ops modify a subset of the entries in a dense Variable,
either overwriting the entries or adding / subtracting a delta. These are
useful for training embedding models and similar lookup-based networks, since
only a small subset of embedding vectors change in any given step.

Since a sparse update of a large tensor may be generated automatically during
gradient computation (as in the gradient of
tf.gather),
an IndexedSlices class is provided that encapsulates a set
of sparse indices and values. IndexedSlices objects are detected and handled
automatically by the optimizers in most cases.

tf.scatter_update(ref, indices, updates, use_locking=None, name=None) {#scatter_update}

Applies sparse updates to a variable reference.

This operation computes

Scalar indices
ref[indices, ...] = updates[...]

Vector indices (for each i)
ref[indices[i], ...] = updates[i, ...]

High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]

This operation outputs ref after the update is done.
This makes it easier to chain operations that need to use the reset value.

If indices contains duplicate entries, lexicographically later entries
override earlier entries.

Requires updates.shape = indices.shape + ref.shape[1:].

 Neural Network

Neural Network

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Activation Functions

The activation ops provide different types of nonlinearities for use in
neural networks. These include smooth nonlinearities (sigmoid,
tanh, and softplus), continuous but not everywhere differentiable
functions (relu, relu6, and relu_x), and random regularization
(dropout).

All activation ops apply componentwise, and produce a tensor of the same
shape as the input tensor.

tf.nn.relu(features, name=None) {#relu}

Computes rectified linear: max(features, 0).

Args:

	features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.relu6(features, name=None) {#relu6}

Computes Rectified Linear 6: min(max(features, 0), 6).

Args:

	features: A Tensor with type float, double, int32, int64, uint8,
int16, or int8.

	name: A name for the operation (optional).

Returns:

A Tensor with the same type as features.

tf.nn.softplus(features, name=None) {#softplus}

Computes softplus: log(exp(features) + 1).

Args:

	features: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as features.

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) {#dropout}

Computes dropout.

With probability keep_prob, outputs the input element scaled up by
1 / keep_prob, otherwise outputs 0. The scaling is so that the expected
sum is unchanged.

By default, each element is kept or dropped independently. If noise_shape
is specified, it must be
broadcastable [http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html]
to the shape of x, and only dimensions with noise_shape[i] == shape(x)[i]
will make independent decisions. For example, if shape(x) = [k, l, m, n]
and noise_shape = [k, 1, 1, n], each batch and channel component will be
kept independently and each row and column will be kept or not kept together.

Args:

	x: A tensor.

	keep_prob: A scalar Tensor with the same type as x. The probability
that each element is kept.

	noise_shape: A 1-D Tensor of type int32, representing the
shape for randomly generated keep/drop flags.

	seed: A Python integer. Used to create random seeds. See
set_random_seed
for behavior.

	name: A name for this operation (optional).

Returns:

A Tensor of the same shape of x.

Raises:

	ValueError: If keep_prob is not in (0, 1].

tf.nn.bias_add(value, bias, name=None) {#bias_add}

Adds bias to value.

This is (mostly) a special case of tf.add where bias is restricted to 1-D.
Broadcasting is supported, so value may have any number of dimensions.
Unlike tf.add, the type of bias is allowed to differ from value in the
case where both types are quantized.

Args:

	value: A Tensor with type float, double, int64, int32, uint8,
int16, int8, or complex64.

	bias: A 1-D Tensor with size matching the last dimension of value.
Must be the same type as value unless value is a quantized type,
in which case a different quantized type may be used.

	name: A name for the operation (optional).

Returns:

A Tensor with the same type as value.

tf.sigmoid(x, name=None) {#sigmoid}

Computes sigmoid of x element-wise.

Specifically, y = 1 / (1 + exp(-x)).

Args:

	x: A Tensor with type float, double, int32, complex64, int64,
or qint32.

	name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32
otherwise the return type is quint8.

tf.tanh(x, name=None) {#tanh}

Computes hyperbolic tangent of x element-wise.

Args:

	x: A Tensor with type float, double, int32, complex64, int64,
or qint32.

	name: A name for the operation (optional).

Returns:

A Tensor with the same type as x if x.dtype != qint32 otherwise
the return type is quint8.

Convolution

The convolution ops sweep a 2-D filter over a batch of images, applying the
filter to each window of each image of the appropriate size. The different
ops trade off between generic vs. specific filters:

	conv2d: Arbitrary filters that can mix channels together.

	depthwise_conv2d: Filters that operate on each channel independently.

	separable_conv2d: A depthwise spatial filter followed by a pointwise filter.

Note that although these ops are called “convolution”, they are strictly
speaking “cross-correlation” since the filter is combined with an input window
without reversing the filter. For details, see the properties of
cross-correlation [https://en.wikipedia.org/wiki/Cross-correlation#Properties].

The filter is applied to image patches of the same size as the filter and
strided according to the strides argument. strides = [1, 1, 1, 1] applies
the filter to a patch at every offset, strides = [1, 2, 2, 1] applies the
filter to every other image patch in each dimension, etc.

Ignoring channels for the moment, and assume that the the 4-D input has shape
[batch, in_height, in_width, ...] and the 4-D filter has shape
[filter_height, filter_width, ...], then the spatial semantics of the
convolution ops are as follows: first, according to the padding scheme chosen
as 'SAME' or 'VALID', the output size and the padding pixels are computed.
For the 'SAME' padding, the output height and width are computed as:

out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(stides[2]))

and the padding on the top and left are computed as:

pad_along_height = ((out_height - 1) * strides[1] +
 filter_height - in_height)
pad_along_width = ((out_width - 1) * strides[2] +
 filter_width - in_width)
pad_top = pad_along_height / 2
pad_left = pad_along_width / 2

Note that the division by 2 means that there might be cases when the padding on
both sides (top vs bottom, right vs left) are off by one. In this case, the
bottom and right sides always get the one additional padded pixel. For example,
when pad_along_height is 5, we pad 2 pixels at the top and 3 pixels at the
bottom. Note that this is different from existing libraries such as cuDNN and
Caffe, which explicitly specify the number of padded pixels and always pad the
same number of pixels on both sides.

For the 'VALID‘ padding, the output height and width are computed as:

out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(stides[2]))

and the padding values are always zero. The output is then computed as

output[b, i, j, :] =
 sum_{di, dj} input[b, strides[1] * i + di - pad_top,
 strides[2] * j + dj - pad_left, ...] *
 filter[di, dj, ...]

where any value outside the original input image region are considered zero (
i.e. we pad zero values around the border of the image).

Since input is 4-D, each input[b, i, j, :] is a vector. For conv2d, these
vectors are multiplied by the filter[di, dj, :, :] matrices to produce new
vectors. For depthwise_conv_2d, each scalar component input[b, i, j, k]
is multiplied by a vector filter[di, dj, k], and all the vectors are
concatenated.

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) {#conv2d}

Computes a 2-D convolution given 4-D input and filter tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter / kernel tensor of shape
[filter_height, filter_width, in_channels, out_channels], this op
performs the following:

	Flattens the filter to a 2-D matrix with shape
[filter_height * filter_width * in_channels, output_channels].

	Extracts image patches from the the input tensor to form a virtual
tensor of shape [batch, out_height, out_width, filter_height * filter_width * in_channels].

	For each patch, right-multiplies the filter matrix and the image patch
vector.

In detail,

output[b, i, j, k] =
 sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
 filter[di, dj, q, k]

Must have strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertices strides, strides = [1, stride, stride, 1].

Args:

	input: A Tensor. Must be one of the following types: float32, float64.

	filter: A Tensor. Must have the same type as input.

	strides: A list of ints.
1-D of length 4. The stride of the sliding window for each dimension
of input.

	padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

	use_cudnn_on_gpu: An optional bool. Defaults to True.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None) {#depthwise_conv2d}

Depthwise 2-D convolution.

Given an input tensor of shape [batch, in_height, in_width, in_channels]
and a filter tensor of shape
[filter_height, filter_width, in_channels, channel_multiplier]
containing in_channels convolutional filters of depth 1, depthwise_conv2d
applies a different filter to each input channel (expanding from 1 channel
to channel_multiplier channels for each), then concatenates the results
together. The output has in_channels * channel_multiplier channels.

In detail,

output[b, i, j, k * channel_multiplier + q] =
 sum_{di, dj} input[b, strides[1] * i + di, strides[2] * j + dj, k] *
 filter[di, dj, k, q]

Must have strides[0] = strides[3] = 1. For the most common case of the
same horizontal and vertical strides, strides = [1, stride, stride, 1].

Args:

	input: 4-D with shape [batch, in_height, in_width, in_channels].

	filter: 4-D with shape
[filter_height, filter_width, in_channels, channel_multiplier].

	strides: 1-D of size 4. The stride of the sliding window for each
dimension of input.

	padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

	name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape
[batch, out_height, out_width, in_channels * channel_multiplier].

tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None) {#separable_conv2d}

2-D convolution with separable filters.

Performs a depthwise convolution that acts separately on channels followed by
a pointwise convolution that mixes channels. Note that this is separability
between dimensions [1, 2] and 3, not spatial separability between
dimensions 1 and 2.

In detail,

output[b, i, j, k] = sum_{di, dj, q, r]
 input[b, strides[1] * i + di, strides[2] * j + dj, q] *
 depthwise_filter[di, dj, q, r] *
 pointwise_filter[0, 0, q * channel_multiplier + r, k]

strides controls the strides for the depthwise convolution only, since
the pointwise convolution has implicit strides of [1, 1, 1, 1]. Must have
strides[0] = strides[3] = 1. For the most common case of the same
horizontal and vertical strides, strides = [1, stride, stride, 1].

Args:

	input: 4-D Tensor with shape [batch, in_height, in_width, in_channels].

	depthwise_filter: 4-D Tensor with shape
[filter_height, filter_width, in_channels, channel_multiplier].
Contains in_channels convolutional filters of depth 1.

	pointwise_filter: 4-D Tensor with shape
[1, 1, channel_multiplier * in_channels, out_channels]. Pointwise
filter to mix channels after depthwise_filter has convolved spatially.

	strides: 1-D of size 4. The strides for the depthwise convolution for
each dimension of input.

	padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

	name: A name for this operation (optional).

Returns:

A 4-D Tensor of shape [batch, out_height, out_width, out_channels].

Pooling

The pooling ops sweep a rectangular window over the input tensor, computing a
reduction operation for each window (average, max, or max with argmax). Each
pooling op uses rectangular windows of size ksize separated by offset
strides. For example, if strides is all ones every window is used, if
strides is all twos every other window is used in each dimension, etc.

In detail, the output is

output[i] = reduce(value[strides * i:strides * i + ksize])

where the indices also take into consideration the padding values. Please refer
to the Convolution section for details about the padding calculation.

tf.nn.avg_pool(value, ksize, strides, padding, name=None) {#avg_pool}

Performs the average pooling on the input.

Each entry in output is the mean of the corresponding size ksize
window in value.

Args:

	value: A 4-D Tensor of shape [batch, height, width, channels] and type
float32, float64, qint8, quint8, or qint32.

	ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.

	strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.

	padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

	name: Optional name for the operation.

Returns:

A Tensor with the same type as value. The average pooled output tensor.

tf.nn.max_pool(value, ksize, strides, padding, name=None) {#max_pool}

Performs the max pooling on the input.

Args:

	value: A 4-D Tensor with shape [batch, height, width, channels] and
type float32, float64, qint8, quint8, qint32.

	ksize: A list of ints that has length >= 4. The size of the window for
each dimension of the input tensor.

	strides: A list of ints that has length >= 4. The stride of the sliding
window for each dimension of the input tensor.

	padding: A string, either 'VALID' or 'SAME'. The padding algorithm.

	name: Optional name for the operation.

Returns:

A Tensor with the same type as value. The max pooled output tensor.

tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None) {#max_pool_with_argmax}

Performs max pooling on the input and outputs both max values and indices.

The indices in argmax are flattened, so that a maximum value at position
[b, y, x, c] becomes flattened index
((b * height + y) * width + x) * channels + c.

Args:

	input: A Tensor of type float32.
4-D with shape [batch, height, width, channels]. Input to pool over.

	ksize: A list of ints that has length >= 4.
The size of the window for each dimension of the input tensor.

	strides: A list of ints that has length >= 4.
The stride of the sliding window for each dimension of the
input tensor.

	padding: A string from: "SAME", "VALID".
The type of padding algorithm to use.

	Targmax: An optional tf.DType from: tf.int32, tf.int64. Defaults to tf.int64.

	name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (output, argmax).

	output: A Tensor of type float32. The max pooled output tensor.

	argmax: A Tensor of type Targmax. 4-D. The flattened indices of the max values chosen for each output.

Normalization

Normalization is useful to prevent neurons from saturating when inputs may
have varying scale, and to aid generalization.

tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None) {#l2_normalize}

Normalizes along dimension dim using an L2 norm.

For a 1-D tensor with dim = 0, computes

output = x / sqrt(max(sum(x**2), epsilon))

For x with more dimensions, independently normalizes each 1-D slice along
dimension dim.

Args:

	x: A Tensor.

	dim: Dimension along which to normalize.

	epsilon: A lower bound value for the norm. Will use sqrt(epsilon) as the
divisor if norm < sqrt(epsilon).

	name: A name for this operation (optional).

Returns:

A Tensor with the same shape as x.

tf.nn.local_response_normalization(input, depth_radius=None, bias=None, alpha=None, beta=None, name=None) {#local_response_normalization}

Local Response Normalization.

The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the last
dimension), and each vector is normalized independently. Within a given vector,
each component is divided by the weighted, squared sum of inputs within
depth_radius. In detail,

sqr_sum[a, b, c, d] =
 sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum ** beta)

For details, see [Krizhevsky et al., ImageNet classification with deep
convolutional neural networks (NIPS 2012)]
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks).

Args:

	input: A Tensor of type float32. 4-D.

	depth_radius: An optional int. Defaults to 5.
0-D. Half-width of the 1-D normalization window.

	bias: An optional float. Defaults to 1.
An offset (usually positive to avoid dividing by 0).

	alpha: An optional float. Defaults to 1.
A scale factor, usually positive.

	beta: An optional float. Defaults to 0.5. An exponent.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.nn.moments(x, axes, name=None) {#moments}

Calculate the mean and variance of x.

The mean and variance are calculated by aggregating the contents of x
across axes. If x is 1-D and axes = [0] this is just the mean
and variance of a vector.

For so-called “global normalization” needed for convolutional filters pass
axes=[0, 1, 2] (batch, height, width). For batch normalization pass
axes=[0] (batch).

Args:

	x: A Tensor.

	axes: array of ints. Axes along which to compute mean and
variance.

	name: Name used to scope the operations that compute the moments.

Returns:

Two Tensor objects: mean and variance.

Losses

The loss ops measure error between two tensors, or between a tensor and zero.
These can be used for measuring accuracy of a network in a regression task
or for regularization purposes (weight decay).

tf.nn.l2_loss(t, name=None) {#l2_loss}

L2 Loss.

Computes half the L2 norm of a tensor without the sqrt:

output = sum(t ** 2) / 2

Args:

	t: A Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, int16, int8, complex64, qint8, quint8, qint32.
Typically 2-D, but may have any dimensions.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as t. 0-D.

Classification

TensorFlow provides several operations that help you perform classification.

tf.nn.sigmoid_cross_entropy_with_logits(logits, targets, name=None) {#sigmoid_cross_entropy_with_logits}

Computes sigmoid cross entropy given logits.

Measures the probability error in discrete classification tasks in which each
class is independent and not mutually exclusive. For instance, one could
perform multilabel classification where a picture can contain both an elephant
and a dog at the same time.

For brevity, let x = logits, z = targets. The logistic loss is

x - x * z + log(1 + exp(-x))

To ensure stability and avoid overflow, the implementation uses

max(x, 0) - x * z + log(1 + exp(-abs(x)))

logits and targets must have the same type and shape.

Args:

	logits: A Tensor of type float32 or float64.

	targets: A Tensor of the same type and shape as logits.

	name: A name for the operation (optional).

Returns:

A Tensor of the same shape as logits with the componentwise
logistic losses.

tf.nn.softmax(logits, name=None) {#softmax}

Computes softmax activations.

For each batch i and class j we have

softmax[i, j] = exp(logits[i, j]) / sum(exp(logits[i]))

Args:

	logits: A Tensor. Must be one of the following types: float32, float64.
2-D with shape [batch_size, num_classes].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as logits. Same shape as logits.

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) {#softmax_cross_entropy_with_logits}

Computes softmax cross entropy between logits and labels.

Measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For
example, each CIFAR-10 image is labeled with one and only one label: an image
can be a dog or a truck, but not both.

WARNING: This op expects unscaled logits, since it performs a softmax
on logits internally for efficiency. Do not call this op with the
output of softmax, as it will produce incorrect results.

logits and labels must have the same shape [batch_size, num_classes]
and the same dtype (either float32 or float64).

Args:

	logits: Unscaled log probabilities.

	labels: Each row labels[i] must be a valid probability distribution.

	name: A name for the operation (optional).

Returns:

A 1-D Tensor of length batch_size of the same type as logits with the
softmax cross entropy loss.

Embeddings

TensorFlow provides library support for looking up values in embedding
tensors.

tf.nn.embedding_lookup(params, ids, name=None) {#embedding_lookup}

Looks up ids in a list of embedding tensors.

This function is used to perform parallel lookups on the list of
tensors in params. It is a generalization of
tf.gather(), where params is
interpreted as a partition of a larger embedding tensor.

If len(params) > 1, each element id of ids is partitioned between
the elements of params by computing p = id % len(params), and is
then used to look up the slice params[p][id // len(params), ...].

The results of the lookup are then concatenated into a dense
tensor. The returned tensor has shape shape(ids) + shape(params)[1:].

Args:

	params: A list of tensors with the same shape and type.

	ids: A Tensor with type int32 or int64 containing the ids to be looked
up in params.

	name: A name for the operation (optional).

Returns:

A Tensor with the same type as the tensors in params.

Raises:

	ValueError: If params is empty.

Evaluation

The evaluation ops are useful for measuring the performance of a network.
Since they are nondifferentiable, they are typically used at evaluation time.

tf.nn.top_k(input, k, name=None) {#top_k}

Returns the values and indices of the k largest elements for each row.

\(values_{i, j}\) represents the j-th largest element in \(input_i\).

\(indices_{i, j}\) gives the column index of the corresponding element,
such that \(input_{i, indices_{i, j}} = values_{i, j}\). If two
elements are equal, the lower-index element appears first.

Args:

	input: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8.
A batch_size x classes tensor.

	k: An int that is >= 1.
Number of top elements to look for within each row.

	name: A name for the operation (optional).

Returns:

A tuple of Tensor objects (values, indices).

	values: A Tensor. Has the same type as input. A batch_size x k tensor with the k largest elements for
each row, sorted in descending order.

	indices: A Tensor of type int32. A batch_size x k tensor with the index of each value within
each row.

tf.nn.in_top_k(predictions, targets, k, name=None) {#in_top_k}

Says whether the targets are in the top K predictions.

This outputs a batch_size bool array, an entry out[i] is true if the
prediction for the target class is among the top k predictions among
all predictions for example i. Note that the behavior of InTopK differs
from the TopK op in its handling of ties; if multiple classes have the
same prediction value and straddle the top-k boundary, all of those
classes are considered to be in the top k.

More formally, let

\(predictions_i\) be the predictions for all classes for example i,
\(targets_i\) be the target class for example i,
\(out_i\) be the output for example i,

$$out_i = predictions_{i, targets_i} \in TopKIncludingTies(predictions_i)$$

Args:

	predictions: A Tensor of type float32.
A batch_size x classes tensor.

	targets: A Tensor. Must be one of the following types: int32, int64.
A batch_size vector of class ids.

	k: An int. Number of top elements to look at for computing precision.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool. Computed Precision at k as a bool Tensor.

Candidate Sampling

Do you want to train a multiclass or multilabel model with thousands
or millions of output classes (for example, a language model with a
large vocabulary)? Training with a full Softmax is slow in this case,
since all of the classes are evaluated for every training example.
Candidate Sampling training algorithms can speed up your step times by
only considering a small randomly-chosen subset of contrastive classes
(called candidates) for each batch of training examples.

See our [Candidate Sampling Algorithms Reference]
(../../extras/candidate_sampling.pdf)

Sampled Loss Functions

TensorFlow provides the following sampled loss functions for faster training.

tf.nn.nce_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, name='nce_loss') {#nce_loss}

Computes and returns the noise-contrastive estimation training loss.

See [Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models]
(http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).
Also see our [Candidate Sampling Algorithms Reference]
(http://www.tensorflow.org/extras/candidate_sampling.pdf)

Note: In the case where num_true > 1, we assign to each target class
the target probability 1 / num_true so that the target probabilities
sum to 1 per-example.

Note: It would be useful to allow a variable number of target classes per
example. We hope to provide this functionality in a future release.
For now, if you have a variable number of target classes, you can pad them
out to a constant number by either repeating them or by padding
with an otherwise unused class.

Args:

	weights: A Tensor of shape [num_classes, dim], or a list of Tensor
objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-sharded) class embeddings.

	biases: A Tensor of shape [num_classes]. The class biases.

	inputs: A Tensor of shape [batch_size, dim]. The forward
activations of the input network.

	labels: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

	num_sampled: An int. The number of classes to randomly sample per batch.

	num_classes: An int. The number of possible classes.

	num_true: An int. The number of target classes per training example.

	sampled_values: a tuple of (sampled_candidates, true_expected_count,
sampled_expected_count) returned by a *_candidate_sampler function.
(if None, we default to log_uniform_candidate_sampler)

	remove_accidental_hits: A bool. Whether to remove “accidental hits”
where a sampled class equals one of the target classes. If set to
True, this is a “Sampled Logistic” loss instead of NCE, and we are
learning to generate log-odds instead of log probabilities. See
our [Candidate Sampling Algorithms Reference]
(http://www.tensorflow.org/extras/candidate_sampling.pdf).
Default is False.

	name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example NCE losses.

tf.nn.sampled_softmax_loss(weights, biases, inputs, labels, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=True, name='sampled_softmax_loss') {#sampled_softmax_loss}

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number of
classes.

This operation is for training only. It is generally an underestimate of
the full softmax loss.

At inference time, you can compute full softmax probabilities with the
expression tf.nn.softmax(tf.matmul(inputs, weights) + biases).

See our [Candidate Sampling Algorithms Reference]
(http://www.tensorflow.org/extras/candidate_sampling.pdf)

Also see Section 3 of http://arxiv.org/abs/1412.2007 for the math.

Args:

	weights: A Tensor of shape [num_classes, dim], or a list of Tensor
objects whose concatenation along dimension 0 has shape
[num_classes, dim]. The (possibly-sharded) class embeddings.

	biases: A Tensor of shape [num_classes]. The class biases.

	inputs: A Tensor of shape [batch_size, dim]. The forward
activations of the input network.

	labels: A Tensor of type int64 and shape [batch_size, num_true]. The target classes. Note that this format differs from
the labels argument of nn.softmax_cross_entropy_with_logits.

	num_sampled: An int. The number of classes to randomly sample per batch.

	num_classes: An int. The number of possible classes.

	num_true: An int. The number of target classes per training example.

	sampled_values: a tuple of (sampled_candidates, true_expected_count,
sampled_expected_count) returned by a *_candidate_sampler function.
(if None, we default to log_uniform_candidate_sampler)

	remove_accidental_hits: A bool. whether to remove “accidental hits”
where a sampled class equals one of the target classes. Default is
True.

	name: A name for the operation (optional).

Returns:

A batch_size 1-D tensor of per-example sampled softmax losses.

Candidate Samplers

TensorFlow provides the following samplers for randomly sampling candidate
classes when using one of the sampled loss functions above.

tf.nn.uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#uniform_candidate_sampler}

Samples a set of classes using a uniform base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is the uniform distribution
over the range of integers [0, range_max].

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

	true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

	num_true: An int. The number of target classes per training example.

	num_sampled: An int. The number of classes to randomly sample per batch.

	unique: A bool. Determines whether all sampled classes in a batch are
unique.

	range_max: An int. The number of possible classes.

	seed: An int. An operation-specific seed. Default is 0.

	name: A name for the operation (optional).

Returns:

	sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

	true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

	sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

tf.nn.log_uniform_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#log_uniform_candidate_sampler}

Samples a set of classes using a log-uniform (Zipfian) base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is an approximately log-uniform
or Zipfian distribution:

P(class) = (log(class + 2) - log(class + 1)) / log(range_max + 1)

This sampler is useful when the target classes approximately follow such
a distribution - for example, if the classes represent words in a lexicon
sorted in decreasing order of frequency. If your classes are not ordered by
decreasing frequency, do not use this op.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

	true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

	num_true: An int. The number of target classes per training example.

	num_sampled: An int. The number of classes to randomly sample per batch.

	unique: A bool. Determines whether all sampled classes in a batch are
unique.

	range_max: An int. The number of possible classes.

	seed: An int. An operation-specific seed. Default is 0.

	name: A name for the operation (optional).

Returns:

	sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

	true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

	sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

tf.nn.learned_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, seed=None, name=None) {#learned_unigram_candidate_sampler}

Samples a set of classes from a distribution learned during training.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution for this operation is constructed on the fly
during training. It is a unigram distribution over the target
classes seen so far during training. Every integer in [0, range_max]
begins with a weight of 1, and is incremented by 1 each time it is
seen as a target class. The base distribution is not saved to checkpoints,
so it is reset when the model is reloaded.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

	true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

	num_true: An int. The number of target classes per training example.

	num_sampled: An int. The number of classes to randomly sample per batch.

	unique: A bool. Determines whether all sampled classes in a batch are
unique.

	range_max: An int. The number of possible classes.

	seed: An int. An operation-specific seed. Default is 0.

	name: A name for the operation (optional).

Returns:

	sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

	true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

	sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

tf.nn.fixed_unigram_candidate_sampler(true_classes, num_true, num_sampled, unique, range_max, vocab_file='', distortion=0.0, num_reserved_ids=0, num_shards=1, shard=0, unigrams=[], seed=None, name=None) {#fixed_unigram_candidate_sampler}

Samples a set of classes using the provided (fixed) base distribution.

This operation randomly samples a tensor of sampled classes
(sampled_candidates) from the range of integers [0, range_max].

The elements of sampled_candidates are drawn without replacement
(if unique=True) or with replacement (if unique=False) from
the base distribution.

The base distribution is read from a file or passed in as an
in-memory array. There is also an option to skew the distribution by
applying a distortion power to the weights.

In addition, this operation returns tensors true_expected_count
and sampled_expected_count representing the number of times each
of the target classes (true_classes) and the sampled
classes (sampled_candidates) is expected to occur in an average
tensor of sampled classes. These values correspond to Q(y|x)
defined in this
document [http://www.tensorflow.org/extras/candidate_sampling.pdf].
If unique=True, then these are post-rejection probabilities and we
compute them approximately.

Args:

	true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

	num_true: An int. The number of target classes per training example.

	num_sampled: An int. The number of classes to randomly sample per batch.

	unique: A bool. Determines whether all sampled classes in a batch are
unique.

	range_max: An int. The number of possible classes.

	vocab_file: Each valid line in this file (which should have a CSV-like
format) corresponds to a valid word ID. IDs are in sequential order,
starting from num_reserved_ids. The last entry in each line is expected
to be a value corresponding to the count or relative probability. Exactly
one of vocab_file and unigrams needs to be passed to this operation.

	distortion: The distortion is used to skew the unigram probability
distribution. Each weight is first raised to the distortion’s power
before adding to the internal unigram distribution. As a result,
distortion = 1.0 gives regular unigram sampling (as defined by the vocab
file), and distortion = 0.0 gives a uniform distribution.

	num_reserved_ids: Optionally some reserved IDs can be added in the range
[0, num_reserved_ids] by the users. One use case is that a special
unknown word token is used as ID 0. These IDs will have a sampling
probability of 0.

	num_shards: A sampler can be used to sample from a subset of the original
range in order to speed up the whole computation through parallelism. This
parameter (together with shard) indicates the number of partitions that
are being used in the overall computation.

	shard: A sampler can be used to sample from a subset of the original range
in order to speed up the whole computation through parallelism. This
parameter (together with num_shards) indicates the particular partition
number of the operation, when partitioning is being used.

	unigrams: A list of unigram counts or probabilities, one per ID in
sequential order. Exactly one of vocab_file and unigrams should be
passed to this operation.

	seed: An int. An operation-specific seed. Default is 0.

	name: A name for the operation (optional).

Returns:

	sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled classes.

	true_expected_count: A tensor of type float. Same shape as
true_classes. The expected counts under the sampling distribution
of each of true_classes.

	sampled_expected_count: A tensor of type float. Same shape as
sampled_candidates. The expected counts under the sampling distribution
of each of sampled_candidates.

Miscellaneous candidate sampling utilities

tf.nn.compute_accidental_hits(true_classes, sampled_candidates, num_true, seed=None, name=None) {#compute_accidental_hits}

Compute the position ids in sampled_candidates matching true_classes.

In Candidate Sampling, this operation facilitates virtually removing
sampled classes which happen to match target classes. This is done
in Sampled Softmax and Sampled Logistic.

See our Candidate Sampling Algorithms
Reference [http://www.tensorflow.org/extras/candidate_sampling.pdf].

We presuppose that the sampled_candidates are unique.

We call it an ‘accidental hit’ when one of the target classes
matches one of the sampled classes. This operation reports
accidental hits as triples (index, id, weight), where index
represents the row number in true_classes, id represents the
position in sampled_candidates, and weight is -FLOAT_MAX.

The result of this op should be passed through a sparse_to_dense
operation, then added to the logits of the sampled classes. This
removes the contradictory effect of accidentally sampling the true
target classes as noise classes for the same example.

Args:

	true_classes: A Tensor of type int64 and shape [batch_size, num_true]. The target classes.

	sampled_candidates: A tensor of type int64 and shape [num_sampled].
The sampled_candidates output of CandidateSampler.

	num_true: An int. The number of target classes per training example.

	seed: An int. An operation-specific seed. Default is 0.

	name: A name for the operation (optional).

Returns:

	indices: A Tensor of type int32 and shape [num_accidental_hits].
Values indicate rows in true_classes.

	ids: A Tensor of type int64 and shape [num_accidental_hits].
Values indicate positions in sampled_candidates.

	weights: A Tensor of type float and shape [num_accidental_hits].
Each value is -FLOAT_MAX.

 Running Graphs

Running Graphs

[TOC]

This library contains classes for launching graphs and executing operations.

The basic usage guide has
examples of how a graph is launched in a tf.Session.

Session management

class tf.Session {#Session}

A class for running TensorFlow operations.

A Session object encapsulates the environment in which Operation
objects are executed, and Tensor objects are evaluated. For
example:

Build a graph.
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b

Launch the graph in a session.
sess = tf.Session()

Evaluate the tensor `c`.
print sess.run(c)

A session may own resources, such as
variables, queues,
and readers. It is important to release
these resources when they are no longer required. To do this, either
invoke the close() method on the session, or use
the session as a context manager. The following two examples are
equivalent:

Using the `close()` method.
sess = tf.Session()
sess.run(...)
sess.close()

Using the context manager.
with tf.Session() as sess:
 sess.run(...)

The [ConfigProto]
(https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/config.proto)
protocol buffer exposes various configuration options for a
session. For example, to create a session that uses soft constraints
for device placement, and log the resulting placement decisions,
create a session as follows:

Launch the graph in a session that allows soft device placement and
logs the placement decisions.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
 log_device_placement=True))

tf.Session.__init__(target='', graph=None, config=None) {#Session.init}

Creates a new TensorFlow session.

If no graph argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with tf.Graph() in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.

Args:

	target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine. At present, no value
other than the empty string is supported.

	graph: (Optional.) The Graph to be launched (described above).

	config: (Optional.) A ConfigProto [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/core/framework/config.proto]
protocol buffer with configuration options for the session.

tf.Session.run(fetches, feed_dict=None) {#Session.run}

Runs the operations and evaluates the tensors in fetches.

This method runs one “step” of TensorFlow computation, by
running the necessary graph fragment to execute every Operation
and evaluate every Tensor in fetches, substituting the values in
feed_dict for the corresponding input values.

The fetches argument may be a list of graph elements or a single
graph element, and these determine the return value of this
method. A graph element can be one of the following types:

	If the ith element of fetches is an
Operation, the ith
return value will be None.

	If the ith element of fetches is a
Tensor, the ith return
value will be a numpy ndarray containing the value of that tensor.

	If the ith element of fetches is a
SparseTensor,
the ith return value will be a
SparseTensorValue
containing the value of that sparse tensor.

The optional feed_dict argument allows the caller to override
the value of tensors in the graph. Each key in feed_dict can be
one of the following types:

	If the key is a Tensor, the
value may be a Python scalar, string, list, or numpy ndarray
that can be converted to the same dtype as that
tensor. Additionally, if the key is a
placeholder, the shape of
the value will be checked for compatibility with the placeholder.

	If the key is a
SparseTensor,
the value should be a
SparseTensorValue.

Args:

	fetches: A single graph element, or a list of graph elements
(described above).

	feed_dict: A dictionary that maps graph elements to values
(described above).

Returns:

Either a single value if fetches is a single graph element, or
a list of values if fetches is a list (described above).

Raises:

	RuntimeError: If this Session is in an invalid state (e.g. has been
closed).

	TypeError: If fetches or feed_dict keys are of an inappropriate type.

	ValueError: If fetches or feed_dict keys are invalid or refer to a
Tensor that doesn’t exist.

tf.Session.close() {#Session.close}

Closes this session.

Calling this method frees all resources associated with the session.

Raises:

	RuntimeError: If an error occurs while closing the session.

tf.Session.graph {#Session.graph}

The graph that was launched in this session.

tf.Session.as_default() {#Session.as_default}

Returns a context manager that makes this object the default session.

Use with the with keyword to specify that calls to
Operation.run() or
Tensor.run() should be
executed in this session.

c = tf.constant(..)
sess = tf.Session()

with sess.as_default():
 assert tf.get_default_session() is sess
 print c.eval()

To get the current default session, use
tf.get_default_session().

N.B. The as_default context manager does not close the
session when you exit the context, and you must close the session
explicitly.

c = tf.constant(...)
sess = tf.Session()
with sess.as_default():
 print c.eval()
...
with sess.as_default():
 print c.eval()

sess.close()

Alternatively, you can use with tf.Session(): to create a
session that is automatically closed on exiting the context,
including when an uncaught exception is raised.

N.B. The default graph is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a with sess.as_default(): in that
thread’s function.

Returns:

A context manager using this session as the default session.

class tf.InteractiveSession {#InteractiveSession}

A TensorFlow Session for use in interactive contexts, such as a shell.

The only difference with a regular Session is that an InteractiveSession
installs itself as the default session on construction.
The methods Tensor.eval()
and Operation.run()
will use that session to run ops.

This is convenient in interactive shells and IPython
notebooks [http://ipython.org], as it avoids having to pass an explicit
Session object to run ops.

For example:

sess = tf.InteractiveSession()
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
We can just use 'c.eval()' without passing 'sess'
print c.eval()
sess.close()

Note that a regular session installs itself as the default session when it
is created in a with statement. The common usage in non-interactive
programs is to follow that pattern:

a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
with tf.Session():
 # We can also use 'c.eval()' here.
 print c.eval()

tf.InteractiveSession.__init__(target='', graph=None) {#InteractiveSession.init}

Creates a new interactive TensorFlow session.

If no graph argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with tf.Graph() in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.

Args:

	target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine. At present, no value
other than the empty string is supported.

	graph: (Optional.) The Graph to be launched (described above).

tf.InteractiveSession.close() {#InteractiveSession.close}

Closes an InteractiveSession.

tf.get_default_session() {#get_default_session}

Returns the default session for the current thread.

The returned Session will be the innermost session on which a
Session or Session.as_default() context has been entered.

N.B. The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a with sess.as_default(): in that
thread’s function.

Returns:

The default Session being used in the current thread.

Error classes

class tf.OpError {#OpError}

A generic error that is raised when TensorFlow execution fails.

Whenever possible, the session will raise a more specific subclass
of OpError from the tf.errors module.

tf.OpError.op {#OpError.op}

The operation that failed, if known.

N.B. If the failed op was synthesized at runtime, e.g. a Send
or Recv op, there will be no corresponding
Operation
object. In that case, this will return None, and you should
instead use the OpError.node_def to
discover information about the op.

Returns:

The Operation that failed, or None.

tf.OpError.node_def {#OpError.node_def}

The NodeDef proto representing the op that failed.

Other Methods

tf.OpError.__init__(node_def, op, message, error_code) {#OpError.init}

Creates a new OpError indicating that a particular op failed.

Args:

	node_def: The graph_pb2.NodeDef proto representing the op that failed.

	op: The ops.Operation that failed, if known; otherwise None.

	message: The message string describing the failure.

	error_code: The error_codes_pb2.Code describing the error.

tf.OpError.error_code {#OpError.error_code}

The integer error code that describes the error.

tf.OpError.message {#OpError.message}

The error message that describes the error.

class tf.errors.CancelledError {#CancelledError}

Raised when an operation or step is cancelled.

For example, a long-running operation (e.g.
queue.enqueue() may be
cancelled by running another operation (e.g.
queue.close(cancel_pending_enqueues=True),
or by closing the session.
A step that is running such a long-running operation will fail by raising
CancelledError.

tf.errors.CancelledError.__init__(node_def, op, message) {#CancelledError.init}

Creates a CancelledError.

class tf.errors.UnknownError {#UnknownError}

Unknown error.

An example of where this error may be returned is if a Status value
received from another address space belongs to an error-space that
is not known to this address space. Also errors raised by APIs that
do not return enough error information may be converted to this
error.

tf.errors.UnknownError.__init__(node_def, op, message, error_code=2) {#UnknownError.init}

Creates an UnknownError.

class tf.errors.InvalidArgumentError {#InvalidArgumentError}

Raised when an operation receives an invalid argument.

This may occur, for example, if an operation is receives an input
tensor that has an invalid value or shape. For example, the
tf.matmul() op will raise this
error if it receives an input that is not a matrix, and the
tf.reshape() op will raise
this error if the new shape does not match the number of elements in the input
tensor.

tf.errors.InvalidArgumentError.__init__(node_def, op, message) {#InvalidArgumentError.init}

Creates an InvalidArgumentError.

class tf.errors.DeadlineExceededError {#DeadlineExceededError}

Raised when a deadline expires before an operation could complete.

This exception is not currently used.

tf.errors.DeadlineExceededError.__init__(node_def, op, message) {#DeadlineExceededError.init}

Creates a DeadlineExceededError.

class tf.errors.NotFoundError {#NotFoundError}

Raised when a requested entity (e.g., a file or directory) was not found.

For example, running the
tf.WholeFileReader.read()
operation could raise NotFoundError if it receives the name of a file that
does not exist.

tf.errors.NotFoundError.__init__(node_def, op, message) {#NotFoundError.init}

Creates a NotFoundError.

class tf.errors.AlreadyExistsError {#AlreadyExistsError}

Raised when an entity that we attempted to create already exists.

For example, running an operation that saves a file
(e.g. tf.train.Saver.save())
could potentially raise this exception if an explicit filename for an
existing file was passed.

tf.errors.AlreadyExistsError.__init__(node_def, op, message) {#AlreadyExistsError.init}

Creates an AlreadyExistsError.

class tf.errors.PermissionDeniedError {#PermissionDeniedError}

Raised when the caller does not have permission to run an operation.

For example, running the
tf.WholeFileReader.read()
operation could raise PermissionDeniedError if it receives the name of a
file for which the user does not have the read file permission.

tf.errors.PermissionDeniedError.__init__(node_def, op, message) {#PermissionDeniedError.init}

Creates a PermissionDeniedError.

class tf.errors.UnauthenticatedError {#UnauthenticatedError}

The request does not have valid authentication credentials.

This exception is not currently used.

tf.errors.UnauthenticatedError.__init__(node_def, op, message) {#UnauthenticatedError.init}

Creates an UnauthenticatedError.

class tf.errors.ResourceExhaustedError {#ResourceExhaustedError}

Some resource has been exhausted.

For example, this error might be raised if a per-user quota is
exhausted, or perhaps the entire file system is out of space.

tf.errors.ResourceExhaustedError.__init__(node_def, op, message) {#ResourceExhaustedError.init}

Creates a ResourceExhaustedError.

class tf.errors.FailedPreconditionError {#FailedPreconditionError}

Operation was rejected because the system is not in a state to execute it.

This exception is most commonly raised when running an operation
that reads a tf.Variable
before it has been initialized.

tf.errors.FailedPreconditionError.__init__(node_def, op, message) {#FailedPreconditionError.init}

Creates a FailedPreconditionError.

class tf.errors.AbortedError {#AbortedError}

The operation was aborted, typically due to a concurrent action.

For example, running a
queue.enqueue()
operation may raise AbortedError if a
queue.close() operation
previously ran.

tf.errors.AbortedError.__init__(node_def, op, message) {#AbortedError.init}

Creates an AbortedError.

class tf.errors.OutOfRangeError {#OutOfRangeError}

Raised when an operation executed past the valid range.

This exception is raised in “end-of-file” conditions, such as when a
queue.dequeue()
operation is blocked on an empty queue, and a
queue.close()
operation executes.

tf.errors.OutOfRangeError.__init__(node_def, op, message) {#OutOfRangeError.init}

Creates an OutOfRangeError.

class tf.errors.UnimplementedError {#UnimplementedError}

Raised when an operation has not been implemented.

Some operations may raise this error when passed otherwise-valid
arguments that it does not currently support. For example, running
the tf.nn.max_pool() operation
would raise this error if pooling was requested on the batch dimension,
because this is not yet supported.

tf.errors.UnimplementedError.__init__(node_def, op, message) {#UnimplementedError.init}

Creates an UnimplementedError.

class tf.errors.InternalError {#InternalError}

Raised when the system experiences an internal error.

This exception is raised when some invariant expected by the runtime
has been broken. Catching this exception is not recommended.

tf.errors.InternalError.__init__(node_def, op, message) {#InternalError.init}

Creates an InternalError.

class tf.errors.UnavailableError {#UnavailableError}

Raised when the runtime is currently unavailable.

This exception is not currently used.

tf.errors.UnavailableError.__init__(node_def, op, message) {#UnavailableError.init}

Creates an UnavailableError.

class tf.errors.DataLossError {#DataLossError}

Raised when unrecoverable data loss or corruption is encountered.

For example, this may be raised by running a
tf.WholeFileReader.read()
operation, if the file is truncated while it is being read.

tf.errors.DataLossError.__init__(node_def, op, message) {#DataLossError.init}

Creates a DataLossError.

 Control Flow

Control Flow

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Control Flow Operations

TensorFlow provides several operations and classes that you can use to control
the execution of operations and add conditional dependencies to your graph.

tf.identity(input, name=None) {#identity}

Return a tensor with the same shape and contents as the input tensor or value.

Args:

	input: A Tensor.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.

tf.tuple(tensors, name=None, control_inputs=None) {#tuple}

Group tensors together.

This creates a tuple of tensors with the same values as the tensors
argument, except that the value of each tensor is only returned after the
values of all tensors have been computed.

control_inputs contains additional ops that have to finish before this op
finishes, but whose outputs are not returned.

This can be used as a “join” mechanism for parallel computations: all the
argument tensors can be computed in parallel, but the values of any tensor
returned by tuple are only available after all the parallel computations
are done.

See also group and with_dependencies.

Args:

	tensors: A list of Tensors or IndexedSlices, some entries can be None.

	name: (optional) A name to use as a name_scope for the operation.

	control_inputs: List of additional ops to finish before returning.

Returns:

Same as tensors.

Raises:

	ValueError: If tensors does not contain any Tensor or IndexedSlices.

tf.group(*inputs, **kwargs) {#group}

Create an op that groups multiple operations.

When this op finishes, all ops in input have finished. This op has no
output.

See also tuple and with_dependencies.

Args:

	*inputs: One or more tensors to group.

	**kwargs: Optional parameters to pass when constructing the NodeDef.

	name: A name for this operation (optional).

Returns:

An Operation that executes all its inputs.

Raises:

	ValueError: If an unknown keyword argument is provided, or if there are
no inputs.

tf.no_op(name=None) {#no_op}

Does nothing. Only useful as a placeholder for control edges.

Args:

	name: A name for the operation (optional).

Returns:

The created Operation.

tf.count_up_to(ref, limit, name=None) {#count_up_to}

Increments ‘ref’ until it reaches ‘limit’.

This operation outputs “ref” after the update is done. This makes it
easier to chain operations that need to use the updated value.

Args:

	ref: A mutable Tensor. Must be one of the following types: int32, int64.
Should be from a scalar Variable node.

	limit: An int.
If incrementing ref would bring it above limit, instead generates an
‘OutOfRange’ error.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as ref.
A copy of the input before increment. If nothing else modifies the
input, the values produced will all be distinct.

Logical Operators

TensorFlow provides several operations that you can use to add logical operators
to your graph.

tf.logical_and(x, y, name=None) {#logical_and}

Returns the truth value of x AND y element-wise.

Args:

	x: A Tensor of type bool.

	y: A Tensor of type bool.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_not(x, name=None) {#logical_not}

Returns the truth value of NOT x element-wise.

Args:

	x: A Tensor of type bool.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_or(x, y, name=None) {#logical_or}

Returns the truth value of x OR y element-wise.

Args:

	x: A Tensor of type bool.

	y: A Tensor of type bool.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.logical_xor(x, y, name='LogicalXor') {#logical_xor}

x ^ y = (x | y) & ~(x & y).

Comparison Operators

TensorFlow provides several operations that you can use to add comparison
operators to your graph.

tf.equal(x, y, name=None) {#equal}

Returns the truth value of (x == y) element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64, complex64, quint8, qint8, qint32.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.not_equal(x, y, name=None) {#not_equal}

Returns the truth value of (x != y) element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64, complex64, quint8, qint8, qint32.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less(x, y, name=None) {#less}

Returns the truth value of (x < y) element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.less_equal(x, y, name=None) {#less_equal}

Returns the truth value of (x <= y) element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater(x, y, name=None) {#greater}

Returns the truth value of (x > y) element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.greater_equal(x, y, name=None) {#greater_equal}

Returns the truth value of (x >= y) element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.select(condition, t, e, name=None) {#select}

Selects elements from t or e, depending on condition.

The condition, t, and e tensors must all have the same shape,
and the output will also have that shape. The condition tensor acts
as an element-wise mask that chooses, based on the value at each
element, whether the corresponding element in the output should be
taken from t (if true) or e (if false). For example:

For example:

'condition' tensor is [[True, False]
[True, False]]
't' is [[1, 1],
[1, 1]]
'e' is [[2, 2],
[2, 2]]
select(condition, t, e) ==> [[1, 2],
 [1, 2]]

Args:

	condition: A Tensor of type bool.

	t: A Tensor with the same shape as condition.

	e: A Tensor with the same type and shape as t.

	name: A name for the operation (optional).

Returns:

A Tensor with the same type and shape as t and e.

tf.where(input, name=None) {#where}

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The
coordinates are returned in a 2-D tensor where the first dimension (rows)
represents the number of true elements, and the second dimension (columns)
represents the coordinates of the true elements. Keep in mind, the shape of
the output tensor can vary depending on how many true values there are in
input. Indices are output in row-major order.

For example:

'input' tensor is [[True, False]
[True, False]]
'input' has two true values, so output has two coordinates.
'input' has rank of 2, so coordinates have two indices.
where(input) ==> [[0, 0],
 [1, 0]]

`input` tensor is [[[True, False]
[True, False]]
[[False, True]
[False, True]]
[[False, False]
[False, True]]]
'input' has 5 true values, so output has 5 coordinates.
'input' has rank of 3, so coordinates have three indices.
where(input) ==> [[0, 0, 0],
 [0, 1, 0],
 [1, 0, 1],
 [1, 1, 1],
 [2, 1, 1]]

Args:

	input: A Tensor of type bool.

	name: A name for the operation (optional).

Returns:

A Tensor of type int64.

Debugging Operations

TensorFlow provides several operations that you can use to validate values and
debug your graph.

tf.is_finite(x, name=None) {#is_finite}

Returns which elements of x are finite.

Args:

	x: A Tensor. Must be one of the following types: float32, float64.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is_inf(x, name=None) {#is_inf}

Returns which elements of x are Inf.

Args:

	x: A Tensor. Must be one of the following types: float32, float64.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.is_nan(x, name=None) {#is_nan}

Returns which elements of x are NaN.

Args:

	x: A Tensor. Must be one of the following types: float32, float64.

	name: A name for the operation (optional).

Returns:

A Tensor of type bool.

tf.verify_tensor_all_finite(t, msg, name=None) {#verify_tensor_all_finite}

Assert that the tensor does not contain any NaN’s or Inf’s.

Args:

	t: Tensor to check.

	msg: Message to log on failure.

	name: A name for this operation (optional).

Returns:

Same tensor as t.

tf.check_numerics(tensor, message, name=None) {#check_numerics}

Checks a tensor for NaN and Inf values.

When run, reports an InvalidArgument error if tensor has any values
that are not a number (NaN) or infinity (Inf). Otherwise, passes tensor as-is.

Args:

	tensor: A Tensor. Must be one of the following types: float32, float64.

	message: A string. Prefix of the error message.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as tensor.

tf.add_check_numerics_ops() {#add_check_numerics_ops}

Connect a check_numerics to every floating point tensor.

check_numerics operations themselves are added for each float or double
tensor in the graph. For all ops in the graph, the check_numerics op for
all of its (float or double) inputs is guaranteed to run before the
check_numerics op on any of its outputs.

Returns:

A group op depending on all check_numerics ops added.

tf.Assert(condition, data, summarize=None, name=None) {#Assert}

Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors in data.
summarize determines how many entries of the tensors to print.

Args:

	condition: The condition to evaluate.

	data: The tensors to print out when condition is false.

	summarize: Print this many entries of each tensor.

	name: A name for this operation (optional).

tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None) {#Print}

Prints a list of tensors.

This is an identity op with the side effect of printing data when
evaluating.

Args:

	input_: A tensor passed through this op.

	data: A list of tensors to print out when op is evaluated.

	message: A string, prefix of the error message.

	first_n: Only log first_n number of times. Negative numbers log always;
this is the default.

	summarize: Only print this many entries of each tensor. If None, then a
maximum of 3 elements are printed per input tensor.

	name: A name for the operation (optional).

Returns:

Same tensor as input_.

 Math

Math

Note: Functions taking Tensor arguments can also take anything accepted by
tf.convert_to_tensor.

[TOC]

Arithmetic Operators

TensorFlow provides several operations that you can use to add basic arithmetic
operators to your graph.

tf.add(x, y, name=None) {#add}

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int8, int16, int32, complex64, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sub(x, y, name=None) {#sub}

Returns x - y element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.mul(x, y, name=None) {#mul}

Returns x * y element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int8, int16, int32, complex64, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.div(x, y, name=None) {#div}

Returns x / y element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.truediv(x, y, name=None) {#truediv}

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments
to floating point before dividing so that the result is always floating point.
This op is generated by normal x / y division in Python 3 and in Python 2.7
with from __future__ import division. If you want integer division that
rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating
point, the output will have the same type. If the inputs are integral, the
inputs are cast to float32 for int8 and int16 and float64 for int32
and int64 (matching the behavior of Numpy).

Args:

	x: Tensor numerator of numeric type.

	y: Tensor denominator of numeric type.

	name: A name for the operation (optional).

Returns:

x / y evaluated in floating point.

Raises:

	TypeError: If x and y have different dtypes.

tf.floordiv(x, y, name=None) {#floordiv}

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for
floating point arguments so that the result is always an integer (though
possibly an integer represented as floating point). This op is generated by
x // y floor division in Python 3 and in Python 2.7 with
from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers
(unlike Python and Numpy).

x and y must have the same type, and the result will have the same type
as well.

Args:

	x: Tensor numerator of real numeric type.

	y: Tensor denominator of real numeric type.

	name: A name for the operation (optional).

Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:

	TypeError: If the inputs are complex.

tf.mod(x, y, name=None) {#mod}

Returns element-wise remainder of division.

Args:

	x: A Tensor. Must be one of the following types: int32, int64, float32, float64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

Basic Math Functions

TensorFlow provides several operations that you can use to add basic
mathematical functions to your graph.

tf.add_n(inputs, name=None) {#add_n}

Add all input tensors element wise.

Args:

	inputs: A list of at least 1 Tensor objects of the same type in: float32, float64, int64, int32, uint8, int16, int8, complex64, qint8, quint8, qint32.
Must all be the same size and shape.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as inputs.

tf.abs(x, name=None) {#abs}

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor
containing the absolute value of each element in x. For example, if x is
an input element and y is an output element, this operation computes
\(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex
number.

Args:

	x: A Tensor of type float, double, int32, or int64.

	name: A name for the operation (optional).

Returns:

A Tensor the same size and type as x with absolute values.

tf.neg(x, name=None) {#neg}

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sign(x, name=None) {#sign}

Returns an element-wise indication of the sign of a number.

y = sign(x) = -1 if x < 0; 0 if x == 0; 1 if x > 0.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.inv(x, name=None) {#inv}

Computes the reciprocal of x element-wise.

I.e., \(y = 1 / x\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.square(x, name=None) {#square}

Computes square of x element-wise.

I.e., \(y = x * x = x^2\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.round(x, name=None) {#round}

Rounds the values of a tensor to the nearest integer, element-wise.

For example:

'a' is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [1.0, 3.0, 2.0, -4.0]

Args:

	x: A Tensor of type float or double.

	name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as x.

tf.sqrt(x, name=None) {#sqrt}

Computes square root of x element-wise.

I.e., \(y = \sqrt{x} = x^{1/2}\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.rsqrt(x, name=None) {#rsqrt}

Computes reciprocal of square root of x element-wise.

I.e., \(y = 1 / \sqrt{x}\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.pow(x, y, name=None) {#pow}

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for
corresponding elements in x and y. For example:

tensor 'x' is [[2, 2]], [3, 3]]
tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

Args:

	x: A Tensor of type float, double, int32, complex64, or int64.

	y: A Tensor of type float, double, int32, complex64, or int64.

	name: A name for the operation (optional).

Returns:

A Tensor.

tf.exp(x, name=None) {#exp}

Computes exponential of x element-wise. \(y = e^x\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.log(x, name=None) {#log}

Computes natural logrithm of x element-wise.

I.e., \(y = \log_e x\).

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.ceil(x, name=None) {#ceil}

Returns element-wise smallest integer in not less than x.

Args:

	x: A Tensor. Must be one of the following types: float32, float64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.floor(x, name=None) {#floor}

Returns element-wise largest integer not greater than x.

Args:

	x: A Tensor. Must be one of the following types: float32, float64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.maximum(x, y, name=None) {#maximum}

Returns the max of x and y (i.e. x > y ? x : y) element-wise, broadcasts.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.minimum(x, y, name=None) {#minimum}

Returns the min of x and y (i.e. x < y ? x : y) element-wise, broadcasts.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, int64.

	y: A Tensor. Must have the same type as x.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.cos(x, name=None) {#cos}

Computes cos of x element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

tf.sin(x, name=None) {#sin}

Computes sin of x element-wise.

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64, int64.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.

Matrix Math Functions

TensorFlow provides several operations that you can use to add basic
mathematical functions for matrices to your graph.

tf.diag(diagonal, name=None) {#diag}

Returns a diagonal tensor with a given diagonal values.

Given a diagonal, this operation returns a tensor with the diagonal and
everything else padded with zeros. The diagonal is computed as follows:

Assume diagonal has dimensions [D1,..., Dk], then the output is a tensor of
rank 2k with dimensions [D1,..., Dk, D1,..., Dk] where:

output[i1,..., ik, i1,..., ik] = diagonal[i1, ..., ik] and 0 everywhere else.

For example:

'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
 [0, 2, 0, 0]
 [0, 0, 3, 0]
 [0, 0, 0, 4]]

Args:

	diagonal: A Tensor. Must be one of the following types: float32, float64, int32, int64.
Rank k tensor where k is at most 3.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as diagonal.

tf.transpose(a, perm=None, name='transpose') {#transpose}

Transposes a. Permutes the dimensions according to perm.

The returned tensor’s dimension i will correspond to the input dimension
perm[i]. If perm is not given, it is set to (n-1...0), where n is
the rank of the input tensor. Hence by default, this operation performs a
regular matrix transpose on 2-D input Tensors.

For example:

'x' is [[1 2 3]
[4 5 6]]
tf.transpose(x) ==> [[1 4]
 [2 5]
 [3 6]]

Equivalently
tf.transpose(x, perm=[1, 0]) ==> [[1 4]
 [2 5]
 [3 6]]

'perm' is more useful for n-dimensional tensors, for n > 2
'x' is [[[1 2 3]
[4 5 6]]
[[7 8 9]
[10 11 12]]]
Take the transpose of the matrices in dimension-0
tf.transpose(b, perm=[0, 2, 1]) ==> [[[1 4]
 [2 5]
 [3 6]]

 [[7 10]
 [8 11]
 [9 12]]]

Args:

	a: A Tensor.

	perm: A permutation of the dimensions of a.

	name: A name for the operation (optional).

Returns:

A transposed Tensor.

tf.matmul(a, b, transpose_a=False, transpose_b=False, a_is_sparse=False, b_is_sparse=False, name=None) {#matmul}

Multiplies matrix a by matrix b, producing a * b.

The inputs must be two-dimensional matrices, with matching inner dimensions,
possibly after transposition.

Both matrices must be of the same type. The supported types are:
float, double, int32, complex64.

Either matrix can be transposed on the fly by setting the corresponding flag
to True. This is False by default.

If one or both of the matrices contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse or b_is_sparse flag to True. These are False by default.

For example:

2-D tensor `a`
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
 [4. 5. 6.]]
2-D tensor `b`
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
 [9. 10.]
 [11. 12.]]
c = tf.matmul(a, b) => [[58 64]
 [139 154]]

Args:

	a: Tensor of type float, double, int32 or complex64.

	b: Tensor with same type as a.

	transpose_a: If True, a is transposed before multiplication.

	transpose_b: If True, b is transposed before multiplication.

	a_is_sparse: If True, a is treated as a sparse matrix.

	b_is_sparse: If True, b is treated as a sparse matrix.

	name: Name for the operation (optional).

Returns:

A Tensor of the same type as a.

tf.batch_matmul(x, y, adj_x=None, adj_y=None, name=None) {#batch_matmul}

Multiplies slices of two tensors in batches.

Multiplies all slices of Tensor x and y (each slice can be
viewed as an element of a batch), and arranges the individual results
in a single output tensor of the same batch size. Each of the
individual slices can optionally be adjointed (to adjoint a matrix
means to transpose and conjugate it) before multiplication by setting
the adj_x or adj_y flag to True, which are by default False.

The input tensors x and y are 3-D or higher with shape [..., r_x, c_x]
and [..., r_y, c_y].

The output tensor is 3-D or higher with shape [..., r_o, c_o], where:

r_o = c_x if adj_x else r_x
c_o = r_y if adj_y else c_y

It is computed as:

out[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])

Args:

	x: A Tensor. Must be one of the following types: float32, float64, int32, complex64.
3-D or higher with shape [..., r_x, c_x].

	y: A Tensor. Must have the same type as x.
3-D or higher with shape [..., r_y, c_y].

	adj_x: An optional bool. Defaults to False.
If True, adjoint the slices of x. Defaults to False.

	adj_y: An optional bool. Defaults to False.
If True, adjoint the slices of y. Defaults to False.

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as x.
3-D or higher with shape [..., r_o, c_o]

tf.matrix_determinant(input, name=None) {#matrix_determinant}

Calculates the determinant of a square matrix.

Args:

	input: A Tensor. Must be one of the following types: float32, float64.
A tensor of shape [M, M].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
A scalar, equal to the determinant of the input.

tf.batch_matrix_determinant(input, name=None) {#batch_matrix_determinant}

Calculates the determinants for a batch of square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. The output is a 1-D tensor containing the determinants
for all input submatrices [..., :, :].

Args:

	input: A Tensor. Must be one of the following types: float32, float64.
Shape is [..., M, M].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [...].

tf.matrix_inverse(input, name=None) {#matrix_inverse}

Calculates the inverse of a square invertible matrix.

The op uses the Cholesky decomposition if the matrix is symmetric positive
definite and LU decomposition with partial pivoting otherwise.

If the matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply return a
garbage result.

Args:

	input: A Tensor. Must be one of the following types: float32, float64.
Shape is [M, M].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input.
Shape is [M, M] containing the matrix inverse of the input.

tf.batch_matrix_inverse(input, name=None) {#batch_matrix_inverse}

Calculates the inverse of square invertible matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices. The output is a tensor of the same shape as the input
containing the inverse for all input submatrices [..., :, :].

The op uses the Cholesky decomposition if the matrices are symmetric positive
definite and LU decomposition with partial pivoting otherwise.

If a matrix is not invertible there is no guarantee what the op does. It
may detect the condition and raise an exception or it may simply return a
garbage result.

Args:

	input: A Tensor. Must be one of the following types: float32, float64.
Shape is [..., M, M].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

tf.cholesky(input, name=None) {#cholesky}

Calculates the Cholesky decomposition of a square matrix.

The input has to be symmetric and positive definite. Only the lower-triangular
part of the input will be used for this operation. The upper-triangular part
will not be read.

The result is the lower-triangular matrix of the Cholesky decomposition of the
input.

Args:

	input: A Tensor. Must be one of the following types: float64, float32.
Shape is [M, M].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [M, M].

tf.batch_cholesky(input, name=None) {#batch_cholesky}

Calculates the Cholesky decomposition of a batch of square matrices.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions
form square matrices, with the same constraints as the single matrix Cholesky
decomposition above. The output is a tensor of the same shape as the input
containing the Cholesky decompositions for all input submatrices [..., :, :].

Args:

	input: A Tensor. Must be one of the following types: float64, float32.
Shape is [..., M, M].

	name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Shape is [..., M, M].

Complex Number Functions

TensorFlow provides several operations that you can use to add complex number
functions to your graph.

tf.complex(real, imag, name=None) {#complex}

Converts two real numbers to a complex number.

Given a tensor real representing the real part of a complex number, and a
tensor imag representing the imaginary part of a complex number, this
operation computes complex numbers elementwise of the form \(a + bj\),
where a represents the real part and b represents the imag part.

The input tensors real and imag must be the same shape.

For example:

tensor 'real' is [2.25, 3.25]
tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.74j], [3.25 + 5.75j]]

Args:

	real: A Tensor of type float.

	imag: A Tensor of type float.

	name: A name for the operation (optional).

Returns:

A Tensor of type complex64.

tf.complex_abs(x, name=None) {#complex_abs}

Computes the complex absolute value of a tensor.

Given a tensor x of complex numbers, this operation returns a tensor of type
float that is the absolute value of each element in x. All elements in x
must be complex numbers of the form \(a + bj\). The absolute value is
computed as \(\sqrt{a^2 + b^2}\).

For example:

tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]

Args:

	x: A Tensor of type complex64.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.conj(in_, name=None) {#conj}

Returns the complex conjugate of a complex number.

Given a tensor in of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in in. The
complex numbers in in must be of the form \(a + bj\), where a is the real
part and b is the imaginary part.

The complex conjugate returned by this operation is of the form \(a - bj\).

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(in) ==> [-2.25 - 4.75j, 3.25 - 5.75j]

Args:

	in_: A Tensor of type complex64.

	name: A name for the operation (optional).

Returns:

A Tensor of type complex64.

tf.imag(in_, name=None) {#imag}

Returns the imaginary part of a complex number.

Given a tensor in of complex numbers, this operation returns a tensor of type
float that is the imaginary part of each element in in. All elements in in
must be complex numbers of the form \(a + bj\), where a is the real part
and b is the imaginary part returned by this operation.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(in) ==> [4.75, 5.75]

Args:

	in_: A Tensor of type complex64.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32.

tf.real(in_, name=None) {#real}

Returns the real part of a complex number.

Given a tensor in of complex numbers, this operation returns a tensor of type
float that is the real part of each element in in. All elements in in
must be complex numbers of the form \(a + bj\), where a is the real part
returned by this operation and b is the imaginary part.

For example:

tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(in) ==> [-2.25, 3.25]

Args:

	in_: A Tensor of type complex64.

	name: A name for the operation (optional).

Returns:

A Tensor of type float32.

Reduction

TensorFlow provides several operations that you can use to perform
common math computations that reduce various dimensions of a tensor.

tf.reduce_sum(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_sum}

Computes the sum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[1, 1, 1]]
[1, 1, 1]]
tf.reduce_sum(x) ==> 6
tf.reduce_sum(x, 0) ==> [2, 2, 2]
tf.reduce_sum(x, 1) ==> [3, 3]
tf.reduce_sum(x, 1, keep_dims=True) ==> [[3], [3]]
tf.reduce_sum(x, [0, 1]) ==> 6

Args:

	input_tensor: The tensor to reduce. Should have numeric type.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_prod}

Computes the product of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

	input_tensor: The tensor to reduce. Should have numeric type.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_min}

Computes the minimum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

	input_tensor: The tensor to reduce. Should have numeric type.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_max}

Computes the maximum of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

Args:

	input_tensor: The tensor to reduce. Should have numeric type.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_mean}

Computes the mean of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[1., 1.]]
[2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]

Args:

	input_tensor: The tensor to reduce. Should have numeric type.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_all}

Computes the “logical and” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[True, True]]
[False, False]]
tf.reduce_all(x) ==> False
tf.reduce_all(x, 0) ==> [False, False]
tf.reduce_all(x, 1) ==> [True, False]

Args:

	input_tensor: The boolean tensor to reduce.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.reduce_any(input_tensor, reduction_indices=None, keep_dims=False, name=None) {#reduce_any}

Computes the “logical or” of elements across dimensions of a tensor.

Reduces input_tensor along the dimensions given in reduction_indices.
Unless keep_dims is true, the rank of the tensor is reduced by 1 for each
entry in reduction_indices. If keep_dims is true, the reduced dimensions
are retained with length 1.

If reduction_indices has no entries, all dimensions are reduced, and a
tensor with a single element is returned.

For example:

'x' is [[True, True]]
[False, False]]
tf.reduce_any(x) ==> True
tf.reduce_any(x, 0) ==> [True, True]
tf.reduce_any(x, 1) ==> [True, False]

Args:

	input_tensor: The boolean tensor to reduce.

	reduction_indices: The dimensions to reduce. If None (the defaut),
reduces all dimensions.

	keep_dims: If true, retains reduced dimensions with length 1.

	name: A name for the operation (optional).

Returns:

The reduced tensor.

tf.accumulate_n(inputs, shape=None, tensor_dtype=None, name=None) {#accumulate_n}

Returns the element-wise sum of a list of tensors.

Optionally, pass shape and tensor_dtype for shape and type checking,
otherwise, these are inferred.

For example:

tensor 'a' is [[1, 2], [3, 4]
tensor `b` is [[5, 0], [0, 6]]
tf.accumulate_n([a, b, a]) ==> [[7, 4], [6, 14]]

Explicitly pass shape and type
tf.accumulate_n([a, b, a], shape=[2, 2], tensor_dtype=tf.int32)
 ==> [[7, 4], [6, 14]]

Args:

	inputs: A list of Tensor objects, each with same shape and type.

	shape: Shape of elements of inputs.

	tensor_dtype: The type of inputs.

	name: A name for the operation (optional).

Returns:

A Tensor of same shape and type as the elements of inputs.

Raises:

	ValueError: If inputs don’t all have same shape and dtype or the shape
cannot be inferred.

Segmentation

TensorFlow provides several operations that you can use to perform common
math computations on tensor segments.
Here a segmentation is a partitioning of a tensor along
the first dimension, i.e. it defines a mapping from the first dimension onto
segment_ids. The segment_ids tensor should be the size of
the first dimension, d0, with consecutive IDs in the range 0 to k,
where k<d0.
In particular, a segmentation of a matrix tensor is a mapping of rows to
segments.

For example:

c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
 ==> [[0 0 0 0]
 [5 6 7 8]]

tf.segment_sum(data, segment_ids, name=None) {#segment_sum}

Computes the sum along segments of a tensor.

Read the section on Segmentation
for an explanation of segments.

Computes a tensor such that
\(output_i = \sum_j data_j\) where sum is over j such
that segment_ids[j] == i.

 Class tensorflow::Tensor

Class tensorflow::Tensor

Represents an n-dimensional array of values.

##Member Summary

	tensorflow::Tensor::Tensor()
	Default Tensor constructor. Creates a 1-dimension, 0-element float tensor.

	tensorflow::Tensor::Tensor(DataType type, const TensorShape &shape)
	Creates a Tensor of the given type and shape.

	tensorflow::Tensor::Tensor(Allocator *a, DataType type, const TensorShape &shape)
	Creates a tensor with the input type and shape, using the allocator a to allocate the underlying buffer.

	tensorflow::Tensor::Tensor(DataType type)
	Creates an uninitialized Tensor of the given data type.

	tensorflow::Tensor::Tensor(const Tensor &other)

	tensorflow::Tensor::~Tensor()
	Copy constructor.

	DataType tensorflow::Tensor::dtype() const
	Returns the data type.

	const TensorShape& tensorflow::Tensor::shape() const
	Returns the shape of the tensor.

	int tensorflow::Tensor::dims() const
	Convenience accessor for the tensor shape.

	int64 tensorflow::Tensor::dim_size(int d) const
	Convenience accessor for the tensor shape.

	int64 tensorflow::Tensor::NumElements() const
	Convenience accessor for the tensor shape.

	bool tensorflow::Tensor::IsSameSize(const Tensor &b) const

	bool tensorflow::Tensor::IsInitialized() const
	Has this Tensor been initialized?

	size_t tensorflow::Tensor::TotalBytes() const
	Returns the estimated memory usage of this tensor.

	Tensor& tensorflow::Tensor::operator=(const Tensor &other)
	Assign operator. This tensor shares other‘

s underlying storage.

	bool tensorflow::Tensor::CopyFrom(const Tensor &other, const TensorShape &shape) TF_MUST_USE_RESULT
	Copy the other tensor into this tensor and reshape it.

	Tensor tensorflow::Tensor::Slice(int64 dim0_start, int64 dim0_limit) const
	Slice this tensor along the 1st dimension.

	bool tensorflow::Tensor::FromProto(const TensorProto &other) TF_MUST_USE_RESULT
	Parse other and construct the tensor.

	bool tensorflow::Tensor::FromProto(Allocator *a, const TensorProto &other) TF_MUST_USE_RESULT

	void tensorflow::Tensor::AsProtoField(TensorProto *proto) const
	Fills in proto with *this tensor‘

s content.

	void tensorflow::Tensor::AsProtoTensorContent(TensorProto *proto) const

	TTypes<T>::Vec tensorflow::Tensor::vec()
	Return the tensor data as an Eigen::Tensor with the type and sizes of this Tensor.

	TTypes<T>::Matrix tensorflow::Tensor::matrix()

	TTypes< T, NDIMS >::Tensor tensorflow::Tensor::tensor()

	TTypes<T>::Flat tensorflow::Tensor::flat()
	Return the tensor data as an Eigen::Tensor of the data type and a specified shape.

	TTypes<T>::UnalignedFlat tensorflow::Tensor::unaligned_flat()

	TTypes<T>::Matrix tensorflow::Tensor::flat_inner_dims()

	TTypes<T>::Matrix tensorflow::Tensor::flat_outer_dims()

	TTypes< T, NDIMS >::Tensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes)

	TTypes< T, NDIMS >::UnalignedTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes)

	TTypes< T >::Scalar tensorflow::Tensor::scalar()
	Return the Tensor data as a TensorMap of fixed size 1: TensorMap<TensorFixedSize<T, 1>>.

	TTypes<T>::ConstVec tensorflow::Tensor::vec() const
	Const versions of all the methods above.

	TTypes<T>::ConstMatrix tensorflow::Tensor::matrix() const

	TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::tensor() const

	TTypes<T>::ConstFlat tensorflow::Tensor::flat() const

	TTypes<T>::UnalignedConstFlat tensorflow::Tensor::unaligned_flat() const

	TTypes<T>::ConstMatrix tensorflow::Tensor::flat_inner_dims() const

	TTypes<T>::ConstMatrix tensorflow::Tensor::flat_outer_dims() const

	TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes) const

	TTypes< T, NDIMS >::UnalignedConstTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) const

	TTypes< T >::ConstScalar tensorflow::Tensor::scalar() const

	string tensorflow::Tensor::SummarizeValue(int64 max_entries) const
	Render the first max_entries values in *this into a string.

	string tensorflow::Tensor::DebugString() const
	A human-readable summary of the tensor suitable for debugging.

	void tensorflow::Tensor::FillDescription(TensorDescription *description) const

	StringPiece tensorflow::Tensor::tensor_data() const
	Returns a StringPiece mapping the current tensor‘

s buffer.

##Member Details

tensorflow::Tensor::Tensor() {#tensorflow_Tensor_Tensor}

Default Tensor constructor. Creates a 1-dimension, 0-element float tensor.

tensorflow::Tensor::Tensor(DataType type, const TensorShape &shape) {#tensorflow_Tensor_Tensor}

Creates a Tensor of the given type and shape.

The underlying buffer is allocated using a CPUAllocator.

tensorflow::Tensor::Tensor(Allocator *a, DataType type, const TensorShape &shape) {#tensorflow_Tensor_Tensor}

Creates a tensor with the input type and shape, using the allocator a to allocate the underlying buffer.

a must outlive the lifetime of this Tensor .

tensorflow::Tensor::Tensor(DataType type) {#tensorflow_Tensor_Tensor}

Creates an uninitialized Tensor of the given data type.

tensorflow::Tensor::Tensor(const Tensor &other) {#tensorflow_Tensor_Tensor}

tensorflow::Tensor::~Tensor() {#tensorflow_Tensor_Tensor}

Copy constructor.

DataType tensorflow::Tensor::dtype() const {#DataType_tensorflow_Tensor_dtype}

Returns the data type.

const TensorShape& tensorflow::Tensor::shape() const {#const_TensorShape_tensorflow_Tensor_shape}

Returns the shape of the tensor.

int tensorflow::Tensor::dims() const {#int_tensorflow_Tensor_dims}

Convenience accessor for the tensor shape.

For all shape accessors, see comments for relevant methods of TensorShape in tensor_shape.h.

int64 tensorflow::Tensor::dim_size(int d) const {#int64_tensorflow_Tensor_dim_size}

Convenience accessor for the tensor shape.

int64 tensorflow::Tensor::NumElements() const {#int64_tensorflow_Tensor_NumElements}

Convenience accessor for the tensor shape.

bool tensorflow::Tensor::IsSameSize(const Tensor &b) const {#bool_tensorflow_Tensor_IsSameSize}

bool tensorflow::Tensor::IsInitialized() const {#bool_tensorflow_Tensor_IsInitialized}

Has this Tensor been initialized?

size_t tensorflow::Tensor::TotalBytes() const {#size_t_tensorflow_Tensor_TotalBytes}

Returns the estimated memory usage of this tensor.

Tensor& tensorflow::Tensor::operator=(const Tensor &other) {#Tensor_tensorflow_Tensor_operator_}

Assign operator. This tensor shares other‘

s underlying storage.

bool tensorflow::Tensor::CopyFrom(const Tensor &other, const TensorShape &shape) TF_MUST_USE_RESULT {#bool_tensorflow_Tensor_CopyFrom}

Copy the other tensor into this tensor and reshape it.

This tensor shares other‘

s underlying storage. Returns true iff other.shape() has the same number of elements of the given shape.

Tensor tensorflow::Tensor::Slice(int64 dim0_start, int64 dim0_limit) const {#Tensor_tensorflow_Tensor_Slice}

Slice this tensor along the 1st dimension.

I.e., the returned tensor satisfies returned[i, ...] == this[dim0_start + i, ...]. The returned tensor shares the underlying tensor buffer with this tensor.

NOTE: The returned tensor may not satisfies the same alignment requirement as this tensor depending on the shape. The caller must check the returned tensor‘

s alignment before calling certain methods that have alignment requirement (e.g., flat(), tensor()).

REQUIRES: dims() >= 1 REQUIRES: 0 <= dim0_start <= dim0_limit <= dim_size(0)

bool tensorflow::Tensor::FromProto(const TensorProto &other) TF_MUST_USE_RESULT {#bool_tensorflow_Tensor_FromProto}

Parse other and construct the tensor.

Returns true iff the parsing succeeds. If the parsing fails, the state of *this is unchanged.

bool tensorflow::Tensor::FromProto(Allocator *a, const TensorProto &other) TF_MUST_USE_RESULT {#bool_tensorflow_Tensor_FromProto}

void tensorflow::Tensor::AsProtoField(TensorProto *proto) const {#void_tensorflow_Tensor_AsProtoField}

Fills in proto with *this tensor‘

s content.

AsProtoField() fills in the repeated field for proto.dtype(), while AsProtoTensorContent() encodes the content in proto.tensor_content() in a compact form.

void tensorflow::Tensor::AsProtoTensorContent(TensorProto *proto) const {#void_tensorflow_Tensor_AsProtoTensorContent}

TTypes<T>::Vec tensorflow::Tensor::vec() {#TTypes_T_Vec_tensorflow_Tensor_vec}

Return the tensor data as an Eigen::Tensor with the type and sizes of this Tensor.

Use these methods when you know the data type and the number of dimensions of the Tensor and you want an Eigen::Tensor automatically sized to the Tensor sizes. The implementation check fails if either type or sizes mismatch.

Example:

Tensor my_mat(...built with Shape{rows: 3, cols: 5}...);
auto mat = my_mat.matrix<T>(); // 2D Eigen::Tensor, 3 x 5.
auto mat = my_mat.tensor<T, 2>(); // 2D Eigen::Tensor, 3 x 5.
auto vec = my_mat.vec<T>(); // CHECK fails as my_mat is 2D.
auto vec = my_mat.tensor<T, 3>(); // CHECK fails as my_mat is 2D.
auto mat = my_mat.matrix<int32>();// CHECK fails as type mismatch.

TTypes<T>::Matrix tensorflow::Tensor::matrix() {#TTypes_T_Matrix_tensorflow_Tensor_matrix}

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::tensor() {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_tensor}

TTypes<T>::Flat tensorflow::Tensor::flat() {#TTypes_T_Flat_tensorflow_Tensor_flat}

Return the tensor data as an Eigen::Tensor of the data type and a specified shape.

These methods allow you to access the data with the dimensions and sizes of your choice. You do not need to know the number of dimensions of the Tensor to call them. However, they CHECK that the type matches and the dimensions requested creates an Eigen::Tensor with the same number of elements as the tensor.

Example:

Tensor my_ten(...built with Shape{planes: 4, rows: 3, cols: 5}...);
// 1D Eigen::Tensor, size 60:
auto flat = my_ten.flat<T>();
// 2D Eigen::Tensor 12 x 5:
auto inner = my_ten.flat_inner_dims<T>();
// 2D Eigen::Tensor 4 x 15:
auto outer = my_ten.shaped<T, 2>({4, 15});
// CHECK fails, bad num elements:
auto outer = my_ten.shaped<T, 2>({4, 8});
// 3D Eigen::Tensor 6 x 5 x 2:
auto weird = my_ten.shaped<T, 3>({6, 5, 2});
// CHECK fails, type mismatch:
auto bad = my_ten.flat<int32>();

TTypes<T>::UnalignedFlat tensorflow::Tensor::unaligned_flat() {#TTypes_T_UnalignedFlat_tensorflow_Tensor_unaligned_flat}

TTypes<T>::Matrix tensorflow::Tensor::flat_inner_dims() {#TTypes_T_Matrix_tensorflow_Tensor_flat_inner_dims}

Returns the data as an Eigen::Tensor with 2 dimensions, collapsing all Tensor dimensions but the last one into the first dimension of the result.

TTypes<T>::Matrix tensorflow::Tensor::flat_outer_dims() {#TTypes_T_Matrix_tensorflow_Tensor_flat_outer_dims}

Returns the data as an Eigen::Tensor with 2 dimensions, collapsing all Tensor dimensions but the first one into the last dimension of the result.

TTypes< T, NDIMS >::Tensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes) {#TTypes_T_NDIMS_Tensor_tensorflow_Tensor_shaped}

TTypes< T, NDIMS >::UnalignedTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) {#TTypes_T_NDIMS_UnalignedTensor_tensorflow_Tensor_unaligned_shaped}

TTypes< T >::Scalar tensorflow::Tensor::scalar() {#TTypes_T_Scalar_tensorflow_Tensor_scalar}

Return the Tensor data as a TensorMap of fixed size 1: TensorMap<TensorFixedSize<T, 1>>.

Using scalar() allows the compiler to perform optimizations as the size of the tensor is known at compile time.

TTypes<T>::ConstVec tensorflow::Tensor::vec() const {#TTypes_T_ConstVec_tensorflow_Tensor_vec}

Const versions of all the methods above.

TTypes<T>::ConstMatrix tensorflow::Tensor::matrix() const {#TTypes_T_ConstMatrix_tensorflow_Tensor_matrix}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::tensor() const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_tensor}

TTypes<T>::ConstFlat tensorflow::Tensor::flat() const {#TTypes_T_ConstFlat_tensorflow_Tensor_flat}

TTypes<T>::UnalignedConstFlat tensorflow::Tensor::unaligned_flat() const {#TTypes_T_UnalignedConstFlat_tensorflow_Tensor_unaligned_flat}

TTypes<T>::ConstMatrix tensorflow::Tensor::flat_inner_dims() const {#TTypes_T_ConstMatrix_tensorflow_Tensor_flat_inner_dims}

TTypes<T>::ConstMatrix tensorflow::Tensor::flat_outer_dims() const {#TTypes_T_ConstMatrix_tensorflow_Tensor_flat_outer_dims}

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::shaped(gtl::ArraySlice< int64 > new_sizes) const {#TTypes_T_NDIMS_ConstTensor_tensorflow_Tensor_shaped}

TTypes< T, NDIMS >::UnalignedConstTensor tensorflow::Tensor::unaligned_shaped(gtl::ArraySlice< int64 > new_sizes) const {#TTypes_T_NDIMS_UnalignedConstTensor_tensorflow_Tensor_unaligned_shaped}

TTypes< T >::ConstScalar tensorflow::Tensor::scalar() const {#TTypes_T_ConstScalar_tensorflow_Tensor_scalar}

string tensorflow::Tensor::SummarizeValue(int64 max_entries) const {#string_tensorflow_Tensor_SummarizeValue}

Render the first max_entries values in *this into a string.

string tensorflow::Tensor::DebugString() const {#string_tensorflow_Tensor_DebugString}

A human-readable summary of the tensor suitable for debugging.

void tensorflow::Tensor::FillDescription(TensorDescription *description) const {#void_tensorflow_Tensor_FillDescription}

Fill in the TensorDescription proto with metadata about the tensor that is useful for monitoring and debugging.

StringPiece tensorflow::Tensor::tensor_data() const {#StringPiece_tensorflow_Tensor_tensor_data}

Returns a StringPiece mapping the current tensor‘

s buffer.

The returned StringPiece may point to memory location on devices that the CPU cannot address directly.

NOTE: The underlying tensor buffer is refcounted, so the lifetime of the contents mapped by the StringPiece matches the lifetime of the buffer; callers should arrange to make sure the buffer does not get destroyed while the StringPiece is still used.

REQUIRES: DataTypeCanUseMemcpy(dtype()).

 Class tensorflow::TensorShapeUtils

Class tensorflow::TensorShapeUtils

Static helper routines for TensorShape. Includes a few common predicates on a tensor shape.

##Member Summary

	static bool tensorflow::TensorShapeUtils::IsScalar(const TensorShape &shape)

	static bool tensorflow::TensorShapeUtils::IsVector(const TensorShape &shape)

	static bool tensorflow::TensorShapeUtils::IsLegacyScalar(const TensorShape &shape)

	static bool tensorflow::TensorShapeUtils::IsLegacyVector(const TensorShape &shape)

	static bool tensorflow::TensorShapeUtils::IsVectorOrHigher(const TensorShape &shape)

	static bool tensorflow::TensorShapeUtils::IsMatrix(const TensorShape &shape)

	static bool tensorflow::TensorShapeUtils::IsMatrixOrHigher(const TensorShape &shape)

	static TensorShape tensorflow::TensorShapeUtils::MakeShape(const T *dims, int n)
	Returns a TensorShape whose dimensions are dims[0], dims[1], ..., dims[n-1].

	static string tensorflow::TensorShapeUtils::ShapeListString(const gtl::ArraySlice< TensorShape > &shapes)

	static bool tensorflow::TensorShapeUtils::StartsWith(const TensorShape &shape0, const TensorShape &shape1)

##Member Details

static bool tensorflow::TensorShapeUtils::IsScalar(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsScalar}

static bool tensorflow::TensorShapeUtils::IsVector(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsVector}

static bool tensorflow::TensorShapeUtils::IsLegacyScalar(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsLegacyScalar}

static bool tensorflow::TensorShapeUtils::IsLegacyVector(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsLegacyVector}

static bool tensorflow::TensorShapeUtils::IsVectorOrHigher(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsVectorOrHigher}

static bool tensorflow::TensorShapeUtils::IsMatrix(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsMatrix}

static bool tensorflow::TensorShapeUtils::IsMatrixOrHigher(const TensorShape &shape) {#static_bool_tensorflow_TensorShapeUtils_IsMatrixOrHigher}

static TensorShape tensorflow::TensorShapeUtils::MakeShape(const T *dims, int n) {#static_TensorShape_tensorflow_TensorShapeUtils_MakeShape}

Returns a TensorShape whose dimensions are dims[0], dims[1], ..., dims[n-1].

static string tensorflow::TensorShapeUtils::ShapeListString(const gtl::ArraySlice< TensorShape > &shapes) {#static_string_tensorflow_TensorShapeUtils_ShapeListString}

static bool tensorflow::TensorShapeUtils::StartsWith(const TensorShape &shape0, const TensorShape &shape1) {#static_bool_tensorflow_TensorShapeUtils_StartsWith}

 Class tensorflow::Status

Class tensorflow::Status

##Member Summary

	tensorflow::Status::Status()
	Create a success status.

	tensorflow::Status::~Status()

	tensorflow::Status::Status(tensorflow::error::Code code, tensorflow::StringPiece msg)
	Create a status with the specified error code and msg as a human-readable string containing more detailed information.

	tensorflow::Status::Status(const Status &s)
	Copy the specified status.

	void tensorflow::Status::operator=(const Status &s)

	bool tensorflow::Status::ok() const
	Returns true iff the status indicates success.

	tensorflow::error::Code tensorflow::Status::code() const

	const string& tensorflow::Status::error_message() const

	bool tensorflow::Status::operator==(const Status &x) const

	bool tensorflow::Status::operator!=(const Status &x) const

	void tensorflow::Status::Update(const Status &new_status)
	If ok(), stores new_status into *this. If !ok(), preserves the current status, but may augment with additional information about new_status.

	string tensorflow::Status::ToString() const
	Return a string representation of this status suitable for printing. Returns the string "OK" for success.

	static Status tensorflow::Status::OK()

##Member Details

tensorflow::Status::Status() {#tensorflow_Status_Status}

Create a success status.

tensorflow::Status::~Status() {#tensorflow_Status_Status}

tensorflow::Status::Status(tensorflow::error::Code code, tensorflow::StringPiece msg) {#tensorflow_Status_Status}

Create a status with the specified error code and msg as a human-readable string containing more detailed information.

tensorflow::Status::Status(const Status &s) {#tensorflow_Status_Status}

Copy the specified status.

void tensorflow::Status::operator=(const Status &s) {#void_tensorflow_Status_operator_}

bool tensorflow::Status::ok() const {#bool_tensorflow_Status_ok}

Returns true iff the status indicates success.

tensorflow::error::Code tensorflow::Status::code() const {#tensorflow_error_Code_tensorflow_Status_code}

const string& tensorflow::Status::error_message() const {#const_string_tensorflow_Status_error_message}

bool tensorflow::Status::operator==(const Status &x) const {#bool_tensorflow_Status_operator_}

bool tensorflow::Status::operator!=(const Status &x) const {#bool_tensorflow_Status_operator_}

void tensorflow::Status::Update(const Status &new_status) {#void_tensorflow_Status_Update}

If ok(), stores new_status into *this. If !ok(), preserves the current status, but may augment with additional information about new_status.

Convenient way of keeping track of the first error encountered. Instead of: if (overall_status.ok()) overall_status = new_status Use: overall_status.Update(new_status);

string tensorflow::Status::ToString() const {#string_tensorflow_Status_ToString}

Return a string representation of this status suitable for printing. Returns the string "OK" for success.

static Status tensorflow::Status::OK() {#static_Status_tensorflow_Status_OK}

 Class tensorflow::TensorShape

Class tensorflow::TensorShape

Manages the dimensions of a Tensor and their sizes.

##Member Summary

	tensorflow::TensorShape::TensorShape(gtl::ArraySlice< int64 > dim_sizes)
	Construct a TensorShape from the provided sizes. REQUIRES: dim_sizes[i] >= 0

	tensorflow::TensorShape::TensorShape(std::initializer_list< int64 > dim_sizes)

	tensorflow::TensorShape::TensorShape(const TensorShapeProto &proto)
	REQUIRES: IsValid(proto)

	tensorflow::TensorShape::TensorShape()

	void tensorflow::TensorShape::Clear()
	Clear a tensor shape.

	void tensorflow::TensorShape::AddDim(int64 size)
	Add a dimension to the end (“inner-most”). REQUIRES: size >= 0

	void tensorflow::TensorShape::AppendShape(const TensorShape &shape)
	Appends all the dimensions from shape.

	void tensorflow::TensorShape::InsertDim(int d, int64 size)
	Insert a dimension somewhere in the TensorShape. REQUIRES: 0 <= d <= dims() REQUIRES: size >= 0

	void tensorflow::TensorShape::set_dim(int d, int64 size)
	Modifies the size of the dimension d to be size REQUIRES: 0 <= d < dims() REQUIRES: size >= 0

	void tensorflow::TensorShape::RemoveDim(int d)
	Removes dimension d from the TensorShape. REQUIRES: 0 <= d < dims()

	int tensorflow::TensorShape::dims() const
	Return the number of dimensions in the tensor.

	int64 tensorflow::TensorShape::dim_size(int d) const
	Returns the number of elements in dimension d. REQUIRES: 0 <= d < dims()

	gtl::ArraySlice<int64> tensorflow::TensorShape::dim_sizes() const
	Returns sizes of all dimensions.

	int64 tensorflow::TensorShape::num_elements() const
	Returns the number of elements in the tensor.

	bool tensorflow::TensorShape::IsSameSize(const TensorShape &b) const

	bool tensorflow::TensorShape::operator==(const TensorShape &b) const

	void tensorflow::TensorShape::AsProto(TensorShapeProto *proto) const
	Fill *proto from *this.

	Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizes() const
	Fill *dsizes from *this.

	Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizesWithPadding() const

	TensorShapeIter tensorflow::TensorShape::begin() const
	For iterating through the dimensions.

	TensorShapeIter tensorflow::TensorShape::end() const

	string tensorflow::TensorShape::DebugString() const
	For error messages.

	string tensorflow::TensorShape::ShortDebugString() const

	static bool tensorflow::TensorShape::IsValid(const TensorShapeProto &proto)
	Returns true iff proto is a valid tensor shape.

##Member Details

tensorflow::TensorShape::TensorShape(gtl::ArraySlice< int64 > dim_sizes) {#tensorflow_TensorShape_TensorShape}

Construct a TensorShape from the provided sizes. REQUIRES: dim_sizes[i] >= 0

tensorflow::TensorShape::TensorShape(std::initializer_list< int64 > dim_sizes) {#tensorflow_TensorShape_TensorShape}

tensorflow::TensorShape::TensorShape(const TensorShapeProto &proto) {#tensorflow_TensorShape_TensorShape}

REQUIRES: IsValid(proto)

tensorflow::TensorShape::TensorShape() {#tensorflow_TensorShape_TensorShape}

Create a tensor shape with no dimensions and one element, which you can then call AddDim() on.

void tensorflow::TensorShape::Clear() {#void_tensorflow_TensorShape_Clear}

Clear a tensor shape.

void tensorflow::TensorShape::AddDim(int64 size) {#void_tensorflow_TensorShape_AddDim}

Add a dimension to the end (“inner-most”). REQUIRES: size >= 0

void tensorflow::TensorShape::AppendShape(const TensorShape &shape) {#void_tensorflow_TensorShape_AppendShape}

Appends all the dimensions from shape.

void tensorflow::TensorShape::InsertDim(int d, int64 size) {#void_tensorflow_TensorShape_InsertDim}

Insert a dimension somewhere in the TensorShape. REQUIRES: 0 <= d <= dims() REQUIRES: size >= 0

void tensorflow::TensorShape::set_dim(int d, int64 size) {#void_tensorflow_TensorShape_set_dim}

Modifies the size of the dimension d to be size REQUIRES: 0 <= d < dims() REQUIRES: size >= 0

void tensorflow::TensorShape::RemoveDim(int d) {#void_tensorflow_TensorShape_RemoveDim}

Removes dimension d from the TensorShape. REQUIRES: 0 <= d < dims()

int tensorflow::TensorShape::dims() const {#int_tensorflow_TensorShape_dims}

Return the number of dimensions in the tensor.

int64 tensorflow::TensorShape::dim_size(int d) const {#int64_tensorflow_TensorShape_dim_size}

Returns the number of elements in dimension d. REQUIRES: 0 <= d < dims()

gtl::ArraySlice<int64> tensorflow::TensorShape::dim_sizes() const {#gtl_ArraySlice_int64_tensorflow_TensorShape_dim_sizes}

Returns sizes of all dimensions.

int64 tensorflow::TensorShape::num_elements() const {#int64_tensorflow_TensorShape_num_elements}

Returns the number of elements in the tensor.

We use int64 and not size_t to be compatible with Eigen::Tensor which uses ptrdiff_t.

bool tensorflow::TensorShape::IsSameSize(const TensorShape &b) const {#bool_tensorflow_TensorShape_IsSameSize}

Returns true if *this and b have the same sizes. Ignores dimension names.

bool tensorflow::TensorShape::operator==(const TensorShape &b) const {#bool_tensorflow_TensorShape_operator_}

void tensorflow::TensorShape::AsProto(TensorShapeProto *proto) const {#void_tensorflow_TensorShape_AsProto}

Fill *proto from *this.

Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizes() const {#Eigen_DSizes_Eigen_DenseIndex_NDIMS_tensorflow_TensorShape_AsEigenDSizes}

Fill *dsizes from *this.

Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizesWithPadding() const {#Eigen_DSizes_Eigen_DenseIndex_NDIMS_tensorflow_TensorShape_AsEigenDSizesWithPadding}

Same as AsEigenDSizes() but allows for NDIMS > dims() in which case we pad the rest of the sizes with 1.

TensorShapeIter tensorflow::TensorShape::begin() const {#TensorShapeIter_tensorflow_TensorShape_begin}

For iterating through the dimensions.

TensorShapeIter tensorflow::TensorShape::end() const {#TensorShapeIter_tensorflow_TensorShape_end}

string tensorflow::TensorShape::DebugString() const {#string_tensorflow_TensorShape_DebugString}

For error messages.

string tensorflow::TensorShape::ShortDebugString() const {#string_tensorflow_TensorShape_ShortDebugString}

static bool tensorflow::TensorShape::IsValid(const TensorShapeProto &proto) {#static_bool_tensorflow_TensorShape_IsValid}

Returns true iff proto is a valid tensor shape.

 Class tensorflow::RandomAccessFile

Class tensorflow::RandomAccessFile

A file abstraction for randomly reading the contents of a file.

##Member Summary

	tensorflow::RandomAccessFile::RandomAccessFile()

	virtual tensorflow::RandomAccessFile::~RandomAccessFile()

	virtual Status tensorflow::RandomAccessFile::Read(uint64 offset, size_t n, StringPiece *result, char *scratch) const =0
	Reads up to n bytes from the file starting at offset.

##Member Details

tensorflow::RandomAccessFile::RandomAccessFile() {#tensorflow_RandomAccessFile_RandomAccessFile}

virtual tensorflow::RandomAccessFile::~RandomAccessFile() {#virtual_tensorflow_RandomAccessFile_RandomAccessFile}

virtual Status tensorflow::RandomAccessFile::Read(uint64 offset, size_t n, StringPiece *result, char *scratch) const =0 {#virtual_Status_tensorflow_RandomAccessFile_Read}

Reads up to n bytes from the file starting at offset.

scratch[0..n-1] may be written by this routine. Sets *result to the data that was read (including if fewer than n bytes were successfully read). May set *result to point at data in scratch[0..n-1], so scratch[0..n-1] must be live when *result is used.

On OK returned status: n bytes have been stored in *result. On non-OK returned status: [0..n] bytes have been stored in *result.

Returns OUT_OF_RANGE if fewer than n bytes were stored in *result because of EOF.

Safe for concurrent use by multiple threads.

 Struct tensorflow::TensorShapeDim

Struct tensorflow::TensorShapeDim

##Member Summary

	int tensorflow::TensorShapeDim::size

	tensorflow::TensorShapeDim::TensorShapeDim(int64 s)

##Member Details

int tensorflow::TensorShapeDim::size {#int_tensorflow_TensorShapeDim_size}

tensorflow::TensorShapeDim::TensorShapeDim(int64 s) {#tensorflow_TensorShapeDim_TensorShapeDim}

 Struct tensorflow::ThreadOptions

Struct tensorflow::ThreadOptions

Options to configure a Thread .

Note that the options are all hints, and the underlying implementation may choose to ignore it.

##Member Summary

	size_t tensorflow::ThreadOptions::stack_size
	Thread stack size to use (in bytes).

	size_t tensorflow::ThreadOptions::guard_size
	Guard area size to use near thread stacks to use (in bytes)

##Member Details

size_t tensorflow::ThreadOptions::stack_size {#size_t_tensorflow_ThreadOptions_stack_size}

Thread stack size to use (in bytes).

size_t tensorflow::ThreadOptions::guard_size {#size_t_tensorflow_ThreadOptions_guard_size}

Guard area size to use near thread stacks to use (in bytes)

 Class tensorflow::Env

Class tensorflow::Env

An interface used by the tensorflow implementation to access operating system functionality like the filesystem etc.

Callers may wish to provide a custom Env object to get fine grain control.

All Env implementations are safe for concurrent access from multiple threads without any external synchronization.

##Member Summary

	tensorflow::Env::Env()

	virtual tensorflow::Env::~Env()

	virtual Status tensorflow::Env::NewRandomAccessFile(const string &fname, RandomAccessFile **result)=0
	Creates a brand new random access read-only file with the specified name.

	virtual Status tensorflow::Env::NewWritableFile(const string &fname, WritableFile **result)=0
	Creates an object that writes to a new file with the specified name.

	virtual Status tensorflow::Env::NewAppendableFile(const string &fname, WritableFile **result)=0
	Creates an object that either appends to an existing file, or writes to a new file (if the file does not exist to begin with).

	virtual bool tensorflow::Env::FileExists(const string &fname)=0
	Returns true iff the named file exists.

	virtual Status tensorflow::Env::GetChildren(const string &dir, std::vector< string > *result)=0
	Stores in *result the names of the children of the specified directory. The names are relative to “dir”.

	virtual Status tensorflow::Env::DeleteFile(const string &fname)=0
	Deletes the named file.

	virtual Status tensorflow::Env::CreateDir(const string &dirname)=0
	Creates the specified directory.

	virtual Status tensorflow::Env::DeleteDir(const string &dirname)=0
	Deletes the specified directory.

	virtual Status tensorflow::Env::GetFileSize(const string &fname, uint64 *file_size)=0
	Stores the size of fname in *file_size.

	virtual Status tensorflow::Env::RenameFile(const string &src, const string &target)=0
	Renames file src to target. If target already exists, it will be replaced.

	virtual uint64 tensorflow::Env::NowMicros()=0
	Returns the number of micro-seconds since some fixed point in time. Only useful for computing deltas of time.

	virtual void tensorflow::Env::SleepForMicroseconds(int micros)=0
	Sleeps/delays the thread for the prescribed number of micro-seconds.

	virtual Thread* tensorflow::Env::StartThread(const ThreadOptions &thread_options, const string &name, std::function< void()> fn) TF_MUST_USE_RESULT=0
	Returns a new thread that is running fn() and is identified (for debugging/performance-analysis) by “name”.

	static Env* tensorflow::Env::Default()
	Returns a default environment suitable for the current operating system.

##Member Details

tensorflow::Env::Env() {#tensorflow_Env_Env}

virtual tensorflow::Env::~Env() {#virtual_tensorflow_Env_Env}

virtual Status tensorflow::Env::NewRandomAccessFile(const string &fname, RandomAccessFile **result)=0 {#virtual_Status_tensorflow_Env_NewRandomAccessFile}

Creates a brand new random access read-only file with the specified name.

On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK. If the file does not exist, returns a non-OK status.

The returned file may be concurrently accessed by multiple threads.

virtual Status tensorflow::Env::NewWritableFile(const string &fname, WritableFile **result)=0 {#virtual_Status_tensorflow_Env_NewWritableFile}

Creates an object that writes to a new file with the specified name.

Deletes any existing file with the same name and creates a new file. On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK.

The returned file will only be accessed by one thread at a time.

virtual Status tensorflow::Env::NewAppendableFile(const string &fname, WritableFile **result)=0 {#virtual_Status_tensorflow_Env_NewAppendableFile}

Creates an object that either appends to an existing file, or writes to a new file (if the file does not exist to begin with).

On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK.

The returned file will only be accessed by one thread at a time.

virtual bool tensorflow::Env::FileExists(const string &fname)=0 {#virtual_bool_tensorflow_Env_FileExists}

Returns true iff the named file exists.

virtual Status tensorflow::Env::GetChildren(const string &dir, std::vector< string > *result)=0 {#virtual_Status_tensorflow_Env_GetChildren}

Stores in *result the names of the children of the specified directory. The names are relative to “dir”.

Original contents of *results are dropped.

virtual Status tensorflow::Env::DeleteFile(const string &fname)=0 {#virtual_Status_tensorflow_Env_DeleteFile}

Deletes the named file.

virtual Status tensorflow::Env::CreateDir(const string &dirname)=0 {#virtual_Status_tensorflow_Env_CreateDir}

Creates the specified directory.

virtual Status tensorflow::Env::DeleteDir(const string &dirname)=0 {#virtual_Status_tensorflow_Env_DeleteDir}

Deletes the specified directory.

virtual Status tensorflow::Env::GetFileSize(const string &fname, uint64 *file_size)=0 {#virtual_Status_tensorflow_Env_GetFileSize}

Stores the size of fname in *file_size.

virtual Status tensorflow::Env::RenameFile(const string &src, const string &target)=0 {#virtual_Status_tensorflow_Env_RenameFile}

Renames file src to target. If target already exists, it will be replaced.

virtual uint64 tensorflow::Env::NowMicros()=0 {#virtual_uint64_tensorflow_Env_NowMicros}

Returns the number of micro-seconds since some fixed point in time. Only useful for computing deltas of time.

virtual void tensorflow::Env::SleepForMicroseconds(int micros)=0 {#virtual_void_tensorflow_Env_SleepForMicroseconds}

Sleeps/delays the thread for the prescribed number of micro-seconds.

virtual Thread* tensorflow::Env::StartThread(const ThreadOptions &thread_options, const string &name, std::function< void()> fn) TF_MUST_USE_RESULT=0 {#virtual_Thread_tensorflow_Env_StartThread}

Returns a new thread that is running fn() and is identified (for debugging/performance-analysis) by “name”.

Caller takes ownership of the result and must delete it eventually (the deletion will block until fn() stops running).

static Env* tensorflow::Env::Default() {#static_Env_tensorflow_Env_Default}

Returns a default environment suitable for the current operating system.

Sophisticated users may wish to provide their own Env implementation instead of relying on this default environment.

The result of Default() belongs to this library and must never be deleted.

 Class tensorflow::WritableFile

Class tensorflow::WritableFile

A file abstraction for sequential writing.

The implementation must provide buffering since callers may append small fragments at a time to the file.

##Member Summary

	tensorflow::WritableFile::WritableFile()

	virtual tensorflow::WritableFile::~WritableFile()

	virtual Status tensorflow::WritableFile::Append(const StringPiece &data)=0

	virtual Status tensorflow::WritableFile::Close()=0

	virtual Status tensorflow::WritableFile::Flush()=0

	virtual Status tensorflow::WritableFile::Sync()=0

##Member Details

tensorflow::WritableFile::WritableFile() {#tensorflow_WritableFile_WritableFile}

virtual tensorflow::WritableFile::~WritableFile() {#virtual_tensorflow_WritableFile_WritableFile}

virtual Status tensorflow::WritableFile::Append(const StringPiece &data)=0 {#virtual_Status_tensorflow_WritableFile_Append}

virtual Status tensorflow::WritableFile::Close()=0 {#virtual_Status_tensorflow_WritableFile_Close}

virtual Status tensorflow::WritableFile::Flush()=0 {#virtual_Status_tensorflow_WritableFile_Flush}

virtual Status tensorflow::WritableFile::Sync()=0 {#virtual_Status_tensorflow_WritableFile_Sync}

 TensorFlow C++ Session API reference documentation

TensorFlow C++ Session API reference documentation

TensorFlow’s public C++ API includes only the API for executing graphs, as of
version 0.5. To control the execution of a graph from C++:

	Build the computation graph using the Python API.

	Use tf.train.write_graph() to
write the graph to a file.

	Load the graph using the C++ Session API. For example:

// Reads a model graph definition from disk, and creates a session object you
// can use to run it.
Status LoadGraph(string graph_file_name, Session** session) {
 GraphDef graph_def;
 TF_RETURN_IF_ERROR(
 ReadBinaryProto(Env::Default(), graph_file_name, &graph_def));
 TF_RETURN_IF_ERROR(NewSession(SessionOptions(), session));
 TF_RETURN_IF_ERROR((*session)->Create(graph_def));
 return Status::OK();
}

	Run the graph with a call to session->Run()

Env

	tensorflow::Env

	tensorflow::RandomAccessFile

	tensorflow::WritableFile

	tensorflow::EnvWrapper

Session

	tensorflow::Session

	tensorflow::SessionOptions

Status

	tensorflow::Status

	tensorflow::Status::State

Tensor

	tensorflow::Tensor

	tensorflow::TensorShape

	tensorflow::TensorShapeDim

	tensorflow::TensorShapeUtils

Thread

	tensorflow::Thread

	tensorflow::ThreadOptions

 Struct tensorflow::Status::State

Struct tensorflow::Status::State

##Member Summary

	tensorflow::error::Code tensorflow::Status::State::code

	string tensorflow::Status::State::msg

##Member Details

tensorflow::error::Code tensorflow::Status::State::code {#tensorflow_error_Code_tensorflow_Status_State_code}

string tensorflow::Status::State::msg {#string_tensorflow_Status_State_msg}

 Struct tensorflow::SessionOptions

Struct tensorflow::SessionOptions

Configuration information for a Session .

##Member Summary

	Env* tensorflow::SessionOptions::env
	The environment to use.

	string tensorflow::SessionOptions::target
	The TensorFlow runtime to connect to.

	ConfigProto tensorflow::SessionOptions::config
	Configuration options.

	tensorflow::SessionOptions::SessionOptions()

##Member Details

Env* tensorflow::SessionOptions::env {#Env_tensorflow_SessionOptions_env}

The environment to use.

string tensorflow::SessionOptions::target {#string_tensorflow_SessionOptions_target}

The TensorFlow runtime to connect to.

If ‘

target‘

 is empty or unspecified, the local TensorFlow runtime implementation will be used. Otherwise, the TensorFlow engine defined by ‘

target‘

 will be used to perform all computations.

“target” can be either a single entry or a comma separated list of entries. Each entry is a resolvable address of the following format: local ip:port host:port ... other system-specific formats to identify tasks and jobs ...

NOTE: at the moment ‘

local‘

 maps to an in-process service-based runtime.

Upon creation, a single session affines itself to one of the remote processes, with possible load balancing choices when the “target” resolves to a list of possible processes.

If the session disconnects from the remote process during its lifetime, session calls may fail immediately.

ConfigProto tensorflow::SessionOptions::config {#ConfigProto_tensorflow_SessionOptions_config}

Configuration options.

tensorflow::SessionOptions::SessionOptions() {#tensorflow_SessionOptions_SessionOptions}

 Class tensorflow::Session

Class tensorflow::Session

A Session instance lets a caller drive a TensorFlow graph computation.

When a Session is created with a given target, a new Session object is bound to the universe of resources specified by that target. Those resources are available to this session to perform computation described in the GraphDef. After extending the session with a graph, the caller uses the Run() API to perform the computation and potentially fetch outputs as Tensors.

Example:

// ... Create or load graph into "graph".

// This example uses the default options which connects
// to a local runtime.
tensorflow::SessionOptions options;
std::unique_ptr<tensorflow::Session>
session(tensorflow::NewSession(options));

// Create the session with this graph.
tensorflow::Status s = session->Create(graph);
if (!s.ok()) { ... }

// Run the graph and fetch the first output of the "output"
// operation, and also run to but do not return anything
// for the "update_state" operation.
std::vector<tensorflow::Tensor> outputs;
s = session->Run({}, {"output:0"}, {"update_state"}, &outputs);
if (!s.ok()) { ... }

// Map the output as a flattened float tensor, and do something
// with it.
auto output_tensor = outputs[0].flat<float>();
if (output_tensor(0) > 0.5) { ... }

// Close the session to release the resources associated with
// this session.
session->Close()

A Session allows concurrent calls to Run() , though a Session must be created / extended by a single thread.

Only one thread must call Close() , and Close() must only be called after all other calls to Run() have returned.

##Member Summary

	virtual Status tensorflow::Session::Create(const GraphDef &graph)=0
	Create the graph to be used for the session.

	virtual Status tensorflow::Session::Extend(const GraphDef &graph)=0
	Adds operations to the graph that is already registered with the Session .

	virtual Status tensorflow::Session::Run(const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_tensor_names, const std::vector< string > &target_node_names, std::vector< Tensor > *outputs)=0
	Runs the graph with the provided input tensors and fills outputs for the endpoints specified in output_tensor_names. Runs to but does not return Tensors for the nodes in target_node_names.

	virtual Status tensorflow::Session::Close()=0
	Closes this session.

	virtual tensorflow::Session::~Session()

##Member Details

virtual Status tensorflow::Session::Create(const GraphDef &graph)=0 {#virtual_Status_tensorflow_Session_Create}

Create the graph to be used for the session.

Returns an error if this session has already been created with a graph. To re-use the session with a different graph, the caller must Close() the session first.

virtual Status tensorflow::Session::Extend(const GraphDef &graph)=0 {#virtual_Status_tensorflow_Session_Extend}

Adds operations to the graph that is already registered with the Session .

The names of new operations in “graph” must not exist in the graph that is already registered.

virtual Status tensorflow::Session::Run(const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_tensor_names, const std::vector< string > &target_node_names, std::vector< Tensor > *outputs)=0 {#virtual_Status_tensorflow_Session_Run}

Runs the graph with the provided input tensors and fills outputs for the endpoints specified in output_tensor_names. Runs to but does not return Tensors for the nodes in target_node_names.

The order of tensors in outputs will match the order provided by output_tensor_names.

If Run returns OK(), then outputs->size() will be equal to output_tensor_names.size(). If Run does not return OK(), the state of outputs is undefined.

REQUIRES: The name of each Tensor of the input or output must match a “Tensor endpoint” in the GraphDef passed to Create().

REQUIRES: outputs is not nullptr if output_tensor_names is non-empty.

virtual Status tensorflow::Session::Close()=0 {#virtual_Status_tensorflow_Session_Close}

Closes this session.

Closing a session releases the resources used by this session on the TensorFlow runtime (specified during session creation by the SessionOptions::target field).

virtual tensorflow::Session::~Session() {#virtual_tensorflow_Session_Session}

 Class tensorflow::Thread

Class tensorflow::Thread

##Member Summary

	tensorflow::Thread::Thread()

	virtual tensorflow::Thread::~Thread()
	Blocks until the thread of control stops running.

##Member Details

tensorflow::Thread::Thread() {#tensorflow_Thread_Thread}

virtual tensorflow::Thread::~Thread() {#virtual_tensorflow_Thread_Thread}

Blocks until the thread of control stops running.

 Class tensorflow::EnvWrapper

Class tensorflow::EnvWrapper

An implementation of Env that forwards all calls to another Env .

May be useful to clients who wish to override just part of the functionality of another Env .

##Member Summary

	tensorflow::EnvWrapper::EnvWrapper(Env *t)
	Initializes an EnvWrapper that delegates all calls to *t.

	virtual tensorflow::EnvWrapper::~EnvWrapper()

	Env* tensorflow::EnvWrapper::target() const
	Returns the target to which this Env forwards all calls.

	Status tensorflow::EnvWrapper::NewRandomAccessFile(const string &f, RandomAccessFile **r) override
	Creates a brand new random access read-only file with the specified name.

	Status tensorflow::EnvWrapper::NewWritableFile(const string &f, WritableFile **r) override
	Creates an object that writes to a new file with the specified name.

	Status tensorflow::EnvWrapper::NewAppendableFile(const string &f, WritableFile **r) override
	Creates an object that either appends to an existing file, or writes to a new file (if the file does not exist to begin with).

	bool tensorflow::EnvWrapper::FileExists(const string &f) override
	Returns true iff the named file exists.

	Status tensorflow::EnvWrapper::GetChildren(const string &dir, std::vector< string > *r) override
	Stores in *result the names of the children of the specified directory. The names are relative to “dir”.

	Status tensorflow::EnvWrapper::DeleteFile(const string &f) override
	Deletes the named file.

	Status tensorflow::EnvWrapper::CreateDir(const string &d) override
	Creates the specified directory.

	Status tensorflow::EnvWrapper::DeleteDir(const string &d) override
	Deletes the specified directory.

	Status tensorflow::EnvWrapper::GetFileSize(const string &f, uint64 *s) override
	Stores the size of fname in *file_size.

	Status tensorflow::EnvWrapper::RenameFile(const string &s, const string &t) override
	Renames file src to target. If target already exists, it will be replaced.

	uint64 tensorflow::EnvWrapper::NowMicros() override
	Returns the number of micro-seconds since some fixed point in time. Only useful for computing deltas of time.

	void tensorflow::EnvWrapper::SleepForMicroseconds(int micros) override
	Sleeps/delays the thread for the prescribed number of micro-seconds.

	Thread* tensorflow::EnvWrapper::StartThread(const ThreadOptions &thread_options, const string &name, std::function< void()> fn) override
	Returns a new thread that is running fn() and is identified (for debugging/performance-analysis) by “name”.

##Member Details

tensorflow::EnvWrapper::EnvWrapper(Env *t) {#tensorflow_EnvWrapper_EnvWrapper}

Initializes an EnvWrapper that delegates all calls to *t.

virtual tensorflow::EnvWrapper::~EnvWrapper() {#virtual_tensorflow_EnvWrapper_EnvWrapper}

Env* tensorflow::EnvWrapper::target() const {#Env_tensorflow_EnvWrapper_target}

Returns the target to which this Env forwards all calls.

Status tensorflow::EnvWrapper::NewRandomAccessFile(const string &f, RandomAccessFile **r) override {#Status_tensorflow_EnvWrapper_NewRandomAccessFile}

Creates a brand new random access read-only file with the specified name.

On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK. If the file does not exist, returns a non-OK status.

The returned file may be concurrently accessed by multiple threads.

Status tensorflow::EnvWrapper::NewWritableFile(const string &f, WritableFile **r) override {#Status_tensorflow_EnvWrapper_NewWritableFile}

Creates an object that writes to a new file with the specified name.

Deletes any existing file with the same name and creates a new file. On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK.

The returned file will only be accessed by one thread at a time.

Status tensorflow::EnvWrapper::NewAppendableFile(const string &f, WritableFile **r) override {#Status_tensorflow_EnvWrapper_NewAppendableFile}

Creates an object that either appends to an existing file, or writes to a new file (if the file does not exist to begin with).

On success, stores a pointer to the new file in *result and returns OK. On failure stores NULL in *result and returns non-OK.

The returned file will only be accessed by one thread at a time.

bool tensorflow::EnvWrapper::FileExists(const string &f) override {#bool_tensorflow_EnvWrapper_FileExists}

Returns true iff the named file exists.

Status tensorflow::EnvWrapper::GetChildren(const string &dir, std::vector< string > *r) override {#Status_tensorflow_EnvWrapper_GetChildren}

Stores in *result the names of the children of the specified directory. The names are relative to “dir”.

Original contents of *results are dropped.

Status tensorflow::EnvWrapper::DeleteFile(const string &f) override {#Status_tensorflow_EnvWrapper_DeleteFile}

Deletes the named file.

Status tensorflow::EnvWrapper::CreateDir(const string &d) override {#Status_tensorflow_EnvWrapper_CreateDir}

Creates the specified directory.

Status tensorflow::EnvWrapper::DeleteDir(const string &d) override {#Status_tensorflow_EnvWrapper_DeleteDir}

Deletes the specified directory.

Status tensorflow::EnvWrapper::GetFileSize(const string &f, uint64 *s) override {#Status_tensorflow_EnvWrapper_GetFileSize}

Stores the size of fname in *file_size.

Status tensorflow::EnvWrapper::RenameFile(const string &s, const string &t) override {#Status_tensorflow_EnvWrapper_RenameFile}

Renames file src to target. If target already exists, it will be replaced.

uint64 tensorflow::EnvWrapper::NowMicros() override {#uint64_tensorflow_EnvWrapper_NowMicros}

Returns the number of micro-seconds since some fixed point in time. Only useful for computing deltas of time.

void tensorflow::EnvWrapper::SleepForMicroseconds(int micros) override {#void_tensorflow_EnvWrapper_SleepForMicroseconds}

Sleeps/delays the thread for the prescribed number of micro-seconds.

Thread* tensorflow::EnvWrapper::StartThread(const ThreadOptions &thread_options, const string &name, std::function< void()> fn) override {#Thread_tensorflow_EnvWrapper_StartThread}

Returns a new thread that is running fn() and is identified (for debugging/performance-analysis) by “name”.

Caller takes ownership of the result and must delete it eventually (the deletion will block until fn() stops running).

 Basic Usage

Basic Usage

To use TensorFlow you need to understand how TensorFlow:

	Represents computations as graphs.

	Executes graphs in the context of Sessions.

	Represents data as tensors.

	Maintains state with Variables.

	Uses feeds and fetches to get data into and out of arbitrary operations.

Overview

TensorFlow is a programming system in which you represent computations as
graphs. Nodes in the graph are called ops (short for operations). An op
takes zero or more Tensors, performs some computation, and produces zero or
more Tensors. A Tensor is a typed multi-dimensional array. For example,
you can represent a mini-batch of images as a 4-D array of floating point
numbers with dimensions [batch, height, width, channels].

A TensorFlow graph is a description of computations. To compute anything,
a graph must be launched in a Session. A Session places the graph ops onto
Devices, such as CPUs or GPUs, and provides methods to execute them. These
methods return tensors produced by ops as numpy [http://www.numpy.org]
ndarray objects in Python, and as tensorflow::Tensor instances in C and
C++.

The computation graph

TensorFlow programs are usually structured into a construction phase, that
assembles a graph, and an execution phase that uses a session to execute ops in
the graph.

For example, it is common to create a graph to represent and train a neural
network in the construction phase, and then repeatedly execute a set of
training ops in the graph in the execution phase.

TensorFlow can be used from C, C++, and Python programs. It is presently much
easier to use the Python library to assemble graphs, as it provides a large set
of helper functions not available in the C and C++ libraries.

The session libraries have equivalent functionalities for the three languages.

Building the graph

To build a graph start with ops that do not need any input (source ops), such as
Constant, and pass their output to other ops that do computation.

The ops constructors in the Python library return objects that stand for the
output of the constructed ops. You can pass these to other ops constructors to
use as inputs.

The TensorFlow Python library has a default graph to which ops constructors
add nodes. The default graph is sufficient for many applications. See the
Graph class documentation for how
to explicitly manage multiple graphs.

import tensorflow as tf

Create a Constant op that produces a 1x2 matrix. The op is
added as a node to the default graph.
#
The value returned by the constructor represents the output
of the Constant op.
matrix1 = tf.constant([[3., 3.]])

Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])

Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
The returned value, 'product', represents the result of the matrix
multiplication.
product = tf.matmul(matrix1, matrix2)

The default graph now has three nodes: two constant() ops and one matmul()
op. To actually multiply the matrices, and get the result of the multiplication,
you must launch the graph in a session.

Launching the graph in a session

Launching follows construction. To launch a graph, create a Session object.
Without arguments the session constructor launches the default graph.

See the Session class for
the complete session API.

Launch the default graph.
sess = tf.Session()

To run the matmul op we call the session 'run()' method, passing 'product'
which represents the output of the matmul op. This indicates to the call
that we want to get the output of the matmul op back.
#
All inputs needed by the op are run automatically by the session. They
typically are run in parallel.
#
The call 'run(product)' thus causes the execution of threes ops in the
graph: the two constants and matmul.
#
The output of the op is returned in 'result' as a numpy `ndarray` object.
result = sess.run(product)
print result
==> [[12.]]

Close the Session when we're done.
sess.close()

Sessions should be closed to release resources. You can also enter a Session
with a “with” block. The Session closes automatically at the end of the
with block.

with tf.Session() as sess:
 result = sess.run([product])
 print result

The TensorFlow implementation translates the graph definition into executable
operations distributed across available compute resources, such as the CPU or
one of your computer’s GPU cards. In general you do not have to specify CPUs
or GPUs explicitly. TensorFlow uses your first GPU, if you have one, for as
many operations as possible.

If you have more than one GPU available on your machine, to use a GPU beyond
the first you must assign ops to it explicitly. Use with...Device statements
to specify which CPU or GPU to use for operations:

with tf.Session() as sess:
 with tf.device("/gpu:1"):
 matrix1 = tf.constant([[3., 3.]])
 matrix2 = tf.constant([[2.],[2.]])
 product = tf.matmul(matrix1, matrix2)
 ...

Devices are specified with strings. The currently supported devices are:

	"/cpu:0": The CPU of your machine.

	"/gpu:0": The GPU of your machine, if you have one.

	"/gpu:1": The second GPU of your machine, etc.

See Using GPUs for more information about GPUs
and TensorFlow.

Interactive Usage

The Python examples in the documentation launch the graph with a
Session and use the
Session.run() method to execute
operations.

For ease of use in interactive Python environments, such as
IPython [http://ipython.org] you can instead use the
InteractiveSession class,
and the Tensor.eval() and
Operation.run() methods. This
avoids having to keep a variable holding the session.

Enter an interactive TensorFlow Session.
import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])

Initialize 'x' using the run() method of its initializer op.
x.initializer.run()

Add an op to subtract 'a' from 'x'. Run it and print the result
sub = tf.sub(x, a)
print sub.eval()
==> [-2. -1.]

Tensors

TensorFlow programs use a tensor data structure to represent all data – only
tensors are passed between operations in the computation graph. You can think
of a TensorFlow tensor as an n-dimensional array or list. A tensor has a
static type, a rank, and a shape. To learn more about how TensorFlow handles
these concepts, see the Rank, Shape, and Type
reference.

Variables

Variables maintain state across executions of the graph. The following example
shows a variable serving as a simple counter. See
Variables for more details.

Create a Variable, that will be initialized to the scalar value 0.
state = tf.Variable(0, name="counter")

Create an Op to add one to `state`.

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

Variables must be initialized by running an `init` Op after having

launched the graph. We first have to add the `init` Op to the graph.
init_op = tf.initialize_all_variables()

Launch the graph and run the ops.
with tf.Session() as sess:
 # Run the 'init' op
 sess.run(init_op)
 # Print the initial value of 'state'
 print sess.run(state)
 # Run the op that updates 'state' and print 'state'.
 for _ in range(3):
 sess.run(update)
 print sess.run(state)

output:

0
1
2
3

The assign() operation in this code is a part of the expression graph just
like the add() operation, so it does not actually perform the assignment
until run() executes the expression.

You typically represent the parameters of a statistical model as a set of
Variables. For example, you would store the weights for a neural network as a
tensor in a Variable. During training you update this tensor by running a
training graph repeatedly.

Fetches

To fetch the outputs of operations, execute the graph with a run() call on
the Session object and pass in the tensors to retrieve. In the previous
example we fetched the single node state, but you can also fetch multiple
tensors:

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
 result = sess.run([mul, intermed])
 print result

output:
[array([21.], dtype=float32), array([7.], dtype=float32)]

All the ops needed to produce the values of the requested tensors are run once
(not once per requested tensor).

Feeds

The examples above introduce tensors into the computation graph by storing them
in Constants and Variables. TensorFlow also provides a feed mechanism for
patching a tensor directly into any operation in the graph.

A feed temporarily replaces the output of an operation with a tensor value.
You supply feed data as an argument to a run() call. The feed is only used for
the run call to which it is passed. The most common use case involves
designating specific operations to be “feed” operations by using
tf.placeholder() to create them:

input1 = tf.placeholder(tf.types.float32)
input2 = tf.placeholder(tf.types.float32)
output = tf.mul(input1, input2)

with tf.Session() as sess:
 print sess.run([output], feed_dict={input1:[7.], input2:[2.]})

output:
[array([14.], dtype=float32)]

A placeholder() operation generates an error if you do not supply a feed for
it. See the
MNIST fully-connected feed tutorial
(source code [https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/fully_connected_feed.py])
for a larger-scale example of feeds.

 Download and Setup

Download and Setup

You can install TensorFlow either from our provided binary packages or from the
github source.

Requirements

The TensorFlow Python API currently requires Python 2.7. We are
adding support for Python 3 [https://github.com/tensorflow/tensorflow/issues/1].

The GPU version (Linux only) currently requires the Cuda Toolkit 7.0 and CUDNN
6.5 V2. Please see Cuda installation.

Overview

We support different ways to install TensorFlow:

	Pip install: Install TensorFlow on your machine, possibly
upgrading previously installed Python packages. May impact existing
Python programs on your machine.

	Virtualenv install: Install TensorFlow in its own
directory, not impacting any existing Python programs on your machine.

	Docker install: Run TensorFlow in a Docker container
isolated from all other programs on your machine.

If you are familiar with Pip, Virtualenv, or Docker, please feel free to adapt
the instructions to your particular needs. The names of the pip and Docker
images are listed in the corresponding installation sections.

If you encounter installation errors, see
common problems for some solutions.

Pip Installation {#pip_install}

Pip [https://en.wikipedia.org/wiki/Pip_(package_manager)] is a package
management system used to install and manage software packages written in
Python.

The packages that will be installed or upgraded during the pip install are listed in the
REQUIRED_PACKAGES section of setup.py [https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/pip_package/setup.py]

Install pip if not already installed:

Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev

Mac OS X
$ sudo easy_install pip

Install TensorFlow:

Ubuntu/Linux 64-bit, CPU only:
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled:
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

Mac OS X, CPU only:
$ sudo easy_install --upgrade six
$ sudo pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl

You can now test your installation.

Virtualenv installation {#virtualenv_install}

Virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/] is a tool
to keep the dependencies required by different Python projects in separate
places. The Virtualenv installation of TensorFlow will not override
pre-existing version of the Python packages needed by TensorFlow.

With Virtualenv [https://pypi.python.org/pypi/virtualenv] the installation is
as follows:

	Install pip and Virtualenv.

	Create a Virtualenv environment.

	Activate the Virtualenv environment and install TensorFlow in it.

	After the install you will activate the Virtualenv environment each time you
want to use TensorFlow.

Install pip and Virtualenv:

Ubuntu/Linux 64-bit
$ sudo apt-get install python-pip python-dev python-virtualenv

Mac OS X
$ sudo easy_install pip
$ sudo pip install --upgrade virtualenv

Create a Virtualenv environment in the directory ~/tensorflow:

$ virtualenv --system-site-packages ~/tensorflow

Activate the environment and use pip to install TensorFlow inside it:

$ source ~/tensorflow/bin/activate # If using bash
$ source ~/tensorflow/bin/activate.csh # If using csh
(tensorflow)$ # Your prompt should change

Ubuntu/Linux 64-bit, CPU only:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

Ubuntu/Linux 64-bit, GPU enabled:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

Mac OS X, CPU only:
(tensorflow)$ pip install --upgrade https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl

With the Virtualenv environment activated, you can now
test your installation.

When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ deactivate

$ # Your prompt should change back

To use TensorFlow later you will have to activate the Virtualenv environment again:

$ source ~/tensorflow/bin/activate # If using bash.
$ source ~/tensorflow/bin/activate.csh # If using csh.
(tensorflow)$ # Your prompt should change.
Run Python programs that use TensorFlow.
...
When you are done using TensorFlow, deactivate the environment.
(tensorflow)$ deactivate

Docker installation {#docker_install}

Docker [http://docker.com/] is a system to build self contained versions of a
Linux operating system running on your machine. When you install and run
TensorFlow via Docker it completely isolates the installation from pre-existing
packages on your machine.

We provide 2 Docker images:

	b.gcr.io/tensorflow/tensorflow: TensorFlow CPU binary image.

	b.gcr.io/tensorflow/tensorflow-full: CPU Binary image plus source code.

With Docker the installation is as follows:

	Install Docker on your machine.

	Launch a Docker container with the TensorFlow image. The image
gets downloaded automatically on first launch.

See installing Docker [http://docs.docker.com/engine/installation/] for instructions
on installing Docker on your machine.

Also create a Docker
group [http://docs.docker.com/engine/installation/ubuntulinux/#create-a-docker-group]
to allow launching containers without sudo.

After Docker is installed, launch a Docker container with the TensorFlow binary
image as follows.

$ docker run -it b.gcr.io/tensorflow/tensorflow

Within the Docker container, you can now test your installation.

You can alternatively launch the TensorFlow source image, for example if you want
to experiment directly with the source.

$ docker run -it b.gcr.io/tensorflow/tensorflow-full

Test the TensorFlow installation {#test_install}

(Optional, Linux) Enable GPU Support

If you installed the GPU version of TensorFlow, you must also install the Cuda
Toolkit 7.0 and CUDNN 6.5 V2. Please see Cuda installation.

You also need to set the LD_LIBRARY_PATH and CUDA_HOME environment
variables. Consider adding the commands below to your ~/.bash_profile. These
assume your CUDA installation is in /usr/local/cuda:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export CUDA_HOME=/usr/local/cuda

Run TensorFlow from the Command Line

See common problems if some error happens.

Open a terminal and type the following:

$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print sess.run(hello)
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print sess.run(a + b)
42
>>>

Run a TensorFlow demo model

All TensorFlow packages, including the demo models, are installed in the Python library.
The exact location of the Python library depends on your system, but is usually one of:

/usr/local/lib/python2.7/dist-packages/tensorflow
/usr/local/lib/python2.7/site-packages/tensorflow

You can find out the directory with the following command:

$ python -c 'import site; print "\n".join(site.getsitepackages())'

The simple demo model for classifying handwritten digits from the MNIST dataset
is in the sub-directory models/image/mnist/convolutional.py. You can run it from the command
line as follows:

Using 'python -m' to find the program in the python search path:
$ python -m tensorflow.models.image.mnist.convolutional
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
...etc...

You can alternatively pass the path to the model program file to the python interpreter.
$ python /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py
...

Installing from sources {#source}

Clone the TensorFlow repository

$ git clone --recurse-submodules https://github.com/tensorflow/tensorflow

--recurse-submodules is required to fetch the protobuf library that TensorFlow
depends on.

Installation for Linux

Install Bazel

Follow instructions here [http://bazel.io/docs/install.html] to install the
dependencies for Bazel. Then download bazel version 0.1.1 using the
installer for your system [https://github.com/bazelbuild/bazel/releases] and
run the installer as mentioned there:

$ chmod +x PATH_TO_INSTALL.SH
$./PATH_TO_INSTALL.SH --user

Remember to replace PATH_TO_INSTALL.SH to point to the location where you
downloaded the installer.

Finally, follow the instructions in that script to place bazel into your binary
path.

Install other dependencies

$ sudo apt-get install python-numpy swig python-dev

Optional: Install CUDA (GPUs on Linux) {#install_cuda}

In order to build or run TensorFlow with GPU support, both Cuda Toolkit 7.0 and
CUDNN 6.5 V2 from NVIDIA need to be installed.

TensorFlow GPU support requires having a GPU card with NVidia Compute Capability >= 3.5. Supported cards include but are not limited to:

	NVidia Titan

	NVidia Titan X

	NVidia K20

	NVidia K40

Download and install Cuda Toolkit 7.0

https://developer.nvidia.com/cuda-toolkit-70

Install the toolkit into e.g. /usr/local/cuda

Download and install CUDNN Toolkit 6.5

https://developer.nvidia.com/rdp/cudnn-archive

Uncompress and copy the cudnn files into the toolkit directory. Assuming the
toolkit is installed in /usr/local/cuda:

tar xvzf cudnn-6.5-linux-x64-v2.tgz
sudo cp cudnn-6.5-linux-x64-v2/cudnn.h /usr/local/cuda/include
sudo cp cudnn-6.5-linux-x64-v2/libcudnn* /usr/local/cuda/lib64

Configure TensorFlow’s canonical view of Cuda libraries

From the root of your source tree, run:

$./configure
Do you wish to build TensorFlow with GPU support? [y/n] y
GPU support will be enabled for TensorFlow

Please specify the location where CUDA 7.0 toolkit is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda

Please specify the location where CUDNN 6.5 V2 library is installed. Refer to
README.md for more details. [default is: /usr/local/cuda]: /usr/local/cuda

Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Configuration finished

This creates a canonical set of symbolic links to the Cuda libraries on your system.
Every time you change the Cuda library paths you need to run this step again before
you invoke the bazel build command.

Build your target with GPU support

From the root of your source tree, run:

$ bazel build -c opt --config=cuda //tensorflow/cc:tutorials_example_trainer

$ bazel-bin/tensorflow/cc/tutorials_example_trainer --use_gpu
Lots of output. This tutorial iteratively calculates the major eigenvalue of
a 2x2 matrix, on GPU. The last few lines look like this.
000009/000005 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
000006/000001 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]
000009/000009 lambda = 2.000000 x = [0.894427 -0.447214] y = [1.788854 -0.894427]

Note that “–config=cuda” is needed to enable the GPU support.

Enabling Cuda 3.0

TensorFlow officially supports Cuda devices with 3.5 and 5.2 compute
capabilities. In order to enable earlier Cuda devices such as Grid K520, you
need to target Cuda 3.0. This can be done through TensorFlow unofficial
settings with “configure”.

$ TF_UNOFFICIAL_SETTING=1 ./configure

Same as the official settings above

WARNING: You are configuring unofficial settings in TensorFlow. Because some
external libraries are not backward compatible, these settings are largely
untested and unsupported.

Please specify a list of comma-separated Cuda compute capabilities you want to
build with. You can find the compute capability of your device at:
https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases
your build time and binary size. [Default is: "3.5,5.2"]: 3.0

Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Configuration finished

Known issues

	Although it is possible to build both Cuda and non-Cuda configs under the same
source tree, we recommend to run “bazel clean” when switching between these two
configs in the same source tree.

	You have to run configure before running bazel build. Otherwise, the build
will fail with a clear error message. In the future, we might consider making
this more conveninent by including the configure step in our build process,
given necessary bazel new feature support.

Installation for Mac OS X

Mac needs the same set of dependencies as Linux, however installing those
dependencies is different. Here is a set of useful links to help with installing
the dependencies on Mac OS X :

Bazel

Look for installation instructions for Mac OS X on
this [http://bazel.io/docs/install.html] page.

SWIG

Mac OS X installation [http://www.swig.org/Doc3.0/Preface.html#Preface_osx_installation].

Notes : You need to install
PCRE [ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/] and NOT PCRE2.

Numpy

Follow installation instructions here [http://docs.scipy.org/doc/numpy/user/install.html].

Create the pip package and install {#create-pip}

$ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

To build with GPU support:
$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

$ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

The name of the .whl file will depend on your platform.
$ pip install /tmp/tensorflow_pkg/tensorflow-0.5.0-cp27-none-linux_x86_64.whl

Train your first TensorFlow neural net model

Starting from the root of your source tree, run:

$ cd tensorflow/models/image/mnist
$ python convolutional.py
Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Initialized!
Epoch 0.00
Minibatch loss: 12.054, learning rate: 0.010000
Minibatch error: 90.6%
Validation error: 84.6%
Epoch 0.12
Minibatch loss: 3.285, learning rate: 0.010000
Minibatch error: 6.2%
Validation error: 7.0%
...
...

Common Problems {#common_install_problems}

GPU-related issues

If you encounter the following when trying to run a TensorFlow program:

ImportError: libcudart.so.7.0: cannot open shared object file: No such file or directory

Make sure you followed the the GPU installation instructions.

Pip installation issues

Can’t find setup.py

If, during pip install, you encounter an error like:

...
IOError: [Errno 2] No such file or directory: '/tmp/pip-o6Tpui-build/setup.py'

Solution: upgrade your version of pip:

pip install --upgrade pip

This may require sudo, depending on how pip is installed.

SSLError: SSL_VERIFY_FAILED

If, during pip install from a URL, you encounter an error like:

...
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed

Solution: Download the wheel manually via curl or wget, and pip install locally.

On Linux

If you encounter:

...
 "__add__", "__radd__",
 ^
SyntaxError: invalid syntax

Solution: make sure you are using Python 2.7.

Mac OS X: ImportError: No module named copyreg

On Mac OS X, you may encounter the following when importing tensorflow.

>>> import tensorflow as tf
...
ImportError: No module named copyreg

Solution: TensorFlow depends on protobuf, which requires the Python package
six-1.10.0. Apple’s default Python installation only provides six-1.4.1.

You can resolve the issue in one of the following ways:

	Upgrade the Python installation with the current version six:

$ sudo easy_install -U six

	Install TensorFlow with a separate Python library:
	Using Virtualenv.

	Using Docker.

	Install a separate copy of Python via Homebrew [http://brew.sh/] or
MacPorts [https://www.macports.org/] and re-install TensorFlow in that
copy of Python.

Mac OS X: TypeError: __init__() got an unexpected keyword argument ‘syntax’

On Mac OS X, you may encounter the following when importing tensorflow.

>>> import tensorflow as tf
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.7/site-packages/tensorflow/__init__.py", line 4, in <module>
 from tensorflow.python import *
 File "/usr/local/lib/python2.7/site-packages/tensorflow/python/__init__.py", line 13, in <module>
 from tensorflow.core.framework.graph_pb2 import *
...
 File "/usr/local/lib/python2.7/site-packages/tensorflow/core/framework/tensor_shape_pb2.py", line 22, in <module>
 serialized_pb=_b('\n,tensorflow/core/framework/tensor_shape.proto\x12\ntensorflow\"d\n\x10TensorShapeProto\x12-\n\x03\x64im\x18\x02 \x03(\x0b\x32 .tensorflow.TensorShapeProto.Dim\x1a!\n\x03\x44im\x12\x0c\n\x04size\x18\x01 \x01(\x03\x12\x0c\n\x04name\x18\x02 \x01(\tb\x06proto3')
TypeError: __init__() got an unexpected keyword argument 'syntax'

This is due to a conflict between protobuf versions (we require protobuf 3.0.0).
The best current solution is to make sure older versions of protobuf are not
installed, such as:

$ pip install --upgrade protobuf

 Introduction

Introduction

Let’s get you up and running with TensorFlow!

But before we even get started, let’s peek at what TensorFlow
code looks like in the Python API, so you have a sense of where we’re
headed.

Here’s a little Python program that makes up some data in two dimensions, and
then fits a line to it.

import tensorflow as tf
import numpy as np

Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3

Try to find values for W and b that compute y_data = W * x_data + b
(We know that W should be 0.1 and b 0.3, but Tensorflow will
figure that out for us.)
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()

Launch the graph.
sess = tf.Session()
sess.run(init)

Fit the line.
for step in xrange(201):
 sess.run(train)
 if step % 20 == 0:
 print step, sess.run(W), sess.run(b)

Learns best fit is W: [0.1], b: [0.3]

The first part of this code builds the data flow graph. TensorFlow does not
actually run any computation until the session is created and the run
function is called.

To whet your appetite further, we suggest you check out what a classical
machine learning problem looks like in TensorFlow. In the land of neural
networks the most “classic” classical problem is the MNIST handwritten digit
classification. We offer two introductions here, one for machine learning
newbies, and one for pros. If you’ve already trained dozens of MNIST models in
other software packages, please take the red pill. If you’ve never even hea