

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	tai 0.0.45 documentation

	tai
	Description and features

	Installation

	Resources and contributing

	Reference
	tai

	ChangeLog

	License

	Authors

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tai 0.0.45 documentation

tai

This module provides some technical indicators for analysing stocks.

Description and features

Description

This module provides some technical indicators for analysing stocks.

When I can I will add more.

If anyone wishes to contribute with new code or corrections/suggestions, feel free.

This module was done and tested under Windows with Python 2.7.3 and numpy 1.6.1.

Features

Relative Strength Index (RSI), ROC, MA envelopes
Simple Moving Average (SMA), Weighted Moving Average (WMA), Exponential Moving Average (EMA)
Bollinger Bands (BB), Bollinger Bandwidth, %B

Installation

Installation

$ pip install tai

Resources and contributing

Resources

	Repository PyPI [https://pypi.python.org/pypi/tai]

	Documentation PyPI [http://pythonhosted.org/tai]

	Repository Github [https://github.com/jcrmatos/tai]

	Documentation Read the Docs [http://tai.readthedocs.org]

Contributing

If Other repository above is Github or compatible, follow these guidelines for contributing:

	Fork the repository [https://github.com/jcrmatos/tai] .

	Make a branch of master and commit your changes to it.

	Ensure that your name is added to the end of the AUTHORS.rst file using the format:
Name <email@domain.com>

	Submit a Pull Request to the master branch.

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tai 0.0.45 documentation

Reference

tai

This module provides some technical indicators for analysing stocks.

When I can I will add more.
If anyone wishes to contribute with new code or corrections/suggestions, feel
free.

Features:

Relative Strength Index (RSI), ROC, MA envelopes
Simple Moving Average (SMA), Weighted Moving Average (WMA), Exponential
Moving Average (EMA)
Bollinger Bands (BB), Bollinger Bandwidth, %B

Dependencies:

It requires numpy.
This module was developed and tested under Windows 7, with Python 2.7.3 and
numpy 1.6.1.

	
tai.bb(prices, period, num_std_dev=2.0)[source]

	Bollinger bands (BB) are volatility bands placed above and below a moving
average.
Volatility is based on the standard deviation, which changes as volatility
increases and decreases.
The bands automatically widen when volatility increases and narrow when
volatility decreases.
This dynamic nature of Bollinger Bands also means they can be used on
different securities with the standard settings.
For signals, Bollinger Bands can be used to identify M-Tops and W-Bottoms
or to determine the strength of the trend.
Signals derived from narrowing BandWidth are also important.

Bollinger BandWidth is an indicator that derives from Bollinger Bands, and
measures the percentage difference between the upper band and the lower
band.
BandWidth decreases as Bollinger Bands narrow and increases as Bollinger
Bands widen.
Because Bollinger Bands are based on the standard deviation, falling
BandWidth reflects decreasing volatility and rising BandWidth reflects
increasing volatility.

%B quantifies a security’s price relative to the upper and lower Bollinger
Band. There are six basic relationship levels:
%B equals 1 when price is at the upper band
%B equals 0 when price is at the lower band
%B is above 1 when price is above the upper band
%B is below 0 when price is below the lower band
%B is above .50 when price is above the middle band (20-day SMA)
%B is below .50 when price is below the middle band (20-day SMA)

They were developed by John Bollinger.
Bollinger suggests increasing the standard deviation multiplier to 2.1 for
a 50-period SMA and decreasing the standard deviation multiplier to 1.9 for
a 10-period SMA.

http://www.csidata.com/?page_id=797
http://goo.gl/3pXmip
http://goo.gl/aMNs97

	Input:

	prices ndarray
period int > 1 and < len(prices)
num_std_dev float > 0.0 (optional and defaults to 2.0)

	Output:

	bbs ndarray with upper, middle, lower bands, bandwidth, range and %B

Test:

>>> import numpy as np
>>> import tai
>>> prices = np.array([86.16, 89.09, 88.78, 90.32, 89.07, 91.15, 89.44,
... 89.18, 86.93, 87.68, 86.96, 89.43, 89.32, 88.72, 87.45, 87.26, 89.50,
... 87.90, 89.13, 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77,
... 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09,
... 88.84, 90.78, 90.54, 91.39, 90.65])
>>> print(tai.bb(prices, period=20))
[[9.12919107e+01 8.87085000e+01 8.61250893e+01 5.82449423e-02
 5.16682146e+00 6.75671306e-03]
 [9.19497209e+01 8.90455000e+01 8.61412791e+01 6.52300429e-02
 5.80844179e+00 5.07661263e-01]
 [9.26132536e+01 8.92400000e+01 8.58667464e+01 7.55995881e-02
 6.74650724e+00 4.31816571e-01]
 [9.29344497e+01 8.93910000e+01 8.58475503e+01 7.92797873e-02
 7.08689946e+00 6.31086945e-01]
 [9.33114122e+01 8.95080000e+01 8.57045878e+01 8.49848539e-02
 7.60682430e+00 4.42420124e-01]
 [9.37270110e+01 8.96885000e+01 8.56499890e+01 9.00563838e-02
 8.07702198e+00 6.80945403e-01]
 [9.38972812e+01 8.97460000e+01 8.55947188e+01 9.25117832e-02
 8.30256250e+00 4.63143909e-01]
 [9.42636418e+01 8.99125000e+01 8.55613582e+01 9.67861377e-02
 8.70228361e+00 4.15826692e-01]
 [9.45630193e+01 9.00805000e+01 8.55979807e+01 9.95225220e-02
 8.96503854e+00 1.48579313e-01]
 [9.47851634e+01 9.03815000e+01 8.59778366e+01 9.74461225e-02
 8.80732672e+00 1.93266744e-01]
 [9.50411874e+01 9.06575000e+01 8.62738126e+01 9.67087637e-02
 8.76737475e+00 7.82660026e-02]
 [9.49062071e+01 9.08630000e+01 8.68197929e+01 8.89956780e-02
 8.08641429e+00 3.22789193e-01]
 [9.49015375e+01 9.08830000e+01 8.68644625e+01 8.84332063e-02
 8.03707509e+00 3.05526266e-01]
 [9.48939343e+01 9.09040000e+01 8.69140657e+01 8.77834713e-02
 7.97986867e+00 2.26311285e-01]
 [9.48594576e+01 9.09880000e+01 8.71165424e+01 8.50982021e-02
 7.74291521e+00 4.30661576e-02]
 [9.46722663e+01 9.11525000e+01 8.76327337e+01 7.72280810e-02
 7.03953265e+00 -5.29486389e-02]
 [9.45543042e+01 9.11905000e+01 8.78266958e+01 7.37753219e-02
 6.72760849e+00 2.48722001e-01]
 [9.46761721e+01 9.11200000e+01 8.75638279e+01 7.80546993e-02
 7.11234420e+00 4.72660054e-02]
 [9.45733946e+01 9.11670000e+01 8.77606054e+01 7.47286754e-02
 6.81278915e+00 2.01003516e-01]
 [9.45322396e+01 9.12495000e+01 8.79667604e+01 7.19508503e-02
 6.56547911e+00 4.16304661e-01]
 [9.45303313e+01 9.12415000e+01 8.79526687e+01 7.20906879e-02
 6.57766250e+00 7.52141243e-01]
 [9.43672335e+01 9.11660000e+01 8.79647665e+01 7.02286710e-02
 6.40246702e+00 7.83328285e-01]
 [9.41460689e+01 9.10495000e+01 8.79529311e+01 6.80194599e-02
 6.19313782e+00 6.21182512e-01]]

	
tai.ema(prices, period, ema_type=0)[source]

	Exponencial Moving Average (EMA) are used to smooth the data in an array to
help eliminate noise and identify trends.
Exponential moving averages reduce the lag by applying more weight to
recent prices.
The weighting applied to the most recent price depends on the number of
periods in the moving average.

They do not predict price direction, but can be used to identify the
direction of the trend or define potential support and resistance levels.

EMA type 0
EMAn = w.Pn + (1 - w).EMAn-1
EMAn = EMAn-1 + w.(Pn - EMAn-1)
EMAn = w.Pn + w.(1 - w).Pn-1 + w.(1 - w)^2.Pn-2 + ... +
w.(1 - w)^(n-1).P1 + w.(1 - w)^n.EMA0
where w = 2 / (n + 1) and EMA0 = mean(oldest period)
or
EMAn = w.EMAn-1 + (1 - w).Pn
where w = 1 - 2 / (n + 1) and Pn is the most recent price
and EMA0 = mean(oldest period)

EMA type 1
The above formulas with EMA0 = P1 (oldest price)

EMA type 2
EMA = (Pn + w.Pn-1 + w^2.Pn-2 + w^3.Pn-3 + ...) / K
where K = 1 + w + w^2 + ... = 1 / (1 - w) and Pn is the most recent price
and w = 2 / (N + 1)

http://www.financialwebring.org/gummy-stuff/MA-stuff.htm
http://www.csidata.com/?page_id=797
http://goo.gl/MlgHQu

	Input:

	prices ndarray
period int > 1 and < len(prices)
ema_type can be 0, 1 or 2

	Output:

	emas ndarray

Tests:

>>> import numpy as np
>>> import tai
>>> prices = np.array([22.27, 22.19, 22.08, 22.17, 22.18, 22.13, 22.23,
... 22.43, 22.24, 22.29, 22.15, 22.39, 22.38, 22.61, 23.36, 24.05, 23.75,
... 23.83, 23.95, 23.63, 23.82, 23.87, 23.65, 23.19, 23.10, 23.33, 22.68,
... 23.10, 22.40, 22.17])
>>> period = 10
>>> print(tai.ema(prices, period))
[22.221 22.20809091 22.24116529 22.26640796 22.32887924
 22.51635574 22.79520015 22.96880013 23.12538192 23.27531248
 23.33980112 23.42711001 23.50763546 23.53351992 23.47106176
 23.40359598 23.39021489 23.26108491 23.23179675 23.08056097
 22.91500443]
>>> print(tai.ema(prices, period, ema_type=1))
[22.27 22.25545455 22.22355372 22.21381668 22.20766819
 22.1935467 22.20017457 22.24196102 22.24160447 22.25040366
 22.23214845 22.26084873 22.2825126 22.34205576 22.52713653
 22.8040208 22.97601702 23.13128665 23.28014362 23.34375387
 23.43034408 23.51028152 23.53568488 23.47283308 23.40504525
 23.39140066 23.26205508 23.23259052 23.08121043 22.9155358]
>>> print(tai.ema(prices, period, ema_type=2))
[22.28588695 22.174706 22.35085492 22.37470018 22.5672175
 23.21585701 23.89833692 23.77696963 23.82035739 23.9264279
 23.68389526 23.79525297 23.85640891 23.68752817 23.28045894
 23.13280996 23.29414649 22.79166223 23.04393782 22.51707883
 22.23310448]

	
tai.ma_env(prices, period, percent, ma_type=0)[source]

	Moving Average Envelopes are percentage-based envelopes set above and below
a moving average.
They can be used as a trend following indicator.
The envelopes can also be used to identify overbought and oversold levels
when the trend is relatively flat.

Upper Envelope: MA + (MA x percent)
Lower Envelope: MA - (MA x percent)

http://www.csidata.com/?page_id=797
http://goo.gl/JH4mcq

	Input:

	prices ndarray
period int > 1 and < len(prices)
percent float > 0.00 and < 1.00
ma_type 0=EMA type 0, 1=EMA type 1, 2=EMA type 2, 3=WMA, 4=SMA

	Output:

	ma_envs ndarray with upper, middle, lower bands, range and %B

Test:

>>> import numpy as np
>>> import tai
>>> prices = np.array([86.16, 89.09, 88.78, 90.32, 89.07, 91.15, 89.44,
... 89.18, 86.93, 87.68, 86.96, 89.43, 89.32, 88.72, 87.45, 87.26, 89.50,
... 87.90, 89.13, 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77,
... 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09,
... 88.84, 90.78, 90.54, 91.39, 90.65])
>>> period = 20
>>> print(tai.ma_env(prices, period, 0.1, 4))
[[97.57935 88.7085 79.83765 17.7417 0.35635537]
 [97.95005 89.0455 80.14095 17.8091 0.50249872]
 [98.164 89.24 80.316 17.848 0.4742268]
 [98.3301 89.391 80.4519 17.8782 0.55196273]
 [98.4588 89.508 80.5572 17.9016 0.47553291]
 [98.65735 89.6885 80.71965 17.9377 0.58147644]
 [98.7206 89.746 80.7714 17.9492 0.48295189]
 [98.90375 89.9125 80.92125 17.9825 0.45926595]
 [99.08855 90.0805 81.07245 18.0161 0.32512863]
 [99.41965 90.3815 81.34335 18.0763 0.35055017]
 [99.72325 90.6575 81.59175 18.1315 0.29607313]
 [99.9493 90.863 81.7767 18.1726 0.42114502]
 [99.9713 90.883 81.7947 18.1766 0.41401032]
 [99.9944 90.904 81.8136 18.1808 0.37987327]
 [100.0868 90.988 81.8892 18.1976 0.30557876]
 [100.26775 91.1525 82.03725 18.2305 0.28648419]
 [100.30955 91.1905 82.07145 18.2381 0.40730942]
 [100.232 91.12 82.008 18.224 0.32330992]
 [100.2837 91.167 82.0503 18.2334 0.38828194]
 [100.37445 91.2495 82.12455 18.2499 0.46989025]
 [100.36565 91.2415 82.11735 18.2483 0.59088518]
 [100.2826 91.166 82.0494 18.2332 0.59948884]
 [100.15445 91.0495 81.94455 18.2099 0.54121385]]

	
tai.roc(prices, period=21)[source]

	The Rate-of-Change (ROC) indicator, a.k.a. Momentum, is a pure momentum
oscillator that measures the percent change in price from one period to the
next.
The plot forms an oscillator that fluctuates above and below the zero line
as the Rate-of-Change moves from positive to negative.
ROC signals include centerline crossovers, divergences and
overbought-oversold readings. Identifying overbought or oversold extremes
comes natural to the Rate-of-Change oscillator.
It can be used to measure the ROC of any data series, such as price or
another indicator.
Also known as PROC when used with price.

ROC = [(Close - Close n periods ago) / (Close n periods ago)] * 100

http://www.csidata.com/?page_id=797
http://goo.gl/cpSWXg

	Input:

	prices ndarray
period int > 1 and < len(prices) (optional and defaults to 21)

	Output:

	rocs ndarray

Test:

>>> import numpy as np
>>> import tai
>>> prices = np.array([11045.27, 11167.32, 11008.61, 11151.83, 10926.77,
... 10868.12, 10520.32, 10380.43, 10785.14, 10748.26, 10896.91, 10782.95,
... 10620.16, 10625.83, 10510.95, 10444.37, 10068.01, 10193.39, 10066.57,
... 10043.75])
>>> print(tai.roc(prices, period=12))
[-3.84879682 -4.84888048 -4.52064339 -6.34389154 -7.85923013 -6.20834146
 -4.31308173 -3.24341092]

	
tai.rsi(prices, period=14)[source]

	The Relative Strength Index (RSI) is a momentum oscillator.
It oscillates between 0 and 100.
It is considered overbought/oversold when it’s over 70/below 30.
Some traders use 80/20 to be on the safe side.
RSI becomes more accurate as the calculation period (min_periods)
increases.
This can be lowered to increase sensitivity or raised to decrease
sensitivity.
10-day RSI is more likely to reach overbought or oversold levels than
20-day RSI. The look-back parameters also depend on a security’s
volatility.

Like many momentum oscillators, overbought and oversold readings for RSI
work best when prices move sideways within a range.

You can also look for divergence with price.
If the price has new highs/lows, and the RSI hasn’t, expect a reversal.
Signals can also be generated by looking for failure swings and centerline
crossovers.

RSI can also be used to identify the general trend.

The RSI was developed by J. Welles Wilder and was first introduced in his
article in the June, 1978 issue of Commodities magazine, now known as
Futures magazine. It is detailed in his book New Concepts In Technical
Trading Systems.

http://www.csidata.com/?page_id=797
http://goo.gl/WlwNiW

	Input:

	prices ndarray
period int > 1 and < len(prices) (optional and defaults to 14)

	Output:

	rsis ndarray

Test:

>>> import numpy as np
>>> import tai
>>> prices = np.array([44.55, 44.3, 44.36, 43.82, 44.46, 44.96, 45.23,
... 45.56, 45.98, 46.22, 46.03, 46.17, 45.75, 46.42, 46.42, 46.14, 46.17,
... 46.55, 46.36, 45.78, 46.35, 46.39, 45.85, 46.59, 45.92, 45.49, 44.16,
... 44.31, 44.35, 44.7, 43.55, 42.79, 43.26])
>>> print(tai.rsi(prices))
[70.02141328 65.77440817 66.01226849 68.95536568 65.88342192
 57.46707948 62.532685 62.86690858 55.64975092 62.07502976
 54.39159393 50.10513101 39.68712141 41.17273382 41.5859395
 45.21224077 37.06939108 32.85768734 37.58081218]

	
tai.sma(prices, period)[source]

	Simple Moving Average (SMA) are used to smooth the data in an array to help
eliminate noise and identify trends.
In SMA, each value in the time period carries equal weight.

They do not predict price direction, but can be used to identify the
direction of the trend or define potential support and resistance levels.

SMA = (P1 + P2 + ... + Pn) / K
where K = n and Pn is the most recent price

http://www.financialwebring.org/gummy-stuff/MA-stuff.htm
http://www.csidata.com/?page_id=797
http://goo.gl/MlgHQu

	Input:

	prices ndarray
period int > 1 and < len(prices)

	Output:

	smas ndarray

Test:

>>> import numpy as np
>>> import tai
>>> prices = np.array([22.27, 22.19, 22.08, 22.17, 22.18, 22.13, 22.23,
... 22.43, 22.24, 22.29, 22.15, 22.39, 22.38, 22.61, 23.36, 24.05, 23.75,
... 23.83, 23.95, 23.63, 23.82, 23.87, 23.65, 23.19, 23.10, 23.33, 22.68,
... 23.10, 22.40, 22.17])
>>> print(tai.sma(prices, period=10))
[22.221 22.209 22.229 22.259 22.303 22.421 22.613 22.765 22.905
 23.076 23.21 23.377 23.525 23.652 23.71 23.684 23.612 23.505
 23.432 23.277 23.131]

	
tai.wma(prices, period)[source]

	Weighted Moving Average (WMA) is a type of moving average that assigns a
higher weighting to recent price data.

WMA = (P1 + 2 P2 + 3 P3 + ... + n Pn) / K
where K = (1+2+...+n) = n(n+1)/2 and Pn is the most recent price after the
1st WMA we can use another formula
WMAn = WMAn-1 + w.(Pn - SMA(prices, n-1))
where w = 2 / (n + 1)

http://www.csidata.com/?page_id=797
http://www.financialwebring.org/gummy-stuff/MA-stuff.htm
http://www.investopedia.com/terms/l/linearlyweightedmovingaverage.asp
http://fxtrade.oanda.com/learn/forex-indicators/weighted-moving-average

	Input:

	prices ndarray
period int > 1 and < len(prices)

	Output:

	wmas ndarray

Test:

>>> import numpy as np
>>> import tai
>>> prices = np.array([77, 79, 79, 81, 83, 49, 55])
>>> print(tai.wma(prices, period=5))
[80.73333333 70.46666667 64.06666667]

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tai 0.0.45 documentation

ChangeLog

0.0.45 2015-05-12

Forgot to rebuild. :(

0.0.44 2015-05-12

Changed .travis.yml to allow pypy to build with a special version of
 numpy.

0.0.43 2015-05-12

Corrected error in .travis.yml.

0.0.42 2015-05-12

Corrected error in .travis.yml.

0.0.41 2015-05-12

Corrected error in .travis.yml.

0.0.40 2015-05-12

Corrected error in .travis.yml.

0.0.39 2015-05-12

Corrected error in .travis.yml.

0.0.38 2015-05-12

Corrected error in .travis.yml.

0.0.37 2015-05-12

Corrected error in .travis.yml.

0.0.36 2015-05-12

Corrected error in .travis.yml.

0.0.35 2015-05-12

Corrected error in .travis.yml.

0.0.34 2015-05-12

Corrected error in .travis.yml.

0.0.33 2015-05-12

Corrected error in appveyor.yml.

0.0.32 2015-05-12

Corrected errors in .travis.yml and appveyor.yml.

0.0.31 2015-05-12

Changed .travis.yml to allow pypy and pypy3 builds to fail.
 Changed .travis.yml to test numpy for pypy.
 Commented Py3 x64 build in appveyor.yml due to problems with numpy.
 Corrected some URLs and used URL shortener.
 Corrected some imports in doctests.
 Simplified0 PYTHONPATH insert in test files.
 Removed py2exe from requirements-dev.txt.

0.0.30 2015-05-09

Corrected appveyor.yml.

0.0.29 2015-05-09

Corrected appveyor.yml.
 Commented pypy and pypy3 builds in .travis.yml until numpy
 build problem is resolved.

0.0.28 2015-05-09

Corrected appveyor.yml.
 Updated to Py 2.7.9 and Py 3.4.3 in appveyor.yml.

0.0.27 2015-05-09

Added pypy and pyp3 to .travis.yml.
 Added test results to shippable.yml and appveyor.yml.

0.0.26 2015-05-09

Added notifications to appveyor.yml.

0.0.25 2015-05-09

Corrected appveyor.yml.

0.0.24 2015-05-09

Corrected Travis, Shippable and Appveyor files.

0.0.23 2015-05-09

Updated Travis and Shippable files.
 Added appveyor config.

0.0.22 2015-05-05

Updated Travis and Shippable files.

0.0.21 2015-05-05

Updated Travis and Shippable files.

0.0.20 2015-05-05

Updated Travis and Shippable files.

0.0.19 2015-05-05

Corrected requirements-dev.txt.

0.0.18 2015-05-03

Removed images from the 1st line of README.rst because it was messing the PyPI
 description.

0.0.17 2015-05-03

Added build system.
 Changed name from technical_indicators to tai.

0.0.16 2014-06-03

Changed both yml files to include Py3.4.

0.0.15 2014-06-02

Changed both yml files to become as similar as possible.

0.0.14 2014-06-02

Added end user documentation to .gitignore.
Added option PROJ_TYPE to build.bat to distinguish between modules and
applications.
Added pythonhosted.org files to MANIFEST.in.
Changed __init__.py to use glob to select py2exe and cxf data files.
Added options to py2exe config in setup.py.
Fill some Docstrings.

0.0.13 2014-05-31

Remarked bdist_egg, bdist_wininst, cxf and py2exe builds from build.bat.

0.0.12 2014-05-31

Added zip_safe to setup.py.

0.0.11 2014-05-31

Added PyPI documentation in dir pythonhosted.org (redirects to
ReadTheDocs).
Changed doc\index.rst to include README.rst.
Updated build.bat.

0.0.10 2014-05-31

Corrected classifiers in __init__.py. Added ReadTheDocs doc.
Added prep_rst2pdf.py and prep_rst2pdf.py to help build.bat.
Changed build.bat.

0.0.9 2014-05-30

Added py_app_ver.py and changed build.bat.

0.0.8 2014-05-30

Corrected yml and __init__.py because numpy is not installing in Py3

0.0.7 2014-05-30

Corrected test and yml files

0.0.6 2014-05-29

Added Shippable CI

0.0.5 2014-05-29

Added doctests, packaging, build automation, sphinx doc, travis.
Changed license and versioning.

0.0.4 2013-07-03

Added ROC and MA envelopes

0.0.3 2013-06-30

Added WMA and more EMA types.

0.0.2 2013-06-18

Added Bollinger bandwidth and %B
Created a GitHub repository

0.0.1 2013-06-05

Includes RSI, SMA, EMA and BB

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	tai 0.0.45 documentation

License

 tai - Technical Analysis Indicators module.
 Copyright 2009-2015 Joao Carlos Roseta Matos

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License along
 with this program; if not, write to the Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/>
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	tai 0.0.45 documentation

Authors

Joao Carlos Roseta Matos <jcrmatos@gmail.com>

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	tai 0.0.45 documentation

 Python Module Index

 t

 			

 		
 t	

 	
 	
 tai	

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	tai 0.0.45 documentation

Index

 B
 | E
 | M
 | R
 | S
 | T
 | W

B

 	

 	bb() (in module tai)

E

 	

 	ema() (in module tai)

M

 	

 	ma_env() (in module tai)

R

 	

 	roc() (in module tai)

 	

 	rsi() (in module tai)

S

 	

 	sma() (in module tai)

T

 	

 	tai (module)

W

 	

 	wma() (in module tai)

 Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		tai 0.0.45 documentation »

 All modules for which code is available

		tai

 © Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_modules/tai.html

 Navigation

 		
 index

 		
 modules |

 		tai 0.0.45 documentation »

 		Module code »

 Source code for tai

#!/usr/bin/env python
-*- coding: utf-8 -*-

Copyright 2009-2015 Joao Carlos Roseta Matos
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
This module provides some technical indicators for analysing stocks.

When I can I will add more.
If anyone wishes to contribute with new code or corrections/suggestions, feel
free.

Features:

 Relative Strength Index (RSI), ROC, MA envelopes
 Simple Moving Average (SMA), Weighted Moving Average (WMA), Exponential
 Moving Average (EMA)
 Bollinger Bands (BB), Bollinger Bandwidth, %B

Dependencies:

It requires numpy.
This module was developed and tested under Windows 7, with Python 2.7.3 and
numpy 1.6.1.
"""

Python 3 compatibility
from __future__ import (absolute_import, division, print_function,
 unicode_literals)

import io # Python 3 compatibility

from builtins import input # Python 3 compatibility
import numpy as np

[docs]def roc(prices, period=21):
 """
 The Rate-of-Change (ROC) indicator, a.k.a. Momentum, is a pure momentum
 oscillator that measures the percent change in price from one period to the
 next.
 The plot forms an oscillator that fluctuates above and below the zero line
 as the Rate-of-Change moves from positive to negative.
 ROC signals include centerline crossovers, divergences and
 overbought-oversold readings. Identifying overbought or oversold extremes
 comes natural to the Rate-of-Change oscillator.
 It can be used to measure the ROC of any data series, such as price or
 another indicator.
 Also known as PROC when used with price.

 ROC = [(Close - Close n periods ago) / (Close n periods ago)] * 100

 http://www.csidata.com/?page_id=797
 http://goo.gl/cpSWXg

 Input:
 prices ndarray
 period int > 1 and < len(prices) (optional and defaults to 21)

 Output:
 rocs ndarray

 Test:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([11045.27, 11167.32, 11008.61, 11151.83, 10926.77,
 ... 10868.12, 10520.32, 10380.43, 10785.14, 10748.26, 10896.91, 10782.95,
 ... 10620.16, 10625.83, 10510.95, 10444.37, 10068.01, 10193.39, 10066.57,
 ... 10043.75])
 >>> print(tai.roc(prices, period=12))
 [-3.84879682 -4.84888048 -4.52064339 -6.34389154 -7.85923013 -6.20834146
 -4.31308173 -3.24341092]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 roc_range = num_prices - period

 rocs = np.zeros(roc_range)

 for idx in range(roc_range):
 rocs[idx] = ((prices[idx + period] - prices[idx]) / prices[idx]) * 100

 return rocs

[docs]def rsi(prices, period=14):
 """
 The Relative Strength Index (RSI) is a momentum oscillator.
 It oscillates between 0 and 100.
 It is considered overbought/oversold when it's over 70/below 30.
 Some traders use 80/20 to be on the safe side.
 RSI becomes more accurate as the calculation period (min_periods)
 increases.
 This can be lowered to increase sensitivity or raised to decrease
 sensitivity.
 10-day RSI is more likely to reach overbought or oversold levels than
 20-day RSI. The look-back parameters also depend on a security's
 volatility.

 Like many momentum oscillators, overbought and oversold readings for RSI
 work best when prices move sideways within a range.

 You can also look for divergence with price.
 If the price has new highs/lows, and the RSI hasn't, expect a reversal.
 Signals can also be generated by looking for failure swings and centerline
 crossovers.

 RSI can also be used to identify the general trend.

 The RSI was developed by J. Welles Wilder and was first introduced in his
 article in the June, 1978 issue of Commodities magazine, now known as
 Futures magazine. It is detailed in his book New Concepts In Technical
 Trading Systems.

 http://www.csidata.com/?page_id=797
 http://goo.gl/WlwNiW

 Input:
 prices ndarray
 period int > 1 and < len(prices) (optional and defaults to 14)

 Output:
 rsis ndarray

 Test:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([44.55, 44.3, 44.36, 43.82, 44.46, 44.96, 45.23,
 ... 45.56, 45.98, 46.22, 46.03, 46.17, 45.75, 46.42, 46.42, 46.14, 46.17,
 ... 46.55, 46.36, 45.78, 46.35, 46.39, 45.85, 46.59, 45.92, 45.49, 44.16,
 ... 44.31, 44.35, 44.7, 43.55, 42.79, 43.26])
 >>> print(tai.rsi(prices))
 [70.02141328 65.77440817 66.01226849 68.95536568 65.88342192
 57.46707948 62.532685 62.86690858 55.64975092 62.07502976
 54.39159393 50.10513101 39.68712141 41.17273382 41.5859395
 45.21224077 37.06939108 32.85768734 37.58081218]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 # this could be named gains/losses to save time/memory in the future
 changes = prices[1:] - prices[:-1]
 # num_changes = len(changes)

 rsi_range = num_prices - period

 rsis = np.zeros(rsi_range)

 gains = np.array(changes)
 # assign 0 to all negative values
 masked_gains = gains < 0
 gains[masked_gains] = 0

 losses = np.array(changes)
 # assign 0 to all positive values
 masked_losses = losses > 0
 losses[masked_losses] = 0
 # convert all negatives into positives
 losses *= -1

 avg_gain = np.mean(gains[:period])
 avg_loss = np.mean(losses[:period])

 if avg_loss == 0:
 rsis[0] = 100
 else:
 rs = avg_gain / avg_loss
 rsis[0] = 100 - (100 / (1 + rs))

 for idx in range(1, rsi_range):
 avg_gain = ((avg_gain * (period - 1) + gains[idx + (period - 1)]) /
 period)
 avg_loss = ((avg_loss * (period - 1) + losses[idx + (period - 1)]) /
 period)

 if avg_loss == 0:
 rsis[idx] = 100
 else:
 rs = avg_gain / avg_loss
 rsis[idx] = 100 - (100 / (1 + rs))

 return rsis

[docs]def sma(prices, period):
 """
 Simple Moving Average (SMA) are used to smooth the data in an array to help
 eliminate noise and identify trends.
 In SMA, each value in the time period carries equal weight.

 They do not predict price direction, but can be used to identify the
 direction of the trend or define potential support and resistance levels.

 SMA = (P1 + P2 + ... + Pn) / K
 where K = n and Pn is the most recent price

 http://www.financialwebring.org/gummy-stuff/MA-stuff.htm
 http://www.csidata.com/?page_id=797
 http://goo.gl/MlgHQu

 Input:
 prices ndarray
 period int > 1 and < len(prices)

 Output:
 smas ndarray

 Test:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([22.27, 22.19, 22.08, 22.17, 22.18, 22.13, 22.23,
 ... 22.43, 22.24, 22.29, 22.15, 22.39, 22.38, 22.61, 23.36, 24.05, 23.75,
 ... 23.83, 23.95, 23.63, 23.82, 23.87, 23.65, 23.19, 23.10, 23.33, 22.68,
 ... 23.10, 22.40, 22.17])
 >>> print(tai.sma(prices, period=10))
 [22.221 22.209 22.229 22.259 22.303 22.421 22.613 22.765 22.905
 23.076 23.21 23.377 23.525 23.652 23.71 23.684 23.612 23.505
 23.432 23.277 23.131]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 sma_range = num_prices - period + 1

 smas = np.zeros(sma_range)

 # only required for the commented code below
 # k = period

 for idx in range(sma_range):
 # this is the code, but using np.mean below is faster and simpler
 # for period_num in range(period):
 # smas[idx] += prices[idx + period_num]
 # smas[idx] /= k

 smas[idx] = np.mean(prices[idx:idx + period])

 return smas

[docs]def wma(prices, period):
 """
 Weighted Moving Average (WMA) is a type of moving average that assigns a
 higher weighting to recent price data.

 WMA = (P1 + 2 P2 + 3 P3 + ... + n Pn) / K
 where K = (1+2+...+n) = n(n+1)/2 and Pn is the most recent price after the
 1st WMA we can use another formula
 WMAn = WMAn-1 + w.(Pn - SMA(prices, n-1))
 where w = 2 / (n + 1)

 http://www.csidata.com/?page_id=797
 http://www.financialwebring.org/gummy-stuff/MA-stuff.htm
 http://www.investopedia.com/terms/l/linearlyweightedmovingaverage.asp
 http://fxtrade.oanda.com/learn/forex-indicators/weighted-moving-average

 Input:
 prices ndarray
 period int > 1 and < len(prices)

 Output:
 wmas ndarray

 Test:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([77, 79, 79, 81, 83, 49, 55])
 >>> print(tai.wma(prices, period=5))
 [80.73333333 70.46666667 64.06666667]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 wma_range = num_prices - period + 1

 wmas = np.zeros(wma_range)

 k = (period * (period + 1)) / 2.0

 # only required for the commented code below
 # w = 2 / float(period + 1)

 for idx in range(wma_range):
 for period_num in range(period):
 weight = period_num + 1
 wmas[idx] += prices[idx + period_num] * weight
 wmas[idx] /= k

 # this is the code for the second formula, but I think the first is simpler
 # to understand
 # for idx in range(wma_range):
 # if idx == 0:
 # for period_num in range(period):
 # weight = period_num + 1
 # wmas[idx] += prices[idx + period_num] * weight
 # wmas[idx] /= k
 # else:
 # wmas[idx] = wmas[idx - 1] + w * \
 # (prices[idx + period - 1] - \
 # sma(prices[idx - 1:idx + period - 1], period))

 return wmas

[docs]def ema(prices, period, ema_type=0):
 """
 Exponencial Moving Average (EMA) are used to smooth the data in an array to
 help eliminate noise and identify trends.
 Exponential moving averages reduce the lag by applying more weight to
 recent prices.
 The weighting applied to the most recent price depends on the number of
 periods in the moving average.

 They do not predict price direction, but can be used to identify the
 direction of the trend or define potential support and resistance levels.

 EMA type 0
 EMAn = w.Pn + (1 - w).EMAn-1
 EMAn = EMAn-1 + w.(Pn - EMAn-1)
 EMAn = w.Pn + w.(1 - w).Pn-1 + w.(1 - w)^2.Pn-2 + ... +
 w.(1 - w)^(n-1).P1 + w.(1 - w)^n.EMA0
 where w = 2 / (n + 1) and EMA0 = mean(oldest period)
 or
 EMAn = w.EMAn-1 + (1 - w).Pn
 where w = 1 - 2 / (n + 1) and Pn is the most recent price
 and EMA0 = mean(oldest period)

 EMA type 1
 The above formulas with EMA0 = P1 (oldest price)

 EMA type 2
 EMA = (Pn + w.Pn-1 + w^2.Pn-2 + w^3.Pn-3 + ...) / K
 where K = 1 + w + w^2 + ... = 1 / (1 - w) and Pn is the most recent price
 and w = 2 / (N + 1)

 http://www.financialwebring.org/gummy-stuff/MA-stuff.htm
 http://www.csidata.com/?page_id=797
 http://goo.gl/MlgHQu

 Input:
 prices ndarray
 period int > 1 and < len(prices)
 ema_type can be 0, 1 or 2

 Output:
 emas ndarray

 Tests:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([22.27, 22.19, 22.08, 22.17, 22.18, 22.13, 22.23,
 ... 22.43, 22.24, 22.29, 22.15, 22.39, 22.38, 22.61, 23.36, 24.05, 23.75,
 ... 23.83, 23.95, 23.63, 23.82, 23.87, 23.65, 23.19, 23.10, 23.33, 22.68,
 ... 23.10, 22.40, 22.17])
 >>> period = 10
 >>> print(tai.ema(prices, period))
 [22.221 22.20809091 22.24116529 22.26640796 22.32887924
 22.51635574 22.79520015 22.96880013 23.12538192 23.27531248
 23.33980112 23.42711001 23.50763546 23.53351992 23.47106176
 23.40359598 23.39021489 23.26108491 23.23179675 23.08056097
 22.91500443]
 >>> print(tai.ema(prices, period, ema_type=1))
 [22.27 22.25545455 22.22355372 22.21381668 22.20766819
 22.1935467 22.20017457 22.24196102 22.24160447 22.25040366
 22.23214845 22.26084873 22.2825126 22.34205576 22.52713653
 22.8040208 22.97601702 23.13128665 23.28014362 23.34375387
 23.43034408 23.51028152 23.53568488 23.47283308 23.40504525
 23.39140066 23.26205508 23.23259052 23.08121043 22.9155358]
 >>> print(tai.ema(prices, period, ema_type=2))
 [22.28588695 22.174706 22.35085492 22.37470018 22.5672175
 23.21585701 23.89833692 23.77696963 23.82035739 23.9264279
 23.68389526 23.79525297 23.85640891 23.68752817 23.28045894
 23.13280996 23.29414649 22.79166223 23.04393782 22.51707883
 22.23310448]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 if ema_type == 0: # 1st value is the average of the period
 ema_range = num_prices - period + 1

 emas = np.zeros(ema_range)

 emas[0] = np.mean(prices[:period])

 w = 2 / float(period + 1)

 # only required for the 4th formula
 # w = 1 - 2 / float(period + 1)

 for idx in range(1, ema_range):
 emas[idx] = w * prices[idx + period - 1] + (1 - w) * emas[idx - 1]

 # or with the 2nd formula
 # emas[idx] = emas[idx - 1] + w * ((prices[idx + period - 1] -
 # emas[idx - 1]))

 # or with the 4th formula
 # emas[idx] = w * emas[idx - 1] +
 # (1 - w) * prices[idx + period - 1]

 elif ema_type == 1: # 1st value is the 1st price
 ema_range = num_prices

 emas = np.zeros(ema_range)

 emas[0] = prices[0]

 w = 2 / float(period + 1)

 # only required for the 4th formula
 # w = 1 - 2 / float(period + 1)

 for idx in range(1, ema_range):
 emas[idx] = w * prices[idx] + (1 - w) * emas[idx - 1]

 # or with the 2nd formula
 # emas[idx] = emas[idx - 1] + w * (prices[idx] - emas[idx - 1])

 # or with the 4th formula
 # emas[idx] = w * emas[idx - 1] + (1 - w) * prices[idx]

 else:
 ema_range = num_prices - period + 1

 emas = np.zeros(ema_range)

 w = 2 / float(period + 1)

 k = 1 / float(1 - w)

 for idx in range(ema_range):
 for period_num in range(period):
 # this runs the prices backwards to comply with the formula
 emas[idx] += w**period_num * \
 prices[idx + period - period_num - 1]
 emas[idx] /= k

 return emas

[docs]def ma_env(prices, period, percent, ma_type=0):
 """
 Moving Average Envelopes are percentage-based envelopes set above and below
 a moving average.
 They can be used as a trend following indicator.
 The envelopes can also be used to identify overbought and oversold levels
 when the trend is relatively flat.

 Upper Envelope: MA + (MA x percent)
 Lower Envelope: MA - (MA x percent)

 http://www.csidata.com/?page_id=797
 http://goo.gl/JH4mcq

 Input:
 prices ndarray
 period int > 1 and < len(prices)
 percent float > 0.00 and < 1.00
 ma_type 0=EMA type 0, 1=EMA type 1, 2=EMA type 2, 3=WMA, 4=SMA

 Output:
 ma_envs ndarray with upper, middle, lower bands, range and %B

 Test:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([86.16, 89.09, 88.78, 90.32, 89.07, 91.15, 89.44,
 ... 89.18, 86.93, 87.68, 86.96, 89.43, 89.32, 88.72, 87.45, 87.26, 89.50,
 ... 87.90, 89.13, 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77,
 ... 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09,
 ... 88.84, 90.78, 90.54, 91.39, 90.65])
 >>> period = 20
 >>> print(tai.ma_env(prices, period, 0.1, 4))
 [[97.57935 88.7085 79.83765 17.7417 0.35635537]
 [97.95005 89.0455 80.14095 17.8091 0.50249872]
 [98.164 89.24 80.316 17.848 0.4742268]
 [98.3301 89.391 80.4519 17.8782 0.55196273]
 [98.4588 89.508 80.5572 17.9016 0.47553291]
 [98.65735 89.6885 80.71965 17.9377 0.58147644]
 [98.7206 89.746 80.7714 17.9492 0.48295189]
 [98.90375 89.9125 80.92125 17.9825 0.45926595]
 [99.08855 90.0805 81.07245 18.0161 0.32512863]
 [99.41965 90.3815 81.34335 18.0763 0.35055017]
 [99.72325 90.6575 81.59175 18.1315 0.29607313]
 [99.9493 90.863 81.7767 18.1726 0.42114502]
 [99.9713 90.883 81.7947 18.1766 0.41401032]
 [99.9944 90.904 81.8136 18.1808 0.37987327]
 [100.0868 90.988 81.8892 18.1976 0.30557876]
 [100.26775 91.1525 82.03725 18.2305 0.28648419]
 [100.30955 91.1905 82.07145 18.2381 0.40730942]
 [100.232 91.12 82.008 18.224 0.32330992]
 [100.2837 91.167 82.0503 18.2334 0.38828194]
 [100.37445 91.2495 82.12455 18.2499 0.46989025]
 [100.36565 91.2415 82.11735 18.2483 0.59088518]
 [100.2826 91.166 82.0494 18.2332 0.59948884]
 [100.15445 91.0495 81.94455 18.2099 0.54121385]]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 ma_env_range = num_prices - period + 1

 # 3 bands, range and %B
 ma_envs = np.zeros((ma_env_range, 5))

 if 0 <= ma_type <= 2: # EMAs
 ma = ema(prices, period, ema_type=ma_type)

 elif ma_type == 3: # WMA
 ma = wma(prices, period)

 else: # SMA
 ma = sma(prices, period)

 for idx in range(ma_env_range):
 # upper, middle, lower bands, range and %B
 ma_envs[idx, 0] = ma[idx] + (ma[idx] * percent)
 ma_envs[idx, 1] = ma[idx]
 ma_envs[idx, 2] = ma[idx] - (ma[idx] * percent)
 ma_envs[idx, 3] = ma_envs[idx, 0] - ma_envs[idx, 2]
 ma_envs[idx, 4] = (prices[idx] - ma_envs[idx, 2]) / ma_envs[idx, 3]

 return ma_envs

[docs]def bb(prices, period, num_std_dev=2.0):
 """
 Bollinger bands (BB) are volatility bands placed above and below a moving
 average.
 Volatility is based on the standard deviation, which changes as volatility
 increases and decreases.
 The bands automatically widen when volatility increases and narrow when
 volatility decreases.
 This dynamic nature of Bollinger Bands also means they can be used on
 different securities with the standard settings.
 For signals, Bollinger Bands can be used to identify M-Tops and W-Bottoms
 or to determine the strength of the trend.
 Signals derived from narrowing BandWidth are also important.

 Bollinger BandWidth is an indicator that derives from Bollinger Bands, and
 measures the percentage difference between the upper band and the lower
 band.
 BandWidth decreases as Bollinger Bands narrow and increases as Bollinger
 Bands widen.
 Because Bollinger Bands are based on the standard deviation, falling
 BandWidth reflects decreasing volatility and rising BandWidth reflects
 increasing volatility.

 %B quantifies a security's price relative to the upper and lower Bollinger
 Band. There are six basic relationship levels:
 %B equals 1 when price is at the upper band
 %B equals 0 when price is at the lower band
 %B is above 1 when price is above the upper band
 %B is below 0 when price is below the lower band
 %B is above .50 when price is above the middle band (20-day SMA)
 %B is below .50 when price is below the middle band (20-day SMA)

 They were developed by John Bollinger.
 Bollinger suggests increasing the standard deviation multiplier to 2.1 for
 a 50-period SMA and decreasing the standard deviation multiplier to 1.9 for
 a 10-period SMA.

 http://www.csidata.com/?page_id=797
 http://goo.gl/3pXmip
 http://goo.gl/aMNs97

 Input:
 prices ndarray
 period int > 1 and < len(prices)
 num_std_dev float > 0.0 (optional and defaults to 2.0)

 Output:
 bbs ndarray with upper, middle, lower bands, bandwidth, range and %B

 Test:

 >>> import numpy as np
 >>> import tai
 >>> prices = np.array([86.16, 89.09, 88.78, 90.32, 89.07, 91.15, 89.44,
 ... 89.18, 86.93, 87.68, 86.96, 89.43, 89.32, 88.72, 87.45, 87.26, 89.50,
 ... 87.90, 89.13, 90.70, 92.90, 92.98, 91.80, 92.66, 92.68, 92.30, 92.77,
 ... 92.54, 92.95, 93.20, 91.07, 89.83, 89.74, 90.40, 90.74, 88.02, 88.09,
 ... 88.84, 90.78, 90.54, 91.39, 90.65])
 >>> print(tai.bb(prices, period=20))
 [[9.12919107e+01 8.87085000e+01 8.61250893e+01 5.82449423e-02
 5.16682146e+00 6.75671306e-03]
 [9.19497209e+01 8.90455000e+01 8.61412791e+01 6.52300429e-02
 5.80844179e+00 5.07661263e-01]
 [9.26132536e+01 8.92400000e+01 8.58667464e+01 7.55995881e-02
 6.74650724e+00 4.31816571e-01]
 [9.29344497e+01 8.93910000e+01 8.58475503e+01 7.92797873e-02
 7.08689946e+00 6.31086945e-01]
 [9.33114122e+01 8.95080000e+01 8.57045878e+01 8.49848539e-02
 7.60682430e+00 4.42420124e-01]
 [9.37270110e+01 8.96885000e+01 8.56499890e+01 9.00563838e-02
 8.07702198e+00 6.80945403e-01]
 [9.38972812e+01 8.97460000e+01 8.55947188e+01 9.25117832e-02
 8.30256250e+00 4.63143909e-01]
 [9.42636418e+01 8.99125000e+01 8.55613582e+01 9.67861377e-02
 8.70228361e+00 4.15826692e-01]
 [9.45630193e+01 9.00805000e+01 8.55979807e+01 9.95225220e-02
 8.96503854e+00 1.48579313e-01]
 [9.47851634e+01 9.03815000e+01 8.59778366e+01 9.74461225e-02
 8.80732672e+00 1.93266744e-01]
 [9.50411874e+01 9.06575000e+01 8.62738126e+01 9.67087637e-02
 8.76737475e+00 7.82660026e-02]
 [9.49062071e+01 9.08630000e+01 8.68197929e+01 8.89956780e-02
 8.08641429e+00 3.22789193e-01]
 [9.49015375e+01 9.08830000e+01 8.68644625e+01 8.84332063e-02
 8.03707509e+00 3.05526266e-01]
 [9.48939343e+01 9.09040000e+01 8.69140657e+01 8.77834713e-02
 7.97986867e+00 2.26311285e-01]
 [9.48594576e+01 9.09880000e+01 8.71165424e+01 8.50982021e-02
 7.74291521e+00 4.30661576e-02]
 [9.46722663e+01 9.11525000e+01 8.76327337e+01 7.72280810e-02
 7.03953265e+00 -5.29486389e-02]
 [9.45543042e+01 9.11905000e+01 8.78266958e+01 7.37753219e-02
 6.72760849e+00 2.48722001e-01]
 [9.46761721e+01 9.11200000e+01 8.75638279e+01 7.80546993e-02
 7.11234420e+00 4.72660054e-02]
 [9.45733946e+01 9.11670000e+01 8.77606054e+01 7.47286754e-02
 6.81278915e+00 2.01003516e-01]
 [9.45322396e+01 9.12495000e+01 8.79667604e+01 7.19508503e-02
 6.56547911e+00 4.16304661e-01]
 [9.45303313e+01 9.12415000e+01 8.79526687e+01 7.20906879e-02
 6.57766250e+00 7.52141243e-01]
 [9.43672335e+01 9.11660000e+01 8.79647665e+01 7.02286710e-02
 6.40246702e+00 7.83328285e-01]
 [9.41460689e+01 9.10495000e+01 8.79529311e+01 6.80194599e-02
 6.19313782e+00 6.21182512e-01]]
 """
 num_prices = len(prices)

 if num_prices < period:
 # show error message
 raise SystemExit('Error: num_prices < period')

 bb_range = num_prices - period + 1

 # 3 bands, bandwidth, range and %B
 bbs = np.zeros((bb_range, 6))

 simple_ma = sma(prices, period)

 for idx in range(bb_range):
 std_dev = np.std(prices[idx:idx + period])

 # upper, middle, lower bands, bandwidth, range and %B
 bbs[idx, 0] = simple_ma[idx] + std_dev * num_std_dev
 bbs[idx, 1] = simple_ma[idx]
 bbs[idx, 2] = simple_ma[idx] - std_dev * num_std_dev
 bbs[idx, 3] = (bbs[idx, 0] - bbs[idx, 2]) / bbs[idx, 1]
 bbs[idx, 4] = bbs[idx, 0] - bbs[idx, 2]
 bbs[idx, 5] = (prices[idx] - bbs[idx, 2]) / bbs[idx, 4]

 return bbs

if __name__ == '__main__':
 import doctest
 doctest.testmod(verbose=True)

 © Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		tai 0.0.45 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2015, Joao Carlos Roseta Matos.
 Created using Sphinx 1.3.1.

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

