Tawhiri Documentation
Release 0.2.0

Cambridge University Spaceflight

November 27, 2016

Contents

8

9

Introduction

1.1 Setup & Installation

Wind Data

Design of the predictor

31 OVEIVIEW . . v v v v o e e e e e e e e e e e
32 Models e
3.3 Termination functions
34 Chaining o v vt e e e e e

4.1 Interpolation
42 OVeIVIEW . . v v v vt e e e e e e e e e e
43 Extrapolation

5.1 Versionl e

Specific implementation details
API

Web Interface

tawhiri

7.1 tawhiripackage

License & Authors

See also

10 Indices and tables

Python Module Index

19

21

..................... 21

27

29

31

33

Tawhiri Documentation, Release 0.2.0

Tawhiri is the name given to the next version of the Cambridge University Spacefligt balloon path and landing predic-
tion software. The name comes from a Mori god of weather, which rather aptly “drove Tangaroa and his progeny into
the sea” (WP).

Contents:

Contents 1

http://en.wikipedia.org/wiki/M%C4%81ori_people
http://en.wikipedia.org/wiki/Tawhiri

Tawhiri Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Introduction

The project is separated into three parts:

* the predictor: provides an API over which requests for a prediction can be made. This API is public, and can be
used by main predictor web Ul, as a live predictor by mapping software, and potential future uses we haven’t
thought of.

¢ the web Ul

* the dataset downloader: runs as a single standalone separate process, watches for new datasets published by the
NOAA and retrieves them.

1.1 Setup & Installation

1.1.1 Predictor

..1s written for Python 3 (though is compatible with Python 2) and needs Cython:

virtualenv venv

source venv/bin/activate

pip install cython

python setup.py build_ext —--inplace

w4 »

The last line (re-)builds the Cython extensions, and needs to be run again after modifying any .pyx files.

1.1.2 Downloader

The downloader uses gevent, so we are (disappointingly) restricted to running it under Python 2 for now.

At the time of writing, pygrib head did not work (in contrast to an earlier version), and both have a broken setup.py.
Therefore, we need to install numpy first, and pyproj separately:

sudo aptitude install libevent-dev libgrib-api-dev
virtualenv -p python2 venv

source venv/bin/activate

pip install numpy

pip install pygrib==1.9.6 pyproj 'gevent<l.0'

v v

Tawhiri Documentation, Release 0.2.0

1.1.3 Web API

The web API may be run in a development web-server using the tawhiri-webapp script. If necessary, you can use
the TAWHIRI_SETTINGS environment variable to load configuration from a file:

$ cat > devel-settings.txt <<EOL

ELEVATION_DATASET = '/path/to/ruaumoko-dataset'
WIND_DATASET_DIR = '/path/to/tawhiri-datasets'
EOL

$ tawhiri-webapp runserver -rd

See the output of tawhiri-webapp -? and tawhiri-webapp runserver -? for more information.

4 Chapter 1. Introduction

CHAPTER 2

Wind Data

Forecasts are published (for free!) by the NOAA, in the form of several hundred GRIB files.

The axes of the dataset are time, pressure level, variable, latitude and longitude. That is, the “vertical” axis is not
altitude; there is a forecast for various variables at certain fixed air pressure levels. The variables we are interested

in are “wind u”, “wind v” and “altitude”; the first two being the speed in meters of the wind due east and north
respectively.

We store wind datasets as a large array of floats (32bit). This amounts to a 9GB file on disk, which is memory mapped
into the predictor and downloader processes as needed. The operating system manages caching, which means that data
for popular areas can be loaded very quickly, even after a cold start of the predictor process itself.

tawhiri.downloadis responsible for acquiring the wind dataset. It downloads all the relevant GRIB files (~6GB),
decompresses them, and stores the wind data in a new file on disk.

tawhiri.interpolate, given a dataset, estimates “wind u” and “wind v” at some time, latitude, longitude and
altitude, by searching for two pressure levels between which the altiutde is contained, and interpolating along the 4
axes. More details on the implementation of this are available here

http://www.noaa.gov
http://en.wikipedia.org/wiki/GRIB

Tawhiri Documentation, Release 0.2.0

6 Chapter 2. Wind Data

CHAPTER 3

Design of the predictor

3.1 Overview

The basic idea is to do something along the lines of:

while not k(time, lat, lon, alt):
lat_dot, lon_dot, alt_dot = f(time, lat, lon, alt):
lat += lat_dot * dt
lon += lon_dot = dt
alt += alt_dot =* dt

where
¢ fis amodel (or a combination of, see below),

¢ k is a termination function.

3.1.1 Purity

Models, altitude profiles and termination functions must all be pure.

Besides being cleaner, it allows us to use more interesting integration methods without worrying about side effects
evaluating the functions.

3.1.2 Coordinates

We principally deal with position represented as latitude, longitude and metres above sea level. While we do have
to consider horizontal velocities in metres per second (e.g., when consulting wind data), we convert to latitude &
longitude (or rather, “change in latitude per unit time”) as soon as possible since they will (probably) be simpler to
work with. (“ASAP” is so that we—as much as possible—are only working in one coordinate system throughout the
code.)

Time is represented as an absolute UNIX timestamp.

3.2 Models

A model is a callable that looks something like this:

http://en.wikipedia.org/wiki/Pure_function

Tawhiri Documentation, Release 0.2.0

def f(time, lat, lon, alt):
< calculation goes here >
return lat_dot, lon_dot, alt_dot

f(time, lat, lon, alt):
Return velocities predicted by this model (example function)

The latitude and longitude “velocities” (lat_dot & lon_dot) are “‘change in decimal degrees per unit time”;
vertical velocity (alt_dot) is just metres per second.

Parameters
* time (float) — current absolute time, unix timestamp
* lat (float) - current latitude, decimal degrees
* lon (float) - current longitude, decimal degrees
e alt (float) - current altitude, metres above sea level

Return type 3-tuple of floats: (lat_dot, lon_dot, alt_dot)

3.2.1 ...configuration

...1s specified via closures, i.e. we have a function that takes some configuration and returns the actual model function.

3.2.2 ...linear combinations thereof
We want to be able to specify several models, and then “swap bits” out, or pick from a selection when setting up a
flight. E.g., we might want to choose a combination of

* wind velocity

¢ constant ascent

* something more exotic, say, parachute glide

For the majority of cases, a linear combination of the models we are interested in will suffice. Note that a function that
linearly combines models is itself a model; see tawhiri.models.make_linear model ().

3.3 Termination functions

A termination condition decides if the prediction (stage) should stop. They are functions that look something like:

def k(time, lat, lon, alt):
return alt >= 30000

Note that a function returns True to indicate that the prediction should stop.

k(time, lat, lon, alt):
Decides if the prediction should stop (an example function)

Returns True if the prediction should terminate.
Parameters
* time (float)— current absolute time, unix timestamp

* lat (float) - current latitude, decimal degrees

8 Chapter 3. Design of the predictor

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

Tawhiri Documentation, Release 0.2.0

* lon (float) — current longitude, decimal degrees
e alt (float) - current altitude, metres above sea level

Return type bool

3.3.1 ...combinations thereof

Similarly to the ability to linearly combine models, we can “OR” termination functions together with
tawhiri.models.make_any_terminator ().

3.4 Chaining

We want to chain stages of a prediction together: this essentially amounts to running several predictions, with
the initial conditions of the next prediction being the final position of the last, and concatenating the results (see
tawhiri.solver.solve()).

tawhiri.models contains a few “pre-defined profiles”, that is, functions that take some configuration and produce
a chain of stages for a common scenario.

As an example, tawhiri.models.standard _profile () produces the chain containing two stages:
* stage 1

— model: a linear combination (tawhiri.models.make linear _model ()) of con-
stant ascent (tawhiri.models.make constant_ascent ()) and wind velocity
tawhiri.models.make_wind velocity())

— termination condition: above-a-certain-altitude (tawhiri.models.make burst_termination())
* stage 2

— model: a linear combination of “drag descent” (tawhiri.models.make_drag_descent ()) and
wind velocity

— termination condition: positive altitude (tawhiri.models.ground_termination())

3.4. Chaining 9

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#bool

Tawhiri Documentation, Release 0.2.0

10 Chapter 3. Design of the predictor

CHAPTER 4

Specific implementation details

4.1 Interpolation

4.1.1 Introduction

Consider 2D linear interpolation: you know the values of some quantity at the four corners:

f(0,0)=a f(0,1) =0 f(1,0)=c f(1,1) = d,
and you want an estimate for the value at (x, y).
You could first interpolate along the z axis, estimating f(z,0) to be (1 — x)a + zc and f(z, 1) to be (1 — x)b + xd.
(As an aside, you might think of (1 — x) being a ‘weight’: how much of a we should include in our estimate.)
Then, you could interpolate along the y axis, to get
fla,y) = (1=) (1 —)a+ze) +y((1 - 2)b+ d)
=1 -2)(1-yla+ (1 -2)yb+z(1 —y)c+ zyd.

Note, either from the symmetry or just doing it by hand, that you’d get exactly the same thing if you interpolated along
the y axis first. You might interpret the quantity (1 —)(1 — y) as a weight for the top left corner, how much of it we
should include in the answer.

4.1.2 Functions

The function pick3 selects the indices left and right of a given point in time, latitude and longitude (but not altitude:
see below), and then returns an eight element array (via a C ‘out’ pointer): each element represents a corner, and
contains its indices and its weight (the product of the three numbers between 0 and 1 which represent how close the
point we want is to this corner along each axis). Note that the 8 weights will sum to 1. In the implementation, weights
are stored in a variable called lerp.

interp3, given the choices made by pick3, interpolates along the time, latitude and longitude axes, giving the value of
a variable at any point on one of the pressure levels.

search finds the two pressure levels between which the desired altitude lies. It calls interp3 to get the altitude at a
certain point on each pressure level. It uses binary search.

interp4, given the choices made by pick3 and a weight / lerp to use for the altitude interpolation, interpolates along all
four axes.

11

Tawhiri Documentation, Release 0.2.0

4.2 Overview

tawhiri.interpolate.make_interpolator () casts the dataset to a pointer (see
tawhiri.interpolate.DatasetProxy) and wraps the Cython function get_wind in a closure, which
does the main work.

get_wind:
e calls pick3,
e calls search,
* uses interp3 to get the altitude on the pressure levels above and below the desired point,
* calculates the weight / lerp value for interpolating along the altitude axis,

* calls interp4 to get the final “wind u” and “wind v” values.

4.3 Extrapolation

If the altitude is below the lowest level (quite common) or above the highest (rarer), we can switch to extrapolation by
allowing the weight for altitude interpolation to go out of the range [0, 1].

12 Chapter 4. Specific implementation details

CHAPTER 5

API

Tawhiri provides a simple API for requesting predictions. The current API version is Version 1.

5.1 Version 1

5.1.1 API Endpoint

There is a single endpoint, http://predict.cusf.co.uk/api/v1/, to which GET requests must be made with request param-
eters in the query string.

5.1.2 Profiles

Tawhiri supports multiple flight profiles which contain a description of the model chain to be used when predicting a
specific flight type.

Tawhiri currently supports the following profiles:
¢ Standard Profile - standard_profile

¢ Float Profile - float_profile

Standard Profile

A profile for the standard high altitude balloon situation of ascent at a constant rate followed by burst and subsequent
descent at terminal velocity under parachute with a predetermined sea level descent rate.

The API refers to this profile as standard_profile.

Float Profile

A profile for the typical floating balloon situation of ascent at constant altitude to a float altitude which persists for
some amount of time before stopping. Descent is not predicted when using this profile.

The API refers to this profile as float_profile.

13

http://predict.cusf.co.uk/api/v1/

Tawhiri Documentation, Release 0.2.0

5.1.3 Requests

The following parameters are accepted for all requests to the predictor API. In addition, each profile accepts various
additional parameters.

Parameter Re- Default Value Description
quired

profile op- standard_profile The profile to use for this prediction.
tional

dataset op- The latest dataset. The dataset to use for this prediction
tional formatted as a RFC3339 timestamp.

launch_latitrede Launch latitude in decimal degrees. Must
quired be between —90.0 and 90. 0.

launch_longireude Launch longitude in decimal degrees. Must
quired be between 0.0 and 360. 0.

launch_datetréme Time and date of launch formatted as a
quired RFC3339 timestamp.

launch_altitopde Defaults to elevation at launch location | Elevation of launch location in metres
tional | looked up using Ruaumoko. above sea level.

Standard Profile

The standard profile accepts the following parameters in addition to the general parameters above.

Parameter Re- Default Description
quired | Value

ascent_rate| re- The ascent rate of the balloon in metres per second. Must be greater
quired than 0. 0.

burst_altitude The burst altitude of the balloon in metres above sea level. Must be
quired greater than the launch altitude.

descent_ratgere- The descent rate of the balloon in metres per second. Must be greater
quired than 0. 0.

Float Profile

The float profile accepts the following parameters in addition to the general parameters above.

Parameter Re- Default Description
quired | Value

ascent_ratere- The ascent rate of the balloon in metres per second. Must be greater than
quired 0.0.

float_altituele The float altitude of the balloon in metres above sea level. Must be
quired greater than the launch altitude.

stop_datetime Time and date to stop the float prediction formatted as a RFC3339
quired timestamp. Must be after the launch datetime.

5.1.4 Responses

Responses are returned in JSON and consist of various fragments. Successful responses contain request,
prediction and metadata fragments. Error responses contain error and metadata fragments only.

The predictor API returns HTTP Status Code 200 OK for all successful predictions.

14 Chapter 5. API

http://www.cusf.co.uk/wiki/Ruaumoko

Tawhiri Documentation, Release 0.2.0

Request Fragment

The request fragment contains a copy of the request with any optional parameters filled in. If the latest dataset is being

used, its timestamp is included. The API version is also included.

Example:
"request": {
"ascent_rate": 5.0,
"burst_altitude": 30000.0,
"dataset": "2014-08-19T12:00:00z",
"descent_rate": 10.0,
"launch_altitude": 0,
"launch_datetime": "2014-08-19T23:00:00zZ",

"launch_latitude": 50.0,
"launch_longitude": 0.01,
"profile": "standard_profile",
"version": 1

Prediction Fragment

The prediction fragment consists of a list of stages according to the profile in use. Each stage has a name and a
trajectory. The trajectory is a list of points. A point consists of a latitude (decimal degrees), a longitude

(decimal degrees), an altitude (metres above sea level) and a datet ime (RFC3339 timestamp).

Profile Stages
standard_profile | ascent, descent
float_profile ascent, float

Example (truncated for brevity):

"prediction": [
{
"stage": "ascent",
"trajectory": [

{
"altitude": 0.0,
"datetime": "2014-08-19T23:00:00z",
"latitude": 50.0,
"longitude": 0.01

"altitude": 29997.65625,

"datetime": "2014-08-20T00:39:59.531252",
"latitude": 50.016585320900354,
"longitude": 1.0037172612852707

]
s
{

"stage": "descent",
"trajectory": [
{
"altitude": 29997.65625,
"datetime": "2014-08-20T00:39:59.53125z2",
"latitude": 50.016585320900354,
"longitude": 1.0037172612852707

5.1. Version 1

15

Tawhiri Documentation, Release 0.2.0

"altitude": 69.78466142247058,
"datetime": "2014-08-20T01:02:50.6252",
"latitude": 50.01827279347765,
"longitude": 1.2934223933861644

Metadata Fragment

The met adata fragment contains start_datetime and complete_datetime which are RFC3339 formatted
timestamps representing the time and date when the prediction was started and completed.

Example:

"metadata": {
"complete_datetime": "2014-08-19T21:32:52.0369252",
"start_datetime": "2014-08-19T21:32:51.9290282"

}

Error Fragment

The API currently outputs the following types of errors in the error fragment:

Type HTTP Status Code Description
RequestException 400 Bad Request Returned if the request is invalid.
InvalidDatasetExceptiénd Not Found Returned if the requested dataset is invalid.
PredictionException | 500 Internal Returned if the predictor’s solver raises an exception.
Server Error
InternalException 500 Internal Returned when an internal error occurs.
Server Error
NotYetImplementedExdep@loMot Returned when the functionality requested has not
Implemented yet been implemented.
Example:
"error": {
"description": "Parameter 'launch_datetime' not provided in request.",
"type": "RequestException"

5.1.5 Full Examples
Successful Standard Prediction

Request:

$ curl “http://predict.cusf.co.uk/api/vl/?launchilatitudeZSO.O&launchilongitudezo.Ol&la#nchfdatetime:

Response (prediction truncated for brevity):

16 Chapter 5. API

Tawhiri Documentation, Release 0.2.0

{
"metadata": {
"complete_datetime": "2014-08-19T21:32:52.0369252",
"start_datetime": "2014-08-19T21:32:51.92902827"
}I
"prediction": [
{
"stage": "ascent",
"trajectory": [
{
"altitude": 0.0,
"datetime": "2014-08-19T23:00:00z",
"latitude": 50.0,
"longitude": 0.01
}I
{
"altitude": 29997.65625,
"datetime": "2014-08-20T00:39:59.531252",
"latitude": 50.016585320900354,
"longitude": 1.0037172612852707
}
]
}I
"stage": "descent",
"trajectory": [
{
"altitude": 29997.65625,
"datetime": "2014-08-20T00:39:59.531252",
"latitude": 50.016585320900354,
"longitude": 1.0037172612852707
}!
{
"altitude": 69.78466142247058,
"datetime": "2014-08-20T01:02:50.6252",
"latitude": 50.01827279347765,
"longitude": 1.2934223933861644
}
]
}
]I
"request": {
"ascent_rate": 5.0,
"burst_altitude": 30000.0,
"dataset": "2014-08-19T12:00:002z",
"descent_rate": 10.0,
"launch_altitude": O,
"launch_datetime": "2014-08-19T23:00:002",
"launch_latitude": 50.0,
"launch longitude": 0.01,
"profile": "standard profile",
"version": 1
}
}

5.1. Version 1

17

Tawhiri Documentation, Release 0.2.0

Missing Parameters

Request:

$ curl "http://predict.cusf.co.uk/api/vl/?launch_latitude=50.0&launch_longitude=0.01"

Response:
{
"error": {
"description": "Parameter 'launch_datetime' not provided in request.",
"type": "RequestException"

I

"metadata": {
"complete_datetime": "2014-08-19T721:40:08.6972972",
"start_datetime": "2014-08-19T21:40:08.6970592"

18 Chapter 5. API

CHAPTER 6

Web Interface

Details of the web interface.

19

Tawhiri Documentation, Release 0.2.0

20 Chapter 6. Web Interface

CHAPTER 7

tawhiri

7.1 tawhiri package

7.1.1 Submodules

7.1.2 tawhiri.dataset module

Open a wind dataset from file by memory-mapping

Datasets downloaded from the NOAA are stored as large binary files that are memmapped into the predictor process
and thereby treated like a huge array.

Dataset contains some utility methods to find/list datasets in a directory, and can open (& create) dataset files.

Note: once opened, the dataset is mmaped as Dataset.array, which by itself is not particularly useful.
tawhiri.interpolate casts it (via a memory view) to a pointer in Cython.

class tawhiri.dataset .Dataset
A wind dataset

__init__ (ds_time, directory="/srv/tawhiri-datasets’, new=False)
Open the dataset file for ds_time, in directory

Parameters
* directory (string)— directory containing the dataset
e ds_time (datetime.datetime) — forecast time

* new (bool)-should a new (blank) dataset be created (overwriting any file that happened
to already be there), or should an existing dataset be opened?

See also:
open_latest ()
After initalisation, the following attributes are available:

array
A mmap .mmap object; the entire dataset mapped into memory.

ds_time
The forecast time of this dataset (datetime.datet ime).

... and this method:

21

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/mmap.html#mmap.mmap
http://docs.python.org/library/datetime.html#datetime.datetime

Tawhiri Documentation, Release 0.2.0

close ()
Close the dataset

This deletes array, thereby releasing (a) reference to it. Note that other objects may very well hold a
reference to the array, keeping it open.

(The file descriptor is closed as soon as the dataset is mapped.)
The following attributes are class attributes:

shape = (65, 47, 3, 361, 720)
The dimensions of the dataset

Note len (axes[i]) == shapel[i].

axes
The values of the points on each axis: a 5-(named)tuple (hour, pressure variable,
latitude, longitude).

For example, axes.pressure[4] is 900—points in cells dataset.arrayla] [4] [b] [c] [d]
correspond to data at 900mb.

element_type = ‘float32’
The data type of dataset elements

element size=4
The size in bytes of element_type

size = 9528667200
The size in bytes of the entire dataset

SUFFIX_GRIBMIRROR = ‘.gribmirror’
The filename suffix for “grib mirror” files

DEFAULT_ DIRECTORY = ‘/srv/tawhiri-datasets’
The default location of wind data

These “utility” class methods are available:

classmethod £ilename (ds_time, directory="/srv/tawhiri-datasets’, suffix="")
Returns the filename under which we expect to find a dataset

... for forecast time ds_time, in directory with an optional suffix
Parameters
* directory (string)— directory in which dataset resides/will reside
e ds_time (datetime.datetime) — forecast time
Return type string

classmethod 1istdir (directory="/srv/tawhiri-datasets’, only_suffices=None)
Scan for datasets in directory

.. with filenames matching those generated by £ilename () and (optionally) filter by only looking for
certian suffices.

Parameters
* directory (string)— directory to search in

* only suffices (set)—if not None, only return results with a suffix contained in this
set

Return type (named) tuples (dataset time, suffix, filename, full path)

22

Chapter 7. tawhiri

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/stdtypes.html#set

Tawhiri Documentation, Release 0.2.0

classmethod open_latest (directory="/srv/tawhiri-datasets’, persistent=False)
Find the most recent datset in directory, and open it

Parameters
* directory (string)— directory to search
e persistent (bool) - should the latest dataset be cached, and re-used?

Return type Dataset

7.1.3 tawhiri.download module

7.1.4 tawhiri.interpolate module
tawhiri.interpolate.make_interpolator (dataset)
Produce a function that can get wind data from dataset (a tawhiri.dataset.Dataset).
This function returns a closure:
closure. £ (hour, alt, lat, Ing)
Returns delta lat, lon and alt
See also:
implementation
See also:
wind_data

The interpolation code is not documented here. Please see the source on GitHub.

7.1.5 tawhiri.models module

Provide all the balloon models, termination conditions and functions to combine models and termination conditions.

tawhiri.models.float_profile (ascent_rate, float_altitude, stop_time, dataset, warningcounts)
Make a model chain for the typical floating balloon situation of ascent at constant altitude to a float altitude
which persists for some amount of time before stopping. Descent is in general not modelled.

tawhiri.models.make_any_ terminator (ferminators)
Return a terminator that terminates when any of terminators would terminate.

tawhiri.models.make burst termination (burst_altitude)
Return a burst-termination criteria, which terminates integration when the altitude reaches burst_altitude.

tawhiri.models.make_constant_ascent (ascent_rate)
Return a constant-ascent model at ascent_rate (m/s)

tawhiri.models.make_drag_descent (sea_level_descent rate)
Return a descent-under-parachute model with sea level descent sea_level_descent_rate (m/s). Descent rate
at altitude is determined using an altitude model courtesy of NASA: http://www.grc.nasa.gov/WWW/K-
12/airplane/atmosmet.html

For a given altitude the air density is computed, a drag coefficient is estimated from the sea level descent rate,
and the resulting terminal velocity is computed by the returned model function.

tawhiri.models.make_elevation_data_termination (dataset=None)
A termination criteria which terminates integration when the altitude goes below ground level, using the eleva-
tion data in dataset (which should be a ruaumoko.Dataset).

7.1. tawhiri package 23

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#bool
https://github.com/cuspaceflight/tawhiri/blob/master/tawhiri/interpolate.pyx
http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html
http://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html

Tawhiri Documentation, Release 0.2.0

tawhiri.models.make_ linear model (models)
Return a model that returns the sum of all the models in models.

tawhiri.models.make_time_ termination (max_time)
A time based termination criteria, which terminates integration when the current time is greater than max_time
(a UNIX timestamp).

tawhiri.models.make_wind_velocity (dataset, warningcounts)
Return a wind-velocity model, which gives lateral movement at the wind velocity for the current time, latitude,
longitude and altitude. The dataset argument is the wind dataset in use.

tawhiri.models.sea_level_termination (1, lat, Ing, alt)
A termination criteria which terminates integration when the altitude is less than (or equal to) zero.

Note that this is not a model factory.

tawhiri.models.standard_profile (ascent_rate, burst_altitude, descent_rate, wind_dataset, eleva-

tion_dataset, warningcounts)
Make a model chain for the standard high altitude balloon situation of ascent at a constant rate followed by burst

and subsequent descent at terminal velocity under parachute with a predetermined sea level descent rate.

Requires the balloon ascent_rate, burst_altitude and descent_rate, and additionally requires the dataset to use
for wind velocities.

Returns a tuple of (model, terminator) pairs.

7.1.6 tawhiri.solver module

tawhiri.solver.solve (t, lat, Ing, alt, chain)
Solve from initial conditions ¢, lat, Ing and alt, using models and termination criteria from chain, an iterable of
(model, terminator) pairs which make up each stage of the flight.

7.1.7 tawhiri.api module

Provide the HTTP API for Tawhiri.

exception tawhiri.api.APIException
Bases: exceptions.Exception

Base API exception.
status_code =500

exception tawhiri.api.InternalException
Bases: tawhiri.api.APIException

Raised when an internal error occurs.
status_code =500

exception tawhiri.api.InvalidDatasetException
Bases: tawhiri.api.APIException

Raised if the dataset specified in the request is invalid.
status_code = 404

exception tawhiri.api.NotYetImplementedException
Bases: tawhiri.api.APIException

Raised when the functionality has not yet been implemented.

24 Chapter 7. tawhiri

http://docs.python.org/library/exceptions.html#exceptions.Exception

Tawhiri Documentation, Release 0.2.0

status_code =501

exception tawhiri.api.PredictionException
Bases: tawhiri.api.APIException

Raised if the solver raises an exception.
status_code =500

exception tawhiri.api.RequestException
Bases: tawhiri.api.APIException

Raised if request is invalid.
status_code =400

tawhiri.api.handle_exception (error)
Return correct error message and HTTP status code for API exceptions.

tawhiri.api.main/()
Single API endpoint which accepts GET requests.

tawhiri.api.parse_request (data)
Parse the request.

tawhiri.api.ruaumoko_ds ()

tawhiri.api.run_prediction (req)
Run the prediction.

7.1.8 Module contents

Tawhiri is trajectory prediction software for high altitude balloons.

See http://www.cusf.co.uk/wiki/tawhiri:start for further details.

7.1. tawhiri package 25

http://www.cusf.co.uk/wiki/tawhiri:start

Tawhiri Documentation, Release 0.2.0

26 Chapter 7. tawhiri

CHAPTER 8

License & Authors

Tawhiri is Copyright 2014 (see AUTHORS & individual files) and licensed under the GNU GPL 3.

27

https://github.com/cuspaceflight/tawhiri/blob/master/AUTHORS
http://gplv3.fsf.org/

Tawhiri Documentation, Release 0.2.0

28 Chapter 8. License & Authors

CHAPTER 9

See also

* The CUSF wiki contains pages on Tawhiri and prediction in general.

¢ The source is on GitHub.

29

http://www.cusf.co.uk/wiki/
http://www.cusf.co.uk/wiki/tawhiri:start
http://www.cusf.co.uk/wiki/landing_predictor
https://github.com/cuspaceflight/tawhiri

Tawhiri Documentation, Release 0.2.0

30 Chapter 9. See also

cHAPTER 10

Indices and tables

¢ genindex
* modindex

e search

31

Tawhiri Documentation, Release 0.2.0

32 Chapter 10. Indices and tables

Python Module Index

t

tawhiri, 25
tawhiri.api, 24
tawhiri.dataset, 21
tawhiri.interpolate, 23
tawhiri.models, 23
tawhiri.solver, 24

33

Tawhiri Documentation, Release 0.2.0

34 Python Module Index

Index

Symbols

__init__ () (tawhiri.dataset.Dataset method), 21

A

APIException, 24
array (tawhiri.dataset.Dataset attribute), 21
axes (tawhiri.dataset.Dataset attribute), 22

C

close() (tawhiri.dataset.Dataset method), 21

D

Dataset (class in tawhiri.dataset), 21

DEFAULT_DIRECTORY (tawhiri.dataset.Dataset
attribute), 22

ds_time (tawhiri.dataset.Dataset attribute), 21

E

element_size (tawhiri.dataset.Dataset attribute), 22
element_type (tawhiri.dataset.Dataset attribute), 22

F

f() (in module closure), 23
filename() (tawhiri.dataset.Dataset class method), 22
float_profile() (in module tawhiri.models), 23

H

handle_exception() (in module tawhiri.api), 25

InternalException, 24
InvalidDatasetException, 24

L

listdir() (tawhiri.dataset.Dataset class method), 22

M

main() (in module tawhiri.api), 25
make_any_terminator() (in module tawhiri.models), 23

make_burst_termination() (in module tawhiri.models), 23
make_constant_ascent() (in module tawhiri.models), 23
make_drag_descent() (in module tawhiri.models), 23
make_elevation_data_termination() (in module
tawhiri.models), 23
make_interpolator() (in module tawhiri.interpolate), 23
make_linear_model() (in module tawhiri.models), 24
make_time_termination() (in module tawhiri.models), 24
make_wind_velocity() (in module tawhiri.models), 24

N

NotYetImplementedException, 24

open_latest() (tawhiri.dataset.Dataset class method), 22

P

parse_request() (in module tawhiri.api), 25
PredictionException, 25

R

RequestException, 25
ruaumoko_ds() (in module tawhiri.api), 25
run_prediction() (in module tawhiri.api), 25

S

sea_level_termination() (in module tawhiri.models), 24

shape (tawhiri.dataset.Dataset attribute), 22

size (tawhiri.dataset.Dataset attribute), 22

solve() (in module tawhiri.solver), 24

standard_profile() (in module tawhiri.models), 24

status_code (tawhiri.api.APIException attribute), 24

status_code (tawhiri.api.InternalException attribute), 24

status_code (tawhiri.api.InvalidDatasetException at-
tribute), 24

status_code (tawhiri.api.NotYetImplementedException
attribute), 24

status_code (tawhiri.api.PredictionException attribute),
25

status_code (tawhiri.api.RequestException attribute), 25

35

Tawhiri Documentation, Release 0.2.0

SUFFIX_GRIBMIRROR (tawhiri.dataset.Dataset at-
tribute), 22

T

tawhiri (module), 25
tawhiri.api (module), 24
tawhiri.dataset (module), 21
tawhiri.interpolate (module), 23
tawhiri.models (module), 23
tawhiri.solver (module), 24

36 Index

	Introduction
	Setup & Installation

	Wind Data
	Design of the predictor
	Overview
	Models
	Termination functions
	Chaining

	Specific implementation details
	Interpolation
	Overview
	Extrapolation

	API
	Version 1

	Web Interface
	tawhiri
	tawhiri package

	License & Authors
	See also
	Indices and tables
	Python Module Index

