
Temporenc
Release 0.1.0

October 30, 2014

Contents

1 Installation 3

2 Usage 5
2.1 Basic usage . 5
2.2 Integration with the datetime module . 6
2.3 Working with file-like objects . 6

3 API 9

4 Contributing 13

5 License 15

i

ii

Temporenc, Release 0.1.0

This is a Python library implementing the temporenc format for dates and times.

Features:

• Support for all temporenc types

• Interoperability with the datetime module

• Time zone support, including conversion to local time

• Compatibility with both Python 2 (2.6+) and Python 3 (3.2+)

• Decent performance

• Permissive BSD license

Contents

• Installation
• Usage

– Basic usage
– Integration with the datetime module
– Working with file-like objects

• API
• Contributing
• License

Contents 1

https://github.com/wbolster/temporenc

Temporenc, Release 0.1.0

2 Contents

CHAPTER 1

Installation

Use pip to install the library (e.g. into a virtualenv):

$ pip install temporenc

3

Temporenc, Release 0.1.0

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 Basic usage

All functionality is provided by a single module with the name temporenc:

>>> import temporenc

To encode date and time information into a byte string, use the packb() function:

>>> temporenc.packb(year=2014, month=10, day=23)
b’\x8f\xbd6’

This function automatically determines the most compact representation for the provided information. In this case, the
result uses temporenc type D, but if you want to use a different type, you can provide it explicitly:

>>> temporenc.packb(type=’DT’, year=2014, month=10, day=23)
b’\x1fzm\xff\xff’

To unpack a byte string, use unpackb():

>>> moment = temporenc.unpackb(b’\x1fzm\xff\xff’)
>>> moment
<temporenc.Moment ’2014-10-23’>
>>> print(moment)
2014-10-23

As you can see, unpacking returns a Moment instance. This class has a reasonable string representation, but it is
generally more useful to access the individual components using one of its many attributes:

>>> print(moment.year)
2014
>>> print(moment.month)
10
>>> print(moment.day)
13
>>> print(moment.second)
None

Since all fields are optional in temporenc values, and since no time information was set in this example, some of the
attributes (e.g. second) are None.

5

Temporenc, Release 0.1.0

2.2 Integration with the datetime module

Python has built-in support for date and time handling, provided by the datetime module in the standard library,
which is how applications usually work with date and time information. Instead of specifying all the fields manu-
ally when packing data, which is cumbersome and error-prone, the temporenc module integrates with the built-in
datetime module:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2014, 10, 23, 18, 45, 23, 612883)
>>> temporenc.packb(now)
b’W\xde\x9bJ\xd5\xe5hL’

As you can see, instead of specifying all the components manually, instances of the built-in datetime.datetime
class can be passed directly as the first argument to packb(). This also works for datetime.date and
datetime.time instances.

Since the Python datetime module always uses microsecond precision, this library defaults to temporenc types
with sub-second precision (e.g. DTS) when an instance of one of the datetime classes is passed. If no subsecond
precision is required, you can specify a different type to save space:

>>> temporenc.packb(now, type=’DT’)
b’\x1fzm+W’

The integration with the datetime module works both ways. Instances of the Moment class (as returned by the
unpacking functions) can be converted to the standard date and time classes using the datetime(), date(), and
time() methods:

>>> moment = temporenc.unpackb(b’W\xde\x9bJ\xd5\xe5hL’)
>>> moment
<temporenc.Moment ’2014-10-23 18:45:23.612883’>
>>> moment.datetime()
datetime.datetime(2014, 10, 23, 18, 45, 23, 612883)
>>> moment.date()
datetime.date(2014, 10, 23)
>>> moment.time()
datetime.time(18, 45, 23, 612883)

Conversion to and from classes from the datetime module have full time zone support. See the API docs for
Moment.datetime() for more details about time zone handling.

Warning: The Python temporenc module only concerns itself with encoding and decoding. It does not do
any date and time calculations, and hence does not validate that dates are correct. For example, it handles the
non-existent date February 30 just fine. Always convert to native classes from the datetime module if you need
to work with date and time information in your application.

2.3 Working with file-like objects

The temporenc encoding format allows for reading data from a stream without knowing in advance how big the
encoded byte string is. This library supports this through the unpack() function, which consumes exactly the
required number of bytes from the stream:

>>> import io
>>> fp = io.BytesIO() # this could be a real file

6 Chapter 2. Usage

Temporenc, Release 0.1.0

>>> fp.write(b’W\xde\x9bJ\xd5\xe5hL’)
>>> fp.write(b’foo’)
>>> fp.seek(0)
>>> temporenc.unpack(fp)
<temporenc.Moment ’2014-10-23 18:45:23.612883’>
>>> fp.tell()
8
>>> fp.read()
b’foo’

For writing directly to a file-like object, the pack() function can be used, though this is just a shortcut.

2.3. Working with file-like objects 7

Temporenc, Release 0.1.0

8 Chapter 2. Usage

CHAPTER 3

API

The packb() and unpackb() functions operate on byte strings.

temporenc.packb(value=None, type=None, year=None, month=None, day=None, hour=None,
minute=None, second=None, millisecond=None, microsecond=None, nanosec-
ond=None, tz_offset=None)

Pack date and time information into a byte string.

If specified, value must be a datetime.datetime, datetime.date, or datetime.time instance.

The type specifies the temporenc type to use. Valid types are D, T, DT, DTZ, DTS, or DTSZ. If not specified, the
most compact encoding that can represent the provided information will be determined automatically. Note that
instances of the classes in the datetime module always use microsecond precision, so make sure to specify a
more compact type if no sub-second precision is required.

Most applications would only use the value and type arguments; the other arguments allow for encoding data
that does not fit the conceptual date and time model used by the standard library’s datetime module.

Note: Applications that require lexicographical ordering of encoded values should always explicitly specify a
type to use.

All other arguments can be used to specify individual pieces of information that make up a date or time. If
both value and more specific fields are provided, the individual fields override the values extracted from value,
e.g. packb(datetime.datetime.now(), minute=0, second=0) encodes the start of the current
hour.

The sub-second precision arguments (millisecond, microsecond, and nanosecond) must not be used together,
since those are conceptually mutually exclusive.

Note: The value argument is the only positional argument. All other arguments must be specified as keyword
arguments (even though this is not enforced because of Python 2 compatibility).

Parameters

• value – instance of one of the datetime classes (optional)

• type (str) – temporenc type (optional)

• year (int) – year (optional)

• month (int) – month (optional)

• day (int) – day (optional)

• hour (int) – hour (optional)

9

Temporenc, Release 0.1.0

• minute (int) – minute (optional)

• second (int) – second (optional)

• millisecond (int) – millisecond (optional)

• microsecond (int) – microsecond (optional)

• nanosecond (int) – nanosecond (optional)

• tz_offset (int) – time zone offset in minutes from UTC (optional)

Returns encoded temporenc value

Return type bytes

temporenc.unpackb(value)
Unpack a temporenc value from a byte string.

If no valid value could be read, this raises ValueError.

Parameters value (bytes) – a byte string (or bytearray) to parse

Returns a parsed temporenc structure

Return type Moment

The pack() and unpack() functions operate on file-like objects.

temporenc.pack(fp, *args, **kwargs)
Pack date and time information and write it to a file-like object.

This is a short-hand for writing a packed value directly to a file-like object. There is no additional behaviour.
This function only exists for API parity with the unpack() function.

Except for the first argument (the file-like object), all arguments (both positional and keyword) are passed on to
packb(). See packb() for more information.

Parameters

• fp (file-like) – writeable file-like object

• args – propagated to packb()

• kwargs – propagated to packb()

Returns number of bytes written

Return type int

temporenc.unpack(fp)
Unpack a temporenc value from a file-like object.

This function consumes exactly the number of bytes required to unpack a single temporenc value.

If no valid value could be read, this raises ValueError.

Parameters fp (file-like) – readable file-like object

Returns a parsed temporenc structure

Return type Moment

Both unpackb() and unpack() return an instance of the Moment class.

class temporenc.Moment(year, month, day, hour, minute, second, nanosecond, tz_offset)
Container to represent a parsed temporenc value.

10 Chapter 3. API

Temporenc, Release 0.1.0

Each constituent part is accessible as an instance attribute. These are: year, month, day, hour, minute,
second, millisecond, microsecond, nanosecond, and tz_offset. Since temporenc allows partial
date and time information, any attribute can be None.

The attributes for sub-second precision form a group that is either completely empty (all attributes are None) or
completely filled (no attribute is None).

This class is intended to be a read-only immutable data structure; assigning new values to attributes is not
supported.

Instances are hashable and can be used as dictionary keys or as members of a set. Instances representing the
same moment in time have the same hash value. Time zone information is not taken into account for hashing
purposes, since time zone aware values must have their constituent parts in UTC.

Instances of this class can be compared to each other, with earlier dates sorting first. As with hashing, time zone
information is not taken into account, since the actual data must be in UTC in those cases.

Note: This class must not be instantiated directly; use one of the unpacking functions like unpackb() instead.

date(strict=True, local=False)
Convert this value to a datetime.date instance.

See the documentation for the datetime() method for more information.

Parameters

• strict (bool) – whether to use strict conversion rules

• local (bool) – whether to convert to local time

Returns converted value

Type datetime.date

datetime(strict=True, local=False)
Convert this value to a datetime.datetime instance.

Since the classes in the datetime module do not support missing values, this will fail when one of the
required components is not set, which is indicated by raising a ValueError.

The default is to perform a strict conversion. To ease working with partial dates and times, the strict
argument can be set to False. In that case this method will try to convert the value anyway, by substituting a
default value for any missing component, e.g. a missing time is set to 00:00:00. Note that these substituted
values are bogus and should not be used for any application logic, but at least this allows applications to
use things like .strftime() on partial dates and times.

The temporenc format allows inclusion of a time zone offset. Date and time information in the temporenc
types DTZ and DTSZ is always stored as UTC, but the original UTC offset is included, which makes
conversion to the original local time possible. When converting to a datetime instance, time zone
information is handled as follows:

•When no time zone information was present in the original data (e.g. when unpacking temporenc type
DT), the return value will be a naive datetime instance, i.e. its tzinfo attribute is None.

•If the original data did include time zone information, the return value will be a time zone aware
instance. No conversion to local time is performed by default, which means the instance will have
a tzinfo attribute corresponding to UTC. This means time zone information will be lost, and the
return value will be in UTC.

If this is not desired, i.e. the application wants to access the original local time, set the local argument
to True. In that case the data will be converted to local time, and the return value will have a tzinfo
attribute corresponding to the time zone offset.

11

Temporenc, Release 0.1.0

Parameters

• strict (bool) – whether to use strict conversion rules

• local (bool) – whether to convert to local time

Returns converted value

Type datetime.datetime

time(strict=True, local=False)
Convert this value to a datetime.time instance.

See the documentation for the datetime() method for more information.

Parameters

• strict (bool) – whether to use strict conversion rules

• local (bool) – whether to convert to local time

Returns converted value

Type datetime.date

12 Chapter 3. API

CHAPTER 4

Contributing

Source code, including the test suite, is maintained at Github:

temporenc-python on github

Feel free to submit feedback, report issues, bring up improvement ideas, and contribute fixes!

13

https://github.com/wbolster/temporenc-python

Temporenc, Release 0.1.0

14 Chapter 4. Contributing

CHAPTER 5

License

Copyright © 2014, Wouter Bolsterlee

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the author nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

(This is the OSI approved 3-clause “New BSD License”.)

15

Temporenc, Release 0.1.0

16 Chapter 5. License

Index

D
date() (temporenc.Moment method), 11
datetime() (temporenc.Moment method), 11

M
Moment (class in temporenc), 10

P
pack() (in module temporenc), 10
packb() (in module temporenc), 9

T
time() (temporenc.Moment method), 12

U
unpack() (in module temporenc), 10
unpackb() (in module temporenc), 10

17

	Installation
	Usage
	Basic usage
	Integration with the datetime module
	Working with file-like objects

	API
	Contributing
	License

