

Tango: Scripting Framework for the Web

Pre-process web content from a variety of sources, one Python script at a time.

Tango is a web framework for content middleware, great for respinning content
for mobile web sites or repurposing upstream data (no matter how messy) for new
and improved APIs, built with Python and Flask.

	Overview
	At a glance, Tango...

	Benefits

	Specifics

	Stashing Content

	Dynamic Content

	Other Notes

	Discussion Topics
	On Context

	Logic in Templates?

	Yet Another Web Framework?

	Releases

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

Here is Tango’s plan:

At a glance, Tango...

	is a mobile web framework built with Python

	is a scripting layer for reflowing data...
if you can pull your data via a Python script, you can serve it for free

	provides a basis for testing data integrity with unit and functional tests

Benefits

	Two teams develop Tango site packages in parallel:

	template developers, implementing designs and arranging content

	data sourcers, tapping into origin database or site to push content into
templates

	Spec-first development

	Tango site developers codify site’s URL routes and data using Python & yaml
definitions.

	spec clearly spells out template content – develop the spec as a collection
of yaml headers, then develop templates & data at the same time

	Productivity Measures

	Tango snapshots data - develop templates without fetching data

	data sourcing occurs outside of web context - develop & unit-test data
modules in isolation, in a simple scripting environment

Specifics

	Tango deploys as a Python WSGI app:

	complies with the WSGI web standard.

	most deployments use mod_wsgi under Apache httpd.

	if needed, can readily port to ISAPI interface on Microsoft’s IIS platform.

	Tango automates content and deployment on a schedule, including:

	automated deploy using Python standards & automated upgrade using git
revision control

	dynamic views with caching – cached on a time-to-live schedule via cron

	failsafe – data updates which fail do not overwrite production data
(essential in productions where an API is built from screen scraping)

	Tango site packages include

	a template package in Python’s Jinja2

	a stash package in Python, using yaml headers, includes stashable content

	static assets - images, CSS, JavaScript

	config.py using simple key/value pairs

	Tango supports stand-alone Python scripts where full packages are not needed.

	Templating: Tango uses Python’s highly regarded Jinja2 (inspired by Django).

Stashing Content

Stashable content is that which can be fetched up front and served to all
users. In a Tango project, this content is scripted in Python modules, which
have structured metadata written in yaml. When serving an application, the
Tango framework walks the sitename.stash package or module (or accepts a
single Python module for small projects), building all of the application view
functions based on the yaml metadata. Simple Tango sites are just a stash
package with a templates directory. A simpler Tango site is just a
stash package with a config telling Tango to return json. The simplest
Tango site is single Python module, which is treated as a stash and is
useful in building light APIs.

Dynamic Content

Pure dynamic content and forms require custom view functions. In this case,
Tango builds an app object from the stash module, and this app object
allows for additional routes, view functions, and other features as provided by
Flask. Projects without stashable content are effectively just Flask projects
which use utilities/tools provided by Tango.

Need to drop into Flask development? Simply:

from tango.factory.app import build_app
app = build_app('sitename')

This app is a flask.Flask instance ready for any of the APIs provided by Flask [http://flask.pocoo.org/docs/], a full web framework with a small accessible
core.

Other Notes

Tango:

	framework reduces web request & response code to 0.

	developers can theme sites easily using template inheritance and CSS.

	is a rapid prototyping framework (think very rapid), but is ready for
primetime & full applications.

	provides for automated unit and functional tests, testing all the way up to
(but not including) browser quirks.

On redirecting users from the desktop site:

	Most site owners target iPhone, Android, and Blackberry.

	Nearly all of these devices have JavaScript enabled.

	Use a simple JavaScript redirection script (preferably on every page, but at
least the home page).

	For wider device targets:

	Set URL rewrite rules for Apache httpd or IIS.

	Redirect devices even if JavaScript is disabled.

On screen scraping:

	Sometimes the client data with the best structure is structured as (X)HTML.

	Tango does not have a general rule or silver bullet for screen scraping.
Each case is treated specially. Developers study the client’s markup, decide
which elements to select, and strip/cleanup attributes and tags as needed.
Some origin elements and attributes flow through, others are mutated. For
maintenance, this requires a close eye on how the origin site changes.

Discussion Topics

On Context

Throughout the Tango project, there are two uses of the word “context”:

	The Flask app current in context;
here “context” is the same as used in the Flask project.
(Flask has request contexts and context-locals.)

	The template context, a collection of variables available in the template;
here “context” is the same as used in the Jinja project.

Logic in Templates?

Template developers say that heavy logic should stay out of templates, and
there are good reasons for that. In stark contrast, Tango relies on heavy
logic in the templates. This is intentional; for stashable content, all
request-based logic is in the templates. Where Tango stashes content, there
are no explicit view functions, only templates and a freestyle data layer.

Yet Another Web Framework?

No, Tango extends Flask, or rather, Tango builds Flask, Flask WSGI
application objects to be exact. Flask:

	builds on Werkzeug, a WSGI implementation and toolkit

	builds on Jinja2, a templating platform

	allows for a Pythonic app-building pattern

	provides for extensions with clear conventions
(and the Flask committers review & approve these extensions)

Tango focuses on the templating platform, completely hides the WSGI layer (but
exposes APIs to WSGI if needed), establishes a spec-first development pattern
on top of Flask, leverages Flask-related tools & extensions, and as a result,
makes the Tango developers more productive in building mobile web sites.

Tango is WillowTree’s platform on Flask, but is developed for general use.

Releases

The current release is 0.2 (Salida), released on Oct 26, 2011.
All releases are guaranteed with 100% statement test coverage.

Tango is built for CPython (the reference Python implementation),
for versions 2.6 and 2.7.

License

BSD.

Index

 nav.xhtml

 Table of Contents

 		Tango: Scripting Framework for the Web

 		Overview

 		At a glance, Tango...

 		Benefits

 		Specifics

 		Stashing Content

 		Dynamic Content

 		Other Notes

 		Discussion Topics

 		On Context

 		Logic in Templates?

 		Yet Another Web Framework?

 		Releases

 		License

_static/up.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

