

temci

[image: _images/badge.svg]
 [https://github.com/parttimenerd/temci/actions/workflows/test.yml][image: _images/9ed13785c7720e3da1111f12a9c634165d911a8e.svg]
 [https://temci.readthedocs.org]An advanced benchmarking tool written in Python 3 that supports
setting up an environment for benchmarking
and the generation of visually appealing reports [http://mostlynerdless.de/files/report_readme/report.html].

It runs on Linux systems and (rudimentarily) on macOS.

Why should you use temci?

temci allows you to easily measure the execution time (and other things)
of programs and compare them against each other resulting in a pretty
HTML5 based report. Furthermore it can set up the environment to ensure
benchmarking results with a low variance. The latter feature can be used
without using temci for benchmarking
by using temci short shell.

Usage

The main commands of temci are temci exec and
temci report.

Suppose you want to see whether grepping for the strings that consist of a and b in the current
folder is slower than for strings that consist only of a.

First we have to install temci (using Nix [https://nixos.org/nix/], see below for more instructions):

nix-env -f https://github.com/parttimenerd/temci/archive/master.tar.gz -i

After this, we can benchmark both commands with temci:

benchmark both commands 20 times
temci short exec "grep '[ab]*' -R ." "grep 'a*' -R ." --runs 10

append --watch to get report (in which you can move with the arrow keys and scroll)
after every benchmark completed (use --watch_every to decrease interval)
temci short exec "grep '[ab]*' -R ." "grep 'a*' -R ." --runs 10 --watch

if you want to improve the stability your benchmarks, run them with root privileges
the benchmarked programs are run with your current privileges
temci short exec "grep '[ab]*' -R ." "grep 'a*' -R ." --runs 10 --sudo --preset usable

This results in a run_output.yaml file that should look like:

- attributes: {description: 'grep ''[ab]*'' -R .'}
 data:
 etime: [0.03, 0.02, 0.02, 0.03, 0.03, 0.03, 0.02, 0.03, 0.03, 0.02]
 … # other properties
- attributes: {description: grep 'a*' -R .}
 data:
 etime: [0.02, 0.03, 0.02, 0.03, 0.03, 0.02, 0.03, 0.03, 0.02, 0.02]
 … # other properties
- property_descriptions: {etime: elapsed real (wall clock) time, … }

For more information on the support measurement tools (like
perf stat and
rusage),
the supported plugins for setting up the environment
and more, see temci exec.

We can now create a report from these benchmarking results using
temci report.
We use the option --properties to include only the elapsed time in the
report to keep the report simple:

> temci report run_output.yaml --properties etime
Report for single runs
grep '[ab]*' -R . (10 single benchmarks)
 etime mean = 2(6).(000)m, deviation = 18.84223%

grep 'a*' -R . (10 single benchmarks)
 etime mean = 2(5).(000)m, deviation = 20.00000%

Equal program blocks
 grep '[ab]*' -R . ⟷ grep 'a*' -R .
 etime confidence = 67%, speed up = 3.85%

We see that there is no significant difference between the two commands.

There are multiple reporters besides the default
console reporter.
Another reporter is the html2 reporter
that produces an HTML report, use it by adding the --reporter html2 option:

Installation

The simplest way is to use the Nix package manager [https://nixos.org/nix/], after installing Nix, run:

nix-env -f https://github.com/parttimenerd/temci/archive/master.tar.gz -i

Using pip requiring at least Python 3.6:

sudo pip3 install temci

For more information see the Installation page.

Auto completion

Temci can generate auto completion files for bash and zsh. Add the following line to your .bashrc or .zshrc:

. `temci_completion $0`

Using temci to set up a benchmarking environment

Use the temci short shell COMMAND to run a command (sh by default) in a shell that is inside
the benchmarking environment. Most options of temci short exec are supported.
For more information, see temci shell.

Why is temci called temci?

The problem in naming programs is that most good program names are
already taken. A good program or project name has (in my opinion) the
following properties:

	it shouldn’t be used on the relevant platforms (in this case: github and pypi)

	it should be short (no one wants to type long program names)

	it should be pronounceable

	it should have at least something to do with the program

temci is such a name. It’s lojban for time (i.e. the time duration between two moments or events).

Contributing

Bug reports [https://github.com/parttimenerd/temci/issues] and
code contributions [https://github.com/parttimenerd/temci] are highly appreciated.

For more information, see the Contributing page.

Contents of this documentation

	Installation
	System Requirements

	Using Nix

	Using pip3

	Optional Requirements

	temci build
	Usage

	File Format

	VCS Support

	temci exec
	temci short exec

	Usage

	File format

	Common options

	Runners

	Plugins

	CPUSets

	temci shell

	temci report
	Usage

	File format

	Common Options

	Console

	HTML2

	CSV

	Codespeed

	temci init

	temci format
	Usage Example

	Options

	OS Support
	What works and what does not

	Other Unixes

	Windows

	Extending temci
	Usage as a Library

	New Reporter

	New Runner

	New exec Plugin

	Contributing
	Issues

	New Features

	Coding Style

	Documentation

	Testing

	Changelog
	0.8.5

	0.8.4

	0.8.3

	0.8.2

	0.8.1

	0.8.0

	License

	API Documentation
	Subpackages

	Module contents

	Resources

	Module Index

	Search Page

 [image: Fork me on GitHub]

 Installation

Installation

This page covers installating and updating temci.

System Requirements

	Linux or macOS (see Supported Operating Systems)

	Processor with an x86 or AMD64 architecture (although most features should work on ARM too)

Using Nix

The simplest way is to use the Nix package manager [https://nixos.org/nix/]. After installing Nix, run:

nix-env -f https://github.com/parttimenerd/temci/archive/master.tar.gz -i

This method has the advantage that Nix downloads a suitable python3 interpreter and all packages like
matplotlib that could otherwise cause problems. The Nix installation also runs all the test cases, to ensure
that temci works properly on your system.

To install temci from source, run:

git clone https://github.com/parttimenerd/temci
cd temci
nix-env -i -f .

nix-env -i -f . can also be used to update your installation after updating the git repository. For a more
convenient development environment, see also Temporary Python environment with nix-shell [https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/python.section.md#temporary-python-environment-with-nix-shell].

Using pip3

There is also the traditional way of using pip, requiring at least Python 3.6.

temci depends on the existence of some packages that cannot be installed properly using pip and have to be installed manually:

on debian/ubuntu/…
time python3-pandas python3-cffi python3-cairo python3-cairocffi python3-matplotlib python3-numpy python3-scipy linux-tools-`uname -r`
on fedora
time python3-pandas python3-cffi python3-cairo python3-cairocffi python3-matplotlib python3-numpy python3-scipy perf
on OS X (using homebrew)
gnu-time

The Linux packages can be installed by calling the install_packages.sh script.

After installing these packages, temci can be installed by calling:

To use temci plugins that need super user privileges, e.g. cpu sets, install temci globally.

If there a problems with click (if you get an exception like ImportError: cannot import name 'ParameterSource'), try installing
it directly from github:

pip3 install https://github.com/pallets/click/archive/f537a208591088499b388b06b2aca4efd5445119.zip

To install temci from source, run:

git clone https://github.com/parttimenerd/temci
cd temci
pip3 install -e

Post Installation

Run the following command after the installation to compile some binaries needed for the rusage runner or
the disabling of caches:

temci setup

This requires gcc and make to be installed.

Optional Requirements

Requirements that aren’t normally needed are the following:

	kernel-devel packages (for compiling the kernel module to disable caches)

	pdflatex (for pdf report generation)

Temci runs perfectly fine without them if you are not using the mentioned features.

Auto Completion

Temci can generate auto completion files for bash and zsh. Add the following line to your .bashrc or .zshrc:

. `temci_completion $0`

 [image: Fork me on GitHub]

 temci build

temci build

Build programs before the actual benchmarks, can checkout specific git commits.
This has the advantage of being able to configure the build for all benchmarked programs
and to build these programs at once. This build config also contains the run config for
each program. temci build compiles a run config and stores it into a file that can be
directly used with temci exec (or other configured run drivers).

For most cases using the builder capabilities of `temci exec <temci_exec.html#building>`_
should be enough. This also has the advantage of using a single command for all benchmarked
programs, whether they need to built or not.

Usage

Usage: temci build [OPTIONS] BUILD_FILE

Options:
 --tmp_dir TEXT Used temporary directory [default:
 /tmp/temci]
 --threads INTEGER Number of threads that build simultaneously
 [default: 1]
 --sudo Acquire sudo privileges and run benchmark
 programs with non-sudo user. Only supported
 on the command line. [default: False]
 --sudo / --no-sudo Acquire sudo privileges and run benchmark
 programs with non-sudo user. Only supported
 on the command line. [default: False]
 --settings TEXT Additional settings file [default:]
 --out TEXT Resulting run config file [default:
 run.exec.yaml]
 --log_level [debug|info|warn|error|quiet]
 Logging level [default: info]
 --in TEXT Input file with the program blocks to build
 [default: build.yaml]
 --help Show this message and exit.

in, out and threads can also be set in the settings in the build block.

Be aware the parallel building or building multiple version of a program is still fragile.

Example

A build config (build_config.yaml) file for tool called test might look like this:

- attributes:
 description: 'test'
 run_config:
 run_cmd: 'sh test'
 build_config:
 build_cmd: 'echo "sleep 1" > test'

To build it, run temci build build_config.yaml, resulting in the following run_config.yaml:

- attributes:
 description: test
 tags: []
 run_config:
 cwd: [.]
 run_cmd: sh test

With temci exec

temci exec supports calling the builder directly, omitting the call to temci build.
Just call temci build if you want to separate building and benchmarking.

File Format

temci build accepts a file that consists of a YAML list of the entries in the following format:

Optional attributes that describe the block
attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

Build configuration for this program block
build_config:
 # Base directory that contains everything to build an run the program
 base_dir: Either(DirName()|non existent)
 default: .

 # Used version control system branch (default is the current branch)
 branch: Either(Str()|non existent)

 # Command to build this program block, might randomize it
 cmd: Str()

 # Number of times to build this program
 number: Either(Int()|non existent)
 default: 1

 # Used version control system revision of the program (-1 is the current revision)
 revision: Either(Either(Str()|Int())|non existent)
 default: -1

 # Working directory in which the build command is run
 working_dir: Either(DirName()|non existent)
 default: .

Run configuration for this program block
run_config: Dict(, keys=Any, values=Any, default = {})

VCS Support

Currently only Git is supported, but adding support for other version control systems is simple.
The code for the VCS drivers is in the temci.utils.vcs module.

 [image: Fork me on GitHub]

 temci exec

temci exec

This page explains temci exec and temci short exec that allow you to run the actual benchmarks.

The basic concept is that there are

	run drivers
	that support a specific benchmarking concept (like benchmarking whole programs that can be executed in the shell),
these run drivers use

	runners
	for the actual benchmarking and

	plugins
	to setup up the benchmarking environment

Currently only one run driver is implemented, the exec run driver that supports benchmarking programs
executed in a shell.

The benchmarking process produces a YAML file with the benchmarking results.

There are multiple features that require root privileges. To use these features, call temci with
the --sudo option. It will run only temci in super user mode, but not the benchmarked programs
themself. Notable features that require these rights are cpu sets (for separating the benchmarked programs
from the rest of the system), disabling hyperthreading and setting the CPU governor.

temci short exec

Supports basic benchmarks, without creating a configuration file. It supports the same command line options
as temci exec:

Usage: temci short exec [OPTIONS] COMMANDS

-wd, --without_description COMMAND:
 Benchmark the command and use
 itself as its description. Appends
 '$ARGUMENT' to the command if the string
 isn't present. Use the '--argument' option
 to set the value that this string is
 replaced with.
-d, --with_description DESCRIPTION COMMAND:
 Benchmark the command
 and set its description attribute.Appends
 '$ARGUMENT' to the command if the string
 isn't present. Use the '--argument' option
 to set the value that this string is
 replaced with.

…
(options of temci exec)

Usage

Basic benchmarking of two programs using the time:

compare the run times of two programs, running them each 20 times
> temci short exec "sleep 0.1" "sleep 0.2" --runs 20
Benchmark 20 times [####################################] 100%
Report for single runs
sleep 0.1 (20 single benchmarks)
 avg_mem_usage mean = 0.000, deviation = 0.0
 avg_res_set mean = 0.000, deviation = 0.0
 etime mean = 100.00000m, deviation = 0.00000%
 max_res_set mean = 2.1800k, deviation = 3.86455%
 stime mean = 0.000, deviation = 0.0
 utime mean = 0.000, deviation = 0.0

sleep 0.2 (20 single benchmarks)
 avg_mem_usage mean = 0.000, deviation = 0.0
 avg_res_set mean = 0.000, deviation = 0.0
 etime mean = 200.00000m, deviation = 0.00000%
 max_res_set mean = 2.1968k, deviation = 3.82530%
 stime mean = 0.000, deviation = 0.0
 utime mean = 0.000, deviation = 0.0

Use –watch to display the report continuously, every –watch_every (default is 1) seconds.

The produced run_output.yaml file is:

- attributes: {__description: sleep 0.1, description: sleep 0.1}
 data:
 max_res_set: [2148.0, 2288.0, 2152.0, 2120.0, 2340.0, 2076.0, 2152.0, 2280.0,
 2080.0, 2276.0, 2124.0, 2120.0, 2136.0, 2156.0, 2272.0, 2280.0, 2284.0, 2060.0,
 2120.0, 2136.0]
 …
- attributes: {__description: sleep 0.2, description: sleep 0.2}
 data:
 max_res_set: [2080.0, 2284.0, 2140.0, 2124.0, 2156.0, 2096.0, 2096.0, 2284.0,
 2288.0, 2120.0, 2284.0, 2280.0, 2284.0, 2272.0, 2272.0, 2152.0, 2152.0, 2328.0,
 2152.0, 2092.0]
 …
- property_descriptions: {avg_mem_usage: average total mem usage (in K), …}

More information on the format of the result file can be found in the documentation for temci report.

This documentation focuses on temci exec and its input file and options.

Presets

temci has the --preset option (and the setting run/exec_misc/preset) that enables a specific
combination of plugins:

	none
	no plugins are enabled, the default for non super user benchmarking

	all
	Use all available plugins and render the system partially unusable by stopping all unnecessary processes etc.,
enables: cpu_governor, disable_swap, sync, stop_start, other_nice, nice,
disable_aslr, disable_ht, disable_intel_turbo, cpuset

	usable
	Use all plugins that do not affect other processes (besides restricting them to a single CPU),
covers essentially the benchmarking tips of the LLVM project [https://llvm.org/docs/Benchmarking.html] and
enables: cpu_governor, disable_swap, sync, nice, disable_aslr, disable_ht,
cpuset, disable_intel_turbo.
This preset is used by default in super user mode (with ``–sudo``option).

Important: These presets don’t include the sleep plugin. Enable it via --sleep if needed.

An overview over all available plugins is given at Overview.

Runners

The runners are selected on the command line using the --runner option and the configuration file
via run/exec_misc/runner. They obtain the actual measurements and are configured in the run configuration.
Configuring them in temci short exec is currently not possible.

	time
	Uses the GNU time utility to measure basic properties. This is the default runner. It is
relatively imprecise but gives good ball park numbers for the performance.

	rusage
	Uses the getrusage method and a small wrapper written in C (be sure to call temci setup if
you install temci via pip, to build the wrapper).

	perf_stat
	Uses perf stat for measurements, might require root privileges. Allows measuring a wide
range of properties

	output
	This runner obtains the measurements by parsing the output of the benchmarked program and interpreting
it as a YAML mapping of properties to measurements (property: NUMBER lines).
It can be used in combination with the time and perf_stat runners
(using the --parse_output option or setting parse_output to true in the run block config).

Building

temci exec supports to build the programs that are then benchmarked. It supports the same format and the same options as
temci build.

In the most basic case (and the case that is thoroughly tested), just supply a build command:

- attributes: …
 run_config: …
 build_config:
 cmd: make # a sample build command

Executing the file with temci exec runs all available build commands.

This can be configured using the following options (set in the run settings block):

	no_build
	Do not build, default is false

	only_build:
	Only build the build configs for all blocks, default is false

	abort_after_build_error
	default true

If building a block fails and abort_after_build_error is not true
(e.g. --no-abort_after_build_error is passed), then temci
produces an EXEC_INPUT_FILE.erroneous.yaml that contains the configurations
of all failing blocks. This file can be used to execute the missing blocks
again after the error is fixed. Use the --append option to append the benchmarks
to the preexisting benchmark result file.

Error Codes

	0

	no error

	1

	at least one benchmarked program failed

	255

	temci itself failed

File format

The input file for temci exec consists of a list of entries per run program block:

-
 # Optional build config to integrate the build step into the run step
 build_config: Either(Dict(, keys=Any, values=Any, default = {})|non existent)

 # Optional attributes that describe the block
 attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

 run_config:
 # Command to benchmark, adds to run_cmd
 cmd: Str()

 # Configuration per plugin
 time:
 …
 …

 # Command to append before the commands to benchmark
 cmd_prefix: List(Str())

 # Execution directories for each command
 cwd: Either(List(Str())|Str())
 default: .

 # Disable the address space layout randomization
 disable_aslr: Bool()

 # Override all other max runspecifications if > -1
 max_runs: Int()
 default: -1

 # Override all other min runspecifications if > -1
 min_runs: Int()
 default: -1

 # Parse the program output as a YAML dictionary of that gives for a specific property a
 # measurement. Not all runners support it.
 parse_output: Bool()
 default: False

 # Used revision (or revision number).-1 is the current revision, checks out the revision
 revision: Either(Int()|Str())
 default: -1

 # Commands to benchmark
 run_cmd: Either(List(Str())|Str())

 # Used runner
 runner: ExactEither()
 default: time

 # Override min run and max runspecifications if > -1
 runs: Int()
 default: -1

 # Environment variables
 env: Dict(, keys=Str(), values=Any, default = {})

 # Configuration for the output and return code validator
 validator:
 # Program error output without ignoring line breaks and spaces at the beginning
 # and the end
 expected_err_output: Optional(Str())

 # Strings that should be present in the program error output
 expected_err_output_contains: Either(List(Str())|Str())

 # Program output without ignoring line breaks and spaces at the beginning
 # and the end
 expected_output: Optional(Str())

 # Strings that should be present in the program output
 expected_output_contains: Either(List(Str())|Str())

 # Allowed return code(s)
 expected_return_code: Either(List(Int())|Int())

 # Strings that shouldn't be present in the program output
 unexpected_err_output_contains: Either(List(Str())|Str())

 # Strings that shouldn't be present in the program output
 unexpected_output_contains: Either(List(Str())|Str())

A basic config file looks like:

- run_config:
 run_cmd: sleep 0.1
- run_config:
 run_cmd: sleep 0.2

Common options

These options are passed in the run settings block
(see Settings API or directly on the command line,
flags are of the schema --SETTING/--no-SETTING):

Append to the output file instead of overwriting by adding new run data blocks
append: Bool()

Disable the hyper threaded cores. Good for cpu bound programs.
disable_hyper_threading: Bool()

Discard all run data for the failing program on error
discard_all_data_for_block_on_error: Bool()

First n runs that are discarded
discarded_runs: Int()
 default: 1

Possible run drivers are 'exec' and 'shell'
driver: ExactEither('exec'|'shell')
 default: exec

Input file with the program blocks to benchmark
in: Str()
 default: input.exec.yaml

List of included run blocks (all: include all)
or their tag attribute or their number in the
file (starting with 0), can be regular expressions
included_blocks: ListOrTuple(Str())
 default: [all]

Maximum time one run block should take, -1 == no timeout,
supports normal time span expressions
max_block_time: ValidTimespan()
 default: '-1'

Maximum number of benchmarking runs
max_runs: Int()
 default: 100

Maximum time the whole benchmarking should take
-1 == no timeout
supports normal time spans
expressions
max_time: ValidTimespan()
 default: '-1'

Minimum number of benchmarking runs
min_runs: Int()
 default: 20

Output file for the benchmarking results
out: Str()
 default: run_output.yaml

Record the caught errors in the run_output file
record_errors_in_file: Bool()
 default: true

Number of benchmarking runs that are done together
run_block_size: Int()
 default: 1

if != -1 sets max and min runs to its value
runs: Int()
 default: -1

Order in which the plugins are used, plugins that do not appear in this list are used before all others
plugin_order: ListOrTuple(Str())
 default: ["drop_fs_caches", "sync", "sleep", "preheat", "flush_cpu_caches"]

If not empty, recipient of a mail after the benchmarking finished.
send_mail: Str()

Print console report if log_level=info
show_report: Bool()
 default: true

Randomize the order in which the program blocks are benchmarked.
shuffle: Bool()
 default: true

Store the result file after each set of blocks is benchmarked
store_often: Bool()

Show the report continuously
watch: false

Update the screen nth run (less updates are better for benchmarks)
watch_every: 1

cpuset:
 # Use cpuset functionality?
 active: Bool()

 # Number of cpu cores for the base (remaining part of the) system
 base_core_number: Int(range=range(0, NUMBER OF CPUS))
 default: 1

 # 0: benchmark sequential
 # > 0: benchmark parallel with n instances
 # -1: determine n automatically (based on the number of cpu cores)
 parallel: Int()

 # Number of cpu cores per parallel running program.
 sub_core_number: Int(range=range(0, NUMBER OF CPUS))
 default: 1

 # Place temci in the same cpu set as the rest of the system?
 temci_in_base_set: Bool()
 default: True

 # Maximum runs per tag (block attribute 'tag'), min('max_runs', 'per_tag') is used
max_runs_per_tag: Dict(, keys=Str(), values=Int(), default = {})

Minimum runs per tag (block attribute 'tag'), max('min_runs', 'per_tag') is used
min_runs_per_tag: Dict(, keys=Str(), values=Int(), default = {})

Runs per tag (block attribute 'tag'), max('runs', 'per_tag') is used
runs_per_tag: Dict(, keys=Str(), values=Int(), default = {})

Do not build, the building process should not set the working directory
no_build: Bool()
 default: False

Only build the build configs for all blocks
only_build: Bool()
 default: False

Abort after the build error
abort_after_build_error: Bool()
 default: True

There also some exec run driver specific options:

Parse the program output as a YAML dictionary of that gives for a specific property a
measurement. Not all runners support it.
parse_output: Bool()

Enable other plugins by default
preset: ExactEither('none'|'all'|'usable')
 default: none

Pick a random command if more than one run command is passed.
random_cmd: Bool()
 default: true

If not '' overrides the runner setting for each program block
runner: ExactEither(''|'perf_stat'|'rusage'|'spec'|'spec.py'|'time'|'output')

Number of runs

The number of runs per block is either fixed by the runs settings that apply or is between
the applying min_runs and max_runs setting. In the latter case, the benchmarking of a program
block is stopped early as soon as there is some significance in the benchmarking results compared to all
other benchmarked programs.

Runners

The runners are selected on the command line using the --runner option and the configuration file
via run/exec_misc/runner. They are configured in the run configuration file using the settings
block named like the runner in each run block.

time runner

Uses the GNU time tool and is mostly equivalent to the rusage runner but more user friendly.

The runner is configured by modifying the time property of a run configuration.
This configuration has the following structure:

Measured properties that are included in the benchmarking results
properties: ValidTimePropertyList()
 default: [utime, stime, etime, avg_mem_usage, max_res_set, avg_res_set]

The measurable properties are:

	utime
	user CPU time used (in seconds)

	stime
	system (kernel) CPU time used (in seconds)

	avg_unshared_data
	average unshared data size in K

	etime
	elapsed real (wall clock) time (in seconds)

	major_page_faults
	major page faults (required physical I/O)

	file_system_inputs
	blocks wrote in the file system

	avg_mem_usage
	average total mem usage (in K)

	max_res_set
	maximum resident set (not swapped out) size in K

	avg_res_set
	average resident set (not swapped out) size in K

	file_system_output
	blocks read from the file system

	cpu_perc
	percent of CPU this job got (total cpu time / elapsed time)

	minor_page_faults
	minor page faults (reclaims; no physical I/O involved)

	times_swapped_out
	times swapped out

	avg_shared_text
	average amount of shared text in K

	page_size
	page size

	invol_context_switches
	involuntary context switches

	vol_context_switches
	voluntary context switches

	signals_delivered
	signals delivered

	avg_unshared_stack
	average unshared stack size in K

	socket_msg_rec
	socket messages received

	socket_msg_sent
	socket messages sent

This runner is implemented in the TimeExecRunner
class.

Supports the parse_output option.

rusage runner

Uses the getrusage method and a small wrapper written in C (be sure to call temci setup
if you install temci via pip, to build the wrapper).

The runner is configured by modifying the rusage property of a run configuration.
This configuration has the following structure:

Measured properties that are stored in the benchmarking result
properties: ValidRusagePropertyList()
 default: [idrss, inblock, isrss, ixrss,
 majflt, maxrss, minflt,
 msgrcv, msgsnd, nivcsw, nsignals,
 nswap, nvcsw, oublock, stime, utime]

The measurable properties are:

	utime
	user CPU time used

	stime
	system CPU time used

	maxrss
	maximum resident set size

	ixrss
	integral shared memory size

	idrss
	integral unshared data size

	isrss
	integral unshared stack size

	nswap
	swaps

	minflt
	page reclaims (soft page faults)

	majflt
	page faults (hard page faults)

	inblock
	block input operations

	oublock
	block output operations

	msgsnd
	IPC messages sent

	msgrcv
	IPC messages received

	nsignals
	signals received

	nvcsw
	voluntary context switches

	nivcsw
	involuntary context switches

This runner is implemented in the RusageExecRunner
class.

perf_stat runner

This runner uses the perf stat tool to obtain measurements. It might have to be installed separately
(see Installation <installation.html>).
perf stat allows measuring a myriad of properties but might require root privileges.

The runner is configured by modifying the perf_stat property of a run configuration.
This configuration has the following structure:

Limit measurements to CPU set, if cpusets are enabled
limit_to_cpuset: Bool()
 default: true

Measured properties. The number of properties that can be measured at once is limited.
properties: List(Str())
 default: [wall-clock, cycles, cpu-clock, task-clock,
 instructions, branch-misses, cache-references]

If runner=perf_stat make measurements of the program repeated n times. Therefore scale the number of
times a program is benchmarked.
repeat: Int()
 default: 1

The measureable properties can be obtained by calling perf list. Common properties are given above, other
notable properties are cache-misses and branch-misses. The wall-clock property is obtained by
parsing the non-csv style output of perf stat which is fragile.

This runner is implemented in the PerfStatExecRunner
class.

Supports the parse_output option.

output runner

This runner obtains the measurements by parsing the output of the benchmarked program and interpreting
it as a YAML mapping of property to measurement (property: NUMBER lines).

It can be used in combination with the time and the perf_stat runner,
(using the --parse_output option), allowing benchmarking a command and parsing its result for additional
measurements.

An example output is:

time: 10
load_time: 5

It also supports lists of values if the lists of all properties have the same number of elements.
This can be used return the result of multiple measurements in one call of the benchmarked program:

time: [11.0, 10.01, 8.5]
load_time: [5.0, 6.7, 4.8]

This runner is implemented in the OutputExecRunner
class.

spec runner

This runner might not really work and is not really used.

Runner for SPEC like single benchmarking suites.
It works with resulting property files, in which the properties are colon separated from their values.

The runner is configured by modifying the spec property of a run configuration.
This configuration has the following structure:

Base property path that all other paths are relative to.
base_path: Str()

Code that is executed for each matched path.
The code should evaluate to the actual measured value
for the path. It can use the function get(sub_path: str = '')
and the modules pytimeparse, numpy, math, random, datetime and time.
code: Str()
 default: get()

SPEC result file
file: Str()

Regexp matching the base property path for each measured property
path_regexp: Str()
 default: .*

An example configuration is given in the following:

- attributes:
 description: spec
 run_config:
 runner: spec
 spec:
 file: "spec_like_result.yaml"
 base_path: "abc.cde.efg"
 path_regexp: 'bench\d'
 code: 'get(".min") * 60 + get(".sec") + random.random()'
- attributes:
 description: "spec2"
 run_config:
 runner: spec
 spec:
 file: "spec_like_result.yaml"
 base_path: "abc.cde.efg"
 path_regexp: 'bench\d'
 code: 'get(".min") * 60 + get(".sec") + 0.5 * random.random()'

This runner is implemented in the SpecExecRunner
class.

Plugins

Plugins setup the benchmarking environment (e.g. set the CPU governor, …). All their actions are reversible and
are reversed if temci aborts or finishes.

The plugins are enabled via the command line option --NAME, in the configuration file
via run/exec_plugins/NAME_active or by adding the name to set of active plugins in run/exec_plugins/exec_active
. A collection of them can be activated using Presets.

All plugins are located in the temci.run.run_driver_plugin
module.

Overview

New plugins can be added easily (see Extending temci) but there are multiple
plugins already available:

	cpu_governor
	Set the cpu governor

	cpuset
	Uses CPUSets to separate the CPUs used for benchmarking from the CPUs that the rest of the system runs on

	disable_aslr
	Disable address space randomisation

	disable_cpu_caches
	Disables the L1 and L2 caches

	disable_ht
	Disables hyper-threading

	disable_intel_turbo
	Disables the turbo mode on Intel CPUs

	disable_swap
	Disables swapping data from the RAM into a backing hard drive

	discarded_runs
	Discard the first runs (sets the run/discarded_runs setting)

	drop_fs_caches
	Drops file system caches

	env_randomize
	Adds random environment variables to mitigate some cache alignment effects

	flush_cpu_caches
	Flush the CPU caches on x86 CPUs

	nice
	Increases the CPU and IO scheduling priorities of the benchmarked program

	other_nice
	Decreases the CPU scheduling priority of all other programs

	preheat
	Preheats the system with a CPU bound task

	sleep
	Keeps the system idle for some time before the actual benchmarking

	stop_start
	Stops almost all other processes (as far as possible)

	sync
	Synchronizes cached writes of the file system to a persistent storage

The order in which the plugins are used (and called) is defined by the run/plugin_order, see
common-options.

cpu_governor

Sets the CPU governor of all CPU cores.

The governor can be configured by either using the --cpu_governor_governor GOVERNOR option or by
setting run/exec_plugins/cpu_governor_misc/governor.

The default governor is performance which is recommended for benchmarks.

The available governors can be obtained by calling

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

Requires root privileges.

cpuset

Uses cpusets to separate the CPUs used for benchmarking from the CPUs that the rest of the system runs on.
For more information see CPUSets.

Requires root privileges.

disable_aslr

Disables the address space randomisation which might lead to less variance in the benchmarks.

Requires root privileges.

disable_cpu_caches

Disables the L1 and L2 caches on x86 and x86-64 architectures.
It uses a small custom kernel module (be sure to compile it via temci setup --build_kernel_modules after install the appropriate
kernel-devel package, see Installation).

Attention: It will slow down your system by orders of magnitude, giving you essentially a Pentium I like processor.
Only use it for demonstration purposes.

Requires root privileges.

disable_ht

Disables hyper-threading, enabling it is equivalent to using the disable_hyper_threading option
(see Common options).

It disable a number of CPU cores so that only one core per physical CPU core is active, thereby effectively
disabling hyper-threading.

Requires root privileges.

disable_intel_turbo

Disables the turbo mode on Intel CPUs. Might reduce the variance of benchmarks, as the CPUs cannot overclock partially.

Requires root privileges.

disable_swap

Disables swapping data from the RAM into a backing hard drive. Swapping during benchmarking sessions increases the
variance as accessing data on a hard drive is significantly slower than accessing data in RAM.

Requires root privileges.

discarded_runs

Discard the first runs (sets the run/discarded_runs setting).
As a result, the benchmark files should already be in the file system caches.

drop_fs_caches

Drops the page cache, directoy entries and inodes before every benchmarking run. This might improve the usability
of the produced benchmarks for IO bound programs.

It can be either configured by using the run/exec_plugins/drop_fs_caches_misc block in the settings
or by using the command line options of the same names prefixed by --drop_fs_caches_:

Free dentries and inodes
free_dentries_inodes: true

Free the page cache
free_pagecache: true

Requires root privileges.

env_randomize

Adds random environment variables before each benchmarking run. This causes the stack frames of the called
program to be aligned differently. Can mitigate effects caused by a specific cache alignment.

It can be either configured by using the run/exec_plugins/env_randomize_misc block in the settings
or by using the command line options of the same names prefixed by --env_randomize_:

Maximum length of each random key
key_max: 4096

Maximum number of added random environment variables
max: 4

Minimum number of added random environment variables
min: 4

Maximum length of each random value
var_max: 4096

flush_cpu_caches

Write back and flush Internal caches; initiate writing-back and flushing of external caches
(see WBINVD [https://www.felixcloutier.com/x86/wbinvd]).

It uses a small custom kernel module (be sure to compile it via temci setup --build_kernel_modules after install the appropriate
kernel-devel package, see Installation).

nice

Sets the nice and ionice values (and therefore the CPU and IO scheduler priorities) of the benchmarked program
to a specific value.

It can be either configured by using the run/exec_plugins/nice_misc block in the settings
or by using the command line options of the same names prefixed by --nice_:

Specify the name or number of the scheduling class to use
0 for none
1 for realtime
2 for best-effort
3 for idle
io_nice: 1

Niceness values range from -20 (most favorable to the process)
to 19 (least favorable to the process).
nice: -15

nice values lower than -15 seem to cripple Linux systems.

Requires root privileges.

other_nice

Sets the nice value of processes other than the benchmarked one. Prioritises the benchmarked program over all
other processes.

It can be either configured by using the run/exec_plugins/other_nice_misc block in the settings
or by using the command line options of the same names prefixed by --other_nice_:

Processes with lower nice values are ignored.
min_nice: -10

Niceness values for other processes.
nice: 19

Requires root privileges.

preheat

Preheats the system with a CPU bound task (calculating the inverse of a big random matrix with numpy on all CPU cores).

The length of the preheating can be configured by either using the --preheat_time SECONDS option or by
setting run/exec_plugins/preheat_misc/time.

When the preheating takes place (before each run or at the beginning of the benchmarking) can
be configured via --preheat_when [before_each_run|at_setup] or by setting
run/exec_plugins/preheat_misc/when (accepts a list).

sleep

Keep the system idle for some time before the actual benchmarking.

See Gernot Heisers Systems Benchmarking Crimes [https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html#best]:

Make sure that the system is really quiescent when starting an experiment,
leave enough time to ensure all previous data is flushed out.

stop_start

Stops almost all other processes (as far as possible).

This plugin tries to stop most other processes on the system that
aren’t really needed. By default most processes that are children (or
children’s children, …) of a process whose name ends with “dm” are stopped.
This is a simple heuristic to stop all processes that are not vital
(i.e. created by some sort of display manager). SSH and X11 are stopped
too.

Advantages of this plugin (which is used via the command line flag
--stop_start):

	No one can start other programs on the system (via ssh or the user interface)

	→ fewer processes can interfere with the benchmarking

	Noisy processes like Firefox don’t interfere with the benchmarking as they are stopped,
this reduces the variance of benchmarks significantly

Disadvantages:

	You can’t interact with the system (therefore use the send_mail option to get mails after the benchmarking finished)

	Not all processes that could be safely stopped are stopped as this decision is hard to make

	You can’t stop the benchmarking as all keyboard interaction is disabled (by stopping X11)

	You might have to wait several minutes to be able to use your system after the benchmarking ended

Stopping a process here means to send a process a SIGSTOP signal and
resume it by sending a SIGCONT signal later.

It can be either configured by using the run/exec_plugins/stop_start_misc block in the settings
or by using the command line options of the same names prefixed by --stop_start_:

Each process which name (lower cased) starts with one of the prefixes is not ignored.
Overrides the decision based on the min_id.
comm_prefixes: [ssh, xorg, bluetoothd]

Each process which name (lower cased) starts with one of the prefixes is ignored.
It overrides the decisions based on comm_prefixes and min_id.
comm_prefixes_ignored: [dbus, kworker]

Just output the to be stopped processes but don't actually stop them?
dry_run: false

Processes with lower id are ignored.
min_id: 1500

Processes with lower nice values are ignored.
min_nice: -10

Suffixes of processes names which are stopped.
subtree_suffixes: [dm, apache]

Requires root privileges.

sync

Synchronizes cached writes of the file system to a persistent storage by calling sync.

CPUSets

The idea is to separate the benchmarked program from all other programs running on the system.

The usage of cpusets can be configured by using the following settings that are part of run/cpuset and
can also be set using the options with the same names prefixed with --cpuset_:

Use cpuset functionality?
active: Bool()

Number of cpu cores for the base (remaining part of the) system
base_core_number: Int(range=range(0, 8))
 default: 1

0: benchmark sequential
> 0: benchmark parallel with n instances
-1: determine n automatically, based on the number of CPU cores
parallel: Int()

Number of cpu cores per parallel running program.
sub_core_number: Int(range=range(0, 8))
 default: 1

Place temci in the same cpu set as the rest of the system?
temci_in_base_set: Bool()
 default: True

This functionality can also be enabling by using the --cpuset flag or by enabling the cpuset plugin.

 [image: Fork me on GitHub]

 temci shell

temci shell

temci short shell opens a shell in a benchmarking environment. It allows to execute your own benchmarking suite
in its own cpuset with disabled hyper threading, ….
This command has the same options as temci exec (regarding presets and plugins).

For example running your own benchmarking suite bench.sh in a reasonably setup environment can be done
via:

temci short shell ./bench.sh

The launched shell is interactive:

> temci short shell
>> echo 1
1

temci shell accepts an input file as its argument which has the following structure
(see ShellRunDriver:

Optional build config to integrate the build step into the run step
build_config: Either(Dict(, keys=Any, values=Any, default = {})|non existent)

Optional attributes that describe the block
attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

run_config:
 # Execution directory
 cwd: Either(List(Str())|Str())
 default: .

 # Command to run
 run_cmd: Str()
 default: sh

 # Environment variables
 env: Dict(, keys=Str(), values=Any, default = {})

 [image: Fork me on GitHub]

 temci report

temci report

temci report supports the statistical evaluation of benchmarking runs. It processes the output file
of temci exec. This page gives an overview over the different reporters and the expected format of
the input file. The creation of a new reporter is explained in Extending temci.

There a currently four different reporters:

	console
	Outputs a summary of the benchmarks on the console, the default reporter

	html2
	Creates a HTML based report with many graphics

	csv
	Outputs a configurable csv table

	codespeed
	Outputs JSON as expected by the codespeed [https://github.com/tobami/codespeed] tool

Usage

Using the html2 reporter:

File format

The input file for temci report consists of list of entries per run program block:

-
 # Optional attributes that describe the block
 attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

 data:
 property_1: List(Either(Int()|Float()))
 …

 # the run program aborted with an error
 error:
 message: Str()
 return_code': Int()
 output: Str()
 error_output: Str()

 # there was an internal error
 internal_error:
 message: Str()

 # only the error or the internal_error block can be present
 # the recorded data is the data recorded till the error occurred

optional property descriptions
- property_descriptions:
 property_1: long name of property_1

Common Options

These options are passed in the reporter settings block
(see Settings API or directly on the command line
(flags are of the schema --SETTING/--no-SETTING):

Exclude all data sets that contain only NaNs.
exclude_invalid: BoolOrNone()
 default: true

Properties that aren't shown in the report.
excluded_properties: ListOrTuple(Str())
 default: [__ov-time]

Files that contain the benchmarking results
in: Either(Str()|ListOrTuple(Str()))
 default: run_output.yaml

List of included run blocks (all: include all), identified by their description
or tag attribute, can be regular expressions
included_blocks: ListOrTuple(Str())
 default: [all]

Replace the property names in reports with longer more descriptive versions?
long_properties: BoolOrNone()

Possible reporter are 'console', 'html2', 'csv' and 'codespeed'
reporter: ExactEither('console'|'html2'|'csv'|'codespeed')
 default: console

Produce xkcd like plots (requires the humor sans font to be installed)
xkcd_like_plots: BoolOrNone()

Furthermore the formatting of numbers can be partially configured using the settings file block
described in temci format.

The statistical evaluation and the used properties can be configured via the stats settings block
or with the unprefixed options of the same names:

Properties to use for reporting and null hypothesis tests,
can be regular expressions
properties: ListOrTuple(Str())
 default: [all]

Possible testers are 't', 'ks' and 'anderson'
tester: ExactEither('t'|'ks'|'anderson')
 default: t

Range of p values that allow no conclusion.
uncertainty_range: Tuple(float, float)
 default: [0.05, 0.15]

Console

A simple reporter that just outputs a basic analysis of the benchmarks on the command line.
It works for large result files and can compute pair-wise statistical tests.

This reporter is either configured via the report/console_misc settings block or via the
command line options of the same name (prefixed with console_):

Matches the baseline block
baseline: ''

Position of the baseline comparison:
'each': after each block
'after': after each cluster
'both': after each and after cluster
'instead': instead of the non baselined
baseline_position: each

'auto': report clusters (runs with the same description)
and singles (clusters with a single entry, combined) separately
'single': report all clusters together as one
'cluster': report all clusters separately
'both': append the output of 'cluster' to the output of 'single'
mode: auto

Output file name or `-` (stdout)
out: '-'

Report on the failing blocks
report_errors: true

Print statistical tests for every property for every two programs
with_tester_results: true

Output for a simple benchmark (with --properties utime):

Report for single runs
sleep 0.5 (2 single benchmarks)
 utime mean = 1.(211)m, deviation = 33.27828%

sleep 1 (2 single benchmarks)
 utime mean = 1.(172)m, deviation = 29.91891%

Equal program blocks
 sleep 0.5 ⟷ sleep 1
 utime confidence = 95%, speed up = 3.26%

Or using sleep 0.5 as a baseline (--console_baseline "sleep 0.5"):

Report for single runs
sleep 0.5 (5 single benchmarks)
 utime mean = (1).(661)m, deviation = 18.91399%

sleep 1 (5 single benchmarks)
 utime mean = (1).(138)m, deviation = 37.83985%

sleep 1 (5) with baseline sleep 1 (5)
 utime mean = (68).(554)%, confidence = 9%, dev = 37.83985%, 18.91399%
geometric mean of relative mean = 68.554%

Uncertain program blocks
 sleep 0.5 ⟷ sleep 1
 utime confidence = 9%, speed up = 31.45%

The sample run_output.yaml was created via temci short exec 'sleep 0.5' 'sleep 1' --runs 5 --runner rusage:

- attributes:
 description: sleep 0.5
 data:
 utime: [0.00145, 0.001275, 0.001518, 0.002089, 0.001971]
 # …
- attributes:
 description: sleep 1
 data:
 utime: [0.00174, 0.000736, 0.001581, 0.00085, 0.000785]

HTML2

Creates a report with many graphics (box-plots and bar-graphs) and tables that can be exported to TeX.
The produced HTML page also contains many explanations. Viewing it requires an internet connection.

Output for the simple benchmark from above (with --properties utime --properties maxrss):

All images and tables are statically generated, this results in a large HTML file with many ressources.
It is therefore not recommended to use this reporter with a large number of benchmarking results
(benchmarked programs and properties). Rule of thumb: Only use it to analyse results comparing less than
eight programs.

This reporter is either configured via the report/html2_misc settings block or via the
command line options of the same name (prefixed with html2_)

Alpha value for confidence intervals
alpha: 0.05

Height per run block for the big comparison box plots
boxplot_height: 2.0

Width of all big plotted figures
fig_width_big: 25.0

Width of all small plotted figures
fig_width_small: 15.0

Format string used to format floats
float_format: '{:5.2e}'

Override the contents of the output directory if it already exists?
force_override: false

Generate pdf versions of the plotted figures?
gen_pdf: false

Generate simple latex versions of the plotted figures?
gen_tex: true

Generate excel files for all tables
gen_xls: false

Name of the HTML file
html_filename: report.html

Show the mean related values in the big comparison table
mean_in_comparison_tables: true

Show the mininmum related values in the big comparison table
min_in_comparison_tables: false

Output directory
out: report

Format string used to format floats as percentages
percent_format: '{:5.2%}'

Show zoomed out (x min = 0) figures in the extended summaries?
show_zoomed_out: false

CSV

A reporter that outputs the configurable csv table with rows for each run block.
It can be used to access the benchmarking result for further processing in other tools
without using temci as a library or creating a new reporter (see Extending temci).

This reporter is either configured via the report/csv_misc settings block or via the
command line options of the same name (prefixed with csv_):

List of valid column specs
format is a comma separated list of 'PROPERTY[mod]' or 'ATTRIBUTE'
mod is one of: mean, stddev, property, min, max and stddev per mean
optionally a formatting option can be given via PROPERTY[mod|OPT1OPT2…]
where the OPTs are one of the following:
% (format as percentage)
p (wrap insignificant digits in parentheses (+- 2 std dev))
s (use scientific notation, configured in report/number) and
o (wrap digits in the order of magnitude of 2 std devs in parentheses).
PROPERTY can be either the description or the short version of the property.
Configure the number formatting further via the number settings in the settings file
columns: [description]

Output file name or standard out (-)
out: '-'

Output for a simple benchmark (with --csv_columns "utime[mean|p],utime[stddev],utime[max]", see Console <temci_report.html#Console>):

utime[mean|p],utime[stddev],utime[max]
0.00(2),0.000,0.002
0.00(1),0.000,0.002

Codespeed

Reporter that outputs JSON as expected by codespeed [https://github.com/tobami/codespeed].
Branch name and commit ID are taken from the current directory. Use it like this:

temci report --reporter codespeed ... \
 | curl --data-urlencode json@- http://localhost:8000/result/add/json/

This reporter is either configured via the report/codespeed_misc settings block or via the
command line options of the same name (prefixed with codespeed_):

Branch name reported to codespeed. Defaults to current branch or else 'master'.
branch: ''

Commit ID reported to codespeed. Defaults to current commit.
commit_id: ''

Environment name reported to codespeed. Defaults to current host name.
environment: ''

Executable name reported to codespeed. Defaults to the project name.
executable: ''

Project name reported to codespeed.
project: ''

Output for a simple benchmark (with --properties utime, see Console <#Console>):

[
 {
 "project":"",
 "executable":"",
 "environment":"i44pc17",
 "branch":"master",
 "commitid":null,
 "benchmark":"sleep 0.5: utime",
 "result_value":0.0016606000000000004,
 "std_dev":0.0003140857207833556,
 "min":0.001275,
 "max":0.002089
 },
 {
 "project":"",
 "executable":"",
 "environment":"i44pc17",
 "branch":"master",
 "commitid":null,
 "benchmark":"sleep 1: utime",
 "result_value":0.0011384,
 "std_dev":0.00043076889395591227,
 "min":0.000736,
 "max":0.00174
 }
]

 [image: Fork me on GitHub]

 temci init

temci init

Commands to create documented sample config files. Accepts the option --settings FILE to configure a backing
settings file.

	temci init settings
	Creates a sample settings file with all the default (and currently applied) settings. Might be used to
update a settings file for a new version of temci.

	temci init build_config
	Creates a sample build configuration file, for more information on the format see temci build.

	temci init run_config
	Creates a sample exec configuration, for more information on the format see temci exec

 [image: Fork me on GitHub]

 temci format

temci format

temci format [OPTIONS] NUMBER [ABS_DEVIATION]

A small formatting utility, to format numbers with their standard deviation and si prefixes.

Usage Example

> temci format 1.0 0.5
1.(000)

> temci format 1.56 0.005
1.56(0)

> temci format 1560 --scientific_notation
1.560k

> temci format 1560 --no-scientific_notation_si_prefixes
1.560e3

This tool uses the number formatting module temci.utils.number.
The therein defined method format_number can be
used to format numbers and has the same options as the tool itself.
Read Usage as a Library on how to use the module in a project other
than temci.

Options

Usage: temci format [OPTIONS] NUMBER [ABS_DEVIATION]

Options:
 --settings TEXT Additional settings file [default:]
 --log_level [debug|info|warn|error|quiet]
 Logging level [default: info]
 --sigmas INTEGER Number of standard deviation used for the
 digit significance evaluation [default: 2]
 --scientific_notation_si_prefixes
 Use si prefixes instead of 'e…' [default:
 True]
 --scientific_notation_si_prefixes / --no-scientific_notation_si_prefixes
 Use si prefixes instead of 'e…' [default:
 True]
 --scientific_notation Use the exponential notation, i.e. '10e3'
 for 1000 [default: True]
 --scientific_notation / --no-scientific_notation
 Use the exponential notation, i.e. '10e3'
 for 1000 [default: True]
 --percentages Show as percentages [default: False]
 --percentages / --no-percentages
 Show as percentages [default: False]
 --parentheses_mode [d|o] Mode for showing the parentheses: either d
 (Digits are considered significant if they
 don't change if the number itself changes +=
 $sigmas * std dev) or o (digits are
 consideredsignificant if they are bigger
 than $sigmas * std dev) [default: o]
 --parentheses Show parentheses around non significant
 digits? (If a std dev is given) [default:
 True]
 --parentheses / --no-parentheses
 Show parentheses around non significant
 digits? (If a std dev is given) [default:
 True]
 --omit_insignificant_decimal_places
 Omit insignificant decimal places [default:
 False]
 --omit_insignificant_decimal_places / --no-omit_insignificant_decimal_places
 Omit insignificant decimal places [default:
 False]
 --min_decimal_places INTEGER The minimum number of shown decimal places
 if decimal places are shown [default: 3]
 --max_decimal_places INTEGER The maximum number of decimal places
 [default: 5]
 --force_min_decimal_places Don't omit the minimum number of decimal
 places if insignificant? [default: True]
 --force_min_decimal_places / --no-force_min_decimal_places
 Don't omit the minimum number of decimal
 places if insignificant? [default: True]
 --help Show this message and exit.

These options can also be set in the settings file, under report/number.

 [image: Fork me on GitHub]

 OS Support

OS Support

Linux is the main target for this tool.
The support for other Unix like operating systems is limited. Most of the advanced environment setup functionality,
like cpu sets or disabling hyper threading, is Linux specific.

What works and what does not

	
	temci exec and temci short
	
	the perf_stat runner is Linux specific

	all other runners should work, but it is uncertain whether the rusage runner works

	the time runner requires the gtime program to be installed

	most the environment setup code (i.e. the plugins) don’t work, with the exception of
preheat and sleep that are implemented in python

	--sudo is only supported on Linux

	
	temci shell
	
	see temci exec for the supported plugins

	
	temci setup
	
	might not work

	
	temci report, temci build, temci clean, temci completion, …
	
	without any constraints

Other Unixes

Other Unix like operating systems aren’t currently tested. But there is a chance that they might work as well.

Windows

Windows is currently not supported, but temci report might still work. The Linux subsystem in Windows might
enable the usage of the features that work on Apples OS X.

 [image: Fork me on GitHub]

 Extending temci

Extending temci

Temci can be extended by either editing the code of temci directly or by placing the code in a file in your
local ~/.temci folder or in a folder that is passed to temci via the TEMCI_PLUGIN_PATH variable.

This page documents how to implement new reporters, runners and run plugins and how to use temci directly as
a library.

Usage as a Library

temci can be used in library mode by importing via

import temci.utils.library_init

New Reporter

New reporters can be added be creating a subclass of AbstractReporter.
Adding a new reporter can be useful to integrate temci into other tools. It has the advantage over using temci as a
library that it is directly integrated into the cli and the settings framework.

The following is an implementation of a sample reporter that outputs some benchmarking information as JSON.
This reporter is based on the codespeed reporter:

@register(ReporterRegistry, "json", Dict({
 # define the settings for this reporter
 # currently every setting has to have a valid default value
 "project": Str() // Default("") // Description("Project name reported to codespeed."),
})) # the register call registers the reporter
class JSONReporter(AbstractReporter):
 """
 Outputs the benchmarking information with some meta data on the command line.
 """

 def report(self):
 """
 Create a report and output it as configured.
 """
 import json
 self.meta = {
 "project": self.misc["project"] # access the settings specific to this reporter
 }
 data = [self._report_prop(run, prop)
 # iterate overall recorded properties of all run programs
 for run in self.stats_helper.runs
 for prop in sorted(run.get_single_properties()]
 json.dump(data, sys.stdout)

 def _report_prop(self, run: RunData, prop: SingleProperty) -> dict:
 return {
 **self.meta,
 "benchmark": "{}: {}".format(run.description(), prop.property),
 "result_value": prop.mean(),
 "std_dev": prop.stddev(),
 "min": prop.min(),
 "max": prop.max(),
 }

For more information, consider looking into the documentation of the report module.

New Runner

Before implementing a new runner, you should consider whether using the output runner is enough.
The output runner parses the output of the benchmarked programs as a list of property: value mappings, e.g.
the output of a program could be time: 10000.0.

Implementing a new runner offers more flexibility, but is also slightly more work. A runner can be implemented
by extending the ExecRunner class.

A good example is the OutputRunner itself, with some added
documentation:

@ExecRunDriver.register_runner() # register the runner
class OutputExecRunner(ExecRunner):
 """
 Parses the output of the called command as YAML dictionary (or list of dictionaries)
 populate the benchmark results (string key and int or float value).
 For the simplest case, a program just outputs something like `time: 1000.0`.
 """

 name = "output" # name of the runner
 misc_options = Dict({})
 # settings of the runner, these can be set under `run/exec/NAME_misc` in the settings file

 def __init__(self, block: RunProgramBlock):
 """
 Creates an instance.

 :param block: run program block to measure
 """
 super().__init__(block)

 def setup_block(self, block: RunProgramBlock, cpuset: CPUSet = None, set_id: int = 0):
 """
 Configure the passed copy of a run program block (e.g. the run command).

 The parts of the command between two `$SUDO$` occurrences is run with
 super user privileges if in `--sudo` mode.

 :param block: modified copy of a block
 :param cpuset: used CPUSet instance
 :param set_id: id of the cpu set the benchmarking takes place in
 """
 pass

 def parse_result_impl(self, exec_res: ExecRunDriver.ExecResult,
 res: BenchmarkingResultBlock = None) -> BenchmarkingResultBlock:
 """
 Parse the output of a program and turn it into benchmarking results.
 :param exec_res: program output
 :param res: benchmarking result to which the extracted results should be added
 or None if they should be added to an empty one
 :return: the modified benchmarking result block
 """
 res = res or BenchmarkingResultBlock()
 # schema for the output of a program
 dict_type = Dict(key_type=Str(),
 value_type=Either(Int(), Float(), List(Either(Int(), Float()))),
 unknown_keys=True)
 output = yaml.safe_load(exec_res.stdout.strip())
 if isinstance(output, dict_type):
 res.add_run_data(dict(output))
 elif isinstance(output, List(dict_type)):
 for entry in list(output):
 res.add_run_data(entry)
 else:
 raise BenchmarkingError("Not a valid benchmarking program output: {}"
 .format(exec_res.stdout))
 return res

 def get_property_descriptions(self) -> t.Dict[str, str]:
 """
 Returns a dictionary that maps some properties to their short descriptions.
 """
 return {}

New exec Plugin

New plugins for setting up the benchmarking environment can be developed by extending the
AbstractRunDriverPlugin class.

A simple example is the DisableSwap plugin:

register the plugin and state the configuration
@register(ExecRunDriver, "disable_swap", Dict({}))
class DisableSwap(AbstractRunDriverPlugin):
 """
 Disables swapping on the system before the benchmarking and enables it after.
 """

 needs_root_privileges = True

 def setup(self): # called before the whole benchmarking starts
 self._exec_command("swapoff -a")

 def teardown(self): # called after the benchmarking (and on abort)
 self._exec_command("swapon -a")

 [image: Fork me on GitHub]

 Contributing

Contributing

Pull requests and issues are always welcomed.

Issues

Issues can be submitted at GitHub [https://github.com/parttimenerd/temci/issues] and should specify the used
settings (and if possible the local temci.yaml configuration file).

New Features

New features, runners, reporters, … are welcome. To learn how to extend temci, see Extending temci.
The code can be added to the appropriate places and should be tested with a few tests.

Coding Style

The code should use type annotations everywhere and use functionality of the typecheck module
whenever there is uncertainty over the type of a variable (e.g. when reading from a YAML file).
The currently used python version 3.6, all code should run in python 3.6 and above.

Documentation

Be sure to keep the documentation up to date and document your code. The code comments are written in
reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

Testing

The tests are located in the tests folder and roughly grouped by the temci subcommand they belong to.
New features should by covered by tests.

There is also support for doctests that can be added into the documentation.

The tests are using the pytest framework and can be executed by simply calling

./test.sh

It recommended to install the package pytest-clarity to improve the error output.

 [image: Fork me on GitHub]

 Changelog

Changelog

0.8.5

	add disable_turbo_boost plugin, supporting amd and intel cpus

	fix #133 (not re-enabling hyper threading properly)

0.8.4

	Fix cpu set bug

0.8.3

	add –watch: prints console report continuously

	improve progressbar

	perf runner works on NixOS

	use new click version (temci is installable via pip click again)

0.8.2

	improve HTML2 reporter
- fix typos
- change “error” into “severe warning”
- support disabling warnings alltogether
- clean up duplicates
- further improve the summary section
- support zoomed out graphs (make this the default)
- use local copy of all JS and CSS (no works offline)

	record some information on the execution environment

	don’t build kernel modules by default

	remove meta analysis code

0.8.1

	fixed minor issues

	add new runner capabilities like output parsing or rusage

0.8.0

	removed the randomization features from the builder

	removed the html reporter (use the html2 reporter instead)

 [image: Fork me on GitHub]

 License

License

	GNU GENERAL PUBLIC LICENSE
	Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this

License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based

on the Program.

To “propagate” a work means to do anything with it that, without

permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”

to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work

for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official

standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all

the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that

same work.

	Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any

tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,

procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further

restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express

agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within

the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,

if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

 [image: Fork me on GitHub]

 API Documentation

API Documentation

Subpackages

	temci.build package
	Submodules

	temci.build.build_processor module

	temci.build.builder module

	Module contents

	temci.misc package
	Submodules

	temci.misc.game module

	Module contents

	temci.run package
	Submodules

	temci.run.cpuset module

	temci.run.run_driver module

	temci.run.run_driver_plugin module

	temci.run.run_processor module

	temci.run.run_worker_pool module

	Module contents

	temci.scripts package
	Submodules

	temci.scripts.cli module

	temci.scripts.temci_completion module

	temci.scripts.version module

	Module contents

	temci.setup package
	Submodules

	temci.setup.setup module

	Module contents

	temci.report package
	Submodules

	temci.report.report module

	temci.report.report_processor module

	temci.report.rundata module

	temci.report.stats module

	temci.report.testers module

	Module contents

	temci.utils package
	Submodules

	temci.utils.click_helper module

	temci.utils.config_utils module

	temci.utils.library_init module

	temci.utils.mail module

	temci.utils.number module

	temci.utils.plugin module

	temci.utils.registry module

	temci.utils.settings module

	temci.utils.sudo_utils module

	temci.utils.typecheck module

	temci.utils.util module

	temci.utils.vcs module

	Module contents

Module contents

 [image: Fork me on GitHub]

 temci.build package

temci.build package

Submodules

temci.build.build_processor module

	
class temci.build.build_processor.BuildProcessor(build_blocks: Optional[List[Dict[str, Any]]] = None)

	Bases: object

Build programs

A block in the configuration has the following format:

Optional attributes that describe the block
attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

Build configuration for this program block
build_config:
 # Base directory that contains everything to build an run the program
 base_dir: Either(DirName()|non existent)
 default: .

 # Used version control system branch (default is the current branch)
 branch: Either(Str()|non existent)

 # Command to build this program block, might randomize it
 cmd: Str()

 # Number of times to build this program
 number: Either(Int(constraint=<function>)|non existent)
 default: 1

 # Used version control system revision of the program (-1 is the current revision)
 revision: Either(Either(Str()|Int())|non existent)
 default: -1

 # Working directory in which the build command is run
 working_dir: Either(DirName()|non existent)
 default: .

Run configuration for this program block
run_config: Dict(, keys=Any, values=Any, default = {})

Creates a build processor for the passed build block configurations.

	Parameters

	build_blocks – passed build block configurations

	
block_scheme = # Optional attributes that describe the block attributes: description: Optional(Str()) # Tags of this block tags: ListOrTuple(Str()) # Build configuration for this program block build_config: # Base directory that contains everything to build an run the program base_dir: Either(DirName()|non existent) default: . # Used version control system branch (default is the current branch) branch: Either(Str()|non existent) # Command to build this program block, might randomize it cmd: Str() # Number of times to build this program number: Either(Int(constraint=<function>)|non existent) default: 1 # Used version control system revision of the program (-1 is the current revision) revision: Either(Either(Str()|Int())|non existent) default: -1 # Working directory in which the build command is run working_dir: Either(DirName()|non existent) default: . # Run configuration for this program block run_config: Dict(, keys=Any, values=Any, default = {})

	Type scheme of the program block configurations

	
build()

	Build the configured programs.

	
out

	Temporary directory in which the building takes place

	
classmethod preprocess_build_blocks(blocks: List[Dict[str, Any]]) → List[Dict[str, Any]]

	Pre process and check build blocks

	Returns

	pre processed copy

	
classmethod store_example_config(file: str, comment_out_defaults: bool = False)

	

temci.build.builder module

	
exception temci.build.builder.BuildError(thread: int, item: BuilderQueueItem, error: RecordedError)

	Bases: Exception

	
log()

	

	
class temci.build.builder.Builder(id: int, build_dir: str, build_cmd: str, revision: Union[str, int], number: int, base_dir: str, branch: str)

	Bases: object

Allows the building of a program configured by a program block configuration.

Creates a new builder for a program block.

	Parameters

	
	build_dir – working directory in which the build command is run

	build_cmd – command to build this program block

	revision – used version control systemrand revision of the program (-1 is the current revision)

	number – number of times to build this program

	base_dir – base directory that contains everything to build an run the program

	branch – used version control system branch

	
build(thread_count: Optional[int] = None) → List[str]

	Build the program block in parallel with at maximum thread_count threads in parallel.

	Parameters

	thread_count – number of threads to use at maximum to build the configured number of time,
defaults to build/threads

	Returns

	list of base directories for the different builds

	
build_cmd

	Command to build this program block

	
build_dir

	Working directory in which the build command is run

	
number

	Number of times to build this program

	
revision

	Used version control system revision of the program

	
vcs_driver

	Used version control system driver

	
exception temci.build.builder.BuilderKeyboardInterrupt(error: BaseException, result: List[str])

	Bases: KeyboardInterrupt

KeyboardInterrupt that wraps an error that occurred during the building of a program block

	
error

	Wrapped error

	
result

	Base directories of the succesfull builds

	
class temci.build.builder.BuilderQueueItem(id, number, tmp_build_dir, tmp_dir, build_cmd)

	Bases: tuple

Create new instance of BuilderQueueItem(id, number, tmp_build_dir, tmp_dir, build_cmd)

	
property build_cmd

	Alias for field number 4

	
property id

	Alias for field number 0

	
property number

	Alias for field number 1

	
property tmp_build_dir

	Alias for field number 2

	
property tmp_dir

	Alias for field number 3

	
class temci.build.builder.BuilderThread(id: int, submit_queue: Queue)

	Bases: Thread

Thread that fetches configurations from a queue and builds the therein described program blocks.

Creates a new builder thread

	Parameters

	
	id – id of the thread

	submit_queue – used queue

	
id

	Id of this thread

	
run()

	Queue fetch loop, that builds the fetched program block configurations.

	
stop

	Stop the queue fetch loop?

	
submit_queue

	Used queue

Module contents

This module contains the build part of temci (usable from the command line with temci build).

It’s separated into four parts with the following purposes:

	build_processor.py: facade for the the builders

	builder.py: Build programs

 [image: Fork me on GitHub]

 temci.misc package

temci.misc package

Submodules

temci.misc.game module

Benchmarks game inspired comparison of different implementations for a given language.

It doesn’t really belong directly to the temci tool, but uses big parts of it.
It’s currently in a pre alpha state as it’s a part of the evaluation for my bachelor thesis
that I’m currently doing,

	
temci.misc.game.AV_GHC_VERSIONS = ['7.0.1', '7.2.1', '7.4.1', '7.6.1', '7.8.1', '7.10.1', '8.0.1']

	These are (currently) the versions installable via the ppa on https://launchpad.net/~hvr/+archive/ubuntu/ghc
Older versions can’t be installed due to version conflicts and missing libraries

	
class temci.misc.game.BOTableColumn(title: str, format_str: str, property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float], reduce: Callable[[List[float]], Any])

	Bases: object

Column for BaseObject table_html_for_vals_per_impl

	
class temci.misc.game.BaseObject(name: str, children: Optional[Union[Dict[str, BaseObject], InsertionTimeOrderedDict]] = None)

	Bases: object

A base class for all other classes that provides helper methods.

	
boxplot_html(base_file_name: str, singles: List[SingleProperty], zoom_in: bool = False) → str

	

	
boxplot_html_for_data(name: str, base_file_name: str, data: Dict[str, List[float]], zoom_in: bool = False)

	

	
build(base_dir: str) → List[dict]

	

	
classmethod from_config_dict(*args) → BaseObject

	

	
get_geom_over_rel_means() → Dict[str, float]

	

	
get_geom_over_rel_stds() → Dict[str, float]

	

	
get_geom_std_over_rel_means() → Dict[str, float]

	

	
get_gsd_for_x_per_impl(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float]) → Dict[str, float]

	Calculates the geometric standard deviation for the property for each implementation.

	
get_reduced_x_per_impl(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float], reduce: Callable[[List[float]], Any], x_per_impl_func: Optional[Callable[[Callable[[SingleProperty, List[float], List[SingleProperty], int], float]], Dict[str, List[float]]]] = None) → Dict[str, float]

	Returns the reduced [property] for each implementation. To reduce the list of [property] it uses
the passed reduce function.
The returned implementations doesn’t depend on one of the parameters.

	
get_x_per_impl(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float]) → Dict[str, List[float]]

	Returns a list of [property] for each implementation.

	Parameters

	property – property function that gets a SingleProperty object and a list of all means and returns a float

	
table_html_for_vals_per_impl(columns: List[Union[BOTableColumn, Callable[[], BOTableColumn]]], base_file_name: str, x_per_impl_func: Optional[Callable[[Callable[[SingleProperty, List[float], List[SingleProperty], int], float]], Dict[str, List[float]]]] = None) → str

	Returns the html for a table that has a row for each implementation and several columns (the first is the
implementation column).

	
class temci.misc.game.Implementation(parent: ProgramWithInput, name: str, run_cmd: str, build_cmd: Optional[str] = None, run_data: Optional[List[Union[int, float]]] = None)

	Bases: BaseObject

Represents an implementation of a program.

	
build(base_dir: str) → List[dict]

	

	
classmethod from_config_dict(parent: ProgramWithInput, config: dict) → Implementation

	

	
get_single_property() → SingleProperty

	

	
get_x_per_impl(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float])

	Returns a list of [property] for each implementation.

	Parameters

	property – property function that gets a SingleProperty object and a list of all means and returns a float

	
mean() → float

	

	
class temci.misc.game.Input(prefix: Optional[str] = None, number: Optional[Union[int, float]] = None, appendix: Optional[str] = None)

	Bases: object

Input with a variable numeric part.

	
classmethod from_config_dict(config: dict) → Input

	

	
classmethod list_from_numbers(*numbers: List[Union[int, float]]) → List[Input]

	

	
replace(search: str, replacement: str) → Input

	Returns an input object in which the search string is replaced in the prefix and the appendix.

	
to_dict() → dict

	

	
class temci.misc.game.Language(name: str, categories: List[ProgramCategory])

	Bases: BaseObject

	
apply_program_filter(filter: ~typing.Callable[[int, ~typing.List[~temci.misc.game.Program]], bool] = <function id_program_filter>)

	

	
build(base_dir: str, multiprocess: bool = True) → List[dict]

	

	
create_temci_run_file(base_build_dir: str, file: str)

	

	
classmethod from_config_dict(config: dict) → Language

	

	
get_box_plot_html(base_file_name: str) → str

	

	
get_box_plot_per_input_per_impl_html(base_file_name: str, input_num: int) → str

	A box plot for each input that shows the mean scores (over all programs) for each implementation.

	
get_full_html(base_dir: str, html_func: Optional[Callable[[str, int, bool], str]] = None) → str

	

	
get_html(base_file_name: str, h_level: int, with_header: bool = True, multiprocess: bool = False) → str

	

	
get_html2(base_file_name: str, h_level: int, with_header: bool = True, multiprocess: bool = False, show_entropy_distinction: bool = True)

	

	
get_impl_mean_scores() → Dict[str, float]

	

	
get_max_input_num() → int

	

	
get_scores_per_impl() → Dict[str, List[float]]

	

	
get_statistical_property_scores(func: ~typing.Callable[[~temci.report.stats.SingleProperty], float], reduce: ~typing.Callable[[~typing.List[float]], ~temci.utils.typecheck.Any] = <function gmean>) → Dict[str, float]

	

	
get_statistical_property_scores_per_impl(func: Callable[[SingleProperty], float]) → Dict[str, List[float]]

	

	
get_statistical_property_scores_per_input_per_impl(func: ~typing.Callable[[~temci.report.stats.SingleProperty], float], input_num: int, reduce: ~typing.Callable[[~typing.List[float]], ~temci.utils.typecheck.Any] = <function gmean>) → Dict[str, List[float]]

	
	Assumptions:
	
	Most programs have the same number of input (known as max input number)

	The input number n takes roughly the same amount of time for every program category

	
get_x_per_impl_and_input(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float], input_num: int) → Dict[str, List[float]]

	

	
classmethod merge_different_versions_of_the_same(configs: List[dict], config_impl_apps: List[str], group_by_app: bool)

	

	
process_result_file(file: str, property: str = 'task-clock')

	

	
set_difference_from_two_result_dicts(run_datas: Tuple[List[Dict[str, Any]]], app: str, property: str = 'task-clock')

	First - Second for each measured value

	
set_merged_run_data_from_result_dict(run_datas: List[List[Dict[str, Any]]], impl_apps: List[str], property: str = 'task-clock')

	

	
set_run_data_from_result_dict(run_datas: List[Dict[str, Any]], property: str = 'task-clock')

	

	
store_html(base_dir: str, clear_dir: bool = True, html_func: Optional[Callable[[str, int, bool], str]] = None)

	

	
class temci.misc.game.Mode(value)

	Bases: Enum

An enumeration.

	
geom_mean_rel_to_best = 1

	calculate all mean scores as “mean / best mean” and use the geometric mean for summaries

	
mean_rel_to_first = 2

	calculate all mean scores as “mean / mean of first” and use the arithmetic mean for summaries

	
mean_rel_to_one = 3

	calculate all mean scores as “mean / 1” and use the arithmetic mean for summaries

	
class temci.misc.game.Program(parent: ProgramCategory, name: str, file: str, prog_inputs: Optional[List[ProgramWithInput]] = None, copied_files: Optional[List[str]] = None)

	Bases: BaseObject

A program with several different inputs.

	
build(base_dir: str) → List[dict]

	

	
entropy

	Entropy of the implementation

	
classmethod from_config_dict(parent: ProgramCategory, config: dict) → Implementation

	

	
get_box_plot_html(base_file_name: str) → str

	

	
get_box_plot_per_input_per_impl_html(base_file_name: str, input: str) → str

	A box plot for each input that shows the execution times for each implementation.

	
get_html(base_file_name: str, h_level: int) → str

	

	
get_html2(base_file_name: str, h_level: int)

	

	
get_impl_mean_scores() → Dict[str, List[float]]

	Geometric mean over the means relative to best per implementation (per input).

	
get_statistical_property_scores(func: Callable[[SingleProperty], float]) → Dict[str, List[float]]

	

	
get_statistical_property_scores_per_input_per_impl(func: Callable[[SingleProperty], float], input: str) → Dict[str, float]

	

	
class temci.misc.game.ProgramCategory(parent: Language, name: str, programs: List[Program])

	Bases: BaseObject

Represents a specific abstract program that gives the specification for several implementations (aka “program”s).

	
apply_program_filter(filter: ~typing.Callable[[int, ~typing.List[~temci.misc.game.Program]], bool] = <function id_program_filter>)

	Filters the programs that make up self.children and self.programs.
It stores the original set of programs else where.

	Parameters

	filter – the used filter, the id filter resets the original state

	
build(base_dir: str) → List[dict]

	

	
classmethod from_config_dict(parent: Language, config: dict) → ProgramCategory

	

	
get_box_plot_html(base_file_name: str) → str

	

	
get_box_plot_per_input_per_impl_html(base_file_name: str, input: str) → str

	A box plot for each input that shows the mean scores (over all programs) for each implementation.

	
get_html(base_file_name: str, h_level: int) → str

	

	
get_html2(base_file_name: str, h_level: int)

	

	
get_impl_mean_scores() → Dict[str, float]

	

	
get_input_strs() → List[str]

	

	
get_scores_per_impl() → Dict[str, List[float]]

	

	
get_statistical_property_scores(func: ~typing.Callable[[~temci.report.stats.SingleProperty], float], reduce: ~typing.Callable[[~typing.List[float]], ~temci.utils.typecheck.Any] = <function gmean>) → Dict[str, float]

	

	
get_statistical_property_scores_per_impl(func: ~typing.Callable[[~temci.report.stats.SingleProperty], float], reduce: ~typing.Callable[[~typing.List[float]], ~temci.utils.typecheck.Any] = <function gmean>) → Dict[str, float]

	

	
get_statistical_property_scores_per_input_per_impl(func: Callable[[SingleProperty], float], input: str) → Dict[str, List[float]]

	

	
get_x_per_impl_and_input(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float], input: str) → Dict[str, List[float]]

	

	
temci.misc.game.ProgramFilterFunc

	A function that get’s the current program index in the also passed list of all other programs
and returns True if the program is okay and False otherwise.

alias of Callable[[int, List[Program]], bool]

	
class temci.misc.game.ProgramWithInput(parent: Program, input: Input, impls: List[Implementation], id: int)

	Bases: BaseObject

This represents the program with a specific input. It has several program implementations.

	
build(base_dir: str) → List[dict]

	

	
get_box_plot_html(base_file_name: str) → str

	

	
get_html(base_file_name: str, h_level: int) → str

	

	
get_html2(base_file_name: str, h_level: int) → str

	

	
get_means_rel_to_best() → Dict[str, float]

	

	
get_single()

	

	
get_single_properties() → List[Tuple[str, SingleProperty]]

	

	
get_statistical_properties_for_each(func: Callable[[SingleProperty], float]) → Dict[str, float]

	

	
get_x_per_impl(property: Callable[[SingleProperty, List[float], List[SingleProperty], int], float]) → Dict[str, List[float]]

	Returns a list of [property] for each implementation.

	Parameters

	property – property function that gets a SingleProperty object and a list of all means and returns a float

	
temci.misc.game.ReduceFunc

	Gets passed a list of values and returns a single value, e.g. stats.gmean

alias of Callable[[List[float]], Any]

	
temci.misc.game.StatProperty

	Gets passed a SingleProperty object, the list of means (containing the object’s mean),
the list of all SingleProperty objects and the index of the first in it and returns a float.

alias of Callable[[SingleProperty, List[float], List[SingleProperty], int], float]

	
temci.misc.game.StatisticalPropertyFunc

	Get’s passed the SingleProperty object to process and min mean

alias of Callable[[SingleProperty], float]

	
temci.misc.game.amean_std(values: List[float]) → float

	Calculates the arithmetic mean.

	
temci.misc.game.bench_categories(ending: str, inputs: Dict[str, List[Input]]) → List[dict]

	

	
temci.misc.game.bench_category(category: str, ending: str, inputs: List[Input], numbers: Optional[List[int]] = None) → dict

	

	
temci.misc.game.bench_file(category: str, ending: str, number: int = 1) → str

	

	
temci.misc.game.bench_program(category: str, ending: str, inputs: List[Input], number: int = 1) → dict

	

	
temci.misc.game.c_config(inputs_per_category: Dict[str, List[Input]], optimisation: str = '-O2', clang_version='3.7') → Dict[str, Union[str, dict]]

	Generates a game config that compares gcc and clang.

	
temci.misc.game.cparser_config(inputs_per_category: Dict[str, List[Input]], optimisation: str = '-O2', clang_version='3.7') → Dict[str, Union[str, dict]]

	Generates a game config that compares gcc, clang and cparser.

	
temci.misc.game.divide_inputs(inputs_per_category: Dict[str, List[Input]], divisor: Union[int, float]) → Dict[str, List[Input]]

	

	
temci.misc.game.empty_inputs(inputs_per_category: Dict[str, List[Input]]) → Dict[str, List[Input]]

	

	
temci.misc.game.file_entropy(file: str) → int

	Calculates the entropy of given file by taking the length of its gzip compressed content

	
temci.misc.game.file_lines(file: str) → int

	Number of non empty lines in the file

	
temci.misc.game.first(values: List[float]) → float

	

	
temci.misc.game.first_inputs(inputs_per_category: Dict[str, List[Input]]) → Dict[str, List[Input]]

	

	
temci.misc.game.haskel_config(inputs_per_category: Dict[str, List[Input]], optimisation: str, ghc_versions: Optional[List[str]] = None, used_c_compilers: Optional[List[str]] = None) → Dict[str, Union[str, dict]]

	Generate a game config comparing all available ghc versions

	Parameters

	
	inputs_per_category –

	optimisation – optimisation flags, e.g. ‘-Odph’ or ‘-O’

	ghc_versions – compared ghc versions, if None, AV_GHC_VERSIONS is used

	
temci.misc.game.id_program_filter(_1, _2)

	

	
temci.misc.game.last_inputs(inputs_per_category: Dict[str, List[Input]]) → Dict[str, List[Input]]

	

	
temci.misc.game.mean_rel_std()

	

	
temci.misc.game.mean_score_column()

	

	
temci.misc.game.mean_score_std_column()

	

	
temci.misc.game.prefix_inputs(prefix: str, inputs: List[Input]) → List[Input]

	

	
temci.misc.game.process(config: ~typing.Dict[str, ~typing.Union[str, dict]], name: ~typing.Optional[str] = None, build_dir: ~typing.Optional[str] = None, build: bool = True, benchmark: bool = True, report: bool = True, temci_runs: int = 15, temci_options: str = '--discarded_blocks 1', temci_stop_start: bool = True, report_dir: ~typing.Optional[str] = None, property: str = 'task-clock', report_modes: ~typing.List[~temci.misc.game.Mode] = [<Mode.mean_rel_to_first: 2>, <Mode.geom_mean_rel_to_best: 1>])

	Process a config dict. Simplifies the build, benchmarking and report generating.

	Parameters

	
	config – processed config dict

	name – the name of the whole configuration (used to generate the file names), default “{config[‘language]}”

	build_dir – build dir that is used to build the programs, default is “/tmp/{name}”

	build – make a new build of all programs? (results in a “{name}.exec.yaml” file for temci)

	benchmark – benchmark the “{name}.exec.yaml” file (from a built)? (results in a “{name}.yaml” result file)

	report – generate a game report? (results in a report placed into the report_dir)

	temci_runs – number of benchmarking runs (if benchmark=True)

	temci_options – used options for temci

	temci_stop_start – does temci use the StopStart plugin for decreasing the variance while benchmarking?

	report_dir – the directory to place the report in, default is “{name}_report”

	property – measured property for which the report is generated, default is “task-clock”

	
temci.misc.game.produce_ttest_comparison_table(datas: List[List[Dict[str, Union[Dict[str, List[float]], Any]]]], impls: List[str], data_descrs: List[str], filename: str, property: str = 'task-clock', alpha: float = 0.05, tester_name: str = 't', ratio_format: str = '{:3.0%}')

	

	
temci.misc.game.property_filter_half(cur_index: int, all: List[Program], property_func: Callable[[Program], float], remove_upper_half: bool) → bool

	Note: if the number of programs is uneven, then one program will belong to the upper and the lower half.

	
temci.misc.game.ref(name: str, value=None, _store={'fasta': ['250000', '2500000', '25000000']})

	A simple YAML like reference utility.
It to easily store a value under a given key and return it.

	Parameters

	
	name – name of the reference

	value – new value of the reference (if value isn’t None)

	_store – dict to store everything in

	Returns

	the value of the reference

	
temci.misc.game.rel_mean_func(x, min)

	

	
temci.misc.game.rel_mean_property(single: SingleProperty, means: List[float], *args) → float

	A property function that returns the relative mean (the mean of the single / minimum of means)

	
temci.misc.game.rel_std_dev_func(x: SingleProperty, min: float) → float

	

	
temci.misc.game.rel_std_dev_to_min_func(x: SingleProperty, min: float) → float

	

	
temci.misc.game.rel_std_property(single: SingleProperty, means: List[float], *args) → float

	A property function that returns the relative standard deviation (relative to single’s mean)

	
temci.misc.game.replace_run_with_build_cmd(config_dict: Dict[str, Union[str, dict]]) → Dict[str, Union[str, dict]]

	

	
temci.misc.game.rust_config(inputs_per_category: Dict[str, List[Input]], optimisation: int = 3) → Dict[str, Union[str, dict]]

	Generates a game config that compares the different rust versions.

	
temci.misc.game.ttest_rel_to_first_property(single: SingleProperty, _, all_singles: List[SingleProperty], index: int) → float

	

	
temci.misc.game.ttest_summarize(values: List[float]) → float

	

	
temci.misc.game.ttest_to_first()

	

	
temci.misc.game.used_rel_mean_property(single: SingleProperty, means: List[float], *args) → float

	

	
temci.misc.game.used_std_property(single: SingleProperty, means: List[float], *args) → float

	

	
temci.misc.game.used_summarize_mean(values: List[float]) → float

	

	
temci.misc.game.used_summarize_mean_std(values: List[float]) → float

	

Module contents

The stuff in this folder doesn’t really belong to the temci tool but builds
on top of it some cool applications, like a benchmarksgame inspired comparison
of different implementations of several languages.
The tools may depend on other code or packages than the temci tool itself.

 [image: Fork me on GitHub]

 temci.run package

temci.run package

Submodules

temci.run.cpuset module

	
temci.run.cpuset.BENCH_SET = 'temci.set'

	Name of the base cpu set used by temci for benchmarking purposes

	
temci.run.cpuset.CONTROLLER_SUB_BENCH_SET = 'temci.set.controller'

	Name of the cpu set used by the temci control process

	
temci.run.cpuset.CPUSET_DIR = '/cpuset'

	Location that the cpu set pseudo file system is mounted at

	
class temci.run.cpuset.CPUSet(active: bool = True, base_core_number: Optional[int] = None, parallel: Optional[int] = None, sub_core_number: Optional[int] = None, temci_in_base_set: bool = True)

	Bases: object

This class allows the usage of cpusets (see man cpuset) and therefore requires root privileges.
It uses the program cset to modify the cpusets.
This class needs root privileges to operate properly. Warns if not.

Initializes the cpu sets an determines the number of parallel programs (parallel_number variable).

	Parameters

	
	active – are cpu sets actually used?

	base_core_number – number of cpu cores for the base (remaining part of the) system

	parallel – 0: benchmark sequential, > 0: benchmark parallel with n instances, -1: determine n automatically

	sub_core_number – number of cpu cores per parallel running program

	temci_in_base_set – place temci in the same cpu set as the rest of the system?

	Raises

	
	ValueError – if the passed parameters don’t work together on the current platform

	EnvironmentError – if the environment can’t be setup properly (e.g. no root privileges)

	
active

	Are cpu sets actually used?

	
av_cores

	Number of available cpu cores

	
base_core_number

	Number of cpu cores for the base (remaining part of the) system

	
get_sub_set(set_id: int) → str

	Gets the name of the benchmarking cpu set with the given id / number (starting at zero).

	
move_process_to_set(pid: int, set_id: int)

	Moves the process with the passed id to the parallel sub cpuset with the passed id.

	Parameters

	
	pid – passed process id

	set_id – passed parallel sub cpuset id

	
parallel

	0: benchmark sequential, > 0: benchmark parallel with n instances, -1: determine n automatically

	
parallel_number

	Number of used parallel instances, zero if the benchmarking is done sequentially

	
sub_core_number

	Number of cpu cores per parallel running program

	
teardown()

	Tears the created cpusets down and makes the system usable again.

	
temci_in_base_set

	Place temci in the same cpu set as the rest of the system?

	
temci.run.cpuset.NEW_ROOT_SET = 'bench.root'

	Name of the new root cpu set that contains most of the processes of the original root set

	
temci.run.cpuset.SUB_BENCH_SET = 'temci.set.{}'

	Format of cpu sub set names for benchmarking

temci.run.run_driver module

This modules contains the base run driver, needed helper classes and registries.

	
class temci.run.run_driver.AbstractRunDriver(misc_settings: Optional[dict] = None)

	Bases: AbstractRegistry

A run driver that does the actual benchmarking and supports plugins to modify the benchmarking environment.

The constructor also calls the setup methods on all registered plugins. It calls the setup() method.

Creates an instance.
Also calls the setup methods on all registered plugins.
It calls the setup() method.

	Parameters

	misc_settings – further settings

	
benchmark(block: RunProgramBlock, runs: int, cpuset: Optional[CPUSet] = None, set_id: int = 0, timeout: float = - 1) → BenchmarkingResultBlock

	Benchmark the passed program block “runs” times and return the benchmarking results.

	Parameters

	
	block – run program block to benchmark

	runs – number of benchmarking runs

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarked block should be executed in

	timeout – timeout or -1 if no timeout is given

	Returns

	object that contains a dictionary of properties with associated raw run data

	
block_type_scheme = Dict({}, False, keys=Any, values=Any, default = {})

	Type scheme for the program block configuration

	
default = []

	Name(s) of the class(es) used by default. Type depends on the use_list property.

	
classmethod get_full_block_typescheme() → Type

	

	
get_property_descriptions() → Dict[str, str]

	Returns a dictionary that maps some properties to their short descriptions.

	
get_used_plugins() → List[str]

	

	
misc_settings

	Further settings

	
plugin_synonym = ('run driver plugin', 'run driver plugins')

	Singular and plural version of the word that is used in the documentation for the registered entities

	
registry = {}

	Registered classes (indexed by their name)

	
runs_benchmarks = True

	

	
settings_key_path = 'run/plugins'

	Used settings key path

	
setup()

	Call the setup() method on all used plugins for this driver.

	
classmethod store_example_config(file: str, comment_out_defaults: bool = False)

	

	
store_files = True

	

	
teardown()

	Call the teardown() method on all used plugins for this driver.

	
use_key = 'active'

	Used key that sets which registered class is currently used

	
use_list = True

	Allow more than one class to used at a specific moment in time

	
used_plugins

	Used and active plugins

	
exception temci.run.run_driver.BenchmarkingError

	Bases: RuntimeError

Thrown when the benchmarking of a program block fails.

	
exception temci.run.run_driver.BenchmarkingProgramError(recorded_error: RecordedProgramError)

	Bases: BenchmarkingError

Thrown when the benchmarked program fails

	
class temci.run.run_driver.BenchmarkingResultBlock(data: Dict[str, List[Union[int, float]]] = None, error: BaseException = None, recorded_error: RecordedError = None)

	Bases: object

Result of the benchmarking of one block.
It includes the error object if an error occurred.

Creates an instance.

	Parameters

	
	data – measured data per measured property

	error – exception object if something went wrong during benchmarking

	Returns

	

	
add_run_data(data: Dict[str, Union[int, float, List[Union[int, float]]]])

	Add data.

	Parameters

	data – data to be added (measured data per property)

	
data

	Measured data per measured property

	
error

	Exception object if something went wrong during benchmarking

	
properties() → List[str]

	Get a list of the measured properties

	
class temci.run.run_driver.CPUSpecExecRunner(block: RunProgramBlock)

	Bases: ExecRunner

A runner that uses a tool that runs the SPEC CPU benchmarks and parses the resulting files.

To use this runner with name {name} either set the runner property of a run configuration
or the setting under the key run/exec_misc/runner to its name.

The runner is configured by modifying the spec.py property of a run configuration. This configuration
has the following structure:

File patterns (the newest file will be used)
files: ListOrTuple(Str())
 default: [result/CINT2000.*.raw, result/CFP2000.*.raw]

Randomize the assembly during compiling?
randomize: Bool()

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
misc_options = # File patterns (the newest file will be used) files: ListOrTuple(Str()) default: [result/CINT2000.*.raw, result/CFP2000.*.raw] # Randomize the assembly during compiling? randomize: Bool()

	Type scheme of the options for this type of runner

	
name = 'spec.py'

	Name of the runner

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
class temci.run.run_driver.ExecRunDriver(misc_settings: Optional[dict] = None)

	Bases: AbstractRunDriver

Implements a simple run driver that just executes one of the passed run_cmds
in each benchmarking run.
It measures the time using the perf stat tool (runner=perf_stat).

The constructor calls the setup method.

Configuration format:

Argument passed to all benchmarked commands by replacing $ARGUMENT with this value in the command
argument: ''

Parse the program output as a YAML dictionary of that gives for a specific property a measurement.
Not all runners support it.
parse_output: false

Order in which the plugins are used, plugins that do not appear in this list are used before all
others
plugin_order: [drop_fs_caches, sync, sleep, preheat, flush_cpu_caches]

Enable other plugins by default: none = (enable none by default); all = cpu_governor,disable_swap,s
ync,stop_start,other_nice,nice,disable_aslr,disable_ht,cpuset,disable_turbo_boost (enable all, might
freeze your system); usable =
cpu_governor,disable_swap,sync,nice,disable_aslr,disable_ht,cpuset,disable_turbo_boost (like 'all'
but doesn't affect other processes)
preset: none

Pick a random command if more than one run command is passed.
random_cmd: true

If not '' overrides the runner setting for each program block
runner: ''

This run driver can be configured under the settings key run/exec_misc.

To use this run driver set the currently used run driver (at key run/driver) to its name (exec).

The default run driver is exec.

Block configuration format for the run configuration:

Optional build config to integrate the build step into the run step
build_config: Either(Dict(, keys=Any, values=Any, default = {})|non existent)

Optional attributes that describe the block
attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

run_config:
 # Command to benchmark, adds to run_cmd
 cmd: Str()

 # Command to append before the commands to benchmark
 cmd_prefix: List(Str())

 # Execution directories for each command
 cwd: Either(List(Str())|Str())
 default: .

 # Disable the address space layout randomization
 disable_aslr: Bool()

 # Override all other max runspecifications if > -1
 max_runs: Int(constraint=<function>)
 default: -1

 # Override all other min runspecifications if > -1
 min_runs: Int(constraint=<function>)
 default: -1

 # Parse the program output as a YAML dictionary of that gives for a specific property a
 # measurement. Not all runners support it.
 parse_output: Bool()

 # Used revision (or revision number).-1 is the current revision, checks out the revision
 revision: Either(Int(constraint=<function>)|Str())
 default: -1

 # Commands to benchmark
 run_cmd: Either(List(Str())|Str())

 # Used runner
 runner: ExactEither()
 default: time

 # Override min run and max runspecifications if > -1
 runs: Int(constraint=<function>)
 default: -1

 # Measured properties for rusage that are stored in the benchmarking result
 rusage_properties: ValidRusagePropertyList()

 # Environment variables
 env: Dict(, keys=Str(), values=Any, default = {})

 # Configuration for the output and return code validator
 validator:
 # Program error output without ignoring line breaks and spaces at the beginning and the end
 expected_err_output: Optional(Str())

 # Strings that should be present in the program error output
 expected_err_output_contains: Either(List(Str())|Str())

 # Program output without ignoring line breaks and spaces at the beginning and the end
 expected_output: Optional(Str())

 # Strings that should be present in the program output
 expected_output_contains: Either(List(Str())|Str())

 # Allowed return code(s)
 expected_return_code: Either(List(Int())|Int())

 # Strings that shouldn't be present in the program output
 unexpected_err_output_contains: Either(List(Str())|Str())

 # Strings that shouldn't be present in the program output
 unexpected_output_contains: Either(List(Str())|Str())

Creates an instance.
Also calls the setup methods on all registered plugins.
It calls the setup() method.

	Parameters

	misc_settings – further settings

	
class ExecResult(time, stderr, stdout, rusage)

	Bases: tuple

A simple named tuple named ExecResult with to properties: time, stderr and stdout

	
property rusage

	Alias for field number 3

	
property stderr

	Alias for field number 1

	
property stdout

	Alias for field number 2

	
property time

	Alias for field number 0

	
benchmark(block: RunProgramBlock, runs: int, cpuset: Optional[CPUSet] = None, set_id: int = 0, timeout: float = - 1) → BenchmarkingResultBlock

	Benchmark the passed program block “runs” times and return the benchmarking results.

	Parameters

	
	block – run program block to benchmark

	runs – number of benchmarking runs

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarked block should be executed in

	timeout – timeout or -1 if no timeout is given

	Returns

	object that contains a dictionary of properties with associated raw run data

	
block_type_scheme = # Command to benchmark, adds to run_cmd cmd: Str() # Command to append before the commands to benchmark cmd_prefix: List(Str()) # Execution directories for each command cwd: Either(List(Str())|Str()) default: . # Disable the address space layout randomization disable_aslr: Bool() # Override all other max runspecifications if > -1 max_runs: Int(constraint=<function>) default: -1 # Override all other min runspecifications if > -1 min_runs: Int(constraint=<function>) default: -1 # Parse the program output as a YAML dictionary of that gives for a specific property a measurement. # Not all runners support it. parse_output: Bool() # Used revision (or revision number).-1 is the current revision, checks out the revision revision: Either(Int(constraint=<function>)|Str()) default: -1 # Commands to benchmark run_cmd: Either(List(Str())|Str()) # Used runner runner: ExactEither('perf_stat'|'rusage'|'spec'|'spec.py'|'time'|'output') default: time # Override min run and max runspecifications if > -1 runs: Int(constraint=<function>) default: -1 # Measured properties for rusage that are stored in the benchmarking result rusage_properties: ValidRusagePropertyList() # Environment variables env: Dict(, keys=Str(), values=Any, default = {}) output: Dict({}, False, keys=Any, values=Any, default = {}) perf_stat: # Measured properties. The number of properties that can be measured at once is limited. properties: List(Str()) default: [wall-clock, cycles, cpu-clock, task-clock, instructions, branch-misses, cache-references] # If runner=perf_stat make measurements of the program repeated n times. Therefore scale the # number of times a program is benchmarked. repeat: Int(constraint=<function>) default: 1 rusage: # Measured properties that are stored in the benchmarking result properties: ValidRusagePropertyList() default: [idrss, inblock, isrss, ixrss, majflt, maxrss, minflt, msgrcv, msgsnd, nivcsw, nsignals, nswap, nvcsw, oublock, stime, utime] spec: # Base property path that all other paths are relative to. base_path: Str() # Code that is executed for each matched path. The code should evaluate to the actual measured # value for the path.it can use the function get(sub_path: str = '') and the modules pytimeparse, # numpy, math, random, datetime and time. code: Str() default: get() # SPEC result file file: Str() # Regexp matching the base property path for each measured property path_regexp: Str() default: .* spec.py: # File patterns (the newest file will be used) files: ListOrTuple(Str()) default: [result/CINT2000.*.raw, result/CFP2000.*.raw] # Randomize the assembly during compiling? randomize: Bool() time: # Measured properties that are included in the benchmarking results properties: ValidTimePropertyList() default: [utime, stime, etime, avg_mem_usage, max_res_set, avg_res_set] # Configuration for the output and return code validator validator: # Program error output without ignoring line breaks and spaces at the beginning and the end expected_err_output: Optional(Str()) # Strings that should be present in the program error output expected_err_output_contains: Either(List(Str())|Str()) # Program output without ignoring line breaks and spaces at the beginning and the end expected_output: Optional(Str()) # Strings that should be present in the program output expected_output_contains: Either(List(Str())|Str()) # Allowed return code(s) expected_return_code: Either(List(Int())|Int()) # Strings that shouldn't be present in the program output unexpected_err_output_contains: Either(List(Str())|Str()) # Strings that shouldn't be present in the program output unexpected_output_contains: Either(List(Str())|Str())

	Type scheme for the program block configuration

	
default = []

	Name(s) of the class(es) used by default. Type depends on the use_list property.

	
get_property_descriptions() → Dict[str, str]

	Returns a dictionary that maps some properties to their short descriptions.

	
classmethod get_runner(block: RunProgramBlock) → ExecRunner

	Create the suitable runner for the passed run program block.

	Parameters

	block – passed run program block

	
get_used_plugins() → List[str]

	Get the list of name of the used plugins (use_list=True)
or the names of the used plugin (use_list=False).

	
classmethod register_runner() → Callable[[type], type]

	Decorator to register a runner (has to be sub class of ÈxecRunner).

	
registry = {}

	Registered classes (indexed by their name)

	
runners = {'output': <class 'temci.run.run_driver.OutputExecRunner'>, 'perf_stat': <class 'temci.run.run_driver.PerfStatExecRunner'>, 'rusage': <class 'temci.run.run_driver.RusageExecRunner'>, 'spec': <class 'temci.run.run_driver.SpecExecRunner'>, 'spec.py': <class 'temci.run.run_driver.CPUSpecExecRunner'>, 'time': <class 'temci.run.run_driver.TimeExecRunner'>}

	Dictionary mapping a runner name to a runner class

	
settings_key_path = 'run/exec_plugins'

	Used settings key path

	
teardown()

	Call the teardown() method on all used plugins for this driver.

	
use_key = 'exec_active'

	Used key that sets which registered class is currently used

	
use_list = True

	Allow more than one class to used at a specific moment in time

	
class temci.run.run_driver.ExecRunner(block: RunProgramBlock)

	Bases: object

Base class for runners for the ExecRunDriver.
A runner deals with creating the commands that actually measure a program and parse their outputs.

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
get_property_descriptions() → Dict[str, str]

	Returns a dictionary that maps some properties to their short descriptions.

	
misc

	Options for this runner

	
misc_options = Dict({}, False, keys=Any, values=Any, default = {})

	Type scheme of the options for this type of runner

	
name = None

	Name of the runner

	
parse_result(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None, parse_output: bool = False) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:param parse_output: parse standard out to get additional properties
:return: the modified benchmarking result block

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
supports_parsing_out = False

	Is the captured output on standard out useful for parsing

	
class temci.run.run_driver.ExecValidator(config: dict)

	Bases: object

Output validator.

Configuration:

Program error output without ignoring line breaks and spaces at the beginning and the end
expected_err_output: Optional(Str())

Strings that should be present in the program error output
expected_err_output_contains: Either(List(Str())|Str())

Program output without ignoring line breaks and spaces at the beginning and the end
expected_output: Optional(Str())

Strings that should be present in the program output
expected_output_contains: Either(List(Str())|Str())

Allowed return code(s)
expected_return_code: Either(List(Int())|Int())

Strings that shouldn't be present in the program output
unexpected_err_output_contains: Either(List(Str())|Str())

Strings that shouldn't be present in the program output
unexpected_output_contains: Either(List(Str())|Str())

Creates an instance.

	Parameters

	config – validator configuration

	
config

	Validator configuration

	
config_type_scheme = # Program error output without ignoring line breaks and spaces at the beginning and the end expected_err_output: Optional(Str()) # Strings that should be present in the program error output expected_err_output_contains: Either(List(Str())|Str()) # Program output without ignoring line breaks and spaces at the beginning and the end expected_output: Optional(Str()) # Strings that should be present in the program output expected_output_contains: Either(List(Str())|Str()) # Allowed return code(s) expected_return_code: Either(List(Int())|Int()) # Strings that shouldn't be present in the program output unexpected_err_output_contains: Either(List(Str())|Str()) # Strings that shouldn't be present in the program output unexpected_output_contains: Either(List(Str())|Str())

	Configuration type scheme

	
validate(cmd: str, out: str, err: str, return_code: int)

	Validate the passed program output, error output and return code.

	Parameters

	
	cmd – program command for better error messages

	out – passed program output

	err – passed program error output

	return_code – passed program return code

	Raises

	BenchmarkingError – if the check failed

	
temci.run.run_driver.Number

	Numeric value

alias of Union[int, float]

	
class temci.run.run_driver.OutputExecRunner(block: RunProgramBlock)

	Bases: ExecRunner

Parses the output of the called command as YAML dictionary (or list of dictionaries) populate
the benchmark results (string key and int or float value).

For the simplest case, a program just outputs something like time: 1000.0.

To use this runner with name {name} either set the runner property of a run configuration
or the setting under the key run/exec_misc/runner to its name.

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
get_property_descriptions() → Dict[str, str]

	Returns a dictionary that maps some properties to their short descriptions.

	
misc_options = Dict({}, False, keys=Any, values=Any, default = {})

	Type scheme of the options for this type of runner

	
name = 'output'

	Name of the runner

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
class temci.run.run_driver.PerfStatExecRunner(block: RunProgramBlock)

	Bases: ExecRunner

Runner that uses perf stat for measurements.

To use this runner with name {name} either set the runner property of a run configuration
or the setting under the key run/exec_misc/runner to its name.

This runner supports the parse_output option.

The runner is configured by modifying the perf_stat property of a run configuration. This configuration
has the following structure:

Measured properties. The number of properties that can be measured at once is limited.
properties: List(Str())
 default: [wall-clock, cycles, cpu-clock, task-clock, instructions, branch-misses, cache-references]

If runner=perf_stat make measurements of the program repeated n times. Therefore scale the number of
times a program is benchmarked.
repeat: Int(constraint=<function>)
 default: 1

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
misc_options = # Measured properties. The number of properties that can be measured at once is limited. properties: List(Str()) default: [wall-clock, cycles, cpu-clock, task-clock, instructions, branch-misses, cache-references] # If runner=perf_stat make measurements of the program repeated n times. Therefore scale the number of # times a program is benchmarked. repeat: Int(constraint=<function>) default: 1

	Type scheme of the options for this type of runner

	
name = 'perf_stat'

	Name of the runner

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
supports_parsing_out = True

	Is the captured output on standard out useful for parsing

	
class temci.run.run_driver.RunDriverRegistry

	Bases: AbstractRegistry

The registry for run drivers.

The used run driver can be configured by editing the settings key run/driver.
Possible run drivers are ‘exec’ and ‘shell’

	
default = 'exec'

	Name(s) of the class(es) used by default. Type depends on the use_list property.

	
plugin_synonym = ('run driver', 'run drivers')

	Singular and plural version of the word that is used in the documentation for the registered entities

	
classmethod register(name: str, klass: type, misc_type: Type, deprecated: bool = False)

	Registers a new class.
The constructor of the class gets as first argument the misc settings.

	Parameters

	
	name – common name of the registered class

	klass – actual class

	misc_type – type scheme of the {name}_misc settings

	misc_default – default value of the {name}_misc settings

	deprecated – is the registered class deprecated and should not be used?

	
registry = {'exec': <class 'temci.run.run_driver.ExecRunDriver'>, 'shell': <class 'temci.run.run_driver.ShellRunDriver'>}

	Registered classes (indexed by their name)

	
settings_key_path = 'run'

	Used settings key path

	
use_key = 'driver'

	Used key that sets which registered class is currently used

	
use_list = False

	Allow more than one class to used at a specific moment in time

	
class temci.run.run_driver.RunProgramBlock(id: int, data: Dict[str, Any], attributes: Dict[str, str], run_driver_class: Optional[type] = None)

	Bases: object

An object that contains every needed information of a program block.

Creates an instance.

	Parameters

	
	data – run driver configuration for this run program block

	attributes – attributes of this run program block

	run_driver_class – used type of run driver with this instance

	
attributes

	Describing attributes of this run program block

	
copy() → RunProgramBlock

	Copy this run program block.
Deep copies the data and uses the same type scheme and attributes.

	
data

	Run driver configuration

	
description() → str

	

	
classmethod from_dict(id: int, data: Dict, run_driver: Optional[type] = None)

	Structure of data:

{
 "attributes": {"attr1": ..., ...},
 "run_config": {"prop1": ..., ...},
 "build_config": {"prop1": ..., ...}
}

	Parameters

	
	id – id of the block (only used to track them later)

	data – used data

	run_driver – used RunDriver subclass

	Returns

	new RunProgramBlock

	
id

	Id of this run program block

	
is_enqueued

	Is this program block enqueued in a run worker pool queue?

	
run_driver_class

	Used type of run driver

	
to_dict() → Dict

	Serializes this instance into a data structure that is accepted by the from_dict method.

	
type_scheme

	Configuration type scheme of the used run driver

	
class temci.run.run_driver.RusageExecRunner(block: RunProgramBlock)

	Bases: ExecRunner

Runner that uses the getrusage(2) function to obtain resource measurements.

To use this runner with name {name} either set the runner property of a run configuration
or the setting under the key run/exec_misc/runner to its name.

The runner is configured by modifying the rusage property of a run configuration. This configuration
has the following structure:

Measured properties that are stored in the benchmarking result
properties: ValidRusagePropertyList()
 default: [idrss, inblock, isrss, ixrss, majflt, maxrss, minflt, msgrcv, msgsnd, nivcsw, nsignals,
 nswap, nvcsw, oublock, stime, utime]

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
get_property_descriptions() → Dict[str, str]

	Returns a dictionary that maps some properties to their short descriptions.

	
misc_options = # Measured properties that are stored in the benchmarking result properties: ValidRusagePropertyList() default: [idrss, inblock, isrss, ixrss, majflt, maxrss, minflt, msgrcv, msgsnd, nivcsw, nsignals, nswap, nvcsw, oublock, stime, utime]

	Type scheme of the options for this type of runner

	
name = 'rusage'

	Name of the runner

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
class temci.run.run_driver.ShellRunDriver(misc_settings: Optional[dict] = None)

	Bases: ExecRunDriver

Implements a run driver that runs the benched command a single time with redirected in- and output.
It can be used to run own benchmarking commands inside a sane benchmarking environment

The constructor calls the setup method.

Configuration format:

Order in which the plugins are used, plugins that do not appear in this list are used before all
others
plugin_order: [drop_fs_caches, sync, sleep, preheat, flush_cpu_caches]

Enable other plugins by default: none = (enable none by default); all = cpu_governor,disable_swap,s
ync,stop_start,other_nice,nice,disable_aslr,disable_ht,cpuset,disable_turbo_boost (enable all, might
freeze your system); usable =
cpu_governor,disable_swap,sync,nice,disable_aslr,disable_ht,cpuset,disable_turbo_boost (like 'all'
but doesn't affect other processes)
preset: none

This run driver can be configured under the settings key run/shell_misc.

To use this run driver set the currently used run driver (at key run/driver) to its name (shell).
Another usable run driver is exec.
The default run driver is exec.

Block configuration format for the run configuration:

Optional build config to integrate the build step into the run step
build_config: Either(Dict(, keys=Any, values=Any, default = {})|non existent)

Optional attributes that describe the block
attributes:
 description: Optional(Str())

 # Tags of this block
 tags: ListOrTuple(Str())

run_config:
 # Execution directory
 cwd: Either(List(Str())|Str())
 default: .

 # Command to run
 run_cmd: Str()
 default: sh

 # Environment variables
 env: Dict(, keys=Str(), values=Any, default = {})

Creates an instance.
Also calls the setup methods on all registered plugins.
It calls the setup() method.

	Parameters

	misc_settings – further settings

	
benchmark(block: RunProgramBlock, runs: int, cpuset: Optional[CPUSet] = None, set_id: int = 0, timeout: float = - 1) → BenchmarkingResultBlock

	Benchmark the passed program block “runs” times and return the benchmarking results.

	Parameters

	
	block – run program block to benchmark

	runs – number of benchmarking runs

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarked block should be executed in

	timeout – timeout or -1 if no timeout is given

	Returns

	object that contains a dictionary of properties with associated raw run data

	
block_type_scheme = # Execution directory cwd: Either(List(Str())|Str()) default: . # Command to run run_cmd: Str() default: sh # Environment variables env: Dict(, keys=Str(), values=Any, default = {})

	Type scheme for the program block configuration

	
runs_benchmarks = False

	

	
store_files = False

	

	
teardown()

	Call the teardown() method on all used plugins for this driver.

	
class temci.run.run_driver.SpecExecRunner(block: RunProgramBlock)

	Bases: ExecRunner

Runner for SPEC like single benchmarking suites.
It works with resulting property files, in which the properties are colon
separated from their values.

To use this runner with name {name} either set the runner property of a run configuration
or the setting under the key run/exec_misc/runner to its name.

The runner is configured by modifying the spec property of a run configuration. This configuration
has the following structure:

Base property path that all other paths are relative to.
base_path: Str()

Code that is executed for each matched path. The code should evaluate to the actual measured value
for the path.it can use the function get(sub_path: str = '') and the modules pytimeparse, numpy,
math, random, datetime and time.
code: Str()
 default: get()

SPEC result file
file: Str()

Regexp matching the base property path for each measured property
path_regexp: Str()
 default: .*

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
misc_options = # Base property path that all other paths are relative to. base_path: Str() # Code that is executed for each matched path. The code should evaluate to the actual measured value # for the path.it can use the function get(sub_path: str = '') and the modules pytimeparse, numpy, # math, random, datetime and time. code: Str() default: get() # SPEC result file file: Str() # Regexp matching the base property path for each measured property path_regexp: Str() default: .*

	Type scheme of the options for this type of runner

	
name = 'spec'

	Name of the runner

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
class temci.run.run_driver.TimeExecRunner(block: RunProgramBlock)

	Bases: ExecRunner

Uses the GNU ``time``tool and is mostly equivalent to the rusage runner but more user friendly.

To use this runner with name {name} either set the runner property of a run configuration
or the setting under the key run/exec_misc/runner to its name.

This runner supports the parse_output option.

The runner is configured by modifying the time property of a run configuration. This configuration
has the following structure:

Measured properties that are included in the benchmarking results
properties: ValidTimePropertyList()
 default: [utime, stime, etime, avg_mem_usage, max_res_set, avg_res_set]

Creates an instance.

	Parameters

	block – run program block to measure

	Raises

	KeyboardInterrupt – if the runner can’t be used (e.g. if the used tool isn’t installed or compiled)

	
get_property_descriptions() → Dict[str, str]

	Returns a dictionary that maps some properties to their short descriptions.

	
misc_options = # Measured properties that are included in the benchmarking results properties: ValidTimePropertyList() default: [utime, stime, etime, avg_mem_usage, max_res_set, avg_res_set]

	Type scheme of the options for this type of runner

	
name = 'time'

	Name of the runner

	
parse_result_impl(exec_res: ExecResult, res: Optional[BenchmarkingResultBlock] = None) → BenchmarkingResultBlock

	Parse the output of a program and turn it into benchmarking results.

	Parameters

	
	exec_res – program output

	res – benchmarking result to which the extracted results should be added or None if they should be added

to an empty one
:return: the modified benchmarking result block

	
setup_block(block: RunProgramBlock, cpuset: Optional[CPUSet] = None, set_id: int = 0)

	Configure the passed copy of a run program block (e.g. the run command).

	Parameters

	
	block – modified copy of a block

	cpuset – used CPUSet instance

	set_id – id of the cpu set the benchmarking takes place in

	
supports_parsing_out = True

	Is the captured output on standard out useful for parsing

	
exception temci.run.run_driver.TimeoutException(cmd: str, timeout: float, out: str, err: str, ret_code: int)

	Bases: BenchmarkingProgramError

Thrown whenever a benchmarked program timeouts

	
class temci.run.run_driver.ValidPerfStatPropertyList

	Bases: Type

Checks for the value to be a valid perf stat measurement property list or the perf tool to be missing.

Creates an instance.

	Parameters

	completion_hints – completion hints for supported shells for this type instance

	
class temci.run.run_driver.ValidPropertyList(av_properties: Iterable[str])

	Bases: Type

Checks for the value to be a valid property list that contains only elements from a given list.

Creates an instance.

	Parameters

	av_properties – allowed list elements

	
av

	Allowed list elements

	
class temci.run.run_driver.ValidRusagePropertyList

	Bases: ValidPropertyList

Checks for the value to be a valid rusage runner measurement property list.

Creates an instance.

	Parameters

	av_properties – allowed list elements

	
class temci.run.run_driver.ValidTimePropertyList

	Bases: ValidPropertyList

Checks for the value to be a valid time runner measurement property list.

Creates an instance.

	Parameters

	av_properties – allowed list elements

	
temci.run.run_driver.clean_output(output: str) → str

	Remove everything after the header

	
temci.run.run_driver.filter_runs(blocks: List[Union[RunProgramBlock, RunData]], included: List[str]) → List[RunProgramBlock]

	Filter run blocks (all: include all), identified by their description or tag or their number in the file
(starting at zero) and run datas (only identified by their description and tag). The include query can also
consist of regular expressions

	Parameters

	
	blocks – blocks or run datas to filter

	included – include query

	Returns

	filtered list

	
temci.run.run_driver.get_av_perf_stat_properties() → List[str]

	Returns the list of properties that are measurable with the used perf stat tool.

	
temci.run.run_driver.get_av_rusage_properties() → Dict[str, str]

	Returns the available properties for the RusageExecRunner mapped to their descriptions.

	
temci.run.run_driver.get_av_time_properties() → Dict[str, str]

	Returns the available properties for the TimeExecRunner mapped to their descriptions.

	
temci.run.run_driver.get_av_time_properties_with_format_specifiers() → Dict[str, Tuple[str, str]]

	Returns the available properties for the TimeExecRunner mapped to their descriptions and time format specifiers.

	
temci.run.run_driver.header() → str

	A header to use for measurement formatting

	
temci.run.run_driver.is_perf_available() → bool

	Is the perf tool available?

	
temci.run.run_driver.log_program_error(recorded_error: RecordedInternalError)

	

	
temci.run.run_driver.time_file(_tmp=[]) → str

	Returns the command used to execute the (GNU) time tool (not the built in shell tool).

temci.run.run_driver_plugin module

This module consists of run driver plugin implementations.

	
class temci.run.run_driver_plugin.AbstractRunDriverPlugin(misc_settings)

	Bases: object

A plugin for a run driver. It allows additional modifications.
The object is instantiated before the benchmarking starts and
used for the whole benchmarking runs.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = False

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
setup_block(block: RunProgramBlock, runs: int = 1)

	Called before each run program block is run “runs” time.

	Parameters

	
	block – run program block to modify

	runs – number of times the program block is run (and measured) at once.

	
setup_block_run(block: RunProgramBlock)

	Called before each run program block is run.

	Parameters

	block – run program block to modify

	
teardown()

	Called after the whole benchmarking is finished.

	
teardown_block(block: RunProgramBlock)

	Called after each run program block is run.

	Parameters

	block – run program block

	
class temci.run.run_driver_plugin.CPUGovernor(misc_settings)

	Bases: AbstractRunDriverPlugin

Allows the setting of the scaling governor of all cpu cores, to ensure that all use the same.

Configuration format:

New scaling governor for all cpus
governor: performance

This run driver plugin can be configured under the settings key run/exec_plugins/cpu_governor_misc.

To use this run driver plugin add its name (cpu_governor) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/cpu_governor_active to true.
Other usable run driver plugins are nice, env_randomize, preheat, other_nice, stop_start, sync, sleep, drop_fs_caches, disable_swap, disable_cpu_caches and flush_cpu_caches.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.CPUSet(misc_settings)

	Bases: AbstractRunDriverPlugin

Enable cpusets, simply sets run/cpuset/active to true

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
class temci.run.run_driver_plugin.DisableASLR(misc_settings)

	Bases: AbstractRunDriverPlugin

Disable address space randomization

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.DisableAmdTurbo(misc_settings)

	Bases: DisableTurboBoost

Disable amd turbo boost

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
class temci.run.run_driver_plugin.DisableCPUCaches(misc_settings)

	Bases: AbstractRunDriverPlugin

Disable the L1 and L2 caches on x86 and x86-64 architectures.
Uses a small custom kernel module (be sure to compile it via ‘temci setup –build_kernel_modules’).

	Warning

	slows program down significantly and has probably other weird consequences

	Warning

	this is untested

	Warning

	a linux-forum user declared: Disabling cpu caches gives you a pentium I like processor!!!

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.DisableHyperThreading(misc_settings)

	Bases: AbstractRunDriverPlugin

Disable hyper-threading

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.DisableIntelTurbo(misc_settings)

	Bases: DisableTurboBoost

Disable intel turbo mode

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
class temci.run.run_driver_plugin.DisableSwap(misc_settings)

	Bases: AbstractRunDriverPlugin

Disables swapping on the system before the benchmarking and enables it after.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.DisableTurboBoost(misc_settings)

	Bases: AbstractRunDriverPlugin

Disable amd and intel turbo boost

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
CPU_PATHS = {'amd': ('/sys/devices/system/cpu/cpufreq/boost', <class 'int'>), 'intel': ('/sys/devices/system/cpu/intel_pstate/no_turbo', <function DisableTurboBoost.<lambda>>)}

	

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.DiscardedRuns(misc_settings)

	Bases: AbstractRunDriverPlugin

Sets run/discarded_runs

Configuration format:

Number of discarded runs
runs: 1

This run driver plugin can be configured under the settings key run/exec_plugins/discarded_runs_misc.

To use this run driver plugin add its name (discarded_runs) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/discarded_runs_active to true.
Other usable run driver plugins are nice, env_randomize, preheat, other_nice, stop_start, sync, sleep, drop_fs_caches, disable_swap, disable_cpu_caches, flush_cpu_caches, cpu_governor, disable_aslr, disable_ht, disable_turbo_boost, disable_intel_turbo, disable_amd_boost and cpuset.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
class temci.run.run_driver_plugin.DropFSCaches(misc_settings)

	Bases: AbstractRunDriverPlugin

Drop page cache, directoy entries and inodes before every benchmarking run.

Configuration format:

Free dentries and inodes
free_dentries_inodes: true

Free the page cache
free_pagecache: true

This run driver plugin can be configured under the settings key run/exec_plugins/drop_fs_caches_misc.

To use this run driver plugin add its name (drop_fs_caches) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/drop_fs_caches_active to true.
Other usable run driver plugins are nice, env_randomize, preheat, other_nice, stop_start, sync and sleep.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup_block(block: RunProgramBlock, runs: int = 1)

	Called before each run program block is run “runs” time.

	Parameters

	
	block – run program block to modify

	runs – number of times the program block is run (and measured) at once.

	
class temci.run.run_driver_plugin.EnvRandomizePlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Adds random environment variables.

Configuration format:

Maximum length of each random key
key_max: 4096

Maximum number of added random environment variables
max: 4

Minimum number of added random environment variables
min: 4

Maximum length of each random value
var_max: 4096

This run driver plugin can be configured under the settings key run/exec_plugins/env_randomize_misc.

To use this run driver plugin add its name (env_randomize) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/env_randomize_active to true.
Another usable run driver plugin is nice.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
setup_block_run(block: RunProgramBlock, runs: int = 1)

	Called before each run program block is run.

	Parameters

	block – run program block to modify

	
class temci.run.run_driver_plugin.FlushCPUCaches(misc_settings)

	Bases: AbstractRunDriverPlugin

Flushes the CPU caches on a x86 CPU using a small kernel module,
see WBINVD [https://www.felixcloutier.com/x86/wbinvd]

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup_block_run(block: RunProgramBlock)

	Called before each run program block is run.

	Parameters

	block – run program block to modify

	
class temci.run.run_driver_plugin.NicePlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Allows the setting of the nice and ionice values of the benchmarking process.

Configuration format:

Specify the name or number of the scheduling class to use;0 for none, 1 for realtime, 2 for best-
effort, 3 for idle.
io_nice: 1

Niceness values range from -20 (most favorable to the process) to 19 (least favorable to the
process).
nice: -15

This run driver plugin can be configured under the settings key run/exec_plugins/nice_misc.

To use this run driver plugin add its name (nice) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/nice_active to true.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
needs_root_privileges = True

	Does this plugin work only with root privileges?

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.OtherNicePlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Allows the setting of the nice value of most other processes (as far as possible).

Configuration format:

Processes with lower nice values are ignored.
min_nice: -10

Niceness values for other processes.
nice: 19

This run driver plugin can be configured under the settings key run/exec_plugins/other_nice_misc.

To use this run driver plugin add its name (other_nice) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/other_nice_active to true.
Other usable run driver plugins are nice, env_randomize and preheat.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.PreheatPlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Preheats the system with a cpu bound task
(calculating the inverse of a big random matrix with numpy).

Configuration format:

Number of seconds to preheat the system with an cpu bound task
time: 10

When to preheat
when: [before_each_run]

This run driver plugin can be configured under the settings key run/exec_plugins/preheat_misc.

To use this run driver plugin add its name (preheat) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/preheat_active to true.
Other usable run driver plugins are nice and env_randomize.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
setup_block(block: RunProgramBlock, runs: int = 1)

	Called before each run program block is run “runs” time.

	Parameters

	
	block – run program block to modify

	runs – number of times the program block is run (and measured) at once.

	
class temci.run.run_driver_plugin.SleepPlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Sleep a given amount of time before the benchmarking begins.

See Gernot Heisers Systems Benchmarking Crimes:
Make sure that the system is really quiescent when starting an experiment,
leave enough time to ensure all previous data is flushed out.

Configuration format:

Seconds to sleep
seconds: 10

This run driver plugin can be configured under the settings key run/exec_plugins/sleep_misc.

To use this run driver plugin add its name (sleep) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/sleep_active to true.
Other usable run driver plugins are nice, env_randomize, preheat, other_nice, stop_start and sync.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
setup_block(block: RunProgramBlock, runs: int = 1)

	Called before each run program block is run “runs” time.

	Parameters

	
	block – run program block to modify

	runs – number of times the program block is run (and measured) at once.

	
class temci.run.run_driver_plugin.StopStartPlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Stop almost all other processes (as far as possible).

Configuration format:

Each process which name (lower cased) starts with one of the prefixes is not ignored. Overrides the
decision based on the min_id.
comm_prefixes: [ssh, xorg, bluetoothd]

Each process which name (lower cased) starts with one of the prefixes is ignored. It overrides the
decisions based on comm_prefixes and min_id.
comm_prefixes_ignored: [dbus, kworker]

Just output the to be stopped processes but don't actually stop them?
dry_run: false

Processes with lower id are ignored.
min_id: 1500

Processes with lower nice values are ignored.
min_nice: -10

Suffixes of processes names which are stopped.
subtree_suffixes: [dm, apache]

This run driver plugin can be configured under the settings key run/exec_plugins/stop_start_misc.

To use this run driver plugin add its name (stop_start) to the list at settings key run/exec_plugins/exec_active or set run/exec_plugins/stop_start_active to true.
Other usable run driver plugins are nice, env_randomize, preheat and other_nice.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
parse_processes()

	

	
setup()

	Called before the whole benchmarking starts
(e.g. to set the “nice” value of the benchmarking process).

	
teardown()

	Called after the whole benchmarking is finished.

	
class temci.run.run_driver_plugin.SyncPlugin(misc_settings)

	Bases: AbstractRunDriverPlugin

Calls sync before each program execution.

Creates an instance.

	Parameters

	misc_settings – configuration of this plugin

	
setup_block_run(block: RunProgramBlock, runs: int = 1)

	Called before each run program block is run.

	Parameters

	block – run program block to modify

temci.run.run_processor module

	
class temci.run.run_processor.RunProcessor(runs: Optional[List[dict]] = None, append: Optional[bool] = None, show_report: Optional[bool] = None)

	Bases: object

This class handles the coordination of the whole benchmarking process.
It is configured by setting the settings of the stats and run domain.

Important note: the constructor also setups the cpu sets and plugins that can alter the system,
e.g. confine most processes on only one core. Be sure to call the teardown() or the
benchmark() method to make the system usable again.

Creates an instance and setup everything.

	Parameters

	
	runs – list of dictionaries that represent run program blocks if None Settings()[“run/in”] is used

	append – append to the old benchmarks if there are any in the result file?

	show_report – show a short report after finishing the benchmarking?

	
append

	Append to the old benchmarks if there are any in the result file?

	
benchmark()

	Benchmark and teardown.

	
block_run_count

	Number of benchmarked blocks

	
build()

	Build before benchmarking, essentially calls temci build where necessary and modifies the run configs

	
discarded_runs

	First n runs that are discarded

	
end_time

	Unix time stamp of the point in time that the benchmarking can at most reach

	
erroneous_run_blocks

	List of all failing run blocks (id and results till failing)

	
fixed_runs

	Do a fixed number of benchmarking runs?

	
max_runs

	Maximum number of benchmarking runs

	
maximum_of_max_runs() → int

	

	
maximum_of_min_runs() → int

	

	
min_runs

	Minimum number of benchmarking runs

	
pool

	Used run worker pool that abstracts the benchmarking

	
print_report() → str

	

	
recorded_error() → bool

	

	
run_block_size

	Number of benchmarking runs that are done together

	
run_blocks

	Run program blocks for each dictionary in runs`

	
runs

	List of dictionaries that represent run program blocks

	
show_report

	Show a short report after finishing the benchmarking?

	
shuffle

	Randomize the order in which the program blocks are benchmarked.

	
start_time

	Unix time stamp of the start of the benchmarking

	
stats_helper

	Used stats helper to help with measurements

	
store()

	Store the result file

	
store_and_teardown()

	Teardown everything, store the result file, print a short report and send an email
if configured to do so.

	
store_erroneous()

	Store the failing program blocks in a file ending with .erroneous.yaml.

	
store_often

	Store the result file after each set of blocks is benchmarked

	
teardown()

	Teardown everything (make the system useable again)

temci.run.run_worker_pool module

This module consists of the abstract run worker pool class and several implementations.

	
class temci.run.run_worker_pool.AbstractRunWorkerPool(run_driver_name: Optional[str] = None, end_time: float = - 1)

	Bases: object

An abstract run worker pool that just deals with the hyper threading setting.

Create an instance.

	Parameters

	run_driver_name – name of the used run driver, if None the one configured in the settings is used

	
cpuset

	Used cpu set instance

	
classmethod disable_hyper_threading() → List[int]

	

	
classmethod enable_hyper_threading(disabled_cores: List[int])

	

	
classmethod get_hyper_threading_cores() → List[int]

	Adapted from http://unix.stackexchange.com/a/223322

	
has_time_left() → bool

	

	
next_block_timeout() → float

	

	
parallel_number

	Number of instances in which the benchmarks takes place in parallel

	
result_queue

	Queue of benchmarking results.
The queue items are tuples consisting of
the benchmarked block, the benchmarking result and the
blocks id.

	
results(expected_num: int) → Iterator[Tuple[RunProgramBlock, BenchmarkingResultBlock, int]]

	A generator for all available benchmarking results.
The items of this generator are tuples consisting of
the benchmarked block, the benchmarking result and the
blocks id.

	Parameters

	expected_num – expected number of results

	
run_driver

	Used run driver instance

	
submit(block: RunProgramBlock, id: int, runs: int)

	Submits the passed block for “runs” times benchmarking.
It also sets the blocks is_enqueued property to True.

	Parameters

	
	block – passed run program block

	id – id of the passed block

	runs – number of individual benchmarking runs

	
submit_queue

	Queue for submitted but not benchmarked run program blocks

	
teardown()

	Tears down the inherited run driver.
This should be called if all benchmarking with this pool is finished.

	
time_left() → float

	Does not work properly if self.end_time == -1

	
class temci.run.run_worker_pool.BenchmarkingThread(id: int, pool: ParallelRunWorkerPool, driver: AbstractRunDriver, cpuset: CPUSet)

	Bases: Thread

A thread that allows parallel benchmarking.

Creates an instance.

	Parameters

	
	id – id of this thread

	pool – parent run worked pool

	driver – use run driver instance

	cpuset – used CP