
taretto Documentation

RedHatQE

Sep 07, 2022

Contents:

1 Guides 3
1.1 Taretto Complete Tutorial . 3

2 Indices and tables 7

i

ii

taretto Documentation

Warning: EARLY PRE-RELEASE This version of Taretto is an early pre-release which is likely to change
drastically until version 0.5.

Taretto is a collection of tooling to assist in performing functional testing of applications. The tools are designed to be
used either separately or in combination with each other. For some tools, their integration is strong, others are more
standalone. Currently Taretto offers the following tools:

• Navmazing - A tool design to build up complex navigation trees from simple steps. You define navigation
destinations, including a way to check if you are already at the destination already, a prerequisite, and a step to
take once the prerequisite is reached. Navmazing will then navigate to a destination by chaining the prerequisites
together, skipping out early if it detects it is already there.

• Widgetastic - If you have the requirement to describe and interact with web based forms and user interfaces,
Widgetastic can simplify and maximise code reuse. The system has a powerful View system to enable con-
ditional view based on the values of widgets on the page. Widgetastic comes with support for basic HTML
elements as well as the PatternFly library. More UI frameworks are planned in the future.

• Sentaku - This tool allows you to specify multiple methods on an object with the same name and then let the
system decide which one to run based on either a context that you specify, or a predefined preferential list. This
allows you to support multiple implementations, ie REST, UI, SSH, for a single object method, and have the
system pick which one to use. The beauty of this approach is that your test body can be the same for each
implementation and the context will dictate which implementation of hte method will be run.

In the future, Taretto is hoping to provide tooling for

• Browser management

• pytest helpers

• Collections and Entities Modelling

Contents: 1

taretto Documentation

2 Contents:

CHAPTER 1

Guides

1.1 Taretto Complete Tutorial

This guide is designed to show you how to construct and build a testing framework around Taretto. The beginning
assumes you have only done minimal work on your current testing framework and are starting it from scratch. This
does not mean that this is the only way to use Taretto. There are plenty of opportunities for Taretto to fit into an
existing framework, you may like to browse the various guides and tutorials to see how Taretto can help you out in
these cases.

Taretto, like many other systems has an optimal design pattern to follow. Whilst many of the tools can be utilized in
alternative configurations and designs, it is important to know that the best integrations will be obtained by designing
your framework around these fundamental principles.

You can try all the examples in this guide by downloading and running the Taretto demo application *sheru* as a
basic web application. The details of which are described below.

1.1.1 A Basic Application

No one likes reading a ton of documentation, so we’ll try to keep this short. We are going to assume we will be testing
a simple poll web application, that provides a web interface, and a REST API. We’ll assume that we have a database
backend modeling users, polls and votes.

• Polls - We will have a page that shows a list of the polls that a user administrates, a details page for each poll
showing the votes and a page to add a new poll.

• Votes - We will have the page to allow a vote to be cast on a particular poll. A user can also see all the votes
they have cast.

• Users - We will have a mechanism for a user to edit their details and a superuser who can administrate all of
the polls and votes.

This is going to form the basic simple application that we will be testing against. Sheru is going to provide some very
basic views and widgets that we can model and use within Taretto.

3

taretto Documentation

1.1.2 Taretto Guiding Principles

Taretto is designed to work best in an object oriented design. Neither your application, nor your testing modeling
needs to be object oriented, but this is where Taretto excels and you will be able to leverage far more of Taretto’s
tooling integration if you are setup in an object oriented way.

Application Object

In Taretto we start with the concept of an Application. The application is the basic building block of Taretto testing.
It is used to hold information about the application we are testing, such as its URL or schema. It can also hold other
methods that will function on the appliance, perhaps you may have some maintenance tasks that you want to perform,
or clear the entire database.

This appliance object is used to hold some important pieces of information in the Taretto testing environment. It can
for example hold a browser object so that you can perform Taretto UI testing, or contextual information for sentaku.

Note: This application object is not essential, but is extremely important if you want to test against multiple instances
of your application at once. It is only using this application object that Taretto can be sure which Application you are
targeting with your operations.

An example of this is below:

class Application():
def __init__(self, url, schema="https://")

self.url = url
self.schema = schema

Entity Objects

From an organizational standpoint, testing against any kind of application usually means that you have some kind of
object that the application either lets you manipulate or access. Continuing with the object oriented approach, Taretto
works best if you have modeled, even very simply, objects in your application as objects in your testing framework.

An example of a basic user object is below. Notice that the application instance is required to tie a specific user instance
to a particular application instance. This then means that any operations performed on the application, automatically
have access to the application instance and know which application they are bound to, something which is incredibly
important for things like navigating to the object in the UI, or accessing it via REST.

class User():
def __init__(self, application, username, name=None):

self.application = application
self.username = username
self.name = name or username

Widgets

In a UI there are controlling elements which allow you to interact with the page. These elements can sometimes be
navigational, or they can allow you to input data, or even read data. In Taretto, these Widgets are modelled in Python,
allowing you to abstract away the intricacies of XPATH or element locating. These Widgets often take either strings,
or ids and are able to give the test writer an easily accessible object with simple methods to interact with them, such
as .read(), .fill() and is_displayed().

4 Chapter 1. Guides

taretto Documentation

Taretto provides some libraries for commonly used widgets and even for some common UI frameworks, such as
patternfly.

An example of a Widget definition is below:

account = Text(locator='//a[@title="Account"]')

Views

Taretto has the concept of views. These are pieces of a UI which can be inherited by other views allowing you to
build up complex models of UI pages with very simple definitions. These views also give you an easy way to access
the widgets on the page and perform operations with them. A view is a subclass of a widget and so by extension, it
also has access to the .read(), .fill() and is_displayed() operations. This allows you to be able to read all of the form
elements values on a single page, fill in multiple fields with a single operation by passing a dictionary, like filling in a
form and checking to see if we are on a certain page.

A very basic view is shown below:

class BasePage(View):
username = TextInput(id="username")
password = TextInput(id="password")
login_button = Text(locator='//button[@id="_eventId_submit"]')

Navigation

Using Taretto, we can define steps to perform navigation. The system used inside Taretto works best with an object
oriented design and allows you to bind destinations, places you’d like to go to in the user interface, and link them to
specific objects. This means that you can navigate to an object without the requirement of passing in any contextual
information. The navigation system can also be very complex, allowing you to build incredibly dynamic models of
navigation.

A simple navigation destination may look something like this:

@navigator.register(Application)
class LoggedIn(IQENavigateStep):

VIEW = BasePage
prerequisite = NavigateToSibling('LoginScreen')

def step(self):
self.prerequisite_view.do_login()

Ignoring all the specifics right now, this navigation destination, or ND for short, defines a prerequisite navigation step
of being on the LoginScreen and then describes the step for completing the navigation.

1.1. Taretto Complete Tutorial 5

taretto Documentation

6 Chapter 1. Guides

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7

	Guides
	Taretto Complete Tutorial

	Indices and tables

