
Contents

1 Goals: 3

2 Guide 5
2.1 TAF architecture . 5
2.2 Test execution preconfiguration . 9
2.3 Test execution . 13
2.4 Contribution guidelines . 23
2.5 Development guide . 24
2.6 Continuous integration . 32

3 Indices and tables 37

i

ii

TAF Documentation, Release 0.0.1

TAF is an integrated cross-platform system that sets the guidelines and provides tools for automation testing
of a specific product in Networking.

TAF allows you to write a series of tests without worrying about the constraints or limitation of underlying
test tools.

Contents 1

TAF Documentation, Release 0.0.1

2 Contents

Chapter 1

Goals:

• create libraries with all necessary functionality;

• define the way how environment configuration description will be supplied to test suites;

• create the reporting processing functionality;

• create the smart regression analysis functionality

3

TAF Documentation, Release 0.0.1

4 Chapter 1. Goals:

Chapter 2

Guide

2.1 TAF architecture

2.1.1 Directory structure of TAF

The current implementation of the testing framework has the following directory structure (only high-level
directories are shown):

+ taf-repo

+ docs

+ reporting

+ taf

- plugins

- testlib

+ tests

+ unittests

+ utils

Directory docs contains documentation generated using sphinx and readthedocs tools.

Directory plugins contains TAF related plugins wich extends py.test and TAF testlib functionality and
could be enabled/disabled for particular tests ot group of tests.

Directory testlib contains common functionality for the majority of tests, platform-specific libraries and
various helper functions, described in System Architecture.

Directory unittests contains TAF unittests and TAF functional tests.

2.1.2 TAF plugins

Available TAF plugins located in plugins sub-directory. The most useful of plugins are:

plugins.pytest reportingserver

• Starts Reporting Server as a separate process.

• Collects information about test case duration split by stages (setup/call/teardown).

• Options: --xml html - create html report file at given path.

5

TAF Documentation, Release 0.0.1

plugins.pytest returns

Sometimes user wants to get specific information from the test instead of PASS/FAIL status. TAF allows
to include returned information from the test into pytest . User must modify test case:

• Add return statement as test step in order to return necessary information.

• Add @pytest.mark.returns decorator to the test case or test class.

plugins.pytest syslog

• Send notifications about test case start/end to the remote syslog server.

• Separate device must be specified in the environment Json file with syslog settings instance type value,
e.g.:

1 [

2 {"name": "std_syslog_settings", "entry_type": "settings", "instance_type": "syslog_settings", "id

→˓": "4",

3 "ip": "X.X.X.X", "proto": "Udp", "port": 514, "localport": 514, "transport": "Tcp",

→˓"facility": -1,

4 "severity": "Debug",

5 "syslog_usr": "user", "syslog_passw": "password", "path_to_log": "/var/log/switches/"},

6]

• This device must be included in the related devices of the DUT (related id: [6]), e.g.:

1 [

2 {"name": "simswitch1_lxc", "entry_type": "switch", "instance_type": "lxc", "id": "16",

3 "ip_host": "X.X.X.X", "ip_port": "8081", "ports_count": 32,

4 "cli_user": "lxc_user", "cli_user_passw": "password", "cli_user_prompt": "Switch ",

5 "cli_img_path": "usr/lib/ons/cli_img/",

6 "ports": [1, 2, 3],

7 "related_id": ["6"]},

8]

• Options: --syslog – enable syslog plugin. False by default.

plugins.pytest pidchecker

• TAF gets info about ONS process IDs on test setup and teardown.

• TAF verifies PIDs are not changed during test case execution. In other case tests teardown fails, TAF
provides information about restarted processes.

• Options: --pidcheck disable – disable process IDs verification.

Note: During specific tests some processes could be restarted by design or device could be
restarted. TAF has a special marker for these test cases that allows to skip process ID validation:
@pytest.mark.skip pidchecker, @pytest.mark.skip pidchecker(process1, process2)

plugins.pytest caselogger

• Stores devices logs on the remote host after test execution.

6 Chapter 2. Guide

http://doc.pytest.org/en/latest/

TAF Documentation, Release 0.0.1

• Options: --log enable – enable/disable log tool for test (False | True).

plugins.pytest multiple run

• Execute test cases N times in a loop. N=1 by default.

• Options: --multiple run=N

plugins.pytest start from case

• Run test suite starting from specific test case.

• Options: --start from case

User may use strict test names or patterns, e.g.:

--start_from_case test_my_func

--start_from_case test*func

--start_from_case *func

--start_from_case test*

plugins.pytest smartrerun

• Reruns Test Cases with Failed and Cant Test status from custom Test Plan.

• Options: --sm rerun –custom Test Plan name.

plugins.pytest heat checker

• TAF gets info about CPU temperature from ONS Sensors table and adds it into the test run logs.

• Options: --heat check – enable/disable tool for temperature logging (False | True).

plugins.pytest onsenv

• Initializes environment from common3.py module:

– Reads environment json file

– Reads setup json file.

– Loads dev * modules.

– Creates instances of used devices according to setup json file.

• Options: --env – path to environment json file. None by default.

--setup – path to setup json file. None by default.

plugins.pytest skip filter

• Remove skipped test cases from list of collected items.

Note: Skip reason must be specified for all skipif markers

2.1. TAF architecture 7

TAF Documentation, Release 0.0.1

plugins.pytest loganalyzer

• Performs analysis for ONPSS devices logs, checks for duplicates and errors.

• Options: --log analyzer – enable/disable log tool for test (False | True).

2.1.3 TAF features overview

Support for:

1. Cross-connection solutions (Vlab, static links)

2. Traffic generators (Ixia, TRex)

3. Switches (ONS, ONPSS, Simulated)

4. OVS controllers (OFTest, Floodlight)

5. Power boards (APC)

6. Terminal servers

Integration with:

1. Test Case Management Systems (Jira, SynapseRT)

2. Defect Trackers (Jira)

Available TAF features located in testlib sub-directory. The most useful of them are:

TAF devices

common3.py main environment file
dev switch *.py switch functionality
dev ixia.py TG functionality
dev chef.py chef functionality
dev *cross.py cross connector functionality
dev ovscontroller.py OVS functionality
dev linux host.py Linux host functionality

TAF commons

entry template.py generic code for all devices
switch general.py, switch ons.py generic code for switches
testlib/Ixia/* Ixia related files
packet processor.py generic packet operations
clissh.py, clitelnet.py ssh, Telnet connection
powerboard.py APC functionality

8 Chapter 2. Guide

TAF Documentation, Release 0.0.1

TAF UIs

ui wrapper.py generic code for all UIs
ui ons xmlrpc.py wrappers for ONS XmlRpc calls
ui ons cli.py wrappers for ONS ClI calls
ui onpss shell.py wrappers for ONPSS Shell calls
ui onpss jsonrpc.py wrappers for ONPSS JsonRpc

TAF helpers

ui helpers.py general switch operations
helpers.py general tests operations

2.2 Test execution preconfiguration

All TAF test cases are parameterized in a way that they have access to env object which is built from
environment description. For example typical env object contains already initialized switch(es), traffic
generator and cross connection tool. You just need to describe in your conftest.py file and test which
methods and in which order should be called on different stages of test execution.

2.2.1 SETUP config - testcases/config/setup/*.json

Setup config contains env and cross parts.

• The env part is a list of devices in the current setup. Its format is the same as the environment config,
except that you need define only entry IDs that corresponds to the ones in the env conf file.

• The cross part is a dictionary with cross ids as the keys and the appropriate list of connections as
values.

Env Part

In general, you should define only ids of necessary devices, but you can also override parts of the device
configuration from env config.

Examples:

1 {

2 "env": [

3 {"id": 22, "related_id": ["33"]},

4 {"id": "33", "related_id": [16]},

5 {"id": 16}

6],

7 }

1 {

2 "env": [

3 {"id": 0, "ports": [[1, 1, 6], [1, 1, 7], [1, 1, 8], [1, 1, 9], [1, 1, 10], [1, 1, 11], [1,

→˓ 1, 12], [1, 1, 13], [1, 1, 14]]},

(continues on next page)

2.2. Test execution preconfiguration 9

http://doc.pytest.org/en/latest/writing_plugins.html?highlight=conftest#conftest-py-plugins

TAF Documentation, Release 0.0.1

(continued from previous page)

4 {"id": 1, "ports": [24, 25, 26, 33, 48, 39, 34, 35]},

5 {"id": 4, "ports": [28, 29, 24, 25, 26, 27]},

6 {"id": 3, "ports": [24, 25, 28, 29, 34, 35]},

7 {"id": 2, "ports": [24, 25, 33, 48, 39, 34, 35]},

8 {"id": "33"}

9],

10 }

Cross Part

This list of connections is a list of lists. Each connection is a list of four elements: [<device1 id>=>, <port
id>=>, <device2 id>=>, <port id>=>] :

• Port ID is the ID for a port in the list of real ports in the device configuration (ids starts from 1).

• Device id is the value of the id field in the environment config.

Examples:

1 {

2 "cross": {"2": [[0,1,1,1], [0,2,1,2], [0,3,1,3], [0,4,1,4], [0,5,1,5]]}

3 }

1 {

2 "cross": {"4": [[0,1,1,1], [0,2,1,2], [0,3,1,3], [0,4,1,4], [0,5,1,5], [0,10,3,1],

3 [0,11,3,2], [0,12,3,3], [0,6,2,1], [0,7,2,2],

4 [0,8,2,3], [0,9,2,4]],

5 "5": [[1,16,2,16], [1,17,2,17], [1,18,2,18], [1,19,2,19],

6 [1,20,2,20], [1,21,2,21],

7 [1,22,2,22], [1,23,2,23], [1,24,2,24], [1,11,3,11],

8 [1,12,3,12], [1,13,3,13], [1,14,3,14],

9 [2,11,3,5], [2,12,3,6], [2,13,3,7], [2,14,3,8]]}

10 }

Complete Configuration

Examples:

1 {

2 "env": [

3 {"id": 0, "ports": [[1, 1, 6], [1, 1, 7], [1, 1, 8], [1, 1, 9], [1, 1, 10]]},

4 {"id": 1},

5 {"id": "30"}

6],

7 "cross": {"30": [[0,1,1,1], [0,2,1,2], [0,3,1,3], [0,4,1,4], [0,5,1,5]]}

8 }

1 {

2 "env": [

3 {"id": 22, "related_id": ["33"]},

4 {"id": "33", "related_id": [16, 17, 18]},

5 {"id": 16},

6 {"id": 17},

7 {"id": 18}

8],

(continues on next page)

10 Chapter 2. Guide

TAF Documentation, Release 0.0.1

(continued from previous page)

9 "cross": {"33": [[22,1,16,1], [22,2,16,2], [22,3,16,3], [22,4,16,4],[22,5,16,5],

10 [16,16,17,16], [16,17,17,17], [16,18,17,18], [16,19,17,19], [16,20,17,20],

11 [16,21,17,21], [16,22,17,22], [16,23,17,23],[16,24,17,24],

12 [16,11,18,11], [16,12,18,12], [16,13,18,13],[16,14,18,14],

13 [22,10,18,1], [22,11,18,2], [22,12,18,3], [17,11,18,5], [17,12,18,6], [17,13,18,

→˓7],

14 [17,14,18,8],[22,6,17,1], [22,7,17,2], [22,8,17,3], [22,9,17,4]]

15 }

16 }

2.2.2 ENVIRONMENT config - testcases/config/env/*.json

Environment config describes all allowed devices for setups. Which devices will be used in current run is
defined in the setup configuration.

Environment configuration is a list of dictionaries. Each dictionary is a record for one device in SUT.

Each device type has its own fields, but entry type, instance type and id are obligatory for all devices.

For each DUT type, the following entry type - instance type variants are possible:

• tg - traffic generators:

– ixiahl;

– ixload;

– trex

• switch - switches:

– lxc - simswitch in lxc container for L3 testing;

– <chipname> - real devices based on particular hardware

• cross - cross connection devices:

– vlab - virtual cross connection tool;

– static ons - just stub for static connections

• linux host - Linux bases hosts:

– generic - real Linux host;

– netns - Linux network namespase which emulates real Lunux Host behaviour

• hub - Hubs:

– real;

– simulated

Note: The id field values must be unique for all devices in config

In some cases, one device type needs a part of the config of another device. In this case you can use the
related id key (list type).

This key contains IDs of other devices, for which the config is necessary for the current one. For example
{entry type: tg, instance type: trex} uses vlab interfaces for sending and sniffing packets, and therefore
related id: [<vlab id>] should be added.

2.2. Test execution preconfiguration 11

TAF Documentation, Release 0.0.1

Real port names must be described only in appropriate device config. Then in other config and cross parts
only port IDs from that device config will be used.

Examples:

TG:

• Ixia traffic generator:

1 [

2 {"entry_type": "tg", "instance_type": "ixia", "id": 0,

3 "ip_host": "X.X.X.X", "ports": [[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 1, 4], [1, 1, 5]]},

4]

Linux Hosts:

• Network namespace:

1 [

2 {"name": "Namespace_Simulated_2", "entry_type": "linux_host", "instance_type": "netns", "id":

→˓1520,

3 "ipaddr": "X.X.X.X", "ssh_user": "User", "ssh_pass": "pAsSwD",

4 "ports": ["veth0", "veth1", "veth2"]

5 },

6]

• Real Linux Host:

1 [

2 {"name": "Localhost1", "entry_type": "linux_host", "instance_type": "generic", "id": 999,

3 "ipaddr": "localhost", "ssh_user": "User", "ssh_pass": "pAsSwD",

4 "ports": ["lo"]

5 },

6]

Switch:

• Simulated switch in LXC container:

1 [

2 {"entry_type": "switch", "instance_type": "lxc", "id": 1,

3 "ip_host": "X.X.X.X", "ip_port": "8081",

4 "ports_count": "32",

5 "ports": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,

→˓24],

6 "related_id": [5]},

7]

• Real switch:

1 [

2 {"name": "some_real_device", "entry_type": "switch", "instance_type": "real", "id": 415,

3 "ip_host": "192.168.1.20", "ip_port": "8081",

4 "use_sshtun": 1, "sshtun_user": "xmluser", "sshtun_pass": "password", "sshtun_port": 22,

(continues on next page)

12 Chapter 2. Guide

TAF Documentation, Release 0.0.1

(continued from previous page)

5 "default_gw": "192.168.1.1", "net_mask": "255.255.255.0",

6 "pwboard_host": "192.168.1.100", "pwboard_port": "15", "halt": 0,

7 "portserv_host": "192.168.1.101", "portserv_user": "root", "portserv_pass": "pass", "portserv_

→˓tty": 15, "portserv_port": 2015,

8 "telnet_loginprompt": "switch login:", "telnet_passprompt": "Password:", "telnet_user": "admin",

9 "telnet_pass": "password", "telnet_prompt": "[admin@switch ~]$",

10 "cli_user": "admin", "cli_user_passw": "admin" "cli_user_prompt": "Switch",

11 "ports_count": "52",

12 "ports": [40, 41, 43, 44, 45, 46, 47, 11, 12, 36, 37, 10, 23, 20, 39, 38],

13 "related_id": [210]},

14]

Cross:

• Vlab:

1 [

2 {"entry_type": "cross", "instance_type": "vlab", "id": "2",

3 "ip_host": "localhost", "ip_port": "8050",

4 "ports": ["vlab0", "vlab1", "vlab2", "vlab3", "vlab4"],

5 "tgmap": [0],

6 "related_id": [1]},

7]

2.3 Test execution

2.3.1 Launch Examples

Test cases can be run with supplying of py.test options:

1. All standard py.test options can be used for performing test cases.

2. General TAF specific options.

3. Additional ons-specific options.

4. Options provided by plugins.

Its easy to get all the information with short description using the command shown below:

$ py.test --help

General Options:

These options have to be registered in top level conftest.py file and they are checked by testlib modules.

2.3. Test execution 13

http://doc.pytest.org/en/latest
http://doc.pytest.org/en/latest/writing_plugins.html?highlight=conftest#conftest-py-plugins

TAF Documentation, Release 0.0.1

--env=ENV setting environment option, identify devices, None by default
--setup file=SETUP environment setup option, define environment configurations,

sim lxc simplified.json by default
--loglevel=LOGLEVELlogging level, print logging to console. INFO by default
--logfile=LOGFILE logging file, store logs into file. None by default
--silent do not print logging to console. Default - Disabled
--get only do not start environment, only connect to exists one. False by default
--leave on do not shutdown environment after the end of tests. False by default
--use parallel init threads for simultaneous devices processing. False by default

Note: option –setup file are obligatory

Additional Options:

These options are described and analyzed in top level conftest.py files.

--setup scope=SETUP SCOPEsetup scope, select from session, module, class, function. module by default
--call check=CALL CHECK check method for devices on test case call

(none|complete|fast|sanity check only) fast by default
--teardown check=TEARDOWN CHECKcheck method for devices on test case teardown

(none|complete|fast|sanity check only) sanity check only by default

ONS-specific Options:

This options are analyzed in ONS specific teslib modules (e.g. switches module).

--fail ctrl=FAIL CTRLaction on device failure (stop|restart|ignore). restart by default
--build pathBUILD PATH Path to build, /opt/simswitch by default
--testenv {none, simplified2, simplified3, simplified4, simplified5, golden, diamond, mixed} Verify en-

vironment before starting tests (none | simplified2 | simplified3 | simplified4 | simplified2 |
golden | diamond | mixed) none by default

Plugin Options:

These options are provided by plugins.

--pidcheck disable disable pid check for test
--log storage {none, host, tms, both} where to store run logs (none | host | tms | both)
--log type {Failed, All} what kind of tests logs to store (Failed | All). Failed by default
--log enable {False, True} enable/disable log tool for test (False | True). False by default

You can execute the test cases using the following command:

/<host>/:~ /testcases$ sudo env PYTHONPATH=~taf/taf py.test --env=config/env/environment_examples.

→˓jso --setup=config/setup/rr_simplified.json general/test_switch.py -m sanity --logdir=demo_logs -

→˓-xml_html=demo.html

14 Chapter 2. Guide

http://doc.pytest.org/en/latest/writing_plugins.html?highlight=conftest#conftest-py-plugins

TAF Documentation, Release 0.0.1

env PYTHONPATH set up PYTHONPATH variable
env provide path to the environment*.json file
setup provide path to the setup*.json file

2.3.2 Test cases with traffic generators

Traffic generator is necessary to transmit and receive network traffic packets through the switch systems.

For the first you need to install 3rd party packages for Traffic Generator.

Installing 3rd party packages for IXIA traffic generator

IxTclHal API

TAF might require an IXIA TCL hal library and Python bindings for Tcl available in the Tkinter library
depending on test scenarios. Ixia is one of traffic generators which generate traffic, or monitor the traffic
transmitted by peers such as a switch. The latest Ixia software can be downloaded from Ixia website with
eligible account.

Install Python Tk library:

$ sudo apt-get install python-tk

Get the IxOS binary (version X.XX) and install it (into /opt folder):

$ chmod +x ixosX.XX.XXX.XLinux.bin

$ sudo ./ixosX.XX.XXX.XLinux.bin

• Select Tcl version: Tcl8.4

• Choose install folder: /opt/ixos

Add symlink to /opt/ixos/lib/ixTcl1.0 directory into /usr/share/tcltk/tcl8.4/:

$ sudo ln -s /opt/ixos/lib/ixTcl1.0 /usr/share/tcltk/tcl8.4/

Check if IXIA library was installed properly:

$ env IXIA_VERSION=X.XX tclsh

% package req IxTclHal

Tcl Client is running Ixia Software version: X.XX

X.XX

Note: Add export IXIA VERSION=X.XX to your /etc/profile if necessary

Possible issues:

• Cant create directory /opt/ixos/Logs. Permission denied - create necessary directories manually
with sudo:

$ sudo mkdir /opt/ixos/Logs && sudo mkdir /opt/ixos/Results

• In case youre getting Segmentation fault error - reinstall Tcl:

2.3. Test execution 15

http://sphinx-docs-creation.readthedocs.io/en/latest/test_execution_preconfiguration.html#environment-config-testcases-config-env-json
http://sphinx-docs-creation.readthedocs.io/en/latest/test_execution_preconfiguration.html#setup-config-testcases-config-setup-json

TAF Documentation, Release 0.0.1

$ sudo apt-get purge tcl8.4

$ sudo apt-get install tcl

IxNetwork and HLTAPI

New (IxNetwork) API requires additional steps to be performed, as described in this section.

Install IxNetwork Tcl Client

Get the IxOS binary (version X.XX or better X.XX) and Install it:

$ chmod +x IxNetworkTclClientX.X.XXX.XXLinux.bin

$ sudo ./IxNetworkTclClientX.X.XXX.XXLinux.bin

Note: Install the client software where IxOS is already installed!

IxNetwork adds environment variables into /etc/profile, so reload profiles:

$ source /etc/profile && source ~/.bashrc

How to check that IxNetwork Tcl Client has been installed properly:

$ /opt/ixos/bin/ixnetwish

% package req ix_tc

3.20

% package req tbcload

1.4

% package req Thread

2.6.5

%

Configure HLTAPI

Install additional tcl pckages:

$ sudo apt-get install tcl8.4 tclx8.4

Note: HLTAPI can work properly only under tcl8.4

Check if configuration is correct:

$ env IXIA_VERSION=X.XX tclsh

% package req Ixia

Tcl X.X is installed on 64bit architecture.

Using products based on HLTSET138

Tcl Client is running Ixia Software version: X.XX

Loaded IxTclHal X.XX

Loaded IxTclServices X.XX

Loaded IxTclProtocol X.XX.XXX.XX

Loaded IxTclNetwork X.X.XXX.XX

HLT release X.XX.X.XXX

Loaded ixia_hl_lib-X.X

X.XX

%

16 Chapter 2. Guide

TAF Documentation, Release 0.0.1

IxLoad

Install IxLoad libraries to the same location with IxTclClient:

$ chmod +x IxLoadTclApiX.XX.XX.XLinux.bin

$ sudo ./IxLoadTclApiX.XX.XX.XLinux.bin

$ source /etc/profile && source ~/.bashrc

Check if IxLoad installed correctly:

$ env IXIA_VERSION=X.XX tclsh

% package req IxLoad

Tcl Client is running Ixia Software version: X.XX

X.XX.XX.X

Installing 3rd party packages for TRex traffic generator

TAF and TRex control plane

Download and installation TRex server

• Check environment:

– hardware recommendation

– supported Linux versions:

∗ Fedora 18-21, 64-bit kernel (not 32-bit)

∗ Ubuntu 16.04 LTS, 64-bit kernel (not 32-bit)

• Obtain the TRex package. Latest release:

$ mkdir trex

$ cd trex

$ wget --no-cache http://trex-tgn.cisco.com/trex/release/latest

$ tar -xzvf latest

To obtain a specific version(X.XX=Version number):

2.3. Test execution 17

TAF Documentation, Release 0.0.1

$ wget --no-cache http://trex-tgn.cisco.com/trex/release/vX.XX.tar.gz

Run TRex server

• Identify the ports:

$ cd trex

$ sudo ./dpdk_setup_ports.py {s

• Create simple configuration file:

– Copy a basic configuration file from cfg folder:

$ cp cfg/simple_cfg.yaml /etc/trex_cfg.yaml

– Edit the configuration file:

$ vim /etc/trex_cfg.yaml

port_limit : 2 # this option can limit the number of port of the platform

version : 2

interfaces : ["03:00.0","03:00.1"] #the interfaces using ./dpdk_setup_ports.py {s

• Run TRex for the first time:

Use the following command to begin operation of a 2x10Gb/sec TRex:

$ sudo ./t-rex-64 -i -c 2 {cfg /etc/ trex_cfg.yaml

Download and installation Client Machine

• Obtain the TRex client package:

Latest release:

$ mkdir trex_client

$ cd trex_client

$ wget --no-cache http://trex-tgn.cisco.com/trex/release/latest

$ tar -xzvf latest

$ cd vX.XX

X.XX=Version number

$ tar -xzvf trex_client_v2.03.tar.gz

• Clone TAF and TCs repositories:

$ git clone https://github.com/taf3/taf.git

$ git clone https://github.com/taf3/testcases.git

• Create setup file and update env file based on diagram bellow:

18 Chapter 2. Guide

TAF Documentation, Release 0.0.1

TRex config in ENV JSON file:

1 {"name": "TRex", "entry_type": "tg", "instance_type": "trex", "id": "1001", "ipaddr": "X.X.X.X",

→˓"ssh_user": "", "ssh_pass": "", "ports": [0, 1]}

TRex setup file:

1 {"env": [

2 {"id": "02", "port_list": [[[1, 1, 3], 10000], [[1, 1, 4], 10000]]},

3 {"id": "1001"},

4 {"id": "5", "related_id": ["02", "1001"]}],

5 "cross": { "5": [["02",1,"1001",1], ["02",2,"1001",2]] }}

2.3.3 Traffic Generator attributes and methods

All traffic generator objects have to be child of interface class testlib::tg template::GenericTG.

Please read reference above for all available methods.

Note: Support of some methods could be unavailable in some tg types

Sniffing

Usage example:

1 tg_ports = [ports[('tg1', 'sw1')][1], ports[('tg1', 'sw1')][2]]
2 env.tg[1].start_sniff(tg_ports, sniffing_time=10, filter_layer="STP")

3 #...

4 # Other steps in case

(continues on next page)

2.3. Test execution 19

TAF Documentation, Release 0.0.1

(continued from previous page)

5 #...

6 data = env.tg[1].stop_sniff(tg_ports)

Description/Features

• Sniffing is performed in background.

• Stop sniff() can be called separately for each port.

• Real packets capturing could be started with some delay. We found that different sniffer types dont
start capturing right after receiving the command but with some delay. Based on experience this delay
is set to 1.5 seconds. Therefore additional time sleep 1.5 seconds is introduced in start sniff method,
which are included in sniffing time. You have to take this in to account and dont use sniffing time less
then 3 seconds (5 is recommended). For benchmarking test cases you have to use special environment
like IxNetwork or IxLoad.

• You can stop sniffers immediately using force=True parameter. By default stop sniff returns control
only after sniffing time is elapsed.

Full methods references

• testlib::tg template::GenericTG::start sniff

• testlib::tg template::GenericTG::stop sniff

Packets filtering

You can check list of run-time filter layers in tg object attribute flt patterns
(testlib::packet processor::PacketProcessor::flt patterns).

If you need more complicated filter condition you should use post processing:

1 lfilter = lambda x: x.haslayer("STP") and x.get_lfield("STP", "rootid") == 4096

2 data1 = {}

3 for key in data.keys():

4 data1[key] = filter(lfilter, data[key])

This filter returns the selection of STP BPDU packets with the rootid field equal to 4096.

Using comprehensive lists, the previous example becomes:

1 lfilter = lambda x: x.haslayer("STP") and x.get_lfield("STP", "rootid") == 4096

2 data1 = dict((key, filter(lfilter, data[key])) for key in data.keys())

Sending Packets

Trivial Packet Sending

Method send stream() returns control after packet sending is finished:

1 tg_port = ports[('tg1', 'sw1')][1]
2 stream_id = env.tg[1].set_stream(packet_definition, count=5, inter=2, iface=tg_port)

3 env.tg[1].send_stream(stream_id)

20 Chapter 2. Guide

TAF Documentation, Release 0.0.1

Note: You should define streams at the beginning of the test case if possible. Then in steps, use only the
send stream method. This manner of packet sending improves test case performance as far as setting stream
takes additional time for execution

Threaded Packet Sending

Method start streams() returns control immediately after call. Packets will be sent in the background:

1 tg_port = ports[('tg1', 'sw1')][1]
2 stream_id_1 = env.tg[1].set_stream(packet_definition_1, count=5, inter=2, iface=tg_port)

3 stream_id_2 = env.tg[1].set_stream(packet_definition_2, count=15, inter=1, iface=tg_port)

4 env.tg[1].start_streams([stream_id_1, stream_id_2,])

5 #...

6 # Some staff

7 #...

8 env.tg[1].stop_streams([stream_id_1, stream_id_2,])

Warning: If youll try to start another stream without stopping the previous one, the first streams will
be re-started. This behavior depends on TG type. Dont use it as a feature

The set stream() method has several parameters that allow you to build a packet stream with incremented
parameters.

Full methods references

• testlib::tg template::GenericTG::set stream

• testlib::tg template::GenericTG::send stream

• testlib::tg template::GenericTG::start streams

• testlib::tg template::GenericTG::stop streams

Working with Packets

Traffic Generator objects include set of methods to work with packets (please see
testlib::packet processor::PacketProcessor). But you also can access packet fields directly using inter-
nal packets methods.

Get Packet Field

• TG method

– testlib::packet processor::PacketProcessor::get packet field()

Get Packet Layer in Necessary Format

• TG method

– testlib::packet processor::PacketProcessor::get packet layer()

Check packet field value

• TG method

– testlib::packet processor::PacketProcessor::check packet field()

– testlib::packet processor::PacketProcessor::check packet field multilayer()

2.3. Test execution 21

TAF Documentation, Release 0.0.1

Get packet dictionary

Reverse packet building: pypacker packet to packet dictionary.

• TG method

– testlib::packet processor::PacketProcessor::packet dictionary()

Packet fragmenting and assembling

• TG method

– testlib::packet processor::PacketProcessor::packet fragment

– testlib::packet processor::PacketProcessor::assemble fragmented packets

Statistics

Traffic Generator object contains number of methods to work with statistics.

• testlib::tg template::GenericTG::clear statistics()

• testlib::tg template::GenericTG::get sent frames count()

• testlib::tg template::GenericTG::get received frames count()

• testlib::tg template::GenericTG::get filtered frames count()

• testlib::tg template::GenericTG::get uds 3 frames count()

• testlib::tg template::GenericTG::get qos frames count()

Note: Different types of TG could dont have support of some counters. Read appropriate tg type docs

2.3.4 Example of the test case with traffic generator

Sample Test :

1 class TestLinks(object):

2

3 def test_links(self, env):

4 """ Test links between Trex TG and IXIA"""

5 # Define TGs

6 ixia = env.tg[1].id

7 trex = env.tg[2].id

8 # Define active ports and packet

9 ports = env.get_ports()

10 packet_definition = (

11 {"Ethernet": {"dst": "ff:ff:ff:ff:ff:ff",

12 "src": "00:00:00:00:00:02"}},

13 {"IP": {"src": 'X.X.X.X', "dst": 'X.X.X.X'}})
14 packet_count = 1

15 # Set traffic stream on TRex

16 stream_id = env.tg[2]. sey_stream(

17 packet_definition,

18 count=packet_count,

19 iface=ports[(trex, ixia)][1],

20 adjust_size=True)

(continues on next page)

22 Chapter 2. Guide

TAF Documentation, Release 0.0.1

(continued from previous page)

21 # Start sniff on Ixia

22 env.tg[1].start_sniff([ixia, trex)][1])

23 # Send packet

24 env.tg[2].start_streams([stream_id])

25 time.sleep(1)

26 # Stop sniff

27 data = env.tg[1].stop_sniff([ports[(ixia, trex)][1]])

28 # Verify that packet was received

29 assert len(data[ports[(ixia, trex)][1]]) == 1

Example TAF command line, run in the testcase directory:

$ env PYTHONPATH=../taf/taf:<path to Trex client library /trex_client/stl/ or use $TREX_CLIENT_

→˓LIB> py.test --env=config/env/environment_examples.json --setup=config/setup/trex_ixia_

→˓simplified.json testcases/test_links.py --loglevel=DEBUG

2.4 Contribution guidelines

2.4.1 Create an Issue

You can create an issue by the following link https://github.com/taf3/taf/issues if you:

• find a bug in a TAF project

• have trouble following the documentation

• have a question about the project

For more information on how issues work, check out GitHub Issues guide .

2.4.2 Code contribution

Pull Request

You can create a pull request by the following link https://github.com/taf3/taf/pulls if you are able to:

• patch the bug

• add the new feature

Before you will do pull request you have to:

• understand the license

• sign a Contributor Licence Agreement (CLA) if required

Note: All licenses and copyrights must be correct, and all code and information must have been pre-
approved for public release.

GitHub workflow

1. Dev makes github account

2.4. Contribution guidelines 23

https://github.com/taf3/taf/issues
https://guides.github.com/features/issues/
https://github.com/taf3/taf/pulls

TAF Documentation, Release 0.0.1

2. Dev forks taf to repo in personal github account (e.g. github.com/rbbratta/taf)

3. Dev uploads new patches to personal taf repo as topic branch

4. Dev makes pull request to taf3/taf for topic branch

5. Travis-ci runs unittests on pull request

6. We review pull request in weekly meeting, leave comments on GitHub

7. Merge to GitHub

8. Internal Jenkins polls GitHub and builds internal TAF Docker image for Berta

9. We test internally with GitHub taf3 Docker image

For more information on how to create pull request, check out GitHub https://help.github.com/categories/
collaborating-with-issues-and-pull-requests/ .

2.5 Development guide

2.5.1 TAF code naming convention

The heart of the design of python project is its high level of readability. One reason for code to be easily
readable and understood is following set of code style guidelines. It is always advisable to maintain con-
sistency in naming standards. This document describes the nomenclature suggested for use in TAF. TAF
developers requires reading at PEP 8 – Style Guide for Python Code , and TAF library is conservative and
requires limiting lines to 99 characters (and docstrings/comments to 92) although it exceeds PEP 8 standard.
99 characters will give enough to review side-by-side with multiple files, and visualize the difference between
changes well in code review tools. Only exception is in writing function name in testcases which can exceed
this limit as long as its helpful to understand the testcase.

Directory

• Referred to as packages in python project

• Short and all lowercase names

• Use of underscores is discouraged but can be used for better readability:

e.g.: testlib, sanity tests

File Names

• Referred to as modules in python project

Python Files

• Short and all lowercase names

• Use underscores for better readability

• Since module names are mapped to file names, and some file systems truncate long names, it is
important that module names should be chosen to be fairly short

e.g.: test fdb.py

Data Files

Currently followed patterns for different data files are as follows:

24 Chapter 2. Guide

https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

TAF Documentation, Release 0.0.1

• Json

– lower case with underscore

e.g.: synapsert client.json

– CapsWords

e.g.: StormControl.json

– CapsWords with underscore

e.g.: RouteTable Prem

– Startwithcapsletter

e.g.: Fdb.json

– lowerPlusCaps

e.g.: ifType.json

• TCL

– Lower case with underscore

• XML

– CapsWords

• Dox

– lower case with underscore

• Java

– CapsWords

• Vm

– lower case with underscore

• Txt

– lower case with underscore

Note: DO NOT follow mixed standard mentioned above. It is always recommended to use
lower case with underscores for all file formats

Class Names

• Cap Words convention:

e.g.: TestAclCopyToCpuAction

Some of the bad examples that are existing in TAF are as follows:

• Lowercase all

e.g.: cv

• lowerThenUpper

e.g.: helpersUI

• lower with underscores

2.5. Development guide 25

TAF Documentation, Release 0.0.1

e.g.: compare color

• Beginning with underscore

e.g.: EncryptAndVerify

• Caps With Underscore

e.g.: DHCP6 Decline

Functions

Test cases

• Test case function names should be lowercase, with words separated by underscores as necessary to
improve readability, and it must starts with word test

e.g.: test name lowercase with underscores

Sub module functions

• Starts with

e.g.: single leading underscore

Class functions

• Class function names should be lowercase, with words separated by underscores as necessary to improve
readability

e.g.: lowercase with underscores

Pytest configuration functions

• Pytest configuration function names should be lowercase, with words separated by underscores as
necessary to improve readability.

• Present in taf/plugins.

• Must start with word pytest

e.g.: pytest name lowercase with underscores

Constants and Variables

Constants

• Capital letters with underscores separating words.

e.g.: MAX OVERFLOW, TOTAL

Variables

• Should be lowercase, with words separated by underscores.

• Global variables, attributes of the class and instance variables come under this category.

Arguments

Class

• Lowercase and can use underscores for better readability.

• Always use object for the first argument if required.

26 Chapter 2. Guide

TAF Documentation, Release 0.0.1

User-defined Methods

• Lowercase and can use underscores for better readability.

• Always use self for the first argument to instance methods.

• Always use cls for the first argument to class methods.

User-defined Functions

• Lowercase and can use underscores for better readability.

Docstring

All files, classes, class methods and first level functions must have properly created docstrings. Note that
type syntax in Python docstrings is Google style .

Google style tends to be easier to read for short and simple docstrings.

File

Each python file in TAF should contain a header where the main information about the file is stored:

• copyright

• licence information

• file name

• summary

• note with example of module usage in tests (optionally)

In accordance to Google style of docstrings should look as following example or Sphinx example:

Example:

1 # Copyright (c) 2011 - 2016, Intel Corporation.

2 #

3 # Licensed under the Apache License, Version 2.0 (the "License");

4 # you may not use this file except in compliance with the License.

5 # You may obtain a copy of the License at

6 #

7 # http://www.apache.org/licenses/LICENSE-2.0

8 #

9 # Unless required by applicable law or agreed to in writing, software

10 # distributed under the License is distributed on an "AS IS" BASIS,

11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

12 # See the License for the specific language governing permissions and

13 # limitations under the License.

14

15 """``dpdk.py``

16

17 Class for dpdk operations

18

19 Note:

20 Examples of dpdk usage in tests::

21

22 inst.ui.dpdk.modify_iface_status(bind_action='bind', ifaces=["0000:01:00.0", "01:00.0"],

23 drv='igb_uio', force=False, show_status=True)

24

25 """

2.5. Development guide 27

https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
https://google.github.io/styleguide/pyguide.html?showone=Comments#Comments
http://www.sphinx-doc.org/en/stable/ext/example_google.html?highlight=google%20style

TAF Documentation, Release 0.0.1

Class

Create a class with appropriate docstring. Following keywords can be used:

Note An optional section that provides additional information about the code, possibly including a
discussion of the algorithm

Exam-
ple

Sections support any reStructuredText formatting, including literal blocks:: or doctest format
to mention any coding samples

Example:

1 class NoErrArgumentParser(argparse.ArgumentParser):

2 """ArgumentParser class that handle only predefined for an instance options.

3

4 Note:

5 The original ArgumentParser class raises an error if handle unknown option.

6 But py.test have it's own options and it's own custom parser and if ArgumentParser find

→˓them it raises an error.

7 Using this class allows not to define all possible options in each module that uses

→˓ArgumentParser.

8

9 Examples::

10

11 def parse_args(self, *args, **kwargs):

12 if len(args) > 0:

13 args_to_parse = args[0]

14 else:

15 args_to_parse = sys.argv[1:]

16 new_args_to_parse = []

17

18 """

Function

Create a test case function with appropriate docstring. Sub-functions inside first level functions don‘t need
to contain docstrings as far as they arent designed for any external calls. Ignore pylint messages.

In case you wish to create a docstring, following keywords can be used:

Args description of the function arguments, keywords and their respective types
Returns explanation of the returned values and their types
Raises an optional section detailing which errors get raised and under what conditions
Yields explanation of the yielded values and their types

Example function docstrings with Returns key:

1 def __get__(self, instance, owner):

2 """This method is called from class.

3

4 Args:

5 owner (owner): class instance.

6

7 Returns:

8 logging.LoggerAdapter: logger adaptor.

9

10 Raises:

(continues on next page)

28 Chapter 2. Guide

https://docs.python.org/3/library/doctest.html
https://www.pylint.org/

TAF Documentation, Release 0.0.1

(continued from previous page)

11 KeyError: Cannot connect to logger adaptor.

12

13 """

14 if self.for_exception:

15 caller_frame = inspect.stack()[2]

16 module_name = inspect.getmodulename(caller_frame[1])

17 func_name = caller_frame[3]

18 try:

19 class_name = caller_frame[0].f_locals["self"].__class__.__name__

20 except KeyError:

21 class_name = ""

22 _logger_adaptor = self._get_logger(module_name, class_name, func_name)

23 else:

24 _logger_adaptor = self._get_logger(owner.__module__, owner.__name__)

25 return _logger_adaptor

Example function docstrings with Yields key:

1 def parse_table_vlan(self, vlan_table):

2 """Parses the vlan table.

3

4 This needs to be a loop because previous the table

5 is built based on previous entries.

6

7 Args:

8 vlan_table (list[str] | iter()): List of vlan raw output

9

10 Yields:

11 iter(): A dictionary containing the portId, vlanId, and tagged state for each vlan

12

13 """

14 for row in vlan_table:

15 match = re.search(

16 r"(?P<portId>\S*\d+)?\s*(?P<vlanId>\d+)\s*(?P<pvid>PVID)?\s*(?:Egress)?\s*(?P<tagged>

→˓\D+)?", row)

17 if match:

18 row = match.groupdict()

19 row['vlanId'] = int(row['vlanId'])
20 if row['tagged'] is None:

21 row['tagged'] = 'Tagged'
22 row['pvid'] = (row['pvid'] == 'PVID')
23 if row['portId'] is not None:

24 # Set portId on the first line and use that value for following lines

25 row['portId'] = self.name_to_portid_map[row['portId']]
26 port_id = row['portId']
27 else:

28 # This row doesn't have a portId because it implicitly uses the previous

29 row['portId'] = port_id

30 yield row

2.5.2 Test Case Structure

A group of test cases will be written in a python file which we call test suite. The name of the file should:

• be unique;

2.5. Development guide 29

TAF Documentation, Release 0.0.1

• start with test ;

• contain clear information about test suite (e.g. feature, setup, table name, etc.).

Test suite is divided into the following separate parts:

• header;

• imports block;

• additional functions (optional);

• test class;

• internal test class methods;

• test cases.

Header

Each test case python file in TAF3 (testcases directory) should contain a header with contains following
information:

• copyright

• licence information

• file name

• summary

• note (contain information what following test case are tested)

1 # Copyright (c) 2011 - 2016, Intel Corporation.

2 #

3 # Licensed under the Apache License, Version 2.0 (the "License");

4 # you may not use this file except in compliance with the License.

5 # You may obtain a copy of the License at

6 #

7 # http://www.apache.org/licenses/LICENSE-2.0

8 #

9 # Unless required by applicable law or agreed to in writing, software

10 # distributed under the License is distributed on an "AS IS" BASIS,

11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

12 # See the License for the specific language governing permissions and

13 # limitations under the License.

14

15 """``test_vlan.py``

16

17 `Test Vlan implementation`

18

19 Note:

20 Following test cases are tested:

21 1. Verify that static VLAN can be created.

22 2. Verify that static VLAN can be deleted and default VLAN cannot be deleted.

23

24 """

Note: File header should NOT contain below:

1 #!/usr/bin/env python

30 Chapter 2. Guide

TAF Documentation, Release 0.0.1

Import

Import section has the following rules and sequence in TAF python code:

• import standard module (e.g., os, time);

• import 3rd-party libraries (e.g., pytest);

• import framework-specific libraries (e.g., from testlib import helpers);

• each section of above import group has to be separated by a blank line.

Example:

1 import time

2 import os

3

4 import pytest

5

6 from testlib import helpers

7 from testlib import loggers

Developing Suite Class

Create class with unique name per suite (with appropriate docstring).

Note: Do not use any of Unittest style methods for py.test test cases. All necessary fix-
tures/setup/teardowns have to be defined using py.test features

Class name should start with Test. Class decorators should contain the following information:

• full cross connection setup name;

• information about premium functionality (optional);

• information about features that are tested;

• list of platform in case test suite/case is platform dependent (optional);

• mark to skip pidchecker plugin (optional).

Example of test suite docstrings:

1 @pytest.mark.simplified

2 @helpers.run_on_platforms(["lxc",])

3 @pytest.mark.skip_pidcheck("snmpd")

4 @pytest.mark.acl

5 @pytest.mark.lag

6 class TestRSTPSimplified(object):

7 """Suite for testing custom feature.

8

9 """

Example of test case functions docstrings:

Write a summary of the particular test case which should explain actual devices behavior.

Describe test steps of the particular test case.

2.5. Development guide 31

TAF Documentation, Release 0.0.1

1 def test_bpdu_packet_format(self, env):

2 """Verify that BPDU packets sent by switch are correctly formatted.

3

4 Steps:

5 - # Capture BPDU frames from the DUT

6 - # Verify BPDU frames are correctly formatted

7

8 """

Its recommended to register all your markers in pytest.ini file.

1 # content of pytest.ini

2 [pytest]

3 markers =

4 simplified: mark a tests which have to be execudted on "simplified" setup.

The following setups are allowed: simplified, golden, and diamond.

Class Methods and Variables

This section contains internal variables and help methods used in the particular test suite.

Section should start with following comment separated with a blank line:

1 # Attributes and Properties

Then, class attributes should contain short inline description:

1 tp_id = 0x9100

2 tagged = "Tagged"

3 untagged = "Untagged"

Class method should have a docstring with following parts:

• summary with method description;

• parameters with name and description (optional);

• return value description (optional);

• usage examples (optional).

2.6 Continuous integration

Continuous integration can help catch bugs by running your tests automatically. The main goal is to
eliminate the long and tedious integration process, the work that you normally have to do between versions
final development stage and its deployment in production. A continuous integration (CI) process is
highly recommended and is extremely useful in ensuring that your application stays functional. TAF project
uses open source Travis continuous integration service.

2.6.1 TAF Travis CI job

• TAF project notifies Travis whenever pull request is submitted or updated.

• TAF Travis job is configured via .travis.yml and run script project checker.py.

32 Chapter 2. Guide

https://docs.travis-ci.com/

TAF Documentation, Release 0.0.1

Note: .travis.yml file is located in the TAF root directory

project checker.py file is located in TAF ci branch

TAF Travis job performs the following verification steps:

1. Run flake8 tool

2. Run pylint tool

3. Run taf/unittests

TAF Travis build status and logging messages you can find by the following link - https://travis-ci.org/taf3/
taf .

2.6.2 Code Errors that trigger -1 verified

1 FLAKE8_FATAL_ERRORS = {

2 "E101", # indentation contains mixed spaces and tabs

3 "E111", # indentation is not a multiple of four

4 "E112", # expected an indented block

5 "E113", # unexpected indentation

6 "E114", # indentation is not a multiple of four (comment)

7 "E115", # expected an indented block (comment)

8 "E116", # unexpected indentation (comment)

9 "E711", # (^) comparison to None should be 'if cond is None:'
10 "E712", # (^) comparison to True should be 'if cond is True:' or 'if cond:'
11 "E713", # test for membership should be 'not in'
12 "E714", # test for object identity should be 'is not'
13 "E721", # do not compare types, use 'isinstance()'
14 "E731", # do not assign a lambda expression, use a def

15 "W191", # indentation contains tabs

16 "W601", # .has_key() is deprecated, use 'in'
17 "W602", # deprecated form of raising exception

18 "W603", # '<>' is deprecated, use '!='
19 "W604", # backticks are deprecated, use 'repr()'
20 "F403", # 'from module import *' used; unable to detect undefined names

21 "F821", # undefined name name

22 "F822", # undefined name name in __all__

23 "F831", # duplicate argument name in function definition

24 "N804", # first argument of a classmethod should be named 'cls'
25 "N805", # first argument of a method should be named 'self'
26 "N811", # constant imported as non constant

27 "N812", # lowercase imported as non lowercase

28 "N813", # camelcase imported as lowercase

29 "N814", # camelcase imported as constant

30 }

1 PYLINT_FATAL_ERRORS = {

2 "C0121", # Missing required attribute "%s"

3 "C0202", # Class method %s should have cls as first argument

4 "C0203", # Metaclass method %s should have mcs as first argument

5 "C0204", # Metaclass class method %s should have %s as first argument

6 "C1001", # Old-style class defined.

7

8 "E0001", # (syntax error raised for a module; message varies)

(continues on next page)

2.6. Continuous integration 33

https://pypi.python.org/pypi/flake8
https://pypi.python.org/pypi/pylint/1.6.4
https://travis-ci.org/taf3/taf
https://travis-ci.org/taf3/taf

TAF Documentation, Release 0.0.1

(continued from previous page)

9 "E0011", # Unrecognized file option %r

10 "E0012", # Bad option value %r

11 "E0100", # __init__ method is a generator

12 "E0101", # Explicit return in __init__

13 "E0102", # %s already defined line %s

14 "E0103", # %r not properly in loop

15 "E0104", # Return outside function

16 "E0105", # Yield outside function

17 "E0106", # Return with argument inside generator

18 "E0107", # Use of the non-existent %s operator

19 "E0108", # Duplicate argument name %s in function definition

20 "E0202", # An attribute affected in %s line %s hide this method

21 "E0203", # Access to member %r before its definition line %s

22 "E0211", # Method has no argument

23 "E0213", # Method should have "self" as first argument

24 "E0221", # Interface resolved to %s is not a class

25 "E0222", # Missing method %r from %s interface

26 "E0235", # __exit__ must accept 3 arguments: type, value, traceback

27 "E0501", # Old: Non ascii characters found but no encoding specified (PEP 263)

28 "E0502", # Old: Wrong encoding specified (%s)

29 "E0503", # Old: Unknown encoding specified (%s)

30 "E0601", # Using variable %r before assignment

31 "E0602", # Undefined variable %r

32 "E0603", # Undefined variable name %r in __all__

33 "E0604", # Invalid object %r in __all__, must contain only strings

34 "E0611", # No name %r in module %r

35 "E0701", # Bad except clauses order (%s)

36 "E0702", # Raising %s while only classes, instances or string are allowed

37 "E0710", # Raising a new style class which doesn't inherit from BaseException

38 "E0711", # NotImplemented raised - should raise NotImplementedError

39 "E0712", # Catching an exception which doesn\'t inherit from BaseException: %s

40 "E1001", # Use of __slots__ on an old style class

41 "E1002", # Use of super on an old style class

42 "E1003", # Bad first argument %r given to super()

43 "E1004", # Missing argument to super()

44 "E1101", # %s %r has no %r member

45 "E1102", # %s is not callable

46 "E1103", # %s %r has no %r member (but some types could not be inferred)

47 "E1111", # Assigning to function call which doesn't return

48 "E1120", # No value passed for parameter %s in function call

49 "E1121", # Too many positional arguments for function call

50 "E1122", # Old: Duplicate keyword argument %r in function call

51 "E1123", # Passing unexpected keyword argument %r in function call

52 "E1124", # Parameter %r passed as both positional and keyword argument

53 "E1125", # Old: Missing mandatory keyword argument %r

54 "E1200", # Unsupported logging format character %r (%#02x) at index %d

55 "E1201", # Logging format string ends in middle of conversion specifier

56 "E1205", # Too many arguments for logging format string

57 "E1206", # Not enough arguments for logging format string

58 "E1300", # Unsupported format character %r (%#02x) at index %d

59 "E1301", # Format string ends in middle of conversion specifier

60 "E1302", # Mixing named and unnamed conversion specifiers in format string

61 "E1303", # Expected mapping for format string, not %s

62 "E1304", # Missing key %r in format string dictionary

63 "E1305", # Too many arguments for format string

64 "E1306", # Not enough arguments for format string

(continues on next page)

34 Chapter 2. Guide

TAF Documentation, Release 0.0.1

(continued from previous page)

65 "E1310", # Suspicious argument in %s.%s call

66

67 "F0001", # (error prevented analysis; message varies)

68 "F0002", # %s: %s (message varies)

69 "F0010", # error while code parsing: %s

70

71 "R0401", # Cyclic import (%s)

72 "W0102", # Dangerous default value %s as argument

73 "W0109", # Duplicate key %r in dictionary

74 "W0121", # Use raise ErrorClass(args) instead of raise ErrorClass, args.

75 "W0122", # Use of exec

76 "W0150", # %s statement in finally block may swallow exception

77 "W0199", # Assert called on a 2-uple. Did you mean \'assert x,y\'?
78 "W0211", # Static method with %r as first argument

79 "W0221", # Arguments number differs from %s method

80 "W0233", # __init__ method from a non direct base class %r is called

81 "W0234", # iter returns non-iterator

82 "W0311", # Bad indentation. Found %s %s, expected %s

83 "W0331", # Use of the <> operator

84 "W0332", # Use of "l" as long integer identifier

85 "W0333", # Use of the `` operator

86 "W0401", # Wildcard import %s

87 "W0402", # Uses of a deprecated module %r

88 "W0404", # Reimport %r (imported line %s)

89 "W0410", # __future__ import is not the first non docstring statement

90 "W0406", # Module import itself

91 "W0512", # Cannot decode using encoding "%s", unexpected byte at position %d

92 "W0601", # Global variable %r undefined at the module level

93 "W0602", # Using global for %r but no assigment is done

94 "W0604", # Using the global statement at the module level

95 "W0614", # Unused import %s from wildcard import

96 "W0622", # Redefining built-in %r

97 "W0623", # Redefining name %r from %s in exception handler

98 "W0631", # Using possibly undefined loop variable %r

99 "W0632", # Possible unbalanced tuple unpacking with sequence%s:

100 "W0633", # Attempting to unpack a non-sequence%s

101 "W0701", # Raising a string exception

102 "W0702", # No exception type(s) specified

103 "W0711", # Exception to catch is the result of a binary "%s" operation

104 "W0712", # Implicit unpacking of exceptions is not supported in Python 3

105 "W1001", # Use of "property" on an old style class

106 "W1111", # Assigning to function call which only returns None

107 "W1201", # Specify string format arguments as logging function parameters

108 "W1300", # Format string dictionary key should be a string, not %s

109 "W1301", # Unused key %r in format string dictionary

110 "W1501", # "%s" is not a valid mode for open.

}

2.6. Continuous integration 35

TAF Documentation, Release 0.0.1

36 Chapter 2. Guide

Chapter 3

Indices and tables

• genindex

• modindex

37

	Goals:
	Guide
	TAF architecture
	Test execution preconfiguration
	Test execution
	Contribution guidelines
	Development guide
	Continuous integration

	Indices and tables

