

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/tango-c-ndk-tutorial/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/tango-c-ndk-tutorial/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Contribution Guidelines

we honestly at this time are open to anything. If you see something wrong, make an issue or a pull request! If you see we are missing something, make an issue or a pull request! If there is a period missing...heck, make an issue or a pull request!

A guide like this takes someone to spend the initial hours to setup and time to maintain, but the contributions of others are where things become powerful!

2 Rules

	Changes/Additions must either match or maintain some level of orderly markdown styling

	Never I only we when writing additions or changes.

How to contribute from GitHub.com

	Make sure you have a free GitHub.com account and you are logged in.

	Find an appropriate topic category in the README.md [https://github.com/sjfricke/awesome-webgl/blob/master/README.md] file to add it under, or add your own if you think it is needed.

	Click the :pencil: button Edit link [https://github.com/sjfricke/awesome-webgl/edit/master/README.md] on the top right-hand corner of the README.md. This will do two things:
	Fork the repository to your account.

	Create a new branch so you can send your changes in a pull request.

	Add your changes.

	Scroll down to the Propose file change box and write a commit message and optional extended description.

	Click the Propose file change button.

NOTE: this works the same for any of the files

List of contributors

	sjfricke
	Founded project

	Set initial movement for project

Tango-C-NDK-Tutorial

Helping those who want to get involved in the realm of Augmented Reality using both Google Project Tango [https://get.google.com/tango/] and its C/C++ API [https://developers.google.com/tango/apis/c/].

Who is this for?

	Right now this is for the person who wants to get into Project Tango via the C/C++ API and found there was NO documentation anywhere else other then the offical documentation (seriously, this repo was started out of frustration). The goal is to save you at least an hour of your life where we wasted five hours trying to find these simple answers.

Project Tango

	Project Tango is your best options to use true agumented reality technology with a platform that many people have (Android). The support for Tango on smartphones is slowly rolling out and a great way to make AR applications that many people can use.

Did you see something wrong?

	PLEASE PLEASE PLEASE correct it! I am no expert by any means and I am just trying to help with what I can. I would LOVE this to become a community built guide!

Community

	I (sjfricke) started this with the intention to make this a community driven tutorial, so we are happy for all to help and hope that this grows.

BIG-IMPORTANT-NOTE

	Working with Tango for a while we find working with it comes down to knowing 3 major components:
	Android NDK

	Graphics (OpenGL ES)

	Tango API

	Since some people are coming into this knowing none and some just want to learn to use the Tango API, we divided the book into 3 Sections which consist of its interal chapters.
	A Glossary is also added to help with all the fun buzz words you will come across

	For those who want help setting up we also create a Stating a Project Section to help you start your own application

Table of Content

	Section 1 - Android NDK
	Everything you need to know to get up and going with NDK.

	Section 2 - Graphics
	Everything you need to know before you start your journey.

	Section 3 - Tango API
	How to get around a Android NDK application.

	Section 4 - Starting a Project
	Starting a Tango NDK project from scratch.

	Glossary - Terminology
	A list of common acronym and other terms used.

Glossary

	abd
	Android Debug Bridge

	Command-line tool that lets you communicate with a device. Useful for debugging.
	Offical abd documentation [https://developer.android.com/studio/command-line/adb.html]

	API
	Application program interface

	A way to communicate with another piece of techonology.
	You don’t want to learn how the internals of Tango work so they give you function calls that do stuff for you

	AR
	Augmented Reality

	Mixing the real world with the virtural world

	glm
	OpenGL Mathematics

	A library used to take care of vector and matrix math

	gradle
	Open source build automation system

	Used commanly to build Java based programs

	Same idea as a “Make” file

	JNI
	Java Native Interface

	Framework that enables Java code on a JVM to used by native applications and code

	JVM
	Java Virtual Machine

	Where tall Java code gets compiles and ran during run time

	NDK
	Native Development Kit

	Lets you run Native C++ code on the Android OS over using Java

	This lets you have more control and better performance

	OBJ
	An acsii 3D object model that can be parsed to import data of a model

	Most CAD programs export OBJ files

	OpenCV
	Open Computer Visison

	Library used for doing computer vision computations

	Used to get data and other information from a picture or a screen

	OpenGL
	Open Graphic Library

	Used to communicate code and data to your Graphic Card via an API

	Used to produced high end graphics

	OpenGL ES
	Open Graphic Library Embedded System

	A lighter version of OpenGL found on mobile devices

	pose
	Data type Tango API uses to hold coordinate information

	SDK [https://developers.google.com/tango/apis/java/]
	Software Development Kit

	Android SDK is how you are able to use Java to make apps

	Tango [https://developers.google.com/tango/]
	Techonology developed by Google to run AR on your device

	This involves the camera hardware and the API to talk to it via Android

	Tango_GL [https://github.com/sjfricke/tango_gl]
	a wrapper over OpenGl ES to make working with Tango eaiser

	Unity [https://developers.google.com/tango/apis/unity/]
	A gaming engine used to make games and other graphic rich apps

	Has a much greater overhead and results in lower performance than your NDK version of the app

	XAML
	Extensible Application Markup Language

	How to create a layout style for and android app

 <== Section 2 - Graphics – Section 4 - Project ==>

Section 3 - Tango API

	This section is all about all the aspects of Tango API for C/C++

	The main goal of this is to get you up to speed and fill gaps not in the official documentation [https://developers.google.com/tango/apis/c/]

What This Section Is

	An explanation of the API in general

	Overview of the 3 current API groups

	How to integrate into the project

	What everything does from a higher level

What This Section Is NOT

	The API Docs already online

	A guide how to setup Tango
	That is for Section 4

	A reference for every property and function header

	A set of examples for each call (Note: this would be a cool feature to add to doc in future!)

Table Of Content

	Chapter 1 - Techincal Stuff
	Some Coding related techincal stuff

	Chapter 2 - Tango Device 101
	Quick overview about the Tango Device

	Chapter 3 - Client API
	Overview of main API

	Chapter 4 - Support Library API
	Overview what the support API can offer

	Chapter 5 - 3D Reconstruction API
	Overview of using the 3D Reconstruction API

	Chapter 6 - Position and Orientation
	Gap filling information about using the API unit for Position and Orientation

	Chapter 7 - Frame of Reference
	Try to explain how the Frame of Reference works in Tango

	Chapter 8 - Motion Tracking
	Gap filling information about Tango Motion Tracking

	Chapter 9 - Area Learning
	Gap filling information about Tango Area Learning

	Chapter 10 - Depth Perception
	Gap filling information about Tango Depth Perception

<== Section 2 - Graphics – Section 4 - Project ==>

 <== Chapter 1 – Chapter 3 ==>

Chapter 2 - Tango Device 101

Different Tango devices

	As of now there are only 3 Tango powered devices
	The Tango Dev Kit [image: Tango Dev Kit image]

	Lenovo Phab 2 Pro [image: Phab 2 Pro image]

	ASUS ZenFone AR [image: ZenFone AR image]

Dev Kit notes

	The only thing to watch out for is if you have the Dev Kit is that the device being a few years older suffers from a few drawbacks
	The old Tegra chip is way less powerful than the Snapdragon 652 the Phab 2 Pro is running
	The Snapdragon 652 was built on the Adreno 510 GPU

	The ASUS ZenFone AR is coming with a Snapdragon 821 with the Adreno 530 GPU

	For production uses, the Phab 2 Pro should be your “Worst Case Phone” for a user to have

	For development the Dev Kit has a few work arounds to make it work like the Phab 2 Pro due to being capped at Android KitKat

	You will need to make sure you are running API 19 (if using Dev Kit)
	The Dev Kit is capped at Android 4.4 KitKat and need to make sure to support that SDK during development
	The Phab 2 Pro is running Android 6.0 with plans for a 7.0 upgrade in mid to late 2017

	If you are skipping the dev kit then you will not need API 19

	The Dev Kit has OpenGL ES 3.1 supported, but being API 19 there is a need for a small hack to get OpenGL ES 3.0+ to run
	Stack Overflow post [http://stackoverflow.com/questions/31003863/gles-3-0-including-gl2ext-h]

	Trust me, you want to have OpenGL ES 3.0+

Tango API

	The API is broken into 3 different parts

	Main C/C++ API [https://developers.google.com/tango/apis/c/reference/]
	The main API call that gives you access to the core parts of the service.

	Support Library API [https://developers.google.com/tango/apis/c/support/reference/]
	Another set of API calls to let you get more helpful information like “edge detection” or “depth interface support”

	3D Reconstruction Library API [https://developers.google.com/tango/apis/c/reconstruction/reference/]
	This API has a set of calls to help you scan and create 3D models from the data in front of the camera

<== Chapter 1 – Chapter 3 ==>

 <== Section 3 - Tango – Chapter 2 ==>

Chapter 1 - Techincal Stuff

There a few “Code Technical” methods the Tango API uses and this chapter is only for those who are new to these ideas. These are things that are not specific to Tango, but rather to programming and C++ as a whole and should be understood before banging your head not understanding how things work. For those who have been around the block a few times and are good on this should feel free to jump to next chapter!

Callbacks

The API involves a lot of “Callback functions”. Continue for those not familiar with callbacks/interrupts/asynch programming

	Callback functions are used when code is ran asynchronously.
	Asynch == Non-Blocking == Has callback functions

	Synch == Blocking == no callback, code runs top to bottom

	The idea behind an Asynch callback is that you call on something that might take a while to happen. An example would be sending a request to a remote server or in this case having the Tango check on a certain aspect of the API.

.... // some code

Check_My_Phone_For_Something(); // Waits idle for 2 seconds

.... // more code

	If this was our code we would be stopping for no reason which means if someone is trying to press a button in our App it will not be able to due to the waiting

	This time we will give a callback function which us saying “Hey, when you are done waiting and return with some data I want you to run this function. In the meantime I am going to continue with the rest of the code under you”

.... // some code

Check_My_Phone_For_Something(onReturn); // Waits idle for 2 seconds

.... // more code

void onReturn(int ValueFromCallback) {
 ... // We run this function with the values returned from callback
}

Real Callback Example

In the API there is a function TangoService_connectOnPoseAvailable [https://developers.google.com/tango/apis/c/reference/group/pose#tangoservice_connectonposeavailable]

	Notice that the last argument is of type void(*)(void *context, const TangoPoseData *pose)
	This is a Function Pointer in C/C++ and lets break it down

	void(*) means the the return type of the function we use for our callback will be void

	(void *context, const TangoPoseData *pose) means the callback function should have two paramter of type void* and const TangoPoseData

	Here is an example of using this call

TangoService_connectOnPoseAvailable(1, &pair, onPoseAvailable);

void onPoseAvailable(void* context, const TangoPoseData* pose) {
 LOGI("Position: %f, %f, %f. Orientation: %f, %f, %f, %f",
 pose->translation[0], pose->translation[1], pose->translation[2],
 pose->orientation[0], pose->orientation[1], pose->orientation[2],
 pose->orientation[3]);

 // Prints out the coodinates of the TangoPoseData value when it gets it
}

	The idea to take away is that instead of waiting for the function to return, we give it a function to execute when it is done

	If this is still confusing do a quick Google Search [http://lmgtfy.com/?q=C+Callback+Functions+Explained]

Event Based Calls

If you have ever done normal Android development you will learn that it is all based on Event calls.

	Event calls are really just Callback functions that are set for us and we can’t control over the naming of the function.

	Great example is onCreate() for Anroid as this is called by the Activity in the Java side when the class is created.

	Events on Android Life Cycle [https://developer.android.com/guide/components/activities/activity-lifecycle.html]

	Events on GUI Input [https://developer.android.com/guide/topics/ui/ui-events.html]

Tango Events

Tango has a struct called TangoEvent [https://developers.google.com/tango/apis/c/reference/struct/tango-event]

	The idea behind events are to hold data about functions that we can look at and examine
	This is great information for debugging

	More info on Overview of Events [https://developers.google.com/tango/overview/events]

Error Type

So you will see a lot of function calls using the TangoErrorType value when returned from functions.

	The idea behind error types is to let you know if some internal settings have worked or not when calling API functions. This is because something might have gone wrong, but the Tango API is going to let us know and have us handle the error whether we want to close the app all together or maybe try again.

	If you look at the Tango Error Type [https://developers.google.com/tango/apis/c/reference/group/enums#tangoerrortype] reference you will see that Tango returns TANGO_SUCCESS when all is well

TangoErrorType err = TangoSupport_GetTangoVersion(env, caller_activity, &version);

if (err != TANGO_SUCCESS) {
 // Well this isn't a good sign...
}

	In this example we check and make sure our TangoSupport_GetTangoVersion function was successful before we move on any further into our code

	A lot of time people don’t like all this validation clutter and you will see “Wrappers” where someone will add some prefix or append the name of every function and do this error checking in a function by itself. For this tutorial since we are not dealing with too much code we are going to just do the validation checking right after.

<== Section 3 - Tango – Chapter 2 ==>

 <== Chapter 9

Chapter 10 - Depth Perception

<== Chapter 9

 <== Chapter 8 – Chapter 10 ==>

Chapter 9 - Area Learning

<== Chapter 8 – Chapter 10 ==>

 <== Chapter 2 – Chapter 4 ==>

Chapter 3 - Client API

This is the main API for the Tango with reference guides [https://developers.google.com/tango/apis/c/reference/] and download link [https://developers.google.com/tango/downloads/TangoSDK_Gankino_C.zip]. There is a lot of good resource on the reference site, but it helps to read it in the correct order and have some other layers of clarification with it.

Setup Tango Configuration

	The first thing you need to do when creating your application is setup your configuration

	Offical reference [https://developers.google.com/tango/apis/c/c-config]

<== Chapter 2 – Chapter 4 ==>

 <== Chapter 7 – Chapter 9 ==>

Chapter 8 - Motion Tracking

<== Chapter 7 – Chapter 9 ==>

 <== Chapter 6 – Chapter 8 ==>

Chapter 7 - Frame of Reference

<== Chapter 6 – Chapter 8 ==>

 <== Chapter 3 – Chapter 5 ==>

Chapter 4 - Support Library API

<== Chapter 3 – Chapter 5 ==>

 <== Chapter 4 – Chapter 6 ==>

Chapter 5 - 3D Reconstruction API

<== Chapter 4 – Chapter 6 ==>

 <== Chapter 5 – Chapter 7 ==>

Chapter 6 - Position and Orientation

The main gem of Tango is the fact it has position data of your surrounding environment. Tango uses a value called pose to hold of this.

	There isn’t much to really cover here as Google does a great job explaining the values of pose and its lifecycle in their Pose Documentation [https://developers.google.com/tango/overview/poses]

	Make sure to understand more about the pose data as it will be found everywhere

<== Chapter 5 – Chapter 7 ==>

 Section 2 - Graphics ==>

Section 1 - Android NDK

	A big part of working with Tango C/C++ API [https://developers.google.com/tango/apis/c/] is understanding the world of Andorid NDK [https://developer.android.com/ndk/index.html]

What This Section Is

	A set of tutorials to get you up on the basic of NDK

	A way of teaching the difference between a “NDK Problem” and a “Tango Problem” as you start developing

	All the NDK info to get a basic Tango project going and being capable of configuring it

	How to layout a NDK project and all its different sections

What This Section Is NOT

	A way to learn about the Tango API
	That is Section 3

Android Studio

	The preferred way as shown in these tutorials is to use Android Studio

	However, we will still reference everything agnostic to your personal preference of work environment.
	You are totally capable of using any other IDE
	Maybe you just want to do it all in emacs, be my guest

Windows, Mac, Linux

	All these tutorials work for any OS, but for arts that don’t we will mention the differences needed to know.

Table Of Content

	Chapter 1 - Android 101
	Everything about Android in general to know.

	Chapter 2 - What is NDK
	What and why you are using NDK.

	Chapter 3 - Directory Layout
	The overall layout of a project.

	Chapter 4 - The Java Source
	The separate UI thread in Java.

	Chapter 5 - The Java Native
	Telling Java to use native code.

	Chapter 6 - The JNI Header
	Header file to link native and Java together.

	Chapter 7 - The Native Code
	Writing native C code.

	Chapter 8 - The Makefiles
	Using ndk-build to build the project.

	Chapter 9 - Adding a library
	How to add libraries to your project.

	Chapter 10 - Debugging
	How to use adb and logcat to debug.

	Chapter 11 - Adding a GUI
	How to add a button and other GUI elements.

Section 2 - Graphics ==>

 <== Chapter 1 – Chapter 3 ==>

Chapter 2 - What is NDK

You first must understand the trade-offs you are giving when using NDK before you start heading head first into it.

NDK

	Stands for Native Development Kit
	As compared to SDK which is Software Development

	The first thing is to understand why you would use the Android NDK
	If you are doing stuff that involves more need of real time data processing you will have a reason to use the NDK
	Two common cases are signal processing and graphical related tasks
	The Tango involves both!

	Unity has a huge overhead and AR graphics need to be in real time to look halfway decent

	Abstraction is beautiful and very important part of development, but there times where you need to “do things yourself”

	Before starting your project, read on and decide personally if NDK is right for you!

Native C/C++

	The Native part in NDK just refers to the fact that Android is a Unix OS with a Linux based kernel.
	The core of all Linux OS’s is written in C and this means you can build an entire Android app in C if you please.

	Java doesn’t compile to machine code and runs off a Java Virtual Machine (JVM).

	NDK lets you create code that your Android will run on that is compiled to machine code and running “natively” on the device.

UI Thread

	While you can build an NDK app in just C or C++, most apps, including the one in this tutorial, use Java and Android SDK for all the UI.

	During runtime your app will open a thread that runs a JVM.

	Using Java Native Interface (JNI) we will send all UI events down to where all our native C/C++ code is written.

Building the Project (CMake vs ndk-build)

	There is more about this in the makefile chapter.

	You can use either CMake or ndk-build for building your project together.

	Build tools are programs that automate the creation of executable applications from source code.
	Building incorporates compiling,linking and packaging the code into a usable or executable form.

	In android the output of the build is the .apk file that loads on a device.

	Note: The advantage of CMake is it will make compiling for different systems possible, but Tango is currently only intended to ever be an Android technology so ndk-build is very valid and acceptable in this case to still use.

Breaking down NDK

	We are going to break down the NDK build using this chart (photo credit: Aleksandar Gargenta [https://github.com/agargenta]) by section
[image: NDK layout]

<== Chapter 1 – Chapter 3 ==>

 <== Section 1 - NDK – Chapter 2 ==>

Chapter 1 - Android 101

Before we can get all into Android NDK, we need to cover some basic generic Android topics first

	NOTE: at any time you get caught up in the lingo of these tutorials there is a Glossary available to help you out.

Android SDK

	Regardless of using NDK or not, you will still need the Android SDK.

	Android has various versions [https://en.wikipedia.org/wiki/Android_version_history] which are labeled by an API value

	Android API 24 == Android SDK 24
	Each API has it own separate Android SDK for it

	Android Studio does a good job letting you download all the ones you will need

	Always check what API or Version your device is running as you get everything setup

Sandboxing the app

	All Android apps run in a “sandbox” environment

	This really just means that your app will not be capable of messing with the other part of the Android OS while it is running.

The Android Event Cycle

	A huge thing to understand is that your Tango app is like any Android application which will follow the Android life cycle chart.
[image: Android Life Cycle]

	The really big idea to take from this is that there are event driven functions that will be called throughout the applications and are usually where most of the boilerplate code will go to begin with.

Gradle

	So hopefully doing some C++ development you are familiar with the concept of makefiles, well that is a good way to think of what gradle is for Java and more importantly Android.

	Gradle works off two basic concepts: projects and tasks

	build.gradle is the file with all the commands to run

	gradlew is just a gradle wrapper [https://docs.gradle.org/current/userguide/gradle_wrapper.html]

	The main thing for now is to understand that Gradle is what is taking care of building and compiling the code for most the app.

AndroidManifest.xml

	Every Android app has a AndroidManifest.xml file in its root directory

	This is where all configuration happen such as:
	Changing name of app

	Giving permission to different parts of the device

	etc

	More info [https://developer.android.com/guide/topics/manifest/manifest-intro.html]

<== Section 1 - NDK – Chapter 2 ==>

 <== Chapter 9 – Chapter 11 ==>

Chapter 10 - Debugging

adb (Android Debug Bridge)

	adb is the main way to debug your code. It is built into Android Studios and also capable of being used from your terminal as well on the local machine
	Open a terminal and type adb device and see if your device appears

	A popular command you will see is adb logcat which is where all your printf() are going
	Suggestion is to use it in Android Studio so you can filter it out and avoid the huge amount of noise

Android logging helper

	Android has a nice logging library to help you more easily log to adb instead of using printf()

#include <android/log.h>
#define LOG_TAG "My_NDK_App"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO, LOG_TAG, __VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__)

	This now lets you easily create log write with custom tags and different status

	Example:
	LOGI("Position: %f, %f, %f", pos->x, pos->y, pos->z); will print I My_NDK_APP: Position: 0.169661, 0.135381, 0.455411

	LOGE("Invalid Value: %s", ErrorString); will print E My_NDK_APP: Invalid value: Overflow Value

<== Chapter 9 – Chapter 11 ==>

 <== Chapter 10

Chapter 11 - Adding a GUI

Here are the steps to take to add a GUI such as a button to your NDK application

	in the res/layout/*.xml file create a button using the Android Studio drag and drop tool

	In the properties section in the right give your item a good ID name

	You can also change other useful information such as the text displayed

	You can set your onClick in the Main Activity programmatically or just set the onClick in the properties of the GUI.

	NOTE: you need to have a function first in your main activity

	Create the function in your main activity

	example - public void snapShot(View view) { }

	NOTE: I have found from others that a better way of getting the click is using a findViewById(R.id.snapshot).setOnClickListener(this); call after setContentView()

	This way lets you have one function to switch case the buttons

	@Override
public void onClick(View v) {
 // Handle button clicks.
 switch (v.getId()) {
 ...
 ...
 }
}

	Now add a call to you JNI Native class

	 public void snapShot(View view) {
 TangoJNINative.snapShot(1);
 }

	In you JNI Native file add the new function

	public static native void snapShot();

	In the JNI_Header add if you are not auto generating it

	 Java_com_projecttango_examples_TangoJNINative_snapShot(JNIEnv*, jobject, int type)) {
 app.snapShot(type);
 }

	Add the function to you native code

	Don’t forget to declare it in your header file if needed

	 void myApp::snapShot(int type) {
 // cool stuff
 }

<== Chapter 10

 <== Chapter 8 – Chapter 10 ==>

Chapter 9 - Adding a library

TODO - Chapter not finished!

We are going to go over how to add a file to Android.mk which is your main source for adding a library

If you get a **Undefined reference to ________** warning there is a good chance you are missing a file that is needed for the library.

<== Chapter 8 – Chapter 10 ==>

 <== Chapter 2 – Chapter 4 ==>

Chapter 3 - Directory Layout

The file structure of NDK can be a little overwhelming at first, but everywhere has a spot and reason for that spot. Here is what the top directory of your project should look like

TOP
├───local.properties
│
├───settings.gradle
│
├───gradle/
│
├───build/
│
└──app
 ├───.externalNativeBuild
 ├───build
 └───src

local.properties

	This file is generated by android studio and shows the path to your SDK and NDK packages for gradle to use when it builds the project with gradle.

settings.gradle

	This is used to include any other projects, modules, etc to the existing project.

gradle/

	This is where more of the gradle wrapper and other gradle related parts live.

build/

	This is where all final build will be exported too.

	app/build and app/.externalNativeBuild also include build results

app/src/

	This directory is the main source of program

src
└───main
 ├───assets
 │ ├─── <image files>
 │ └─── <3D models>
 ├───java
 │ └───com
 │ └───projecttango
 │ └───package
 │ └───name
 │ ├─── <files.java>
 │ └─── <files.java>
 ├───jni
 │ ├─── <files.cpp>
 │ └─── <files.cpp>
 ├───res
 │ ├─── <XAML files>
 │ ├─── <XAML files>
 │ └─── <XAML files>
 │
 └─── AndroidManifest.xml

app/src/main

	This is the real heart of your applications, let’s break it down

.../assets

	This is where all assets for your project will go
	This includes, but not limited to images, textures, audio, video, 3D models

.../java/com/...

	This is your java files will go
	Java source files used to handle Android event calls

	Java native files to talk to the NDK and C++ files

	Java makes a folder for each part of the package name

.../jni

	This is your C++ and header files
	This is fully up to you, but this directory acts a local root

.../res

	This are the design files for the layout of the app
	This folder is in every Android app

	Android uses XAML for displaying objects

.../AndroidManifest.xml

	This is the summary of your whole project where you declare everything needed
	If you need to make any setting changes, this is where you will do it

[image: Project_Folder]

<== Chapter 2 – Chapter 4 ==>

 <== Chapter 7 – Chapter 9 ==>

Chapter 8 - The Makefiles

ndk-build

	So it is possible to use CMake or ndk-build for building your project

	We will be using ndk-build

	CMake is definitely the “newer” choice to use as it is compatible with various other platforms

	Since Tango is a Android platform specific project, I feel justified to use ndk-build

	Honesty: I don’t know how to build NDK in CMake and anyone who does please add it!

[image: Makefiles]

Now that we have our code, we need to make sure that everything gets built correctly so we can package the APK to the device. These two files will be used when ndk-build is ran

Applicaiton.mk

	This file is where all the more hardware specific options are set

	APP_ABI := armeabi-v7a arm64-v8a x86
	List all the different ISA to build for. You will see a build for each on listed
	armeabi-v7a is used by the dev kit

	arm64-v8a is used by the Lenovo Phab 2 Pro

	The Android OS will only install the correct version of the compiled build so unless needed, its suggested to keep all main types listed

	APP_STL := gnustl_static
	The system runtime is the default if there is no APP_STL definition.

	You can only select a single C++ runtime that all your code will depend on.

	It is not possible to mix shared libraries compiled against different C++ runtimes.

	A list of Android C++ Library Support [https://developer.android.com/ndk/guides/cpp-support.html]

	APP_PLATFORM := android-19
	Tells the ndk-build the minimum version of Android SDK API to build for.

Android.mk

	This file is used to tell which libraries, flags, directories, etc. to use

	The main part to take away from it now is that file is what controls the compiling of your native code

	Really good in depth source of details on Anroid.mk files can be found here [http://android.mk/]

	ALSO here is the official guide sheet from Google [https://developer.android.com/ndk/guides/android_mk.html]

In-depth

	This is where you list all the files you want to compile

	If you add libraries, like tango_gl, need to include its source and headers

	Let’s take an example and break it down

LOCAL_PATH := $(call my-dir)
PROJECT_ROOT_FROM_JNI := ../../../../..
PROJECT_ROOT := $(LOCAL_PATH)/$(PROJECT_ROOT_FROM_JNI)

include $(CLEAR_VARS)
LOCAL_MODULE := libcpp_plane_fitting_example
LOCAL_SHARED_LIBRARIES := tango_client_api tango_support_api
LOCAL_STATIC_LIBRARIES := png
LOCAL_CFLAGS := -std=c++11
LOCAL_C_INCLUDES := $(PROJECT_ROOT)/tango_gl/include \
 $(PROJECT_ROOT)/third_party/glm \
 $(PROJECT_ROOT)/third_party/libpng/include/

LOCAL_SRC_FILES := jni_interface.cc \
 plane_fitting.cc \
 plane_fitting_application.cc \
 point_cloud_renderer.cc \
 $(PROJECT_ROOT_FROM_JNI)/tango_gl/bounding_box.cc \
 $(PROJECT_ROOT_FROM_JNI)/tango_gl/camera.cc \
 ...
 ...
 $(PROJECT_ROOT_FROM_JNI)/tango_gl/obj_loader.cc

LOCAL_LDLIBS := -lGLESv2 -llog -L$(SYSROOT)/usr/lib -lz -landroid
include $(BUILD_SHARED_LIBRARY)

$(call import-add-path,$(PROJECT_ROOT))
$(call import-add-path,$(PROJECT_ROOT)/third_party)
$(call import-module,libpng)
$(call import-module,tango_client_api)
$(call import-module,tango_support_api)

	First not that the \ is used to continue the line and make the file more readable than having one super long line.

	The $(call _______) is a way to call special instructions followed by a parameter if valid

	So first let’s start with with LOCAL_PATH := $(call my-dir) This sets the variable LOCAL_PATH to the directory where the Android.mk file is held.

	PROJECT_ROOT_FROM_JNI := ../../../../.. is just a way to go up to the top directory five folders up and set it to * PROJECT_ROOT_FROM_JNI Then we combine the two variables and get the root of the project with PROJECT_ROOT := $(LOCAL_PATH)/$(PROJECT_ROOT_FROM_JNI)

	The include $(CLEAR_VARS) variable is provided by the build system and points to a special GNU Makefile that will clear many LOCAL_XXX variables for you with the exception of LOCAL_PATH.

	The LOCAL_MODULE variable must be defined to identify each module you describe in your Android.mk. The name must be unique and not contain any spaces.

	LOCAL_SHARED_LIBRARIES := tango_client_api tango_support_api - The list of shared libraries modules this module depends on at runtime.

	LOCAL_STATIC_LIBRARIES := png - The list of static libraries modules (built with BUILD_STATIC_LIBRARY) that should be linked to this module. This only makes sense in shared library modules.

	LOCAL_CFLAGS := -std=c++11 - where we set flags and in this case declare C++ 11

	LOCAL_C_INCLUDES - Additional directories to instruct the C/C++ compilers to look for header files in.

	The build system looks at LOCAL_SRC_FILES to know what source files to compile, make sure you have them all that you need!

	LOCAL_LDLIBS The list of additional linker flags to be used when building your module. NOTE you will need -landroid to use the asset_manager library which is part of the <android/asset_manager.h> file

	The BUILD_SHARED_LIBRARY is a variable provided by the build system that will start building your shared libraries... I know shocker right?

	$(call import-add-path,$(PROJECT_ROOT)) will go and take your PROJECT_ROOT folder and add it to your path list for the next part

	$(call import-module,<name>) A function that allows you to find and include the Android.mk of another module by name. A typical example is. This will look for the module tagged <name> in the list of directories referenced by your NDK_MODULE_PATH environment variable, and include its Android.mk automatically for you.

<== Chapter 7 – Chapter 9 ==>

 <== Chapter 6 – Chapter 8 ==>

Chapter 7 - The Native Code

[image: Native Code]

So now that we have our function called from the Java source we need to make sure it gets called in our native code

Main class

	NOTE: Remember we called an instance of this main class with the static tango_demo_module::DemoApp app; line in the jni_interface file

	We can create our class DemoApp and set it under our namespace tango_augmented_reality { ... } namespace
	I am assuming you can set up a C++ class

	It is in here we will be able to call our native functions from

	Make sure #include <jni.h> is in the header file!

Setting up JVM

	To start we we will need a pointer to a special JNI type JavaVM
	JavaVM* java_vm_;

	Our first function we will set up a connection to the JVM
	void SetJavaVM(JavaVM* java_vm) { java_vm_ = java_vm; }

Handling Function Call

	Going with the surface change event call we will need to implement it now.

	NOTE: We still need to declare it even though it was in the interface because that wasn’t a true declaration of the function.
	void OnSurfaceChanged(int width, int height);

	Inside our class we implement the public function

void DemoApp::OnSurfaceChanged(int width, int height) {
 viewport_width_ = width;
 viewport_height_ = height;
 UpdateViewportAndProjectionMatrix();
}

We have now successfully created a native function call when the surface changes from a screen orientation rotation. Now to make sure it all compiles (Yay, your favorite part).

<== Chapter 6 – Chapter 8 ==>

 <== Chapter 3 – Chapter 5 ==>

Chapter 4 - The Java Source

[image: Java Main Activity]

The Activity Class

As mentioned before we need to have a main Java activity that will act as the main function to start off our app. This is going to be our hypothetical DemoActivity.java file. This will include the call to the activity with

import android.app.Activity;
public class DemoActivity extends Activity { ... }

Here our main activity is started. We will need to give a name to this package as well like package com.projecttango.my.NDK.project.packageSample;

Inside the Activity

	The two things to worry about your Main Activity is its where you handle all your events like onCreate, onDestory, etc.

	The best way to set up this class is to create the three basic event handlers

import android.os.Bundle;

@Override
protected void onCreate(Bundle savedInstanceState) { ... }

@Override
protected void onResume() { ... }

@Override
protected void onPause() { ... }

Do this will let you manage the what to do when the app starts and is paused and resumed

Tango related

	This will go more in detail in the Tango API section, but this is we also plan to bind the Tango Process with a ServiceConnection
	We will also be able to bind the renderer if we plan to use OpenGL ES in our application

package-info.java

	You may find there is a package-info.java file. This file is purely for documentation and is used when generating Javadocs.

<== Chapter 3 – Chapter 5 ==>

 <== Chapter 4 – Chapter 6 ==>

Chapter 5 - The Java Native

[image: Java Native]

Now that we have some code to handle the Java source we need a way to send that source data down to the Native code layer. We will be declaring a series of a native Java function headers that we planned to get called in our Native code layer, also known as JNI (Java Native Interface). The best method is to create another file in your Java directory called TangoJNINative.java

Loading in the native library

	We make a system call with System.loadLibrary("my_native_app"); to the module we have set up (we do this is later section)

	This needs to match the LOCAL_MODULE in Android.mk we will show later
	Just realize here that you are compiling and building the Native code and then dynamically loading it in the Activity with this System.loadLibrary() call

Declaring a native call

	Java has a native function prefix native which we are going to use

	Let’s look at an example first
	public static native void onGlSurfaceChanged(int width, int height);

	In this make a native function declaration for the function onGLSurfaceChanged which returns void and takes two ints

	...that’s really it, it’s not too hard once you realize you just need make normal Java based function calls.

Calling the native functions

	Keeping with our example we will want to call this native function inside our renderer onGLSurfaceChanged event call.

	Using TangoJNINative.onGlSurfaceChanged(width, height); we now can call the native function from our Java.
	We are just calling a public function and passing in parameters, this level of abstraction is designed to write Java code without worrying about it getting done on the native side.

<== Chapter 4 – Chapter 6 ==>

 <== Chapter 5 – Chapter 7 ==>

Chapter 6 - The JNI Header

[image: JNI Header]

We are now heading over to our jni directory. You have ~~two~~ three options for this section

	Copy and paste an example and tweak it

	Have javah generate it all for you

	Write it by hand (just don’t)

What is the JNI

	As already mentioned, the Java Native Interface is a way to convert your Java function calls to C++

	The JNI file, for this tutorial we will call jni_interface.cpp, will need to make sure it imports the JNI files with #include <jni.h>

	This file is not a class, but rather a way to be the bridge between the native and Java code.

	We will want to make a static instance of our main class from the native code.
	For this example we will call it app

	static tango_demo_module::DemoApp app;

JNI Data Types [http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html]

Because C++ and Java have different data types, we need to use JNI data types to bridge them together

Java primitive type	C type with JNI	Bytes
:——————:	:—————:	:————:
boolean	jboolean	1
byte	jbyte	1
char	jchar	2 (unsigned)
short	jshort	2 (signed)
int	jint	4
long	jlong	8
float	jfloat	4
double	jdouble	8

Java Reference Types	C type with JNI
:——————–:	:—————:
java.lang.Class	jclass
java.lang.String	jstring
java.lang.Throwable	jthrowable
java.util.Array	jarray

	Note: there is a JNI array type for each of the different primitive types as well

Setting up the JVM

	We need to store a reference to the Java Virtual Machine so that we can call into the Java layer to trigger rendering

jint JNI_OnLoad(JavaVM* vm, void*) {}
 app.SetJavaVM(vm);
 return JNI_VERSION_1_6;
}

	With this we will now have reference to the JVM

Bridging the function calls

	We will have to deal with the syntax this is done in, but we need to export the function calls

	JNIEXPORT void JNICALL will
	JNIEXPORT contains any compiler directives required to ensure that the given function is exported properly. On Android (and other linux-based systems), that’ll be empty.

	JNICALL contains any compiler directives required to ensure that the given function is treated with the proper calling convention. Probably empty on Android as well (it’s __stdcall on w32).

	We now give a name to the merged call
	Java_com_tango_demo_cpp_project_TangoJNINative_onGlSurfaceChanged

	We now have to pass in the parameters (JNIEnv*, jobject, jint width, jint height)
	JNIEvn* reference to JNI environment, which lets you access all the JNI functions.

	jobject reference to “this” Java object.
	jclass can be used if referencing a class public function

	jint width, jint height these are the arguments passed in from the Java call.

	In the function call we can pass the AssetManager if needed
	AAssetManager* aasset_manager = AAssetManager_fromJava(env, j_asset_manager);

	Lastly we need to make the call to the function we will set soon for the native code
	app.OnSurfaceChanged(width, height);

All together we have a bridging function call from the Java source to the native code

JNIEXPORT void JNICALL
Java_com_projecttango_examples_cpp_augmentedreality_TangoJNINative_onGlSurfaceChanged(
 JNIEnv*, jobject, jint width, jint height) {
 app.OnSurfaceChanged(width, height);
}

<== Chapter 5 – Chapter 7 ==>

 <== Section 3 - Tango – Glossary ==>

Section 4 - Starting a New Project

Here we are going to walk through setting up a new project using Android Studio. This is broken into multiple sections. All code samples can be found in the Sample_Code folder

Important Disclaimers

	Here are the settings this project was built with
	Tested with both Windows 10 and Ubuntu 16.04

	Using Android Studio 2.3.2

	NDK r14

	Android API 23
	If you have the devkit this might cause issues, was hoping we are past the devkit stage with Tango

Find an issue?

If you find an error, see something that doesn’t make intuitive sense, or know of a better way to do something in general, please leave a pull request or an issue

Table Of Content

	Chapter 1 - Start a new project

	Chapter 2 - Setting up AndroidManifest.xml

	Chapter 3 - Tango Initialization Helper

	Chapter 4 - JNI Native Class

	Chapter 5 - Java Main Activity

	Chapter 6 - JNI C/C++ Interface

	Chapter 7 - Main Native C/C++ code part 1

	Chapter 8 - Getting Tango API

	Chapter 9 - NDK-build Files

	Chapter 10 - Main Native C/C++ code part 2

	Chapter 11 - Running the Project

<== Section 3 - Tango – Glossary ==>

 <== Chapter 1 – Chapter 3 ==>

Chapter 2 - Setting up AndroidManifest.xml

The first thing we should do is setup the AndroidManifest.xml file to get all that fun configuration out of the way. Sample AndroidManifest.xml

	The first we need to do is add this snippet inside our <manifest> tag

<uses-sdk
 android:minSdkVersion="23"
 android:targetSdkVersion="23" />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-feature android:glEsVersion="0x00030001" android:required="true" />

	The uses-sdk is where we set our API level as you probably could figure out

	IMPORTANT: You need to give permission to the camera or Tango will not be able to get data from it making this all pretty pointless already.
	This is done by adding the <uses-permission android:name="android.permission.CAMERA" /> line

	More information about Android permissions for things like ADF files check the documentation [https://developers.google.com/tango/apis/c/c-user-permissions]

	We plan to use OpenGL ES 3.1 which is guarenteed to work on all current capable Tango devices.

	We now need to add this in our <Applicataion> tag

 <uses-library
 android:name="com.projecttango.libtango_device2"
 android:required="true" />

	This is how load in Tango library currently out right now

Sample AndroidManifest.xml

<== Chapter 1 – Chapter 3 ==>

 <== Section 4 - Project – Chapter 2 ==>

Chapter 1 - Start a new project

We aim to just get a working blank program up and running for this chapter.

	The first thing we need to do is File > New > New Project

	[image: Create New Project]
	Set the Application name and Company domain to your desire

	Make sure to have Include C++ support

	[image: API Level]
	As mentioned we are doing this project with the DevKit not in mind
	If you are using the DevKit then change to API 19

	[image: Empty Activity]
	This is optional, but I like the boilerplate it sets up with Empty Activity

	[image: Name Activity]
	This is a total personal decision for what you call your Activity class

	[image: Toolchain]
	I have found no need to not use the default toolchain
	If there is a reason to not use what this image shows then please create pull request or issue

	NOTE: If it creates an androidTest and test folder in your Java folder you can ignore these. We are just using the main folder for this tutorial. Feel free to write your own test. Even better if you write a section in this tutorial on how to setup useful Tango/NDK testing!

<== Section 4 - Project – Chapter 2 ==>

 <== Chapter 9 – Chapter 11 ==>

Chapter 10 - Main Native C/C++ code part 2

Now that we have got our Gradle working correctly we can now more easily work on our main native code!

	So I am going to just link the Tango_NDK_Tutorial.cpp and Tango_NDK_Tutorial.h files here and go over how they work snippet at a time from here

Tango_NDK_Tutorial.h

	The first we do is make sure to include the JNI library and the Tango APIs being used

#include <jni.h>
#include "tango_client_api.h"
#include "tango_support_api.h" // Optional API

	To make things easier we also define some logging tools in this demo so we log out to logcat easier
	Example: LOGI("You will see this part printed out in logcat with value %d", someValue)

	This works the same as printf formatting

	With this you will be able to filter out all the Tutorial_TAG logs later so make sure to use a meaniful naming for the tags of your logs to make debugging easier.
	Change the #define LOG_TAG "Tutorial_TAG" with a different tag if you want

	The rest of the header is very standard for C++ programmer, but will help fill a few gaps if you are new to that (I would highly suggest learning about standard C++ OOP before getting knee deep in NDK development)
	Since we included this header in our native-lib.cpp file we need to make sure to declare each function

	Since we are using a namespace you need to reference this class as NAMESPACE::CLASS or for this case tango_tutorial::Tango_NDK_Tutorial

	We have a private local instance of TangoConfig tango_config_ which we will use later.

Tango_NDK_Tutorial.cpp

You Made it! If you got here you got through the boring setup and now we can start coding with the Tango API!

	This file is split into our main Tango usage in the namespace tango_tutorial {} while we create an anonymous namespace above to keep hold of more general items

	If you are not up too speed with some of the techincal aspect going on make sure to checkout the Coding Techincal Stuff Section

void Tango_NDK_Tutorial::OnCreate

	We need to first address what to do when our MainActivity calls the onCreate function

	We call TangoSupport_GetTangoVersion(env, caller_activity, &version); which will return the version of our Tango Core
to version

	We then can compare the version with a minimum version we have set to prevent people with outdated Tango to use our application
	Note I have yet to find anywhere online what core version are needed to use features, but I figure this is for future ground breaking changes they might add one day.

	Currently I am running verison 16016 as of writing this tutorial

void Tango_NDK_Tutorial::OnTangoServiceConnected

This is where we do all of our setup and get Tango up and running

	First we need to just run TangoService_setBinder(env, iBinder) which will take the JNIEnv* env, jobject iBinder values passed in

	This is how Tango takes in the IBinder service value we created in our Java MainActivity.

	This right here will link the Tango service and we can techinically begin using it if it returns TANGO_SUCCESS

	Next we need to setup our TangoConfig tango_config_ value.

	Tango comes with many different API features and it would be wasteful to turn them all on if we are not using them all. To save power and processing we tell Tango which feature we want to use in our TangoConfig value

	There are two ways to set up the TangoConfig

	Use a preset TangoConfig Type [https://developers.google.com/tango/apis/c/reference/group/enums#tangoconfigtype]

	This what we use for our tutorial demo

	By calling tango_config_ = TangoService_getConfig(TANGO_CONFIG_DEFAULT); we give our TangoConfig permission to use Motion Tracking but we have turn off Depth Perception and the rest of the settings

	We can add each TangoConfig setting one at a time by using the Tango Config Refernce Guide [https://developers.google.com/tango/apis/c/reference/group/config-params]

	To add Depth Perception we would call

// Sets our TangoConfig 'config_enable_depth' configuration on for use
TangoConfig_setBool(tango_config_, "config_enable_depth", true);

// Tells Tango to get depth as pointcloud of type XYZC
TangoConfig_setInt32(tango_config_, "config_depth_mode", TANGO_POINTCLOUD_XYZC);

	Here we make a call first to TangoConfig_setBool to toggle on the setting and then another to TangoConfig_setInt32 to tell what depth mode options we want to include as well

	Again, you will need to consult the Tango Config Reference [https://developers.google.com/tango/apis/c/reference/group/config-params] for knowing what you need to enable and set

	Next since we are using the Motion sensor we need to tell Tango abour the Frame of Reference being used

	More info about that can be found in Frame of Reference Chapter

	Once we set our TangoCoordinateFramePair to be what we want we need to call the TangoService_connectOnPoseAvailable function to set up what do with our position data.

	The first two arguments are for telling which TangoCoordinateFramePair to use

	The third argument is where we tell it to call the onPoseAvailable function whenever it gets a new set of Motion Tracking position values

	The last thing we need to do is set the configurations with TangoService_connect(nullptr, tango_config_) and we are all connected!

void Tango_NDK_Tutorial::OnPause

If we pause our application we need to take the correct steps to get Tango disconnected correctly. What we need to do is well self documented from good naming conventions on Tango’s part.

	The first thing we call is TangoConfig_free(tango_config_); which will properly free the TangoConfig object

	It is good memory managment practice to set the point to null to prevent it being seen as valid else where in the program
	tango_config_ = nullptr;

	Last we call TangoService_disconnect(); where Tango will unbind the service for use we have on it

void onPoseAvailable

This is our callback we set whenever Tango has Pose data available. Again very well sell documented with good naming conventions

	It returns const TangoPoseData* pose which we can use to print out the value in this case

	Each pose has its XYZ position and its XYZW orientation.

	If you want to learn more about what values are in the Pose just check the Pose Reference [https://developers.google.com/tango/apis/c/reference/struct/tango-pose-data]

<== Chapter 9 – Chapter 11 ==>

 <== Chapter 10

Chapter 10 - Running the Project

You are now ready to build and run the project. Once you run it you can monitor it all with Logcat using two different methods.

adb

	Open a terminal

	run adb logcat

Android Montior

Android Studio has a great set of built in debugging tools,

	[image: Android Monitor]

	Note you can filter all the logs in the search bar. This is why we gave a LOG_TAG to make it easier to find certain logs

<== Chapter 10

 <== Chapter 8 – Chapter 10 ==>

Chapter 9 - NDK-build Files

So this is everyone’s favorite part, building our project!

	First thing we need to do is create two file type files in our cpp folder named Android.mk and Application.mk
	[image: NDK Build File Add]

Android.mk

	Here is what your Android.mk file should look like

LOCAL_PATH := $(call my-dir)
PROJECT_ROOT:= $(call my-dir)/../../../..

include $(CLEAR_VARS)
LOCAL_MODULE := libtango_ndk_tutorial
LOCAL_SHARED_LIBRARIES := tango_client_api tango_support_api
LOCAL_CFLAGS := -Werror -std=c++11
LOCAL_SRC_FILES := native-lib.cpp \
 Tango_NDK_Tutorial.cpp
LOCAL_LDLIBS := -llog -lGLESv3 -L$(SYSROOT)/usr/lib
include $(BUILD_SHARED_LIBRARY)

$(call import-add-path, $(PROJECT_ROOT))
$(call import-module,tango_client_api)
$(call import-module,tango_support_api)

	IMPORTANT: Since our LOCAL_MODULE is libtango_ndk_tutorial our System.loadLibrary("tango_ndk_tutorial"); from Chapter 4 must be the same minus the prefix
	Example:
	if LOCAL_MODULE := libtango_tutorial

	then System.loadLibrary("tango_tutorial");

	Also note that if you are not including the Support API you can remove it from the LOCAL_SHARED_LIBRARIES section

	If you want to add more C++ files you need to add them to the LOCAL_SRC_FILES

	Having PROJECT_ROOT := $(call my-dir)/../../../.. is probably not the smoothest thing and open to better suggestions to get that route!
	We need the path because it is pointing to our API folder

	You can change $(call import-add-path, $(PROJECT_ROOT)) to point to a different location if your API folders are not in the same spot as this tutorial

Application.mk

	This is super simple

APP_ABI := armeabi-v7a arm64-v8a
APP_STL := gnustl_static
APP_PLATFORM := android-23

	Note we have option to compile for both ArmV7 and ArmV8 in the APP_ABI
	Almost all mobile phones are built on Arm achitecture and we are just setting which architecture we are going to build for

	We are using gnustl_static and not the c++ std, why, I am not quite sure actually if we need it for Tango
	You will find that gnustl_static doesn’t have a std::to_string() method which gets annoying

	APP_STL details [https://developer.android.com/ndk/guides/cpp-support.html]

	Also make sure to put the correct API version in this file as well

Gradle Settings

	The main file we need to edit is the /app/build.gradle which is in charge of building our module.
	[image: Build Gradle File]

	First we are going to remove the externalNativeBuild {} object from the defaultConfig section

	We are going to replace it with

ndk {
 abiFilters 'armeabi-v7a', 'arm64-v8a'
}

	the externalNativeBuild {} object in the android section we are going to replace the CMake inside with

ndkBuild {
 path 'src/main/cpp/Android.mk'
}

	Now we need to Sync our Gradle
	[image: Sync Gradle GUI]

Links to full code in this section

	Android.mk

	Application.mk

	build.gradle

<== Chapter 8 – Chapter 10 ==>

 <== Chapter 2 – Chapter 4 ==>

Chapter 3 - Tango Initialization Helper

So one of the big things we need to do is make sure we correctly load the right version of the Tango API Library. Luckily Google has already designed a nice helper class which I see no reason really changing, but also no reason not to modify it if needed. Tango Initialization Helper Code

	NOTE: remeber that all new code is going in the /main/ folder, not the /test/ or /androidTest/

	Go to the Project directory on the side and right click the java folder where your MainActivity lives and add a new class called TangoInitializationHelper
	[image: TangoInitializationHelper Class]

	For this file I would just copy and paste the code sample
	NOTE: make sure to change the name of the package at the top of the file with your package name

What is this file tl;dr

The idea behind this file is it just looks for the tango by package name and then figures out path to it by type of architecture your phone is.

<== Chapter 2 – Chapter 4 ==>

 <== Chapter 7 – Chapter 9 ==>

Chapter 8 - Getting Tango API

Here we are going to get the source for the Tango API.

	...ok, we are going to do this the easy way, copy and paste these folder into the same folder as where your root folder is
	NOTE: This the directory where you see just the name of your project, if you see your app, gradle, etc folder then you need to move a folder up. The big thing is your Android.mk file in next chapter will be looking there.

	Tango Client API Folder

	Tango Support API Folder

<== Chapter 7 – Chapter 9 ==>

 <== Chapter 6 – Chapter 8 ==>

Chapter 7 - Main Native C/C++ code part 1

This is where we will create our main native file. This is part one because we need to configure some settings before moving on.

	First we are going to create the C++ class by adding it in our cpp folder
	[image: Main Native Add]

	So now that we have this class we are going to take a detour and get our build settings set up so we can take advantage of Android Studio’s intelesens.

<== Chapter 6 – Chapter 8 ==>

 <== Chapter 3 – Chapter 5 ==>

Chapter 4 - JNI Native Class

We need to create a Java class with the JNI to allow our Java functions to get sent down to the Native functions. Tango JNI Native Class

	Just as we did forTangoInitializationHelper we need to create another Java class and we will call it TangoJniNative
[image: Tango JNI Native Class]

	The first thing we need to do is call TangoInitializationHelper.loadTangoSharedLibrary() and make sure we loaded the library correctly otherwise no point to continue.

	We know need to load the Native C/C++ code into our application by loading it using System.loadLibrary("tango_ndk_tutorial");
	As of now in the tutorial we have not yet wrote this code, but when we do, this is how we call it

	Take notice that these two loading of native code (Tango Library and our NDK code) takes place right away in the flow of the program

	IMPORTANT: the string tango_ndk_tutorial in this case must match the LOCAL_MODULE library without the lib prefix
	This is more explain in detail in Chapter 9

	Each function we plan to call down to the native layer we need to make a native java function declaration
	Example: public static native void onCreate(Activity callerActivity);
	In this example we will pass the instance of the Activity object to our native code when the Activity calls onCreate

	The public static native int valueFromJNI(int myNumber); is going to be our example of how we send the value myNumber and get a int value returned

	Side note, I removed the public native String stringFromJNI(); auto generated from the boilerplate

<== Chapter 3 – Chapter 5 ==>

 <== Chapter 4 – Chapter 6 ==>

Chapter 5 - Java Main Activity

Here we go over what we need in our main activity class to kick off the native code and handle our GUI actions. Main Activity Code

	The first thing we need to do is create an Android ServiceConnection object which creates a IBinder object on connection which we send down to our native code.
	This is how we will be able to send data between the Tango API and the rest of our processes. The idea behind a service is to create a client-server relationship between our application and the Tango hardware.

	More Detailed Information [https://developer.android.com/guide/components/bound-services.html]

	Next we create a onCreate, onPause, and onResume event call where we will handle the binding of the Tango API and send the event info down to the native layer.
	These event calls are part of the Native Activity Class [https://developer.android.com/reference/android/app/NativeActivity.html] and are called at various parts of the Android life cycle

	The big thing to take away is we are going to get events called in our Java Activity class and will need to make the appropriate function call in our native code.

	For an demo we also created a call to our valueFromJNI(int myNumber) native function were we pass in the value 5 and as we will find out later it will print out 6 from the native code adding 1 to it
	The biggest reason for these native functions returning values is for the GUI thread we have open in the Java Activity

<== Chapter 4 – Chapter 6 ==>

 <== Chapter 5 – Chapter 7 ==>

Chapter 6 - JNI C/C++ Interface

We now need to create an interface layer that will take our native function() Java code and forward it to our native C/C++ implentation of the function. JNI Interface Code

	The first thing we want to do is add #include <jni.h> to get access to the JNI class

	To ensure that the names declared in that portion of code have C linkage, and thus C++ name mangling is not performed we add these macro to surround the class

#ifdef __cplusplus
extern "C" {
#endif

.... // our code

#ifdef __cplusplus
}
#endif

	We are going to make a class next chapter so now is a good time to just declare the new C++ class at the top

#include "Tango_NDK_Tutorial.h"

static Tango_NDK_Tutorial app;

	Here we add a function call for each of the JNI native calls such as

JNIEXPORT void JNICALL
Java_com_demo_tutorial_tango_tango_1ndk_1tutorial_TangoJniNative_onCreate(
 JNIEnv* env, jobject /*obj*/, jobject caller_activity) {
 app.OnCreate(env, caller_activity);
}

	The format of these function calls that bring from Java to the native level follows a strict naming convention

	Always start your function with the return type of JNIEXPORT < Return_Type > JNICALL

	the < Return_Type > can be void, jint, jstring, etc
	JNI Data Types [http://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html]

	The name of function is made up of 3 different parts

	Package_Name

	Java_Class_Name

	Function_Name

	We concat them with underscores into the function name

	Example for the onCreate call: Java_com_demo_tutorial_tango_tango_1ndk_1tutorial_MainActivity_onCreate

	Package_Name => com.demo.tutorial.tango.tango_ndk_tutorial
	NOTE: Since the package name has underscores in it you need to replace it with _1 as seen in this example

	Java_Class_Name => MainActivity

	Function_Name => onCreate

	Every

	JNIEnv* - Pointer to a structure storing all JNI function pointers. Provides most of the JNI functions. Your native functions all receive a JNIEnv as the first argument.
	The JNIEnv is used for thread-local storage. For this reason, you cannot share a JNIEnv between threads.

	jobject - This is a reference to an object of type MainActivity, almost like a this of the Java Activity class instance

	We also call the app class we declared as a type of our future C++ class and run its internal OnCreate method we will make soon.

	Notice we try to help distinguish the Java and C++ functions by making the Java calls lowerCamelCase and the C++ UpperCamelCase as our naming convention
	Java -> onCreate

	C++ -> OnCreate

	For the Java_com_demo_tutorial_tango_tango_1ndk_1tutorial_TangoJniNative_valueFromJNI function we add a third parameter which is the Java int argument we sent the value 5. Here we take that value, add 1, and return it as a jint type

<== Chapter 5 – Chapter 7 ==>

sampleCode

This where all the sample code from the tutorials can be found

 <== Section 1 - NDK – Section 3 - Tango ==>

Section 2 - Graphics

	If you want to do any AR with Tango, you will need to understand a descent amount about graphics.

	If you plan to use Tango purely for its camera and sensor raw data then I guess you can skip this section.

What This Section Is

	A rundown of what graphics Tango uses to display AR

	A brief 101 on graphics (skip sections if already know the pain of black rendered screens)

	Special graphic related info regarding the Tango

	A good spot to start if you need to learn everything about graphics

What This Section Is NOT

	The place learn OpenGL from, plenty of better, in-depth sites for that

	Reference guide to OpenGL API calls

OpenGL ES

	Since this is a Android mobile device, your only two options for graphics is OpenGL ES or Vulkan

	Vulkan is still in its implementation phase and needs Android N to run
	Vulkan is a beast in itself and this tutorial for now will stick to OpenGL ES

Table Of Content

	Chapter 1 - Graphic APIs 101
	Quick overview what a Graphic API is and does

	Chapter 2 - Graphic Pipeline 101
	What it takes to render a frame

	Chapter 3 - Coordinate System
	Understanding the two coordinate system Tango uses

	Chapter 4 - 3D Model Files
	Information about 3D Models and also loading them into scene

<== Section 1 - NDK – Section 3 - Tango ==>

 <== Chapter 1 – Chapter 3 ==>

Chapter 2 - Graphic Pipeline 101

This is going to be a really quick overview of graphical programming as there are tons of better tutorials out there already.

The goal

	When doing anything graphical the overall goal is take take data represented in 3-dimensions and have it so it’s displayed on the screen.

	We do this by taking data that would normally go into our RAM and used by our CPU and send it to the GPU so it can handle the task of filling in the pixels that will be displayed every frame.

Graphic Pipeline in 10 over simplified quick steps

	Get all the vertices that make up your scene

	Give each vertex info about its color, normal, texture mapping

	Make sure all buffered objects such as images are mapped and allocated

	Run all the vertices through a vertex shader and produce shapes

	Touch up results, such as getting rid of vertices out of the view window

	Rasterize them to give you a fragment to work with

	Run all the fragments through a fragment shader to decide on a color

	Have test to decide which fragment becomes the pixel and what color it is

	Push the data to the screen

	Repeat hopefully over 60 times a second

Extra Sources

	Tutorial by Joe Groff [http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html]

<== Chapter 1 – Chapter 3 ==>

 <== Section 2 - Graphics – Chapter 2 ==>

Chapter 1 - Graphic APIs 101

What is an API?

	An API (Application Programming Interface [https://en.wikipedia.org/wiki/Application_programming_interface]) is way to “tap into” code.

	A good analogy: A bank has to be able to both deposit and withdrawal money from you account and want to let you do it without needing a human tell do it. At the same the bank does NOT trust you to just enter a deposit as a bank tell does, so they give you an ATM machine (which is our API in this case). You have a way of using there service without ever having to know how to “actually” deposit money into the bank.

	The API for our GPU will let us send commands to it to perform actions without ever having to understand what the command is doing under the hood. We still need full knowledge of what the API call will do in terms of effecting our graphic project.

How a computer works

	It is important you understand that a computer normally runs off of three parts: CPU, RAM, and Hard Drive.
	When you open up Chrome/FireFox your computer’s CPU figures out it needs the 1GB worth of data that is used to run the browser and goes to the Hard Drive to get it.

	Since it takes WAY longer to get the Hard Drive relative to the CPU speed it holds that 1GB in your RAM so it can access it faster

	So what happens when your computer wants to run 4GB-8GB worth of graphical data to let you play that Skyrim at Ultra High settings running 60+ FPS... its gonna want to use your Graphic Card, but how does it tell it what to do?

	This is where a Graphic API comes in, its job is to talk to your hardware about doing its job.

Examples of Graphic API

	There are a few different Graphic APIs

	OpenGL
	Open Graphic Language

	The standard cross platform choice that has been used for a long time now

	OpenGL ES
	ES stands for Embedded Systems

	A lighter version of OpenGL found on mobile devices as power is a huge factor for mobile design

	WebGL
	A web based version that is mainly based off OpenGL ES due to the web only able to have so much power to run

	DirectX
	Microsoft version of OpenGL which is found in gaming engines for its more friendly game development traits
	This is why you buy a PC to game

	Metal
	Apple version of OpenGL which only really is found on their hardware

	Vulkan
	The young gunner on the block who is not here to replace OpenGL, but provide developers a way of having more control to get the maximum performance out of their applications

	NOTE that a 1080HD screen is 1080x1920 = 2 million pixels and if trying to run 90FPS that is 180 million pixels a second to calculate with only 11.1ms to get each frame out... Vulkan doesn’t seem like a bad idea now talking about making AR more realistic.
	Please don’t try learning Vulkan without understanding graphical programming first as a whole, you will not find success with that

OpenGL ES and my Tango

	So you will need to write some OpenGL ES for your Tango application if you plan on getting anything augmented to the world using the NDK.
	Please note if you wanted to make a game for Tango we would suggest looking into the Unity API as it is made for abstracting all of this for you.

	You should assume OpenGL ES 3.1 as the lowest version to support for any production device with Tango

	If you want help there is a nice tango_gl repo [https://github.com/sjfricke/tango_gl] we personally forked from the Google samples to make more capable of advanced tasks
	It is not a full fledge OpenGL library, but it takes care of the whole matrix math of outputting your renderings to the screen and moving on camera movement

What is the fastest way to learn OpenGL ES

	... We were really hoping you weren’t going to ask this, some of us may have personally have been fortunate to take a course while studying in college on graphical programming. The real question is not “how do I learn OpenGL ES” but rather “how do I learn graphical programming and the whole graphic pipeline”

	This question can be taught in two ways
	The theoretical mathematical way of why matrix and linear algebra works

	How do I get the most pixels flung to the screen as fast as possible

	My suggestion is take some time, like a good month of practicing and reading, on OpenGL before you even attempt to dive into the Tango code

	Here are some really good sources
	The Awesome-OpenGL page [https://github.com/eug/awesome-opengl]

	The Awesome-Courses page [https://github.com/prakhar1989/awesome-courses#computer-graphics] (Graphic section)

Things you should be comfortable with before dealing with the Tango

	Do you understand what a vertex and fragment shaders are
	What is there difference and why is it a big difference

	Capable of reading and writing basic GLSL code

	Transformation, Scaling, and Rotation
	Homogenous coordinates

	Column-row major order

	Model View Projection

	Buffers
	Vertex Buffer Object vs Vertex Array Object

	Vertex vs Normal vs Textures vs Indices

	How to handle when nothing appears on the screen
	What if there is nothing on the debug log

<== Section 2 - Graphics – Chapter 2 ==>

 <== Chapter 2 – Chapter 4 ==>

Chapter 3 - Coordinate System

Good way to follow the graphic lesson is talking about the coordinate systems

So there is a good chance you are smarter than me and this doesn’t relate to you, but the coordinate system explain in the Google Tango Guide [https://developers.google.com/tango/overview/coordinate-systems] didn’t inherently make sense to me on first read. We are gonna try to clear up confusion to anyone who also was confused

Right hand vs Left hand rule

	This is a very basic principle in matrix algebra, but needs to understood quick before moving on. The idea is if I have a coordinate system such that

 ------------> Y ------------> Y
 | |
 | | __
 | | /|
 | | /
 | | /
 V V /

 X X

and I move towards Y from X does Z go INTO the screen away from you or out of the screen towards you

	If it is INTO the screen this is the Left-Hand rule

	If it is OUT of the screen this is the Right-Hand rule

Here is a Google image search showing the hand position to why it go its name

[image: Right Hand Rule]

Two Coordinate System

	The big thing to understand is there are multiple coordinate systems to take in consideration when developing for Tango
	The camera and sensors taking the reading have their own coordinate system.
	Also known as Right Hand Local Level

	The OpenGL ES rendered image projected on your screen has its own coordinate system as normal. This is the same if you ran the OpenGL ES on a different phone without Tango.
	Also known as Right Hand Android

Start of Service

	The Tango will always be able to distinguish where gravity is pointing and represents that as the Negative Z value for Right Hand Local Level

	The question becomes which direction Positive Y value for Right Hand Local Level points out.

	When the app starts this is set as the way the Tango is facing out.
	This means a value of Y == 5 is dependent how you start your app unless you program it to be able to calibrate.

<== Chapter 2 – Chapter 4 ==>

 <== Chapter 3

Chapter 4 - 3D Model Files

Files are just protocols

	If there is a cube with 8 vertices, 6 faces, etc, this can be represented in various ways.

	Each file format is given a standard/protocol how to store the data for a 3D model.

	It is up to the application to unpack it, parse it, and format it the way to allow for use in the application.

OBJ files

	The easiest way to add a model to your AR world is via .obj files. These are easy to work with since they are written in plain text. The overall structure can be read more from detail online [https://en.wikipedia.org/wiki/Wavefront_.obj_file]

	Each .obj file can have a pairing .mtl file which is the Material file. This file gives the color and possible image path for how the part of the UV it covers looks.

	As of now there is no good way (that I know of at least) to read in the file since the entire NDK file is compressed and even with the use of the Asset_Manager the .obj file is just about unreachable and the Hack we found around it is to use one of these file names for the .obj file and pass it in the .obj loader anyway

static const char* kNoCompressExt[] = {
 ".jpg", ".jpeg", ".png", ".gif",
 ".wav", ".mp2", ".mp3", ".ogg", ".aac",
 ".mpg", ".mpeg", ".mid", ".midi", ".smf", ".jet",
 ".rtttl", ".imy", ".xmf", ".mp4", ".m4a",
 ".m4v", ".3gp", ".3gpp", ".3g2", ".3gpp2",
 ".amr", ".awb", ".wma", ".wmv"
};

NOTE

	In the Google samples they store all the data in a header file which works but also defeats the simplicity of just taking in any valid .obj file.

HELP

	If you know a better way to open and read an .obj file without having to change its extension, let us know!

<== Chapter 3

 _static/plus.png

_images/TangoJniNative_Class.png
4 1: Project

o1 7: Structure

1 Android v \ @ = %~ §- | |8 activity mainxml X | &* native-lib.cpp X | (€ MainActivityjava X | (© TangolnitializationHelper
3 manifests ¥ ut Culsx @ Android resource file
8 AndroidManifestxml [Copy ctri+c B3 Android resource directory
Ejava Copy Path Ctrl+shiftec | E) File
[51 com.demo.tutorial.tango.tango_ndk_tutor @y ot [£1 Package
© MainActivity Copy Reference Ctrl+Alt+Shift+C [8] C++ Class

© % TangolnitializationHelper Pl Paste Cirl+v | B C/C++ Source File

_images/NDK_Build_File_Add.png
[£3 com.demo.tutorial.tango.tango_ndk_tutori & Java Class
tatic T - -
@© b MainActivity B static Tango NDK_TUEOL [Android resource file

© % TangolniNative ¥ cut e
[com.demostutorial.tango.tango_ndk _tul [§] Copy CtlsC [Package
[1 com.demo.tutorialtango.tango_ndk_tul Copy Path Ctrl+Shift+C E G @
1 cpp Copy as Plain Text &% C/C++ Source File
& native-lib.cop Copy Reference CuleAlsShifeec |8 C/Cr+ Header Fie

[o= Ol Paste Ctrley ' Image Asset

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_images/Main_Native_Add.png
e L SRR

S PR Es

B com.demo.tumrm.tango.tango,ndk,tumri% @ static Tango NDK_TUtol G android resource file

Gk} MainActivity 3 Android resource directory

& TangolnitializationHel Fie
(@) golnitializationHelper ¥ cut Ctrl+X B

. _— [Pack:
© % TangoJniNative @ copy Ctrl+C =0

[£1 com.demo.tutorial tango.tango_ndk_tt Copy Path Ctrl+ ShiftC

[£3 com.demos.tutorial.tango.tango_ndk _tu €+ C/C++ Source File

Copy as Plain Text
B Copy Reference CurtsAltsShiftrC B C/CH+ Header File
E* native-lib.cpp O Baste iy W Image Asset
Bares Find Usages A Vector Asset

E7 drawable Find in Path... Ctrlsshift+F [l Singleton

i

c

_static/file.png

_images/ASUS_Zenfone_AR.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_images/Java_Native.png
Java Native
Library Class

_images/Development_Kit.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/Right_Hand_Rule.png

_images/Toolchain.png
C++ Standard

[Exceptions Support (-fexceptions)

[Runtime Type Information Support (-frtti)

_images/Lenovo_Phab_2_Pro.png

_images/Main_Activity.png

_images/Android_Life_Cycle.png
oncreate)

onstar)

onResuma()

New Actity i stared

il

Ot appicatns |
‘need memory

onPausel)

e—’

(Ve ety o orger v |

i

onResiart)

onstop()

=

e

onDestioy)

_images/JNI_Header.png
| Create C Header
| with javah -jni
- =

_images/Sync_Gradle.png
Run Tools VCS Window Help

»

LAE WS

Ync Project with Gradle Files™

&* native-lib.cpp X

L3l local.properties %

&* Tango_NDK Tutorial.cpp %

(& app *

[Tango_NDK Tutorialh %

19, AndroidManifestxml X

15
16
17 1

i

Gradle files have changed since last project sync. A project sync may be necessary for the IDE to work properly.

_images/Build_Gradle_File.png
¥ (& Gradle Scripts
O o-NDK-Tutorial)
radle (Modul

app)
s (Gradle Version)
[3] proguard-rules.pro (ProGuard Rules for app)
[5it gradle.properties (Project Properties)

(S settings.gradle (Project Settings)

[3il local properties (SDK Location)

_images/API_Level.png
Phone and Tablet

Minimum SDK | API 23: Android 6.0 (Marshmallow)

Lower API levels target more devices, but have fewer features available.

_images/Project_Folder.png
main/ Sourceset

java/

L com.example.myapp/
res/

drawable/
layout/

AndroidManifest.xml

_images/Create_New_Project.png
New Project
Android Studio

Configure your new project

Application name:

Company domain:

Package name:

Tango-NDK-Tutorial

tango.tutorial.demo.com

com.demotutorial.tango.tango_ndk_tutorial

Include C++ support

_images/Android_Monitor.png
Android Monitor

/0 Lenovo PB2-690Y Android 6.0.1, A1 23

-

‘com.demo.tutorialtango.tango_ndk_tutorial (15533)

Regex | show only seected appication [

56/con. demo. tutorial. tango. tango_ndk_tutorial

55.07 01:20-16.643 13573- 13547/ con.dema utarial tanas.tange ndk sutorial T/ Tutorsal THG 0313637, -0.057810, -0.3:
86-07 01:20:16.648 15533-15544/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG 8.317764, -0.050473, -6.32
86-07 01:20:16.654 15533-15545/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG: 0.321004, -0.061242, -6.33
86-07 01:20:16.657 15533-15553/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG -6.063051, -6.33
86-07 01:20:16.662 15533-15559/ con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG -0.064868, 0.3
86-07 01:20:16.668 15533-15556/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG -0.066622, -0.34
86-07 01:20:16.671 15533-15547/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG: -0.068201, 6.3
86-07 01:20:16.685 15533-15550/ con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG -0.071851, -6.35

5 06-07 01:20:16.688 15533-15545/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG: -0.071851, -6.35
86-07 01:20:16.689 15533-15559/ con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG -0.073417, -6.36

i 96-07 01:20:16.693 15533-15556/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG: 0.352445, 0.042281, -0.010256. -0.075020, -6.36
86-07 01:20:16.696 15533-15547/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG ©.355008, .041809, -0.010074. -0.076674, -0.36

06-07 01:20:16.761 15533-15544/com. demo. tutorial.tango. tango_ndk tutorial I/Tutorial TAG! 0.359276, 0.041294, -0.011664. -0.078424, -0.37
86-07 01:20:16.706 15533-15556/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG 362571, 0.040734, -6.012334. -0.080310, -6.37

7 96-07 61:20:16.711 15533-15545/com. demo. tutorial. tango. tango_ndk_tutorial I/Tutorial TAG: 0.365751, 0.040141, -0.012977. -6.082316, -0.37
86-07 01:20:16.718 15533-15559/ con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG ©.368861, 0.039506, -0.013601. -0.084468, -6.37
86-07 01:20:16.721 15533-15556/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG ©.371881, 0.038839, -0.014200. -0.086755, -0.38
86-07 01:20:16.726 15533-15547/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG 0.374793, 0.038146, -0.014770. -0.089146, -0.3
86-07 01:20:16.731 15533-15544/con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG: .377647, 0.037418, -0.015318. -0.091649, -0.3¢
86-07 01:26. 15533-15550/con. deno. tutorial. tango. tango_ndk_tutorial 1/Tutorial TAG: ©.380387, 0.036670, -0.015835. -6.094170, -6.38
6:07,82:20:16.740 1553315545/ con. demo. tutorial . tango. tango_ndk_tutorial I/Tutorial TAG: ©.383028, 0.035899, -0.016323. -0.096672, -6.38

& 0 Messages [F Termind LB 6 AnGroid Monitr—~p. 4: Run = TODO 5] Gradie Console

_images/Name_Activity.png
Creates a new empty activity

Activity Name: | MainActivity]

Generate Layout File

Layout Name: | activity_main

Backwards Compatibility (AppCompat)

_images/Makefiles.png

_images/Empty_Activity.png

_images/NDK_layout.png

_images/TangoInitializationHelper_Class.png
ango-NDK-Tutorial "2 app "1 src 1 main

53 com 51 demo 51 tutorial » 51 tango

[23 tango_ndk_tutorial / (€ MainActivity

18 activity_mainxml X | &* native-lib.cpp X | © MainActivityjava X

% 1: Project

o1 7: Structure

1§ Android - Q=
Ciapp
7 manifests
{9 AndroidManifestxml

[£1 com.demo.tutorial tango.tango_ndk_

"| @ Java I

Copy Path Ctrl+Shift+C

Copy as Plain Text
Copy Reference Ctrl+Alt+Shift+C

3 com.demostutorial.tango.tango_ndk_ i paste

Find Usages

Android resource file

3 Android resource directory

[l File

[Package
(5] C++ Class

& C/C++ Source File

AltsF7 B C/C++ Header File

_images/Native_Code.png
s Compile and
link C code

