TBro Demo Documentation

Release 1.1

Markus Ankenbrand

Jul 10, 2017

Contents

		3
1.1	Installation	3
1.2	Introduction	4
1.3	Data	4
1.4	Bringing the data into TBro	5
1.5	Exploring the imported Data	16
	Guides	

This tutorial leads you through the process of installing and loading transcriptomic data into TBro as well as analyzing it. If you read this on readthedocs.io, please be aware that Google Analytics is used.

CHAPTER 1

Cannabis sativa transcriptome

Original data published in:

Harm van Bakel et al. "The draft genome and transcriptome of Cannabis sativa." In: Genome biology 12.10 (Jan. 2011), R102. issn: 1465-6914. doi: 10.1186/gb-2011-12-10-r102. url: http://genomebiology.com/2011/12/10/R102.

Installation

Docker

Installation of TBro is straightforward and easy using preconfigured docker containers. See docker documentation on how to install docker on your machine.

After installation of docker execute the following commands to pull the docker images:

```
docker pull greatfireball/generic_postgresql_db
docker pull tbroteam/generic_chado_db_reload
docker pull tbroteam/tbro_worker_ftp
docker pull tbroteam/tbro_worker
docker pull tbroteam/tbro_apache
# only required if predifined demo data should be loaded
docker pull tbroteam/tbro_demo
```

Now start the Chado database container and install the schema:

```
docker run -d -e DB_NAME=chado -e DB_USER=tbro -e DB_PW=tbro --name "Chado_DB_4_TBro_

→official" greatfireball/generic_postgresql_db

sleep 60
docker run --rm -i -t --link Chado_DB_4_TBro_official:CHADO --name "Chado_DB_4_TBro_

→load_official" tbroteam/generic_chado_db_reload
```

Now start the database container for the BLAST worker:

```
docker run -d -e DB_NAME=worker -e DB_USER=worker -e DB_PW=worker --name "Worker_DB_4_

→TBro_official" greatfireball/generic_postgresql_db
```

Start an ftp server to host the BLAST databases:

Start a worker to execute the BLAST jobs:

```
docker run -d --link Worker_DB_4_TBro_official:WORKER --link Worker_FTP_4_TBro_
→official:WORKERFTP --name "TBro_Worker_official" tbroteam/tbro_worker
docker exec -i -t TBro_Worker_official /home/tbro/worker_build_installation.sh
```

Finally start and install the main TBro container:

```
docker run -d --link Chado_DB_4_TBro_official:CHADO --link Worker_FTP_4_TBro_

→official:WORKERFTP --link Worker_DB_4_TBro_official:WORKER --name "TBro_official" -

→p 80:80 tbroteam/tbro_apache

docker exec -i -t TBro_official /home/tbro/build_installation.sh
```

You can now access the TBro web interface by pointing your browser to http://localhost However there is no data loaded, yet. To load data you can either perform the automatic demo installation (see next section), follow the stepby-step tutorial (next chapter) or load your own data.

Preload demo data

Run the following command to fill your TBro instance with demo data from Cannabis sativa.

```
docker run --rm -i -t --link Worker_DB_4_TBro_official:WORKER --link Worker_FTP_4_

→TBro_official:WORKERFTP --link Chado_DB_4_TBro_official:CHADO --name "TBro_Demo_

→official" tbroteam/tbro_demo
```

Congratulations, you have a full-featured TBro instance up and running.

Introduction

The aim of this manual is to teach you how to use the TBro. At first you will learn how to bring the data into the TBro. For this purpose you can follow the step by step guide using example data. When you work through this tutorial you have two options. You can either start from scratch, load the data from the original sources and perform the analyses yourself or you can just use the precomputed results in the example directory. In the manual it is assumed that you perform the analyses yourself so all commands that created the data are included. However the scope of this manual is not to teach you how to perform transcriptomic analyses and some of the methods may soon be out of date. The methods of importing and interpreting the data however will remain the same. If you choose to use the precomputed data just ignore all commands regarding their creation and use the accordingly named files in the example directory.

Data

The demo data consists of the published transcriptome of /Cannabis sativa/. And additional short read libraries of different samples.

Cannabis sativa

The raw data is available through NCBI. The transcriptome is described in @CSATIVA and has accession numbers (JP449145 - JP482359). Read data from different samples is available through the SRA at NCBI. The used samples are:

- Mature flower (SRR306868, SRR306869, SRR306870)
- Mature leaf (SRR306875, SRR306885, SRR306886)
- Entire root (SRR306861, SRR306862, SRR306863)

We analyzed the data in different ways and final results for each analysis are included in the example data. You can use this pregenerated results or generate it yourself, for this purpose each command for data creation along with program version is given. For an overview of the used programs and versions see table [tab:PROGRAMS].

[tab:PROGRAMS]

Task	Program	Version
Peptide prediction	Transdecoder	r2012-08-15
Repeat annotation	RepeatMasker	4.0.3
General annotations	InterproScan	5 RC5
GO/EC annotation	Blast2GO (B2G4Pipe)	2.5.0
General annotation	MapMan (Mercator)	2013/07/18
Count quantification	RSEM	1.2.5
Normalization / Differential expression	DESeq	1.12.1

Data creation and import into TBro is described as a workflow in the next section.

Bringing the data into TBro

For this tutorial it is assumed, that you have a fresh install of TBro as described in the installation section.

Attention: All commands are executed inside the TBro_official docker container. To enter this container do the following:

docker exec -it TBro_official /bin/bash

Alternatively you can download the tbro-cli tools to your local machine. But remember that you have to install them via phing and set the config.php properly (to point to the database in the docker container - find the ip via docker inspect)

No demo data has been loaded to the database yet. These are the manual steps to load the demo data (resembling the automatic installation via TBro_demo docker container). So lets start populating the database with our first transcriptome.

The Cannabis sativa transcriptome

Preparation

There is one preparation necessary before we can start importing data into TBro. We have to create the organism as is not part of the default CHADO repertoir.

```
tbro-db organism insert --genus Cannabis --species sativa\
--common_name Weed --abbreviation C.sativa
tbro-db organism list
```

The last command shows us all organisms known to TBro. As we see the ID of is 13. We will need this ID for later commands. You have probably noticed that it is possible to use autocompletion for commands, subcommands and parameters. In addition the very useful -help option is present for every command and gives information on usage, and available parameters.

The Transcripts

Create a directory cannabis_sativa with subdirectory transcriptome

```
mkdir -p cannabis_sativa/transcriptome
cd cannabis_sativa/transcriptome
```

Note: The following documentation requires you to perform the search at NCBI yourself. It further assumes that you want to do all of the analyses manually again. If you just want to learn how to import the data files into TBro you can execute the following command:

git clone https://github.com/TBroTeam/DemoData

In the new DemoData folder you find all the pre-calculated files. So you only have to issue the tbro-db and tbro-import commands.

If you want to follow along with your own data instead you can copy your file into the docker container with this command (outside the docker container):

docker cp MyTranscriptome.fasta TBro_official:/

Please replace MyTranscriptome.fasta with your actual file name. It will be available in the root of the file system / inside the container.

Download the transcriptome from NCBI¹. To do so, search for 74271[BioProject] on http://www.ncbi. nlm.nih.gov/nuccore and download all hits as fasta. There should be sequences. Save those to the file cannabis_sativa_transcriptome.fasta in the newly created folder. As we have no isoform unigene relationship for those transcripts we treat all of them as separate isoforms. So the id file comes down to a simple list of all ids in the fasta.

Now, it's time to import the sequence IDs into TBro. As we have no isoform - unigene relationship we import each transcript as a single isoform:

```
tbro-import sequence_ids --organism_id 13 --release 1.CasaPuKu\
    --file_type only_isoforms cannabis_sativa_transcriptome.ids
```

¹ In this case we start with a pre-assembled transcriptome. For your own data it might be necessary to do the assembly from the raw reads yourself. The SOS pipeline https://github.com/SchulzLab/SOS is great for that purpose.

We had to pass the previously given organism-id and a release name.

The release name can be selected freely and the release is automatically created upon first usage. The file-type was set to only_isoforms as we have no unigenes. Other possible values are only_unigenes and map. The last thing we pass is the path to the file containing the sequence-ids which we have just created. | TBro now knows about the sequence ids so lets feed it with the associated sequences:

```
tbro-import sequences_fasta --organism_id 13\
    --release 1.CasaPuKu cannabis_sativa_transcriptome.fasta
```

Now it's time to start up your browser and visit your TBro instance. Use the quick search field in the upper right corner to find gi|351628922|gb|JP481805.1|. You will see the isoform page with the basic information about this transcript. By now there is just the general info (date of import, organism, release) and the sequence together with a visualization as a horizontal bar. You can check back to this page after every successful import to watch how the new features are presentet. Of course you can choose any other isoform that is of interest to you.

Predicted Peptides

After we have the nucleotide sequences, the next step is to predict peptides and load this info into TBro. There are many tools available to predict peptides, we chose Transdecoder but the TBro does not restrict you to a certain tool.

```
mkdir -p ../peptids
cd ../peptids
transcripts_to_best_scoring_ORFs.pl -t \
   ../transcriptome/cannabis_sativa_transcriptome.fasta\
   -m 30 -v --CPU 4 >log >error.log
```

Note that we have set the minimum protein length to 30 and number of threads to 4, you can adjust those parameters to your own requirements. Unfortunatelly the output format for predicted peptides is not standardized. To make the peptide import generic and not rely on the output format of a special program the import into TBro is split into two steps. First a list of peptides is imported. This list has to be in tab delimited format and contain the following columns:

- 1. peptide id
- 2. isoform id
- 3. start position
- 4. end position
- 5. strand (+/-)

This file can easily be created from the output of every peptide prediction program. TBro contains a tool to get the table from the Transdecoder output so lets use that:

```
tbro-tools transToProt -o predicted_peptides.tbl\
best_candidates.eclipsed_orfs_removed.pep
```

Lets have a look to see that the table has the desired format.

```
head -n5 predicted_peptides.tbl
m.243266
                qi|351590686|qb|JP449145.1|
                                                   165
                                                           893
                                                                    +
m.243259
                gi|351590687|gb|JP449146.1|
                                                   1751
                                                           1894
                                                                    ^+
m.243253
                gi|351590687|gb|JP449146.1|
                                                           1684
                                                                    +
                                                   2
```

m.243237	gi 351590688 gb JP449147.1	1	1986	+
m.243247	gi 351590688 gb JP449147.1	2173	2295	+

Now to import this peptide table issue the following command:

```
tbro-import peptide_ids --organism_id 13\
    --release 1.CasaPuKu predicted_peptides.tbl
```

TBro now knows about the predicted peptides and their locations. What's missing is the sequences. They are added the same way as the nucleotide sequences of the transcripts before. It is important, that the fasta IDs exactly match the IDs in the first column of the peptide table.

```
tbro-import sequences_fasta --organism_id 13\
    --release 1.CasaPuKu best_candidates.eclipsed_orfs_removed.pep
```

You might want to check back to the web interface to see our newly imported peptides.

RepeatMasker

Another basic type of annotation are repeats. So we create repeat annotations using RepeatMasker and import them.

```
mkdir -p ../analyses/repeats
cd ../analyses/repeats
RepeatMasker -pa 4 -dir . -xm -species viridiplantae\
   ../../transcriptome/cannabis_sativa_transcriptome.fasta
```

All we need to do now is tell TBro to import the generated file as RepeatMasker annotations:

```
tbro-import annotation_repeatmasker --organism_id 13\
--release 1.CasaPuKu cannabis_sativa_transcriptome.fasta.out.xm
```

Interpro

Interpro is a useful tool to annotate protein sequences with information from different databases. There exists a command line version of this tool called InterproScan. We use this tool to generate the interpro annotations for our transcriptome:

```
mkdir -p ../interpro
cd ../interpro
interproscan.sh --pa --iprlookup --goterms --fasta\
   ../../peptids/best_candidates.eclipsed_orfs_removed.pep\
   --output-file-base interpro >interpro.log
```

The results in the tsv format can be importet into TBro with the following command:

```
tbro-import annotation_interpro --organism_id 13\
--release 1.CasaPuKu -i interproscan-5-RC5 interpro.tsv
```

Note that it is important to know the InterproScan version used as each version uses different versions of the underlying databases. Interpretation of the results requires knowledge of this versions so the -i switch taking the version is required for this import.

Blast2GO

Blast2GO uses BLAST to find sequence similarities to annotated sequences. The hits are then used to assign GO terms and EC numbers to the input sequences.

```
mkdir -p ../blast2go
cd ../blast2go
blastx -query ../../transcriptome/cannabis_sativa_transcriptome.fasta\
   -db /path/to/databases/NCBI/nr -evalue 1e-3 -outfmt 5\
   -num_alignments 250 -num_descriptions 250\
   -out cannabis_sativa_transcriptome.nr.xml\
   2> cannabis_sativa_transcriptome.nr.log
java -Xmx20G -cp *:ext/*: es.blast2go.prog.B2GAnnotPipe\
   -in cannabis_sativa_transcriptome.nr.xml\
   -out cannabis_sativa_transcriptome.nlast2go.annot\
   -prop b2gPipe.properties -v -annot -dat -img\
   > cannabis_sativa_transcriptome.blast2go.log
```

First all sequences are blasted against a local copy of nr. The output format is set to 5 (xml output). The e-value cutoff was set to 10^{-3} . Afterwards the BLAST output is passed to the Blast2GO annotation pipeline. We can extract three different kinds of annotations from the Blast2GO output:

GO

Gene Ontology

The lines containing "GO:" are selected and imported into TBro as annotation_go

EC

Enzyme Commission

```
grep "EC:" cannabis_sativa_transcriptome.blast2go.annot\
    >cannabis_sativa_transcriptome.blast2go.annot.ec
tbro-import annotation_ec --organism_id 13\
    --release 1.CasaPuKu cannabis_sativa_transcriptome.blast2go.annot.ec
```

The lines containing "EC:" are selected and imported into TBro as annotation_ec

Description

```
tbro-import annotation_description --organism_id 13 --release 1.CasaPuKu\ cannabis_sativa_transcriptome.blast2go.annot.go.description
```

Descriptions are arbitrary text that describes a transcript. Some GO Terms contain a meaningful description so we import the lines containing such a description into TBro. However this is just an example, the source of the description does not matter. The format is a tab delimited format with the feature ID in the first column and the description in the second.

Mercator

Mercator is a tool to classify sequences into MapMan functional plant categories.

```
mkdir -p ../mercator
cd ../mercator
```

To perform the Mercator classification start up your browser and go to

http://mapman.gabipd.org/web/guest/mercator. | In the web interface you can upload the cannabis_sativa_transcriptome.fasta. Unfortunatelly, there is a restriction on the input file size. This limit is exceeded by our transcriptome. So you can either contact the people at MapMan to allow you the submission of a larger dataset or just split the input file into two parts. We split the file by sequence length but you can just as well open the file in a text editor and split it. Then run Mercator on each chunk and download the results afterwards. It is no problem to import the two reports, one after the other:

```
tbro-import annotation_mapman --organism_id 13\
    --release 1.CasaPuKu mercator.results_max1499.txt
tbro-import annotation_mapman --organism_id 13\
    --release 1.CasaPuKu mercator.results_min1500.txt
```

Expression Counts

Now we have all kinds of annotation for each transcript in the TBro so we can start with the fun part. Expression data and differential expression data in particular are the main prospects why we perform RNASeq experiments. So go ahead and download the SRA files listet above.

```
mkdir -p ../../samples
cd ../../samples
/path/to/sratoolkit/bin/fastq-dump *
```

In the samples directory we now have a .fq file for each downloaded .sra file. The SRA files are no longer required so you can delete them to save some space. The next step is the quantification by mapping the reads onto the transcripts. This quantification is done separately for each sample in the for loop:

```
rsem-prepare-reference cannabis_sativa_transcriptome.fasta\
  cannabis_sativa_transcriptome
for SAMPLE in *.fq
do
```

```
BASE=$(basename $SAMPLE .fq)
rsem-calculate-expression -p 4 $SAMPLE cannabis_sativa_transcriptome\
  $BASE >$BASE.log 2>$BASE.err
done
```

The results for each sample are aggregated into a single large table with the perl script aggregator_Count.pl.

```
perl aggregator_CountMat.pl --in_RSEM\
SRR306868.isoforms.results SRR306869.isoforms.results\
SRR306870.isoforms.results SRR306875.isoforms.results\
SRR306885.isoforms.results SRR306886.isoforms.results\
SRR306861.isoforms.results SRR306862.isoforms.results\
SRR306863.isoforms.results\
--labels_RSEM Flower.mature_L1 Flower.mature_L2 Flower.mature_L3\
Leaf.mature_L1 Leaf.mature_L2 Leaf.mature_L3\
Root.entire_L1 Root.entire_L2 Root.entire_L3\
--out rsem_aggregated.mat
```

The resulting table could be imported into TBro as it is. However the data is not normalized yet. You should always(!) normalize your expression data. One way to do that is using the DESeq R-package provided by Bioconductor. So fire up R and install DESeq if you don't already have it. As we use DESeq also to create the differential expression data we will already do that and use the results in the next section.

```
# installing and loading DESeg
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq")
library (DESeq)
# loading the expression data
cmat <- read.table(file="rsem_aggregated.mat", row.names=1, header=T)</pre>
cond <- sub("_L.*", "", colnames(cmat))</pre>
# TMM normalization
cds <- newCountDataSet(round(cmat),cond)</pre>
cds <- estimateSizeFactors(cds)
write.table(file="rsem_aggregated_TMM.mat", counts(cds,normalized=T),
quote=F, sep="\t")
# differential expressions
cds <- estimateDispersions(cds)</pre>
res.FvsR <- na.omit(nbinomTest(cds, "Flower", "Root"))</pre>
res.FvsL <- na.omit(nbinomTest(cds, "Flower", "Leaf"))</pre>
res.RvsL <- na.omit(nbinomTest(cds, "Root", "Leaf"))</pre>
write.csv(res.FvsL, file="rsem_aggregated_TMM_diff_FvsL.mat", quote=F)
write.csv(res.FvsR, file="rsem_aggregated_TMM_diff_FvsR.mat", quote=F)
write.csv(res.RvsL, file="rsem_aggregated_TMM_diff_RvsL.mat", quote=F)
```

So now we have the expression counts in the file rsem_aggregated_TMM.mat. This file just lacks the header for the first column so we add it with the following command:

sed -i '1{s/^/ID\t/}' rsem_aggregated_TMM.mat

Before we can go ahead and import the data into TBro we have to make some preparations. Normally RNASeq experiments are performed on biomaterials in different conditions. To differentiate between biological signals and random noise it is mandatory to have replicates for each condition. Each replicate is called a sample. This hirarchical structure of biomaterial \rightarrow condition \rightarrow sample is also represented in the TBro. So lets tell TBro about our samples:

```
# Prepare database for Expression Data Import
# Add missing biomaterials (Flower and Root are already present)
```

```
tbro-db biomaterial insert --name Flower
tbro-db biomaterial insert --name Leaf
tbro-db biomaterial insert --name Root
# Add conditions
tbro-db biomaterial add_condition --name Flower.mature
--parent_biomaterial_name Flower
tbro-db biomaterial add_condition --name Leaf.mature\
--parent_biomaterial_name Leaf
tbro-db biomaterial add_condition --name Root.entire\
--parent_biomaterial_name Root
# Add samples
tbro-db biomaterial add_condition_sample --name Flower.mature_L1\
--parent_condition_name Flower.mature
tbro-db biomaterial add_condition_sample --name Flower.mature_L2\
--parent_condition_name Flower.mature
tbro-db biomaterial add_condition_sample --name Flower.mature_L3\
--parent_condition_name Flower.mature
tbro-db biomaterial add_condition_sample --name Leaf.mature_L1\
 --parent_condition_name Leaf.mature
tbro-db biomaterial add_condition_sample --name Leaf.mature_L2\
 --parent_condition_name Leaf.mature
tbro-db biomaterial add_condition_sample --name Leaf.mature_L3\
 --parent_condition_name Leaf.mature
tbro-db biomaterial add_condition_sample --name Root.entire_L1\
  -parent_condition_name Root.entire
tbro-db biomaterial add_condition_sample --name Root.entire_L2\
 --parent_condition_name Root.entire
tbro-db biomaterial add_condition_sample --name Root.entire_L3\
--parent_condition_name Root.entire
```

Also the experiments and analyses should be traceable. So we also have to include information about the experiment and the different steps in the analysis. Also the person who performed the analyses has to be specified:

```
# Add contact
tbro-db contact insert --name TBroDemo --description 'TBro Demo User'
# New item ID is 5.
#Add experiments
tbro-db assay insert --name SRX082027 --operator_id 4
# New item ID is 1.
# Add acquisitions (corresponding to experiments)
tbro-db acquisition insert --name SRX082027 --assay_id 1
# New item ID is 1.
# Add analyses
tbro-db analysis insert --name RSEM_TMM --program RSEM\
--programversion 1.2.5 --sourcename Mapping\
--description 'RSEM quantification with subsequent TMM normalization'
# New item ID is 50.
tbro-db analysis insert --name DESeq_isoform --program DESeq\
--programversion 1.12.1 --sourcename Mapping_isoform
# New item ID is 51.
# Add quantifications
tbro-db quantification insert --name RSEM_SRX082027\
```

```
--acquisition_id 1 --analysis_id 50
# New item ID is 1.
```

So we have created a contact, assay, acquisition, quantification and two analyses. Warning: It is important to use the right IDs. Those may differ in your case so carefully watch the output of each command and note the ID given. If you forget an ID you can always have a list of all available entries by issuing:

tbro-db <subcommand> list

After a lot of groundwork we are finaly there. Import the expression counts with this command:

```
tbro-import expressions -o 13 -r 1.CasaPuKu -q 1 -a 50\
rsem_aggregated_TMM.mat
```

Differential Expression

Differential expression is the comparison of the expressions in two different conditions. When calculating differential expressions statistical methods are applied to correct for the multiple testing problem. We have already performed this analysis in the previous section. So if you have skipped the Expression section you have to use the R snippet there. We also already created the biomaterials, conditions, analyses, etc. Therefor we can go ahead and import the differential expression results:

```
tbro-import differential_expressions -o 13 -r 1.CasaPuKu --analysis_id\
51 -A Flower.mature -B Leaf.mature rsem_aggregated_TMM_diff_FvsL.mat
tbro-import differential_expressions -o 13 -r 1.CasaPuKu --analysis_id\
51 -A Flower.mature -B Root.entire rsem_aggregated_TMM_diff_FvsR.mat
tbro-import differential_expressions -o 13 -r 1.CasaPuKu --analysis_id\
51 -A Root.entire -B Leaf.mature rsem_aggregated_TMM_diff_RvsL.mat
```

Blast DB

To search the transcriptome by homology. Lets add a blast database. To do so we create a nucleotide database and a protein database and zip them:

```
makeblastdb -in cannabis_sativa_transcriptome.fasta -dbtype nucl
makeblastdb -in cannabis_sativa_predpep.fasta -dbtype prot
zip cannabis_sativa_transcriptome.zip cannabis_sativa_transcriptome.fasta*
zip cannabis_sativa_predpep.zip cannabis_sativa_predpep.fasta*
md5sum *.zip
# b2ab466c7bfb7d41c27a89cf40837fb4 cannabis_sativa_predpep.zip
# 1f87bbeee5a623e6d2f8cab8f68c9726 cannabis_sativa_transcriptome.zip
```

This zip files should now be moved in a location where it can be reached from the worker machines. To tell TBro about the BLAST databases you should issue the following command in your directory containing the TBro source code (/home/tbro/ in the docker container, but in the docker installation phing has already been executed, so you can skip this step, in case you want to execute it again make sure to run source ~/.bash_profile first, otherwise phing will not be found.):

phing queue-install-db

This will create a file called queue_config.example.sql in the current directory. Rename it to queue_config.sql and adjust the appropriate sections like this:

```
. . .
-- database files available. name {f is} the name it will be referenced by, md5 {f is} the,
→zip file's sum, download_uri specifies where the file can be retreived
INSERT INTO database_files
(name, md5, download_uri) VALUES
 ('cannabis_sativa_transcriptome.fasta', '1f87bbeee5a623e6d2f8cab8f68c9726',
'http://yourdomain/location/cannabis_sativa_transcriptome.zip'),
('cannabis_sativa_predpep.fasta', 'b2ab466c7bfb7d41c27a89cf40837fb4',
'http://yourdomain/location/cannabis_sativa_predpep.zip');
-- contains information which program is available for which program.
-- additionally, 'availability_filter' can be used to e.g. restrict use for a_
→organism-release combination
INSERT INTO program_database_relationships
 (programname, database_name, availability_filter) VALUES
('blastn','cannabis_sativa_transcriptome.fasta', '13_1.CasaPuKu'),
('blastp', 'cannabis_sativa_predpep.fasta', '13_1.CasaPuKu'),
('blastx', 'cannabis_sativa_predpep.fasta', '13_1.CasaPuKu'),
 ('tblastn', 'cannabis_sativa_transcriptome.fasta', '13_1.CasaPuKu'),
 ('tblastx', 'cannabis_sativa_transcriptome.fasta', '13_1.CasaPuKu');
. . .
```

It is important that the name column in database_files matches the base filename of the blast database in the zip file.

The availability_filter column is very important it specifies for which organism and release the database is visible in the TBro interface. The form is {organism_id}_{release}. As we only have a single organism (id: 13) and release (1.CasaPuKu) we set it to 13_1.CasaPuKu. If you want a single database to show up for multiple organisms or releases you have to specify multiple rows with different availability filters.

You have to specify a location that can be reached by your worker machine. If you just want to have a single worker on the same machine as the server you can specify the location in the local file system starting with file://. If you used the docker setup you can load the files into the docker ftp container with curl:

```
curl --data-binary --ftp-pasv --user $WORKERFTP_ENV_FTP_USER:$WORKERFTP_ENV_FTP_PW -T_

⇔cannabis_sativa_transcriptome.zip ftp://"$WORKERFTP_PORT_21_TCP_ADDR"/

curl --data-binary --ftp-pasv --user $WORKERFTP_ENV_FTP_USER:$WORKERFTP_ENV_FTP_PW -T_

⇔cannabis_sativa_predpep.zip ftp://"$WORKERFTP_PORT_21_TCP_ADDR"/
```

To perform the changes run the queue_config.sql commands in your queue database:

PGPASSWORD=\$WORKER_ENV_DB_PW psql -U \$WORKER_ENV_DB_USER -h \$WORKER_PORT_5432_TCP_ →ADDR -p \$WORKER_PORT_5432_TCP_PORT <queue_config.sql

Now TBro knows about the database and shows it in the web interface.

To perform BLAST searches we need a worker to execute them. In case of the docker setup you already have a blast worker running. Otherwise you can create one with this command:

```
phing queue-build-worker
unzip unix-worker.zip
```

Modify the config.php to your needs. Most values should be preconfigured through your build.properties. After that you can start the worker (preferably in a screen):

```
screen -S blastworker
./worker.php config.php
```

Have fun blasting.

Synonym / Publication

Synonyms and publications can be added using the API key and internal name of your bibsonomy account. The structure of such a command is as follows:

```
tbro-db feature add_synonym -f 555 --synonym 'InterestingTranscript'\
   -b '[[publication/ladaa3fb03xxxxxxxxaec4cef920/bibsonomy_username]]'
   -u 'bibsonomy_username' -t symbol -k 34a2149d8xxxxxxxxxbebd342aa
```

Pathways

To use TBros pathway feature we have to connect the imported data to pathways. As of now this connection is made via EC numbers and KEGG pathways. We have to import two tables containing descriptions for EC and KEGG identifiers in the simple formatL:

<Identifier><TAB><Description>

Additionally a mapping of which EC occurs in each KEGG pathway is required in the following format:

<EC number><TAB><KEGG ID>

We collected EC and KEGG information from ENZYME, Interpro and priam to get the descriptions and mapping. The resulting tables may not be complete and up to date so you might wish to create your own tables and mapping. For a quick start you find the three files ec_info.tab, kegg_info.tab and ec_kegg_map.tab

```
tbro-tools addECInformationToDB ec_info.tab
tbro-tools addPathwayInformationToDB kegg_info.tab
tbro-tools addEC2PathwayMapping ec_kegg_map.tab
```

Custom Annotations

Arbitrary key/value pairs can be added to isoforms and unigenes since TBro version 1.1.1 All you need is a tsv file with two columns (unigene/isoform identifier and value). The key is given as a command-line parameter for the whole file. Consider the file custom.tsv:

```
<Identifier><TAB><Value>
```

Importing this file into TBro with key my_custom_annotation you have to execute:

tpro-import annotation_custom --annotation-type my_custom_annotation custom.tsv

It is then possible to search via annotation search for custom annotations with key my_custom_annotation.

Any other transcriptome

With the description above it should be easy for you to import any transcriptome that interests you. The only thing that could differ significantly from the description above is if you have predicted unigenes for your transcriptome. This is common practice and if you use a de novo transcriptome assembler like Trinity you will get unigenes with corresponding isoforms. In this case the main difference is in the first step importing ids. Instead of importing a plain list of sequence IDs you import a map of the following format:

<Unigene ID><TAB><Isoform ID>

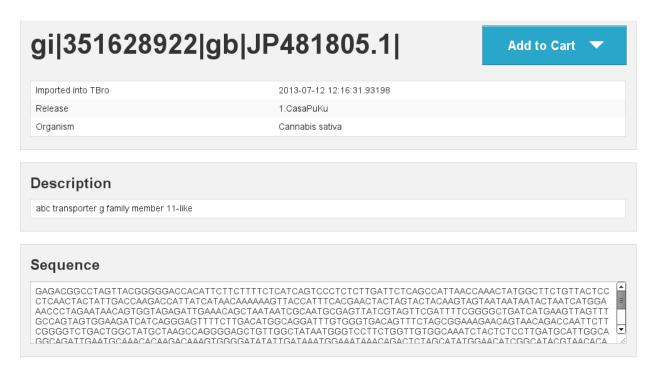
With a separate line for each isoform. The import command would then be:

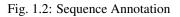
```
tbro-import sequence_ids --organism_id 14 --release 1.0\
    --file_type map my_new_transcriptome.map
```

Of course you have to adjust the organism_id and release parameters. The use of unigenes brings a number of advantages. You can easily find isoforms that belong to the same unigene as each isoform contains a connection to its parent and on the unigene page you have a list of all corresponding isoforms. In addition you can now load expression and differential expression results on unigene level as well as on isoform level. Many programs like RSEM can readily handle that.

Exploring the imported Data

Feature annotations




Fig. 1.1: Basic information

[fig:basic]

[fig:annotation]

Sequence Annotation

ACT)n#Simple_repeat	
redpep 79-2253	
ABC transporter	
ABC-2 type transporter	
Gene3D:G3DSA:3.40.50.300	
ATP-binding cassette, ABC transporter-type doma	
PR027417	
ATPases associated with a variety of cellular a	
PANTHER: PTHR19241	
PANTHER:PTHR19241:SF20	
ABC transporters family signature.	

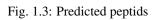
[fig:predpep] [fig:go] [fig:ec] [fig:mapman] [fig:repeatmasker]

Expressions

[fig:barplot:sub:*i*so] [fig:barplot:sub:*c*art]

Differential Expressions

[fig:diffexp] [fig:diffexp:sub:*r*esults]


Carts

[fig:carts]

Pathways

[fig:pathway]

.6102					
lame	Start	End	Di	rection	Length
n.6102	79	2253	+		725
)EPTSGLE)PSLQNP:	DSAASYYVMSSIASLDIQSRRG	GGAGGRRTVVA	SIHQPS	SEVFQLF	LGTGSKGLSGGQKRRVSICIEILTRPKLLFL NTLCLLSAGKIVYFGPASAANEFFTMSGFP ICOLVQQQVSQICNKKNKSVGLMEKKRSH
	Annotation				
•	Description	Sta	rt End	eValue	Match Description
D.		Sta 228			Match Description ABC transporters family signature.
D.	Description			eValue 7.3e- 304	•
D.	Description	228	242	7.3e-	ABC transporters family signature.
- D PR017871	Description	228 38	242 704 704	7.3e- 304 7.3e-	ABC transporters family signature. PANTHER:PTHR19241:SF20
PR017871	Description ABC transporter, conserved site	228 38 38 110	242 704 704	7.3e- 304 7.3e- 304 1.5e-	ABC transporters family signature. PANTHER:PTHR19241:SF20 PANTHER:PTHR19241 ATPases associated with a variety of cellular
D PR017871 PR003593 PR027417	Description ABC transporter, conserved site AAA+ ATPase domain P-loop containing nucleoside trip	228 38 38 110	242 704 704 309	7.3e- 304 7.3e- 304 1.5e- 12 9.22e-	ABC transporters family signature. PANTHER:PTHR19241:SF20 PANTHER:PTHR19241 ATPases associated with a variety of cellular activities
D PR017871 PR003593 PR027417	Description ABC transporter, conserved site AAA+ ATPase domain P-loop containing nucleoside trip hydrolase	228 38 38 110 hosphate 81	242 704 704 309 329	7.3e- 304 7.3e- 304 1.5e- 12 9.22e- 41	ABC transporters family signature. PANTHER:PTHR19241:SF20 PANTHER:PTHR19241 ATPases associated with a variety of cellular activities SUPERFAMILY:SSF52540 ATP-binding cassette, ABC transporter-type
PR017871 PR003593 PR027417 PR003439 PR013525	Description ABC transporter, conserved site AAA+ ATPase domain P-loop containing nucleoside trip hydrolase	228 38 38 110 hosphate 81 81	242 704 704 309 329 337 323	7.3e- 304 7.3e- 304 1.5e- 12 9.22e- 41 17.3 3.3e-	ABC transporters family signature. PANTHER:PTHR19241:SF20 PANTHER:PTHR19241 ATPases associated with a variety of cellular activities SUPERFAMILY:SSF52540 ATP-binding cassette, ABC transporter-type domain profile.

Gene Ontology	
Molecular Function	
GO:0005524 ATP binding	
GO:0016887 ATPase activity	
Pielegical Presson	
GO:0006200 ATP catabolic process	
Biological Process GO:0006200 ATP catabolic process Cellular Component	

EC:3.6.1.3 Adenosinetriphosphatase.	
Associated Pathways	
00230 Purine metabolism	

MapMan Annotation Annotation: highly similar to (630) AT1G17840 | Symbols: WBC11, ABCG11, DSO, COF1, ATWBC11 | WBC11 (WHITE-BROWN COMPLEX HOMOLOG PROTEIN 11); ATPase, coupled to transmembrane movement of substances / fatty acid transporter | chr1:6142870-6145894 FORWARDweakly similar to (163) PDR4_ORYSA Pleiotropic drug resistance protein 4 - Oryza sativa (Rice) TSA: Cannabis sativa PK09255.1_1.CasaPuKu mRNA sequence Bincode: 34.16: transport.ABC transporters and multidrug resistance systems

Fig. 1.6: Mapman Mercator

Repeatmasker Annotation								
Name	Class	Family	Start	End	Direction	Length		
(ACT)n	Simple_repeat		151	184	+	34		

Fig. 1.7: RepeatMasker

Fig. 1.8: Expression Barplot for a single Isoform

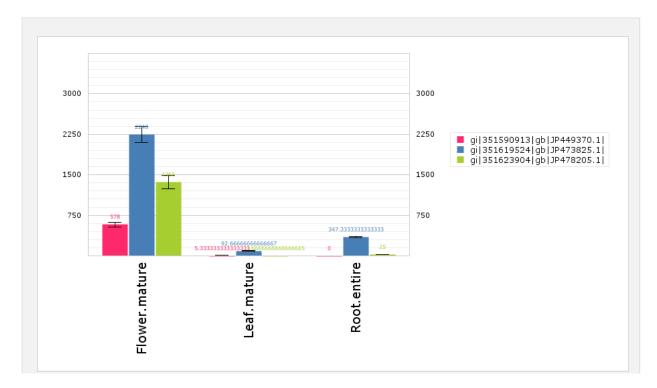


Fig. 1.9: Expression Barplot for all isoforms in a cart

Searches

[fig:combisearch] [fig:multisearch]

Blast

[fig:blast] [fig:blast:sub:results1] [fig:blast:sub:results2]

Guides

Backup data

Backup your database with these commands:

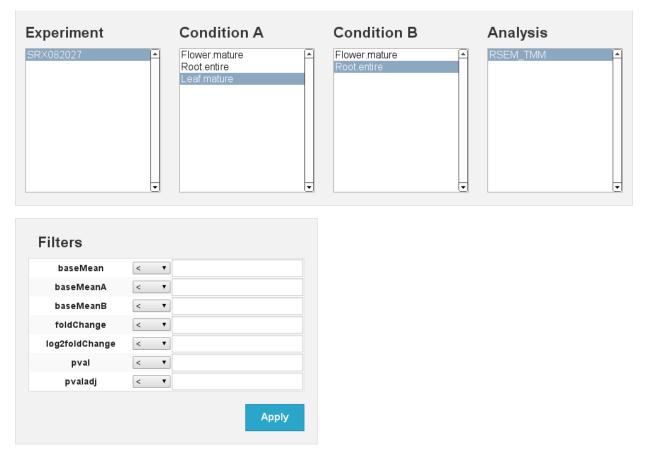
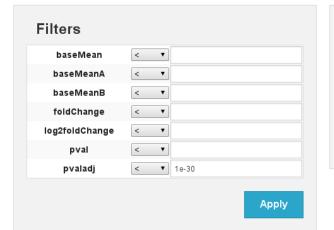
```
docker exec Chado_DB_4_TBro_official pg_dump -U tbro -d chado | xz >tbro_backup_

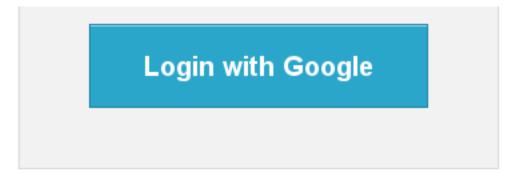
→$(date +%F_%T).sql.xz

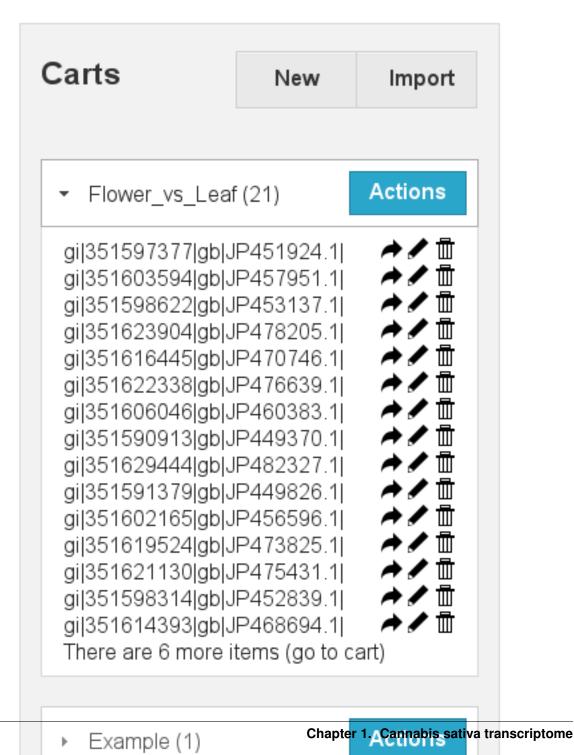
docker exec Worker_DB_4_TBro_official pg_dump -U worker -d worker | xz >worker_backup_

→$(date +%F_%T).sql.xz
```

You should keep a copy of you blast .*zip* files as well.


Fig. 1.10: Differential expression



Results Overview					
Condition A	Flower.mature				
Condition B	Leaf.mature				
Analysis	RSEM_TMM				
Organism	Cannabis sativa				
Release	1.CasaPuKu				
Hits	21				

Show Entries 🛛 🔻	Show Columns	▼ Sel	ect 🔻	Store 🔻	Export 🔷 🔻
Sequence ID	≎ Alias	baseMean	♦ foldChange	↓ log2foldChange	pvaladj
gi 351598622 gb JP453137.1		1.08550e+3	6.06301e-4	-1.06877e+1	4.19681e-72
gi 351616445 gb JP470746.1		7.72357e+2	4.87666e-3	-7.67989e+0	2.47351e-60
gi 351622338 gb JP476639.1		6.41593e+2	5.35890e-3	-7.54385e+0	9.12359e-50
gi 351629444 gb JP482327.1		8.68614e+2	1.01758e-2	-6.61872e+0	4.90196e-47
gi 351603594 gb JP457951.1		3.15386e+2	0	-Inf	5.20999e-47
gi 351609064 gb JP463365.1		1.02134e+3	5.34973e+1	5.74140e+0	1.06435e-44
gi 351609028 gb JP463329.1		2.45737e+2	9.84630e+1	6.62151e+0	1.97420e-41
gi 351606046 gb JP460383.1		4.04961e+2	9.29569e-3	-6.74922e+0	1.68781e-39
gi 351597377 gb JP451924.1		2.19363e+2	0	-Inf	2.54831e-39
gi 351609763 gb JP464064.1		3.72631e+3	3.21577e+1	5.00709e+0	3.21013e-38
howing 1 to 10 of 21 entries				First Previo	us 1 2 3 Next Last

Fig. 1.11: Differential expression results Flower vs Leaf

Pathway	*	Мар	Components	- [Details	-
Metabolic pathways		01100	4	[Details	
Starch and sucrose metabolism		00500	2	[Details	
Alanine, aspartate and glutamate metabolism		00250	1	[Details	
Ascorbate and aldarate metabolism		00053	1	[Details	
Biosynthesis of phenylpropanoids		01061	1	[Details	
Biosynthesis of secondary metabolites		01110	1	[Details	
Glyoxylate and dicarboxylate metabolism		00630	1	[Details	
Methane metabolism		00680	1	C	Details	
Microbial metabolism in diverse environments		01120	1	[Details	
Pentose and glucuronate interconversions		00040	1	[Details	
Phenylalanine metabolism		00360	1	[Details	
Phenylpropanoid biosynthesis		00940	1	[Details	
Pyrimidine metabolism		00240	1	[Details	
Pyruvate metabolism		00620	1	[Details	
T cell receptor signaling pathway		04660	1	[Details	
Details of Starch and sucrose metab Cellulase. EC:3.2.1.4 gi]351622889[gb]JP477190.1]	olism (00500)					
Pectinesterase. EC:3.1.1.11						
gi 351597529 gb JP452074.1						

Fig. 1.13: List of Pathways in the cart

Annotation Search

Here you can search for annotations. All subsearches will be AND'ed.

Search	for	•
Description contains		
MapMan description contains		Ē
MapMan has Bincode Has GO		ш
Has GO or Children (slower!)		
In Pathway (KEGG ID)		Ē
In Pathway (definition contains)		
Interpro ID		
Interpro Match Description	Diffcode.	 ⊞
11 0.0-	0.0	Ē
Has GO:	GO:	Ш
Has GO or Children of GO:	GO:	Ē
In Dathway		₼

Fig. 1.14: Combisearch


Advanced Search

This field allows you to search for as many unigenes or isoforms as you want at once. (Up to a reasonable limit) For every found isoform, corresponding unigene will be shown.

For each found unigene, all isoforms will be shown.

This search does not allow wildcards.

This List contains IDs and other text search gi 351603594 gb]/P457951.1 gi 351598622 gb]/P453137.1 however the IDs are found image: search gi 351623904 gb]/P478205.1 gi 351616445 gb]/P470746.1 and extracted image: search gi 35162338 gb]/P476639.1 gi 351606046 gb]/P470383.1 strict Search gi 351629444 abJ/P482327.1 image: search strict Search

Blast				
Blast type: blastn Blast against Database: cannabis_sativa_transcri FASTA sequence(s):	ptome.fasta			• •
GATATCAAGGCATCTCCT TTGATGTCCATGAAGGTG AGGTGGAATTAGATGATG CCAGGCGGTTCCCAATCC CAAGTACCTCAATCTCAT AAATGAATTGATGAAAAAA	ACAAAGTTCTACCACATGT SACTGGGAGAGCCATGGCT SAGAACAATAAGGTGAGTCT CCAAGGGCGAGGGTTCCTT GATTAACATCACCAAAGATA CAAATAAAAGGGGTCCATAT	GTAAAAATGGCAGCCACCA TCCGGAAAACTGCTCACATC CTATCAAGTITTGGAATAT GATTGGAATTGAAGGTGAT GGCCAAACTCAGCATCGAG ICGATTCTCACTTTGAGAA TATCGTTTATATTATATGT TGCATGTACTACTATACAAC	CGTTCCTCACTGCGCCGG ACAGTTGACGGAAAAGAG GTGTTCAAGCACTACAAG TATGAGAAGCTCGACCCT GGCTGCCCCTCAAACTAA GTGTGAAGAAATTAATAA	TAGCCATATTCAAGGAG GGAGACGTTCAAGGAGA TGCTTCAATGTTATAA TCTGTTCCAACTCCAAA GACCGTTGTTTGGTGAA
Max Target Sequences: 50 •	Maximum E-value: 0.1 ▼	Task: blastn ▼	Wordsize:	start job

Fig. 1.16: Blast interface

Upgrade TBro

If you want to upgrade TBro to a new version (running docker) you have two options.

- 1. Replace the tbro_apache container
- 2. Upgrade in the existing container

Attention: Those methods will allow you to keep your databases and all of its content. However, before you upgrade check for breaking changes in the Changes section of the README. And always backup your data. You should do this regularly anyway but especially before performing an upgrade.

Choose option 1 if you did not modify anything inside the tbro_apache container. Just execute the following commands:

```
docker stop TBro_official
docker rm TBro_official
docker pull tbroteam/tbro_apache
docker run -d --link Chado_DB_4_TBro_official:CHADO --link Worker_FTP_4_TBro_
→official:WORKERFTP --link Worker_DB_4_TBro_official:WORKER --name "TBro_official" -
→p 80:80 tbroteam/tbro_apache
docker exec -i -t TBro_official /home/tbro/build_installation.sh
```

For option 2 follow these steps:

```
docker exec -it TBro_official /bin/bash
# inside the container
source ~/.bash_profile
cd /home
git clone https://github.com/TBroTeam/TBro.git
```

Blast Results

est TCTGT	quence: AGCTAGTTG	Т								,
.	la la alta									
Program	blastn	_								
Version	BLASTN 2.2.2									
eference	Stephen F. Alt (1997), "Gapp 3402.	schul, ed BLA	Thomas L. AST and PS	Madden, Alej il-BLAST: a n	andro A. Schä ew generation	ffer, Jinghui Zh of protein data	ang, Zheng Zh base search p	ang, Webb Mil rograms", Nucl	ler, and David J. eic Acids Res. 2	. Lipm 25:338
	expect	0.1								
	sc-match	2								
	sc-mismatch	-3								
rameters:	gap-open	5								
	gap-extend	2								
	filter	L;m;								
				Color	key for align	ment scores				
			< 40	40 - 50	50 - 80	80 - 200	>= 200			
Query_1										
gi 35161	6445 gb JP470	746.1								
gi 35159	7369 gb JP451	917.1								
	2068 gb JP476	369.1								
gi 35162										
	7452 gb JP461	773.1								

Fig. 1.17: Blast results

		C	olor key for alig	Inment scores			
		< 40 <u>40 - 9</u>	50 50 - 80	80 - 200	>= 200		
Query_1		_					
	L6445 gb JP470746.1						
	97369 gb JP451917.1						
	22068 gb JP476369.1						
)7452 gb JP461773.1						
	22701 gb JP477002.1						
gr[33102	2/01/96/06 47/002.1						
b		⇔ max score	total sco			⇔ max identity	
	gb JP470746.1 gb JP451917.1	1402 100	1402 100	1.000 0.164	0 7.688e-1	1.000 8 0.774	
JI 55 1 55 7 56 5	1900-401917.11 Sci				7.0000-1	0 0.774	
	Exp			91 bits (100) 7.688e-18			
	Ident			89/115			
	Posi			89/115			
	Ga			0/115			
	Query			1			
	duery Hit Fi			1			
Query	184 TTGATGTCCATG	AGGTGACTGGGAGAGCCA	TGGCTCTATCAAGTT	TTGGAAATATACAGTTGA	CGGAAAAGAGGAGACGTTC	AAGGAGAAGGTGGAATT 283	
Subject	198 TTGATGTTCATG	AAGGTGACTGGGAAACACC	TGGCTCTGTCAAGCT	CTGGAAGTATAACATCGG	TGGGAAGGTGGAGACATTI	TAAGGAAAAAGTGGATGT 297	
Query	284 AGATGATGAGAA					298	
Subject	298 GGATGATGAAAA	AA .				312	
11351622068	[gb]JP476369.1]	46	46	0.104	0.003	0.726	
	[gb]JP461773.1]	44	44	0.039	0.012	0.926	
ail351622701	[gb]JP477002.1]	44	44	0.057	0.012	0.825	

Fig. 1.18: Blast results

```
# you now have tbro (old) and TBro (new) in /home
cd TBro
# git checkout <branch> # if you want a specific branch instead of master
cp ../tbro/build.properties .
phing cli-install
phing web-install
phing database-update-modifications
```

Password protect TBro

See the write up by 000generic at https://github.com/TBroTeam/TBro/issues/48

TBro in Docker in Amazon's AWS Lightsail

Follow this protocol: https://benchling.com/s/prt-DHSo7HeddC5zM0x7x1Y4