
tangled.web Documentation
Release 1.0a13.dev0

Wyatt Baldwin

Dec 25, 2017





Contents

1 Links 3

2 Contents 5
2.1 Hello, World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Main Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Extension API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Indices and tables 21

Python Module Index 23

i



ii



tangled.web Documentation, Release 1.0a13.dev0

A resource oriented, Python 3 only Web framework.

No controllers. No views. Just resources and representations.

Also, there are no magic globals. There is an Application object that contains your app’s configuration. It is
passed to resources along with the current request.

Contents 1



tangled.web Documentation, Release 1.0a13.dev0

2 Contents



CHAPTER 1

Links

• Project Home Page

• Source Code (GitHub)

3

http://tangledframework.org/
http://github.com/TangledWeb/tangled.web


tangled.web Documentation, Release 1.0a13.dev0

4 Chapter 1. Links



CHAPTER 2

Contents

2.1 Hello, World

Here’s a really simple Tangled Web app:

from wsgiref.simple_server import make_server

from tangled.web import Application, Resource

class Hello(Resource):

def GET(self):
if 'name' in self.urlvars:

content = 'Hello, {name}'.format(**self.urlvars)
else:

content = 'Hello'
return content

if __name__ == '__main__':
settings = {

'debug': True,
}
app = Application(settings)
app.mount_resource('hello', Hello, '/')
app.mount_resource('hello_name', Hello, '/<name>')
server = make_server('0.0.0.0', 6666, app)
server.serve_forever()

Note: This is a copy of examples/hello_world.py. If you’re in the top level of tangled.web checkout,
you can run it with python examples/hello_world.py (assuming tangled.web is already installed).

5



tangled.web Documentation, Release 1.0a13.dev0

2.2 Quick Start

This is a short guide that will show you the basics of creating a Web application based on tangled.web.

2.2.1 Install Python 3.3+

First, install Python 3.3. Older versions of Python 3 will not work. Mainly, this is because of the use of built-in
namespace package support that was added in Python 3.3.

You can download Python 3.3 from here. If you’re using Mac OS, Homebrew is an easy way to install Python:

brew install python3

Note: Python 2.x is not supported, and there are no plans to support it.

2.2.2 Virtual Env

Next, set up an isolated virtual environment. Since we’re using Python 3, this is built in. The command for creating a
virtual env looks like this:

python3 -m venv helloworld.venv

Change into the helloworld.venv directory and download the following file there:

https://raw.github.com/pypa/pip/master/contrib/get-pip.py

Then run the following command:

./bin/python get-pip.py

2.2.3 Install Dependencies

A couple of Tangled dependencies need to be installed so that the tangled scaffold command and basic
scaffold are available:

./bin/pip install tangled.web==VERSION

Replace VERSION with the version you want to install. The current version is 1.0a13.dev0.

If you want to use the latest code, you can do this instead (requires git to be installed):

./bin/pip install -e git+git://github.com/TangledWeb/tangled#egg=tangled

./bin/pip install -e git+git://github.com/TangledWeb/tangled.web#egg=tangled.web

2.2.4 Create a Basic Tangled Web App

Now that the virtual environment is set up and the Tangled dependencies have been installed, a project can be created.
Run the following commands in the helloworld.venv directory:

6 Chapter 2. Contents

http://www.python.org/download/releases/3.3.3/
http://brew.sh/
https://raw.github.com/pypa/pip/master/contrib/get-pip.py


tangled.web Documentation, Release 1.0a13.dev0

./bin/tangled scaffold basic helloworld

./bin/pip install -e helloworld

2.2.5 Serve it Up

Now that everything’s installed, it’s time to run the app:

./bin/tangled serve -f helloworld/development.ini

Now you can visit http://localhost:6666/ and http://localhost:6666/name.

2.2.6 Next Steps

Take a look at the app configuration in helloworld/helloworld/__init__.py and the Hello resource in
helloworld/helloworld/resources.py.

The Application API documentation currently has the most comprehensive info on creating and configuring Tangled
Web apps.

Note: This is all still very much a work in progress. Please feel free to make suggestions or report issues on GitHub.

2.3 Installation

Note: Python 3.3+ is required. Older versions of Python 3 will not work. No version of Python 2 will work.

All tangled.* packages are standard setuptools distributions that can be installed via easy_install or pip.

2.4 Contributing

2.4.1 Issues

Bugs and other issues can be reported on GitHub.

2.4.2 Patches

To contribute patches, go to the TangledWeb project on GitHub, fork a package, and send a pull request. All new code
must be 100% covered by tests and be PEP8 compliant.

2.4.3 Creating an Extension Package

To create your own extension package, you can use the tangled.contrib namespace. If you install the
tangled.contrib package, you will be able to create a contrib package easily using the tangled scaffold
command:

2.3. Installation 7

http://localhost:6666/
http://localhost:6666/name
https://github.com/TangledWeb/tangled.web/issues
http://pythonhosted.org/setuptools/
http://pythonhosted.org/setuptools/easy_install.html
http://www.pip-installer.org/
https://github.com/TangledWeb
https://github.com/TangledWeb
http://www.python.org/dev/peps/pep-0008/


tangled.web Documentation, Release 1.0a13.dev0

tangled scaffold contrib tangled.contrib.{name}

2.5 Main Documentation

2.5.1 Displaying Errors

By default, errors will be displayed using the plain error templates provided by WebOb. To customize the display of
errors, an error resource needs to be created. The simplest error resource looks like this:

from tangled.web import Resource, config

class Error(Resource):

@config('text/html', template='/error.html')
def GET(self):

return {}

error.html would contain contents like this:

<%inherit file="/layout.html"/>

<h1>Error</h1>

<div class="error">
The request failed with status code ${request.status_code}

</div>

To activate the error resource, point the tangled.app.error_resource setting at it:

[app]
tangled.app.error_resource = my.pkg.resources.error:Error

2.6 Application API

This documents the API that’s typically used by application developers.

2.6.1 Application

class tangled.web.app.Application(settings, **extra_settings)
Application container.

The application container handles configuration and provides the WSGI interface. It is passed to components
such as handlers, requests, and resources so they can inspect settings, retrieve items from the registry, etc. . .

Registry:

Speaking of which, the application instance acts as a registry (it’s a subclass of tangled.registry.
Registry). This provides a means for extensions and application code to set application level globals.

Settings:

settings can be passed as either a file name pointing to a settings file or as a dict.

8 Chapter 2. Contents



tangled.web Documentation, Release 1.0a13.dev0

File names can be specified as absolute, relative, or asset paths:

• development.ini

• /some/where/production.ini

• some.package:some.ini

A plain dict can be used when no special handling of settings is required. For more control of how settings are
parsed (or to disable parsing), pass a AAppSettings instance instead (typically, but not necessarily, created
by calling tangled.web.settings.make_app_settings()).

Extra settings can be passed as keyword args. These settings will override all other settings. They will be parsed
along with other settings.

NOTE: If settings is an AppSettings instance, extra settings passed here will be ignored; pass them to
the AppSettings instead.

Logging:

If settings are loaded from a file and that file (or one of the files it extends) contains logging config sec-
tions (formatters, handlers, loggers), that logging configuration will automatically be loaded via
logging.config.fileConfig.

add_helper(helper, name=None, static=False, package=None, replace=False)
Add a “helper” function.

helper can be a string pointing to the helper or the helper itself. If it’s a string, helper and package
will be passed to load_object().

Helper functions can be methods that take a Helpers instance as their first arg or they can be static
methods. The latter is useful for adding third party functions as helpers.

Helper functions can be accessed via request.helpers. The advantage of this is that helpers added
as method have access to the application and the current request.

add_subscriber(event_type, func, priority=None, once=False, **args)
Add a subscriber for the specified event type.

args will be passed to func as keyword args. (Note: this functionality is somewhat esoteric and should
perhaps be removed.)

You can also use the subscriber decorator to register subscribers.

get_setting(key, default=NOT_SET)
Get a setting; return default if one is passed.

If key isn’t in settings, try prepending 'tangled.app.'.

If the key isn’t present, return the default if one was passed; if a default wasn’t passed, a KeyError
will be raised.

get_settings(settings=None, prefix=’tangled.app.’, **kwargs)
Get settings with names that start with prefix.

This is a front end for tangled.util.get_items_with_key_prefix() that sets defaults for
settings and prefix.

By default, this will get the settings from self.settings that have a 'tangled.app.' prefix.

Alternate settings and/or prefix can be specified.

on_created(func, priority=None, once=True, **args)
Add an ApplicationCreated subscriber.

Sets once to True by default since ApplicationCreated is only emitted once per application.

2.6. Application API 9



tangled.web Documentation, Release 1.0a13.dev0

This can be used as a decorator in the simple case where no args other than func need to be passed along
to add_subscriber().

2.6.2 Settings

tangled.web.settings.make_app_settings(settings, conversion_map={}, defaults={}, re-
quired=(), prefix=None, strip_prefix=True,
parse=True, section=’app’, **extra_settings)

Create a properly initialized application settings dict.

In simple cases, you don’t need to call this directly–you can just pass a settings file name or a plain dict to
tangled.web.app.Application, and this will be called for you.

If you need to do custom parsing (e.g., if your app has custom settings), you can call this function with a con-
version map, defaults, &c. It’s a wrapper around parse_settings() that adds a bit of extra functionality:

• A file name can be passed instead of a settings dict, in which case the settings will be extracted from the
specified section of that file.

• Core tangled.web defaults are always added because tangled.web.app.Application assumes
they are always set.

• Settings parsing can be disabled by passing parse=False. This only applies to your settings, including
defaults and extra settings (core defaults are always parsed).

• Extra settings can be passed as keyword args; they will override all other settings, and they will be parsed
(or not) along with other settings.

• Required settings are checked for after all the settings are merged.

In really special cases you can create a subclass of AAppSettings and then construct your settings dict by
hand (eschewing the use of this function).

2.6.3 Events

Events are registered in the context of an application via tangled.web.app.Application.
add_subscriber().

Subscribers typically have the signature subscriber(event). If subscriber keyword args were passed to
add_subscriber, then the signature for the subscriber would be subscriber(event, **kwargs).

Every event object will have an app attribute. Other attributes are event dependent.

class tangled.web.events.ApplicationCreated(app)
Emitted when an application is fully configured.

These events can be registered in the usual way by calling tangled.web.app.Application.
add_subscriber(). There’s also a convenience method for this: tangled.web.app.Application.
on_created().

Attributes: app.

class tangled.web.events.NewRequest(app, request)
Emitted when an application receives a new request.

This is not emitted for static file requests.

Attributes: app, request.

10 Chapter 2. Contents



tangled.web Documentation, Release 1.0a13.dev0

class tangled.web.events.NewResponse(app, request, response)
Emitted when the response for a request is created.

This is not emitted for static file requests.

If there’s in exception during request handling, this will not be emitted.

Attributes: app, request, response.

class tangled.web.events.ResourceFound(app, request, resource)
Emitted when the resource is found for a request.

Attributes: app, request, resource.

class tangled.web.events.TemplateContextCreated(app, request, context)
Emitted when the context for a template is created.

The template context is whatever data will passed to the template. E.g., for Mako, it’s a dict.

This is emitted just before the template is rendered. Its purpose is to allow additional data to be injected into the
template context.

Attributes: app, request, context

tangled.web.events.subscriber(event_type, *args, **kw)
Decorator for adding event subscribers.

Subscribers registered this way won’t be activated until tangled.web.app.Application.
load_config() is called.

Example:

@subscriber('tangled.web.events:ResourceFound')
def on_resource_found(event):

log.debug(event.resource.name)

2.6.4 Request factory

class tangled.web.request.Request(environ, app, *args, **kwargs)
Default request factory.

Every request has a reference to its application context (i.e., request.app).

abort(status_code, *args, **kwargs)
Abort the request by raising a WSGIHTTPException.

This is a convenience so resource modules don’t need to import exceptions from webob.exc.

get_setting(*args, **kwargs)
Get an app setting.

Simply delegates to tangled.web.app.Application.get_setting().

helpers
Get helpers for this request.

Returns a Helpers instance; all the helpers added via tangled.web.app.Application.
add_helper() will be accessible as methods of this instance.

make_url(path, query=None, fragment=None, *, _fully_qualified=True)
Generate a URL.

path should be application-relative (that is, it should not include SCRIPT_NAME).

2.6. Application API 11



tangled.web Documentation, Release 1.0a13.dev0

query can be a string, a dict, or a sequence. See make_query_string() for details.

If fragment is passed it will be quoted using urllib.parse.quote() with no “safe” characters
(i.e., all special characters will be quoted).

on_finished(callback, *args, **kwargs)
Add a finished callback.

Callbacks must have the signature (app, response). They can also take additional positional and
keyword args–*args and **kwargs will be passed along to the callback.

Finished callbacks are always called regardless of whether an error occurred while processing the request.
They are called just before the Tangled application returns to its caller.

All finished callbacks will be called. If any of them raises an exception, a
RequestFinishedException will be raised and a “500 Internal Server Error” response will
be returned in place of the original response.

Raising instances of webob.exc.WSGIHTTPException in finished callbacks is an error.

The response object can be inspected to see if an error occurred while processing the request. If the
response is None, the request failed hard (i.e., there was an uncaught exception before the response
could be created).

This can be used as a decorator in the simple case where the callback doesn’t take any additional args.

resource_config
Get info for the resource associated with this request.

Note: This can’t be safely accessed until after the resource has been found and set for this request.

resource_path(resource, urlvars=None, **kwargs)
Generate a URL path (with SCRIPT_NAME) for a resource.

resource_url(resource, urlvars=None, **kwargs)
Generate a URL for a resource.

response
Create the default response object for this request.

The response is initialized with attributes set via @config: status, location, and
response_attrs.

If no status code was set via @config, we try our best to set it to something sane here based on content
type and method.

If location is set but status isn’t, the response’s status is set to DEFAULT_REDIRECT_STATUS.

The location can also be set to one of the special values ‘REFERER’ or ‘CAME_FROM’. The former
redirects back to the refering page. The latter redirects to whatever is set in the came_from request
parameter.

TODO: Check origin of referer and came from.

Note: See note in resource_config().

response_content_type
Get the content type to use for the response.

12 Chapter 2. Contents



tangled.web Documentation, Release 1.0a13.dev0

This retrieves the content types the resource is configured to handle then selects the best match for the
requested content type. If the resource isn’t explicitly configured to handle any types or of there’s no best
match, the default content type will be used.

Note: This can’t be safely accessed until after the resource has been found and set for this request.

static_url(path, query=None, **kwargs)
Generate a static URL from path.

path should always be an application-relative path like ‘/static/images/logo.png’. SCRIPT_NAME will
be prepended by make_url().

update_response(**kwargs)
Set multiple attributes on request.response.

2.6.5 Resources

• Creating resources

• Configuring resources

• Mounting resources

Creating resources

class tangled.web.resource.resource.Resource(app, request, name=None, urlvars=None)
Base resource class.

Usually, you will want to subclass Resource when creating your own resources. Doing so will ensure your
resources are properly initialized.

Subclasses will automatically return a 405 Method Not Allowed response for unimplemented methods.

Subclasses also have url() and path() methods that generate URLs and paths to the “current resource”.
E.g., in a template, you can do resource.path() to generate the application-relative path to the current
resource. You can also pass in query parameters and alternate URL vars to generate URLs and paths based on
the current resource.

DELETE()
Delete resource.

Return

• 204 if no body

• 200 if body

• 202 if accepted but not yet deleted

GET()
Get resource.

Return:

• 200 body

HEAD()
Get resource metadata.

Return:

2.6. Application API 13



tangled.web Documentation, Release 1.0a13.dev0

• 204 no body (same headers as GET)

OPTIONS()
Get resource options.

By default, this will add an Allow header to the response that lists the methods implemented by the
resource.

PATCH()
Update resource.

Return:

• 200 (body)

• 204 (no body)

• 303 (instead of 204)

POST()
Create a new child resource.

Return:

• If resource created and identifiable w/ URL:

– 201 w/ body and Location header (for XHR?)

– 303 w/ Location header (for browser?)

• If resource not identifiable:

– 200 if body

– 204 if no body

PUT()
Update resource or create if it doesn’t exist.

Return:

• If new resource created, same as POST()

• If updated:

– 200 (body)

– 204 (no body)

– 303 (instead of 204)

path(urlvars=None, **kwargs)
Generate an application-relative URL path for this resource.

You can pass urlvars, query, and/or fragment to generate a path based on this resource.

url(urlvars=None, **kwargs)
Generate a fully qualified URL for this resource.

You can pass urlvars, query, and/or fragment to generate a URL based on this resource.

Configuring resources

class tangled.web.resource.config.config
Decorator for configuring resources methods.

When used on a resource class, the class level configuration will be applied to all methods.

14 Chapter 2. Contents



tangled.web Documentation, Release 1.0a13.dev0

Example:

class MyResource:

@config('text/html', template='my_resource.mako')
def GET(self):

pass

Example of defaults and overrides:

@config('*/*', status=303, response_attrs={'location': '/'})
class MyResource:

@config('*/*', status=302)
@config('text/html', status=None, response_attrs={})
def GET(self):

pass

Mounting Resources

Application.mount_resource(name, factory, path, methods=(), method_name=None,
add_slash=False, _level=3)

Mount a resource at the specified path.

Basic example:

app.mount_resource('home', 'mypackage.resources:Home', '/')

Specifying URL vars:

app.mount_resource(
'user', 'mypackage.resources:User', '/user/<id>')

A unique name for the mounted resource must be specified. This can be any string. It’s used when generating
resource URLs via request.Request.resource_url().

A factory must also be specified. This can be any class or function that produces objects that implement the
resource interface (typically a subclass of resource.resource.Resource). The factory may be passed
as a string with the following format: package.module:factory.

The path is an application relative path that may or may not include URL vars.

A list of HTTP methods can be passed to constrain which methods the resource will respond to. By default,
it’s assumed that a resource will respond to all methods. Note however that when subclassing resource.
resource.Resource, unimplemented methods will return a 405 Method Not Allowed response, so
it’s often unnecessary to specify the list of allowed methods here; this is mainly useful if you want to mount
different resources at the same path for different methods.

If path ends with a slash or add_slash is True, requests to path without a trailing slash will be redirected
to the path with a slash appended.

About URL vars:

The format of a URL var is <(converter)identifier:regex>. Angle brackets delimit URL vars. Only
the identifier is required; it can be any valid Python identifier.

If a converter is specified, it can be a built-in name, the name of a converter in tangled.util.
converters, or a package.module:callable path that points to a callable that accepts a single ar-
gument. URL vars found in a request path will be converted automatically.

2.6. Application API 15



tangled.web Documentation, Release 1.0a13.dev0

The regex can be almost any regular expression. The exception is that < and > can’t be used. In practice, this
means that named groups ((?P<name>regex)) can’t be used (which would be pointless anyway), nor can
“look behinds”.

Mounting Subresources

Subresources can be mounted like this:

parent = app.mount_resource('parent', factory, '/parent')
parent.mount('child', 'child')

or like this:

with app.mount_resource('parent', factory, '/parent') as parent:
parent.mount('child', 'child')

In either case, the subresource’s name will be prepended with its parent’s name plus a slash, and its path will
be prepended with its parent’s path plus a slash. If no factory is specified, the parent’s factory will be used.
methods will be propagated as well. method_name and add_slash are not propagated.

In the examples above, the child’s name would be parent/child and its path would be /parent/child.

2.6.6 Static Files

Application.mount_static_directory(prefix, directory, remote=False, index_page=None)
Mount a local or remote static directory.

prefix is an alias referring to directory.

If directory is just a path, it should be a local directory. Requests to /{prefix}/{path} will look in
this directory for the file indicated by path.

If directory refers to a remote location (i.e., it starts with http:// or https://), URLs generated via
reqeust.static_url and request.static_path will point to the remote directory.

remote can also be specified explicitly. In this context, “remote” means not served by the application itself.
E.g., you might be mapping an alias in Nginx to a local directory.

Note: It’s best to always use tangled.web.request.Request.static_url() tangled.web.
request.Request.static_path() to generate static URLs.

2.7 Extension API

This documents the API that is typically used by extension developers.

2.7.1 Configuration

Including other configuration

Application.include(obj)
Include some other code.

If a callable is passed, that callable will be called with this app instance as its only argument.

16 Chapter 2. Contents



tangled.web Documentation, Release 1.0a13.dev0

If a module is passed, it must contain a function named include, which will be called as described above.

Loading configuration registered via decorators

Application.load_config(where)
Load config registered via decorators.

2.7.2 Adding @config Args

Fields

Application.add_config_field(content_type, name, *args, **kwargs)
Add a config field that can be passed via @config.

This allows extensions to add additional keyword args for @config. These args will be accessible as attributes
of the resource.config.Config object returned by request.resource_config.

These fields can serve any purpose. For example, a permission field could be added, which would be
accessible as request.resource_config.permission. This could be checked in an auth handler to
verify the user has the specified permission.

See _add_config_arg() for more detail.

Representation Args

Application.add_representation_arg(*args, **kwargs)
Add a representation arg that can be specified via @config.

This allows extensions to add additional keyword args for @config. These args will be passed as keyword args
to the representation type that is used for the request.

These args are accessible via the representation_args dict of the resource.config.Config object
returned by request.resource_config (but generally would not be accessed directly).

See _add_config_arg() for more detail.

2.7.3 Request Handlers

Adding request handlers

Handlers are callables with the signature (app, request, next_handler).

Application.add_handler(handler)
Add a handler to the handler chain.

Handlers added via this method are inserted into the system handler chain above the main handler. They will be
called in the order they are added (the last handler added will be called directly before the main handler).

Handlers are typically functions but can be any callable that accepts app, request, and next_handler
args.

Each handler should either call its next_handler, return a response object, or raise an exception.

TODO: Allow ordering?

2.7. Extension API 17



tangled.web Documentation, Release 1.0a13.dev0

System handler chain

Adding request handlers System handlers.

Requests are processed through a chain of handlers. This module contains the “system” handlers. These are handlers
that always run in a specific order.

Most of the system handlers always run. They can’t be turned off, but you can swap in different implementations via
settings. Take a look at tangled/web/defaults.ini to see how you would do this.

Some handlers are only enabled when certain settings are enabled or when certain configuration takes place. For
example, to enable CSRF protection, the tangled.app.csrf.enabled setting needs to be set to True. Another
example: the static files handlers is only enabled when at least one static directory has been mounted.

If an auth handler is enabled, it will run directly before any (other) handlers added by the application developer.

All added handlers are called in the order they were added. The last handler to run is always the main() handler; it
calls into application code (i.e., it calls a resource method to get data or a response).

tangled.web.handlers.error_handler(app, request, main_handler, original_response)
Handle error response.

If an error resource is configured, its GET method will be called to get the final response. This is accomplished
by setting the error resource as the resource for the request and then passing the request back into the main
handler.

If CORS is enabled, the main handler will be wrapped in the CORS handler so that error responses will have
the appropriate headers.

If no error resource is configured, the original error response will be returned as is.

tangled.web.handlers.request_finished_handler(app, request, _)
Call request finished callbacks in exc handling context.

This calls the request finished callbacks in the same exception handling context as the request. This way, if
exceptions occur in finished callbacks, they can be logged and displayed as usual.

Note: Finished callbacks are not called for static requests.

tangled.web.handlers.tweaker(app, request, next_handler)
Tweak the request based on special request parameters.

tangled.web.handlers.resource_finder(app, request, next_handler)
Find resource for request.

Sets request.resource and notifies ResourceFound subscribers.

If a resource isn’t found, a 404 response is immediatley returned. If a resource is found but doesn’t respond to
the request’s method, a 405 Method Not Allowed response is returned.

tangled.web.handlers.timer(app, request, next_handler)
Log time taken to handle a request.

tangled.web.handlers.main(app, request, _)
Get data from resource method and return response.

If the resource method returns a response object (an instance of Response), that response will be returned
without further processing.

If the status of request.response has been set to 3xx (either via @config or in the body of the resource
method) AND the resource method returns no data, the response will will be returned as is without further
processing.

18 Chapter 2. Contents



tangled.web Documentation, Release 1.0a13.dev0

Otherwise, a representation will be generated based on the request’s Accept header (unless a representation type
has been set via @config, in which case that type will be used instead of doing a best match guess).

If the representation returns a response object as its content, that response will be returned without further
processing.

Otherwise, request.response will be updated according to the representation type (the response’s content_type,
charset, and body are set from the representation).

2.7.4 Request

Adding request methods

Application.add_request_attribute(attr, name=None, decorator=None, reify=False)
Add dynamic attribute to requests.

This is mainly intended so that extensions can easily add request methods and properties.

Functions can already be decorated, or a decorator can be specified. If reify is True, the function will be
decorated with tangled.decorators.cached_property(). If a decorator is passed and reify
is True, cached_property will be applied as the outermost decorator.

Request factories

These two methods make it easy to create properly configured requests. In particular, they set the request’s app
attribute, and they create request instances with the attributes added via tangled.web.app.Application.
add_request_attribute().

Application.make_request(environ, **kwargs)
Make a request using the registered request factory.

Application.make_blank_request(*args, **kwargs)
Make a blank request using the registered request factory.

2.7. Extension API 19



tangled.web Documentation, Release 1.0a13.dev0

20 Chapter 2. Contents



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

21



tangled.web Documentation, Release 1.0a13.dev0

22 Chapter 3. Indices and tables



Python Module Index

t
tangled.web.events, 10
tangled.web.handlers, 18

23



tangled.web Documentation, Release 1.0a13.dev0

24 Python Module Index



Index

A
abort() (tangled.web.request.Request method), 11
add_config_field() (tangled.web.app.Application

method), 17
add_handler() (tangled.web.app.Application method), 17
add_helper() (tangled.web.app.Application method), 9
add_representation_arg() (tangled.web.app.Application

method), 17
add_request_attribute() (tangled.web.app.Application

method), 19
add_subscriber() (tangled.web.app.Application method),

9
Application (class in tangled.web.app), 8
ApplicationCreated (class in tangled.web.events), 10

C
config (class in tangled.web.resource.config), 14

D
DELETE() (tangled.web.resource.resource.Resource

method), 13

E
error_handler() (in module tangled.web.handlers), 18

G
GET() (tangled.web.resource.resource.Resource method),

13
get_setting() (tangled.web.app.Application method), 9
get_setting() (tangled.web.request.Request method), 11
get_settings() (tangled.web.app.Application method), 9

H
HEAD() (tangled.web.resource.resource.Resource

method), 13
helpers (tangled.web.request.Request attribute), 11

I
include() (tangled.web.app.Application method), 16

L
load_config() (tangled.web.app.Application method), 17

M
main() (in module tangled.web.handlers), 18
make_app_settings() (in module tangled.web.settings), 10
make_blank_request() (tangled.web.app.Application

method), 19
make_request() (tangled.web.app.Application method),

19
make_url() (tangled.web.request.Request method), 11
mount_resource() (tangled.web.app.Application method),

15
mount_static_directory() (tangled.web.app.Application

method), 16

N
NewRequest (class in tangled.web.events), 10
NewResponse (class in tangled.web.events), 10

O
on_created() (tangled.web.app.Application method), 9
on_finished() (tangled.web.request.Request method), 12
OPTIONS() (tangled.web.resource.resource.Resource

method), 14

P
PATCH() (tangled.web.resource.resource.Resource

method), 14
path() (tangled.web.resource.resource.Resource method),

14
POST() (tangled.web.resource.resource.Resource

method), 14
PUT() (tangled.web.resource.resource.Resource method),

14

R
Request (class in tangled.web.request), 11

25



tangled.web Documentation, Release 1.0a13.dev0

request_finished_handler() (in module tan-
gled.web.handlers), 18

Resource (class in tangled.web.resource.resource), 13
resource_config (tangled.web.request.Request attribute),

12
resource_finder() (in module tangled.web.handlers), 18
resource_path() (tangled.web.request.Request method),

12
resource_url() (tangled.web.request.Request method), 12
ResourceFound (class in tangled.web.events), 11
response (tangled.web.request.Request attribute), 12
response_content_type (tangled.web.request.Request at-

tribute), 12

S
static_url() (tangled.web.request.Request method), 13
subscriber() (in module tangled.web.events), 11

T
tangled.web.events (module), 10
tangled.web.handlers (module), 18
TemplateContextCreated (class in tangled.web.events), 11
timer() (in module tangled.web.handlers), 18
tweaker() (in module tangled.web.handlers), 18

U
update_response() (tangled.web.request.Request

method), 13
url() (tangled.web.resource.resource.Resource method),

14

26 Index


	Links
	Contents
	Hello, World
	Quick Start
	Installation
	Contributing
	Main Documentation
	Application API
	Extension API

	Indices and tables
	Python Module Index

