
temple Documentation
Release 1.4.7

Clover Health

Jul 14, 2022

Contents

1 Temple - Templated Project Management 1
1.1 Quick Start . 1
1.2 Next Steps . 2

2 Installation 3

3 Creating Templates Managed by Temple 5
3.1 Making Project Creation Seamless with Cookiecutter Hooks . 5

4 Temple CLI 7
4.1 temple . 7

5 Temple Package 11
5.1 temple.setup . 11
5.2 temple.update . 11
5.3 temple.ls . 13
5.4 temple.constants . 13
5.5 temple.exceptions . 13

6 Future Work 15

7 Release Notes 17

8 Contributing Guide 19
8.1 Setup . 19
8.2 Testing and Validation . 19
8.3 Documentation . 19
8.4 Releases and Versioning . 20

Python Module Index 21

Index 23

i

ii

CHAPTER 1

Temple - Templated Project Management

Temple provides templated project creation and management.

The main functionality of temple includes:

1. Creating new projects from cookiecutter templates.

2. Listing all available templates under a github user / org along with all projects created from those templates.

3. Keeping projects up to date with the template as it changes.

A quick start is provided below. Be sure to go through the Installation section before starting. It’s also useful to read
about cookiecutter templates since they form the foundation of this tool.

1.1 Quick Start

1.1.1 Listing templates and projects

Temple manages projects that are started from templates (specifically, cookiecutter templates). In order to see what
templates are available for use within your Github org, do:

temple ls <github_org_name>

This will list all of the paths of templates that are available. Doing:

temple ls <github_org_name> -l

will also display the description of the template.

To list all projects created with a template (and the project’s descriptions), take the template path from temple ls
and use it as an argument like so:

temple ls <github_org_name> <git@github.com:user/cookiecutter-template.git> -l

1

https://cookiecutter.readthedocs.io/en/latest/
https://cookiecutter.readthedocs.io/en/latest/
https://cookiecutter.readthedocs.io/en/latest/

temple Documentation, Release 1.4.7

1.1.2 Starting new projects

A new project can be set up from a template with:

temple setup <git@github.com:user/cookiecutter-template.git>

What happens next is dependent on how the template is configured. By default, cookiecutter will prompt the user for
template parameters, defined in the cookiecutter.json file of the template repository. If any cookiecutter hooks
are defined in the project, additional setup steps will happen that are specific to the type of project being started.

1.1.3 Keeping your project up to date with the latest template

Once a project is set up and published to Github, temple-created projects can be listed with the temple ls command.
If a template is ever updated, changes can be pulled into a project with:

temple update

This will git merge the template changes into your repository. You will need to review the changes, resolve conflicts,
and then git add and git push these changes yourself.

Sometimes it is desired that projects always remain up to date with the latest template - for example, ensuring that each
project obtains a security patch to a dependency or doing an organization-wide upgrade to a new version of Python.

Using temple update --check from the repository will succeed if the project is up to date with the latest
template or return a non-zero exit code if it isn’t. This command can be executed as part of automated testing that
happens in continuous integration in order to ensure all projects remain up to date with changes before being deployed.

Note: Updating your project with the latest template does not result in cookiecutter hooks being executed again.

1.1.4 Switching your project to another template

Sometimes it is desirable to switch a project to another template, like when open sourcing a private package. Projects
can be switched to another template with:

temple switch <git@github.com/user/new-template-path.git>

Similar to temple update, you will need to review the changes, resolve conflicts, and then git add and git
push these changes.

Note: Switching templates does not trigger any cookiecutter hooks. Users must manually do any project setup and
must similarly do any project teardown that might have resulted from the previously template. The authors have
intentionally left out this convenience for now since temple currently has no way to spin down projects.

1.2 Next Steps

For more detailed docs about the temple command line interface (CLI) and python package, view the Temple CLI and
Temple Package sections.

Want to create your own temple-managed project? View the Creating Templates Managed by Temple section.

2 Chapter 1. Temple - Templated Project Management

https://cookiecutter.readthedocs.io/en/latest/
http://cookiecutter.readthedocs.io/en/latest/advanced/hooks.html
http://cookiecutter.readthedocs.io/en/latest/advanced/hooks.html
http://cookiecutter.readthedocs.io/en/latest/advanced/hooks.html

CHAPTER 2

Installation

temple can be installed with:

pip3 install temple

Most temple functionality requires a GITHUB_API_TOKEN environment variable to be set. The Github API token is
a personal token that you create by following the Github Access Token Instructions. This token only requires repo
scope.

Note: Temple requires a Github API token for listing available templates, starting new projects, and updating a project
with a template. However, project templates themselves might have other setup requirements. Consult the documen-
tation of templates you want to use for your projects for information about other installation and setup required.

3

https://help.github.com/articles/creating-an-access-token-for-command-line-use/

temple Documentation, Release 1.4.7

4 Chapter 2. Installation

CHAPTER 3

Creating Templates Managed by Temple

Under the hood, temple uses cookiecutter to gather user input about a project and then spin up a local directory with the
project scaffolding. In order to learn more about how to make your own cookiecutter template, consult the cookiecutter
docs.

After you have created a template and published it to Github, it will be displayed with temple ls and can also be
used by temple setup. There is no additional setup required. Make sure the description of your repo is filled in
on Github, because that will be returned when users type temple ls -l.

3.1 Making Project Creation Seamless with Cookiecutter Hooks

Once you have created a cookiecutter template and published it to Github, it will work with temple out of the box, but
there are ways to make project setup even more seamless.

For example, say a cookiecutter template has been created at git@github.com:user/cookiecutter-template.git. When
the user calls temple setup git@github.com:user/cookiecutter-template.git, the templated
project will be created locally, but the user will be left to do remaining setup steps manually (like pushing to Github,
setting up continuous integration, etc).

Cookiecutter offers the ability to insert pre or post generate hooks before and after a project is created, allowing
project-specific setup steps to happen. Some of the examples given in the hook docs include ensuring a python module
name is valid.

Hooks can be used for initial project setup in a variety of ways, some examples including:

1. Creating a remote github repository for the project

2. Pushing to a remote github repository after the project is created

3. Adding default collaborators to a project

4. Setting up continuous integration for a project

5. Creating an initial server for a web app along with a domain name

5

https://cookiecutter.readthedocs.io/en/latest/
https://cookiecutter.readthedocs.io/en/latest/
https://cookiecutter.readthedocs.io/en/latest/
mailto:git@github.com
http://cookiecutter.readthedocs.io/en/latest/advanced/hooks.html
http://cookiecutter.readthedocs.io/en/latest/advanced/hooks.html

temple Documentation, Release 1.4.7

Keep in mind that cookiecutter hooks are called during temple setup and temple update. Although hooks
should be idempotent in the case of transient setup failures, sometimes it is not desirable to have hooks execute during
setup and update. In order to customize this behavior in your hooks, temple exports the _TEMPLE environment
variable and sets it to value of the command being executed (i.e. “ls”, “setup”, or “update”).

Below is an example of creating a pre_gen_project.py hook in the hooks directory of the template. The script
ensures that the cookiecutter template is only used by temple and not by cookiecutter or another templating
library:

#!/usr/bin/env python

import os

if __name__ == "__main__":
if not os.environ.get('_TEMPLE'):

raise Exception('This template can only be used by temple')

Here’s an example of pushing the newly-created project to github with a post_gen_project.py file:

#!/usr/bin/env python3

import os
import subprocess

def call_cmd(cmd, check=True):
"""Call a command. If check=True, throw an error if command fails"""
return subprocess.call(cmd, check=check)

def push_to_github():
call_cmd('git init')
call_cmd('git add .')
call_cmd('git commit -m "Initial project scaffolding"')
Use the "repo_name" template variable
call_cmd('git remote add origin {repo_name}')
ret = call_cmd('git push origin master', check=False)
if ret.returncode != 0:

Do additional error handling if the repo already exists.
Maybe the user already created the remote repository..
pass

if __name__ == "__main__":
Only run these commands when "temple setup" is being called
if os.environ.get('_TEMPLE') == 'setup':

push_to_github()

In the above hook, the push_to_github function is called only when running temple setup. In other words,
this hook code will not run on temple update or any other commands that invoke the template to be rendered.

As shown above, variables that are part of the template, like {repo_name} can be referenced and used in the hooks.
If the above fails, it will cause all of temple setup to fail, which will in turn not create any local project on the
user’s machine. Idempotency of project hooks should be kept in mind when designing them.

Note: The hooks shown can also be written in shell and named pre_gen_project.sh and
post_gen_project.sh.

6 Chapter 3. Creating Templates Managed by Temple

CHAPTER 4

Temple CLI

The main temple command and its subcommands are listed below. Note that --help can be given as an argument
to any of these commands to print out help on the command line.

4.1 temple

temple [OPTIONS] COMMAND [ARGS]...

Options

--version
Show version

4.1.1 clean

Cleans temporary resources created by temple, such as the temple update branch

temple clean [OPTIONS]

4.1.2 ls

List packages created with temple. Enter a github user or organization to list all templates under the user
or org. Using a template path as the second argument will list all projects that have been started with that
template.

Use “-l” to print the Github repository descriptions of templates or projects.

temple ls [OPTIONS] GITHUB_USER [TEMPLATE]

7

temple Documentation, Release 1.4.7

Options

-l, --long-format
Print extended information about results

Arguments

GITHUB_USER
Required argument

TEMPLATE
Optional argument

4.1.3 setup

Setup new project. Takes a git path to the template as returned by “temple ls”. In order to start a project
from a particular version (instead of the latest), use the “-v” option.

temple setup [OPTIONS] TEMPLATE

Options

-v, --version <version>
Git SHA or branch of template to use for creation

Arguments

TEMPLATE
Required argument

4.1.4 switch

Switch a project’s template to a different template.

temple switch [OPTIONS] TEMPLATE

Options

-v, --version <version>
Git SHA or branch of template to use for update

Arguments

TEMPLATE
Required argument

8 Chapter 4. Temple CLI

temple Documentation, Release 1.4.7

4.1.5 update

Update package with latest template. Must be inside of the project folder to run.

Using “-e” will prompt for re-entering the template parameters again even if the project is up to date.

Use “-v” to update to a particular version of a template.

Using “-c” will perform a check that the project is up to date with the latest version of the template (or the
version specified by “-v”). No updating will happen when using this option.

temple update [OPTIONS]

Options

-c, --check
Check to see if up to date

-e, --enter-parameters
Enter template parameters on update

-v, --version <version>
Git SHA or branch of template to use for update

4.1. temple 9

temple Documentation, Release 1.4.7

10 Chapter 4. Temple CLI

CHAPTER 5

Temple Package

5.1 temple.setup

Creates and initializes a project from a template

temple.setup.setup(template, version=None)
Sets up a new project from a template

Note that the temple.constants.TEMPLE_ENV_VAR is set to ‘setup’ during the duration of this function.

Parameters

• template (str) – The git path to a template

• version (str, optional) – The version of the template to use when updating. De-
faults to the latest version

5.2 temple.update

Updates a temple project with the latest template

temple.update.up_to_date(version=None)
Checks if a temple project is up to date with the repo

Note that the temple.constants.TEMPLE_ENV_VAR is set to ‘update’ for the duration of this function.

Parameters version (str, optional) – Update against this git SHA or branch of the tem-
plate

Returns True if up to date with version (or latest version), False otherwise

Return type boolean

Raises

• NotInGitRepoError – When running outside of a git repo

11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

temple Documentation, Release 1.4.7

• InvalidTempleProjectError – When not inside a valid temple repository

temple.update.update(old_template=None, old_version=None, new_template=None,
new_version=None, enter_parameters=False)

Updates the temple project to the latest template

Proceeeds in the following steps:

1. Ensure we are inside the project repository

2. Obtain the latest version of the package template

3. If the package is up to date with the latest template, return

4. If not, create an empty template branch with a new copy of the old template

5. Create an update branch from HEAD and merge in the new template copy

6. Create a new copy of the new template and merge into the empty template branch

7. Merge the updated empty template branch into the update branch

8. Ensure temple.yaml reflects what is in the template branch

9. Remove the empty template branch

Note that the temple.constants.TEMPLE_ENV_VAR is set to ‘update’ for the duration of this function.

Two branches will be created during the update process, one named _temple_update and one named
_temple_update_temp. At the end of the process, _temple_update_temp will be removed auto-
matically. The work will be left in _temple_update in an uncommitted state for review. The update will fail
early if either of these branches exist before the process starts.

Parameters

• old_template (str, default=None) – The old template from which to update.
Defaults to the template in temple.yaml

• old_version (str, default=None) – The old version of the template. Defaults to
the version in temple.yaml

• new_template (str, default=None) – The new template for updating. Defaults to
the template in temple.yaml

• new_version (str, default=None) – The new version of the new template to up-
date. Defaults to the latest version of the new template

• enter_parameters (bool, default=False) – Force entering template parame-
ters for the project

Raises

• NotInGitRepoError – When not inside of a git repository

• InvalidTempleProjectError – When not inside a valid temple repository

• InDirtyRepoError – When an update is triggered while the repo is in a dirty state

• ExistingBranchError – When an update is triggered and there is an existing update
branch

Returns True if update was performed or False if template was already up to date

Return type boolean

12 Chapter 5. Temple Package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

temple Documentation, Release 1.4.7

5.3 temple.ls

Lists all temple templates and projects spun up with those templates

temple.ls.ls(github_user, template=None)
Lists all temple templates and packages associated with those templates

If template is None, returns the available templates for the configured Github org.

If template is a Github path to a template, returns all projects spun up with that template.

ls uses the github search API to find results.

Note that the temple.constants.TEMPLE_ENV_VAR is set to ‘ls’ for the duration of this function.

Parameters

• github_user (str) – The github user or org being searched.

• template (str, optional) – The template git repo path. If provided, lists all projects
that have been created with the provided template. Note that the template path is the SSH
path (e.g. git@github.com:CloverHealth/temple.git)

Returns A dictionary of repository information keyed on the SSH Github url

Return type dict

Raises InvalidGithubUserError – When github_user is invalid

5.4 temple.constants

Constants for temple

temple.constants.GITHUB_API_TOKEN_ENV_VAR = 'GITHUB_API_TOKEN'
The Github API token environment variable

temple.constants.TEMPLE_CONFIG_FILE = 'temple.yaml'
The temple config file in each repo

temple.constants.TEMPLE_DOCS_URL = 'https://github.com/CloverHealth/temple'
Temple docs URL

temple.constants.TEMPLE_ENV_VAR = '_TEMPLE'
The environment variable set when running any temple command. It is set to the name of the command

temple.constants.UPDATE_BRANCH_NAME = '_temple_update'
The temporary branches used for updates

5.5 temple.exceptions

Temple exceptions

exception temple.exceptions.CheckRunError
When running temple update --check errors

exception temple.exceptions.Error
The top-level error for temple

5.3. temple.ls 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
mailto:git@github.com
https://docs.python.org/3/library/stdtypes.html#dict

temple Documentation, Release 1.4.7

exception temple.exceptions.ExistingBranchError
Thrown when a specifically named branch exists or doesn’t exist as expected.

exception temple.exceptions.InDirtyRepoError
Thrown when running in a dirty git repo

exception temple.exceptions.InGitRepoError
Thrown when running inside of a git repository

exception temple.exceptions.InvalidCurrentBranchError
Thrown when a command cannot run because of the current git branch

exception temple.exceptions.InvalidEnvironmentError
Thrown when required environment variables are not set

exception temple.exceptions.InvalidGithubUserError
An invalid github user was passed to ls.

exception temple.exceptions.InvalidTemplatePathError
Thrown when a template path is not a Github SSH path

exception temple.exceptions.InvalidTempleProjectError
Thrown when the repository was not created with temple

exception temple.exceptions.NotInGitRepoError
Thrown when not running inside of a git repo

exception temple.exceptions.NotUpToDateWithTemplateError
Thrown when a temple project is not up to date with the template

14 Chapter 5. Temple Package

CHAPTER 6

Future Work

1. Use python wrappers for git and Github access (GitPython, github3.py)

15

http://gitpython.readthedocs.io/en/stable/
https://github3py.readthedocs.io/en/master/

temple Documentation, Release 1.4.7

16 Chapter 6. Future Work

CHAPTER 7

Release Notes

1.4.8

* Fix the compatibility with latest cookiecutter (#14)

1.4.7

* support https as well as ssh repositories (#12)

1.4.6

* Attempt to fix build process

* Fix temple ls command's template param (#10)

1.4.5

* Update Test Requirements and Doc Update (#9)

1.4.4

* [DI-304] Fix search for template usage (#7)

1.4.3

* [DI-8] Temple update 2018-07-31 (#5)

1.4.2

* Added primary authors section (#4)

17

temple Documentation, Release 1.4.7

1.4.1

* Added ReadTheDocs requirements file

1.4.0

* sem-ver: api-break, Initial open source release of temple (#1)

* first commit

18 Chapter 7. Release Notes

CHAPTER 8

Contributing Guide

This project was created using temple. For more information about temple, go to the Temple docs.

8.1 Setup

Set up your development environment with:

git clone git@github.com:CloverHealth/temple.git
cd temple
make setup

make setup will setup a virtual environment managed by pyenv and install dependencies.

Note that if you’d like to use something else to manage dependencies other than pyenv, call make dependencies
instead of make setup.

8.2 Testing and Validation

Run the tests with:

make test

Validate the code with:

make validate

8.3 Documentation

Sphinx documentation can be built with:

19

https://github.com/CloverHealth/temple
https://github.com/yyuu/pyenv
http://www.sphinx-doc.org/

temple Documentation, Release 1.4.7

make docs

The static HTML files are stored in the docs/_build/html directory. A shortcut for opening them is:

make open_docs

8.4 Releases and Versioning

Anything that is merged into the master branch will be automatically deployed to PyPI. Documentation will be pub-
lished to ReadTheDocs.

The following files will be generated and should not be edited by a user:

• ChangeLog - Contains the commit messages of the releases. Please have readable commit messages in the
master branch and squash and merge commits when necessary.

• AUTHORS - Contains the contributing authors.

• version.py - Automatically updated to include the version string.

This project uses Semantic Versioning through PBR. This means when you make a commit, you can add a message
like:

sem-ver: feature, Added this functionality that does blah.

Depending on the sem-ver tag, the version will be bumped in the right way when releasing the package. For more
information, about PBR, go the the PBR docs.

20 Chapter 8. Contributing Guide

http://temple.readthedocs.io/
http://semver.org
https://docs.openstack.org/developer/pbr/
https://docs.openstack.org/developer/pbr/

Python Module Index

t
temple.constants, 13
temple.exceptions, 13
temple.ls, 12
temple.setup, 11
temple.update, 11

21

temple Documentation, Release 1.4.7

22 Python Module Index

Index

Symbols
–version

temple command line option, 7
-c, –check

temple-update command line option, 9
-e, –enter-parameters

temple-update command line option, 9
-l, –long-format

temple-ls command line option, 8
-v, –version <version>

temple-setup command line option, 8
temple-switch command line option, 8
temple-update command line option, 9

C
CheckRunError, 13

E
Error, 13
ExistingBranchError, 13

G
GITHUB_API_TOKEN_ENV_VAR (in module tem-

ple.constants), 13
GITHUB_USER

temple-ls command line option, 8

I
InDirtyRepoError, 14
InGitRepoError, 14
InvalidCurrentBranchError, 14
InvalidEnvironmentError, 14
InvalidGithubUserError, 14
InvalidTemplatePathError, 14
InvalidTempleProjectError, 14

L
ls() (in module temple.ls), 13

N
NotInGitRepoError, 14
NotUpToDateWithTemplateError, 14

S
setup() (in module temple.setup), 11

T
TEMPLATE

temple-ls command line option, 8
temple-setup command line option, 8
temple-switch command line option, 8

temple command line option
–version, 7

temple-ls command line option
-l, –long-format, 8
GITHUB_USER, 8
TEMPLATE, 8

temple-setup command line option
-v, –version <version>, 8
TEMPLATE, 8

temple-switch command line option
-v, –version <version>, 8
TEMPLATE, 8

temple-update command line option
-c, –check, 9
-e, –enter-parameters, 9
-v, –version <version>, 9

temple.constants (module), 13
temple.exceptions (module), 13
temple.ls (module), 12
temple.setup (module), 11
temple.update (module), 11
TEMPLE_CONFIG_FILE (in module temple.constants),

13
TEMPLE_DOCS_URL (in module temple.constants), 13
TEMPLE_ENV_VAR (in module temple.constants), 13

23

temple Documentation, Release 1.4.7

U
up_to_date() (in module temple.update), 11
update() (in module temple.update), 12
UPDATE_BRANCH_NAME (in module tem-

ple.constants), 13

24 Index

	Temple - Templated Project Management
	Quick Start
	Next Steps

	Installation
	Creating Templates Managed by Temple
	Making Project Creation Seamless with Cookiecutter Hooks

	Temple CLI
	temple

	Temple Package
	temple.setup
	temple.update
	temple.ls
	temple.constants
	temple.exceptions

	Future Work
	Release Notes
	Contributing Guide
	Setup
	Testing and Validation
	Documentation
	Releases and Versioning

	Python Module Index
	Index

