

Welcome to tao-of-tmux’s documentation!

The Tao of tmux by Tony Narlock

This book is available for free to read on the web at <https://leanpub.com/the-tao-of-tmux/read>.

talen move it to sphinx.

Contents:

	Foreword
	About this book

	Styles

	How this book is structured

	Donations

	Formats

	Errata {#errata}

	Thanks

	Book Updates and tmux changes

	Thinking in tmux {#thinking-tmux}
	Window manager for the terminal

	Multitasking

	Keep your applications running in the background

	Powerful combos

	Summary

	Terminal fundamentals {#terminal-fundamentals}
	POSIX standards

	Terminal interface

	Terminal emulators

	Shell languages {#shell-languages}

	Shell interpreters (Shells) {#shells}

	Summary

	Practical usage {#practical-usage}
	The prefix key {#prefix-key}

	Session persistence and the server model

	It’s all commands

	Summary

	Server {#server}
	What? tmux is a server?

	Zero config needed

	Stayin’ alive

	Servers hold sessions

	How servers are “named”

	Clients

	Clipboard {#clipboard}

	Summary

	Sessions {#sessions}
	Creating a session

	Switching sessions within tmux

	Naming sessions

	Does my session exist?

	Summary

	Windows {#windows}
	Creating windows

	Naming windows

	Traversing windows

	Moving windows

	Layouts {#window-layouts}

	Closing windows

	Summary

	Panes {#panes}
	Creating new panes

	Traversing Panes {#pane-traversal}

	Zoom in {#zoom-pane}

	Resizing panes {#resizing-panes}

	Outputting pane to a file

	Summary

	Configuration {#config}
	Reloading configuration {#reload-config}

	How configs work

	Server options

	Session options

	Window options

	Keybindings

	Status bar and styling {#status-bar}
	Window status symbols

	Date and time

	Shell command output

	Styling

	Styling while using tmux

	Toggling status line

	Example: Default config

	Example: Dressed up {#status-bar-example-dressed-up}

	Example: Powerline

	Summary

	Scripting tmux {#scripting-tmux}
	Aliases {#aliases}

	Pattern matching {#fnmatch}

	Targets {#targets}

	Formats {#formats}

	Controlling tmux {#send-keys}

	Capturing pane content {#capture-pane}

	Summary

	Tips and tricks {#tips-and-tricks}
	Read the tmux manual in style

	Log tailing

	File watching {#file-watching}

	Session Managers {#session-manager}

	More code and examples {#example-projects}

	tmux-plugins and tpm

	Takeaway {#takeaway}

	Appendix: Cheatsheets {#appendix-cheatsheets}
	Commands

	Keybindings

	Formats {#appendix-formats}

	Appendix: Installing tmux {#appendix-installation}
	macOS / OS X

	Linux

	BSD

	Windows 10

	Appendix: tmux on Windows 10 {#appendix-windows-bash}

	Appendix: Troubleshooting {#appendix-troubleshooting}
	E353: Nothing in register * when pasting on vim

	tmuxp: command not found and powerline: command not found {#troubleshoot-site-paths}

Indices and tables

	Search Page

 {frontmatter}

Foreword

Nearly all my friends use tmux. I remember going out at night for drinks and the
three of us would take a seat at a round table and take out our smart phones.
This was back when phones still had physical “QWERTY” keyboards.

Despite our home computers being asleep or turned off, our usernames in the IRC
channel we frequently visited persisted in the chatroom list. Our screens were
lit by a kaleidoscope of colors on a black background. We ssh’d with ConnectBot
into our cloud servers and reattached by running screen(1) [https://en.wikipedia.org/wiki/GNU_Screen].
As it hit 2AM, our Turkish coffee arrived, the |away status indicator trailing
our online nicknames disappeared.

It was funny noticing, even though we knew each other by our real names, we
sometimes opted to call each other by our nicks. It’s something about how
personal relationships, formed online, persist in real life.

It seemed as if it were orchestrated, but each of us fell into the same ebb and
flow of living our lives. No one told us to do it, but bit by bit, we
incrementally optimized our lifestyles, personally and professionally, to arrive
at destinations seeming eerily alike.

Like many things in life, when we act on autopilot, we sometimes arrive at
similar destinations. This is often unplanned.

So, when I write an educational book about a computer application, I hope to
write it for human beings. Not to sell you on tmux, convince you to like it or
hate it, but to tell you what it is and how some people use it. I’ll leave the
rest to you.

About this book

I’ve helped thousands learn tmux through my free resource under the name
The Tao of tmux [https://tmuxp.git-pull.com/en/latest/about_tmux.html], which I
kept as part of the documentation for the tmuxp session manager [https://github.com/tony/tmuxp].
And now, it’s been expanded into a full-blown book with refined graphics,
examples, and much more.

You do not need a book to use or understand tmux. If you want a technical
manual, look at the manpage for tmux [http://man.openbsd.org/OpenBSD-current/man1/tmux.1].
Manpages, however, are rarely sufficient to wrap your brain around
abstract concepts; they’re there for reference. This learning book is the
culmination of years of explaining tmux to others online and in person.

In this book, we will break down tmux by its objects, from servers
down to panes. It also includes a rehash of terminal facilities we use every day
to keep us autodidacts up to speed with what is what. I’ve included numerous
examples of projects, permissively licensed source code, and workflows designed
for efficiency in the world of the terminal.

tmux is a tool I find useful. While I don’t attach it to my personal identity,
it’s been part of my daily life for years. Besides the original resource,
I’ve written a popular tmux starter configuration [https://github.com/tony/tmux-config],
a pythonic tmux library [https://libtmux.git-pull.com], and a
tmux session manager [https://tmuxp.git-pull.com].

I am writing this from vim running in a tmux pane, inside a window, in a session
running on a tmux server, through a client.

A word to absolute beginners: Don’t feel you need to grasp the concepts
of the command line and terminal multiplexing in a single sitting. You have the
choice of picking out concepts of tmux you like, according to your
needs or interests. If you haven’t installed tmux yet, please view the
Installation section in the Appendix of the book.

Follow @TheTaoOfTmux [https://twitter.com/TheTaoOfTmux] for
updates or share on Twitter [https://twitter.com/intent/tweet?text=I%27m%20reading%20The%20Tao%20of%20tmux%20online%20at&url=https://leanpub.com/the-tao-of-tmux/read&hashtags=tmux&via=TheTaoOfTmux]!

Styles

Formatted text like this is source code.

Formatted text with a $ in front is a terminal command. $ echo 'like this'.
The text can be typed into the console, without the dollar character. For more
information on the meaning of the “dollar prompt”, check out What is the
origin of the UNIX $ (dollar) prompt? [https://superuser.com/questions/57575/what-is-the-origin-of-the-unix-dollar-prompt]
on Super User.

In tmux, shortcuts require a prefix key to be sent beforehand.
For instance, Prefix + d will detach a tmux client from its session. This
prefix, by default, is <Ctrl-b>, but users can override it. This is discussed in
greater detail in the prefix key section and configuration.

How this book is structured

First, anything involving installation [http://man.openbsd.org/OpenBSD-current/man1/tmux.1]
and hard technical details are in the Appendix. A lot of books use installation
instructions as filler in the early chapters. For me, it’s more of not wanting
to confuse beginners.

For special circumstances, like tmux on Windows 10, I
decided adding screenshots is best, since many readers may be more comfortable
with a visual approach.

Thinking in tmux goes over what tmux does and how it relates to
the GUI desktops on our computers. You’ll understand the big picture of
what tmux is and how it can make your life easier.

Terminal Fundamentals shows the text-based
environments you’ll be dealing with. It’s great for those new to tmux, but also
presents technical background for developers, who learned the ropes through
examples and osmosis. At the end of this section, you’ll be more confident and
secure using the essential components underpinning a modern terminal
environment.

Practical usage covers common bread-and-butter uses for
you to use tmux immediately.

Server gives life to the unseen workhorse behind the scenes
powering tmux. You’ll think of tmux differently and may be impressed a
client-server architecture could be presented to end users so seamlessly.

Sessions are the containers holding windows. You’ll learn what
sessions are and how they help organize your workspace in the terminal. You’ll
learn how to manipulate and rename and traverse sessions.

Windows are what you see when tmux is open in front of you.
You’ll learn how to rename and move windows.

Panes are a terminal in a terminal. This is where you get to work and
do your magic! You’ll learn how to create, delete, move between, and resize
panes.

Configuration discusses customization of tmux and sets the
foundation for how to think about .tmux.conf so you can customize your own.

Status bar and styling is devoted to the customization
of the status line and colors in tmux. As a bonus, you’ll even learn how to
display system information like CPU and memory usage via the status line.

Scripting tmux goes into command aliases
and the advanced and powerful Targets and Formats
concepts.

Technical stuff is a glimpse at tmux source code and how it
works under the hood. You may learn enough to impress colleagues who already use
tmux. If you like programming on Unix-like systems, this one is for you.

Tips and tricks wraps up with a whirlwind of useful
terminal tutorials you can use with tmux to improve day to day development and
administration experience.

Cheatsheets are organized tables of commands,
shortcuts, and formats grouped by section.

Donations

If you enjoy my learning material or my open source software projects, please
consider donating. Donations go directly to me and my current and future open source
projects and are not squandered. Visit http://www.git-pull.com/support.html
for ways to contribute.

Formats

This book is available for sale on Leanpub [https://leanpub.com/the-tao-of-tmux] and Amazon Kindle [http://amzn.to/2gPfRhC].

It’s also available to read for free on the web [https://leanpub.com/the-tao-of-tmux/read].

Errata {#errata}

This is my first book. I am human and make mistakes.

If you find errors in this book, please submit them to me at tao.of.tmux
nospam git-pull.com.

 Thinking in tmux {#thinking-tmux}

 {mainmatter}

Thinking in tmux {#thinking-tmux}

In the world of modern computing, user interaction has 2 realms:

	The text realm

	The graphical realm

tmux lives in the graphical realm in which fixed-width fonts appear in
a rectangular grid in a window, like in a terminal from the 1980s.

[image: ../_images/server-with-laptop.png]

Window manager for the terminal

tmux is to the console what a desktop is to GUI apps. It’s a world inside the
text dimension. Inside tmux, you can:

	multitask inside the terminal, run multiple applications

	have multiple command lines (pane) in the same window

	have multiple windows (window) in the workspace (session)

	switch between multiple workspaces, like virtual desktops

	tmux
	"Desktop"-Speak
	Plain English

	Multiplexer
	Multi-tasking
	Multiple applications

	
	
	simultaneously.

	Session
	Desktop
	Applications are visible here

	Window
	Virtual Desktop or
	Desktop containing its own screen

	
	applications

	Pane
	Application
	Performs operations

Just like in a graphical desktop environment, they throw in a clock, too.

{width=75%}
[image: ../_images/clocks.png]top-left: KDE. top-right: Windows 10. center: macOS Sierra. bottom: tmux 2.3 default status bar.

Multitasking

tmux allows you to keep multiple terminals running on the same screen. After
all, the abbreviation “tmux” comes from - Terminal Multiplexer.

In addition to multiple terminals on one screen, tmux allows you to create and link
multiple “windows” within the confines of the tmux session you attached.

Even better, you can copy and paste and scroll. No requirement for graphics
either, so you have full power, even if you’re SSH’ing or on a system without
a display server such as X [https://en.wikipedia.org/wiki/X.Org_Server].

Here are a few common scenarios:

	Running $ tail -F /var/log/apache2/error.log in a
pane to get a live stream of the latest system events.

	Running a file watcher, like watchman [https://github.com/facebook/watchman],
gulp-watch [https://github.com/gulpjs/gulp/blob/master/docs/API.md#gulpwatchglob-opts-tasks],
grunt-watch [https://github.com/gruntjs/grunt-contrib-watch], guard [https://github.com/guard/guard],
or entr [http://entrproject.org/]. On file change, you could do stuff like:

	rebuild LESS or SASS files, minimize CSS and/or assets and static files

	lint with linters, like cpplint [https://github.com/google/styleguide/tree/gh-pages/cpplint],
Cppcheck [http://cppcheck.sourceforge.net/], rubocop [https://github.com/bbatsov/rubocop],
ESLint [http://eslint.org/], or Flake8 [http://flake8.pycqa.org/en/latest/]

	rebuild with make or ninja [https://ninja-build.org/]

	reload your Express [http://expressjs.com/] server

	run any other custom command of your liking

	Keeping a text editor, like vim, emacs, pico, nano, etc., open in a main pane,
while leaving two others open for CLI commands and building via make or
ninja.

[image: ../_images/dev-watch.png]vim + building a C++ project w/ CMake + Ninja using entr to rebuild on file changes, LLDB bottom right

With tmux, you quickly have the makings of an IDE! And on your terms.

Keep your applications running in the background

Sometimes, GUI applications will have an option to be sidelined to the system
tray to run in the background. The application is out of sight, but events and
notifications can still come in, and the app can be instantly brought to the
foreground.

In tmux, a similar concept exists, where we can “detach” a tmux session.

Detaching can be especially useful on:

	Local machines. You start all your normal terminal applications within
a tmux session, you restart X. Instead of losing your processes as you
normally would if you were using an X terminal, like xterm or konsole, you’d
be able to tmux attach after and find all the processes inside that were
alive and kicking all along.

	Remote SSH applications and workspaces you run in tmux. You
can detach your tmux workspace at work before you clock out, then the next
morning, reattach your session. Ahhh. Refreshing. :)

	Those servers you rarely log into. Perhaps, a cloud instance you log into 9
months later, and as a reflex, tmux attach to see if there is anything on
there. And boom, you’re back in a session you’ve forgotten about, but still
jogs your memory to what you were tweaking or fixing. It’s like a hack to
restore your memory.

Powerful combos

Chatting on irssi [https://irssi.org/] or weechat [https://weechat.org/],
one of the “classic combos”, along with a bitlbee [https://www.bitlbee.org]
server to manage AIM, MSN, Google Talk, Jabber, ICQ, even Twitter. Then, you can
detach your IRC and “idle” in your favorite channels, stay online on instant
messengers, and get back to your messages when you return.

[image: ../_images/weechat.png]Chatting on weechat w/ tmux

Some keep development services running in a session. Hearty emphasis on
development, you probably will want to daemonize and wrap your production web
applications, using a tool like supervisor [http://supervisord.org/], with its
own safe environmental settings.

You can also have multiple users attach their clients to the same sessions,
which is great for pair programming. If you were in the same session, you
and the other person would see the same thing, share the same input, and the
same active window and pane.

The above are just examples; any general workspace you’d normally use in a
terminal could work, especially projects or repetitive efforts you multitask
on. The tips and tricks section will dive into specific
flows you can use today.

Q> ### Do tmux sessions persist after a system restart?
Q>
Q> Unfortunately, no. A restart will kill the tmux server and any processes
Q> running within it.
Q>
Q> Thankfully, the modern server can stay online for a long time. Even for
Q> consumer laptops and PC’s with a day or two uptime, having tmux persist
Q> tasks for organizational purposes is satisfactory to run it.
Q>
Q> It comes as a disappointment, because some are interested in being able to
Q> persist a tree of processes after restart. It goes out of the scope of what
Q> tmux is meant to do.
Q>
Q> For tasks you repeat often, you can always use a tool, like
Q> tmuxp [https://github.com/tony/tmuxp], tmuxinator [https://github.com/tmuxinator/tmuxinator],
Q> or teamocil [https://github.com/remiprev/teamocil], to resume common
Q> sessions.
Q>
Q> Besides session managers, tmux-resurrect [https://github.com/tmux-plugins/tmux-resurrect]
Q> attempts to preserve running programs, working directories, and
Q> so on within tmux. The benefit with tmux-resurrect is there’s no JSON/YAML
Q> config needed.

Summary

tmux is a versatile addition to your terminal toolbelt. It helps you cover the
gaps between multitasking and workspace organization you’d otherwise lose, since
there’s no GUI. In addition, it includes a nice ability to detach workspaces to
the background and reattach later.

In the next chapter, we will touch on some terminal basics before diving
deeper into tmux.

 Terminal fundamentals {#terminal-fundamentals}

Terminal fundamentals {#terminal-fundamentals}

Before getting into tmux, a few fundamentals of the command line should be
reviewed. Often, we’re so used to using these out of street smarts and muscle
memory, a great deal of us never see the relation of where these tools stand
next to each other.

Seasoned developers are familiar with Zsh, Bash, iTerm2, konsole, /dev/tty,
shell scripting, and so on. If you use tmux, you’ll be around these all the
time, regardless whether you’re in a GUI on a local machine or SSH’ing
into a remote server.

If you want to learn more about how processes and TTYs work at the kernel level
(data structures and all), the book The Design and Implementation of the FreeBSD
Operating System (2nd Edition) [http://amzn.to/2iTmVyv] by Marshall Kirk
McKusick is nice, particularly, Chapter 4, Process Management and Section
8.6, Terminal Handling. The TTY demystified [http://www.linusakesson.net/programming/tty/index.php]
by Linus Åkesson (available online) dives into the TTY and is a good read.

Much more exists to glean off the history of Unix, 4.2 BSD, etc. I probably
could have a coffee / tea with you discussing it for hours. You could look at it
from multiple perspectives (The C Language, anything from the Unix/BSD lineage,
etc.), and some clever fellow would likely chime in, mentioning Linux, GNU, and
so on. It’s like Game of Thrones; there’s multiple story arcs you can follow,
some of which intersect. A few good video resources would be A Narrative History of BSD [https://www.youtube.com/watch?v=bVSXXeiFLgk]
by Marshall Kirk McKusick, The UNIX Operating System [https://www.youtube.com/watch?v=tc4ROCJYbm0]
by AT&T, Early days of Unix and design of sh [https://www.youtube.com/watch?v=FI_bZhV7wpI]
by Stephen R. Bourne.

POSIX standards

Operating systems like macOS (formerly OS X), Linux, and the BSDs, follow
something similar to the POSIX specification in terms of how they square away
various responsibilities and interfaces of the operating system. They’re
categorized as “Mostly POSIX-compliant” [https://en.wikipedia.org/wiki/POSIX#Mostly_POSIX-compliant].

In daily life, we often break compatibility with POSIX standards for reasons of
sheer practicality. Operating systems, like macOS, will drop you right into Bash.
make(1) [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html],
a POSIX standard, is GNU Make [https://www.gnu.org/software/make/] on macOS by
default. Did you know, as of September 2016, POSIX Make has no conditionals?

I’m not saying this to take a run at purists. As someone who tries to remain
compatible in my scripting, it gets hard to do simple things after a while. On
FreeBSD, the default Make (PMake) [https://www.freebsd.org/doc/en_US.ISO8859-1/books/pmake/]
uses dots between conditionals:

{line-numbers=off}
.IF

.ENDIF

But on most Linux systems and macOS, GNU Make is the default, so they get to do:

{line-numbers=off}
IF

ENDIF

This is one of the many tiny inconsistencies that span operating systems, their
userlands, their binary / library / include paths, and adherence /
interpretation of the Filesystem Hierarchy Standard [https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard]
or whether they follow their own.

I> Find your path
I>
I> Most operating systems inspired by Unix (BSD’s, macOS, Linux) will allow you
I> to get the info of your systems’ filesystem hierarchy via hier(7) [https://www.freebsd.org/cgi/man.cgi?hier(7)].
I>
I> {language=shell, line-numbers=off}
I> $ man hier

These differences add up. A good deal of software infrastructure out
there exists solely to abstract the differences across them. For example: CMake,
Autotools, SFML, SDL2, interpreted programming languages, and their standard
libraries are dedicated to normalizing the banal differences across
BSD-derivatives and Linux distributions. Many, many #ifdef preprocessor
directives in your C and C++ applications. You want open source, you get choice,
but be aware; there’s a lot of upkeep cost in keeping these upstream projects
(and even your personal ones) compatible. But I digress, back to terminal stuff.

Why does it matter? Why bring it up? You’ll see this stuff everywhere.
So, let’s separate the usual suspects into their respective categories.

Terminal interface

The terminal interface can be best introduced by citing official specification,
laying out its technical properties, interfaces, and responsibilities. This can
be viewed in its POSIX specification [http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html].

This includes TTYs, including text terminals and X sessions within them. On
Linux / BSD systems, you can switch between sessions via <ctrl-alt-F1>
through <ctrl-alt-F12>.

Terminal emulators

GUI Terminals: Terminal.app, iterm, iterm2, konsole, lxterm, xfce4-terminal,
rxvt-unicode, xterm, roxterm, gnome terminal, cmd.exe + bash.exe

Shell languages {#shell-languages}

Shell languages are programming languages. You may not compile the code
into binaries with gcc [https://gcc.gnu.org/] or clang [http://clang.llvm.org/],
or have shiny npm [https://www.npmjs.com/] package manager for them, but a
language is a language.

Each shell interpreter has its own language features. Like with shells, many
will resemble the POSIX shell language [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_01]
and strive to be compatible with it. Zsh and Bash should be able to understand
POSIX shell scripts you write, but not the other way around (we will cover this
in shell interpreters).

The first line of shell file is the shebang [https://en.wikipedia.org/wiki/Shebang_(Unix)]
statement, which points to the interpreter to run the script in. They normally
use the .sh extension, but they can also be .zsh, .csh and so on if
they’re for a specific interpreter.

Zsh scripts are implemented by the Zsh shell interpreter, Bash scripts by Bash.
But the languages are not as closely regulated and standardized as, say, C++’s
standards committee [http://www.open-std.org/jtc1/sc22/wg21/] workgroups or
python’s PEPs [https://www.python.org/dev/peps/]. Bash and Zsh take features
from Korn and C Shell’s languages, but without all the ceremony and bureaucracy
other languages espouse.

Shell interpreters (Shells) {#shells}

Examples: POSIX sh, Bash, Zsh, csh, tcsh, ksh, fish

Shell interpreters implement the shell language. They are a layer on top of
the kernel and are what allow you, interactively, to run commands and
applications inside them.

As of October 2016, the latest POSIX specification [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/sh.html]
covers in technical detail the responsibilities of the shell.

For shells and operating systems: each distro or group does their own darn
thing. On most Linux distributions and macOS, you’ll typically be dropped into
Bash.

On FreeBSD, you may default to a plain vanilla sh unless you specify
otherwise during the installation process. In Ubuntu, /bin/sh used to be
bash (Bourne Again Shell [https://en.wikipedia.org/wiki/Bourne_shell]) but
was replaced with dash [https://wiki.ubuntu.com/DashAsBinSh]
(Debian Almquist Shell [https://en.wikipedia.org/wiki/Almquist_shell]). So,
here, you are thinking “hmm, /bin/sh, probably just a plain old POSIX shell”;
however, system startup scripts on Ubuntu used to allow non-POSIX scripting
via Bash. This is because specialty shell languages, such as
Bash and Zsh, add helpful and practical features, but they’re not portable.
For instance, you would need to install the Zsh interpreter across all your
systems if you rely on Zsh-specialized scripting. If you conformed with POSIX
shell scripting, your scripting would have the highest level of compatibility
at the cost of being more verbose.

Recent versions of macOS include Zsh by default. Linux distributions
typically require you to install it via package manager and install it to
/usr/bin/zsh. BSD systems build it via the port system, pkg(8) [https://www.freebsd.org/cgi/man.cgi?query=pkg&apropos=0&sektion=0&manpath=FreeBSD+10.3-RELEASE+and+Ports&arch=default&format=html]
on FreeBSD, or pkg_add(1) [http://man.openbsd.org/pkg_add.1] on OpenBSD,
and it will install to /usr/local/bin/zsh.

It’s fun to experiment with different shells. On many systems, you can use
chsh -s [https://en.wikipedia.org/wiki/Chsh] to update the default shell for
a user.

The other thing to mention is, for chsh -s to work, you typically need to have
it added to /etc/shells [https://bash.cyberciti.biz/guide//etc/shells].

Summary

To wrap it up, you will hear people talking about shells all the time.
Context is key. It could be:

	A generic way to refer to any terminal you have open. “Type $ top into your
shell and see what happens.” (Press q to quit.)

	A server they have to log into. Before the era of the cloud, it would be
popular for small hosts to sell “C Shells” with root access.

	A shell within a tmux pane.

	If scripting is mentioned, it is likely either the script file, an issue
related to the scripts’ behavior, or something about the shell language.

But overall, after this overview, go back to doing what you’re doing. If shell
is what people say and they understand it, use it. The backing you have here
should make you more confident in yourself. These days, it’s an ongoing battle
catching our street smarts up with book smarts.

In the next chapter, we will touch some terminal basics before diving
deeper into tmux.

 Practical usage {#practical-usage}

Practical usage {#practical-usage}

This is the easiest part; open your terminal and type tmux, hit enter.

{language=shell, line-numbers=off}
$ tmux

You’re in tmux.

The prefix key {#prefix-key}

The prefix is how we send commands into tmux. With this, we can split windows,
move windows, switch windows, switch sessions, send in custom commands, you name
it.

And it’s a hump we have to get over.

It’s kind of like Street Fighter [https://en.wikipedia.org/wiki/Street_Fighter].
In this video game, the player inputs a combination of buttons in sequence to
perform flying spinning kicks and shoot fireballs; sweet. As the player grows
more accustomed with the combos, they repeat moves by intuition, since they
develop muscle memory.

Without understanding how to send command sequences to tmux via the prefix
key, you’ll be dead in the water.

Key sequences will come up later if you use Vim, Emacs, or other TUI (Terminal
User Interface) applications. If you haven’t internalized the concept, let’s do
it now. Prior experience command sequences in TUI/GUI applications will come in
handy.

When you memorize a key combo, it’s one less time you’ll be moving your hand
away from the keyboard to grab your mouse. You can focus your short-term memory
on getting stuff done, resulting in fewer mistakes.

Q> ### Coming from GNU Screen?
Q>
Q> Your tmux prefix key can be set via your tmux configuration later! In
Q> your ~/.tmux.conf file, set the prefix option:
Q>
Q> {language=shell, line-numbers=off}
Q> set-option -g prefix C-a
Q>
Q> This will set the prefix key to screen(1)’s (another terminal
Q> multiplexer’s) prefix key.

The default leader prefix is <Ctrl-b>. While holding down the control key,
press b.

X> ### Sending tmux commands
X>
X> Practice:
X>
X> 1. Press control key down and hold it.
X> 2. Press b and hold it.
X> 3. Release both keys at the same time.
X>
X> Try it a few times. It may feel unnatural until you’ve done it a couple
X> times, which is normal when memorizing shortcuts.
X>
X> Now, let’s try something:
X>
X> <Ctrl-b> d. So,
X>
X> 1. Press control key down and hold it.
X> 2. Press b and hold it.
X> 3. Release both keys at the same time.
X> 4. Hit d!
X>
X> You’ve sent tmux your first command, and you’re now outside of tmux!

You’ve detached the tmux session you were in. You can reattach via $ tmux attach.

Nested tmux sessions

You can also send the prefix key to nested tmux sessions. For instance, if
you’re inside a tmux client on a local machine and you SSH into a remote machine
in one of your panes, on the remote machine, you can attach the client via tmux attach as you normally would. To send the prefix key to the machine’s tmux
client, not your local one, hit the prefix key again.

So, if your prefix key is the default, <Ctrl-b>, do <Ctrl-b> + b again,
then hit the shortcut for what you want to do.

Example: If you wanted to create a window on the remote machine, which would normally
be <Ctrl-b> + c locally, it’d be <Ctrl-b> + b + c.

Hereinafter, the book will refer to shortcuts by Prefix. Instead
of <Ctrl-b> + d, you will see Prefix + d.

Session persistence and the server model

If you use Linux or a similar system, you’ve likely brushed through Job Control [https://en.wikipedia.org/wiki/Job_control_(Unix)],
such as fg(1) [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/fg.html], jobs(1) [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/jobs.html].
tmux behavior feels similar, like you ran <Ctrl-z> except, technically, you
were in a “job” all along. You were just using a client to view it.

Another way of understanding it: <Ctrl-b> + d closed the client connection,
therefore, ‘detached’ from the session.

Your tmux client disconnected from the server instance. The session, however, is
still running in the background.

It’s all commands

Multiple roads can lead you to the same behavior. Commands are what tmux uses
to define instructions for setting options, resizing, renaming, traversing,
switching modes, copying and pasting, and so forth.

	Configs are the same as automatically running commands via
$ tmux command.

	Internal tmux commands via Prefix + : prompt.

	Settings defined in your configuration can also set shortcuts, which can
execute commands via keybindings via bind-key.

	Commands called from CLI via $ tmux cmd

	To pull it all together, source code files are prefixed
cmd-.

Summary

We’ve established tmux automatically creates a server upon starting it. The
server allows you to detach and later reattach your work. The keyboard
sequences you send to tmux require understanding how to send the prefix key.

Keyboard sequences, configuration, and command line actions all boil down to the
same core commands inside tmux. In our next chapter, we will cover the server.

 Server {#server}

Server {#server}

The server holds sessions and the windows and
panes within them.

When tmux starts, you are connected to a server via a socket connection.
What you see presented in your shell is merely a client connection. In
this chapter, we uncover the invisible engine enabling your terminal
applications to persist for months or even years at a time.

{width=90%}
[image: ../_images/server.png]

What? tmux is a server?

Often, when “server” is mentioned, what comes to mind for many
may be rackmounted hardware; to others, it may be software running
daemonized on a server and managed through a utility, like upstart,
supervisor, and so on.

Unlike web or database software, tmux doesn’t require specialized
configuration settings or creating a service entry to start things.

tmux uses a client-server model, but the server is forked to the
background for you.

Zero config needed

You don’t notice it, but when you use tmux normally, a server is launched and
being connected via a client.

tmux is so streamlined, the book could continue to explain usage and not even
mention servers. But, I’d rather you have a true understanding of how it works
on systems. The implementation feels like magic, while living up to the unix
expectations of utilitarianism. One cannot deny it’s exquisitely executed
from a user experience standpoint.

How is it utilitarian? We’ll go into it more in future chapters, where we dive
into Formats, Targets, and tools, such as libtmux [https://github.com/tony/libtmux]
I made, which utilize these features.

It surprises some, because servers often beget a setup process. But servers
being involved doesn’t entail hours of configuration on each machine you run on.
There’s no setup.

When people think server, they think pain. It invokes an image of digging
around /etc/ for configuration files and flipping settings on and off just to
get basic systems online. But not with tmux. It’s a server, but in the good way.

Stayin’ alive

The server part of tmux is how your sessions can stay alive, even after your client
is detached.

You can detach a tmux session from an SSH server and reconnect later.
You can detach a tmux session, stop your X server in Linux/BSD, and reattach
your tmux session in a TTY or new X server.

The tmux server won’t go away until all sessions are closed.

Servers hold sessions

One server can contain one or multiple sessions.

Starting tmux after a server already is running will create a new session inside
the existing server.

W> ### Advanced: Multiple servers
W>
W> tmux is nimble. To use a separate server, pass in the -L flag to any
W> command.
W>
W> tmux -L moo - connect to server under socket name “moo” and attach
W> a new session. Create server if none already exists for socket.
W>
W> tmux -L moo attach will attempt to re-attach a session if one exists.

How servers are “named”

The default name for the server is default, which is stored as a socket in
/tmp. The default directory for storing this can be overridden via setting
the TMUX_TMPDIR environment variable.

So, something like:

{language=shell, line-numbers=off}
$ export TMUX_TMPDIR=$HOME
$ tmux

Will give you a tmux directory created within your $HOME folder. On OS X,
your home folder will probably be something like /Users/yourusername. On
other systems, it may be /home/yourusername. If you want to find out, type
$ echo $HOME.

Clients

Servers will have clients (you) connecting to them.

When you connect to a session and see windows and panes, it’s a client
connection into tmux.

You can retrieve a list of active client connections via:

{language=shell, line-numbers=off}
$ tmux list-clients

These commands and the other list- commands, in practice, are rare. But, they
are part of tmux scriptability should you want to get creative. The scripting tmux
chapter will cover this in greater detail.

Clipboard {#clipboard}

tmux clients wield a powerful clipboard feature to copy and paste across
sessions, windows, and panes.

Much like vi, tmux handles copying as a mode in which a pane is
temporarily placed. When inside this mode, text can be selected and copied to
the paste buffer, tmux’s clipboard.

The default key to enter copy mode is Prefix + [.

	From within, use [space] to enter copy mode.

	Use the arrow keys to adjust the text to be selected.

	Press [enter] to copy the selected text.

The default key to paste the text copied is Prefix +].

I> Vi-like copy-paste
I>
I> In your config, put this:
I>
I> {language=shell, line-numbers=off}
I> # Vi copypaste mode
I> set-window-option -g mode-keys vi
I> bind-key -t vi-copy ‘v’ begin-selection
I> bind-key -t vi-copy ‘y’ copy-selection

In addition to the “copy mode”, tmux has advanced functionality to
programmatically copy and paste. Later in the book, the Capturing pane content
section in the Scripting tmux chapter goes into
$ tmux capture-pane and how you can use targets to copy pane
content into your paste buffer or files with $ tmux save-buffer.

Summary

The server is one of the fundamental underpinnings of tmux. Initialized
automatically to the user, it persists by forking into the background. Running
behind the scenes, it ensures sessions, windows, panes, and buffers are
operating, even when the client is detached.

The server can hold one or more sessions. You can copy and paste between
sessions via the clipboard. In the next chapter, we will go deeper into the role
sessions play and how they help you organize and control your terminal
workspace.

 Sessions {#sessions}

Sessions {#sessions}

Welcome to the session, the highest-level entity residing in the server
instance. Server instances are forked to the background upon starting a fresh
instance and reconnected to when reattaching sessions. Your interaction with
tmux will have at least one session running.

A session holds one or more windows.

[image: ../_images/session.png]

The active window will have a * symbol next to it.

[image: ../_images/active-window.png]The first window, ID 1, titled "manuscript" is active. The second window, ID 2, titled zsh.

Creating a session

The simplest command to create a new session is typing tmux:

{language=shell, line-numbers=off}
$ tmux

The $ tmux application, with no commands is equivalent to
$ tmux new-session. Nifty!

By default, your session name will be given a number, which isn’t too
descriptive. What would be better is:

{language=shell, line-numbers=off}
$ tmux new-session -s’my rails project’

Switching sessions within tmux

Some acquire the habit of detaching their tmux client and reattaching via
tmux att -t session_name. Thankfully, you can switch sessions from within
tmux!

	Shortcut
	Action

	Prefix + (
	Switch the attached client to the previous session.

	Prefix +)
	Switch the attached client to the next session.

	Prefix + L
	Switch the attached client back to the last

	
	session.

	Prefix + s
	Select a new session for the attached client

	
	interactively.

Prefix + s will allow you to switch between sessions within the same tmux
client.

This command name can be confusing. switch-client will allow you to traverse
between sessions in the server.

Example usage:

{language=shell, line-numbers=off}
$ tmux switch-client -t dev

If already inside a client, this will switch to a session, named “dev”, if it exists.

Naming sessions

Sometimes, the default session name given by tmux isn’t descriptive enough. It
only takes a few seconds to update it.

You can name it whatever you want. Typically, if I’m working on multiple web
projects in one session, I’ll name it “web”. If I’m assigning one software
project to a single session, I’ll name it after the software project. You’ll
likely develop your own naming conventions, but anything is more descriptive
than the default.

[image: ../_images/rename.png]Renaming a session '0' to 'react web'

If you don’t name your sessions, it’ll be difficult to keep track of what the
session contains. Sometimes, you may forget you have a project opened,
especially if your machine has been running for a few days, weeks, or months.
You can save time by reattaching your session and avoid creating a duplicate.

You can rename sessions from within tmux with Prefix + \(\). The status bar
will be temporarily altered into a text field to allow altering the session
name.

Through command line, you can try:

{language=shell, line-numbers=off}
$ tmux rename-session -t 1 “my session”

Does my session exist?

If you’re scripting tmux, you will want to see if a session exists.
has-session will return a 0 exit code [https://en.wikipedia.org/wiki/Exit_status]
if the session exists, but will report a 1 exit code and print an error if a
session does not exist.

{language=shell, line-numbers=off}
$ tmux has-session -t 1

It assumes the session “1” exists; it’ll just return 0 with no output.

But if it doesn’t, you’ll get something like this in a response:

{language=shell, line-numbers=off}
$ tmux has-session -t 1
> can’t find session 1

To try it in a shell script:

{language=shell, line-numbers=off}
if tmux has-session -t 0 ; then
echo “has session 0”
fi

Summary

In this chapter, you learned how to rename sessions for organizational purposes
and how to switch between them quickly.

You’ll always be attached to a session when you’re using a client in tmux. When
the last remaining session is closed, the server will close also.

Think of sessions as workspaces designed to help organize a set of windows,
analogous to virtual desktop [https://en.wikipedia.org/wiki/Virtual_desktop]
spaces in GUI computing.

In the next chapter, we will go into windows, which, like sessions, are also
nameable and let you switch between them.

 Windows {#windows}

Windows {#windows}

Windows hold panes. They reside within a session.

They also have layouts, which can be one of many preset
dimensions or a custom one done through pane resizing.

[image: ../_images/window.png]

You can see the current windows through the status bar
at the bottom of tmux.

Creating windows

All sessions start with at least one window open. From there, you can create and
kill windows as you see fit.

Window indexes are numbers tmux uses to determine ordering. The first window’s
index is 0, unless you set it via base-index in your configuration.
I usually set -g base-index 1 in my tmux configuration, since 0 is after 9 on
the keyboard.

Prefix + c will create a new window at the first open index. So, if you’re
in the first window, and there is no second window created, it will create
the second window. If the second window is already taken, and the third hasn’t
been created, it will create the third window.

If the base_index is 1 and there are 7 windows created, with the 5th window
missing, creating a new window will fill the empty 5th index, since it’s the
next one in order and nothing is filling it. The next created window would be
the eighth.

Naming windows

Just like with sessions, windows can have names. Labelling them helps keep track
of what you’re doing inside them.

[image: ../_images/rename1.png]Renaming a window 'zsh' to 'renamed'

When inside tmux, the shortcut Prefix + , is most commonly used. It
opens a prompt in the tmux status line, where you can alter the name of the
current window.

The default numbers given to windows also become muscle memory after a while.
But naming helps you when you’re in a new tmux flow and want to organize
yourself. Also, if you’re sharing tmux with another user, it’s good practice to
give a hint what’s inside the windows.

Traversing windows

Moving around windows is done in two ways, first, by iterating through via
Prefix + p and Prefix + n and via the window index, which takes you
directly to a specific window.

Prefix + 1, Prefix + 2, and so on… allows quickly navigating to
windows via their index. Unlike window names, which change, indexes are
consistent and only require a quick key combo for you to invoke.

Prompt for a window index (useful for indexes greater than 9) with Prefix +
'. If the window index is 10 or above, this will help you a lot.

I> ### Tip: Search + Traverse Windows for Text
I>
I> You can forward to a window with a match of a text string by doing Prefix +
I> f.

Bring up the last selected window with Prefix + l.

A list of current windows can be displayed with Prefix + w. This also gives
some info on what’s inside the window. Helpful when juggling a lot of things!

Moving windows

Windows can also be reordered one by one via move-window and its
associated shortcut. This is helpful if a window is worth keeping open but not
important or rarely looked at. After you move a window, you can continue to
reorder them at any point in time after.

The command $ tmux move-window can be used to move windows.

The accepted arguments are -s (the window you are moving) and -t, where you
are moving the window to.

You can also use $ tmux movew for short.

Example: move the current window to number 2:

{language=shell, line-numbers=off}
$ tmux movew -t2

Example: move window 2 to window 1:

{language=shell, line-numbers=off}
$ tmux movew -s2 -t1

The shortcut to prompt for an index to move the current window to is Prefix +
..

Layouts {#window-layouts}

Prefix + space switches window layouts. These are preset configurations
automatically adjusting proportions of panes.

As of tmux 2.3, the supported layouts are:

{width=75%}
[image: ../_images/even-horizontal.png]

{width=75%}
[image: ../_images/even-vertical.png]

{width=75%}
[image: ../_images/main-horizontal.png]

{width=75%}
[image: ../_images/main-vertical.png]

{width=75%}
[image: ../_images/tiled.png]

Specific touch-ups can be done via resizing panes.

To reset the proportions of the layout (such as after splitting or resizing
panes), you have to run $ tmux select-layout again for the layout.

This is different behavior than some tiling window managers [https://en.wikipedia.org/wiki/Tiling_window_manager].
awesome [https://awesomewm.org/] and xmonad [http://xmonad.org/], for
instance, automatically handle proportions upon new items being added to their
layouts.

To allow easy resetting to a sensible layout across machines and terminal
dimensions, you can try this in your config:

{language=shell, line-numbers=off}
bind m set-window-option main-pane-height 60; select-layout main-horizontal

This allows you to set a main-horizontal layout and automatically set the
bottom panes proportionally on the bottom every time you do Prefix + m.

Layouts can also be custom. To get the custom layout snippet for your current
window, try this:

{language=shell, line-numbers=off}
$ tmux lsw -F “#{window_active} #{window_layout}” | grep “^1” | cut -d “ “ -f2

To apply this layout:

{language=shell, line-numbers=off}
$ tmux lsw -F “#{window_active} #{window_layout}” | grep “^1” | cut -d “ “ -f2
> 5aed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]

resize your panes or try doing this in another window to see the outcome
$ tmux select-layout "5aed,176x79,0,0[176x59,0,0,0,176x19,0,60{87x19,0,60,1,88x19,88,60,2}]"

Closing windows

There are two ways to kill a window. First, exit or kill every pane in the
window. Panes can be killed via Prefix + x or by Ctrl + d within
the pane’s shell. The second way, Prefix + &, prompts if you really
want to delete the window. Warning: this will destroy all the window’s panes,
along with the processes within them.

From inside the current window, try this:

{language=shell, line-numbers=off}
$ tmux kill-window

Another thing, when scripting or trying to kill the window
from outside, use a target of the window index:

{language=shell, line-numbers=off}
$ tmux kill-window -t2

If you’re trying to find the target of the window to kill, they reside in the number
in the middle section of the status line and via $ tmux choose-window. You can hit “return” after you’re in choose-window to go back to
where you were previously.

Summary

In this chapter, you learned how to manipulate windows via renaming and changing
their layouts, a couple of ways to kill windows in a pinch or in when shell
scripting tmux. In addition, this chapter demonstrated how to save any tmux
layout by printing the window_layout template variable.

If you are in a tmux session, you’ll always have at least one window open, and
you’ll be in it. And within the window will be “pane”; a shell within a shell.
When a window closes all of its panes, the window closes too. In the next
chapter, we’ll go deeper into panes.

 Panes {#panes}

Panes {#panes}

Panes are pseudoterminals [https://en.wikipedia.org/wiki/Pseudoterminal]
encapsulating shells (e.g., Bash, Zsh). They reside within a window.
A terminal within a terminal, they can run shell commands, scripts, and programs,
like vim, emacs, top, htop, irssi, weechat, and so on within them.

[image: ../_images/pane.png]

Creating new panes

To create a new pane, you can split-window from within the current
window and pane you are in.

	Shortcut
	Action

	Prefix + %
	split-window -h (split horizontally)

	Prefix + "
	split-window -v (split vertically)

You can continue to create panes until you’ve reached the limit of what the
terminal can fit. This depends on the dimensions of your terminal. A normal
window will usually have 1 to 5 panes open.

Example usage:

{language=shell, line-numbers=off}
Create pane horizontally, $HOME directory, 50% width of current pane
$ tmux split-window -h -c $HOME -p 50 vim

{width=75%}

{language=shell, line-numbers=off}
create new pane, split vertically with 75% height
tmux split-window -p 75

{width=75%}

{pagebreak}

Traversing Panes {#pane-traversal}

	Shortcut
	Action

	Prefix + ;
	Move to the previously active pane.

	Prefix + Up /
	Change to the pane above, below,

	Down / Left /
	to the left, or to the

	Right
	the right of the current pane.

	Prefix + o
	Select the next pane in the current window.

I> Moving around vimtuitively
I>
I> If you like vim (hjkl) keybindings, add these to your config:
I>
I> {language=shell, line-numbers=off}
I> # hjkl pane traversal
I> bind h select-pane -L
I> bind j select-pane -D
I> bind k select-pane -U
I> bind l select-pane -R

Zoom in {#zoom-pane}

To zoom in on a pane, navigate to it and do Prefix + z.

You can unzoom by pressing Prefix + z again.

In addition, you can unzoom and move to an adjacent pane at the same time
using a pane traversal key.

Behind the scenes, the keybinding is a shortcut for $ tmux resize-pane -Z. So,
if you ever wanted to script tmux to zoom/unzoom a pane or apply this
functionality to a custom key binding, you can do that too, for instance:

{line-numbers=off}
bind-key -T prefix y resize-pane -Z

This would have Prefix + y zoom and unzoom panes.

Resizing panes {#resizing-panes}

Pane size can be adjusted within windows via window layouts
and resize-pane. Adjusting window layout switches the proportions and order of
the panes. Resizing the panes targets a specific pane inside the window
containing it, also shrinking or growing the size of the other columns or rows.
It’s like adjusting your car seat or reclining on a flight; if you take up more
space, something else will have less space.

	Shortcut
	Action

	Prefix M-Up
	resize-pane -U 5

	Prefix M-Down
	resize-pane -D 5

	Prefix M-Left
	resize-pane -L 5

	Prefix M-Right
	resize-pane -R 5

	Prefix C-Up
	resize-pane -U

	Prefix C-Down
	resize-pane -D

	Prefix C-Left
	resize-pane -L

	Prefix C-Right
	resize-pane -R

Outputting pane to a file

You can output the display of a pane to a file.

{language=shell, line-numbers=off}
$ tmux pipe-pane -o ‘cat >>~/output.#I-#P’

The #I and #P are formats for window index and pane index, so
the file created is unique. Clever!

Summary

Panes are shells within a shell. You can keep adding panes to a tmux window
until you run out of room on your screen. Within your shell, you can tail -F
log files, write and run scripts, and run curses [https://en.wikipedia.org/wiki/Curses_(programming_library)]-powered
applications, like vim, top, htop, ncmpcpp, irssi, weechat, mutt, and so on.

You will always have at least one pane open. Once you kill the last pane in
the window, the window will close. Panes are also resizable; you can resize
panes by targeting them specifically and changing the window layout.

In the next chapter, we will go into the ways you can customize your tmux
shortcuts, status line, and behavior.

 Configuration {#config}

Configuration {#config}

Most tmux users break away from the defaults by creating their own customized
configurations. These configurations vary from the trivial, such as adding
keybindings, and adjusting the prefix key, to complex things, such as decking
out the status bar with system stats and fancy glyphs via
powerlines.

Configuration of tmux is managed through .tmux.conf in your $HOME directory.
The paths ~/.tmux.conf and $HOME/.tmux.conf should work on OS X, Linux, and
BSD.

Configuration is applied upon initially starting tmux. The contents of the
configuration are tmux commands. The file can be reloaded later via
source-file, which is discussed in this chapter.

For a sample config, I maintain a pretty decked out one at
https://github.com/tony/tmux-config. It’s permissively licensed, and you’re
free to copy and paste from it as you wish.

I> Custom Configs
I>
I> You can specify your config via the -f command. Like this:
I>
I> {language=shell, line-numbers=off}
I> $ tmux -f path/to/config.conf
I>
I> Note: If a tmux server is running in the background and you want
I> to test a fresh config, you must either shut down the rest of the
I> tmux sessions or use a different socket name. Like this:
I>
I> {language=shell, line-numbers=off}
I> $ tmux -f path/to/config.conf -Ltesting_tmux
I>
I> And you can treat everything like normal; just keep passing -Ltesting_tmux
I> (or whatever socket name you feel like testing configs with) for reuse.
I>
I> {language=shell, line-numbers=off}
I> $ tmux -Ltesting_tmux attach

Reloading configuration {#reload-config}

You can apply config files in live tmux sessions. Compare this to source or
“dot” [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#dot]
in the POSIX standard.

Prefix + : will open the tmux prompt, then type:

:source /path/to/config.conf

And hit return.

$ tmux source-file /path/to/config.conf can also achieve the same result via
command line.

I> Easy reloadin’
I>
I> Even better, often, you will keep your default tmux config stored in
I> $HOME/.tmux.conf. So, what can you do? You can bind-key to
I> source-file ~/.tmux.conf:
I>
I> bind r source ~/.tmux.conf
I>
I> You can also have it give you a confirmation afterwards:
I>
I> bind r source ~/.tmux.conf\; display "~/.tmux.conf sourced!"
I>
I> Now, you can type Prefix + r to get the config to reload.

Note that reloading the configuration only re-runs the configuration file. It
will not reset keybindings or styling you apply to tmux.

How configs work

The tmux configuration is processed just like run commands [https://en.wikipedia.org/wiki/Run_commands]
in a ~/.zshrc or ~/.bashrc file. bind r source ~/.tmux.conf in the tmux
configuration is the same as $ tmux bind r source ~/.tmux.conf.

You could always create a shell script prefixing tmux in front of commands
and run it on fresh servers. The result is the same. Same goes if you manually
type in $ tmux set-option and $ tmux bind-key commands into any terminal (in
or outside tmux).

This in .tmux.conf:

{language=shell, line-numbers=off}
bind-key a send-prefix

Is the same as having no .tmux.conf (or $ tmux -f/dev/null) and typing:

{language=shell, line-numbers=off}
$ tmux bind-key a send-prefix

in a newly started tmux server.

The important thing to internalize is that a tmux configuration consists of
setting server options (set-option -s), global session (set-option -g), and
window options (set-window-option -g).

The rest of this chapter is going to proceed cookbook-style. You can pick out
these tweaks and add them to your .tmux.conf and reload.

Server options

Server options are set with set-option -s option value.

Tweak timing between key sequences

{line-numbers=off}
set -s escape-time 0

Terminal coloring

If you’re having an issue with color detail in tmux, it may help to set
default-terminal to screen-256color.

{line-numbers=off}
set -g default-terminal “screen-256color”

This sets the TERM variable in new panes.

Session options

Aside from the status bar, covered in the next chapter, most
user configuration will be custom keybindings. This section covers the few
generic options, and the next section goes into snippets involving keybindings.

Base index

This was mentioned earlier in the book, but it’s a favorite tweak of many tmux
users, who find it more intuitive to start their window counting at 1, rather
than the default, 0. To set the starting number (base index) for windows:

{line-numbers=off}
set -g base-index 1

Setting base-index assures newly created windows start at 1 and count upwards.

Window options

Window options are set via set-option -w or set-window-option. They are the
same thing.

Automatic window naming

Setting automatic-rename alters the name of the window based upon its active
pane:

{line-numbers=off}
set-window-option -g automatic-rename

Automatic renaming will be disabled for the window if you rename it manually.

Keybindings

Prefix key

The default prefix key in tmux is <Ctrl-b>. You can customize
it by setting a new prefix and unsetting the default. To set the prefix to
<Ctrl-a>, like GNU Screen, try this:

{line-numbers=off}
set-option -g prefix C-a
unbind-key C-b
bind-key a send-prefix

New window with prompt

Prompt for window name upon creating a new window, Prefix + C (capital C):

{line-numbers=off}
bind-key C command-prompt -p “Name of new window: “ “new-window -n ‘%%’”

Vi copy-paste keys

This is comprised of two-parts: Setting the mode-keys window option to vi and
setting the vi-copy bindings to use v to begin selection and y to yank.

{line-numbers=off}
Vi copypaste mode
set-window-option -g mode-keys vi
bind-key -t vi-copy ‘v’ begin-selection
bind-key -t vi-copy ‘y’ copy-selection

hjkl / vi-like pane traversal

Another one for vi fans, this keeps your right hand on the home row when moving
directionally across panes in a window.

{line-numbers=off}
bind h select-pane -L
bind j select-pane -D
bind k select-pane -U
bind l select-pane -R

Further inspiration

For more ideas, I have a .tmux.conf you can copy-paste from on the internet at
https://github.com/tony/tmux-config/blob/master/.tmux.conf.

In the next chapter, we will go into configuring the status line.

 Status bar and styling {#status-bar}

Status bar and styling {#status-bar}

The status bar, or status line, serves as a customizable taskbar in the bottom
of tmux. It is comprised of 3 sections. The status fields on either side
of the status line are customizable. The center field is a list of windows.

[image: ../_images/overview.png]

The status-left and status-right option can be configured with variables.

It’s configurable through the .tmux.conf file and modifiable live
through using $ tmux set-option.

I> Finding your current status line settings
I>
I> {language=shell, line-numbers=off}
I> $ tmux show-options -g | grep status

Window status symbols

This window list is between the left and right status bar regions.

tmux indicates status of a window through symbols. See below:

	Symbol
	Meaning

	*
	Denotes the current window.

	-
	Marks the last window (previously selected).

	#
	Window is monitored and activity has been detected.

	!
	A bell has occurred in the window.

	~
	The window has been silent for the monitor-silence interval.

	M
	The window contains the marked pane.

	Z
	The window's active pane is zoomed.

Reminder: A pane can be zoomed via Prefix + z. To unzoom,
press Prefix + z or move left / right / up / down panes.

Date and time

status-left and status-right accept variables for the date.

This happens via piping the status templates through format_expand_time [https://github.com/tmux/tmux/blob/2.3/format.c#L868]
in format.c, which routes right into strftime(3) [http://pubs.opengroup.org/onlinepubs/9699919799/functions/strftime.html]
from time.h.

A full list of variables can be found in the documentation for strftime(3).
This can be viewed through $ man strftime on Unix-like systems.

Shell command output

You can also call applications, such as tmux-mem-cpu-load [https://github.com/thewtex/tmux-mem-cpu-load],
conky [https://github.com/brndnmtthws/conky], and powerline.

For this example, we’ll use tmux-mem-cpu-load. This works on Unix-like systems
like FreeBSD, Linux distributions, and macOS.

To build from source, you must have CMake [https://cmake.org] and git, which
are available through your package manager. You must have a C++ compiler. On
macOS, install Xcode CLI Utilities. You can do this by going to Applications ->
Utilities, launching Terminal.app and typing $ xcode-select --install.
macOS can use Homebrew [https://brew.sh/] to install the CMake and git package.
Major Linux distributions package CMake, clang, and git.

Before this step, you can cd into any directory you’re ok keeping code in.

{language=shell, line-numbers=off}
$ git clone https://github.com/thewtex/tmux-mem-cpu-load.git
$ cd tmux-mem-cpu-load
$ mkdir ./build
$ cd ./build
$ cmake ..
$ make

macOS, no sudo required
$ make install

Linux, BSD will require sudo / root to install
$ sudo make install

If successful, you should see the output below:

{language=shell, line-numbers=off}
[100%] Built target tmux-mem-cpu-load
Install the project…
– Install configuration: “MinSizeRel”
– Installing: /usr/local/bin/tmux-mem-cpu-load

You can remove the source code you cloned from the computer. The compiled
application is installed.

You can now add #(tmux-mem-cpu-load) to your status-left or status-right
option. In the “Dressed up” example below, I
use status-left and also theme it to be green:

#[fg=green,bg=default,bright]#(tmux-mem-cpu-load)

So to apply it to your theme, you need to double check what you already have.
You may have information on there you want to keep.

{language=shell, line-numbers=off}
$ tmux show-option -g status-right
status-right “ “#{=21:pane_title}” %H:%M %d-%b-%y”

Copy what you had in response (or change, rearrange as you see fit) then add the
#(tmux-mem-cpu-load) to it. You can apply the new status line in your current
tmux session via $ tmux set-option -g status-right:

{language=shell, line-numbers=off}
$ tmux set-option -g status-right ‘”#{=21:pane_title}” #(tmux-mem-cpu-load) %H:%M %d-%b-%y’

Also, note how I switched out the double quotes on either side of the option
with single quotes. This is required, since there are double quotes inside.

You can do this with anything, for instance, try adding uptime [https://linux.die.net/man/1/uptime].
This could be done by adding #(uptime) to your status line. Typically the
output is pretty long, so trim it down by doing something like this:

`#(uptime | cut -f 4-5 -d “ “ | cut -f 1 -d “,”)``

In the next section, we go into how you can style (color) tmux.

Styling

The colors available to tmux are:

	black, red, green, yellow, blue, magenta, cyan, white.

	bright colors, such as brightred, brightgreen, brightyellow,
brightblue, brightmagenta, brightcyan.

	colour0 through colour255 from the 256-color set.

	default

	hexadecimal RGB code like #000000, #FFFFFF, similar to HTML colors.

Status line

You can use [bg=color] and [fg=color] to adjust the text color and
background within for status line text. This works on status-left and
status-right.

Let’s say you want to style the background:

Command: $ tmux set-option status-style fg=white,bg=black

In config: status-style fg=white,bg=black

In the examples at the end of the chapter, you will see complete examples of how
colors can be used.

Clock styling

You can style the color of the tmux clock via:

{lang=”text”, line-numbers=off}
set-option -g clock-mode-colour white

Reminder: Clock mode can be opened with $ tmux clock-mode or Prefix + t.
Pressing any key will exit clock mode.

Prompt colors

The benefit of wrapping your brain around this styling is you will see
it message-command-style, message style and so on.

Let’s try this:

{lang=”shell”, line-numbers=off}
$ tmux set-option -ag message-style fg=yellow,blink; set-option -ag message-style bg=black

[image: ../_images/prompt.png]Top: default scheme for prompt. Bottom: newly-styled.

Styling while using tmux

So, you want to customize your tmux status line before you write the changes to
your config file.

Start by grabbing your current status line section you want to edit, for
instance:

{lang=”text”, line-numbers=off}
$ tmux show-options -g status-left
> status-left “[#S] “
$ tmux show-options -g status-right
> status-right “ “#{=21:pane_title}” %H:%M %d-%b-%y”

Also, you can try to snip off the variable with | cut -d' ' -f2-:

{lang=”text”, line-numbers=off}
$ tmux show-options -g status-left | cut -d’ ‘ -f2-
> “[#S] “
$ tmux show-options -g status-right | cut -d’ ‘ -f2-
> “ “#{=21:pane_title}” %H:%M %d-%b-%y”

Then, add the options to your configuration.

To be sure your configuration fully works, you can start it in a different
server via tmux -Lrandom, verify the settings, and close it. This is helpful
to make sure your config file isn’t missing any styling info.

Toggling status line

The tmux status line can be hidden, as well. Turn it off:

{language=shell, line-numbers=off}
$ tmux set-option status off

And, turn it on:

{language=shell, line-numbers=off}
$ tmux set-option status on

The above is best for scripting, but if you’re binding it to a keyboard
shortcut, toggling, or reversing the current option, it can be done via
omitting the on/off value:

{language=shell, line-numbers=off}
$ tmux set-option status

Bind toggling status line to Prefix + q:

{language=shell, line-numbers=off}
$ tmux bind-key q set-option status

Example: Default config

[image: ../_images/default.png]

This is an example of the default config you see if your tmux
configuration has no status styling.

{line-numbers=off}
status on
status-interval 15
status-justify left
status-keys vi
status-left “[#S] “
status-left-length 10
status-left-style default
status-position bottom
status-right “ “#{=21:pane_title}” %H:%M %d-%b-%y”
status-right-length 40
status-right-style default
status-style fg=black,bg=green

Example: Dressed up {#status-bar-example-dressed-up}

{line-numbers=off}
status on
status-interval 1
status-justify centre
status-keys vi
status-left “#[fg=green]#H #[fg=black]• #[fg=green,bright]#(uname -r | cut -c 1-6)#[default]”
status-left-length 20
status-left-style default
status-position bottom
status-right “#[fg=green,bg=default,bright]#(tmux-mem-cpu-load) #[fg=red,dim,bg=default]#(uptime | cut -f 4-5 -d “ “ | cut -f 1 -d “,”) #[fg=white,bg=default]%a%l:%M:%S %p#[default] #[fg=blue]%Y-%m-%d”
status-right-length 140
status-right-style default
status-style fg=colour136,bg=colour235

default window title colors
set-window-option -g window-status-fg colour244 # base0
set-window-option -g window-status-bg default

active window title colors
set-window-option -g window-status-current-fg colour166 # orange
set-window-option -g window-status-current-bg default

Configs can print the output of an application. In this example,
tmux-mem-cpu-load [https://github.com/thewtex/tmux-mem-cpu-load] is providing
system statistics in the right-side section of the status line.

To build tmux-mem-cpu-load, you have to install CMake [https://cmake.org/]
and have a C++ compiler, like clang [http://clang.llvm.org/] or GCC [https://gcc.gnu.org/].

On Ubuntu, Debian, and Mint machines, you can do this via $ sudo apt-get install cmake build-essential. On macOS w/ brew [http://brew.sh/] via $ brew install cmake.

Source: https://github.com/tony/tmux-config

Example: Powerline

[image: ../_images/powerline.png]

The most full-featured solution available for tmux status lines is
powerline [https://github.com/powerline/powerline/], which heavily utilizes the
shell command outputs, not only to give direct system statistics, but also to
generate graphical-like styling.

To get the styling to work correctly, special fonts must be installed. The
easiest way to use this is to install powerline fonts [https://github.com/powerline/fonts],
a collection of fixed width coder fonts patched to support Wingdings [https://en.wikipedia.org/wiki/Wingdings]-like
symbols.

Installation instructions [https://powerline.readthedocs.io/en/latest/installation.html]
are on Read the Docs. For a better idea:

{language=shell, line-numbers=off}
$ pip install –user powerline-status psutil

psutil [https://github.com/giampaolo/psutil], a required dependency of
powerline, is a cross-platform tool to gather system information.

Assure you properly configured python with your PATHs,
and try this:

{line-numbers=off}
set -g status-interval 2
set -g status-right ‘#(powerline tmux right)’

Summary

Configuring the status line is optional. It can use the output of programs
installed on your system to give you specialized information, such as CPU, ram,
and I/O usage. By default, you’ll at least have a window list and a clock.

In addition, you can customize the colors of the status line, clock, and prompt.
By default, it’s only a green bar with dark text, so take some time to customize
yours, if you want, and save it to your configuration.

In the next chapter, we will go into the command line and scripting features of
tmux.

 Scripting tmux {#scripting-tmux}

Scripting tmux {#scripting-tmux}

The command line shortcuts and options in tmux is an area often uncharted.

I will use tables in this chapter. Never get a feeling you have to commit a
table to memory immediately. Not my intention, but every person’s way of using
tmux is slightly different. I want to cover points most likely to benefit
people’s flows. Full tables are in the cheatsheets.

Aliases {#aliases}

tmux supports a variety of alias commands. With aliases, instead of typing
$ tmux attach-session to attach a session, $ tmux attach could do the trick.

Most aliases come to mind via intuition and are a lot friendlier than typing the
full hyphenated commands.

{width=”narrow”}
Command	Alias
———————	———–
attach-session	attach
break-pane	breakp
capture-pane	capturep
display-panes	displayp
find-window	findw
join-pane	joinp
kill-pane	killp
kill-window	killw
last-pane	lastp
last-window	last
link-window	linkw
list-panes	lsp
list-windows	lsw
move-pane	movep
move-window	movew
new-session	new
new-window	neww
next-layout	nextl
next-window	next
pipe-pane	pipep
previous-layout	prevl
previous-window	prev
rename-window	renamew
resize-pane	resizep
respawn-pane	respawnp
respawn-window	respawnw
rotate-window	rotatew
select-layout	selectl
select-pane	selectp
set-option	set
set-window-option	setw
show-options	show
show-window-options	showw
split-window	splitw
swap-pane	swapp
swap-window	swapw
unlink-window	unlinkw

If you know the full name of the command, if you were to chop the hyphen
(-) from the command and add the first letter of the last word, you’d get the
shortcut, e.g., swap-window is swapw, split-window is splitw.

Pattern matching {#fnmatch}

In addition to aliases, tmux commands and arguments may all be accessed via
fnmatch(3) [http://pubs.opengroup.org/onlinepubs/9699919799/functions/fnmatch.html]
patterns.

For instance, you need not type $ tmux attach-session every time. First,
there’s the alias of $ tmux attach, but additionally, more
concise commands can be used if they partially match the name of the command or
the target. tmux’s pattern matching allows $ tmux attac, $ tmux att, $ tmux at
and $ tmux a to reach $ tmux attach.

Every tmux command has shorthands; let’s try this for $ tmux new-session:

{language=shell, line-numbers=off}
$ tmux new-session

$ tmux new-sessio

...

$ tmux new-s

and so on, until:

{language=shell, line-numbers=off}
$ tmux new-
ambiguous command: new-, could be: new-session, new-window

The limitation, as seen above, is command matches can collide. Multiple commands
begin with new-. So, if you wanted to use matches, $ tmux new-s for a new
session or $ tmux new-w for a new window would be the most efficient way. But,
the alias of $ tmux new for new session and $ tmux neww for new windows is
even more concise than matching, since the special alias exists.

Patterns can also match targets with window and session names. For
instance, a session named mysession can be matched via mys:

{language=shell, line-numbers=off}
$ tmux attach -t mys

Matching targets will fail if a pattern matches more than one item. If 2
sessions exist, named mysession and mysession2, the above command would
fail. To target either session, the complete target name must be specified.

Targets {#targets}

If a command allows target specification, it’s usually done through -t.

Think of targets as tmux’s way of specifying a unique key [https://en.wikipedia.org/wiki/Unique_key]
in a relational database.

	Entity
	Prefix
	Example

	server
	n/a
	n/a, uses socket-name and socket-path

	client
	n/a
	n/a, uses /dev/tty{p,s}[000-9999]

	session
	$
	$13

	window
	@
	@2313

	pane
	%
	%5432

What I use to help me remember:

So, sessions are represented by dollar signs ($) because they hold your projects
(ostensibly where you make money or help someone else do it).

Windows are represented by the at sign [https://en.wikipedia.org/wiki/At_sign]
(@). So, windows are like referencing / messaging a user on a social
networking website.

Panes are the fun one, represented by the percent sign (%), like the
default prompt for csh [https://en.wikipedia.org/wiki/C_shell] and
tcsh [https://en.wikipedia.org/wiki/Tcsh]. Hey, makes sense, since panes are
pseudoterminals!

When scripting tmux, the symbols help denote the type of object, but also serve
as a way to target something deeply, such as the pane, directly, without
needing to know or specify its window or session.

Here are some examples of targets, assuming one session named mysession and a
client at /dev/ttys004:

attach-session [-t target-session]

{language=shell, line-numbers=off}
$ tmux attach-session -t mysession

detach-client [-s target-session] [-t target-client]

{language=shell, line-numbers=off}
$ tmux detach-client -s mysession -t /dev/ttys004

If within client, -t is assumed to be current client
$ tmux detach-client -s mysession

has-session [-t target-session]

{language=shell, line-numbers=off}
$ tmux has-session -t mysession

Pattern matching session name
$ tmux has-session -t mys

$ tmux kill-session [-t target-session]

{language=shell, line-numbers=off}
$ tmux kill-session -t mysession

$ tmux list-clients [-t target-session]

{language=shell, line-numbers=off}
$ tmux list-clients -t mysession

$ tmux lock-client [-t target-client]

{language=shell, line-numbers=off}
$ tmux lock-clients -t /dev/ttys004

$ tmux lock-session [-t target-session]

{language=shell, line-numbers=off}
$ tmux lock-session -t mysession

$ tmux new-session [-t target-session]

{language=shell, line-numbers=off}
$ tmux new-session -t newsession

Create new-session in the background
$ tmux new-session -t newsession -d

$ tmux refresh-client [-t target-client]

{language=shell, line-numbers=off}
$ tmux refresh-client -t /dev/ttys004

$ tmux rename-session [-t target-session] session-name

{language=shell, line-numbers=off}
$ tmux rename-session -t mysession renamedsession

If within attached session, -t is assumed
$ tmux rename-session renamedsession

$ tmux show-messages [-t target-client]

{language=shell, line-numbers=off}
$ tmux show-messages -t /dev/ttys004

$ tmux suspend-client [-t target-client]

{language=shell, line-numbers=off}
$ tmux suspend-client -t /dev/ttys004

If already in client
$ tmux suspend-client

Bring client back to the foreground
$ fg

$ tmux switch-client [-c target-client] [-t target-session]

{language=shell, line-numbers=off}
$ tmux suspend-client -c /dev/ttys004 -t othersession

Within current client, -c is assumed
$ tmux suspend-client -t othersession

Formats {#formats}

tmux provides a minimal template language and set of variables to access
information about your tmux environment.

Formats are specified via the -F flag.

You know how template engines, such as
mustache [https://mustache.github.io/], handlebars [http://handlebarsjs.com/]
ERB [http://ruby-doc.org/stdlib-2.3.3/libdoc/erb/rdoc/ERB.html] in ruby,
jinja2 [http://jinja.pocoo.org/docs/dev/] in python,
twig [http://twig.sensiolabs.org/] in PHP, and
JSP [https://en.wikipedia.org/wiki/JavaServer_Pages] in Java, allow template
variables? Formats are a similar concept.

The FORMATS (variables) provided by tmux have expanded greatly
since version 1.8. Some of the most commonly used formats as of tmux 2.3 are
listed below. See the appendix section on formats for a
complete list.

Let’s try to output it:

{language=shell, line-numbers=off}
$ tmux list-windows -F “#{window_id} #{window_name}”
> @0 zsh

Here’s a cool trick to list all panes with the x and y coordinates of the cursor
position:

{language=shell, line-numbers=off}
$ tmux list-panes -F “#{pane_id} #{pane_current_command} #{pane_current_path} #{cursor_x},#{cursor_y}”
> %0 vim /Users/me/work/tao-of-tmux/manuscript 0,34
%1 tmux /Users/me/work/tao-of-tmux/manuscript 0,17
%2 man /Users/me/work/tao-of-tmux/manuscript 0,0

Variables are specific to the objects being listed. For instance:

Server-wide variables: host, host_short (no domain name), socket_path,
start_time and pid.

Session-wide variables: session_attached, session_activity,
session_created, session_height, session_id, session_name,
session_width, session_windows and all server-wide variables.

Window variables: window_activity, window_active, window_height,
window_id, window_index, window_layout, window_name, window_panes,
window_width and all session and server variables.

Pane variables: cursor_x, cursor_y, pane_active, pane_current_command,
pane_current_path, pane_height, pane_id, pane_index, pane_width,
pane_pid and all window, session and server variables.

This book focuses on separating the concept of server, sessions,
windows, and panes. With the knowledge of targets and formats, this
separation takes shape in tmux’s internal attributes. If you list-panes all
variables up the ladder, including window, session and server variables are
available for the panes being listed. Try this:

{language=shell, line-numbers=off}
$ tmux list-panes -F “pane: #{pane_id}, window: #{window_id}, session: #{session_id}, server: #{socket_path}”
> pane: %35, window: @13, session: $6, server: /private/tmp/tmux-501/default
pane: %38, window: @13, session: $6, server: /private/tmp/tmux-501/default
pane: %36, window: @13, session: $6, server: /private/tmp/tmux-501/default

Listing windows isn’t designed to display variables for pane-specific properties.
Since a window is a collection of panes, it can have 1 or more panes open at any
time.

{language=shell, line-numbers=off}
$ tmux list-windows -F “window: #{window_id}, panes: #{window_panes} pane_id: #{pane_id}”
> window: @15, panes: 1 pane_id: %40
window: @13, panes: 3 pane_id: %36
window: @25, panes: 1 pane_id: %50

This will show the window ID, prefixed by an @ symbol, and the number of panes
inside the window.

Surprisingly, pane_id shows up via list-windows, as of tmux 2.3. While this
output occurs in this version of tmux, it’s undefined behavior. It’s advised to
keep use of -F scoped to the objects being listing when scripting to avoid
breakage. For instance, if you want the active pane, use #{pane_active} via
$ tmux list-panes -F "#{pane_active}".

By default, list-panes will only show panes in a window, unless you specify
-a to output all on a server or -s [-t session-name] for all panes in a
session:

{language=shell, line-numbers=off}
$ tmux list-panes -s -t mysession
> 1.0: [176x29] [history 87/2000, 21033 bytes] %0
1.1: [87x6] [history 1814/2000, 408479 bytes] %1 (active)
1.2: [88x6] [history 1916/2000, 464932 bytes] %2
2.0: [176x24] [history 9/2000, 2262 bytes] %13
2.1: [55x11] [history 55/2000, 7395 bytes] %14

And the -t flag lists all panes in a window:

{language=shell, line-numbers=off}
$ tmux list-panes -t @0
> 0: [176x29] [history 87/2000, 21033 bytes] %0
1: [176x36] [history 1790/2000, 407807 bytes] %1 (active)
2: [88x6] [history 1916/2000, 464932 bytes] %2

The same concept applies to list-windows. By default, The -a flag will list
all windows on a server, -t lists windows within a session, and omitting -t
will only list windows within the current session inside tmux.

{language=shell, line-numbers=off}
$ tmux list-windows
> 1: zsh* (3 panes) [176x36] [layout f9a4,176x36,0,0[176x29,0,0,0,176x6,0,30{87x6,0,30,1,88x6,88,30,2}]] @0 (active)
2: zsh- (5 panes) [176x36] [layout 55ef,176x36,0,0[176x24,0,0,13,176x11,0,25{55x11,0,25,14,58x11,56,25[58x7,56,25,16,58x3,56,33,17],61x11,115,25,15}]] @6

Controlling tmux {#send-keys}

tmux allows sending keys, including Ctrl via C- or ^, alt (Meta) via M-,
and special key names. Here’s a list of special keys straight from the manual:

Up, Down, Left, Right, BSpace, BTab, DC (Delete), End, Enter,
Escape, F1 to F12, Home, IC (Insert), NPage/PageDown/PgDn,
PPage/PageUp/PgUp, Space, and Tab.

If special keys are not matched, the defined behavior is to send it as a string
to the pane, character by character.

For this example, we will use send-keys through tmux prompt, because omitting
target (-t) will direct the command to the current pane, but the keys sent will
sometimes print before the prompt.

Open tmux command prompt via Prefix + : and type this after the ::

send-keys echo 'hi'

Hit enter. This inserted hi into the current active pane. You can also
use targets to specify which pane to send it to.

Let’s now try to send keys to another pane in our current window. Create a
second pane via splitting the window if one doesn’t exist. You can also do this
exercise outside of tmux or inside a scripting file and running it.

Grab a pane ID from the output of list-panes:

{language=shell, line-numbers=off}
$ tmux list-panes
> 0: [180x57] [history 87/2000, 21033 bytes] %0
1: [89x14] [history 1884/2000, 509864 bytes] %1 (active)
2: [90x14] [history 1853/2000, 465297 bytes] %2

%2 looks good. Replace %2 with the pane you want to target. This sends cal
to the input:

{language=shell, line-numbers=off}
$ tmux send-keys -t %2 ‘cal’

Nice, let’s cancel that out by sending a SIGINT [https://en.wikipedia.org/wiki/Unix_signal#SIGINT]:

{language=shell, line-numbers=off}
$ tmux send-keys -t %2 ‘C-c’

This cancelled the command and brought up a fresh input. This time, let’s send
an Enter keypress to run cal(1).

{language=shell, line-numbers=off}
$ tmux send-keys -t %2 ‘cal’ ‘Enter’

This outputs in the adjacent pane.

[image: ../_images/send-keys-cal.png]Top-left: Listing panes, Bottom-left: Sending keys to right pane, Right:
Output of cal(1).

Capturing pane content {#capture-pane}

$ tmux capture-pane will copy a panes’ contents.

By default, the contents will be saved to tmux’s internal clipboard, the paste
buffer. You can run capture-pane within any pane, then navigate to an
editor, paste the contents (don’t forget to :set paste and go into insert mode
with i in vim), and save it to a file. To paste, use Prefix +
] inside the pane you’re pasting into.

You can also add the -p flag to print it to stdout [https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29].
From there, you could use redirection [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_07]
to place the output into a file. Let’s do >> so we don’t accidentally
truncate a file:

{language=shell, line-numbers=off}
$ tmux capture-pane -p >> ./test

As an alternative to redirection, you can also use save-buffer. The -a flag
will get you the same behavior as appended output direction.

{language=shell, line-numbers=off}
$ tmux save-buffer -a ./test

To check what’s inside:

{language=shell, line-numbers=off}
$ cat ./test

Like with send-keys, targets can be specified with -t. Let’s
copy a pane into tmux’s clipboard (“paste buffer”) and paste it into a text
editor in a third pane:

[image: ../_images/capture-pane-vim.png]Top-left: Listing panes, Bottom-left: Capturing pane output of top-left pane,
Right: Pasting buffer into vim.

Remember, you can also copy, paste, and send-keys to other windows and sessions
also. Targets are server-wide.

Summary

tmux has a well-devised and intuitive command system, enabling the user to
access bread and butter functionality quickly. At the same time, tmux provides
a powerful way of retrieving information on its objects between list-panes,
list-windows and list-sessions and formats. This makes tmux not only
accessible and configurable, but also scriptable.

The ability to retrieve explicitly and reliably, from a session down to
a pane. All it takes is a pane’s ID to capture its contents or even send it
keys. Used by the skilled programmer, scripting tmux can facilitate orchestrating
terminals in ways previously deemed unrealistic; anything from niche
shell scripts to monitor and react to behavior on systems to high-level,
intelligent and structured control via object oriented libraries, like
libtmux [https://libtmux.git-pull.com].

In the next chapter, we delve into optimizations that showcase the latest
generation of unix tools that build upon old, time-tested concepts, like man pages [https://en.wikipedia.org/wiki/Man_page]
and piping [https://en.wikipedia.org/wiki/Pipeline_(Unix)], while maintaining
portability across differences in platforms and graceful degradation to ensure
development tooling works on machines missing optional tools. Also, the chapter
will introduce session managers, a powerful, high-level tool leveraging tmux’s
scripting capabilities to consistently load workspace via a declarative
configuration.

 Tips and tricks {#tips-and-tricks}

Tips and tricks {#tips-and-tricks}

Read the tmux manual in style

$ man tmux is the command to load up the man page for tmux. You can do the
same to find instructions for any command or entity with a manpage entry; here
are some fun ones:

{language=shell, line-numbers=off}
$ man less
$ man man
$ man strftime

most(1) [http://www.jedsoft.org/most/], a solid PAGER [http://pubs.opengroup.org/onlinepubs/9699919799//utilities/man.html],
drastically improves readability of manual pages by acting as a syntax
highlighter.

[image: ../_images/most.png]left: man, version 1.6c on macOS Sierra. right: MOST v5.0.0

To get this working, you need to set your PAGER environmental variable [https://en.wikipedia.org/wiki/Environment_variable]
to point to the MOST binary. You can test it like this:

{language=shell, line-numbers=off}
$ PAGER=most man ls

If you found you like most, you’ll probably want to make it your default
manpage reader. You can do this by setting an environmental variable in your
“rc” (Run Commands [https://en.wikipedia.org/wiki/Run_commands]) for your
shell. The location of the file depends on your shell. You can use $ echo $SHELL to find it on most shells). In Bash and zsh, these are kept in
~/.bashrc or ~/.zshrc, respectively:

{language=shell, line-numbers=off}
export PAGER=”most”

I often reuse my configurations across machines, and some of them may not have
most installed, so I will have my scripting only set PAGER if most is
found:

{language=shell, line-numbers=off}
#!/bin/sh

if command -v most > /dev/null 2>&1; then
 export PAGER="most"
fi

Save this in a file, for example, to ~/.dot-config/most.sh.

Then you can source [https://en.wikipedia.org/wiki/Dot_(command)] it in via
your main rc file.

{language=shell, line-numbers=off}
source $HOME/.dot-config/most.sh

Patterns like these help make your dot-configs portable, cross-platform, and
modular. For inspiration, you can fork, copy, and paste from my permissively-
licensed config at https://github.com/tony/.dot-config.

Log tailing

Not tmux specific, but powerful when used in tandem with it, you can run a
follow (-f) using tail(1) [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/tail.html].
More modern versions of tail have the -F (capitalized), which checks for file
renames and rotation.

On OS X, you can do:

{language=shell, line-numbers=off}
$ tail -F /var/log/system.log

and keep it running in a pane while log messages come in. It’s like
Facebook newsfeed for your system, except for programmers and system
administrators.

For monitoring logs, multitail [https://vanheusden.com/multitail/] provides a
terminal-friendly solution. It’d be an Inception [http://www.imdb.com/title/tt1375666/]
moment, because you’d be using a log multiplexer in a terminal multiplexer.

File watching {#file-watching}

In my never-ending conquest to get software projects working in symphony with
code changes, I’ve come to test many file watching applications and
patterns. Pursuing the holy grail feedback loop upon file changes, I’ve gradually
become the internet’s unofficial connoisseur on them.

File watcher applications wait for a file to be updated, then execute a custom
command, such as restarting a server, rebuilding an application, running tests,
linters, and so on. It gives you, as a developer, instant feedback in the
terminal, empowering a tmux workspace to have IDE-like features, without the
bloat, memory, and CPU fans roaring.

I eventually settled on entr(1) [http://entrproject.org/], which works
superbly across Linux distros, BSDs and OS X / macOS.

The trick to make entr work is to pipe [https://en.wikipedia.org/wiki/Pipeline_(Unix)]
a list of files into it to watch.

Let’s search for all .go [https://en.wikipedia.org/wiki/Go_(programming_language)]
files in a directory and run tests [https://golang.org/cmd/go/#hdr-Test_packages]
on file change:

{language=shell, line-numbers=off}
$ ls -d *.go | entr -c go test ./…

Sometimes, we may want to watch files recursively, but we need it to run
reliably across systems. We can’t depend on ** existing to grab files
recursively, since it’s not portable. Something more POSIX-friendly would be
find . -print | grep -i '.*[.]go':

{language=shell, line-numbers=off}
$ find . -print | grep -i ‘.*[.]go’ | entr -c go test ./…

To only run file watcher if entr is installed, let’s wrap in a conditional
command -v [http://pubs.opengroup.org/onlinepubs/9699919799/utilities/command.html]
test:

{language=shell, line-numbers=off}
$ if command -v entr > /dev/null; then find . -print | grep -i ‘.*[.]go’ | entr -c go test ./…; fi

And have it fallback to go test in the event entr isn’t installed. This
allows your command to degrade gracefully. You’ll thank me when you use this
snippet in conjunction with a session manager:

{language=shell, line-numbers=off}
$ if command -v entr > /dev/null; then find . -print | grep -i ‘.*[.]go’ | entr -c go test ./…; else go test ./…; fi

If the project is a team or open source project, where a user never used the
command before and could be missing a required software package, we can give
a helpful message. This shows a notice to the user to install entr if not
installed on the system:

{language=shell, line-numbers=off}
$ if command -v entr > /dev/null; then find . -print | grep -i ‘.*[.]go’ | entr -c go test ./…; else go test ./…; echo “\nInstall entr(1) to “
echo “run tasks when files change. \nSee http://entrproject.org/”; fi

Here’s why you want patterns like above: You can put it into a Makefile [https://en.wikipedia.org/wiki/Makefile]
and commit it to your project’s VCS [https://en.wikipedia.org/wiki/Version_control],
so you and other developers can have access to this reusable command across
different UNIX-like systems, with and without certain programs installed.

Note: You may have to convert the indentation within the Makefiles from spaces
to tabs.

Let’s see what a Makefile with this looks like:

{language=makefile, line-numbers=off}
watch_test:
if command -v entr > /dev/null; then find . -print | grep -i ‘.*[.]go’ | entr -c go test ./…; else go test ./…; echo “\nInstall entr(1) to run tasks when files change. \nSee http://entrproject.org/”; fi

To run this, do $ make watch_test in the same directory as the Makefile.

But it’s still a tad bloated and hard to read. We have a couple tricks at our
disposal. One would be to add continuation to the next line with a trailing
backslash (\):

{language=makefile, line-numbers=off}
watch_test:
if command -v entr > /dev/null; then find . -print | grep -i ‘.*[.]go’ | entr -c go test ./…; else go test ./…; echo “\nInstall entr(1) to run tasks on file change. \n”; echo “See http://entrproject.org/”; fi

Another would be to break the command into variables and make subcommands. So:

{language=makefile, line-numbers=off}
WATCH_FILES= find . -type f -not -path ‘/.’ | grep -i ‘.*[.]go$$’ 2> /dev/null

test:
 go test $(test) ./...

entr_warn:
 @echo "---"
 @echo " ! File watching functionality non-operational ! "
 @echo " "
 @echo " Install entr(1) to run tasks on file change. "
 @echo " See http://entrproject.org/ "
 @echo "---"

watch_test:
 if command -v entr > /dev/null; then ${WATCH_FILES} | \
 entr -c $(MAKE) test; else $(MAKE) test entr_warn; fi

$(MAKE) is used for portability. One reason is recursive calls, such
as here. On BSD systems, you may try invoking make via gmake
(to call GNU Make [https://www.gnu.org/software/make/] specifically). This
happened to me, while building PDFs for the book AlgoXY [https://github.com/liuxinyu95/AlgoXY/].
I had to write a patch [https://github.com/liuxinyu95/AlgoXY/pull/16] to
make it properly use $(MAKE) for recursive calls.

The $(test) after go test allows passing a shell variable with arguments
in it. So, you could do make watch_test test='-i'. For examples of a similar
Makefile in action, see the one in my tmuxp project [https://github.com/tony/tmuxp/blob/master/Makefile].
The project is licensed BSD (permissive), so you can grab code and use it
in compliance with the LICENSE [https://github.com/tony/tmuxp/blob/master/LICENSE].

One more thing, let’s say you’re running a server, like Gin [https://github.com/gin-gonic/gin],
Iris [https://github.com/kataras/iris], or Echo [https://github.com/labstack/echo].
entr -c likely won’t be restarting the server for you. Try entering the -r
flag to send a SIGTERM [https://en.wikipedia.org/wiki/Unix_signal] to the
process before restarting it. Combining the current -c flag with the new -r
will give you entr -rc:

{language=makefile, line-numbers=off}
run:
go run main.go

watch_run:
 if command -v entr > /dev/null; then ${WATCH_FILES} | \
 entr -c $(MAKE) run; else $(MAKE) run entr_warn; fi

Session Managers {#session-manager}

For those who use tmux regularly to perform repetitive tasks, such as opening
the same software project, viewing the same logs, etc., frequent tasks will
often lead to the creation of tmux scripts.

A user can use plain shell scripting to build their tmux sessions. However,
scripting is error prone, hard to debug, and requires tmux to split windows into
panes in a certain order. In addition, there’s the burden of assuring the shell
scripts are portable.

A declarative configuration in YAML or JSON configuration abstracts out the
commands, layout, and options of tmux. It prevents the mistakes and repetition
scripting entails. These applications are called tmux session managers, and in
different ways, they programmatically create tmux workspaces by running a
series of commands based on a config.

Teamocil [https://github.com/remiprev/teamocil] and
Tmuxinator [https://github.com/tmuxinator/tmuxinator] are the first ones I
tried. By far, the most popular one is tmuxinator. They are both programmed in
Ruby. There’s also tmuxomatic [https://github.com/oxidane/tmuxomatic], where
you can “draw” your tmux sessions in text and have tmuxomatic build the layout.

I sort of have a home team advantage here, as I’m author of tmuxp [https://github.com/tony/tmuxp].
Already having used teamocil and tmuxinator, I wrote my own in python instead of
ruby, with many more features. For one, it builds on top of libtmux [https://github.com/tony/libtmux],
a library which abstracts tmux server, sessions,
windows and panes to build the state of tmux sessions. In
addition, it has a naive form of session freezing, support for JSON, more
flexible configuration options, and it will even offer to attach exiting
sessions, instead of redundantly running script commands against the
session if it’s already running.

So, in tmuxp, we’ll hollow out a tmuxp config directory with $ mkdir ~/.tmuxp
then create a YAML file at ~/.tmuxp/test.yaml:

{language=yaml, line-numbers=off}
session_name: 4-pane-split
windows:
- window_name: dev window
layout: tiled
shell_command_before:
- cd ~/ # run as a first command in all panes
panes:
- shell_command: # pane no. 1
- cd /var/log # run multiple commands in this pane
- ls -al | grep .log
- echo second pane # pane no. 2
- echo third pane # pane no. 3
- echo forth pane # pane no. 4

gives a session titled 4-pane-split, with one window titled dev window with
4 panes in it. 3 in the home directory; the other is in
/var/log and is printing a list of all files ending with .log.

To launch it, install tmuxp and load the configuration:

{language=shell, line-numbers=off}
$ pip install –user tmuxp
$ tmuxp -V # verify tmuxp is installed, if not you need to fix your PATH
to point to your python bin folder. More help below.
$ tmuxp load ~/.tmuxp/test.yaml

If tmuxp isn’t found, there is a troubleshooting entry on fixing your
paths in the appendix.

More code and examples {#example-projects}

I’ve dusted off a C++ space shooter and a new go webapp I’ve been playing with.
They’re licensed under MIT so, you can use them, copy and paste from them, etc:

	C++14 space shooter minigame [https://github.com/tony/tot-cpp-shmup] - side
scrolling shmup [https://en.wikipedia.org/wiki/Shoot_%27em_up] demo (sdl2,
cmake, json resource manifests, Linux/BSD/OS X compatible)

	Go tmux web frontend [https://github.com/tony/tot-go-webapp] - display
current tmux session and window information via browser (gin [https://github.com/gin-gonic/gin],
bower [https://bower.io/])

Both support tmuxp load . within the project directory to load up the project.

Make sure to install entr(1) [http://entrproject.org/] beforehand!

tmux-plugins and tpm

tmux-plugins [https://github.com/tmux-plugins] and tmux package
manager [https://github.com/tmux-plugins/tpm] are a suite of tools dedicated
to enhancing the experience of tmux users.

	tmux-resurrect [https://github.com/tmux-plugins/tmux-resurrect]: Persists
tmux environment across system restarts.

	tmux-continuum [https://github.com/tmux-plugins/tmux-continuum]: Continuous
saving of tmux environment. Automatic restore when tmux is started. Automatic
tmux start when computer is turned on.

	tmux-yank [https://github.com/tmux-plugins/tmux-yank]: Tmux plugin for
copying to system clipboard. Works on OSX, Linux and Cygwin.

	tmux-battery [https://github.com/tmux-plugins/tmux-battery]: Plug and play
battery percentage and icon indicator for Tmux.

 Takeaway {#takeaway}

Takeaway {#takeaway}

In this book, we’ve taken an organized approach to understanding tmux. As you
use tmux more and more, continue to come back and use this resource to help wrap
your brain around concepts. You do not have to understand the intricacies of
tmux, let alone the terminal, in a single sitting. Acclimation happens over
time.

tmux’s userbase varies in skill level. Some readers of this book may have just
learned how to use the Prefix key yesterday. Others are looking to tweak their
configurations and host it in their “dot files” on github. There also exists a
very clever hacker who utilizes the advanced scripting capabilities tmux
offers to pilot the terminal in ways previously thought impossible.

We’ve covered the server, session, window,
and pane concepts. Panes are shells, AKA pseudoterminals or
PTYs. The command system. That configuration is basically a file
filled with commands. An overview of the target system lets
you specify objects to interact with tmux commands. A breeze through formats,
a template system with variables to retrieve information on tmux’s current
state. How to send keystrokes and copy from tmux panes
programmatically. A lot of terminal tricks that work across
platforms and well with tmux, including a file watching workflow
to run linting, testing, and build commands on file changes. Two permissively licensed open source projects
for demonstration. A tmux configuration [https://www.github.com/tony/tmux-config]
you can copy and paste from. An object oriented tmux API wrapper [https://libtmux.git-pull.com]
and a tmux session manager [https://tmuxp.git-pull.com].

If you liked this book, please leave a review on Amazon [http://amzn.to/2gPfRhC] and
Goodreads [https://www.goodreads.com/book/show/33246223-the-tao-of-tmux]. I
would also appreciate you leaving something in my tip jar [https://www.git-pull.com/support.html].
I am an independent software developer and could use all the help I can get.

If you found an error or have a suggestion, please contact me at
tao.of.tmux@git-pull.com. I want this book to be the best it can be.
If you are having technical difficulties with Kindle, please send me your
receipt and I will comp you a leanpub coupon.

 Appendix: Cheatsheets {#appendix-cheatsheets}

 {backmatter}

Appendix: Cheatsheets {#appendix-cheatsheets}

These are taken directly from tmux’s manual pages, tabled and organized by
hand into sections for convenience.

Commands

Session

{width=”wide”}
Command	Action
——————	———————————————————-
no command	Short-cut for new-session
attach-session	Attach or switch to a session
choose-session	Put a window into session choice mode
has-session	Check and report if a session exists on the server
kill-session	Destroy a given session
list-sessions	List sessions managed by server
lock-session	Lock all clients attached to a session
new-session	Create a new session
rename-session	Rename a session

Window

{width=”wide”}
Command	Action
———————-	——————————————————
choose-window	Put a window into window choice
find-window	Search for a pattern in windows
kill-window	Destroy a given window
last-window	Select the previously selected
link-window	Link a window to another
list-windows	List windows of a session
move-window	Move a window to another
new-window	Create a new window
next-window	Move to the next window in a sesssion
previous-window	Move to the previous window in session
rename-window	Rename a window
respawn-window	Reuse a window in which a command has exited
rotate-window	Rotate positions of panes in a window
select-window	Select a window
set-window-option	Set a window option
show-window-options	Show window options
split-window	Splits a pane into two
swap-window	Swap two windows
unlink-window	Unlink a window

Pane

{width=”wide”}
Command	Action
—————–	———————————————————–
break-pane	Break a pane from an existing into a new window
capture-pane	Capture the contents of a pane to a buffer
display-panes	Display an indicator for each visible pane
join-pane	Split a pane and move an existing one into the new space
kill-pane	Destroy a given pane
last-pane	Select the previously selected pane
list-panes	List panes of a window
move-pane	Move a pane into a new space
pipe-pane	Pipe output from a pane to a shell command
resize-pane	Resize a pane
respawn-pane	Reuse a pane in which a command has exited
select-pane	Make a pane the active one in the window
swap-pane	Swap two panes

{pagebreak}

Keybindings

{width=”wide”}
Shortcut	Action
——————	—————————————————-
C-b	Send the prefix key (C-b) through to the
	application.

Miscellaneous

{width=”wide”}
Shortcut	Action
——————	—————————————————-
C-z	Suspend the tmux client.
r	Force redraw of the attached client.
t	Show the time.
~	Show previous messages from tmux, if any.
f	Prompt to search for text in open windows.
d	Detach the current client.
D	Choose a client to detach.
?	List all key bindings.
:	Enter the tmux command prompt.

Copy/Paste

{width=”wide”}
Shortcut	Action
——————	—————————————————-
#	List all paste buffers.
[Enter copy mode to copy text or view the history.
]	Paste the most recently copied buffer of text.
Page Up	Enter copy mode and scroll one page up.
=	Choose which buffer to paste interactively from a
	list.
-	Delete the most recently copied buffer of text.

{pagebreak}

Session

{width=”wide”}
Shortcut	Action
——————	—————————————————-
\(\)	Rename the current session.

Session Traversal

{width=”wide”}
Shortcut	Action
——————	—————————————————-
L	Switch the attached client back to the last
	session.
s	Select a new session for the attached client
	interactively.

{pagebreak}

Window

{width=”wide”}
Shortcut	Action
——————	—————————————————-
c	Create a new window.
&	Kill the current window.
i	Display some information about the current window.
,	Rename the current window.

Window Traversal

{width=”wide”}
Shortcut	Action
——————	—————————————————-
0 to 9	Select windows 0 to 9.
w	Choose the current window interactively.
M-n	Move to the next window with a bell or activity
	marker.
M-p	Move to the previous window with a bell or activity
	marker.
p	Change to the previous window.
n	Change to the next window.
l	Move to the previously selected window.
'	Prompt for a window index to select.

Window Moving

{width=”wide”}
Shortcut	Action
——————	—————————————————-
.	Prompt for an index to move the current window

{pagebreak}

Pane

{width=”wide”}
Shortcut	Action
——————	—————————————————-
x	Kill the current pane.
q	Briefly display pane indexes.
%	Split the current pane into two, left and right.
"	Split the current pane into two, top and bottom.

Pane Traversal

{width=”wide”}
Shortcut	Action
——————	—————————————————-
;	Move to the previously active pane.
Up, Down	Change to the pane above, below, to the left, or to
Left, Right	the right of the current pane.
o	Select the next pane in the current window.

Pane Moving

{width=”wide”}
Shortcut	Action
——————	—————————————————-
C-o	Rotate the panes in the current window forwards.
M-o	Rotate the panes in the current window backwards.
{	Swap the current pane with the previous pane.
}	Swap the current pane with the next pane.
!	Break the current pane out of the window.

Pane Resizing

{width=”wide”}
Shortcut	Action
——————	—————————————————-
M-1 to M-5	Arrange panes in one of the five preset layouts:
	even-horizontal, even-vertical, main-horizontal,
	main-vertical, or tiled.
C-Up, C-Down	Resize the current pane in steps of one cell.
C-Left, C-Right	
M-Up, M-Down	Resize the current pane in steps of five cells.
M-Left, M-Right	

{pagebreak}

Formats {#appendix-formats}

Copy / paste

{width=”wide”}
Variable name	Description
———————–	——————————————
buffer_name	Name of buffer
buffer_sample	Sample of start of buffer
buffer_size	Size of the specified buffer in bytes

Clients

{width=”wide”}
Variable name	Description
———————–	——————————————
client_activity	Integer time client last had activity
client_created	Integer time client created
client_control_mode	1 if client is in control mode
client_height	Height of client
client_key_table	Current key table
client_last_session	Name of the client’s last session
client_pid	PID of client process
client_prefix	1 if prefix key has been pressed
client_readonly	1 if client is readonly
client_session	Name of the client’s session
client_termname	Terminal name of client
client_tty	Pseudo terminal of client
client_utf8	1 if client supports utf8
client_width	Width of client
line	Line number in the list

Panes

{width=”wide”}
Variable name	Description
———————–	——————————————
alternate_on	If pane is in alternate screen
alternate_saved_x	Saved cursor X in alternate screen
alternate_saved_y	Saved cursor Y in alternate screen
cursor_flag	Pane cursor flag
cursor_x	Cursor X position in pane
cursor_y	Cursor Y position in pane
insert_flag	Pane insert flag
keypad_cursor_flag	Pane keypad cursor flag
keypad_flag	Pane keypad flag
mouse_any_flag	Pane mouse any flag
mouse_button_flag	Pane mouse button flag
mouse_standard_flag	Pane mouse standard flag
pane_active	1 if active pane
pane_bottom	Bottom of pane
pane_current_command	Current command if available
pane_current_path	Current path if available
pane_dead	1 if pane is dead
pane_dead_status	Exit status of process in dead pane
pane_height	Height of pane
pane_id	Unique pane ID (Alias: #D)
pane_in_mode	If pane is in a mode
pane_input_off	If input to pane is disabled
pane_index	Index of pane (Alias: #P)
pane_left	Left of pane
pane_pid	PID of first process in pane
pane_right	Right of pane
pane_start_command	Command pane started with
pane_synchronized	If pane is synchronized
pane_tabs	Pane tab positions
pane_title	Title of pane (Alias: #T)
pane_top	Top of pane
pane_tty	Pseudo terminal of pane
pane_width	Width of pane
scroll_region_lower	Bottom of scroll region in pane
scroll_region_upper	Top of scroll region in pane
scroll_position	Scroll position in copy mode
wrap_flag	Pane wrap flag

Sessions

{width=”wide”}
Variable name	Description
———————–	——————————————
session_alerts	List of window indexes with alerts
session_attached	Number of clients session is attached to
session_activity	Integer time of session last activity
session_created	Integer time session created
session_last_attached	Integer time session last attached
session_group	Number of session group
session_grouped	1 if session in a group
session_height	Height of session
session_id	Unique session ID
session_many_attached	1 if multiple clients attached
session_name	Name of session (Alias: #S)
session_width	Width of session
session_windows	Number of windows in session

Windows

{width=”wide”}
Variable name	Description
———————–	——————————————
history_bytes	Number of bytes in window history
history_limit	Maximum window history lines
history_size	Size of history in bytes
window_activity	Integer time of window last activity
window_activity_flag	1 if window has activity
window_active	1 if window active
window_bell_flag	1 if window has bell
window_find_matches	Matched data from the find-window
window_flags	Window flags (Alias: #F)
window_height	Height of window
window_id	Unique window ID
window_index	Index of window (Alias: #I)
window_last_flag	1 if window is the last used
window_layout	Window layout description, ignoring zoomed
	window panes
window_linked	1 if window is linked across sessions
window_name	Name of window (Alias: #W)
window_panes	Number of panes in window
window_silence_flag	1 if window has silence alert
window_visible_layout	Window layout description, respecting
	zoomed window panes
window_width	Width of window
window_zoomed_flag	1 if window is zoomed

Servers

{width=”wide”}
Variable name	Description
———————–	——————————————
host	Hostname of local host (alias: #H)
host_short	Hostname of local host (no domain name)
	(alias: #h)
socket_path	Server socket path
start_time	Server start time
pid	Server PID

Commands

For $ tmux list-commands.

{width=”wide”}
Variable name	Description
———————–	——————————————
command_hooked	Name of command hooked, if any
command_name	Name of command in use, if any
command_list_name	Command name if listing commands
command_list_alias	Command alias if listing commands
command_list_usage	Command usage if listing commands

 Appendix: Installing tmux {#appendix-installation}

Appendix: Installing tmux {#appendix-installation}

macOS / OS X

brew

{language=shell, line-numbers=off}
$ brew install tmux

macports

{language=shell, line-numbers=off}
$ sudo port install tmux

fink

{language=shell, line-numbers=off}
$ fink install tmux

Linux

Ubuntu / Mint / Debian, etc.

{language=shell, line-numbers=off}
$ sudo apt-get install tmux

CentOS / Fedora / Redhat, etc.

{language=shell, line-numbers=off}
$ sudo yum install tmux

Arch Linux (pacman)

{language=shell, line-numbers=off}
$ sudo pacman -S tmux

Gentoo (portage)

{language=shell, line-numbers=off}
$ sudo emerge –ask app-misc/tmux

BSD

FreeBSD

pkg(1)

{line-numbers=off}
pkg install tmux

pkg_add(1)

{line-numbers=off}
pkg_add -r tmux

OpenBSD

As of OpenBSD 4.6, tmux is part of the base system [https://www.openbsd.org/46.html].

If you are using an earlier version:

{line-numbers=off}
pkg_add tmux

NetBSD

{language=shell, line-numbers=off}
$ make -C /usr/pkgsrc/misc/tmux install

Windows 10

Check out the tmux on Windows 10 appendix section.

 Appendix: tmux on Windows 10 {#appendix-windows-bash}

Appendix: tmux on Windows 10 {#appendix-windows-bash}

As of Windows 10 build 14361, you can run tmux [https://blogs.msdn.microsoft.com/commandline/2016/06/08/tmux-support-arrives-for-bash-on-ubuntu-on-windows/] via the Linux Subsystem feature.

Usage requires enabling Developer mode via the “For Developers” tab in the
“Update & security” settings.

After enabling, open “Windows Features”. You can find it by searching for “Turn
Windows features on or off”. Then check “Windows Subsystem for Linux (Beta)”.

You may be asked to restart.

Then open Command Prompt as you normally would (Run cli.exe). Then type

C:\Users\tony> bash.exe

It will prompt you to agree to terms, create a user. In my build, tmux was
already installed! But if it’s not, type sudo apt-get install tmux.

[image: ../_images/01-turn-features-onoff.jpg]Find Turn Windows Features on or off

[image: ../_images/02-turn-features-onoff-check.jpg]Check Windows Subsystem for Linux (Beta)

[image: ../_images/03-turn-features-restart.jpg]Windows completed the requested changes. Restart

[image: ../_images/04-developer-mode.jpg]Use Developer features

[image: ../_images/05-developer-mode-check.jpg]Select Developer mode in Update & Security

[image: ../_images/06-install-ubuntu.jpg]Installing Ubuntu from Windows Store

[image: ../_images/07-create-user.jpg]Create Linux user

[image: ../_images/08-bash.jpg]In bash!

yourusername@COMPUTERNAME-ID321FJ:/mnt/c/Users/username$ tmux

[image: ../_images/09-tmux.jpg]In tmux!

This should allow you to run tmux within bash.exe.

This is a real ubuntu installation, so you can continue to install
packages via sudo apt-get install **packagename** and update packages
via sudo apt-get update && sudo apt-get upgrade.

 Appendix: Troubleshooting {#appendix-troubleshooting}

Appendix: Troubleshooting {#appendix-troubleshooting}

E353: Nothing in register * when pasting on vim

If you are using macOS / OS X with vim inside tmux, you may get the error
E353: Nothing in register * when trying to paste.

Try installing reattach-to-user-namespace [https://github.com/ChrisJohnsen/tmux-MacOSX-pasteboard]
via brew [http://brew.sh].

{language=shell, line-numbers=off}
$ brew install reattach-to-user-namespace

tmuxp: command not found and powerline: command not found {#troubleshoot-site-paths}

This is due to your site package bin path (where application entry points are
installed) not being in your paths. To find your user site packages base directory:

{language=shell, line-numbers=off}
$ python -m site –user-base

This will get you something like /Users/me/Library/Python/2.7 on macOS with
Python 2.7 or /home/me/.local on Linux/BSD boxes.

The applications are in the bin/ folder inside. So, concatenate the two and
apply them to your PATH [https://en.wikipedia.org/wiki/PATH_(variable)]. This
can be done automatically on every shell session by using one of these in your
~/.bashrc or ~/.zshrc:

{language=shell, line-numbers=off}
export PATH=/Users/me/Library/Python/2.7/bin:$PATH # macOS w/ python 2.7
export PATH=$HOME/.local/bin:$PATH # Linux/BSD
export PATH=”python -m site --user-base/bin”:$PATH # May work all-around

Then open a new terminal, or . ~/.zshrc / . ~/.bashrc in your current one.
Then you can run $ tmuxp -V, $ tmuxp load and $ powerline tmux right
commands.

 Index

Index

 Contributing to The Tao of tmux

Contributing to The Tao of tmux

Licensing

By opening a pull request to this repository, you agree to provide your work
under the project license. Also, you agree to grant such license of your work as
is required for the purposes of future digital and print editions to Tony
Narlock.

Questions, Comments

Any commentary on the book can be sent to the.tao.of.tmux @
git-pull.com.

 The Tao of tmux

The Tao of tmux

by Tony Narlock

This book is available for free to read on the web at https://leanpub.com/the-tao-of-tmux/read.

You can also buy the book DRM-free in PDF, mobi and epub format at
https://leanpub.com/the-tao-of-tmux and on Amazon Kindle [http://amzn.to/2gPfRhC].

Contributors

See https://github.com/git-pull/tao-of-tmux/graphs/contributors for a
list of people who contributed to the project.

_images/09-tmux.jpg
penguin@DESKTOP-IFILNQD: /mnt/c/Users$

[e] @:bash*

penguin@DESKTOP-IFILNQD:/$ o

"DESKTOP-IFJLNQD" ©8:28 12-Oct-16

_images/active-window.png
Multitasking
active. right: customize status b

ight}

nges, 1ldb open in the bottom right]C

tmux gives you prime oppurtunity to do many things at once on the same screen.[]
You can keep multiple terminals running on the same display.

(After all, that's where the name tmux comes from - **T**erminal
**Mut*Ltipletxtter.)

In addition to having multiple terminals on one screen, tmux allows you to
create and link miltiple "windows”, all within the confines of the tmx sessid
n

you attached.

Even better, there are facilities to copy and paste, scroll. No requirement
for graphics either, so you have full power even if you're SSH'ing or in a
tty without X.

So here are a few common scenarios:

A system administrator will run a “tail -F /var/log/apache2/error.log’ in a
pane to get a live stream of the latest system events.

and [unix/MARKDOWN] _[/Users//me/work/tao~of ~tmux/manuscript]48,0-1 31% <d [+] [unix/MARKDONN] [/Users/me/work/tao-of-tmux/manuscript]14,107

~/Work/tao-of -tmux/manuscript

~/work/tao-of ~tmux/manuscript ~/work/tao-of ~tmux/manuscript

mbpl5 16.1.0 Mon10:54:32 AM 2016-12-05

_images/07-create-user.jpg
Command Prompt - bash - O

ficrosoft Windows [Version 18.8.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Users\tony>bash.exe

-- Beta feature --

This will install Ubuntu on Windows, distributed by Canonical
and licensed under its terms available here:
https://aka.ms/uowterms

Type "y" to continue: y

Downloading from the Windows Store... 108%

Extracting filesystem, this will take a few minutes...

Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/wslusers

Enter new UNIX username: penguin

Enter new UNIX password:

Retype new UNIX password: o

_images/08-bash.jpg
penguin@D nt/c/User — O

ficrosoft Windows [Version 18.8.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Users\tony>bash.exe

-- Beta feature --

This will install Ubuntu on Windows, distributed by Canonical
and licensed under its terms available here:
https://aka.ms/uowterms

Type "y" to continue: y

Downloading from the Windows Store... 100%

Extracting filesystem, this will take a few minutes...
Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/wslusers
Enter new UNIX username: penguin

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Installation successfull

The environment will start momentarily...
Documentation is available at: https://aka.ms/wsldocs
penguin@DESKTOP-IFILNQD: /mnt/c/Users/tony$

_images/default.png
|[®] 1:zsh* "' 21:51 1®—Jan—17|

_images/dev-watch.png
Press <F1>, ? for help
Game ; : Game (. . std: o

sd1(SDL_INIT_VIDEOD),
image(IMG_INIT_PNG), [functions]
window() -

SDL_WINDOWPOS_CENTERED, HandleEvent

SDL_WINDOWPOS_CENTERED, MainLoop

SCREEN_RECT .w

SCREEN_RECT . h, functions

SDL_WINDOW_RESIZRABLE), LoadResources
renderer(: 1make_unique<SDL2pp: :Renderer>(

vindou,

<spdlog: :logger>& console)

SDL_RENDERER_ACCELERATED | SDL_RENDERER_TARGETTEXTURE)),
resource_manager (: 1make_unique<{ResourceManager>())
stat_service(. :make_shared<{StatService>()),
input(: 1make_shared<InputManager>()),
console(console) {

console->info(DF;

LoadResources(renderer, resource_manager)
stage = : 1make_shared<{LevelStage>(renderer, resource_manager
DF;
<p [unix/CPP] [/Users/me/work/c++/sdl2-playproject/srclgb,1 38% [Namel main.cpp

-- Configuring done libsystem_kernel .dulib __semwait_signal
-- Generating done -> Bx7fffadbbefde <+18>: jae Bx7fffa3bbefed
-- Build files have been written to: /Users/me/work/ s <+28>
c++/sdl2-playproject/build Bx7fffa3bbefed <+12>: movqg Zrax, Zrdi
ninja -C build Ox7fffa3bbefed <+15>: jmp Ox7fffa36b7d94
ninja: Entering directory build' ; cerror
[27/27]1 Linking CXX executable game Bx7fffa3bbefed <+28>: retqg

(11dp)

Fri11:35:18 PM 2016-11-18

_images/capture-pane-vim.png
sh-3.2$% tmux list-panes sh-3.2$% tmux list-panes

0: [176x24] [history 9/2000, 2262 bytes] %13 0: [176x24] [history 9/2000, 2262 bytes] %13

1: [55x11] [history 55/2000, 7395 bytes] %14 1: [55x11] [history 55/2000, 7395 bytes] %14

2: [58x7] [history 62/2000, 9669 bytes] %16 (active) 2: [58x7] [history 62/2000, 9669 bytes] %16 (active)

3: [58x3] [history 593/2000, 128412 bytes] %17 3: [58x3] [history 593/2000, 128412 bytes] %17

4: [61x11] [history 63/2000, 6942 bytes] %15 4: [61x11] [history 63/2000, 6942 bytes] %15

sh-3.2% sh-3.2%
__4

sh-3.2$ tmux capture-pane -t %16 |~

sh-3.2%$ I I[No Namel [+] [unix/] [/Users/me] 8,0-1 100%

|:set paste

_images/clocks.png
3 Fri 8:27 PM Q

[
20:31 02-Dec-16

_images/even-horizontal.png
“even-horizontal” layout

2 panes 3 panes 4 panes

_images/even-vertical.png
“even-vertical” layout

2 panes 3 panes 4 panes

_images/04-developer-mode.jpg
b @&

Best match

Tr For developers settings
Systemn settings

Settings
I Use developer features
Store

.MET Developer Feed

What's Pixelated - word picture guessing
rearranging puzzle game and acclaimed

Web

developed

_images/05-developer-mode-check.jpg
©: Home

Find a setting

Update & security

T
Ly

-1

Windows Update

Windows Defender

Backup

Recovery

Activation

Use developer features

These settings are intended for development use only.

Learn more

o Windows Store apps

Only install apps from the Windows Store.

o Sideload apps

nstall apps from other sources that you trust, like your
workplace.

@ Developer mode
nstall any signed app and use advanced development features.

Some features might not work until you restart your PC.

_images/02-turn-features-onoff-check.jpg
Turn Wind

check box. A

|54 Windows Features

ows features on or off

To turn a feature on, select its check box. To turn a feature off, cl
illed box means that only part of the feature is turned on.

ear its

]

. SMBE 1.0/CIF5 File Sharing Support
|| SMB Direct

. Telnet Client

|| TFTP Client

. Windows Identity Foundation 3.5
|| Windows PowerShell 2.0

. Windows Process Activation Service
IR :

|| Windows TIFF IFilter

. Work Folders Client

. KPS Services

[XPS Viewer

Cancel

_images/03-turn-features-restart.jpg
|54 Windows Features

Windows completed the requested changes.

Windows needs to reboot your PC to finish installing the requested changes.

_images/06-install-ubuntu.jpg
Command Pror B -

Microsoft Windows [Version 18.8.14393]
(c) 2816 Microsoft Corporation. All rights reserved.

C:\Users\tony>bash.exe

-- Beta feature --

This will install Ubuntu on Windows, distributed by Canonical
and licensed under its terms available here:
https://aka.ms/uowterms

Type "y" to continue: y
Downloading from the Windows Store... 3%

_images/main-horizontal.png
“main-horizontal” layout

2 panes 3 panes 4 panes

nav.xhtml

 Table of Contents

 		
 Welcome to tao-of-tmux’s documentation!

 		
 Foreword

 		
 About this book

 		
 Styles

 		
 How this book is structured

 		
 Donations

 		
 Formats

 		
 Errata {#errata}

 		
 Thanks

 		
 Book Updates and tmux changes

 		
 Thinking in tmux {#thinking-tmux}

 		
 Window manager for the terminal

 		
 Multitasking

 		
 Keep your applications running in the background

 		
 Powerful combos

 		
 Summary

 		
 Terminal fundamentals {#terminal-fundamentals}

 		
 POSIX standards

 		
 Terminal interface

 		
 Terminal emulators

 		
 Shell languages {#shell-languages}

 		
 Shell interpreters (Shells) {#shells}

 		
 Summary

 		
 Practical usage {#practical-usage}

 		
 The prefix key {#prefix-key}

 		
 Nested tmux sessions

 		
 Session persistence and the server model

 		
 It’s all commands

 		
 Summary

 		
 Server {#server}

 		
 What? tmux is a server?

 		
 Zero config needed

 		
 Stayin’ alive

 		
 Servers hold sessions

 		
 How servers are “named”

 		
 Clients

 		
 Clipboard {#clipboard}

 		
 Summary

 		
 Sessions {#sessions}

 		
 Creating a session

 		
 Switching sessions within tmux

 		
 Naming sessions

 		
 Does my session exist?

 		
 Summary

 		
 Windows {#windows}

 		
 Creating windows

 		
 Naming windows

 		
 Traversing windows

 		
 Moving windows

 		
 Layouts {#window-layouts}

 		
 Closing windows

 		
 Summary

 		
 Panes {#panes}

 		
 Creating new panes

 		
 Traversing Panes {#pane-traversal}

 		
 Zoom in {#zoom-pane}

 		
 Resizing panes {#resizing-panes}

 		
 Outputting pane to a file

 		
 Summary

 		
 Configuration {#config}

 		
 Reloading configuration {#reload-config}

 		
 How configs work

 		
 Server options

 		
 Tweak timing between key sequences

 		
 Terminal coloring

 		
 Session options

 		
 Base index

 		
 Window options

 		
 Automatic window naming

 		
 Keybindings

 		
 Prefix key

 		
 New window with prompt

 		
 Vi copy-paste keys

 		
 hjkl / vi-like pane traversal

 		
 Further inspiration

 		
 Status bar and styling {#status-bar}

 		
 Window status symbols

 		
 Date and time

 		
 Shell command output

 		
 Styling

 		
 Status line

 		
 Clock styling

 		
 Prompt colors

 		
 Styling while using tmux

 		
 Toggling status line

 		
 Example: Default config

 		
 Example: Dressed up {#status-bar-example-dressed-up}

 		
 Example: Powerline

 		
 Summary

 		
 Scripting tmux {#scripting-tmux}

 		
 Aliases {#aliases}

 		
 Pattern matching {#fnmatch}

 		
 Targets {#targets}

 		
 attach-session [-t target-session]

 		
 detach-client [-s target-session] [-t target-client]

 		
 has-session [-t target-session]

 		
 $ tmux kill-session [-t target-session]

 		
 $ tmux list-clients [-t target-session]

 		
 $ tmux lock-client [-t target-client]

 		
 $ tmux lock-session [-t target-session]

 		
 $ tmux new-session [-t target-session]

 		
 $ tmux refresh-client [-t target-client]

 		
 $ tmux rename-session [-t target-session] session-name

 		
 $ tmux show-messages [-t target-client]

 		
 $ tmux suspend-client [-t target-client]

 		
 $ tmux switch-client [-c target-client] [-t target-session]

 		
 Formats {#formats}

 		
 Controlling tmux {#send-keys}

 		
 Capturing pane content {#capture-pane}

 		
 Summary

 		
 Tips and tricks {#tips-and-tricks}

 		
 Read the tmux manual in style

 		
 Log tailing

 		
 File watching {#file-watching}

 		
 Session Managers {#session-manager}

 		
 More code and examples {#example-projects}

 		
 tmux-plugins and tpm

 		
 Takeaway {#takeaway}

 		
 Appendix: Cheatsheets {#appendix-cheatsheets}

 		
 Commands

 		
 Session

 		
 Window

 		
 Pane

 		
 Keybindings

 		
 Miscellaneous

 		
 Copy/Paste

 		
 Session

 		
 Window

 		
 Pane

 		
 Formats {#appendix-formats}

 		
 Copy / paste

 		
 Clients

 		
 Panes

 		
 Sessions

 		
 Windows

 		
 Servers

 		
 Commands

 		
 Appendix: Installing tmux {#appendix-installation}

 		
 macOS / OS X

 		
 brew

 		
 macports

 		
 fink

 		
 Linux

 		
 Ubuntu / Mint / Debian, etc.

 		
 CentOS / Fedora / Redhat, etc.

 		
 Arch Linux (pacman)

 		
 Gentoo (portage)

 		
 BSD

 		
 FreeBSD

 		
 OpenBSD

 		
 NetBSD

 		
 Windows 10

 		
 Appendix: tmux on Windows 10 {#appendix-windows-bash}

 		
 Appendix: Troubleshooting {#appendix-troubleshooting}

 		
 E353: Nothing in register * when pasting on vim

 		
 tmuxp: command not found and powerline: command not found {#troubleshoot-site-paths}

_images/overview.png
status-left window list status-right

Tuell:41:07 PM 2017-01-10

_images/01-turn-features-onoff.jpg
b @

Best match

Turn Windows features on or off
Control panel

windows featu|

_images/pane.png
> command

pane

_images/main-vertical.png
“main-vertical” layout

2 panes 3 panes 4 panes

_images/most.png
TMIX(1) BSD General Commands Manual TMIX(1)

NavE
tmux -~ terminal multiplexer

SYNOPSTS
tmux [-2Cluw] [-c shell-comand] [-f file] [-L socket-name]
[-S socket-path] [comand [flags]]

DESCRIPTION
tmux is a terminal multiplexer: it enables a number of terminals to be
created, accessed, and controlled from a single screen. tmux may be
detached from a screen and continue running in the background, then later
reattached.

When tmux is started it creates a new session with a single window and
displays it on screen. A status line at the bottom of the screen shows

™IXCD) BSD General Comnands Manual ™MIX(D)

NAvE
‘aux -- terminal multiplexer

SYNOPSIS
tmux [-2C1uw] [-c shell-comand] [-f file] [-L socket-nane]
[-5 socket-path] [comand [flags]]

DESCRIPTION
‘nux is @ terminal multiplexer: it enables a number of terminals to be
created, accessed, and controlled from a single screen. tnux may be

detached from a screen and continue running in the background, then later

reattached.

When tnux is started it creates a new session with a single window and
- MOST: *stdin®
Press "Q" to quit, 'H' for help, and SPACE to scroll.

a,n ox

_images/rename.png
[0] @0:zsh* 12:20 18-Dec-16|

[react web@d:zsh*

_images/rename1.png
[0] 0:zsh*

S LS S A

LT RS EE RN SN

LT o,

(rename-window) renamed _I

.&‘
}\g" 1.* g kA&:i > = s

g%

[@] @:renamed* : 11:58 18-Dec-16

_images/powerline.png
1: zshk 1 1d 51m 58s < 2.3 2.3 2.3 < 2017-01-16 < © 03:34 4FIEEEEEN

_images/prompt.png
.eco.hi'’g .

:echo "hi"|j

_images/send-keys-cal.png
sh-3.2$%$ tmux list-panes

0: [176x25] [history 1/2000, 283 bytes] %13 sh-3.2% cal

1: [55x10] [history 55/2000, 7395 bytes] %14 March 2017

2: [58x5] [history 38/2000, 4457 bytes] %16 (active) Su Mo Tu We Th Fr Sa
3: [58x4] [history 18/2000, 2653 bytes] %17 1 2 3 4
4: [61x10] [history 54/2000, 5975 bytes] %15 5 6 7 8 9 10 11
sh-3.2% 12 13 14 15 16 17 18
—— 11920 21 22 23 24 25
|sh-3.2$ tmux send-keys -t %15 'cal' 'Enter' 126 27 28 29 30 31
'sh-3.23 | |

| |sh-3.2%

_images/server-with-laptop.png
server

session session SESSiO I"I

pane | pane pane | pane pane | pane pane | pane pane | pane pane | pane
window: window: window: window; window: window:
pane || pane pane | pane pane | pane pane | pane pane || pane pane | pane

conmand > command conmand > conmand conmand > conmand

pane pane pane pane pane pane
el MRl el O e el Rl el Sl window, window, window.

e | o =0 | o e | s =0 | o e | o o | s conmand > conmand conmand > conmand > command > conmand

pane pane pane pane EN pane

pane || pane pane | pane pane || pane pane | pane pane || pane pane | pane
window: window: window: window: window: window:

pane || pane pane | pane. pane || pane pane | pane pane || pane pane | pane.
conmand > command conmand > conmand conmand > conmand

pane pane pane pane pane pane

i : .. window .. window .. Wwindow

SeSSIOn SGSSIOn pane pane pane pane pane pane
vane | e | [oane | Gane | [Fane || oane pane | pane | pane | pane | | pane | pane

window: window: window: window: window: window:

T T s e s e conmand > command conmand > conmand > command > conmand

pane pane pane pane EN pane
ol i W pane | pane | | pane | pne | | pane | pane

window window, window, window: window, window, Window Window Window

pane | pane pane | pane pane | pane pane | pane pane | pane pane | pane comnand > command connand > conmand command > conmand
pane pane pane pane pane pane

pane | pane pane | pane pane | pane pane | pane pane || pane pane | pane

window, window. window, window. window window.

pane | pane pane || pane pane | pane pane || pane pane | pane pane || pane

5 > >
- , conmand command | D

3 pane pane |
> command > command

pane pane | [N . window,
window- |

> command > command

pane pane

pane pane Vo

_images/server.png
server
session

session

> comnand > connand

pane pane

window,

> comnand >~ conmand

pane pane

> comnand > connand

pane pane

window,

> command > conmand

pane pane

> comnand > connand

pane pane

window,

> conmand >~ conmand

pane pane

> comnand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> conmand >~ conmand

pane pane

> command > conmand

pane pane

window,

> connand > conmand

pane pane

session

> comnand > connand

pane pane

window,

> comnand >~ conmand

pane pane

> comnand > connand

pane pane

window,

> command > conmand

pane pane

> comnand > connand

pane pane

window,

> conmand >~ conmand

pane pane

conmand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> conmand >~ conmand

pane pane

> command > conmand

pane pane

window,

> connand > conmand

pane pane

> comnand > connand

pane pane

window,

> comnand >~ conmand

pane pane

> comnand > connand

pane pane

window,

> command > conmand

pane pane

> comnand > connand

pane pane

window,

> conmand >~ conmand

pane pane

> comnand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> conmand >~ conmand

pane pane

> command > conmand

pane pane

window,

> connand > conmand

pane pane

session

> comnand > connand

pane pane

window,

> comnand >~ conmand

pane pane

> comnand > connand

pane pane

window,

> command > conmand

pane pane

> comnand > connand

pane pane

window,

> conmand >~ conmand

pane pane

conmand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> connand >~ conmand

pane pane

> connand > conmand

pane pane

window,

> connand > conmand

pane pane

> connand > conmand

pane pane

window,

> conmand >~ conmand

pane pane

> command > conmand

pane pane

window,

> connand > conmand

pane pane

_images/weechat.png
& more: https://ruby-community.com || Ruby 2.3.2; 2.2.6; 2.1.18: https://wwu.ruby-lang.org || Paste >3 lines of text on
nEl/ -—=> | tk__ () has joined #ruby @rubylbot]

147 dminuoso | That way you can quickly encapsulate a set of methods without modifying any code. ['_1

159 (C (¢) has quit (Ping timeout: [ddmp]

2608 seconds) [diecast]

that is _exactly_ what i need [reed]

(¢) has joined #ruby [spoiler]
but i'm not quite getting how it's used from the docs \13k
jokke: It's best if you understand what Module#include does actually behind the “mtkd
scenes. __main__
hm _br__
Effectively it just inserts the target module into the inheritence chain. _derpy
Jjokke do you understand the #ancestors method on classes? _ht
Making it an ancestor. _Jjoes_

() has quit (Client Quit) _Jjoes__
well i can just guess what it means _whitelogger
>> Fixnum.ancestors A124
domgetter: # => [Fixnum, Integer, Numeric, Comparable, Object, Kernel, BasicObjectl alfa
(https://eval.in/6808316) aalmenar
yeah aarongodin

(¢) has joined #ruby abort
Jjokke: ancestors is the chain of classes and modules used for method lookup. aceds
and A < B would probably just be A.ancestors.include?(B) AckZ
Fixnum is a child class of Integer, which in turn is a child of Numeric, which adaedra
includes Comparable, which is why numbers can be compared adaml2
yeah adambeynon

(¢) has joined #ruby AdamMegh ji__
so far on track adgtl
Jjokke: So what prepend does, is it inserts a target module xbeforex the class itself. aef

| Module#fprepend allows you to "inject" a module into that inheritance chain aep
5 irc freenode 5 #ruby +Ccnt 937 H: 2 17 1 311 4 13

Jjokke
-=>
Jjokke
dminuoso

Jjokke
dminuoso

dminuoso
(__
Jjokke

Jjokke
-=>
dminuoso
Jjokke

Jjokke
-=>
Jjokke
dminuoso

[B] B:HeeChat 1 WeeChat 1

_images/window.png
> command > command

pane pane
—WINEOW—
> command > command

pane pane

_images/session.png
session

command > command

pane pane

window

command > command

pane pane

command > command

pane pane

window

command > command

pane pane

command > command

pane pane

window

command > command

pane pane

command > command

pane