

 Navigation

 	Temporenc 0.1.0 documentation

Python library for temporenc

This is a Python library implementing the temporenc format [https://github.com/wbolster/temporenc] for dates and times.

Features:

	Support for all temporenc types

	Interoperability with the datetime module

	Time zone support, including conversion to local time

	Compatibility with both Python 2 (2.6+) and Python 3 (3.2+)

	Decent performance

	Permissive BSD license

Contents

	Installation

	Usage
	Basic usage

	Integration with the datetime module

	Working with file-like objects

	API

	Contributing

	License

Installation

Use pip to install the library (e.g. into a virtualenv):

$ pip install temporenc

Usage

Basic usage

All functionality is provided by a single module with the name temporenc:

>>> import temporenc

To encode date and time information into a byte string, use the packb()
function:

>>> temporenc.packb(year=2014, month=10, day=23)
b'\x8f\xbd6'

This function automatically determines the most compact representation for the
provided information. In this case, the result uses temporenc type D, but
if you want to use a different type, you can provide it explicitly:

>>> temporenc.packb(type='DT', year=2014, month=10, day=23)
b'\x1fzm\xff\xff'

To unpack a byte string, use unpackb():

>>> moment = temporenc.unpackb(b'\x1fzm\xff\xff')
>>> moment
<temporenc.Moment '2014-10-23'>
>>> print(moment)
2014-10-23

As you can see, unpacking returns a Moment instance. This class has
a reasonable string representation, but it is generally more useful to access
the individual components using one of its many attributes:

>>> print(moment.year)
2014
>>> print(moment.month)
10
>>> print(moment.day)
13
>>> print(moment.second)
None

Since all fields are optional in temporenc values, and since no time
information was set in this example, some of the attributes (e.g. second) are
None.

Integration with the datetime module

Python has built-in support for date and time handling, provided by the
datetime module in the standard library, which is how applications usually
work with date and time information. Instead of specifying all the fields
manually when packing data, which is cumbersome and error-prone, the
temporenc module integrates with the built-in datetime module:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now
datetime.datetime(2014, 10, 23, 18, 45, 23, 612883)
>>> temporenc.packb(now)
b'W\xde\x9bJ\xd5\xe5hL'

As you can see, instead of specifying all the components manually, instances of
the built-in datetime.datetime class can be passed directly as the first
argument to packb(). This also works for datetime.date and
datetime.time instances.

Since the Python datetime module always uses microsecond precision, this
library defaults to temporenc types with sub-second precision (e.g. DTS)
when an instance of one of the datetime classes is passed. If no subsecond
precision is required, you can specify a different type to save space:

>>> temporenc.packb(now, type='DT')
b'\x1fzm+W'

The integration with the datetime module works both ways. Instances of the
Moment class (as returned by the unpacking functions) can be
converted to the standard date and time classes using the
datetime(), date(), and
time() methods:

>>> moment = temporenc.unpackb(b'W\xde\x9bJ\xd5\xe5hL')
>>> moment
<temporenc.Moment '2014-10-23 18:45:23.612883'>
>>> moment.datetime()
datetime.datetime(2014, 10, 23, 18, 45, 23, 612883)
>>> moment.date()
datetime.date(2014, 10, 23)
>>> moment.time()
datetime.time(18, 45, 23, 612883)

Conversion to and from classes from the datetime module have full time zone
support. See the API docs for Moment.datetime() for more details about
time zone handling.

Warning

The Python temporenc module only concerns itself with encoding and
decoding. It does not do any date and time calculations, and hence does not
validate that dates are correct. For example, it handles the non-existent
date February 30 just fine. Always convert to native classes from the
datetime module if you need to work with date and time information in
your application.

Working with file-like objects

The temporenc encoding format allows for reading data from a stream without
knowing in advance how big the encoded byte string is. This library supports
this through the unpack() function, which consumes exactly the required
number of bytes from the stream:

>>> import io
>>> fp = io.BytesIO() # this could be a real file
>>> fp.write(b'W\xde\x9bJ\xd5\xe5hL')
>>> fp.write(b'foo')
>>> fp.seek(0)
>>> temporenc.unpack(fp)
<temporenc.Moment '2014-10-23 18:45:23.612883'>
>>> fp.tell()
8
>>> fp.read()
b'foo'

For writing directly to a file-like object, the pack() function can be
used, though this is just a shortcut.

API

The packb() and unpackb() functions operate on byte strings.

	
temporenc.packb(value=None, type=None, year=None, month=None, day=None, hour=None, minute=None, second=None, millisecond=None, microsecond=None, nanosecond=None, tz_offset=None)

	Pack date and time information into a byte string.

If specified, value must be a datetime.datetime,
datetime.date, or datetime.time instance.

The type specifies the temporenc type to use. Valid types are
D, T, DT, DTZ, DTS, or DTSZ. If not
specified, the most compact encoding that can represent the provided
information will be determined automatically. Note that instances of
the classes in the datetime module always use microsecond
precision, so make sure to specify a more compact type if no
sub-second precision is required.

Most applications would only use the value and type arguments;
the other arguments allow for encoding data that does not fit the
conceptual date and time model used by the standard library’s
datetime module.

Note

Applications that require lexicographical ordering of encoded
values should always explicitly specify a type to use.

All other arguments can be used to specify individual pieces of
information that make up a date or time. If both value and more
specific fields are provided, the individual fields override the
values extracted from value, e.g. packb(datetime.datetime.now(),
minute=0, second=0) encodes the start of the current hour.

The sub-second precision arguments (millisecond, microsecond,
and nanosecond) must not be used together, since those are
conceptually mutually exclusive.

Note

The value argument is the only positional argument. All other
arguments must be specified as keyword arguments (even though
this is not enforced because of Python 2 compatibility).

	Parameters:	
	value – instance of one of the datetime classes (optional)

	type (str) – temporenc type (optional)

	year (int) – year (optional)

	month (int) – month (optional)

	day (int) – day (optional)

	hour (int) – hour (optional)

	minute (int) – minute (optional)

	second (int) – second (optional)

	millisecond (int) – millisecond (optional)

	microsecond (int) – microsecond (optional)

	nanosecond (int) – nanosecond (optional)

	tz_offset (int) – time zone offset in minutes from UTC (optional)

	Returns:	encoded temporenc value

	Return type:	bytes

	
temporenc.unpackb(value)

	Unpack a temporenc value from a byte string.

If no valid value could be read, this raises ValueError.

	Parameters:	value (bytes) – a byte string (or bytearray) to parse

	Returns:	a parsed temporenc structure

	Return type:	Moment

The pack() and unpack() functions operate on file-like
objects.

	
temporenc.pack(fp, *args, **kwargs)

	Pack date and time information and write it to a file-like object.

This is a short-hand for writing a packed value directly to
a file-like object. There is no additional behaviour. This function
only exists for API parity with the unpack() function.

Except for the first argument (the file-like object), all arguments
(both positional and keyword) are passed on to packb().
See packb() for more information.

	Parameters:	
	fp (file-like) – writeable file-like object

	args – propagated to packb()

	kwargs – propagated to packb()

	Returns:	number of bytes written

	Return type:	int

	
temporenc.unpack(fp)

	Unpack a temporenc value from a file-like object.

This function consumes exactly the number of bytes required to
unpack a single temporenc value.

If no valid value could be read, this raises ValueError.

	Parameters:	fp (file-like) – readable file-like object

	Returns:	a parsed temporenc structure

	Return type:	Moment

Both unpackb() and unpack() return an instance of the
Moment class.

	
class temporenc.Moment(year, month, day, hour, minute, second, nanosecond, tz_offset)

	Container to represent a parsed temporenc value.

Each constituent part is accessible as an instance attribute. These
are: year, month, day, hour, minute, second,
millisecond, microsecond, nanosecond, and tz_offset.
Since temporenc allows partial date and time information, any
attribute can be None.

The attributes for sub-second precision form a group that is either
completely empty (all attributes are None) or completely filled
(no attribute is None).

This class is intended to be a read-only immutable data structure;
assigning new values to attributes is not supported.

Instances are hashable and can be used as dictionary keys or as
members of a set. Instances representing the same moment in time
have the same hash value. Time zone information is not taken into
account for hashing purposes, since time zone aware values must have
their constituent parts in UTC.

Instances of this class can be compared to each other, with earlier
dates sorting first. As with hashing, time zone information is not
taken into account, since the actual data must be in UTC in those
cases.

Note

This class must not be instantiated directly; use one of the
unpacking functions like unpackb() instead.

	
date(strict=True, local=False)

	Convert this value to a datetime.date instance.

See the documentation for the datetime() method for
more information.

	Parameters:	
	strict (bool) – whether to use strict conversion rules

	local (bool) – whether to convert to local time

	Returns:	converted value

	Type:	datetime.date

	
datetime(strict=True, local=False)

	Convert this value to a datetime.datetime instance.

Since the classes in the datetime module do not support
missing values, this will fail when one of the required
components is not set, which is indicated by raising
a ValueError.

The default is to perform a strict conversion. To ease working
with partial dates and times, the strict argument can be set
to False. In that case this method will try to convert the
value anyway, by substituting a default value for any missing
component, e.g. a missing time is set to 00:00:00. Note that
these substituted values are bogus and should not be used for
any application logic, but at least this allows applications to
use things like .strftime() on partial dates and times.

The temporenc format allows inclusion of a time zone offset.
Date and time information in the temporenc types DTZ and
DTSZ is always stored as UTC, but the original UTC offset is
included, which makes conversion to the original local time
possible. When converting to a datetime instance, time zone
information is handled as follows:

	When no time zone information was present in the original data
(e.g. when unpacking temporenc type DT), the return
value will be a naive datetime instance, i.e. its tzinfo
attribute is None.

	If the original data did include time zone information, the
return value will be a time zone aware instance. No conversion
to local time is performed by default, which means the
instance will have a tzinfo attribute corresponding to
UTC. This means time zone information will be lost, and the
return value will be in UTC.

If this is not desired, i.e. the application wants to access
the original local time, set the local argument to True.
In that case the data will be converted to local time, and the
return value will have a tzinfo attribute corresponding to
the time zone offset.

	Parameters:	
	strict (bool) – whether to use strict conversion rules

	local (bool) – whether to convert to local time

	Returns:	converted value

	Type:	datetime.datetime

	
time(strict=True, local=False)

	Convert this value to a datetime.time instance.

See the documentation for the datetime() method for
more information.

	Parameters:	
	strict (bool) – whether to use strict conversion rules

	local (bool) – whether to convert to local time

	Returns:	converted value

	Type:	datetime.date

Contributing

Source code, including the test suite, is maintained at Github:

temporenc-python on github [https://github.com/wbolster/temporenc-python]

Feel free to submit feedback, report issues, bring up improvement ideas, and
contribute fixes!

License

Copyright © 2014, Wouter Bolsterlee

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

	Neither the name of the author nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(This is the OSI approved 3-clause “New BSD License”.)

 Copyright 2014, Wouter Bolsterlee.

 search.html

 Navigation

 		Temporenc 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Wouter Bolsterlee.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

