

Tangled Web

A resource oriented, Python 3 only Web framework.

No controllers. No views. Just resources and representations.

Also, there are no magic globals. There is an
Application object that contains your
app’s configuration. It is passed to resources along with the current request.

Links

	Project Home Page [http://tangledframework.org/]

	Source Code (GitHub) [http://github.com/TangledWeb/tangled.web]

Contents

	Hello, World

	Quick Start
	Install Python 3.3+

	Virtual Env

	Install Dependencies

	Create a Basic Tangled Web App

	Serve it Up

	Next Steps

	Installation

	Contributing
	Issues

	Patches

	Creating an Extension Package

	Main Documentation
	Displaying Errors

	Application API
	Application

	Settings

	Events

	Request factory

	Resources

	Static Files

	Extension API
	Configuration

	Adding @config Args

	Request Handlers

	Request

Indices and tables

	Index

	Module Index

	Search Page

Hello, World

Here’s a really simple Tangled Web app:

from wsgiref.simple_server import make_server

from tangled.web import Application, Resource

class Hello(Resource):

 def GET(self):
 if 'name' in self.urlvars:
 content = 'Hello, {name}'.format(**self.urlvars)
 else:
 content = 'Hello'
 return content

if __name__ == '__main__':
 settings = {
 'debug': True,
 }
 app = Application(settings)
 app.mount_resource('hello', Hello, '/')
 app.mount_resource('hello_name', Hello, '/<name>')
 server = make_server('0.0.0.0', 6666, app)
 server.serve_forever()

Note

This is a copy of examples/hello_world.py. If you’re in the top level
of tangled.web checkout, you can run it with
python examples/hello_world.py (assuming tangled.web is already
installed).

Quick Start

This is a short guide that will show you the basics of creating a Web
application based on tangled.web.

Install Python 3.3+

First, install Python 3.3. Older versions of Python 3 will not work. Mainly,
this is because of the use of built-in namespace package support that was
added in Python 3.3.

You can download Python 3.3
from here [http://www.python.org/download/releases/3.3.3/]. If you’re using
Mac OS, Homebrew [http://brew.sh/] is an easy way to install Python:

brew install python3

Note

Python 2.x is not supported, and there are no plans to support it.

Virtual Env

Next, set up an isolated virtual environment. Since we’re using Python 3, this
is built in. The command for creating a virtual env looks like this:

python3 -m venv helloworld.venv

Change into the helloworld.venv directory and download the following file
there:

https://raw.github.com/pypa/pip/master/contrib/get-pip.py

Then run the following command:

./bin/python get-pip.py

Install Dependencies

A couple of Tangled dependencies need to be installed so that the
tangled scaffold command and basic scaffold are available:

./bin/pip install tangled.web==VERSION

Replace VERSION with the version you want to install. The current version
is 1.0a13.dev0.

If you want to use the latest code, you can do this instead (requires git to be
installed):

./bin/pip install -e git+git://github.com/TangledWeb/tangled#egg=tangled
./bin/pip install -e git+git://github.com/TangledWeb/tangled.web#egg=tangled.web

Create a Basic Tangled Web App

Now that the virtual environment is set up and the Tangled dependencies have
been installed, a project can be created. Run the following commands in the
helloworld.venv directory:

./bin/tangled scaffold basic helloworld
./bin/pip install -e helloworld

Serve it Up

Now that everything’s installed, it’s time to run the app:

./bin/tangled serve -f helloworld/development.ini

Now you can visit http://localhost:6666/ and http://localhost:6666/name.

Next Steps

Take a look at the app configuration in helloworld/helloworld/__init__.py
and the Hello resource in helloworld/helloworld/resources.py.

The Application API documentation currently has the most comprehensive
info on creating and configuring Tangled Web apps.

Note

This is all still very much a work in progress. Please feel free to
make suggestions or report issues
on GitHub [https://github.com/TangledWeb/tangled.web/issues].

Installation

Note

Python 3.3+ is required. Older versions of Python 3 will not work.
No version of Python 2 will work.

All tangled.* packages are standard setuptools [http://pythonhosted.org/setuptools/] distributions that can
be installed via easy_install [http://pythonhosted.org/setuptools/easy_install.html] or pip [http://www.pip-installer.org/].

Contributing

Issues

Bugs and other issues can be reported on GitHub [https://github.com/TangledWeb].

Patches

To contribute patches, go to the TangledWeb project on GitHub [https://github.com/TangledWeb], fork a
package, and send a pull request. All new code must be 100% covered by tests
and be PEP8 [http://www.python.org/dev/peps/pep-0008/] compliant.

Creating an Extension Package

To create your own extension package, you can use the tangled.contrib
namespace. If you install the tangled.contrib package, you will be able to
create a contrib package easily using the tangled scaffold command:

tangled scaffold contrib tangled.contrib.{name}

Main Documentation

Displaying Errors

By default, errors will be displayed using the plain error templates
provided by WebOb. To customize the display of errors, an error resource
needs to be created. The simplest error resource looks like this:

from tangled.web import Resource, config

class Error(Resource):

 @config('text/html', template='/error.html')
 def GET(self):
 return {}

error.html would contain contents like this:

<%inherit file="/layout.html"/>

<h1>Error</h1>

<div class="error">
 The request failed with status code ${request.status_code}
</div>

To activate the error resource, point the tangled.app.error_resource
setting at it:

[app]
tangled.app.error_resource = my.pkg.resources.error:Error

Application API

This documents the API that’s typically used by application developers.

	Application

	Settings

	Events

	Request factory

	Resources
	Creating resources

	Configuring resources

	Mounting Resources

	Static Files

Application

	
class tangled.web.app.Application(settings, **extra_settings)

	Application container.

The application container handles configuration and provides the
WSGI interface. It is passed to components such as handlers,
requests, and resources so they can inspect settings, retrieve
items from the registry, etc…

Registry:

Speaking of which, the application instance acts as a registry (it’s
a subclass of tangled.registry.Registry). This provides
a means for extensions and application code to set application level
globals.

Settings:

settings can be passed as either a file name pointing to a
settings file or as a dict.

File names can be specified as absolute, relative, or asset paths:

	development.ini

	/some/where/production.ini

	some.package:some.ini

A plain dict can be used when no special handling of settings is
required. For more control of how settings are parsed (or to
disable parsing), pass a AAppSettings instance instead
(typically, but not necessarily, created by calling
tangled.web.settings.make_app_settings()).

Extra settings can be passed as keyword args. These settings will
override all other settings. They will be parsed along with other
settings.

NOTE: If settings is an AppSettings instance,
extra settings passed here will be ignored; pass them to the
AppSettings instead.

Logging:

If settings are loaded from a file and that file (or one of the
files it extends) contains logging config sections (formatters,
handlers, loggers), that logging configuration will
automatically be loaded via logging.config.fileConfig.

	
add_helper(helper, name=None, static=False, package=None, replace=False)

	Add a “helper” function.

helper can be a string pointing to the helper or the helper
itself. If it’s a string, helper and package will be
passed to load_object().

Helper functions can be methods that take a Helpers instance
as their first arg or they can be static methods. The latter is
useful for adding third party functions as helpers.

Helper functions can be accessed via request.helpers. The
advantage of this is that helpers added as method have access to
the application and the current request.

	
add_subscriber(event_type, func, priority=None, once=False, **args)

	Add a subscriber for the specified event type.

args will be passed to func as keyword args. (Note: this
functionality is somewhat esoteric and should perhaps be
removed.)

You can also use the subscriber
decorator to register subscribers.

	
get_setting(key, default=NOT_SET)

	Get a setting; return default if one is passed.

If key isn’t in settings, try prepending 'tangled.app.'.

If the key isn’t present, return the default if one was
passed; if a default wasn’t passed, a KeyError will be
raised.

	
get_settings(settings=None, prefix='tangled.app.', **kwargs)

	Get settings with names that start with prefix.

This is a front end for
tangled.util.get_items_with_key_prefix() that sets
defaults for settings and prefix.

By default, this will get the settings from self.settings
that have a 'tangled.app.' prefix.

Alternate settings and/or prefix can be specified.

	
on_created(func, priority=None, once=True, **args)

	Add an ApplicationCreated
subscriber.

Sets once to True by default since
ApplicationCreated is only emitted
once per application.

This can be used as a decorator in the simple case where no
args other than func need to be passed along to
add_subscriber().

Settings

	
tangled.web.settings.make_app_settings(settings, conversion_map={}, defaults={}, required=(), prefix=None, strip_prefix=True, parse=True, section='app', **extra_settings)

	Create a properly initialized application settings dict.

In simple cases, you don’t need to call this directly–you can just
pass a settings file name or a plain dict to
tangled.web.app.Application, and this will be called for
you.

If you need to do custom parsing (e.g., if your app has custom
settings), you can call this function with a conversion map,
defaults, &c. It’s a wrapper around parse_settings() that
adds a bit of extra functionality:

	A file name can be passed instead of a settings dict, in
which case the settings will be extracted from the specified
section of that file.

	Core tangled.web defaults are always added because
tangled.web.app.Application assumes they are always
set.

	Settings parsing can be disabled by passing parse=False.
This only applies to your settings, including defaults and
extra settings (core defaults are always parsed).

	Extra settings can be passed as keyword args; they will
override all other settings, and they will be parsed (or not)
along with other settings.

	Required settings are checked for after all the settings are
merged.

In really special cases you can create a subclass of
AAppSettings and then construct your settings dict by
hand (eschewing the use of this function).

Events

Events are registered in the context of an application via
tangled.web.app.Application.add_subscriber().

Subscribers typically have the signature subscriber(event). If subscriber
keyword args were passed to add_subscriber, then the signature for the
subscriber would be subscriber(event, **kwargs).

Every event object will have an app attribute. Other attributes are
event dependent.

	
class tangled.web.events.ApplicationCreated(app)

	Emitted when an application is fully configured.

These events can be registered in the usual way by calling
tangled.web.app.Application.add_subscriber(). There’s also
a convenience method for this:
tangled.web.app.Application.on_created().

Attributes: app.

	
class tangled.web.events.NewRequest(app, request)

	Emitted when an application receives a new request.

This is not emitted for static file requests.

Attributes: app, request.

	
class tangled.web.events.NewResponse(app, request, response)

	Emitted when the response for a request is created.

This is not emitted for static file requests.

If there’s in exception during request handling, this will not be
emitted.

Attributes: app, request, response.

	
class tangled.web.events.ResourceFound(app, request, resource)

	Emitted when the resource is found for a request.

Attributes: app, request, resource.

	
class tangled.web.events.TemplateContextCreated(app, request, context)

	Emitted when the context for a template is created.

The template context is whatever data will passed to the
template. E.g., for Mako, it’s a dict.

This is emitted just before the template is rendered. Its purpose
is to allow additional data to be injected into the template
context.

Attributes: app, request, context

	
tangled.web.events.subscriber(event_type, *args, **kw)

	Decorator for adding event subscribers.

Subscribers registered this way won’t be activated until
tangled.web.app.Application.load_config() is called.

Example:

@subscriber('tangled.web.events:ResourceFound')
def on_resource_found(event):
 log.debug(event.resource.name)

Request factory

	
class tangled.web.request.Request(environ, app, *args, **kwargs)

	Default request factory.

Every request has a reference to its application context (i.e.,
request.app).

	
abort(status_code, *args, **kwargs)

	Abort the request by raising a WSGIHTTPException.

This is a convenience so resource modules don’t need to import
exceptions from webob.exc.

	
get_setting(*args, **kwargs)

	Get an app setting.

Simply delegates to
tangled.web.app.Application.get_setting().

	
helpers

	Get helpers for this request.

Returns a Helpers instance; all the helpers added via
tangled.web.app.Application.add_helper() will be
accessible as methods of this instance.

	
make_url(path, query=None, fragment=None, *, _fully_qualified=True)

	Generate a URL.

path should be application-relative (that is, it should
not include SCRIPT_NAME).

query can be a string, a dict, or a sequence. See
make_query_string() for details.

If fragment is passed it will be quoted using
urllib.parse.quote() with no “safe” characters (i.e.,
all special characters will be quoted).

	
on_finished(callback, *args, **kwargs)

	Add a finished callback.

Callbacks must have the signature (app, response). They
can also take additional positional and keyword args–*args
and **kwargs will be passed along to the callback.

Finished callbacks are always called regardless of whether an
error occurred while processing the request. They are called
just before the Tangled application returns to its caller.

All finished callbacks will be called. If any of them raises
an exception, a RequestFinishedException will be raised
and a “500 Internal Server Error” response will be returned in
place of the original response.

Raising instances of webob.exc.WSGIHTTPException in
finished callbacks is an error.

The response object can be inspected to see if an error
occurred while processing the request. If the response is
None, the request failed hard (i.e., there was an uncaught
exception before the response could be created).

This can be used as a decorator in the simple case where the
callback doesn’t take any additional args.

	
resource_config

	Get info for the resource associated with this request.

Note

This can’t be safely accessed until after the resource
has been found and set for this request.

	
resource_path(resource, urlvars=None, **kwargs)

	Generate a URL path (with SCRIPT_NAME) for a resource.

	
resource_url(resource, urlvars=None, **kwargs)

	Generate a URL for a resource.

	
response

	Create the default response object for this request.

The response is initialized with attributes set via
@config: status, location, and
response_attrs.

If no status code was set via @config, we try our best
to set it to something sane here based on content type and
method.

If location is set but status isn’t, the response’s
status is set to DEFAULT_REDIRECT_STATUS.

The location can also be set to one of the special values
‘REFERER’ or ‘CAME_FROM’. The former redirects back to the
refering page. The latter redirects to whatever is set in the
came_from request parameter.

TODO: Check origin of referer and came from.

Note

See note in resource_config().

	
response_content_type

	Get the content type to use for the response.

This retrieves the content types the resource is configured to
handle then selects the best match for the requested content
type. If the resource isn’t explicitly configured to handle any
types or of there’s no best match, the default content type will
be used.

Note

This can’t be safely accessed until after the resource
has been found and set for this request.

	
static_url(path, query=None, **kwargs)

	Generate a static URL from path.

path should always be an application-relative path like
‘/static/images/logo.png’. SCRIPT_NAME will be prepended by
make_url().

	
update_response(**kwargs)

	Set multiple attributes on request.response.

Resources

	Creating resources

	Configuring resources

	Mounting resources

Creating resources

	
class tangled.web.resource.resource.Resource(app, request, name=None, urlvars=None)

	Base resource class.

Usually, you will want to subclass Resource when creating
your own resources. Doing so will ensure your resources are properly
initialized.

Subclasses will automatically return a 405 Method Not Allowed
response for unimplemented methods.

Subclasses also have url() and path() methods that
generate URLs and paths to the “current resource”. E.g., in a
template, you can do resource.path() to generate the
application-relative path to the current resource. You can also pass
in query parameters and alternate URL vars to generate URLs and
paths based on the current resource.

	
DELETE()

	Delete resource.

Return

	204 if no body

	200 if body

	202 if accepted but not yet deleted

	
GET()

	Get resource.

Return:

	200 body

	
HEAD()

	Get resource metadata.

Return:

	204 no body (same headers as GET)

	
OPTIONS()

	Get resource options.

By default, this will add an Allow header to the response
that lists the methods implemented by the resource.

	
PATCH()

	Update resource.

Return:

	200 (body)

	204 (no body)

	303 (instead of 204)

	
POST()

	Create a new child resource.

Return:

	
	If resource created and identifiable w/ URL:

	
	201 w/ body and Location header (for XHR?)

	303 w/ Location header (for browser?)

	
	If resource not identifiable:

	
	200 if body

	204 if no body

	
PUT()

	Update resource or create if it doesn’t exist.

Return:

	If new resource created, same as POST()

	
	If updated:

	
	200 (body)

	204 (no body)

	303 (instead of 204)

	
path(urlvars=None, **kwargs)

	Generate an application-relative URL path for this resource.

You can pass urlvars, query, and/or fragment to
generate a path based on this resource.

	
url(urlvars=None, **kwargs)

	Generate a fully qualified URL for this resource.

You can pass urlvars, query, and/or fragment to
generate a URL based on this resource.

Configuring resources

	
class tangled.web.resource.config.config

	Decorator for configuring resources methods.

When used on a resource class, the class level configuration will be
applied to all methods.

Example:

class MyResource:

 @config('text/html', template='my_resource.mako')
 def GET(self):
 pass

Example of defaults and overrides:

@config('*/*', status=303, response_attrs={'location': '/'})
class MyResource:

 @config('*/*', status=302)
 @config('text/html', status=None, response_attrs={})
 def GET(self):
 pass

Mounting Resources

	
Application.mount_resource(name, factory, path, methods=(), method_name=None, add_slash=False, _level=3)

	Mount a resource at the specified path.

Basic example:

app.mount_resource('home', 'mypackage.resources:Home', '/')

Specifying URL vars:

app.mount_resource(
 'user', 'mypackage.resources:User', '/user/<id>')

A unique name for the mounted resource must be specified.
This can be any string. It’s used when generating resource
URLs via request.Request.resource_url().

A factory must also be specified. This can be any class or
function that produces objects that implement the resource
interface (typically a subclass of
resource.resource.Resource). The factory may be passed
as a string with the following format:
package.module:factory.

The path is an application relative path that may or may not
include URL vars.

A list of HTTP methods can be passed to constrain which
methods the resource will respond to. By default, it’s assumed
that a resource will respond to all methods. Note however that
when subclassing resource.resource.Resource,
unimplemented methods will return a 405 Method Not Allowed
response, so it’s often unnecessary to specify the list of
allowed methods here; this is mainly useful if you want to
mount different resources at the same path for different
methods.

If path ends with a slash or add_slash is True, requests
to path without a trailing slash will be redirected to the
path with a slash appended.

About URL vars:

The format of a URL var is <(converter)identifier:regex>.
Angle brackets delimit URL vars. Only the identifier is
required; it can be any valid Python identifier.

If a converter is specified, it can be a built-in name,
the name of a converter in tangled.util.converters, or
a package.module:callable path that points to a callable
that accepts a single argument. URL vars found in a request path
will be converted automatically.

The regex can be almost any regular expression. The
exception is that < and > can’t be used. In practice,
this means that named groups ((?P<name>regex)) can’t be used
(which would be pointless anyway), nor can “look behinds”.

Mounting Subresources

Subresources can be mounted like this:

parent = app.mount_resource('parent', factory, '/parent')
parent.mount('child', 'child')

or like this:

with app.mount_resource('parent', factory, '/parent') as parent:
 parent.mount('child', 'child')

In either case, the subresource’s name will be prepended
with its parent’s name plus a slash, and its path will be
prepended with its parent’s path plus a slash. If no factory
is specified, the parent’s factory will be used. methods
will be propagated as well. method_name and add_slash
are not propagated.

In the examples above, the child’s name would be
parent/child and its path would be /parent/child.

Static Files

	
Application.mount_static_directory(prefix, directory, remote=False, index_page=None)

	Mount a local or remote static directory.

prefix is an alias referring to directory.

If directory is just a path, it should be a local directory.
Requests to /{prefix}/{path} will look in this directory for
the file indicated by path.

If directory refers to a remote location (i.e., it starts
with http:// or https://), URLs generated via
reqeust.static_url and request.static_path will point
to the remote directory.

remote can also be specified explicitly. In this context,
“remote” means not served by the application itself. E.g., you
might be mapping an alias in Nginx to a local directory.

Note

It’s best to always use
tangled.web.request.Request.static_url()
tangled.web.request.Request.static_path()
to generate static URLs.

Extension API

This documents the API that is typically used by extension developers.

	Configuration
	Including other configuration

	Loading configuration registered via decorators

	Adding @config Args
	Fields

	Representation Args

	Request Handlers
	Adding request handlers

	System handler chain

	Request
	Adding request methods

	Request factories

Configuration

Including other configuration

	
Application.include(obj)

	Include some other code.

If a callable is passed, that callable will be called with this
app instance as its only argument.

If a module is passed, it must contain a function named
include, which will be called as described above.

Loading configuration registered via decorators

	
Application.load_config(where)

	Load config registered via decorators.

Adding @config Args

Fields

	
Application.add_config_field(content_type, name, *args, **kwargs)

	Add a config field that can be passed via @config.

This allows extensions to add additional keyword args for
@config. These args will be accessible as attributes of
the resource.config.Config object returned by
request.resource_config.

These fields can serve any purpose. For example, a
permission field could be added, which would be accessible
as request.resource_config.permission. This could be checked
in an auth handler to verify the user has the specified
permission.

See _add_config_arg() for more detail.

Representation Args

	
Application.add_representation_arg(*args, **kwargs)

	Add a representation arg that can be specified via @config.

This allows extensions to add additional keyword args for
@config. These args will be passed as keyword args to the
representation type that is used for the request.

These args are accessible via the representation_args dict
of the resource.config.Config object returned by
request.resource_config (but generally would not be accessed
directly).

See _add_config_arg() for more detail.

Request Handlers

Adding request handlers

Handlers are callables with the signature (app, request, next_handler).

	
Application.add_handler(handler)

	Add a handler to the handler chain.

Handlers added via this method are inserted into the system
handler chain above the main handler. They will be called in the
order they are added (the last handler added will be called
directly before the main handler).

Handlers are typically functions but can be any callable that
accepts app, request, and next_handler args.

Each handler should either call its next_handler, return a
response object, or raise an exception.

TODO: Allow ordering?

System handler chain

Adding request handlers

System handlers.

Requests are processed through a chain of handlers. This module contains
the “system” handlers. These are handlers that always run in a specific
order.

Most of the system handlers always run. They can’t be turned off, but
you can swap in different implementations via settings. Take a look at
tangled/web/defaults.ini to see how you would do this.

Some handlers are only enabled when certain settings are enabled or when
certain configuration takes place. For example, to enable CSRF
protection, the tangled.app.csrf.enabled setting needs to be set to
True. Another example: the static files handlers is only enabled
when at least one static directory has been mounted.

If an auth handler is enabled, it will run directly before any (other)
handlers added by the application developer.

All added handlers are called in the order they were added. The last
handler to run is always the main() handler; it calls into
application code (i.e., it calls a resource method to get data or
a response).

	
tangled.web.handlers.error_handler(app, request, main_handler, original_response)

	Handle error response.

If an error resource is configured, its GET method will be
called to get the final response. This is accomplished by setting
the error resource as the resource for the request and then passing
the request back into the main handler.

If CORS is enabled, the main handler will be wrapped in the CORS
handler so that error responses will have the appropriate headers.

If no error resource is configured, the original error response will
be returned as is.

	
tangled.web.handlers.request_finished_handler(app, request, _)

	Call request finished callbacks in exc handling context.

This calls the request finished callbacks in the same exception
handling context as the request. This way, if exceptions occur in
finished callbacks, they can be logged and displayed as usual.

Note

Finished callbacks are not called for static requests.

	
tangled.web.handlers.tweaker(app, request, next_handler)

	Tweak the request based on special request parameters.

	
tangled.web.handlers.resource_finder(app, request, next_handler)

	Find resource for request.

Sets request.resource and notifies ResourceFound
subscribers.

If a resource isn’t found, a 404 response is immediatley returned.
If a resource is found but doesn’t respond to the request’s method,
a 405 Method Not Allowed response is returned.

	
tangled.web.handlers.timer(app, request, next_handler)

	Log time taken to handle a request.

	
tangled.web.handlers.main(app, request, _)

	Get data from resource method and return response.

If the resource method returns a response object (an instance of
Response), that response will be returned without further
processing.

If the status of request.response has been set to 3xx (either
via @config or in the body of the resource method) AND the resource
method returns no data, the response will will be returned as is
without further processing.

Otherwise, a representation will be generated based on the request’s
Accept header (unless a representation type has been set via
@config, in which case that type will be used instead of doing
a best match guess).

If the representation returns a response object as its content, that
response will be returned without further processing.

Otherwise, request.response will be updated according to the
representation type (the response’s content_type, charset, and body
are set from the representation).

Request

Adding request methods

	
Application.add_request_attribute(attr, name=None, decorator=None, reify=False)

	Add dynamic attribute to requests.

This is mainly intended so that extensions can easily add
request methods and properties.

Functions can already be decorated, or a decorator can be
specified. If reify is True, the function will be
decorated with tangled.decorators.cached_property(). If a
decorator is passed and reify is True,
cached_property will be applied as the outermost decorator.

Request factories

These two methods make it easy to create properly configured requests. In
particular, they set the request’s app attribute, and they create
request instances with the attributes added via
tangled.web.app.Application.add_request_attribute().

	
Application.make_request(environ, **kwargs)

	Make a request using the registered request factory.

	
Application.make_blank_request(*args, **kwargs)

	Make a blank request using the registered request factory.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tangled	

 	
 	
 tangled.web.events	

 	
 	
 tangled.web.handlers	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	abort() (tangled.web.request.Request method)

 	add_config_field() (tangled.web.app.Application method)

 	add_handler() (tangled.web.app.Application method)

 	add_helper() (tangled.web.app.Application method)

 	
 	add_representation_arg() (tangled.web.app.Application method)

 	add_request_attribute() (tangled.web.app.Application method)

 	add_subscriber() (tangled.web.app.Application method)

 	Application (class in tangled.web.app)

 	ApplicationCreated (class in tangled.web.events)

C

 	
 	config (class in tangled.web.resource.config)

D

 	
 	DELETE() (tangled.web.resource.resource.Resource method)

E

 	
 	error_handler() (in module tangled.web.handlers)

G

 	
 	GET() (tangled.web.resource.resource.Resource method)

 	get_setting() (tangled.web.app.Application method)

 	(tangled.web.request.Request method)

 	
 	get_settings() (tangled.web.app.Application method)

H

 	
 	HEAD() (tangled.web.resource.resource.Resource method)

 	
 	helpers (tangled.web.request.Request attribute)

I

 	
 	include() (tangled.web.app.Application method)

L

 	
 	load_config() (tangled.web.app.Application method)

M

 	
 	main() (in module tangled.web.handlers)

 	make_app_settings() (in module tangled.web.settings)

 	make_blank_request() (tangled.web.app.Application method)

 	
 	make_request() (tangled.web.app.Application method)

 	make_url() (tangled.web.request.Request method)

 	mount_resource() (tangled.web.app.Application method)

 	mount_static_directory() (tangled.web.app.Application method)

N

 	
 	NewRequest (class in tangled.web.events)

 	
 	NewResponse (class in tangled.web.events)

O

 	
 	on_created() (tangled.web.app.Application method)

 	
 	on_finished() (tangled.web.request.Request method)

 	OPTIONS() (tangled.web.resource.resource.Resource method)

P

 	
 	PATCH() (tangled.web.resource.resource.Resource method)

 	path() (tangled.web.resource.resource.Resource method)

 	
 	POST() (tangled.web.resource.resource.Resource method)

 	PUT() (tangled.web.resource.resource.Resource method)

R

 	
 	Request (class in tangled.web.request)

 	request_finished_handler() (in module tangled.web.handlers)

 	Resource (class in tangled.web.resource.resource)

 	resource_config (tangled.web.request.Request attribute)

 	resource_finder() (in module tangled.web.handlers)

 	
 	resource_path() (tangled.web.request.Request method)

 	resource_url() (tangled.web.request.Request method)

 	ResourceFound (class in tangled.web.events)

 	response (tangled.web.request.Request attribute)

 	response_content_type (tangled.web.request.Request attribute)

S

 	
 	static_url() (tangled.web.request.Request method)

 	
 	subscriber() (in module tangled.web.events)

T

 	
 	tangled.web.events (module)

 	tangled.web.handlers (module)

 	
 	TemplateContextCreated (class in tangled.web.events)

 	timer() (in module tangled.web.handlers)

 	tweaker() (in module tangled.web.handlers)

U

 	
 	update_response() (tangled.web.request.Request method)

 	
 	url() (tangled.web.resource.resource.Resource method)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Tangled Web

 		
 Hello, World

 		
 Quick Start

 		
 Install Python 3.3+

 		
 Virtual Env

 		
 Install Dependencies

 		
 Create a Basic Tangled Web App

 		
 Serve it Up

 		
 Next Steps

 		
 Installation

 		
 Contributing

 		
 Issues

 		
 Patches

 		
 Creating an Extension Package

 		
 Main Documentation

 		
 Displaying Errors

 		
 Application API

 		
 Application

 		
 Settings

 		
 Events

 		
 Request factory

 		
 Resources

 		
 Creating resources

 		
 Configuring resources

 		
 Mounting Resources

 		
 Static Files

 		
 Extension API

 		
 Configuration

 		
 Including other configuration

 		
 Loading configuration registered via decorators

 		
 Adding @config Args

 		
 Fields

 		
 Representation Args

 		
 Request Handlers

 		
 Adding request handlers

 		
 System handler chain

 		
 Request

 		
 Adding request methods

 		
 Request factories

_static/up.png

