Contents

1 Introduction 3
2 User Guide 5
3 tensorD 29
TensorD is a tensor decomposition library in TensorFlow
TensorD: A Tensor Decomposition Library in Tensorflow

TensorD is a tensor decomposition library built on TensorFlow. It provides basic decomposition methods, such as Tucker decomposition and CANDECOMP/PARAFAC (CP) decomposition, as well as new decomposition methods developed recently, for example, Pairwise Interaction Tensor Decomposition. Except these utilities, other features of TensorD include that its internal functions all use the interface provided by Tensorflow, and it can be embedded directly into Tensorflow-based codes when needed.
To start with this guidance, basic modules are needed:

```python
>>> import tensorflow as tf
>>> import numpy as np
```

2.1 Tensor Types

A tensor is a multidimensional array. For the sake of different applications, we will introduce 4 different data types to store tensors.

2.1.1 Dense Tensor

factorizer.base.DTensor Class is used to store general high-order tensors, especially dense tensors. This data type accepts 2 kinds of tensor data, both tf.Tensor and np.ndarray.

Let’s take for this example the tensor $\mathcal{X} \in \mathbb{R}^{3 \times 4 \times 2}$ defined by its frontal slices:

$$
X_1 = \begin{bmatrix}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{bmatrix},
X_2 = \begin{bmatrix}
13 & 16 & 19 & 22 \\
14 & 17 & 20 & 23 \\
15 & 18 & 21 & 24
\end{bmatrix}
$$

To create DTensor with np.ndarray:

```python
>>> from factorizer.base.type import DTensor
>>> tensor = np.array([[[1, 13], [4, 16], [7, 19], [10, 22]],
                      [[2, 14], [5, 17], [8, 20], [11, 23]],
                      [[3, 15], [6, 18], [9, 21], [12, 24]]])
>>> dense_tensor = DTensor(tensor)
```

To create DTensor with tf.Tensor:
>>> from factorizer.base.type import DTensor
>>> tensor = tf.constant([[1, 13], [4, 16], [7, 19], [10, 22], [2, 14], [5, 17], [8, 20], [11, 23], [3, 15], [6, 18], [9, 21], [12, 24]])
>>> dense_tensor = DTensor(tensor)

Important: `DTensor.T` is the tensor data stored in `tf.Tensor` form, rather than the transpose of the original tensor.

2.1.2 Kruskal Tensor

`factorizer.base.KTensor` Class is designed for Kruskal tensors in CP model. Let’s take a look at a 2-way tensor defined as below:

\[
\mathcal{X} = \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{bmatrix}
\]

```python
>>> X = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) # the shape of tensor X is (3, 4)
```

The CP decomposition can factorize \(\mathcal{X}\) into 2 component rank-one tensors, and the CP model can be expressed as

\[
\mathcal{X} \approx [A, B] \equiv \sum_{r=1}^{R} a_r \circ b_r.
\]

If we assume the columns of \(A\) and \(B\) are normalized to length one with the weights absorbed into the vector \(\lambda \in \mathbb{R}^R\) so that

\[
\mathcal{X} \approx [\lambda, A, B] \equiv \sum_{r=1}^{R} \lambda_r a_r \circ b_r
\]

where \(A = [a_1, \ldots, a_R], B = [b_1, \ldots, b_R]\).

Here we use singular value decomposition (SVD) to obtain the factor matrices (CP decomposition actually can be considered higher-order generation of matrix SVD):

```python
>>> from factorizer.base.type import KTensor
>>> u,s,v = np.linalg.svd(X, full_matrices=False) # X is equal to np.dot(u, np.dot(np.diag(s), v)), that is X = u * diag(s) * v
```

Then we use 2 factor matrices and \(\lambda\) to create a `factorizer.base.KTensor` object:

```python
>>> A = u # the shape of A is (3, 3)
>>> B = v.T # the shape of B is (4, 3)
>>> kruskal_tensor = KTensor([A, B], s) # the shape of s is (3,)
```

Notice that the first argument `factors` is a list of `tf.Tensor` objects or `np.ndarray` objects representing factor matrices, and the order of these matrices must be fixed.

If you want to get the factor matrices with `KTensor` object:

```python
>>> kruskal_tensor.U
[<tf.Tensor 'Const:0' shape=(3, 3) dtype=float64>,
 <tf.Tensor 'Const_1:0' shape=(4, 3) dtype=float64>]
```
If you want to get the vector λ with KTensor object:

```python
>>> kruskal_tensor.lambdas
<tf.Tensor 'Reshape:0' shape=(3, 1) dtype=float64>
```

We also offer class method KTensor.extract() to retrieve original tensor with KTensor object:

```python
>>> original_tensor = tf.Session().run(kruskal_tensor.extract())
>>> original_tensor
array([[ 1.,  2.,  3.,  4.],
       [ 5.,  6.,  7.,  8.],
       [ 9., 10., 11., 12.]])
```

To make sure original_tensor is equal to the tensor \mathcal{X}, you just need to run:

```python
>>> np.testing.assert_array_almost_equal(X, original_tensor)
# no Traceback means these two np.ndarray objects are exactly the same
```

Following Kolda\(^1\), for a general N-th order tensor, $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, the CP decomposition is

$$\mathcal{X} \approx [\lambda; A^{(1)}, A^{(2)}, \ldots, A^{(N)}] \equiv \sum_{r=1}^{R} \lambda_r a_r^{(1)} \circ a_r^{(2)} \circ \cdots \circ a_r^{(N)}$$

where $\lambda \in \mathbb{R}^R$ and $A^{(n)} \in \mathbb{R}^{I_n \times R}$ for $n = 1, \ldots, N$.

The following code can be used to create a N-th order Kruskal tensor object:

```python
>>> lambdas = tf.constant([[l1, l2, ..., lR]], shape=(R, 1))  # lambdas must be a column vector
>>> A1 = np.random.rand(I1, R)
>>> A2 = np.random.rand(I2, R)
...  
>>> AN = np.random.rand(IN, RN)
>>> factors = [A1, A2, ..., AN]
>>> N_kruskal_tensor = KTensor(factors, lambdas)
```

2.1.3 Tucker Tensor

factorizer.base.TTensor Class is designed for Tucker tensors in Tucker decomposition.

Given an N-way tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, the Tucker model can be expressed as

$$\mathcal{X} = \mathcal{G} \times_1 A^{(1)} \times_2 A^{(2)} \cdots \times_N A^{(N)} = \{ \mathcal{G}; A^{(1)}, A^{(2)}, \ldots, A^{(N)} \},$$

where $\mathcal{G} \in \mathbb{R}^{R_1 \times R_2 \times \cdots \times R_N}$, and $A^{(n)} \in \mathbb{R}^{I_n \times R_n}$.

To create the corresponding Tucker tensor, you just need to run:

```python
>>> from factorizer.base.type import TTensor
>>> G = tf.constant(np.random.rand(R1, R2, ..., RN))
>>> A1 = np.random.rand(I1, R1)
>>> A2 = np.random.rand(I2, R2)
...  
>>> AN = np.random.rand(IN, RN)
>>> factors = [A1, A2, ..., AN]
>>> tucker_tensor = TTensor(G, factors)
```

Important: All elements in factors as a whole should be either tf.Tensor objects or np.ndarray objects.

To get core tensor \(\mathcal{G} \) given a factorizer.base.TTensor object:

```python
>>> tucker_tensor.g
# <tf.Tensor 'Const_1:0' shape=(R1, R2, ..., RN) dtype=float64>
```

To get factor matrices given a TTensor object:

```python
>>> tucker_tensor.U
# [<tf.Tensor 'Const_2:0' shape=(I1, R1) dtype=float64>,
# <tf.Tensor 'Const_3:0' shape=(I2, R2) dtype=float64>,
# ...
# <tf.Tensor 'Const_{N-1}:0' shape=(IN, RN) dtype=float64>]
```

To get the order of the tensor:

```python
>>> tucker_tensor.order
# N
```

To retrieve original tensor, you just need to run:

```python
>>> tf.Session().run(tucker_tensor.extract())
# an np.ndarray with shape (I1, I2, ..., IN)
```

2.1.4 References

2.2 Basic Operations

Most operations we offer return results with tf.Tensor form, except some build-in class methods in our module. To begin with, load in operation module:

```python
import factorizer.base.ops as ops
```

2.2.1 Basic Operations with Matrices

Hadamard Products

The *Hadamard product* is the elementwise matrix product. Given matrices \(\mathbf{A} \) and \(\mathbf{B} \), both of size \(I \times J \), their Hadamard product is denoted by \(\mathbf{A} \odot \mathbf{B} \). The result is defined by

\[
\mathbf{A} \odot \mathbf{B} = \begin{bmatrix}
 a_{11}b_{11} & a_{12}b_{12} & \cdots & a_{1J}b_{1J} \\
 a_{21}b_{21} & a_{22}b_{22} & \cdots & a_{2J}b_{2J} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{I1}b_{I1} & a_{I2}b_{I2} & \cdots & a_{IJ}b_{IJ}
\end{bmatrix}
\]

For instance, using matrices \(\mathbf{A} \) and \(\mathbf{B} \) defined as

\[
\mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix}
\]
Using DTensor to store matrices, \(A \times B \) can be performed as:

```python
>>> A = DTensor(tf.constant([[1,4,7], [2,5,8],[3,6,9]]))
>>> B = DTensor(tf.constant([[2,3,4], [2,3,4],[2,3,4]]))
>>> result = A*B  # result is a DTensor with shape (3,3)
>>> tf.Session().run(result.T)
array([[ 2, 12, 28],
   [ 4, 15, 32],
   [ 6, 18, 36]], dtype=int32)
```

Using tf.Tensor to store matrices, \(A \times B \) can be performed as:

```python
>>> A = tf.constant([[1,4,7], [2,5,8],[3,6,9]])
>>> B = tf.constant([[2,3,4], [2,3,4],[2,3,4]])
>>> tf.Session().run(ops.hadamard([A,B]))
array([[ 2, 12, 28],
   [ 4, 15, 32],
   [ 6, 18, 36]], dtype=int32)
```

hadamard() also supports the Hadamard products of more than two matrices:

```python
>>> C = tf.constant(np.random.rand(3,3))
>>> D = tf.constant(np.random.rand(3,3))
>>> tf.Session().run(ops.hadamard([A, B, C, D], skip_matrices_index=[1]))  
   # the result is equal to tf.Session().run(ops.hadamard([A, C, D]))
```

Kronecker Products

The Kronecker product of matrices \(A \in \mathbb{R}^{I \times J} \) and \(B \in \mathbb{R}^{K \times L} \) is denoted by \(A \otimes B \). The result is a matrix of size \((IK) \times (JL)\) (See Kolda’s\(^1\) for more details).

For example, matrices \(A \) and \(B \) is defined as

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{bmatrix}, \quad B = \begin{bmatrix}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2
\end{bmatrix}
\]

To perform \(A \otimes B \) with tf.Tensor objects:

```python
>>> A = tf.constant([[1,2,3,4],[5,6,7,8],[9,10,11,12]])  # the shape of A is (3, 4)
>>> B = tf.constant([[1,1,1,1],[2,2,2,2]])  # the shape of B is (2, 5)
>>> tf.Session().run(ops.kron([A, B]))
array([[ 1, 1, 1, 1, 1, 2, 2, 2, 2],
   [ 2, 2, 2, 2, 2, 4, 4, 4, 4],
   [ 3, 3, 3, 3, 3, 4, 4, 4, 4],
   [ 4, 4, 4, 4, 4, 6, 6, 6, 6],
   [ 5, 5, 5, 5, 5, 6, 6, 6, 6],
   [ 6, 6, 6, 6, 6, 7, 7, 7, 7],
   [ 7, 7, 7, 7, 7, 8, 8, 8, 8],
   [ 8, 8, 8, 8, 8, 10, 10, 10, 10],
   [ 9, 9, 9, 9, 9, 10, 10, 10, 10],
   [10, 10, 10, 10, 10, 12, 12, 12, 12],
   [11, 11, 11, 11, 11, 12, 12, 12, 12],
   [12, 12, 12, 12, 12, 14, 14, 14, 14],
   [13, 13, 13, 13, 13, 15, 15, 15, 15],
   [14, 14, 14, 14, 14, 16, 16, 16, 16],
   [15, 15, 15, 15, 15, 17, 17, 17, 17],
   [16, 16, 16, 16, 16, 18, 18, 18, 18],
   [17, 17, 17, 17, 17, 19, 19, 19, 19],
   [18, 18, 18, 18, 18, 20, 20, 20, 20],
   [19, 19, 19, 19, 19, 21, 21, 21, 21]])
```

To perform \(B \otimes A \):

```python
>>> tf.Session().run(ops.kron([A, B], reverse=True))  
# the shape of result is (6, 20)
array([[ 1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,  4,  1,  2,  3,
        4],
       [ 5,  6,  7,  8,  5,  6,  7,  8,  5,  6,  7,  8,  5,  6,  7,  8,  5,  6,  7,
        8],
       [ 9, 10, 11, 12,  9, 10, 11, 12,  9, 10, 11, 12,  9, 10, 11, 12,  9, 10, 11,
        12],
       [ 2,  4,  6,  8,  2,  4,  6,  8,  2,  4,  6,  8,  2,  4,  6,  8,  2,  4,  6,
        8],
       [10, 12, 14, 16, 10, 12, 14, 16, 10, 12, 14, 16, 10, 12, 14, 16, 10, 12, 14,
        16],
       [18, 20, 22, 24, 18, 20, 22, 24, 18, 20, 22, 24, 18, 20, 22, 24, 18, 20, 22,
        24]], dtype=int32)
```

It might seem useless when using `reverse=True` to calculate the Kronecker product of two matrices, considering `ops.kron([B, A])` also do the same work, but it is considerable efficient to perform \(X_1 \otimes X_2 \otimes \cdots \otimes X_N \) using `reverse=True` when given a list of `tf.Tensor` objects `matrices = [X_1, X_2, \ldots, X_N]`:

```python
>>> tf.Session().run(ops.kron(matrices, reverse=True))
```

If the matrices are given in `DTensor` form:

```python
>>> A = DTensor(tf.constant([[[1,2,3,4]], [[5,6,7,8]], [[9,10,11,12]]]))
```

Then \(A \otimes B \) can be performed as:

```python
>>> dtensor_B = DTensor(tf.constant([[[1,1,1,1]], [[2,2,2,2]]]))  
>>> tf.Session().run(A.kron(dtensor_B).T)  
# A.kron(dtensor_B) returns a DTensor
array([[ 1,  1,  1,  1,  1,  2,  2,  2,  2,  2,  3,  3,  3,  3,  3,  4,  4,  4,  4,
        4],
       [ 2,  2,  2,  2,  2,  4,  4,  4,  4,  4,  6,  6,  6,  6,  6,  8,  8,  8,  8,
        8],
       [ 5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,  8,
        8],
       [10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 16, 16, 16, 16,
        16],
       [ 9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12,
        12],
       [18, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 22, 22, 24, 24, 24, 24,
        24]], dtype=int32)
```

or

```python
>>> tf_B = tf.constant([[[1,1,1,1]], [[2,2,2,2]]])  
>>> tf.Session().run(A.kron(tf_B).T)  
# A.kron(tf_B) returns a DTensor
array([[ 1,  1,  1,  1,  1,  2,  2,  2,  2,  2,  3,  3,  3,  3,  3,  4,  4,  4,  4,
        4],
       [ 2,  2,  2,  2,  2,  4,  4,  4,  4,  4,  6,  6,  6,  6,  6,  8,  8,  8,  8,
        8],
       [ 5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,  8,
        8],
       [10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 16, 16, 16, 16,
        16],
       [ 9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12,
        12],
       [18, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 22, 22, 24, 24, 24, 24,
        24]], dtype=int32)
```

(continues on next page)
Khatri-Rao Products

The Khatri-Rao product can be expressed in Kronecker product form. Given matrices $A \in \mathbb{R}^{I \times K}$ and $B \in \mathbb{R}^{J \times K}$, their Khatri-Rao product is denoted by $A \odot B$. The result is a matrix of size $(IJ) \times (K)$ and defined by

$$A \odot B = \begin{bmatrix} a_1 \otimes b_1 & a_2 \otimes b_2 & \cdots & a_K \otimes b_K \end{bmatrix}$$

Let’s take a look at matrices A and B defined as

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \end{bmatrix}$$

To perform $A \odot B$:

```
>>> A = tf.constant([[1,2,3,4],[5,6,7,8],[9,10,11,12]])  # the shape of A is (3, 4)
>>> B = tf.constant([[1,1,1,1],[2,2,2,2]])  # the shape of B is (2, 4)
>>> tf.Session().run(ops.khatri([A, B]))  # the shape of the result is (6, 4)
array([[ 1, 2, 3, 4],
       [ 2, 4, 6, 8],
       [ 5, 6, 7, 8],
       [10, 12, 14, 16],
       [ 9, 10, 11, 12],
       [18, 20, 22, 24]], dtype=int32)
```

khatri() function also offers skip_matrices_index to ignore specific matrices in the computation. For example, given matrices = [A, B, C, D] to calculate $A \odot B \odot D$:

```
>>> D = tf.constant(np.random.rand(4,4))
>>> matrices = [A, B, C, D]
>>> tf.Session().run(ops.khatri(matrices, skip_matrices_index=[2]))  # the shape of the result is (30, 4)
```

To obtain the result of $D \odot C \odot B \odot A$:

```
>>> tf.Session().run(ops.khatri(matrices, reverse=True))  # the shape of the result is (120, 4)
```

DTensor class also offers class method DTensor.khatri() which accepts only one single DTensor object or tf.Tensor object:

```
>>> A = DTensor(tf.constant([[1,2,3,4],[5,6,7,8],[9,10,11,12]]))
>>> B = tf.constant([[1,1,1,1],[2,2,2,2]])
>>> tf.Session().run(A.khatri(B).T)  # the shape of the result is (6, 4)
array([[ 1, 2, 3, 4],
       [ 2, 4, 6, 8],
       [ 5, 6, 7, 8],
       [10, 12, 14, 16],
       [ 9, 10, 11, 12],
       [18, 20, 22, 24]], dtype=int32)
```
2.2.2 Basic Operations with Tensors

Addition & Subtraction

Given a DTensor object, it is easy to perform addition and subtraction.

```python
>>> X = DTensor(tf.constant([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]))  # the shape of tensor X is (2, 2, 3)
>>> Y = DTensor(tf.constant([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]))  # the shape of tensor Y is (2, 2, 3)
>>> sum_X_Y = X + Y  # sum_X_Y is a DTensor
>>> sub_X_Y = X - Y  # sub_X_Y is a DTensor
>>> tf.Session().run(sum_X_Y.T)
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)
>>> tf.Session().run(sub_X_Y.T)
array([[ 2,  4,  6],
       [ 8, 10, 12]], dtype=int32)
```

The second operand can also be a tf.Tensor object:

```python
>>> Z = tf.constant([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])  # the shape of tensor Z is (2, 2, 3)
>>> sum_X_Z = X + Z  # sum_X_Z is a DTensor
>>> sub_X_Z = X - Z  # sub_X_Z is a DTensor
>>> tf.Session().run(sum_X_Z.T)
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)
>>> tf.Session().run(sub_X_Z.T)
array([[0, 0, 0],
       [0, 0, 0]], dtype=int32)
```

Inner Products

The inner product of two same-sized tensor $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ is the sum of products of their entries, which can be denoted as $\langle \mathbf{X}, \mathbf{Y} \rangle$.

Given tensor $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{3 \times 3 \times 2}$ defined by their frontal slices:

\[
\mathbf{X} = \begin{bmatrix}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix}
10 & 13 & 16 \\
11 & 14 & 17 \\
12 & 15 & 18
\end{bmatrix}
\quad \mathbf{Y} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]
To calculate $\langle X, Y \rangle$:

```python
>>> tf.Session().run(ops.inner(X, Y))
171
```

Warning: Notice that `ops.inner()` function does not support implicit type-casting, so be careful when using tensors of different `dtype`!

Vectorization & Reconstruction

The *vectorization* of a tensor is ordering the tensor into a vector. And the process transforming the vector back to the tensor is called *reconstruction* or reshaping.

Take the tensor $\mathcal{X} \in \mathbb{R}^{3 \times 3 \times 2}$ defined before as example.

```python
>>> X = tf.constant(np.array([[1,10],[4,13],[7,16]], [[2,11],[5,14],[8,17]], [[3,12], [6,15],[9,18]]))  # the shape of X is (3, 3, 2)
>>> vec = ops.vectorize(X)
>>> tf.Session().run(vec)
array([1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 12, 13, 16, 19, 22, 14, 17, 20, 23, 15, 18, 21, 24])
```

To reconstruct the vector:

```python
>>> tf.Session().run(ops.vec_to_tensor(vec,(3,3,2)))
array([[ 1,  4,  7, 10],
       [ 2,  5,  8, 11],
       [ 3,  6,  9, 12]])
```

Unfolding & Folding

Unfolding, also known as *matricization*, is the process of reordering the elements of an N-way array into a matrix. Here we call operation **mode-n matricization** as **unfolding** in default.

Let the frontal slices of $\mathcal{X} \in \mathbb{R}^{3 \times 4 \times 2}$ be

\[
X_1 = \begin{bmatrix}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{bmatrix}, \quad X_2 = \begin{bmatrix}
13 & 16 & 19 & 22 \\
14 & 17 & 20 & 23 \\
15 & 18 & 21 & 24
\end{bmatrix}
\]
To get the mode-1 matricization of tensor X:

```python
tf.Session().run(ops.unfold(X, 0))
```

array([[1, 4, 7, 10, 13, 16, 19, 22],
[2, 5, 8, 11, 14, 17, 20, 23],
[3, 6, 9, 12, 15, 18, 21, 24]], dtype=int32)

To get the mode-2 matricization of tensor X:

```python
tf.Session().run(ops.unfold(X, 1))
```

array([[1, 2, 3, 13, 14, 15],
[4, 5, 6, 16, 17, 18],
[7, 8, 9, 19, 20, 21],
[10, 11, 12, 22, 23, 24]], dtype=int32)

To get the mode-3 matricization of tensor X:

```python
tf.Session().run(ops.unfold(X, 2))
```

array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]], dtype=int32)

For a DTensor object, class method DTensor.unfold() is available:

```python
X = DTensor(tf.constant([[1, 13], [4, 16], [7, 19], [10, 22]], [[2, 14], [5, 17], [8, 20], [11, 23]], [[3, 15], [6, 18], [9, 21], [12, 24]]))
tf.Session().run(X.unfold(mode=0).T)  # mode-1 matricization, X.unfold(mode=0)
```

General Matricization

According to Kolda’s\(^2\), general matricization can flatten a high-order tensor into a matrix with size defined with row indices and column indices.

Given tensor $X \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$, if we want to rearrange it into a matrix with size $J_1 \times J_2$.

$$J_1 = \prod_{k=1}^{K} I_k \quad \text{and} \quad J_2 = \prod_{l=1}^{L} I_l.$$

The set $\{r_1, \ldots, r_K\}$ defines those indices that will mapped to the row indices of the resulting matrix and the set $\{c_1, \ldots, c_L\}$ defines those indices that will mapped to the column indices.

Note: The order of $\{r_1, \ldots, r_K\}$ or $\{c_1, \ldots, c_L\}$ is not necessarily ascending or descending.

>>> X = tf.constant([[1, 13], [4, 16], [7, 19], [10, 22]], [[2, 14], [5, 17], [8, 20], [11, 23]], [[3, 15], [6, 18], [9, 21], [12, 24]]) # the shape of X is (3, 4, 2)

To mapped \mathcal{X} into matrix of size $(4 \times 3) \times 2 = 12 \times 2$:

```python
>>> r_axis = [1,0]  # indices of row
>>> c_axis = 2  # indices of column
>>> mat = ops.t2mat(X, r_axis, c_axis)  # mat is a tf.Tensor
>>> tf.Session().run(mat)
array([[ 1, 13],
       [ 2, 14],
       [ 3, 15],
       [ 4, 16],
       [ 5, 17],
       [ 6, 18],
       [ 7, 19],
       [ 8, 20],
       [ 9, 21],
       [10, 22],
       [11, 23],
       [12, 24]], dtype=int32)
```

function ops.t2mat() can also perform mode-n matricization mapping indices appropriately:

To perform Kolda-type mode-2 unfolding:

```python
>>> mat1 = ops.t2mat(X, 1, [2,0])
```

To perform LMV-type mode-2 unfolding:

```python
>>> mat2 = ops.t2mat(X, 1, [0,2])
```

DTensor also offers class method:

```python
>>> X = DTensor(tf.constant([[1, 13], [4, 16], [7, 19], [10, 22]], [[2, 14], [5, 17], [8, 20], [11, 23]], [[3, 15], [6, 18], [9, 21], [12, 24]]))  # the shape of X is (3, 4, 2)
>>> mat3 = X.t2mat([1,0], 2)  # mat3 is a DTensor
>>> tf.Session().run(mat3.T)
array([[ 1, 13],
       [ 2, 14],
       [ 3, 15],
       [ 4, 16],
       [ 5, 17],
       [ 6, 18],
       [ 7, 19],
       [ 8, 20],
       [ 9, 21],
       [10, 22],
       [11, 23],
       [12, 24]], dtype=int32)
```

The n-mode Products

The n-mode product of a tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ with a matrix $\mathbf{A} \in \mathbb{R}^{J \times I_n}$ is denoted by $\mathcal{X} \times_n \mathbf{A}$ and

2.2. Basic Operations 15
is of size $I_1 \times \cdots \times I_{n-1} \times J \times I_{n+1} \times \cdots \times I_N$.

Let the frontal slices of $\mathcal{X} \in \mathbb{R}^{3 \times 4 \times 2}$ be

\[
X_1 = \begin{bmatrix}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{bmatrix}, \quad X_2 = \begin{bmatrix}
13 & 16 & 19 & 22 \\
14 & 17 & 20 & 23 \\
15 & 18 & 21 & 24
\end{bmatrix}
\]

And let \mathbf{A} be

\[
\mathbf{A} = \begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6
\end{bmatrix}
\]

Then the product $\mathcal{Y} = \mathcal{X} \times_1 \mathbf{A} \in \mathbb{R}^{2 \times 4 \times 2}$ is

\[
Y_1 = \begin{bmatrix}
22 & 49 & 76 & 103 \\
28 & 64 & 100 & 136
\end{bmatrix}, \quad Y_2 = \begin{bmatrix}
130 & 157 & 184 & 211 \\
172 & 208 & 244 & 280
\end{bmatrix}
\]

It is often desirable to calculate the product of a tensor and a sequence of matrices. Let \mathcal{X} be an $\mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ tensor, and let $\mathbf{A}^{(n)} \in \mathbb{R}^{J_n \times I_n}$ for $n = 1, 2, \ldots, N$. The product of sequences $\mathbf{Y} = \mathcal{X} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \cdots \times_N \mathbf{A}^{(N)}$

To perform this calculation:

```python
>>> A1 = tf.constant(np.random.rand(J1,I1))
>>> A2 = tf.constant(np.random.rand(J2,I2))
... >>> AN = tf.constant(np.random.rand(JN,IN))
>>> X = tf.constant(np.random.rand(I1, I2, ..., IN))
>>> seq_A = [A1, A2, ..., AN]  # map all matrices into a list
>>> B = ops.ttm(X, seq_A, axis=range(N))
>>> tf.Session().run(B)
```

If needed, arguments `transpose` and `skip_matrices_index` are also available.

Tensor Contraction

The tensor contraction multiplies two tensors along the given axis. Let tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times \cdots \times I_M \times J_1 \times \cdots \times J_N}$, and tensor $\mathcal{Y} \in \mathbb{R}^{I_1 \times \cdots \times I_M \times K_1 \times \cdots \times K_P}$, then multiplying both tensors along the first M modes can be denoted by $\mathcal{Z} = \langle \mathcal{X}, \mathcal{Y} \rangle_{\{1,\ldots,M;1,\ldots,M\}}$. And the size of \mathcal{Z} is $J_1 \times \cdots \times J_N \times K_1 \times \cdots \times K_P$. See Cichocki's\(^3\) for more details.

To perform tensor contraction:

```python
>>> X = tf.constant(np.random.rand(I1, ..., IM, J1, ..., JN))
>>> Y = tf.constant(np.random.rand(I1, ..., IM, K1, ..., KP))
>>> Z = ops.mul(X, Y, a_axis=[0,1,...,M-1], b_axis=[0,1,...,M-1])  # either a_axis or b_axis can also be tuple or a single integer
>>> tf.Session().run(Z)  # Z is a tf.Tensor object
```

The arguments `a_axis` and `b_axis` specifying the modes of \mathcal{X} and \mathcal{Y} for contraction are not consecutive necessarily, but the sizes of corresponding dimensions must be equal.

Classic matrix multiplication can also be performed with `mul()`:

```python
>>> A = tf.constant(np.random.rand(4,5))  # matrix A with shape (4, 5)
>>> B = tf.constant(np.random.rand(5,4))  # matrix B with shape (5, 4)
>>> C = ops.mul(A, B, 1, 0)  # same as tf.matmul(A, B, transpose_a=False, transpose_b=False)
>>> D = ops.mul(A, B, 0, 1)  # same as tf.matmul(A, B, transpose_a=True, transpose_b=True)
```

Class `DTensor` also provides class method `DTensor.mul()`:

```python
>>> X_dtensor = DTensor(np.random.rand(4,5))
>>> Y_dtensor = DTensor(np.random.rand(5,4))
>>> Z_dtensor = X_dtensor.mul(Y_dtensor, a_axis=1, b_axis=0)  # same as DTensor( tf.matmul(X_dtensor.T, Y_dtensor.T, transpose_a=False, transpose_b=False) )
```

The argument `tensor` of `DTensor.mul()` only accepts `DTensor` object.

2.2.3 References

2.3 Tensor Decomposition

In this section, we will show how to perform tensor decomposition. Refer to\(^1\) for more mathematical details.

In the following subsections, we present examples of four basic decomposition and pairwise interaction tensor decomposition, and the data flow graph generated by using TensorBoard, which is a visual tool offered by TensorFlow. We also provide example for multiple decompositions in one script.

Before using each decomposition model, import `Environment` and `Provider` for decomposition model, and `DataGenerator` for synthetic tensor generation:

```python
from tensorD.factorization.env import Environment
from tensorD.dataproc.provider import Provider
from tensorD.demo.DataGenerator import *
```

2.3.1 The Tucker decomposition

$$\chi = g \times_1 U \times_2 V \times_3 W = \sum_r \sum_s \sum_t g_{rst} \ u_r \circ v_s \circ w_t \equiv [g; U, V, W]$$

2.3. Tensor Decomposition 17
generate a random tensor with shape 20x20x20
X = synthetic_data_tucker([20, 20, 20], [10, 10, 10])
data_provider = Provider()
data_provider.full_tensor = lambda: X

HOSVD
from tensorD.factorization.tucker import HOSVD
env = Environment(data_provider, summary_path='/tmp/hosvd_' + '20')
hosvd = HOSVD(env)
args = HOSVD.HOSVD_Args(ranks=[10, 10, 10], validation_internal=1, tol=1.0e-4)
hosvd.build_model(args)
hosvd.train()

obtain factor matrices from trained model
factor_matrices = hosvd.factors
obtain core tensor from trained model
core_tensor = hosvd.core

(continues on next page)
HOOI

```python
from tensorD.factorization.tucker import HOOI
env = Environment(data_provider, summary_path='tmp/hooi_' + '20')
hooi = HOOI(env)
args = HOOI.HOOI_Args(ranks=[10, 10, 10], validation_internal=1, tol=1.0e-4)
# build HOOI model
hooi.build_model(args)
# train HOOI model with the maximum iteration of 100
hooi.train(100)
# obtain factor matrices from trained model
factor_matrices = hooi.factors
# obtain core tensor from trained model
core_tensor = hooi.core
```

2.3.2 The CANDECOMP/PARAFAC (CP) decomposition

\[\mathcal{X} = \sum_r \lambda_r u_r \circ v_r \circ w_r \equiv [\lambda; U, V, W] \]
from tensorD.factorization.cp import CP_ALS

generate a random tensor with shape 20x20x20
X = synthetic_data_cp([20, 20, 20], 10)
data_provider = Provider()
data_provider.full_tensor = lambda: X
env = Environment(data_provider, summary_path='/tmp/cp_' + '20')
cp = CP_ALS(env)
args = CP_ALS.CP_Args(rank=10, validation_internal=1)
build CP model with arguments
cp.build_model(args)
train CP model with the maximum iteration of 100
cp.train(100)
obtain factor matrices from trained model
factor_matrices = cp.factors
obtain scaling vector from trained model
lambdas = cp.lambdas

2.3.3 The non-negative CANDECOMP/PARAFAC (NCP) decomposition

from tensorD.factorization.ncp import NCP_BCU
generate a random tensor with shape 20x20x20

(continues on next page)
X = synthetic_data_cp([20, 20, 20], 10)
data_provider = Provider()
data_provider.full_tensor = lambda: X
env = Environment(data_provider, summary_path='/tmp/ncp_' + '20')
ncp = NCP_BCU(env)
args = NCP_BCU.NCP_Args(rank=10, validation_internal=1)
build NCP model
ncp.build_model(args)
train NCP model with the maximum iteration of 100
ncp.train(100)
obtain factor matrices from trained model
factor_matrices = ncp.factors
obtain scaling vector from trained model
lambdas = ncp.lambdas
2.3.4 The non-negative Tucker (NTucker) decomposition
from tensorD.factorization.ntucker import NTUCKER_BCU
generate a random tensor with shape 20x20x20
X = synthetic_data_tucker([20, 20, 20], [10, 10, 10])
data_provider = Provider()
data_provider.full_tensor = lambda: X
env = Environment(data_provider, summary_path='/tmp/ntucker_demo_30')
ntucker = NTUCKER_BCU(env)
args = NTUCKER_BCU.NTUCKER_Args(ranks=[10, 10, 10], validation_internal=1)
build NTucker model
ntucker.build_model(args)
train NCP model with the maximum iteration of 500
ntucker.train(500)
obtain factor matrices from trained model
factor_matrices = ntucker.factors
obtain core tensor from trained model
core_tensor = ntucker.core

2.3.5 The example: Pairwise Interaction Tensor Decomposition

Formally, pairwise interaction tensor assumes that each entry T_{ijk} of a tensor \mathcal{T} of size $n_1 \times n_2 \times n_3$ is given by following:

$$T_{ijk} = \langle u_i^{(a)}, v_j^{(a)} \rangle + \langle u_j^{(b)}, v_k^{(b)} \rangle + \langle u_k^{(c)}, v_i^{(c)} \rangle, \text{for all } (i, j, k) \in [n_1] \times [n_2] \times [n_3]$$

The pairwise vectors in this formula are r_1, r_2, r_3 dimensions:

- \(\{u_i^{(a)}\}_{i \in [n_1]}\)
- \(\{v_j^{(a)}\}_{j \in [n_2]}\)
- \(\{u_j^{(b)}\}_{j \in [n_2]}\)
- \(\{v_k^{(b)}\}_{k \in [n_3]}\)
- \(\{u_k^{(c)}\}_{k \in [n_3]}\)
- \(\{v_i^{(c)}\}_{i \in [n_1]}\)

from tensorD.factorization.pitf_numpy import PITF_np
X = synthetic_data_tucker([20, 20, 20], [10, 10, 10])
data_provider = Provider()
data_provider.full_tensor = lambda: X
pitf_np_env = Environment(data_provider, summary_path='/tmp/pitf')
pitf_np = PITF_np(pitf_np_env)
sess_t = pitf_np_env.sess
init_op = tf.global_variables_initializer()
sess_t.run(init_op)
tensor = pitf_np_env.full_data().eval(session=sess_t)
args = PITF_np.PITF_np_Args(rank=5, delt=0.8, tao=12, sample_num=100, validation_internal=1, verbose=False, steps=500)
y, X_t, Y_t, Z_t, Ef_t, If_t, Rf_t = pitf_np.exact_recovery(args, tensor)
y = tf.convert_to_tensor(y)
X = tf.convert_to_tensor(X_t)
Y = tf.convert_to_tensor(Y_t)
Z = tf.convert_to_tensor(Z_t)
Ef = tf.convert_to_tensor(Ef_t)
If = tf.convert_to_tensor(If_t)
Rf = tf.convert_to_tensor(Rf_t)

Specific details can refer to the paper “Exact and Stable Recovery of Pairwise Interaction Tensors, NIPS 2013”\(^3\).

2.3.6 Multiple decompositions

To perform multiple decompositions or one decomposition algorithm on several different tensors, we can use `tf.Graph()` to build several graphs and perform decompositions on different graphs. Take performing HOOI decomposition on 3 tensors as example:

```python
for i in range(3):
    g1 = tf.Graph()
    data_provider = Provider()
    X = np.arange(60).reshape(3, 4, 5) + i
    data_provider.full_tensor = lambda: X
    hooi_env = Environment(data_provider, summary_path='/tmp/tensord')
    hooi = HOOI(hooi_env)
    args = hooi.HOOI_Args(ranks=[2, 2, 2], validation_internal=5)
    with g1.as_default() as g:
        hooi.build_model(args)
        hooi.train(100)
    print(np.sum(hooi.full - X))
tf.reset_default_graph()
```

2.3.7 Tips

The test files include in the project.

The images shown above can clearly see the decomposition process and relationship between each step in decomposition algorithm.

2.3.8 References
3.1 tensorD package

3.1.1 Subpackages
tensorD.base package
Subpackages
tensorD.base.test package
Submodules
tensorD.base.test.dtensor_test module
tensorD.base.test.ktensor_test module
tensorD.base.test.ops_test module
tensorD.base.test.ttensor_test module
tensorD.base.test.pitf_ops_test module
Module contents
Submodules
tensorD Documentation, Release 0.2

tensorD.base.barrier module

tensorD.base.error module

tensorD.base.logger module

tensorD.base.ops module

tensorD.base.type module

tensorD.base.pitf_ops module

tensorD.base.pitf_ops_numpy module

Module contents

tensorD.dataproc package

Submodules

tensorD.dataproc.provider module

tensorD.dataproc.reader module

Module contents

tensorD.factorization package

Subpackages

tensorD.factorization.test package

Submodules

tensorD.factorization.test.cp_test module

tensorD.factorization.test.giga_test module

tensorD.factorization.test.tucker_test module

Module contents

Submodules

tensorD.factorization.cp module
tensorD.factorization.env module

tensorD.factorization.factorization module

tensorD.factorization.folding_test module

tensorD.factorization.ncp module

tensorD.factorization.ntucker module

tensorD.factorization.tucker module

tensorD.factorization.xxxx module

tensorD.factorization.pitf module

tensorD.factorization.pitf_numpy module

tensorD.factorization.pitf module

Module contents

tensorD.test package

Submodules

tensorD.test.cp_test module

tensorD.test.ntucker_test module

tensorD.test.reader_test module

tensorD.test.tucker_test module

tensorD.test.pitf_test module

Module contents

3.1.2 Submodules

3.1.3 tensorD.loss module

3.1.4 tensorD.test_bench module

3.1.5 Module contents