
TeaScript Documentation
Release beta

Vihan

January 28, 2016

Contents

1 Installation 3
1.1 Web Interface . 3
1.2 Command Line . 3

2 Getting Started 5
2.1 Literals . 5
2.2 Input . 6

3 New Features 7
3.1 Modified RegExp . 7
3.2 Operators . 7

4 Variables 9
4.1 Assignment . 9
4.2 Predefined variables . 9

5 Auto-Golfing 11
5.1 Unicode Shortcuts . 11
5.2 Ommiting characters . 11

6 Basic Examples 13
6.1 String Tasks . 13
6.2 Number Tasks . 13
6.3 Array Tasks . 14

7 Error Handling 15
7.1 Approaching Literal Maximum . 15
7.2 Dependency not found: babel . 15
7.3 Existing sub___: Slot used . 15
7.4 Invalid location, ___, error ___ . 15
7.5 Unexpected Type: ___ at ___ . 16
7.6 Duplicate Getter: ___ . 16
7.7 Any other error . 16

i

ii

TeaScript Documentation, Release beta

TeaScript is a powerful JavaScript golfing language created by StackExchange, PPCG, user Downgoat. TeaScript
compiles to JavaScript and contains many helpful features for golfing

Contents:

Contents 1

http://codegolf.stackexchange.com/users/40695/downgoat

TeaScript Documentation, Release beta

2 Contents

CHAPTER 1

Installation

Running TeaScript is pretty simple, they’re multiple ways you can do this

1.1 Web Interface

TeaScript has a pretty sweet web interface and is the best enviorment for running TeaScript. All extensions are
packaged up and usage is pretty straight-forward.

• Web Interface

• Alternate URL

1.2 Command Line

If you wish to run TeaScript from the command line, ensure you have SpiderMonkey 38 or higher installed. They’re
multiple ways to get started

1.2.1 Auto-Install Script

Install teascript from the GitHub

Give teascript the correct permissions

$ chmod +x teascript

Run teascript, and it should install the correct files. Enter the code, and then the input, , seperated.

1 $./teascript
2 TeaScript not installed. Installing TeaScript...
3 # ...
4 Code: # <TeaScript Code Here>
5 Input: # <Input Here> e.g.: Input 1,Input 2,Input 3,...
6 # <Output Here>

The next time you run TeaScript, it’ll detect the TeaScript/ folder and won’t need to reinstall the dependencies.

3

http://vihanserver.tk/p/TeaScript
http://server.vihan.ml/p/TeaScript
https://github.com/vihanb/TeaScript/blob/master/src/sh/teascript

TeaScript Documentation, Release beta

1.2.2 Manual Installation

You can also manually install/run TeaScript if you’re having issues with the script

Install the following files

• Everything within /src/v2

• sh.js from /src/sh/sh.js

Edit teascript.js and replace window with this, and /*props.json*/ with
JSON.parse(read("props.json"))

Note: Different enviorments might use a different function than read

node.js fs.readFile

rhino readFile

spidermonkey read

4 Chapter 1. Installation

https://github.com/vihanb/TeaScript/tree/master/src/v2
https://github.com/vihanb/TeaScript/blob/master/src/sh/sh.js

CHAPTER 2

Getting Started

Getting started with TeaScript is very easy especially if you have prior JavaScript knowledge.

This was the main goal of TeaScript was a JavaScript golfing language that was JavaScript but with shorter property
names. This slowly evolved but TeaScript is backwards compatible so every JavaScript program is a valid TeaScript
program

2.1 Literals

Literals are very simple in TeaScript as they are the same as JavaScript literals

2.1.1 Strings

They are three types of strings

"Double Quoted String Literal"
'Single Quoted String Literal'
`String templates`

String templates have a few extra features such as:

`String templates support inline
newlines and code such as ${2+1}`

2.1.2 Numbers

Numbers are also, just numbers:

12345 // Decimal
12.34 // Decimal
1e23) // Scientific Notation
0xFA) // Hexadecimal
0b10) // Binary
0o18) // Octal

2.1.3 RegExp

TeaScript has support for RegExp literals and they’re just the same as JavaScript

5

TeaScript Documentation, Release beta

/[A-Za-z]/gi

By TeaScript 3.1, I hope to have XRegExp, implemented which should allow your RegExp literals to look like:

/\u{L}+/u

2.1.4 Functions

Functions are the same as JavaScript too.

(a,b,c)=>a+b+c // Arguments[a,b,c] adds them together
a=>a // Single argument a, returns a

This is quite lengthy so I’ve added the # operator which automatically expands to (l,i,a,b)=> at compile time

#l+i+a // Arguments[l,i,a,b] adds first 3

2.2 Input

2.2.1 Input Options

The user can decide how (s)he wants the input. TeaScript supports all of the following input types:

• String (default)

• Number

• Array

2.2.2 Getting the Input

The input is stored in various variables:

Input # Variable Name
1 x
2 y
3 z

Need More inputs? An array of all the inputs is stored in the _ variable.

If the input is an array, the 1st input will be split upon , and each item will become a seperate input. For the code:

Input 1,Input 2,Input 3

The values are:

Input Value Variable Name
Input 1 x
Input 2 y
Input 3 z

6 Chapter 2. Getting Started

CHAPTER 3

New Features

As said before, TeaScript is an extension of JavaScript meaning it adds features to JavaScript. Here you will learn
about some of the features TeaScript adds to JavaScript

3.1 Modified RegExp

RegExp literals have been expanded and are now more powerful than ever with custom character classes and hopefully
even more features to come.

3.1.1 Custom Character Classes

TeaScript adds custom character classes (e.g. \w) to a RegExp literal. These are esentially shorthands for character
classes, an example

/[A-Za-z]/ // Before
/\L/ // After
/[A-Za-z]/ // At compile-time

New Character Classes
Name Value
\\A [A-Z]
\\a [a-z]
\\L [A-Za-z]
\\N [A-Za-z0-9]

3.2 Operators

3.2.1 # Operator

The # operator is one that is very useful. It’s a shorthand for function declerations that you can use where ever. #
expands to (l,i,a,b)=>

(a,b,c,d)=>a+b+c+d // Before
#l+i+a+b // After

7

TeaScript Documentation, Release beta

3.2.2 @ Operator

The @ operator is similar to the # operator, but if you ever have two nested lambdas, you can use this. @ expands to
(q,r,s,t)=>q.

(a,b,c,d)=>aT2)+b+d // Before
@T2)+r+t // After

3.2.3 ƒ Operator

ƒ expands to f=(l,i,a,b)=>, this can be used to create recursive functions easily without having to manually add
a decleration

f=(a,b)=>a<1?b:f(a--,b++); // Before
ƒl<1?i:f(l--,i++); // After

3.2.4 Σ Operator

The Σ operator can be used to loop through arrays and strings, it expands to .l((l,i,a,b)=>.

xΣlc // Maps char codes
xΣi // Generates range

3.2.5 ? Operator

This operator has 2 uses depending on where you use it.

Interrupting Property expansion

If you ever need to use a JavaScript property name and TeaScript thinks it’s a TeaScript property, insert a ? after the
property

x.search(/\A/) // JavaScript
x.search?/\A // TeaScript

Closing Parenthesis

xl(#lT(2r("foo"[1]))) // Before
xl(#lT(2r("foo"[1? // After

8 Chapter 3. New Features

CHAPTER 4

Variables

TeaScript has many variables which are pre-initalized to various values but you can also use them for custom variables:

4.1 Assignment

To assign a variable you can easier use a shorthand or the native JavaScript ways.

4.1.1 Shorthands

Using ƒ

This can be used to assign functions both recursive and not. To learn more about this operator, see ƒ Operator.

f=(l,i)=>l<1?i:f(l--,i++) // Before
ƒl<1?i:l--:i++ // After

f=l=>{for(i=0;i<l;i*=i)} // Before
ƒ{for(i=0;i<l;i*=i // After

4.1.2 Assignment Operator

You an also just use the assignment operator to assign variables. Some one-letter variables are already preassigned so
you may be able to skip the definition.

var i=0; // Before
i=0; // After

4.2 Predefined variables

The predefined variables can be overwritten.

9

TeaScript Documentation, Release beta

Variables Value
p " "
u ""
n "\n"
dfjkv 0
o 1
g 2
e 10
h 100
m 16
f false
½ 1/2
¼ 1/4
𝜋 3.14159265358979323846
Φ 1.61803398874989484820

for(var j=0;j<x;j++); // Before
for(;j<x;j++); // After

10 Chapter 4. Variables

CHAPTER 5

Auto-Golfing

Auto-Golf is a feature which performs automatic golfing for you. It provides a few features.

Hint: The Un-Auto-Golf will do the opposite and will attempt to make code more readable.

5.1 Unicode Shortcuts

Unicode shortcuts are a way to get code as short as possible without doing any work! What are they? Unicode
shortcuts are 1-byte long unicode characters which expand to longer TeaScript code at compile time. Confusing,
here’s an example:

£lc) // Original Code
xl(#lc) // Code at compile-time

What if I want to use a unicode character in my code. Unicode characters in literals (i.e. Strings, RegExps, Snippets)
are not converted. If for some reason you do want a unicode property name, it can be used by using a \\ before the
character

\£lc // Original Code
£lc // Code at compile-time

So how do you use them? You simpily click the Auto-Golf button.

5.2 Ommiting characters

5.2.1 Removing Brackets

If you have a function, and then a literal, you can ommit the (before it. You can also ommit ending) and other
brackets

MF(32) // Before
MF32 // After

MF(3,x[32]) // Before
MF3,x[32 // After

11

TeaScript Documentation, Release beta

5.2.2 Removing Literal Endings

Endings of literal characters can be ommited, this includes Strings, RegExps, and Snippets.

"Foo" // Before
"Foo // After

`Foo` // Before
`Foo // After

/Fo{2}/ // Before
/Fo{2} // After

12 Chapter 5. Auto-Golfing

CHAPTER 6

Basic Examples

6.1 String Tasks

6.1.1 Hello, World

Explanation

" begins a string literal.

Outputs Hello, World

"Hello, World!

6.1.2 cat

Explanation

x contains the input

Outputs the input

x

6.2 Number Tasks

6.2.1 Fibonacci

Explanation

F is a Fibonacci function. x is the input

Given n this calculated the nth Fibonacci number

13

TeaScript Documentation, Release beta

F(x

6.2.2 Primality Test

Explanation

mP is a primality check function

Calculates whether a given number is prime

mP(x

6.3 Array Tasks

6.3.1 Cycling Arrays

Explanation

C cycles an array, x is the input

Cycle an array 1 spots

xC1

6.3.2 Average of Numbers

Explanation

x is the input, x is a sum getter. n is the length. Compiled, this is x.x/x.n or x.sum/x.length

Calculates the average of numbers

xx/xn

14 Chapter 6. Basic Examples

CHAPTER 7

Error Handling

7.1 Approaching Literal Maximum

This is the only error that can be thrown during compilation at the moment. This is caused when a literal (i.e. String,
RegEx) is unbalanced.

"unclosed string
/unclosed regex
$unclosed snippet

7.2 Dependency not found: babel

babeljs, was not able to be loaded, check your network connection and ensure babel is connected. If you believe
this shouldn’t be occuring don’t hesitate to report it on Github.

7.3 Existing sub___: Slot used

During enviorment generation, a few errors can occur, this occurs when TeaScript is trying to assign a variable but it
has already been assigned. You can override this by force setting TEASCRIPT_ENV to false, each time enviroment
generation takes place

Note: This is a technical error, you are either using an unsupported browser/enviorment or there is a bug in TeaScript.
If you believe it’s a bug, don’t hesitate to report it on Github

7.4 Invalid location, ___, error ___

If this ever occurs, TeaScript has encountered an issue with the props.json file, possible fixes are reinstalling the
props.json. If this continues, don’t hesitate to report it on Github.

15

https://github.com/vihanb/TeaScript/issues
https://github.com/vihanb/TeaScript/issues
https://github.com/vihanb/TeaScript/issues

TeaScript Documentation, Release beta

7.5 Unexpected Type: ___ at ___

This is another error with the props.json, check to make sure the json is valid. Try reinstalling the props.json,
and if that doesn’t work, don’t hesitate to report it on Github.

7.6 Duplicate Getter: ___

An attempt was made to assign a getter to an already assigned key. To diagnose this, try looking for duplicate getters
in the props.json and change/remove them.

7.7 Any other error

All other errors are either JS Runtime or syntax errors, which can be solved by entering Debugging Mode

7.7.1 Syntax Errors

A syntax error starts with SyntaxError:, and is an error with the syntax itself, the error should display from where
the error originated and by looking at the previous compilation steps, you may be able to identify where the error
occured.

This error could of originated in any of the following compilation stages:

• String Balancing

• Unicode Shortcuts

• Property Expansion

• Paranthesis Balancing

• babel compilation

If you believe the error originated during babel compilation, report the error at babel’s Github.

7.7.2 Runtime Errors

Any other error is a JS runtime error which is usually caused by referencing a variable that doesn’t exist. Runtime
errors are errors with the code itself rather than the syntax. Try to break down your code and try to identify where the
error is originating. If you believe this error shouldn’t be happening, don’t hesitate to report it on Github.

16 Chapter 7. Error Handling

https://github.com/vihanb/TeaScript/issues
https://github.com/babel/babel
https://github.com/vihanb/TeaScript/issues

	Installation
	Web Interface
	Command Line

	Getting Started
	Literals
	Input

	New Features
	Modified RegExp
	Operators

	Variables
	Assignment
	Predefined variables

	Auto-Golfing
	Unicode Shortcuts
	Ommiting characters

	Basic Examples
	String Tasks
	Number Tasks
	Array Tasks

	Error Handling
	Approaching Literal Maximum
	Dependency not found: babel
	Existing sub___: Slot used
	Invalid location, ___, error ___
	Unexpected Type: ___ at ___
	Duplicate Getter: ___
	Any other error

