

 Navigation

 	
 next

 	Tarbell 0.8 documentation

Welcome to Tarbell!

The Tarbell template uses Python Flask and Google Spreadsheets to create
simple, static sites that can be baked out to Amazon S3 or your local
filesystem.

Tarbell is named after Ida Tarbell, a distinguished muckraking journalist whose
1904 The History of the Standard Oil Company is a masterpiece of investigative
reporting. Read more about her on Wikipedia [http://en.wikipedia.org/wiki/Ida_Tarbell].

Building a project

	Install Tarbell
	How do I install these tools on my system?

	Create a Project
	Prerequisite: Authenticating with Google with client_secrets.json

	Create a project

	Manually creating Google Spreadsheets

	Build a Project
	Project layout

	What’s the difference between static assets and templates?

	Editing templates

	What’s _base.html?

	Editing Javascript app

	Publish a Project
	Amazon S3 setup

	Help! I don’t have an Amazon S3 account.

	Deploying

	Reference
	Configuring Tarbell

	Base project

	JSON publishing

 Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.8 documentation

Install Tarbell

Clone repository, install virtual environment, install requirements, configure
your system for Amazon S3, and run a test server.

Tarbell is a Python library based on Flask which powers static sites. Truth be
told, it doesn’t do much on its own except read a directory and render
templates in any subdirectory it finds a config.py file. To see Tarbell in
action, you should probably start with the Tarbell template, which sets up an
Amazon S3 publishing workflow and basic framework for building modern web apps
using Tarbell.

Make sure you have python (2.6+), git, pip, virtualenv and
virtualenv-wrapper installed on your system.

git clone https://github.com/newsapps/tarbell
cd tarbell
mkvirtualenv tarbell
pip install -r requirements.txt
python runserver.py

Now visit http://localhost:5000/readme in your browser. You should see the
latest version of this page.

How do I install these tools on my system?

For a very basic guide, see the Chicago Birthrates installation docs. [https://hackpad.com/Install-Chicago-Birthrates-6V2O2Un04Ow]

For more detailed, Mac-specific information, see Brian Boyer’s Lion dev
environment notes. [https://gist.github.com/brianboyer/1696819]

 Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.8 documentation

Create a Project

Get the client_secrets.json file if you don’t have it already. Use the fab
newproject command to kick off a new project by copying a basic project
structure and setting up a Google spreadsheet.

Prerequisite: Authenticating with Google with client_secrets.json

Tarbell uses the Google Drive API to create new spreadsheets, which requires
going through a little OAuth2 song-and-dance. This is optional but highly
recommended, in part because Tarbell will probably use this technique for all
authentication and access in the future. If you want to skip this step and
configure your spreadsheet manually, see Manually creating Google
spreadsheets.

You ready? Let’s go.

In order to allow Tarbell to create new Google Spreadsheets, you’ll need to
download a client_secrets.json file [https://developers.google.com/api-client-library/python/guide/aaa_client_secrets]
to access the Google Drive API. You can share this file with collaborators and
within your organization, but do not share this file anywhere public.

Log in to the Google API Developer Console [https://code.google.com/apis/console/] and create a new project:

[image: _images/create_1.png]
Now click the “Services” tab and enable Google Drive API.

[image: _images/create_2.png]
Click the “API Access” tab to create a client ID:

[image: _images/create_3.png]
Add some project details. These don’t really matter:

[image: _images/create_4.png]
This is the important screen. Select “installed app” and “other”:

[image: _images/create_5.png]
Whew! Now you can download the client_secrets.json file:

[image: _images/create_6.png]
Now put the file in the root directory of your Tarbell installation.

The first time you run fab newproject and answer yes to create a Google
spreadsheet, your default browser will open and you will be prompted to grant
your Tarbell client access to your API key.

[image: _images/create_7.png]
The fab newproject command will prompt you if the client_secrets.json
file doesn’t exist.

The first time you create a new project and spreadsheet, make sure you are
not running any services on port 8080, such as MAMP. The Python Google API
client library fires up a tiny little server on port 8080 to receive and store
an access token during this cycle. Because the access token is stored, you
won’t need to do again unless your token is revoked. You can restore any port
8080 services indefinitely.

Help us improve! We know this step is a little rocky. We’d like to make it
smoother. If you are an OAuth or Google Drive API expert, we need your help.
See #21 Improve OAuth workflow for newproject command [https://github.com/newsapps/tarbell/issues/21] and #22 Use Drive API in
Tarbell library [https://github.com/newsapps/tarbell/issues/22].

Create a project

To create your first project, use the handy fab command:

fab newproject

You’ll be prompted with a series of questions. Here’s what you’ll see the first
time you it with user input highlighted.

What is the directory name for the project? awesomeproject
What is your project's full title? Awesome project
Do you want a Google doc associated with this project? [Y/n]: y
Generating Google spreadsheet
What Google account should have access to this spreadsheet initially? (e.g. my.name@gmail.com) somebody@gmail.com
Authenticating your Google account to use Tarbell. If any services are running on
port 8080, disable them and run this command again.

Your browser has been opened to visit:

 https://accounts.google.com/o/oauth2/auth?scope=https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.file&redirect_uri=http%3A%2F%2Flocalhost%3A8080%2F&response_type=code&client_id=000000000000.apps.googleusercontent.com&access_type=offline

If your browser is on a different machine then exit and re-run this
application with the command-line parameter

 --noauth_local_webserver

Authentication successful.
Success! View the spreadsheet at https://docs.google.com/spreadsheet/ccc?key=BIGLONGSPREADSHEETKEY90xlk39102k4

This spreadsheet is published in public on the web. To make it private
you'll need to configure the project's secrets.py file, disable
publishing using the 'Publish to the web' settings from the file menu,
and share the document with the account specified in secrets.py.

Created /Users/davideads/Repos/tarbell/awesomeproject/config.py
Created /Users/davideads/Repos/tarbell/awesomeproject/secrets.py
Created directory /Users/davideads/Repos/tarbell/awesomeproject/static/css
Created /Users/davideads/Repos/tarbell/awesomeproject/static/css/style.css
Created directory /Users/davideads/Repos/tarbell/awesomeproject/static/js
Created /Users/davideads/Repos/tarbell/awesomeproject/static/js/app.js
Created directory /Users/davideads/Repos/tarbell/awesomeproject/templates
Created /Users/davideads/Repos/tarbell/awesomeproject/templates/index.html
Would you like to create a new branch and initial commit for this project? [Y/n]: y
[localhost] local: git checkout master;
git checkout -b awesomeproject
M fabfile.py
M readme/docs/create.md
Already on 'master'
M fabfile.py
M readme/docs/create.md
Switched to a new branch 'awesomeproject'
[localhost] local: git add awesomeproject
[localhost] local: git commit -m "Started new project awesomeproject"
[awesomeproject cc2502a] Started new project awesomeproject
 5 files changed, 212 insertions(+), 0 deletions(-)
 create mode 100644 awesomeproject/config.py
 create mode 100644 awesomeproject/secrets.py
 create mode 100644 awesomeproject/static/css/style.css
 create mode 100644 awesomeproject/static/js/app.js
 create mode 100644 awesomeproject/templates/index.html

Welcome to Awesome project. Great work! What's next?

- Edit awesomeproject/config.py to set up template values and adjust project settings.
- Edit awesomeproject/secrets.py to configure Google spreadsheet authentication variables.
- Edit awesomeproject/templates/index.html to edit your default template.
- Edit awesomeproject/static/js/app.js to edit your default Javascript app.
- Run `python runserver.py` and view your project at http://localhost:5000/awesomeproject/

Run `fab deploy` and `fab project:projectname deploy` to deploy to S3 if you have a bucket configured.

Done.

Manually creating Google Spreadsheets

To manually set up a Google spreadsheet for your project:

	Create a new Google spreadsheet

	Rename “Sheet1” to “values”

	Add ‘key’ and ‘value’ column headers in the first row

	Add the spreadsheet key in projectname/config.py

	
	Public access:

	
	Set the spreadsheet to ‘publish to the web’

	
	Private access:

	
	Grant access to a special user account (you’ll be storing password in the clear, so set up a new account for this)

	Add credentials to projectname/secrets.py

 Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.8 documentation

Build a Project

Project layout, edit templates and manage Google spreadsheet, tweak CSS, and
take a peek at the Javascript app.

Now that you’ve created a new project, let’s look at how Tarbell projects are
constructed.

Project layout

A Tarbell template project directory structure looks like this:

	config.py: Configuration file. Required to detect the project.

	secrets.py: Set GOOGLE_AUTH variable to configure authentication. Not tracked by Git.

	
	templates: The templates directory contains Jinja templates that will be published at /projectname/TEMPLATENAME.html.

	
	index.html: A basic template to start building with.

	
	static: The static directory contains static assets like images, CSS, and Javascript. They are published at /projectname/FILENAME.

	
	js/app.js: An skeleton Javascript application for your project that is automatically loaded by base template.

	css/style.css: An empty stylesheet for your project.

What’s the difference between static assets and templates?

Static assets are simply served as-is, while templates are provided with
context variables and rendered using Jinja.

Editing templates

Every file that ends in .html in projectname/templates will be
published to projectname/TEMPLATENAME.html and can be previewed at
http://localhost:5000/projectname/TEMPLATENAME.html.

Template basics

Tarbell uses Jinja2 [http://jinja.pocoo.org/docs/] for templating and
supports all Jinja2 features.

A basic template looks like:

{% extends '_base.html' %}

{% block css %}
{{ super() }} {# Load base styles #}
<link rel="stylesheet" type="text/css"
 href="{{ static_url('MYPROJECT', '/css/style.css') }}" />
{% endblock css %}

{% block content %}
<h1>{{ title }}</h1>
<p class="credit">{{ credit }}</p>
{{ body|process_text }}
{% endblock content %}

What’s _base.html?

The Tarbell template comes with a base template file that sets up some simple
blocks and manages Javascript app loading.

The static_url() template function

The static_url(projectname, path) function constructs the path to an asset
stored under projectname/static based on the project’s output URL.

Working with Google spreadsheets: The “values” worksheet

The values worksheet must have “key” and “value” columns. These key-value
pairs will be provided as global variables to templates. So if there’s a row
with a key column value of “foo” and a value of “bar”, {{ foo }} in a
template will print bar.

Working with Google spreadsheets: Other worksheets

Other worksheets can hold freeform data, namespaced by the worksheet name.
Unlike the values worksheet, data in these worksheets can be accessed by
iterating through a list or, if a column named “key” is present, by reference
to the value in that column. Some examples with a worksheet named updates
should help make this clear.

A worksheet called “updates”

	key
	title
	date
	url

	hadiya
	Hadiya’s friends
	05-05-2013
	http://graphics.chicagotribune.com/hadiyas-friends

	grace
	His Saving Grace
	02-14-2013
	http://graphics.chicagotribune.com/grace

Get worksheet values in template

The worksheet will be passed to your context as an iterable list, with each
column in the worksheet representing a separate item in the context dictionary.
So in your template, the following code displays the contents of each row in
your spreadsheet:

{% for row in updates %}
<p> {{ row.title }} </p>
{% endfor %}

Directly accessing a row

If there’s a header named “key” that contains only unique, simple string values
we can directly access individual rows in that worksheet:

<p> {{ updates.grace.title }} </p>

Editing Javascript app

Every project comes with a barebones Javascript app in
projectname/static/js/app.js.

The app uses RequireJS and provides Backbone, jQuery, and Underscore libraries
by default.

Wrap your app code in a require(['dependency', ...], function(DepObj) { ...
}) call to include necessary libraries and modules.

// Additional RequireJS configuration
require.config({
 paths: {
 moment: '//cdnjs.cloudflare.com/ajax/libs/moment.js/2.0.0/moment.min',
 },
});

// Start our project's app
require(['jquery', 'base/views/NavigationView', 'moment'],
function($, NavigationView, moment) {
 console.log("Creating navigation view");
 var nav = new NavigationView({
 el: $('#header'),
 title: { label: 'Tarbell Readme', url: '#top' },
 }).render();

 console.log("Demonstrating momentJS:");
 console.log(new moment());
});

 Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	Tarbell 0.8 documentation

Publish a Project

Use fab deploy and fab project:<projectname> deploy to upload your project to
Amazon S3. Customize the publishing process.

Amazon S3 setup

An Amazon S3 publishing workflow is included in the Tarbell template. To use
it, you’ll need your Amazon S3 credentials [https://portal.aws.amazon.com/gp/aws/developer/account/index.html?action=access-key].

Create a file called s3config.py in your Tarbell template directory.

S3CONFIG = {
 'BUCKETNAME': {
 'bucket': 'mybucket.domain.com',
 'key': 'KEY',
 'key_id': 'KEYID',
 }
}

Help! I don’t have an Amazon S3 account.

Amazon S3 is simply online file storage – think of it as FTP on steroids.
Setting up an Amazon S3 account is easy. Just check out this beginners guide [http://www.hongkiat.com/blog/amazon-s3-the-beginners-guide/]. If you want to
use your S3 “bucket” as a website, read Amazon’s guide to S3 website hosting [http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html].

Deploying

Once your Amazon S3 access credentials are configured, deploying all projects is very simple:

fab target:BUCKETNAME deploy

This will deploy to the bucket specified by BUCKETNAME in s3config.py.

To simplify deploying to the bucket named production, simply run:

fab deploy

When deploying you’ll see something like:

[localhost] local: python render_templates.py
Rendering templates.

Generating project 'base' in /Users/davideads/Repos/tarbell/out/
-- No Google doc configured for base.

Generating project 'readme' in /Users/davideads/Repos/tarbell/out/readme
-- Created JSON /Users/davideads/Repos/tarbell/out/readme/json/values.json
-- Created JSON /Users/davideads/Repos/tarbell/out/readme/json/LAST_UPDATED.json
-- Created JSON /Users/davideads/Repos/tarbell/out/readme/json/projects.json
-- Created page /Users/davideads/Repos/tarbell/out/readme/index.html

[localhost] local: python s3deploy.py
Deploying to tarbell.tribapps.com
Uploading css/style.css
Uploading js/app.js
Uploading js/templates/nav.jst
Uploading js/views/NavigationView.js
Uploading readme/index.html
Refreshing Facebook info for: http://tarbell.tribapps.com/readme/index.html?fbrefresh=CANBEANYTHING
Uploading readme/bootstrap/css/bootstrap.css
Uploading readme/bootstrap/css/bootstrap.min.css
Uploading readme/bootstrap/img/glyphicons-halflings-white.png
Uploading readme/bootstrap/img/glyphicons-halflings.png
Uploading readme/bootstrap/js/bootstrap.js
Uploading readme/bootstrap/js/bootstrap.min.js
Uploading readme/css/ir_black.css
Uploading readme/css/style.css
Uploading readme/img/google-screenshot.jpg
Uploading readme/img/html-edit-screenshot.jpg
Uploading readme/img/ida-tarbell.jpg
Uploading readme/img/s3-publish-screenshot.jpg
Uploading readme/js/app.js
Uploading readme/json/LAST_UPDATED.json
Uploading readme/json/projects.json
Uploading readme/json/values.json

To deploy a specific project, use the project:PROJECTNAME flag:

fab project:PROJECTNAME deploy

In the following example, we’ll publish a project called basketball using a
bucket configuration named sports:

fab project:basketball target:sports deploy

Please note: The base template is always published – it is assumed most
projects will use some base components.

 Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

 Navigation

 	
 previous

 	Tarbell 0.8 documentation

Reference

Configure Tarbell, set up a Flask Blueprint, special base project.

Configuring Tarbell

When your project was created, a config.py file was created in the project
directory, which lets Tarbell find your project. This file can be empty, but
also accepts several configuration options:

	GOOGLE_DOC: A dict of Google docs parameters to access a spreadsheet.

Takes key, account, and password parameters.

The default template stores account and password variables in a file called
secrets.py in variable called GOOGLE_AUTH. Use secrets.py to keep
your authentication information out of version control.

GOOGLE_DOC = {
 'key': "BIGLONGSTRINGOFLETTERSANDNUMBERS",
 'account': "some+account@gmail.com",
 'password': "++GmailPassWord++",
}

	DEFAULT_CONTEXT: Default context variables to make available to all project templates.

DEFAULT_CONTEXT = {
 'ad_path': '',
 'analytics_path': '',
}

	DONT_PUBLISH: If True, this project will not be published to S3.

DONT_PUBLISH=True

Default: False

	URL_ROOT: Override the published URL to differ from the directory
name.

URL_ROOT='totally-awesome-project'

Default: None (publish using name of directory)

	CREATE_JSON: If False, do not publish JSON data. Useful if
spreadsheets contain secrets or sensitive information, and so should not
be public.

CREATE_JSON = False

Default: True

For advanced uses, you can turn your project into a Flask Blueprint in order to
register template filters or dynamically set the template context.

from flask import Blueprint
blueprint = Blueprint('awesome_project', __name__)

Register template filter
@blueprint.app_template_filter('my_filter')
def my_filter(text):
 return text.strip()

@blueprint.app_context_processor
def context_processor():
 """
 Add "my_variable" to context
 """
 context = {
 'my_variable': 'My variable would be more awesome in real life, like reading a file or API data.",
 }

 return context

Now you can reference {{ my_variable }} in your templates, or call your
filter on a template variable {{ my_variable|my_filter }}.

Base project

If any project contains a URL_ROOT = '' configuration, that project will:

	Be available at the root URL (/index.html, /css/style.css, etc).

	Always be published when deploying.

JSON publishing

By default, every project’s Google spreadsheet will be baked out to a JSON file
representing each worksheet. For example, most projects will have a
myproject/json/values.json that represents the contents of the “values”
worksheet.

This means you can build pure Javascript apps using Tarbell in the framework of
your choice. Just AJAX load or bootstrap the JSON data.

To disable this behavior, add a line to your config.py:

CREATE_JSON = False

If you disable this behavior and need data available to Javascript
applications, simply bootstrap the dataset provided it isn’t too big. Here’s
something you might put in myproject/index.html:

{% block scripts %}
<script type="text/javascript">
 // Convert whole worksheet to JSON
 var authors = {{ authors|tojson }}

 // Filter a worksheet
 var locations = [{% for address in locations %}
 { state: '{{ address.state }}' },
 {% endfor %}];

 // Now process or display 'authors' and 'locations' ...
</script>
{% endblock %}

 Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

_images/create_5.png
Create Client ID

Client ID Settings

Application type
O Web application
Accessed by web browsers over a network.

O Service account
Calls Google APIs on behalf of your application instead of an end-user. Leam more

@ Installed application
Runs on a desktop computer or handheld device (iike Android or iPhone).

Installed application type
O Android Leam more
O Chrome Application Leam more
O i0S Leam more

search.html

 Navigation

 		Tarbell 0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, News Apps and David Eads.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_images/create_4.png
Create Client ID

Branding Information
‘The following information will be shown to users whenever you request access to their private data
using your new client ID.

Product name: Tarbell

Google account: davideads@gmail.com - you
Link your project to this account's profile and reputation.

Product logo:

_static/up-pressed.png

_static/up.png

_images/create_7.png
KPCC is requesting permission to: 0893KPCC
» View and manage Google Drive files that you have opened o created with
this app KPCC

Learn more.
© Perform these operations when I'm not using the application

_images/create_2.png
Tarbell v | A1) Active (1) Inactive (60)
All services
Seloc saices forthe prject.
Team Service
APl Access
Reports ® Ad Exchange Buyer API
Quotas. 2 Ad Exchange Seller API
% Admin SDK
% AdSense Host API
| AdSense Management API
& Analytics API
Q Audit API
% BigQuery API
3 Blogger API v3
Bl Books API
Y calendar API
. Q custom Search API
Enable Drive

AP \Lﬂ%
% prive API

Google Cloud Platform

®© © 6 &6 © © © © © ©6 © ©

aé@@@f

]

:

oFF

oFF

oFF

|

est access...

oFF

Fr

8

Fr

oFF

est access...

Fr

Fr

Fr

Fr

Notes.

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

Courtesy limit:

1,000 requests/day

10,000 requests/day

150,000 requests/day

100,000 requests/day

10,000 requests/day

50,000 requests/day

10,000 requests/day

10,000 requests/day » Pricing

10,000 requests/day

1,000 requests/day

10,000 requests/day

100 requests/day + Pricing

10,000 requests/day

10,000,000 requests/day

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_images/create_3.png
Google apis

API Project
i API Access

Overview To prevent abuse, Google places limits on AP requests. Using a valid OAuth token or AP! key allows you to exceed anonymous limits
Services. by connecting requests back to your project.
Te .

eam Authorized API Access
API Access
Reports ‘OAuth 2.0 allows users to share specific data with you (for example, "
Quotes contact lsts) whie kesping their usemames, passwords, and other Click the big old

u

information private. A single project may contain up to 20 client IDs. button
Leam mora /
Create an OAuth 2.0 client ID.
Simple APl Access
Use API keys to dentify your project when you do not need to access user data. Lear more

Key for browser apps (with referers)
APl key:

Referers: Any referer allowed
Activated on: May 25, 2013 2:38 PM
Activated by: davideads@gmail.com - you

Edit allowed referer

Delete key...

Create new Server key... | Create new Browser key... | Create new Android key... | Create new i0S key.

_static/file.png

_images/create_1.png
Google apis

Start using the Google APIs console
to manage your AP usage

Creating an APIs project wil let you:

« Use Google APIs beyond anonymous limits.
+ Monitor API usage and control API access.
« Share API management with a team.

_static/down-pressed.png

_images/create_6.png
Google apis

API Project

Overview
Services
Team

APl Access
Reports.
Quotas

API Access

To prevent abuse, Google places limits on API requests. Using a valid OAuth token or AP key allows you to exceed anonymous limits
by connecting requests back to your project.

Authorized API Access
OAuth 2.0 allows users to share specific data with you (for example, contact lists) while keeping their usemames, passwords, and other

information private. A single project may contain up to 20 client IDs. Leam more
Branding information
“The following information is shown to users whenever you request access to their private data.

Product name: Tarbell
Google account: davideadsgmail.com

Edit branding information...

Client ID for installed applications.

Finally! Download
client_secrets.json

Client ID: .apps.googleusercontent .con Edit settings...

Client secret: Reset client secret.

Rediect URIs: urn:ietfiwgioauthi2.0:o0b Download JSON

Llocalhost
v Delete.

| Create another client ID.

