

Introduction

sysPass is a password management system written in PHP that allows a centralized and collaborative passwords management.

Features

	Encrypted passwords using AES-256 CTR

	Interface based on Material Design Lite with HTML5 and AJAX

	Multiuser with users, groups and profiles management

	Advanced profile management with 29 access levels

	MySQL/MariaDB, OpenLDAP and Active Directory authentication

	Activity notifications by email and in-app

	Public links to accounts without login

	Accounts changes history and restore points

	Accounts associated files management with images preview

	Multilanguage

	Portable backup format and export to encrypted XML

	Actions and events audit with the ability to send messages to a remote Syslog in CEF format

	API for integrating with other applications

	Import from KeePass and CSV

	One step installation

What sysPass does not do

	It does not store any UNencrypted keys in the server

	It does not send any data to an external service

	It does not encrypt the accounts’ password individually, it uses a key protected by global master password for all instead

	It does not perform password changes on the servers

	It does not encrypt the accounts’ data, only the password, custom fields’ and plugins’ data, because you wouldn’t be able to perform searches

	It isn’t like APT: doesn’t have Super Cow Powers!!

	Installation
	Debian 9 Installation

	CentOS 7.x Installation

	Docker Installation

	Hosting Mode

	Configuration
	LDAP Configuration

	Apache Configuration

	Application
	Encryption

	Diagrams

	Security

	Authentication

	Authorization

	Permissions

	Accounts Searching

	API

	Features

	Plugins

	Backup Strategies

	Updating
	Strategies

	2.1 Version

	3.0 Version

	3.1 Version

	HOWTOs
	How to test a sysPass update

	How to restore sysPass

	Azure MySQL

	How to install and configure Nginx

	LDAP Troubleshooting

	Frequently Asked Questions
	What is sysPass?

	Where can I install sysPass?

	How do I install sysPass

	Which authentication methods are used?

	What is the encryption for?

	What is portable?

	Is there a master password for each account/user?

	What are Wiki links?

	What are categories?

	What are user groups?

	What is customer field?

	Is there an account history?

	What are profiles?

	What is maintenance mode?

	Can I change Master Password?

	I don’t remember Master Password, can I decrypt the passwords?

	Does backup runs on Windows?

	The language doesn’t change

	What are these strange characters in password fields?

Installation

	Debian 9 Installation
	Prerequisites

	Installation

	Directories and permissions

	Installing dependencies

	Environment configuration

	CentOS 7.x Installation
	Prerequisites

	Installation

	Directories and permissions

	SELinux

	Installing dependencies

	Environment configuration

	Docker Installation
	Docker Compose

	Docker

	Database Access

	Hosting Mode

Debian 9 Installation

Prerequisites

	Web server (Apache/Nginx/Lighttpd) with SSL enabled.

	MariaDB >= 10.1

	PHP >= 7.0

	
	PHP modules

	
	mysql

	curl

	json

	gd

	xml

	mbstring

	intl

	readline

	ldap (optional)

	mcrypt (optional for importing older XML export files)

	Package with latest sysPass version https://github.com/nuxsmin/sysPass/releases/latest

	Or clone sysPass repository from GitHub https://github.com/nuxsmin/sysPass.git

Installation

Debian GNU/Linux package installation.

$ sudo apt install locales apache2 libapache2-mod-php7.0 php-pear php7.0 php7.0-cgi php7.0-cli php7.0-common php7.0-fpm php7.0-gd php7.0-json php7.0-mysql php7.0-readline php7.0 curl php7.0-intl php7.0-ldap php7.0-mcrypt php7.0-xml php7.0-mbstring
$ sudo service apache2 restart

Optional for enabling SSL.

In order to increase your sysPass instance security, please consider to use SSL. See Security and the following resources for Debian:

	Sites only accessible from LAN: https://doc.debian.org/configuration/Self-Signed_Certificate

	Sites accessible from Internet, you could use Let’s Encrypt, see https://certbot.eff.org/

Directories and permissions

Create a directory for sysPass within the web server root.

$ sudo mkdir /var/www/html/syspass

If you go with the packaged version, download and unpack sysPass files.

$ cd /var/www/html/syspass
Strip version directory and extract contents to current directory.
$ sudo tar xzf syspass.tar.gz --strip-components=1
If using the vendors package
$ sudo tar xzf vendors.tar.gz

If you go with Git cloned version, clone sysPass GitHub repository.

$ sudo git clone https://github.com/nuxsmin/sysPass.git /var/www/html/syspass

Setup directories permissions. The owner should match the web server running user.

$ sudo chown apache -R /var/www/html/syspass
$ sudo chmod 750 /var/www/html/syspass/app/config /var/www/html/syspass/app/backup

Installing dependencies

PHP Composer is needed to keep up-to-date dependencies and an easy way to apply security or functional patches to them.

You can either download the dependencies using Composer itself or by getting the latest “vendor.tar.gz” package from the release page.

Note

If you don’t have any Internet access from the server, the vendor package will provide all the release dependencies and you don’t need to deal with composer commands.

Using PHP Composer

From sysPass root directory, download and install Composer (https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md)

Create a bash script called “install_composer.sh” and paste this code in it:

#!/bin/sh
EXPECTED_SIGNATURE="$(wget -q -O - https://composer.github.io/installer.sig)"
php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
ACTUAL_SIGNATURE="$(php -r "echo hash_file('sha384', 'composer-setup.php');")"

if ["$EXPECTED_SIGNATURE" != "$ACTUAL_SIGNATURE"]
then
 >&2 echo 'ERROR: Invalid installer signature'
 rm composer-setup.php
 exit 1
fi

php composer-setup.php --quiet
RESULT=$?
rm composer-setup.php
exit $RESULT

$ chmod +x install_composer.sh
$./install_composer.sh

Then install sysPass dependencies

$ php composer.phar install --no-dev

Environment configuration

Please, point your web browser to the following URL and follow the installer steps

https://IP_OR_SERVER_ADDRESS/syspass/index.php

Note

More information about how sysPass works on Application

Warning

It’s very advisable to take a look to security advices on Security

CentOS 7.x Installation

Prerequisites

	Web server (Apache/Nginx/Lighttpd) with SSL enabled.

	MariaDB >= 10.1

	PHP >= 7.0 (7.1 or above recommended)

	
	PHP modules

	
	mysqlnd

	curl

	json

	gd

	xml

	mbstring

	intl

	readline

	ldap (optional)

	mcrypt (optional for importing older XML export files)

	Package with latest sysPass version https://github.com/nuxsmin/sysPass/releases/latest

	Or clone sysPass repository from GitHub https://github.com/nuxsmin/sysPass.git

Installation

CentOS 7 package installation (http://wiki.centos.org/SpecialInterestGroup/SCLo).

$ sudo yum -y install centos-release-scl.noarch
$ sudo yum -y install rh-php73 rh-php73-php rh-php73-php-fpm httpd rh-mariadb103 wget
$ sudo yum -y install rh-php73-php-gd rh-php73-php-intl rh-php73-php-json rh-php73-php-ldap rh-php73-php-mbstring rh-php73-php-mysqlnd rh-php73-php-opcache rh-php73-php-pdo rh-php73-php-xml rh-php73-php-zip

Automated start/stop Apache web server and MariaDB server.

$ sudo systemctl enable --now httpd24-httpd.service rh-mariadb103-mariadb.service

Setting up MariaDB.

$ sudo scl enable rh-mariadb103 mysql_secure_installation

Enabling firewall ports.

$ sudo firewall-cmd --zone=public --add-service=http --add-service=https
$ sudo firewall-cmd --runtime-to-permanent

Optional for enabling SSL.

In order to increase your sysPass instance security, please consider to use SSL. See Security and the following resources for Debian:

	Sites only accessible from LAN: https://doc.debian.org/configuration/Self-Signed_Certificate

	Sites accessible from Internet, you could use Let’s Encrypt, see https://certbot.eff.org/

Directories and permissions

Create a directory for sysPass within the web server root.

$ sudo mkdir /var/www/html/syspass

If you go with the packaged version, download and unpack sysPass files.

$ cd /var/www/html/syspass
Strip version directory and extract contents to current directory.
$ sudo tar xzf syspass.tar.gz --strip-components=1
If using the vendors package
$ sudo tar xzf vendors.tar.gz

If you go with Git cloned version, clone sysPass GitHub repository.

$ sudo git clone https://github.com/nuxsmin/sysPass.git /var/www/html/syspass

Setup directories permissions. The owner should match the web server running user.

$ sudo chown apache -R /var/www/html/syspass
$ sudo chmod 750 /var/www/html/syspass/app/config /var/www/html/syspass/app/backup

SELinux

sysPass needs to be allowed to write its configuration and some other files (backup, cache, temp, etc). We have 2 choices:

Note

Please, run only one of the choices

	Change the SELinux context of files:

$ sudo setsebool -P httpd_can_connect_ldap 1
$ sudo semanage fcontext -a -t httpd_sys_rw_content_t "/var/www/html/syspass/app/(config|backup|cache|temp)(/.*)?"
$ sudo restorecon -R -v /var/www/html/syspass

	Disable SELinux by editing the file “/etc/sysconfig/selinux” and setting “SELINUX” variable’s value to “disabled”. You need to restart the system. Until then you can use permissive mode which won’t enforce the policies:

$ sudo setenforce 0

Installing dependencies

PHP Composer is needed to keep up-to-date dependencies and an easy way to apply security or functional patches to them.

You can either download the dependencies using Composer itself or by getting the latest “vendor.tar.gz” package from the release page.

Note

If you don’t have any Internet access from the server, the vendor package will provide all the release dependencies and you don’t need to deal with composer commands.

Using PHP Composer

From sysPass root directory, download and install Composer (https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md)

Create a bash script called “install_composer.sh” and paste this code in it:

#!/bin/sh
EXPECTED_SIGNATURE="$(wget -q -O - https://composer.github.io/installer.sig)"
php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
ACTUAL_SIGNATURE="$(php -r "echo hash_file('sha384', 'composer-setup.php');")"

if ["$EXPECTED_SIGNATURE" != "$ACTUAL_SIGNATURE"]
then
 >&2 echo 'ERROR: Invalid installer signature'
 rm composer-setup.php
 exit 1
fi

php composer-setup.php --quiet
RESULT=$?
rm composer-setup.php
exit $RESULT

$ chmod +x install_composer.sh
$./install_composer.sh

Then install sysPass dependencies

$ php composer.phar install --no-dev

Environment configuration

Please, point your web browser to the following URL and follow the installer steps

https://IP_OR_SERVER_ADDRESS/syspass/index.php

Note

More information about how sysPass works on Application

Warning

It’s very advisable to take a look to security advices on Security

Docker Installation

Docker [https://docs.docker.com/engine/installation/] based installations allow to run the application in an isolated environment besides try out multiple versions without installing any package on the host system.

sysPass can be ran in Docker containers [https://en.wikipedia.org/wiki/Docker_%28software%29] which has been compiled on top of latest Debian [https://www.debian.org/] stable version (Stretch) and avoiding any package compilation.

Docker images can be got from Docker Hub [https://hub.docker.com/r/syspass/syspass/tags] and they are complied automatically from Docker source files on https://github.com/nuxsmin/docker-syspass

There are two ways for installing:

	Using Docker Compose [https://docs.docker.com/compose/] (recommended): deploys a fully working sysPass environment including application and database services.

	Using Docker [https://docs.docker.com/engine/installation/]: deploys each service (application and database) separately.

Docker Compose

In order to deploy using this method, you need to issue the following steps:

	Install Docker engine from https://docs.docker.com/install/

	Install Docker Compose from https://docs.docker.com/compose/install/

	Download “docker-compose.yml” sysPass’ file from https://raw.githubusercontent.com/nuxsmin/docker-syspass/master/docker-compose.yml or use the following one:

version: '2'
services:
 app:
 container_name: syspass-app
 image: syspass/syspass:3.1.0 # Set this version tag to desired one
 restart: always
 # Will listen on ports 80 and 443 of the host
 ports:
 - "80:80"
 - "443:443"
 depends_on:
 - db
 volumes:
 - syspass-config:/var/www/html/sysPass/app/config
 - syspass-backup:/var/www/html/sysPass/app/backup
 # Set USE_SSL=no if you're using a LB or reverse proxy for SSL offloading
 environment:
 - USE_SSL=yes
 db:
 container_name: syspass-db
 restart: always
 image: mariadb:10.2
 # Set a secure password for MariaDB root user
 environment:
 - MYSQL_ROOT_PASSWORD=syspass
 # This ports will only be accesible internally
 expose:
 - "3306"
 volumes:
 - syspass-db:/var/lib/mysql

Persistent volumes to be used across updates
volumes:
 syspass-config: {}
 syspass-backup: {}
 syspass-db: {}

	Run “docker-compose” tool for setting up the environment:

docker-compose -p syspass -f docker-compose.yml up -d

This will download the latest sysPass stable image and the database (MariaDB) one.

	Take a look to deployment’s logs:

docker-compose -p syspass -f docker-compose.yml logs -f

Note

Docker Compose will create an isolated network for all sysPass services making possible to use DNS resolution between containers. You can use “syspass-db” for setting up the database hostname in sysPass installation page.

It will create two fixed volumes for sysPass application, one for “…/app/config” directory and the other for “…/app/backup” directory. An additional fixed volume will be created for the database container’s data.

Warning

sysPass container will publish 80 and 443 host’s ports to the outside. You could change this behavior by tweaking the Docker Compose’s file.

Tip

You can disable HTTPS redirection by setting “USE_SSL=no” within “docker-compose.yml” file. This will offload the SSL encryption to a LB or reverse proxy.

Docker

By this way all the services need to be deployed manually. The following steps are needed:

	Install Docker engine from https://docs.docker.com/install/

	Create network for sysPass services:

docker network create syspass-net

	Create fixed volumes for sysPass services:

docker volume create syspass-app-config
docker volume create syspass-app-backup
docker volume create syspass-db-data

	Setup sysPass database container:

docker run --name syspass-db \
--network syspass-net \
--restart unless-stopped \
--env MYSQL_ROOT_PASSWORD=syspass \
--volume syspass-db-data:/var/lib/mysql \
--detach mariadb:10.2

	Setup sysPass application container:

docker run --name syspass-app \
--network syspass-net \
--publish 80:80 \
--restart unless-stopped \
--volume syspass-app-config:/var/www/html/sysPass/app/config \
--volume syspass-app-backup:/var/www/html/sysPass/app/backup \
--detach syspass/syspass:3.1.0

	Connection data will be displayed in application container’s console:

docker logs -f syspass-app

Tip

You can install sysPass extensions (plugins) by setting “COMPOSER_EXTENSIONS” environment variable when deploying the sysPass application container. Example: “–env COMPOSER_EXTENSIONS=’syspass/plugin-authenticator’”

Database Access

You can get access to the database using the following connection data:

	User: root

	Password: syspass

You may install other sysPass images from Docker Hub [https://hub.docker.com/r/syspass/syspass/tags]

Note

Please follow the installer steps in order to setup the sysPass application instance.

More information about how sysPass works on Application

Warning

It’s very advisable to take a look to security advices on Security

Hosting Mode

The hosting mode is for those installations that are running on a external hosting, where is not possible to create neither database nor connection user for it.

Though hosting mode is about the database creation tasks, you would find useful to download the dependencies bundle when there isn’t SSH access to the web server. The bundle will be attached to every release on GitHub as “vendor.tar.gz”. It should be unpacked within sysPass directory.

Note

It won’t create neither database (except tables) nor connection user

The steps to perform the installation are the following:

	Create an user/password for sysPass connection at the hosting panel

	Create the sysPass database (not tables) and give permissions to the previous user on it

	Start the sysPass installation and use the user/password that was previously created for sysPass (the two first fields in the installation page)

	Provide a MySQL/MariaDB user with administration rights (it could be the same as previous if it has enough permissions), in order to create sysPass database tables. This user is used only for the installation process and it often would be the user/password for the hosting management

	If database connection and permissions are right, the installation should finish successfully

Note

In case of errors, you could take a look to the web server error logs or “…/app/config/syspass.log”.

Configuration

	LDAP Configuration
	Active Directory

	OpenLDAP

	Tips

	Links

	Apache Configuration
	Apache with HTTPS

LDAP Configuration

Active Directory

Tips

	Checks if connection user is member of group “Account Operators”

OpenLDAP

In order to setup an OpenLDAP server correctly, you can follow the article at https://wiki.debian.org/LDAP/OpenLDAPSetup which describes the steps to configure a fully operational server under a Debian like distribution.

In OpenLDAP, to the use the group membership feature you need to add an ‘overlay’ called ‘memberof’. It’s a module that adds an internal attribute to those users which belongs to a group.

These are the steps to configure that module:

	Create the file ‘ldap_memberof_add.ldif’ with this content:

dn: cn=module,cn=config
objectClass: olcModuleList
cn: module
olcModulePath: /usr/lib/ldap
olcModuleLoad: memberof

	Create the file ‘ldap_memberof_config.ldif’ with this content:

dn: olcOverlay=memberof,olcDatabase={1}hdb,cn=config
objectClass: olcMemberOf
objectClass: olcOverlayConfig
objectClass: olcConfig
objectClass: top
olcOverlay: memberof
olcMemberOfDangling: ignore
olcMemberOfRefInt: TRUE
olcMemberOfGroupOC: groupOfNames
olcMemberOfMemberAD: member
olcMemberOfMemberOfAD: memberOf

	Modify the LDAP configuration by running these commands:

ldapadd -D cn=admin,cn=config -w "password" -H ldapi:/// -f memberof_add.ldif
ldapadd -D cn=admin,cn=config -w "password" -H ldapi:/// -f memberof_config.ldif

Tips

	Check whether the sysPass ‘admin’ user is the same in OpenLDAP, you need to add this user to the LDAP group that have access permissions to sysPass.

	The username and email ofthe LDAP users are populated from ‘displayname’,’fullname’ and ‘mail’ attributes.

	You could use ldaps by setting a connection URI like ‘ldaps:/ /my_ldap_server’.

	You could install phpLDAPadmin to create and manage the LDAP objects.

Links

	LDAP Debian Wiki: https://wiki.debian.org/LDAP/OpenLDAPSetup

	‘memberof’ overlay config: http://www.cbjck.de/2012/05/enabling-the-memberof-overlay-for-openldap/

Apache Configuration

If you are running an Apache httpd web server this configuration/s would be useful in order to configure and protect your sysPass application.

Apache with HTTPS

This code will redirect any unencrypted request to an HTTPS enabled VirtualHost.

It requires the following modules enabled:

	ssl

	rewrite

Please make sure you replace the following placeholders:

	“/your/syspass/root/directory”: where sysPass is installed (eg. “”/var/www/sysPass”)

	“www.example.com”: your server DNS name

#
File: syspass.conf
#

RedirectMatch "^/$" "/index.php"

<Directory "/your/syspass/root/directory">
 DirectoryIndex index.php
 Options -Indexes -FollowSymLinks -Includes -ExecCGI

 <RequireAny>
 Require expr "%{REQUEST_URI} =~ m#.*/index\.php(\?r=)?#"
 Require expr "%{REQUEST_URI} =~ m#.*/api\.php$#"
 Require expr "%{REQUEST_URI} =~ m#^/?$#"
 </RequireAny>
</Directory>

#<Directory ~ "/your/syspass/root/directory/.*/(css|js|images|fonts)">
Require all granted
#</Directory>

<FilesMatch ".(png|jpg|js|css|ttf|otf|eot|woff|woff2|ico)$">
 Require all granted
</FilesMatch>

<VirtualHost *:80>
 # the server uses to identify itself. This is used when creating
 # redirection URLs. In the context of virtual hosts, the ServerName
 # specifies what hostname must appear in the request's Host: header to
 # match this virtual host. For the default virtual host (this file) this
 # value is not decisive as it is used as a last resort host regardless.
 # However, you must set it for any further virtual host explicitly.
 ServerName www.example.com

 ServerAdmin webmaster@localhost
 DocumentRoot /your/syspass/root/directory

 # Available loglevels: trace8, ..., trace1, debug, info, notice, warn,
 # error, crit, alert, emerg.
 # It is also possible to configure the loglevel for particular
 # modules, e.g.
 #LogLevel info ssl:warn

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 <IfModule mod_ssl.c>
 RewriteEngine On
 RewriteCond %{HTTPS} !=on
 RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]
 </IfModule>
</VirtualHost>

<IfModule mod_ssl.c>
 <VirtualHost _default_:443>
 ServerName www.example.com
 ServerAdmin webmaster@localhost
 DocumentRoot /your/syspass/root/directory

 # Available loglevels: trace8, ..., trace1, debug, info, notice, warn,
 # error, crit, alert, emerg.
 # It is also possible to configure the loglevel for particular
 # modules, e.g.
 #LogLevel info ssl:warn

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # For most configuration files from conf-available/, which are
 # enabled or disabled at a global level, it is possible to
 # include a line for only one particular virtual host. For example the
 # following line enables the CGI configuration for this host only
 # after it has been globally disabled with "a2disconf".
 #Include conf-available/serve-cgi-bin.conf

 # SSL Engine Switch:
 # Enable/Disable SSL for this virtual host.
 SSLEngine on

 # A self-signed (snakeoil) certificate can be created by installing
 # the ssl-cert package. See
 # /usr/share/doc/apache2/README.Debian.gz for more info.
 # If both key and certificate are stored in the same file, only the
 # SSLCertificateFile directive is needed.
 SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
 SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

 # Server Certificate Chain:
 # Point SSLCertificateChainFile at a file containing the
 # concatenation of PEM encoded CA certificates which form the
 # certificate chain for the server certificate. Alternatively
 # the referenced file can be the same as SSLCertificateFile
 # when the CA certificates are directly appended to the server
 # certificate for convinience.
 #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt

 # Certificate Authority (CA):
 # Set the CA certificate verification path where to find CA
 # certificates for client authentication or alternatively one
 # huge file containing all of them (file must be PEM encoded)
 # Note: Inside SSLCACertificatePath you need hash symlinks
 # to point to the certificate files. Use the provided
 # Makefile to update the hash symlinks after changes.
 #SSLCACertificatePath /etc/ssl/certs/
 #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt

 # Certificate Revocation Lists (CRL):
 # Set the CA revocation path where to find CA CRLs for client
 # authentication or alternatively one huge file containing all
 # of them (file must be PEM encoded)
 # Note: Inside SSLCARevocationPath you need hash symlinks
 # to point to the certificate files. Use the provided
 # Makefile to update the hash symlinks after changes.
 #SSLCARevocationPath /etc/apache2/ssl.crl/
 #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

 # Client Authentication (Type):
 # Client certificate verification type and depth. Types are
 # none, optional, require and optional_no_ca. Depth is a
 # number which specifies how deeply to verify the certificate
 # issuer chain before deciding the certificate is not valid.
 #SSLVerifyClient require
 #SSLVerifyDepth 10

 # SSL Engine Options:
 # Set various options for the SSL engine.
 # o FakeBasicAuth:
 # Translate the client X.509 into a Basic Authorisation. This means that
 # the standard Auth/DBMAuth methods can be used for access control. The
 # user name is the `one line' version of the client's X.509 certificate.
 # Note that no password is obtained from the user. Every entry in the user
 # file needs this password: `xxj31ZMTZzkVA'.
 # o ExportCertData:
 # This exports two additional environment variables: SSL_CLIENT_CERT and
 # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the
 # server (always existing) and the client (only existing when client
 # authentication is used). This can be used to import the certificates
 # into CGI scripts.
 # o StdEnvVars:
 # This exports the standard SSL/TLS related `SSL_*' environment variables.
 # Per default this exportation is switched off for performance reasons,
 # because the extraction step is an expensive operation and is usually
 # useless for serving static content. So one usually enables the
 # exportation for CGI and SSI requests only.
 # o OptRenegotiate:
 # This enables optimized SSL connection renegotiation handling when SSL
 # directives are used in per-directory context.
 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire
 <FilesMatch "\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>

 # SSL Protocol Adjustments:
 # The safe and default but still SSL/TLS standard compliant shutdown
 # approach is that mod_ssl sends the close notify alert but doesn't wait for
 # the close notify alert from client. When you need a different shutdown
 # approach you can use one of the following variables:
 # o ssl-unclean-shutdown:
 # This forces an unclean shutdown when the connection is closed, i.e. no
 # SSL close notify alert is send or allowed to received. This violates
 # the SSL/TLS standard but is needed for some brain-dead browsers. Use
 # this when you receive I/O errors because of the standard approach where
 # mod_ssl sends the close notify alert.
 # o ssl-accurate-shutdown:
 # This forces an accurate shutdown when the connection is closed, i.e. a
 # SSL close notify alert is send and mod_ssl waits for the close notify
 # alert of the client. This is 100% SSL/TLS standard compliant, but in
 # practice often causes hanging connections with brain-dead browsers. Use
 # this only for browsers where you know that their SSL implementation
 # works correctly.
 # Notice: Most problems of broken clients are also related to the HTTP
 # keep-alive facility, so you usually additionally want to disable
 # keep-alive for those clients, too. Use variable "nokeepalive" for this.
 # Similarly, one has to force some clients to use HTTP/1.0 to workaround
 # their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and
 # "force-response-1.0" for this.
 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 # MSIE 7 and newer should be able to use keepalive
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown
 </VirtualHost>
</IfModule>

The final step is placing this file in “/etc/apache2/sites-available” and run the following commands:

$ sudo a2ensite syspass.conf
$ sudo apache2 restart

Warning

Make sure you don’t run overlapping configurations on Apache web server

Application

sysPass is an application that uses a MySQL/MariaDB database to store the data of all its components except for the configuration, which is stored in an XML file within ‘app/config’ directory.

Warning

It’s important that ‘…/app/config’ directory is not accessible from the web service, because it could reveal important information.

	Encryption
	Temporary Master Key

	PKI-RSA

	Diagrams
	Login Process

	Master Password Process

	Temporary Master Key Process

	PKI Process

	Security

	Authentication

	Authorization

	Permissions
	ACL

	Accounts Searching

	API
	Methods

	Features

	Plugins
	Methods

	Example

	Events

	Backup Strategies
	Docker

Encryption

Warning

If you already use a sysPass version <= 2.0, it’s advisable to update to 2.1 version and then to 3.1, in order to use the new security improvements on the encryption mechanisms (CVE-2017-5999). Please see Updating for upgrading details.

sysPass encryption is based on AES-256 [http://es.wikipedia.org/wiki/Advanced_Encryption_Standard] in CTR [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29] mode by using PHP’s OpenSSL [http://php.net/manual/en/book.openssl.php] module. It uses the Defuse/php-encryption [https://github.com/defuse/php-encryption/blob/master/docs/CryptoDetails.md] library for the encryption modules and functions management.

The encrypted data (up to 3.1 version) are:

	Accounts’ passwords (always)

	Accounts’ public links (always)

	Custom fields’ data (if set)

	Plugins’ data

	sysPass XML format export (if set)

	PHP’s session data (if set)

In order to use the application, for every user first login, either a master password or a temporary master key (see Temporary Master Key) will be needed. That is so because the master password is not stored in the web server but a a generated Blowfish hash is saved in order to check if the user is using the correct master password.

After logging in with the master password, it’s encrypted and stored within the user’s data in the database. The encryption key is generated using a derived key from user’s password and login, and a secure random salt generated by openssl_random_pseudo_bytes [http://php.net/manual/en/function.openssl-random-pseudo-bytes.php] (stored in “…/app/config/config.xml” file).

On next user logins the master password is got from the user’s data and decrypted by using the derived key. After this, the master password is encrypted again for storing it in the user’s PHP session, so every time the master password is needed it must be decrypted using a session-based generated key. This key is regenerated every 120 seconds.

The master password will be prompted again if:

	The user changes either its login password or username. The previous password will be requested.

	It has been changed by the administrator.

	The configuration salt is changed.

Note

A temporary master key (see Temporary Master Key) could be used instead of the real master password

Temporary Master Key

A temporary master key could be generated to be used by the application users, so it won’t be needed to tell the real master password.

For the temporary master key generation the real master password is encrypted using a secure key generated by openssl_random_pseudo_bytes [http://php.net/manual/en/function.openssl-random-pseudo-bytes.php]. Then a Blowfish generated hash of it is stored in the database “”Config” table.” in order to check it when the temporary master key is provided on login.

Note

The real master password is never stored unencrypted. For checking the temporary master key, a Blowfish generated hash is only used

PKI-RSA

In order to improve the security of the sent data, RSA [https://en.wikipedia.org/wiki/RSA_(cryptosystem)] (PKI [https://en.wikipedia.org/wiki/Public_key_infrastructure]) is being used for encrypting the passwords that are being sent from the application forms. This prevents to send sensitive date through plain channels.

Public and private RSA [https://en.wikipedia.org/wiki/RSA_(cryptosystem)] keys are generated within the application “…/app/config” directory.

Note

Data flowing from server to client side is not encrypted unless you run over an HTTPS channel.

Diagrams

Login Process

[image: @startuml start :Login; :Get user data; :Retrieve the encrypted master key; note right Generated a secure key protected by a password using: password + login + hash end note if (Does it have the key saved?) then (Yes) :Decrypt the master key; else (No) :Login; :Request master key; if (Is it a temporary master key?) then (Yes) :Verify; else (No) :Verify master key; endif endif :Encrypt and save in the user's session; note right Generated a secure key protected by a password using: session_id + sid_start_time end note stop @enduml]

Master Password Process

[image: @startuml start :New master key; :Begin SQL transaction; :Decrypt accounts and encrypt them again; :Decrypt accounts history and encrypt them again; :Decrypt custom fields and encrypt them again; if (Is there any error?) then (Yes) :Rollback transaction; :Display error and finalize; else (No) :Finalize SQL transaction; :Generate a Blowfish hash an save it in the DB; note right Saved in the config table. end note :Update generation date in the DB; note right It forces to all users to change the master key end note :Send email; endif stop @enduml]

Temporary Master Key Process

[image: @startuml start :Retrieve the master key from the session; :Generate password protected key for encrypting the master key; note right Generated from a password using: random_hash + config_salt end note :Save encrypted in the DB; note right Saved in the config table. end note :Generate a Blowfish hash and save it in the BD; note right Saved in the config table. end note :Display the encryption key in the current session; note right It's deleted on log out end note :Send email; stop @enduml]

PKI Process

[image: @startuml == Initialization == Client -> Server: Requests environment data within PKI Server --> Client: Sends the public key note right Key pairs (public and private) are created if not exists end note == Sending form data == Client -> Server: Sends password data encrypted note left: Using public key within Javascript Server --> Client: Decrypts the password, stores it and sends response @enduml]

Warning

Be aware that the highest security risk is in the users themselves, because a compromised password could cause a security leak.

A sysPass compromised server could be dangerous if the database is placed alongside the web server, because the network data could be sniffed so the passwords would be revealed.

Security

sysPass has some security mechanisms to mitigate some kind of events and actions that could compromise the application security. Among them are:

	Security token generation for sending forms

	Removing of unwanted characters from received data

	Type casting of received data

	Hash generation for export and backup files name

	RSA (PKI) encryption is used for sending passwords within forms

Although these actions, some other task should be performed in order to secure the web server components and communications by:

	Using HTTPS

	Limiting access to ‘…/app/config’ and ‘…/app/backup’ directories

	Enforcing web server access policies

In order to limit the access to the directories through Apache, ‘.htaccess’ files could be used within the directories or by modifying the site configuration:

Apache 2.4 (after 2.4.16)
<Directory "/var/www/html/sysPass">
 Options -Indexes -FollowSymLinks -Includes -ExecCGI
 <RequireAny>
 Require expr "%{REQUEST_URI} =~ m#.*/index\.php(\?r=)?#"
 Require expr "%{REQUEST_URI} =~ m#.*/api\.php$#"
 Require expr "%{REQUEST_URI} =~ m#^/?$#"
 </RequireAny>
</Directory>

<Directory "/var/www/html/sysPass/public">
 Require all granted
</Directory>

<FilesMatch "\.(png|jpg|js|css|ttf|otf|eot|woff|woff2|ico)$">
 Require all granted
</FilesMatch>

Apache 2.4 (before 2.4.16)
<Directory "/var/www/html/sysPass">
 Options -Indexes -FollowSymLinks -Includes -ExecCGI
 <RequireAny>
 Require expr %{REQUEST_URI} =~ m#.*/index\.php(\?r=)?#
 Require expr %{REQUEST_URI} =~ m#.*/api\.php$#
 Require expr %{REQUEST_URI} =~ m#^/?$#
 </RequireAny>
</Directory>

<Directory "/var/www/html/sysPass/public">
 Require all granted
</Directory>

<FilesMatch "\.(png|jpg|js|css|ttf|otf|eot|woff|woff2|ico)$">
 Require all granted
</FilesMatch>

Danger

‘…/app/config’ directory shouldn’t be accessible through the web server, it could reveal private data.

Authentication

For sysPass authentication it could be possible to use several methods:

	MySQL/MariaDB database (by default)

	LDAP directory (OpenLDAP, eDirectory, Active Directory, freeIPA, etc)

Note

If LDAP option is enabled, the database authentication is used when the LDAP service is unavailable or the user doesn’t exist.

For the database authentication, a generated Blowfish hash from user’s password is checked, so the password is never stored.

If LDAP is enabled:

	The user’s Blowfish generated hash is stored in order to check it, if the LDAP service is unavailable.

	Neither the user’s login nor name nor email can be modified.

Authorization

For sysPass authorization it could be possible to use several methods:

	Auth Basic [https://en.wikipedia.org/wiki/Basic_access_authentication] (by default)

	Two Factor 2FA [https://en.wikipedia.org/wiki/Multi-factor_authentication] (Authenticator Plugin [https://github.com/sysPass/plugin-Authenticator])

The Auth Basic [https://en.wikipedia.org/wiki/Basic_access_authentication] authorization could be enabled through the configuration module, so if the HTTP authorization header with the user’s data is sent, it will be checked whether the sysPass user’s login matches against the Auth Basic [https://en.wikipedia.org/wiki/Basic_access_authentication] one.

The 2FA [https://en.wikipedia.org/wiki/Multi-factor_authentication] authorization, through the Authenticator Plugin [https://github.com/sysPass/plugin-Authenticator], is done by generating an OTP [https://en.wikipedia.org/wiki/One-time_password] token from Google Authenticator [https://en.wikipedia.org/wiki/Google_Authenticator] or similar applications. This authorization could be enabled from the user’s preferences.

Permissions

sysPass permissions are set in users’ profile. By default only accounts searching can be done.

There are 29 permission types:

	Accounts

	Create - allows to create new accounts

	View - allows to view the accounts’ details 1

	View Password - allows to view the accounts’ password 1

	Edit - allows to modify the accounts and its files 1

	Edit Password - allows to modify the accounts’ password 1

	Delete - allows to delete accounts 1

	Files - allows to view account’s files

	Share Link - allows to create public links

	Private - allows to create private accounts

	Private for Group - allows to create private accounts only accessible by the account’s main group

	Permissions - allows to view and modify the accounts’ permissions 1

	Global Search - allows to perform a searching in all the accounts except in the private ones 2

	Management

	Users - allows full access to the users management 3

	Groups - allows full access to the user groups management

	Profiles - allows full access to the user profiles management

	Categories - allows full access to categories management

	Clients - allows full access to clients management

	Custom Fields - allows full access to custom fields management

	API Authorizations - allows full access to API authorizations management

	Public Links - allows full access to the public links management

	Accounts - allows full access to accounts management

	Files- allows full access to files management

	Tags - allows full access to the tags management

	Configuration

	General - allows full access to the site, accounts, wiki, ldap and email configuration

	Encryption - allows full access to the master password configuration

	Backup - allows full access to perform backups 4

	Import - allows full access to import XML and CSV files

	Others

	Event Log - allows full access to the event log

ACL

Users and Groups

	User profiles allow to set which actions could be done by the user

	An user can only display or modify accounts if:

	Is the account’s owner

	Is member of account’s primary group

	Is member of account’s secondary groups

	Is listed as a secondary user of the account

	His/Her main group is listed as a secondary group of the account

	Is included through a group and the ‘Secondary Groups Access’ option is enabled

	Private accounts can only be accessed by the owner

	Private accounts for groups can only be accessed by the users of the main group

	Application Admin: allows full access to all the application modules and accounts, except private ones

	Accounts Admin: allows full access to all the accounts, except private ones

API

API’s access permissions are complementary to the accounts access permissions, so users and groups ACLs will be applied when an account is either listed or accessed.

Notes

	1(1,2,3,4,5,6)

	Only the accounts that the user and its group are granted

	2

	When the account access is not granted, he/she will only be able to perform a ‘Request for Account Modification’

	3

	‘Application Admin’ users cannot be modified by other users

	4

	Only ‘Application Admin’ users can download the backup or XML files

Accounts Searching

The accounts searching performs a query for the entered text within the fields ‘name’, ‘login’, ‘url’ and ‘notes’.

Results filtering could be done by selecting category, client or tags.

The tag filtering is cumulative (‘OR’), so it will be included all the accounts with selected tags.

There are special filters that could be entered in the text field. You could use either one or several special parameters separated by blank spaces:

	Filter

	Description

	user:”login”

	Get the accounts in which the user with login ‘login’ has access

	owner:”login”

	Get the accounts in which the user with login ‘login’ is the owner

	group:”group_name”

	Search for accounts which ‘group_name’ has access rights

	maingroup:”group_name”

	Get the accounts which have the main group with name ‘group_name’

	file:”file_name”

	Search for accounts which contain a file with the name ‘file_name’

	client:”client_name”

	Search for accounts by client name

	category:”category_name”

	Search for accounts by category name

	id:”account_id”

	Returns the account for the given ID

	name_regex:”regex”

	Search for accounts name by regular expression

	is|not:expired

	Search for accounts with expired password

	is|not:private

	Get the private accounts for the current user

	op:and|or

	Operator used by special parameters

API

sysPass API relies on JSON-RPC v2 [https://en.wikipedia.org/wiki/JSON-RPC] schema for client-server communication.

The API access URL is “https://server_name/api.php”

Example of JSON-RPC payload:

{
 "jsonrpc": "2.0",
 "method": "account/search",
 "params": {
 "authToken": "auth_token_for_api"
 },
 "id": 1
}

Methods

Accounts

account/search

Search for accounts

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	text

	string

	no

	Text to search for

	count

	int

	no

	Number of results to display

	categoryId

	int

	no

	Category’s Id for filtering

	clientId

	int

	no

	Client’s Id for filtering

	tagsId

	array

	no

	Tags’ Id for filtering

	op

	string

	no

	Operator used for filtering. It can be either ‘or’ or ‘and’

account/view

Get account’s details

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Account’s Id

account/viewPass

Get account’s password

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Account’s Id

	details

	int

	no

	Whether to return account’s details within response

account/editPass

Edit account’s password

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Account’s Id

	pass

	string

	yes

	Account’s password

	expireDate

	int

	no

	Expire date in UNIX timestamp format

account/create

Create account

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	name

	string

	yes

	Account’s name

	categoryId

	int

	yes

	Account’s category Id

	clientId

	int

	yes

	Account’s client Id

	pass

	string

	yes

	Account’s password

	tagsId

	array

	no

	Account’s tags Id

	userGroupId

	int

	no

	Account’s user group Id

	parentId

	int

	no

	Account’s parent Id

	login

	string

	no

	Account’s login

	url

	string

	no

	Account’s access URL or IP

	notes

	string

	no

	Account’s notes

	private

	int

	no

	Set account as private. It can be either 0 or 1

	privateGroup

	int

	no

	Set account as private for group. It can be either 0 or 1

	expireDate

	int

	no

	Expire date in UNIX timestamp format

account/edit

Edit account

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Account’s Id

	name

	string

	no

	Account’s name

	categoryId

	int

	no

	Account’s category Id

	clientId

	int

	no

	Account’s client Id

	tagsId

	array

	no

	Account’s tags Id

	userGroupId

	int

	no

	Account’s user group Id

	parentId

	int

	no

	Account’s parent Id

	login

	string

	no

	Account’s login

	url

	string

	no

	Account’s access URL or IP

	notes

	string

	no

	Account’s notes

	private

	int

	no

	Set account as private. It can be either 0 or 1

	privateGroup

	int

	no

	Set account as private for group. It can be either 0 or 1

	expireDate

	int

	no

	Expire date in UNIX timestamp format

account/delete

Delete an account

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Account’s Id

Categories

category/search

Search for categories

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	text

	string

	no

	Text to search for

	count

	int

	no

	Number of results to display

category/view

Get category’s details

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Category’s Id

category/create

Create category

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	name

	string

	yes

	Category’s name

	description

	string

	no

	Category’s description

category/edit

Edit category

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Category’s Id

	name

	string

	yes

	Category’s name

	description

	string

	no

	Category’s description

category/delete

Delete category

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Category’s Id

Clients

client/search

Search for clients

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	text

	string

	no

	Text to search for

	count

	int

	no

	Number of results to display

client/view

Get client’s details

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Client’s Id

client/create

Create client

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	name

	string

	yes

	Client’s name

	description

	string

	no

	Client’s description

	global

	int

	no

	Set client as global. It can be either 0 or 1

client/edit

Edit client

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Client’s Id

	name

	string

	yes

	Client’s name

	description

	string

	no

	Client’s description

	global

	int

	no

	Set client as global. It can be either 0 or 1

client/delete

Delete client

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Client’s Id

Tags

tag/search

Search for tags

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	text

	string

	no

	Text to search for

	count

	int

	no

	Number of results to display

tag/view

Get tag’s details

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	Tag’s Id

tag/create

Create tag

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	name

	string

	yes

	Tag’s name

tag/edit

Edit tag

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Tag’s Id

	name

	string

	yes

	Tag’s name

tag/delete

Delete tag

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	Tag’s Id

User Groups

userGroup/search

Search for user groups

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	text

	string

	no

	Text to search for

	count

	int

	no

	Number of results to display

userGroup/view

Get user group’s details

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	tokenPass

	string

	yes

	API token’s pass

	id

	int

	yes

	User group’s Id

userGroup/create

Create user group

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	name

	string

	yes

	User group’s name

	description

	string

	no

	User group’s description

	usersId

	array

	no

	User group’s users Id

userGroup/edit

Edit user group

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	User group’s Id

	name

	string

	yes

	User group’s name

	description

	string

	no

	User group’s description

	usersId

	array

	no

	User group’s users Id

userGroup/delete

Delete user group

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	id

	int

	yes

	User group’s Id

Configuration

config/backup

Perform an application and database backup

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	path

	string

	no

	Server path to store the application and database backup

config/export

Export application data in XML format

	Parameter

	Type

	Required

	Description

	authToken

	string

	yes

	User’s API token

	path

	string

	no

	Server path to store the XML file

	password

	string

	no

	Password used to encrypt the exported data

Features

sysPass implements the following features:

	Security

	Database authentication

	LDAP directory authentication

	Auth Basic authorization

	Two Factor authorization (using Authenticator Plugin [https://github.com/sysPass/plugin-Authenticator])

	Permissions

	Module access control by profiles

	Application administrator users

	Accounts administrator users

	Accounts user access control (read or write)

	Accounts group access control (read or write)

	Items

	Encrypted and unencrypted custom fields for accounts, clients, categories and users

	Accounts public links access without user/password

	Accounts expiry date configuration

	Accounts’ files management

	Accounts’ tags management

	Clients management

	Categories management

	Public links management

	API’s authorizations management

	Accounts management

	Accounts’ history management

	Plugins management

	Users management

	User groups management

	User profiles management

	In-App notifications management

	Configuration

	Language configuration

	Visual theme configuration

	Logging and audit configuration

	Proxy configuration

	Accounts configuration

	Public links configuration

	Wiki links configuration

	LDAP configuration

	Import users and groups from LDAP

	Email notifications configuration

	Master password change

	Temporary master key generation

	Application and database backups

	XML format exporting using encryption or not

	Importing from sysPass or KeePass XML formats and CSV format

Plugins

sysPass allows to use plugins through an architecture that implements observer pattern [https://en.wikipedia.org/wiki/Observer_pattern] which is characterized by emitting a message to all subscribed observers.

Plugins must be installed in ‘plugins’ directory within the target module and they contain the following base structure:

plugins/
└── PluginName (1)
 ├── base.php
 ├── CODE_OF_CONDUCT.md
 ├── composer.json
 ├── LICENSE
 ├── README.md
 ├── src
 │ ├── lib
 │ │ ├── Controllers
 │ │ ├── Models
 │ │ ├── Plugin.php
 │ │ ├── Services
 │ │ └── Util
 │ ├── locales
 │ │ ├── en_US
 │ │ │ └── LC_MESSAGES
 │ │ │ ├── PluginName.mo (2)
 │ │ │ └── PluginName.po (2)
 │ ├── public
 │ │ ├── css
 │ │ │ ├── plugin.css
 │ │ │ ├── plugin.css.map
 │ │ │ ├── plugin.min.css
 │ │ │ └── plugin.scss
 │ │ └── js
 │ │ ├── plugin.js
 │ │ └── plugin.min.js
 │ └── themes
 │ └── material-blue
 │ └── views (3)
 │ ├── login
 │ │ └── index.inc
 │ └── userpreferences
 │ └── preferences-security.inc
 └── version.json (4)

Directory and file names need to be set in the following way:

	Directory name within the plugin name: Example: Authenticator

	Filename within the plugin name in lowercase: Example: authenticator.po

	View’s name should match with the controller’s name in MVC pattern. It could be overridden by setting the name of the view in the controller’s code

	‘version.json’ file is used by JavaScript code for checking if the plugin is up-to-date.

Plugin (whithin ‘Plugin.php’ file) is the main class which will receive sysPass’ events through the observer pattern. It must extends the abstract class ‘SPPluginPluginBase’ which is responsible to make the plugin’s data available.

Methods

The following methods must be implemented in ‘Plugin’ class

init

Method that is called every time the plugin is executed. The dependency injection container will be passed.

/**
 * Plugin initialization
 *
 * @param ContainerInterface $dic
 */
public function init(ContainerInterface $dic)
{
 $this->base = dirname(__DIR__);
 $this->themeDir = $this->base . DIRECTORY_SEPARATOR . 'themes' . DIRECTORY_SEPARATOR . $dic->get(ThemeInterface::class)->getThemeName();

 $this->setLocales();

 $this->dic = $dic;

 $this->session = $this->dic->get(ContextInterface::class);
}

updateEvent

Method that is called when an event is emitted

/**
 * Update event
 *
 * @param string $event Event's name
 * @param mixed $object
 */
public function updateEvent($event, $object) {}

getEvents

Method that returns an array of strings with the events that the plugin will be subscribed to

/**
 * Returns the events implemented by the observer
 *
 * @return array
 */
public function getEvents()
{
 return ['show.userSettings', 'login.finish'];
}

getJsResources

Method that returns an array of strings with the Javascript resources required by the plugin

/**
 * Returns JS resources required by the plugin
 *
 * @return array
 */
public function getJsResources()
{
 return ['plugin.min.js'];
}

getAuthor

Method that returns the plugin’s author

/**
 * Returns the plugin's author
 *
 * @return string
 */
public function getAuthor()
{
 return 'Rubén D.';
}

getVersion

Method that returns an array of integers with the plugin’s version

/**
 * Returns the plugin's version
 *
 * @return array
 */
public function getVersion()
{
 return [1, 0];
}

getCompatibleVersion

Method that returns an array of integers with the minimum sysPass compatible version

/**
 * Returns the minimum sysPass compatible version
 *
 * @return array
 */
public function getCompatibleVersion()
{
 return [2, 0];
}

getCssResources

Method that returns an array of strings with the CSS resources required by the plugin

/**
 * Returns the CSS resources required by the plugin
 *
 * @return array
 */
public function getCssResources()
{
 return [];
}

getName

Method that returns the plugin’s name

/**
 * Returns the plugin's name
 *
 * @return string
 */
public function getName()
{
 return self::PLUGIN_NAME;
}

getData

Method that returns the plugin’s data

/**
 * @return AuthenticatorData
 */
public function getData()
{
 if ($this->data === null
 && $this->session->isLoggedIn()
 && $this->pluginOperation !== null
) {
 $this->loadData();
 }

 return parent::getData();
}

onLoad

Method that will be called when the plugin is initialized

/**
 * onLoad
 */
public function onLoad()
{
 $this->loadData();
}

upgrade

Method that receives the current sysPass version and would run a task if it needs to upgrade.
This method will be called whenever a new sysPass version is detected.

/**
 * @param string $version
 * @param PluginOperation $pluginOperation
 * @param mixed $extra
 *
 * @throws Services\AuthenticatorException
 */
public function upgrade(string $version, PluginOperation $pluginOperation, $extra = null)
{
 switch ($version) {
 case '310.19012201':
 (new UpgradeService($pluginOperation))->upgrade_310_19012201($extra);
 break;
 }
}

Example

namespace SP\Modules\Web\Plugins\Authenticator;

use Psr\Container\ContainerInterface;
use SP\Core\Context\ContextInterface;
use SP\Core\Context\SessionContext;
use SP\Core\Events\Event;
use SP\Core\UI\ThemeInterface;
use SP\Modules\Web\Plugins\Authenticator\Controllers\PreferencesController;
use SP\Modules\Web\Plugins\Authenticator\Models\AuthenticatorData;
use SP\Modules\Web\Plugins\Authenticator\Services\UpgradeService;
use SP\Modules\Web\Plugins\Authenticator\Util\PluginContext;
use SP\Mvc\Controller\ExtensibleTabControllerInterface;
use SP\Plugin\PluginBase;
use SP\Plugin\PluginOperation;
use SplSubject;

/**
 * Class Plugin
 *
 * @package SP\Modules\Web\Plugins\Authenticator
 * @property AuthenticatorData $data
 */
class Plugin extends PluginBase
{
 const PLUGIN_NAME = 'Authenticator';
 const VERSION_URL = 'https://raw.githubusercontent.com/sysPass/plugin-Authenticator/master/version.json';
 const RECOVERY_GRACE_TIME = 86400;
 /**
 * @var ContainerInterface
 */
 private $dic;
 /**
 * @var SessionContext
 */
 private $session;

 /**
 * Receive update from subject
 *
 * @link http://php.net/manual/en/splobserver.update.php
 *
 * @param SplSubject $subject <p>
 * The SplSubject notifying the observer of an update.
 * </p>
 *
 * @return void
 * @since 5.1.0
 */
 public function update(SplSubject $subject)
 {
 }

 /**
 * Plugin initialization
 *
 * @param ContainerInterface $dic
 */
 public function init(ContainerInterface $dic)
 {
 $this->base = dirname(__DIR__);
 $this->themeDir = $this->base . DIRECTORY_SEPARATOR . 'themes' . DIRECTORY_SEPARATOR . $dic->get(ThemeInterface::class)->getThemeName();

 $this->setLocales();

 $this->dic = $dic;

 $this->session = $this->dic->get(ContextInterface::class);
 }

 /**
 * Updating event
 *
 * @param string $eventType Nombre del evento
 * @param Event $event Objeto del evento
 *
 * @throws \SP\Core\Exceptions\InvalidClassException
 * @throws \Exception
 */
 public function updateEvent($eventType, Event $event)
 {
 switch ($eventType) {
 case 'show.userSettings':
 $this->loadData();
 (new PreferencesController(
 $event->getSource(ExtensibleTabControllerInterface::class),
 $this,
 $this->dic)
)->setUp();
 break;
 case 'login.finish':
 $this->loadData();
 $this->checkLogin($event);
 break;
 }
 }

 /**
 * Load plugin's data for current user
 */
 private function loadData()
 {
 try {
 $this->data = $this->pluginOperation->get(
 $this->session->getUserData()->getId(),
 AuthenticatorData::class
);
 } catch (\Exception $e) {
 processException($e);
 }
 }

 /**
 * Check 2FA within log in
 *
 * @param Event $event
 *
 * @throws \SP\Core\Context\ContextException
 */
 private function checkLogin(Event $event)
 {
 $pluginContext = $this->dic->get(PluginContext::class);

 if ($this->data !== null
 && $this->data->isTwofaEnabled()
) {
 $pluginContext->setTwoFApass(false);
 $this->session->setAuthCompleted(false);

 $eventData = $event->getEventMessage()->getExtra();

 if (isset($eventData['redirect'][0])
 && is_callable($eventData['redirect'][0])
) {
 $this->session->setTrasientKey('redirect', $eventData['redirect'][0]('authenticatorLogin/index'));
 } else {
 $this->session->setTrasientKey('redirect', 'index.php?r=authenticatorLogin/index');
 }
 } else {
 $pluginContext->setTwoFApass(true);
 $this->session->setAuthCompleted(true);
 }
 }

 /**
 * @return AuthenticatorData
 */
 public function getData()
 {
 if ($this->data === null
 && $this->session->isLoggedIn()
 && $this->pluginOperation !== null
) {
 $this->loadData();
 }

 return parent::getData();
 }

 /**
 * Returns the events implemented by the observer
 *
 * @return array
 */
 public function getEvents()
 {
 return ['show.userSettings', 'login.finish'];
 }

 /**
 * Returns the JS resources required by the plugin
 *
 * @return array
 */
 public function getJsResources()
 {
 return ['plugin.min.js'];
 }

 /**
 * Returns the plugin's author
 *
 * @return string
 */
 public function getAuthor()
 {
 return 'Rubén D.';
 }

 /**
 * Returns the plugin's version
 *
 * @return array
 */
 public function getVersion()
 {
 return [2, 1, 0];
 }

 /**
 * Returns the sysPass compatible version
 *
 * @return array
 */
 public function getCompatibleVersion()
 {
 return [3, 1];
 }

 /**
 * Returns the CSS resources required by the plugin
 *
 * @return array
 */
 public function getCssResources()
 {
 return ['plugin.min.css'];
 }

 /**
 * Returns the plugin's name
 *
 * @return string
 */
 public function getName()
 {
 return self::PLUGIN_NAME;
 }

 /**
 * Removes the data for the given item's Id
 *
 * @param $id
 *
 * @throws \SP\Core\Exceptions\ConstraintException
 * @throws \SP\Core\Exceptions\QueryException
 * @throws \SP\Repositories\NoSuchItemException
 */
 public function deleteDataForId($id)
 {
 $this->pluginOperation->delete((int)$id);
 }

 /**
 * onLoad
 */
 public function onLoad()
 {
 $this->loadData();
 }

 /**
 * @param string $version
 * @param PluginOperation $pluginOperation
 * @param mixed $extra
 *
 * @throws Services\AuthenticatorException
 */
 public function upgrade(string $version, PluginOperation $pluginOperation, $extra = null)
 {
 switch ($version) {
 case '310.19012201':
 (new UpgradeService($pluginOperation))->upgrade_310_19012201($extra);
 break;
 }
 }
}

Events

When an event is emitted the generating class instance is included as an argument, so it could be possible to access to the class events.

Events may include ‘SPCoreEventsEventMessage’ class which may contain additional data to pass into the plugin.

Currently, the generated events are the following:

	Event

	Class

	Description

	acl.deny

	
	

	check.notification

	
	

	check.tempMasterPassword

	
	

	clear.eventlog

	
	

	clear.track

	
	

	copy.account.pass

	
	

	create.account

	
	

	create.authToken

	
	

	create.category

	
	

	create.client

	
	

	create.customField

	
	

	create.itemPreset

	
	

	create.notification

	
	

	create.plugin

	
	

	create.publicLink

	
	

	create.publicLink.account

	
	

	create.tag

	
	

	create.tempMasterPassword

	
	

	create.user

	
	

	create.userGroup

	
	

	create.userProfile

	
	

	database.query

	
	

	database.rollback

	
	

	database.transaction.begin

	
	

	database.transaction.end

	
	

	database.transaction.rollback

	
	

	delete.account

	
	

	delete.account.selection

	
	

	delete.accountFile

	
	

	delete.accountFile.selection

	
	

	delete.accountHistory

	
	

	delete.accountHistory.selection

	
	

	delete.authToken

	
	

	delete.authToken.selection

	
	

	delete.category

	
	

	delete.client

	
	

	delete.client.selection

	
	

	delete.customField

	
	

	delete.customField.selection

	
	

	delete.itemPreset

	
	

	delete.notification

	
	

	delete.notification.selection

	
	

	delete.plugin

	
	

	delete.plugin.selection

	
	

	delete.publicLink

	
	

	delete.publicLink.selection

	
	

	delete.tag

	
	

	delete.tag.selection

	
	

	delete.user

	
	

	delete.user.selection

	
	

	delete.userGroup

	
	

	delete.userGroup.selection

	
	

	delete.userProfile

	
	

	delete.userProfile.selection

	
	

	download.accountFile

	
	

	download.backupAppFile

	
	

	download.backupDbFile

	
	

	download.configBackupFile

	
	

	download.exportFile

	
	

	download.logFile

	
	

	edit.account

	
	

	edit.account.bulk

	
	

	edit.account.pass

	
	

	edit.account.restore

	
	

	edit.authToken

	
	

	edit.category

	
	

	edit.client

	
	

	edit.customField

	
	

	edit.itemPreset

	
	

	edit.notification

	
	

	edit.plugin.available

	
	

	edit.plugin.disable

	
	

	edit.plugin.enable

	
	

	edit.plugin.reset

	
	

	edit.plugin.unavailable

	
	

	edit.publicLink.refresh

	
	

	edit.tag

	
	

	edit.user

	
	

	edit.user.pass

	
	

	edit.user.password

	
	

	edit.userGroup

	
	

	edit.userProfile

	
	

	expire.tempMasterPassword

	
	

	import.ldap.end

	
	

	import.ldap.groups

	
	

	import.ldap.start

	
	

	import.ldap.users

	
	

	ldap.bind

	
	

	ldap.check.connection

	
	

	ldap.check.group

	
	

	ldap.check.params

	
	

	ldap.connect

	
	

	ldap.connect.tls

	
	

	ldap.getAttributes

	
	

	ldap.search

	
	

	ldap.search.group

	
	

	ldap.unbind

	
	

	list.accountFile

	
	

	login.auth.browser

	
	

	login.auth.database

	
	

	login.auth.ldap

	
	

	login.checkUser.changePass

	
	

	login.checkUser.disabled

	
	

	login.finish

	
	

	login.info

	
	

	login.masterPass

	
	

	login.masterPass.temporary

	
	

	login.preferences.load

	
	

	login.session.load

	
	

	plugin.load

	
	

	plugin.load.error

	
	

	refresh.authToken

	
	

	refresh.masterPassword

	
	

	refresh.masterPassword.hash

	
	

	request.account

	
	

	request.user.passReset

	
	

	reset.min.css

	
	

	restore.accountHistory

	
	

	run.backup.end

	
	

	run.backup.process

	
	

	run.backup.start

	
	

	run.export.end

	
	

	run.export.start

	
	

	run.export.verify

	
	

	run.import.csv

	
	

	run.import.end

	
	

	run.import.keepass

	
	

	run.import.start

	
	

	run.import.syspass

	
	

	save.config.account

	
	

	save.config.dokuwiki

	
	

	save.config.general

	
	

	save.config.ldap

	
	

	save.config.mail

	
	

	save.config.wiki

	
	

	search.category

	
	

	search.client

	
	

	search.tag

	
	

	search.userGroup

	
	

	send.mail

	
	

	send.mail.check

	
	

	session.cookie_httponly

	
	

	session.gc_maxlifetime

	
	

	session.save_handler

	
	

	session.timeout

	
	

	show.account

	
	

	show.account.bulkEdit

	
	

	show.account.copy

	
	

	show.account.create

	
	

	show.account.delete

	
	

	show.account.edit

	
	

	show.account.editpass

	
	

	show.account.history

	
	

	show.account.link

	
	

	show.account.pass

	
	

	show.account.request

	
	

	show.account.search

	
	

	show.accountFile

	
	

	show.authToken

	
	

	show.authToken.create

	
	

	show.authToken.edit

	
	

	show.category

	
	

	show.category.create

	
	

	show.category.edit

	
	

	show.client

	
	

	show.client.create

	
	

	show.client.edit

	
	

	show.config

	
	

	show.customField

	
	

	show.customField.create

	
	

	show.customField.edit

	
	

	show.itemPreset

	
	

	show.itemPreset.create

	
	

	show.itemPreset.edit

	
	

	show.itemlist.accesses

	
	

	show.itemlist.items

	
	

	show.itemlist.security

	
	

	show.notification

	
	

	show.notification.create

	
	

	show.notification.edit

	
	

	show.plugin

	
	

	show.publicLink

	
	

	show.publicLink.create

	
	

	show.publicLink.edit

	
	

	show.tag

	
	

	show.tag.create

	
	

	show.tag.edit

	
	

	show.user

	
	

	show.user.create

	
	

	show.user.edit

	
	

	show.user.editPass

	
	

	show.userGroup

	
	

	show.userGroup.create

	
	

	show.userGroup.edit

	
	

	show.userProfile

	
	

	show.userProfile.create

	
	

	show.userProfile.edit

	
	

	show.userSettings

	
	

	track.add

	
	

	track.delay

	
	

	unlock.track

	
	

	update.masterPassword.customFields

	
	

	update.masterPassword.end

	
	

	update.masterPassword.hash

	
	

	update.masterPassword.start

	
	

	upgrade.app.end

	
	

	upgrade.app.start

	
	

	upgrade.authToken.end

	
	

	upgrade.authToken.process

	
	

	upgrade.authToken.start

	
	

	upgrade.config.end

	
	

	upgrade.config.process

	
	

	upgrade.config.start

	
	

	upgrade.customField.end

	
	

	upgrade.customField.process

	
	

	upgrade.customField.start

	
	

	upgrade.db.end

	
	

	upgrade.db.process

	
	

	upgrade.db.start

	
	

	upgrade.publicLink.end

	
	

	upgrade.publicLink.process

	
	

	upgrade.publicLink.start

	
	

	upload.accountFile

	
	

	wiki.aclCheck

	
	

	wiki.getPage

	
	

	wiki.getPageHTML

	
	

	wiki.getPageInfo

	
	

Backup Strategies

Note

Work in progress

Docker

Please perform backups regularly by using in-app tools or external ones (recommended). You need to copy the following data:

	“syspass-app-config” volume

	“syspass-app-backup” volume

	sysPass database

Example:

docker run --rm \
--volumes-from syspass-app \
--volume $PWD:/backup \
alpine sh -c "exec tar czf /var/www/html/sysPass /backup/syspass-app-backup.tar.gz"

docker run --rm \
--network syspass-net \
--volume $PWD:/backup \
mariadb:10.2 sh -c 'exec mysqldump -h syspass-db -u root -p"syspass" syspass > /backup/syspass-db-dump.sql'

These commands will create “syspass-app-backup.tar.gz” and “syspass-db-dump.sql” files within the current directory

Updating

	Strategies
	Normal

	Git

	Docker

	2.1 Version
	Important Changes

	Process

	3.0 Version
	Important Changes

	Process

	3.1 Version
	Important Changes

	Process

	Changelog

	Thanks

Strategies

Though it has been discussed a few times, I should mention that sysPass does not provide an automated upgrading method for code files. This is so because it would imply installing some kind of software libraries like Git [https://git-scm.com/] and develop an UI interface within sysPass that will try to resolve many situations when dealing with CVS repositories (merge, conflicts, etc.).

Another question is about those installations on Docker [https://docs.docker.com/engine/installation/] or Kubernetes [https://kubernetes.io/], which don’t rely (philosophically speaking) on such kind on rolling updates based on CVS, since it will break the philosophy of containers: immutable, reproducible, scalable and so on.

That being said, all-in-one apps are not a great deal for these days, so I think the best way to update is to be performed externally, that is either using Git [https://git-scm.com/] or Docker [https://docs.docker.com/engine/installation/] tagged images (through Docker Compose [https://docs.docker.com/compose/] or Helm [https://helm.sh/]).

Normal

As described on release upgrading notes

Git

Install Git [https://git-scm.com/], point your CLI on the webserver root and run the following command:

$ git clone https://github.com/nuxsmin/sysPass.git

In order to get the latest updates:

$ git pull

Note

The “master” branch on Github holds the most recent stable version

After it, if database changes are required, you’ll need to follow the steps through the web UI

Warning

Perform a full database and application backup using external tools like “mysqldump” and “tar” before updating

Docker

The fine and easy way is installing Docker Compose and every new version is released out, you only need to change the image tag on composer’s YAML.

version: '2'
services:
 app:
 container_name: syspass-app
 image: syspass/syspass:3.1.0 # Set this version tag to desired one
 restart: always
...

After changing the version tag, tun the following command:

docker-compose -p syspass -f docker-compose.yml up -d

It will update the current sysPass container with the new version. If database changes are required, you’ll need to follow the steps through the web UI

Warning

Perform a full database and application backups before updating: Backup Strategies

2.1 Version

This version includes some improvements on the sysPass security by the following features:

	It uses Defuse/php-encryption [https://github.com/defuse/php-encryption/blob/master/docs/CryptoDetails.md] library for the data encryption with OpenSSL by using AES-256 CTR (CVE-2017-5999)

	Improvements on the session keys security

	API authorizations password

	Improvements on the public links security

	Failed log in attempts detection. A delay is set after several attempts

This upgrade requires to re-encrypt all the accounts and encrypted data, so the master password and a valid user login (for registering changes) will be needed.

Though it’s a safe process, it’s advisable to make a full sysPass backup.

Important Changes

Because the encryption data changes, the following items need to be regenerated:

	Public links: the links are now an snapshot of the linked account, so if the account is updated, the link needs to be renewed.

	API authorizations: As of this version, a password is needed for those authorizations that require encrypted data.

	Temporary master password: it needs to be regenerated if it’s being used.

Process

For the sysPass updating the following steps are needed:

	Download the application from https://github.com/nuxsmin/sysPass/releases and uncompress the files

	Set the sysPass directory owner and permissions

	Copy the files (“config.xml”, “key.pem” y “pubkey.pem”) within the “config” directory from the current version to the new one

	Open the application from a web browser

If the application requires a database upgrade:

	Perform a database backup

	Enter the updating code which could be found in the “config/config.xml” file within the tag “upgradeKey”

	Please, enter the sysPass master password.

	Please, enter a valid user login

Note

During the upgrade, it will display the encryption tasks processes.

Note

After the updating, it will show a message and you could take a look to the updating details in the event log

3.0 Version

This version only can be updated from v2.1

Important Changes

	This version performs a fully database structure change, so it’s very important to make a full database backup using external tools like “mysqldump”

	“config” directory is moved off to “/app/config”

	Composer PHP package manager is used to install and keep up-to-date sysPass dependencies

Process

The following steps need to be performed in order to update sysPass:

	Download or clone sysPass repository from either https://github.com/nuxsmin/sysPass/releases or https://github.com/nuxsmin/sysPass.git

	Set user and group permissions on sysPass directory

	Copy “config.xml”, “key.pem” y “pubkey.pem” from the old “…/config” directory to “…/app/config” directory

	From sysPass root directory, download and install Composer: https://getcomposer.org/download/

	Install dependencies

$ php composer.phar install --no-dev

	Set up the correct permissions on directories. Please note that “config” and “backup” directories are now within “/app”

	Point your browser to sysPass web server URL

	Perform a full database backup using external tools like “mysqldump”

	Enter the upgrade key located in “app/config/config.xml” file within the “upgradeKey” tag

3.1 Version

It’s highly recommended upgrade from v3.0

Please check out 3.0 Version upgrade notes if you’re upgrading from v2.1

Important Changes

	This version performs some database changes that will impact on plugins installed, so it’s very important to make a full database backup using external tools like “mysqldump”

	Composer PHP package manager is used to install and keep up-to-date sysPass dependencies

Process

The following steps need to be performed in order to update sysPass:

	Download or clone sysPass repository from either https://github.com/nuxsmin/sysPass/releases or https://github.com/nuxsmin/sysPass.git

	Set user and group permissions on sysPass directory

	Copy “config.xml”, “key.pem” y “pubkey.pem” from the old “…/app/config” directory to the new one

	From sysPass root directory, download and install Composer (if not installed yet): https://getcomposer.org/download/

	Install dependencies

$ php composer.phar install --no-dev

	Set up the correct permissions on directories

	Point your browser to sysPass web server URL. The upgrade process will display the confirmation page

	Though it’s being said on the upgrade page, please perform a full database backup using external tools like “mysqldump”

	Enter the upgrade key located in “…/app/config/config.xml” file within the “upgradeKey” tag

	If the upgrading process fails, please check out “…/app/config/syspass.log” file for error messages

	Once upgraded it will redirect to the sign in page

Warning

Please do not retry the upgrade process if database changes have been made. In that case, you will need to restore the database backup and restart the whole upgrade process.

Changelog

Fixed

	[FIX] Wrong URL when application URL setting is set. Thanks to @kalxasus for the notice. Closes #1395

	[FIX] LDAP group filter wasn’t applied when importing. Thanks to @kalxasus for the notice. Closes #1390

	[FIX] Client custom fields were not created/saved. Thanks to @ZUNbado and @sf32738 for the notice. Closes #1375

	[FIX] Skip over initialization when upgrade is needed. Thanks to @Envikia and @alexseys for the notice. Closes #1355

	[FIX] Wrong URL handling when downloading files. Thanks to @fprina for the feedback and testing. Closes #1354

	[FIX] Wrong field definition on PluginData table. Thanks to @drewlsvern for the feedback. Closes #1326

	[FIX] Fix custom fields migration issue. Thanks to @VexedSyd for the feedback. Closes #1273

	[FIX] Wrong limit for maximum file size. Thanks to @javierlm for the feedback. Closes #1313

	[FIX] Wrong behavior when disabling remote syslog

	[FIX] Wrong behavior when saving LDAP server. Thanks to @lreiher for the feedback. Closes #1277

	[FIX] Wrong behavior when setting user’s email from LDAP when several email addresses are set. Thanks to @cRaZy-bisCuiT for the feedback. Closes #1283

	[FIX] Wrong behavior when updating user’s password. Thanks to @vrdominguez for the feedback. Closes #1293

	[FIX] Wrong behavior when no mail recipients are set

	[FIX] Wrong encoding in text area. Thanks to @pierrehenrymuller for the feedback. Closes #1296

	[FIX] Fixed wrong behavior when search operator was set

	[FIX] No debug messages when debug mode is activated

	[FIX] Fixed wrong behavior when setting password complexity length. Thanks to @andrucha97 for the feedback. Closes #1280

	[FIX] Fixed wrong behavior when searching for accounts on accounts manager. Thanks to @Weptun for the feedback. Closes #1271

	[FIX] Fixed Polski language option. Thanks to @pitrov24 for the notice. Closes 1288

	[FIX] Added missing Italian language option. Thanks to @Matwolf08 for the notice. Closes #1302

	[FIX] Wrong encoding when displaying account’s password. Thanks to @DDH112 for the feedback. Closes #1257

	[FIX] Wrong behavior when copying account’s tags. Thanks to @leBasti91 for the feedback. Closes #1256

	[FIX] Wrong behavior when selecting template’s view

Improved

	[MOD] Improved stacktrace by anonymizing function’s arguments data. Thanks to @cRaZy-bisCuiT for the feedback. Closes #1339

	[MOD] Bump version & build

	[MOD] Improved behavior when searching for user permission on accounts. Thanks to @anth69 for the feedback. Closes #1338

	[MOD] Updated translations. Thanks to all contributors.

	[MOD] Update Authenticator version in composer.json

	[MOD] Minor code tweaks

	[MOD] Typo in translation. Related #1313

	[MOD] Increase account’s name length up to 100 characters long. Related #1071

	[MOD] Unlocked PHP 7.3

	[MOD] Improved logging messages

	[MOD] Code cleanup

	[MOD] Minor CSS tweaks

	[MOD] Update translations

	[MOD] Avoid to import blank client or category name when importing CSV files.

	[MOD] Enforce password complexity checking. Thanks to @DDH112 for the feedback. Closes #1226

	[MOD] Improved plugins availability detection and skip weird event log entries

Added

	[ADD] Added search for accounts name by regular expression. Closes #1311

	[ADD] Added missing tests

	[ADD] Added client IP address in syslog messages. Thanks to @sebagarayco for the feedback. Closes #1302

	[ADD] Allow to change the account’s owner and main group when the user is the account’s owner. Related #705

	[ADD] Allow to set account’s owner when creating or copying the account. Related #1264

	[ADD] Application URL for handling requests through reverse proxy. Thanks to @rob42 for the feedback. Closes #1218

	[ADD] Allow to enable email notifications only for account access requests. Thanks to @jorgemfm for the feedback. Closes #1157

	[ADD] Improved plugins data handling by encrypting the plugin’s data

Thanks

Big thanks to all contributors for the feedback, pull requests, translations and donations.

	@kalxasus

	@ZUNbado

	@sf32738

	@Envikia

	@fprina

	@drewlsvern

	@VexedSyd

	@javierlm

	@lreiher

	@cRaZy-bisCuiT

	@vrdominguez

	@pierrehenrymuller

	@Weptun

	@pitrov24

	@Matwolf08

	@DDH112

	@leBasti91

	@anth69

	@sebagarayco

	@rob42

	@jorgemfm

HOWTOs

	How to test a sysPass update

	How to restore sysPass

	Azure MySQL

	How to install and configure Nginx

	LDAP Troubleshooting

How to test a sysPass update

Note

This procedure tells the steps to follow to try out a sysPass update without modifying the current installation

	Make a database backup. It could be made either through the sysPass utility, MySQL workbench or mysqldump tool

	Create a new database (eg. syspass21)

	Create an user (eg. sp_admin21) and set the permissions over the newly created database

	Import the backup in the newly created database. You could use the above tools

	Create a new directory and unpack the new sysPass version package 1

	Copy all files within the “config” directory to the new path and check out the permissions 1

	Modify the “config/config.xml” file to set the correct database connection parameters (“dbname”, “dbuser” and “dbpass”). Please check out that “dbHost” is correct

	Point the browser to the application URL and follow the steps for upgrading

Notes

	1(1,2)

	See Installation for more details

How to restore sysPass

Note

This procedure requires to have a database and application backup

	Restore the database backup. It could be made either through the sysPass utility, MySQL workbench or mysqldump tool

	Create the connection user (see ‘…/app/config/config.xml’ file for current connection settings) and set the correct permissions on the restored database

	Restore the application backup

	Point the browser to the application URL

Azure MySQL

In order to install sysPass database on Azure MySQL you’ll need to change the database engine used in DDL statements that create the database views. This will replace the “MyISAM” engine with “InnoDB”, which does not take any effect in database views.

$ sed -i "s/MyISAM/InnoDB/g" /var/www/html/sysPass/schemas/dbstructure.sql

Note

Thanks to @shocker70 for this contribution

How to install and configure Nginx

Install required repositories and packages

$ sudo yum -y install epel-release.noarch centos-release-scl centos-release-scl-rh scl-utils

$ sudo yum -y install nginx rh-php70 rh-php70-php rh-php70-php-fpm rh-php70-php-ldap rh-php70-php-xml rh-php70-php-json rh-php70-php-gd rh-php70-php-pdo rh-php70-php-mbstring rh-php70-php-cli rh-php70-php-mysqlnd mod_ssl

Configure Nginx “/etc/nginx/conf.d/syspass.conf” file

server {
 listen 80;

 #server_name: This is the domain you will be using for your site. Instead of localhost, we will use the public facing domain and www version of the domain you want to use.
 server_name syspass.foo.bar;

 location / {
 #root: This is the root directory for the site files.
 root /var/www/syspass;
 index index.html index.php;

 #try_files: What we are doing here is telling the server to display a 404 error when a given file is not found.
 try_files $uri $uri/ =404;
 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {
 root html;
 }

 location ~ .php$ {
 #root: This is the root directory for the site files.
 root /var/www/syspass;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_index index.php;
 include fastcgi_params;
 fastcgi_param SCRIPT_NAME $fastcgi_script_name;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 }
}

Configure PHP

$ sudo sed -i 's/user = apache/user = nginx/g; s/group = apache/group = nginx/g;' /etc/opt/rh/rh-php70/php-fpm.d/www.conf
$ sudo usermod -aG nginx apache

Enable and start services

$ sudo systemctl enable rh-php70-php-fpm
$ sudo service rh-php70-php-fpm start
$ sudo systemctl enable nginx
$ sudo service nginx start

Note

Thanks to @M1k13 for this contribution

LDAP Troubleshooting

PHP 7.2 now includes openssl directly compiled in.

You may just check that with:

$ /bin/php -r 'phpinfo();' | grep ssl

or if you’re like me using CentOS 7 and php via SCL:

$ /opt/rh/rh-php72/root/bin/php -r 'phpinfo();' | grep ssl

You may then also check if your linux box connects to your ldaps server with:

$ openssl s_client -connect yourldapsserver.domain.local:636

or ldap server using TLS

$ openssl s_client -connect yourldapsserver.domain.loca:389 -tls1_2

If those work, you may use ldapsearch to manually bind to your LDAP server and see what the problem might be.
On CentOS, install it via:

$ sudo yum install openldap-clients

Simple LDAP Query

$ ldapseach -h yourldapserver.domain.local -p 389 -b \"dc=domain,dc=local\" -D \"CN=YourBindAccount,DC=domain,DC=local\" -W

Add -Z to the ldapsearch line to switch to TLS.

If you get

ldap_start_tls: Connect error (-11)
additional info: error:14090086:SSL routines:ssl3_get_server_certificate:certificate verify failed (unable to get local issuer certificate)
ldap_result: Can't contact LDAP server (-1)

Your certificate might be bad.
You can override certificate checking in “/etc/openldap/ldap.conf” by adding line:

TLS_REQCERT allow

Don’t forget to restart php-fpm (or apache if using mod_php) for those settings to take effect.

Note

Thanks to @deajan for this contribution

Frequently Asked Questions

What is sysPass?

sysPass is a password manager that allows to save passwords using bidirectional encryption with a master password to a database. Passwords are associated to accounts, and these have detailed information about it like: customer, category, notes, files, etc.

The initial idea was to make servers and services passwords accesible in a multiuser environment with security applied and make a portable bundle to store on a flash drive.

Where can I install sysPass?

The application can be installed on any system that has Apache, PHP and MySQL installed.

How do I install sysPass

You can download the application from https://github.com/nuxsmin/sysPass/releases/latest and follow steps on Installation

Which authentication methods are used?

sysPass uses MySQL/MariaDB or LDAP as authentication backends.

If LDAP is used and it is for some reason not possible to connect to the configured LDAP server, it will use MySQL as backend. In this case, user login data will be the last used on user login by LDAP.

More information on: Authentication

What is the encryption for?

The database passwords encryption allows that in case of anyone get access to the database or a data exporting is performed, it won’t be readable without the master key.

This solution is very convenient when you run the application from a flash drive, because if you lose it, the information is secured.

The encryption schema used is rijndael-256 [http://es.wikipedia.org/wiki/Advanced_Encryption_Standard] in CBC [http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29] mode.

More information on: Encryption

What is portable?

It means that you can run the application without really installing it.

This application can be portable by installing Apache, PHP and MySQL on a flash drive. You can use any available LAMP bundles like WAMP, XAMPP, etc.

The backup tool allows you to make a backup of whole the environment (application and database) for example to store it on a flash drive or put it somewhere safe as a backup.

Is there a master password for each account/user?

The master password is global for all accounts and users.

Each time a user is added, his personal password is changed or the master password is reset, the user needs to enter the master password on the next session login.

Each time the master password is changed, the users that are logged in, will only be able to view accounts details, until the new password is entered.

More information on: Encryption

What are Wiki links?

It allows you to link the accounts with a name pattern to an external Wiki that allow to pass the account name as a parameter in the URL.

There are two types of links, the one that links to a Wiki search page (and in which the account name is passed as a parameter), and the other that links to the account page in the Wiki.

What are categories?

Its goal is to classify the accounts to make more precise searches.

What are user groups?

These groups are used to give users access to accounts that have a certain group set as primary or secondary group

What is customer field?

Like categories, it is possible to do searches based on the customer. This field can be treated generically as department, company, division, etc..

En futuras versiones se podrán asociar usuarios a clientes.

Is there an account history?

Yes, each time an account is modified or deleted, the application saves a copy of the last state.

You can switch to a history point at account details page. If the master password that was used to save account history point differs from current, the password won’t be shown.

What are profiles?

Profiles are used to define actions that the users can do.

There are 16 access levels that can be activated and it allows to define which modules can be accessed by the users in which are defined.

What is maintenance mode?

This mode is used to disable the users to log in to the application while you are doing operations on database, updating, etc.

The user that enables the maintenance mode, will be the only one that can use the application until a session log out. After that it will be needed to disable it in the “config/config.xml” file within the tag “maintenance”

Can I change Master Password?

Yes, you need to know the current one. It’s advisable to make a database backup before this process.

I don’t remember Master Password, can I decrypt the passwords?

No, it’s not possible view the passwords without the Master Password.

Does backup runs on Windows?

Yes, it uses the PHP PHAR library to get it working.

The language doesn’t change

Please take a look to the locales installed on your system (server), because sysPass uses the GNU gettext [https://en.wikipedia.org/wiki/Gettext] system for internationalization.

The installed locales should be on the UTF-8 variant.

What are these strange characters in password fields?

Don’t worry about them, your password is okay. It’s a security mechanism by which the passwords entered in a form field are automatically encrypted using RSA encryption before sending over the HTTP channel. Then, on server side, they are decrypted and stored/used as they were entered.

Further info on: Encryption

Index

Installing dependencies

PHP Composer is needed to keep up-to-date dependencies and an easy way to apply security or functional patches to them.

You can either download the dependencies using Composer itself or by getting the latest “vendor.tar.gz” package from the release page.

Note

If you don’t have any Internet access from the server, the vendor package will provide all the release dependencies and you don’t need to deal with composer commands.

Using PHP Composer

From sysPass root directory, download and install Composer (https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md)

Create a bash script called “install_composer.sh” and paste this code in it:

#!/bin/sh
EXPECTED_SIGNATURE="$(wget -q -O - https://composer.github.io/installer.sig)"
php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
ACTUAL_SIGNATURE="$(php -r "echo hash_file('sha384', 'composer-setup.php');")"

if ["$EXPECTED_SIGNATURE" != "$ACTUAL_SIGNATURE"]
then
 >&2 echo 'ERROR: Invalid installer signature'
 rm composer-setup.php
 exit 1
fi

php composer-setup.php --quiet
RESULT=$?
rm composer-setup.php
exit $RESULT

$ chmod +x install_composer.sh
$./install_composer.sh

Then install sysPass dependencies

$ php composer.phar install --no-dev

Directories and permissions

Create a directory for sysPass within the web server root.

$ sudo mkdir /var/www/html/syspass

If you go with the packaged version, download and unpack sysPass files.

$ cd /var/www/html/syspass
Strip version directory and extract contents to current directory.
$ sudo tar xzf syspass.tar.gz --strip-components=1
If using the vendors package
$ sudo tar xzf vendors.tar.gz

If you go with Git cloned version, clone sysPass GitHub repository.

$ sudo git clone https://github.com/nuxsmin/sysPass.git /var/www/html/syspass

Setup directories permissions. The owner should match the web server running user.

$ sudo chown apache -R /var/www/html/syspass
$ sudo chmod 750 /var/www/html/syspass/app/config /var/www/html/syspass/app/backup

Environment configuration

Please, point your web browser to the following URL and follow the installer steps

https://IP_OR_SERVER_ADDRESS/syspass/index.php

Note

More information about how sysPass works on Application

Warning

It’s very advisable to take a look to security advices on Security

 Optional for enabling SSL.

In order to increase your sysPass instance security, please consider to use SSL. See Security and the following resources for Debian:

	Sites only accessible from LAN: https://doc.debian.org/configuration/Self-Signed_Certificate

	Sites accessible from Internet, you could use Let’s Encrypt, see https://certbot.eff.org/

Rocky 8 Installation

Prerequisites

	Web server (Apache/Nginx/Lighttpd) with SSL enabled.

	MariaDB >= 10.1

	PHP >= 7.0 (7.1 or above recommended)

	
	PHP modules

	
	mysqlnd

	curl (provided in php-common)

	json

	gd

	xml

	mbstring

	intl

	readline (provided in php-cli)

	ldap (optional)

	mcrypt (optional for importing older XML export files)

	Package with latest sysPass version https://github.com/nuxsmin/sysPass/releases/latest

	Or clone sysPass repository from GitHub https://github.com/nuxsmin/sysPass.git

Installation

Rocky 8 package installation. First configure dnf modules to use php 7.4 then install all packages needed from a base server installation. This example uses httpd; swap for your prefered webserver.

Check php modules installed and used
$ sudo dnf module list php
Disable php 7.2
$ sudo dnf module disable php:7.2
Enable php 7.4
$ sudo dnf module enable php:7.4
Install packages
$ sudo dnf install httpd mariadb-server php php-mysqlnd php-json php-gd php-xml php-mbstring php-intl php-common php-cli tar policycoreutils-python-utils

Start and enable MariaDB server.

$ sudo systemctl enable --now mariadb.service

Setting up MariaDB. Change the password and follow the prompts.

$ sudo mysql_secure_installation

Enabling firewall ports.

$ sudo firewall-cmd --zone=public --add-service=http --add-service=https --permanent
$ sudo firewall-cmd --reload

Optional for enabling SSL.

In order to increase your sysPass instance security, please consider to use SSL. See Security and the following resources for Debian:

	Sites only accessible from LAN: https://doc.debian.org/configuration/Self-Signed_Certificate

	Sites accessible from Internet, you could use Let’s Encrypt, see https://certbot.eff.org/

Directories and permissions

Create a directory for sysPass within the web server root.

$ sudo mkdir /var/www/html/syspass

If you go with the packaged version, download and unpack sysPass files.

$ cd /var/www/html/syspass
Strip version directory and extract contents to current directory.
$ sudo tar xzf syspass.tar.gz --strip-components=1
If using the vendors package
$ sudo tar xzf vendors.tar.gz

If you go with Git cloned version, clone sysPass GitHub repository.

$ sudo git clone https://github.com/nuxsmin/sysPass.git /var/www/html/syspass

Setup directories permissions. The owner should match the web server running user.

$ sudo chown apache -R /var/www/html/syspass
$ sudo chmod 750 /var/www/html/syspass/app/config /var/www/html/syspass/app/backup

Installing dependencies

PHP Composer is needed to keep up-to-date dependencies and an easy way to apply security or functional patches to them.

You can either download the dependencies using Composer itself or by getting the latest “vendor.tar.gz” package from the release page.

Note

If you don’t have any Internet access from the server, the vendor package will provide all the release dependencies and you don’t need to deal with composer commands.

Using PHP Composer

From sysPass root directory, download and install Composer (https://getcomposer.org/doc/faqs/how-to-install-composer-programmatically.md)

Create a bash script called “install_composer.sh” and paste this code in it:

#!/bin/sh
EXPECTED_SIGNATURE="$(wget -q -O - https://composer.github.io/installer.sig)"
php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
ACTUAL_SIGNATURE="$(php -r "echo hash_file('sha384', 'composer-setup.php');")"

if ["$EXPECTED_SIGNATURE" != "$ACTUAL_SIGNATURE"]
then
 >&2 echo 'ERROR: Invalid installer signature'
 rm composer-setup.php
 exit 1
fi

php composer-setup.php --quiet
RESULT=$?
rm composer-setup.php
exit $RESULT

$ chmod +x install_composer.sh
$./install_composer.sh

Then install sysPass dependencies

$ php composer.phar install --no-dev

SELinux

sysPass needs to be allowed to write its configuration and some other files (backup, cache, temp, etc). We have 2 choices:

Note

Please, run only one of the choices

	Change the SELinux context of files:

$ sudo setsebool -P httpd_can_connect_ldap 1
$ sudo semanage fcontext -a -t httpd_sys_rw_content_t "/var/www/html/syspass/app/(config|backup|cache|temp)(/.*)?"
$ sudo restorecon -R -v /var/www/html/syspass

	Disable SELinux by editing the file “/etc/sysconfig/selinux” and setting “SELINUX” variable’s value to “disabled”. You need to restart the system. Until then you can use permissive mode which won’t enforce the policies:

$ sudo setenforce 0

HTTP

After installation, enable and start your webserver. This example uses apache.

$ sudo systemctl enable --now httpd

Environment configuration

Please, point your web browser to the following URL and follow the installer steps

https://IP_OR_SERVER_ADDRESS/syspass/index.php

Note

More information about how sysPass works on Application

Warning

It’s very advisable to take a look to security advices on Security

 _static/comment-bright.png

_plantuml/dc/dc3df55edc6587fd29cbaef04a425d289bb65e3b.png
New master key
Begin SQL transaction

Decrypt accounts

and encrypt them again
Decrypt accounts history
and encrypt them again

Decrypt custon fields
and encrypt them again

Finalize SQL transaction

Rollback transaction

Display error and finalze | (Generate a Blowfish hash an save it in the DB

Update generation date in the DB

send email

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_plantuml/14/143d59d808ad5ae5edf05954fac71afab1056a26.png
Get user data
Retrieve the encrypted master key

Decrypt the master key

Verify master key

Encrypt and save in the user's session

_plantuml/83/836d824ac8d9a9fff6561a2759e9c6591e9410e0.png
Initialization

! Requests environment data within PKI

<

Sends password data encrypted

>

Decrypts the password, stores it and sends response |

<

_images/plantuml-8f6722fb07085f7cf8e06a045a2592aa4eff0fd8.png
Retrieve the master key from the session
Generate password protected key for
encrypting the master key

Save encrypted in the DB

Generate a Blowfish hash and save it in the BD

Display the encryption key
in the current session

_images/plantuml-dc3df55edc6587fd29cbaef04a425d289bb65e3b.png
New master key
Begin SQL transaction

Decrypt accounts

and encrypt them again
Decrypt accounts history
and encrypt them again

Decrypt custon fields
and encrypt them again

Finalize SQL transaction

Rollback transaction

Display error and finalze | (Generate a Blowfish hash an save it in the DB

Update generation date in the DB

send email

_plantuml/8f/8f6722fb07085f7cf8e06a045a2592aa4eff0fd8.png
Retrieve the master key from the session
Generate password protected key for
encrypting the master key

Save encrypted in the DB

Generate a Blowfish hash and save it in the BD

Display the encryption key
in the current session

_static/logo.png
Systems Password Manager

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 Debian 9 Installation

 		
 Prerequisites

 		
 Installation

 		
 Directories and permissions

 		
 Installing dependencies

 		
 Environment configuration

 		
 CentOS 7.x Installation

 		
 Prerequisites

 		
 Installation

 		
 Directories and permissions

 		
 SELinux

 		
 Installing dependencies

 		
 Environment configuration

 		
 Docker Installation

 		
 Docker Compose

 		
 Docker

 		
 Database Access

 		
 Hosting Mode

 		
 Configuration

 		
 LDAP Configuration

 		
 Active Directory

 		
 OpenLDAP

 		
 Tips

 		
 Links

 		
 Apache Configuration

 		
 Apache with HTTPS

 		
 Application

 		
 Encryption

 		
 Temporary Master Key

 		
 PKI-RSA

 		
 Diagrams

 		
 Login Process

 		
 Master Password Process

 		
 Temporary Master Key Process

 		
 PKI Process

 		
 Security

 		
 Authentication

 		
 Authorization

 		
 Permissions

 		
 ACL

 		
 Accounts Searching

 		
 API

 		
 Methods

 		
 Features

 		
 Plugins

 		
 Methods

 		
 Example

 		
 Events

 		
 Backup Strategies

 		
 Docker

 		
 Updating

 		
 Strategies

 		
 Normal

 		
 Git

 		
 Docker

 		
 2.1 Version

 		
 Important Changes

 		
 Process

 		
 3.0 Version

 		
 Important Changes

 		
 Process

 		
 3.1 Version

 		
 Important Changes

 		
 Process

 		
 Changelog

 		
 Thanks

 		
 HOWTOs

 		
 How to test a sysPass update

 		
 How to restore sysPass

 		
 Azure MySQL

 		
 How to install and configure Nginx

 		
 LDAP Troubleshooting

 		
 Frequently Asked Questions

 		
 What is sysPass?

 		
 Where can I install sysPass?

 		
 How do I install sysPass

 		
 Which authentication methods are used?

 		
 What is the encryption for?

 		
 What is portable?

 		
 Is there a master password for each account/user?

 		
 What are Wiki links?

 		
 What are categories?

 		
 What are user groups?

 		
 What is customer field?

 		
 Is there an account history?

 		
 What are profiles?

 		
 What is maintenance mode?

 		
 Can I change Master Password?

 		
 I don’t remember Master Password, can I decrypt the passwords?

 		
 Does backup runs on Windows?

 		
 The language doesn’t change

 		
 What are these strange characters in password fields?

_images/plantuml-143d59d808ad5ae5edf05954fac71afab1056a26.png
Get user data
Retrieve the encrypted master key

Decrypt the master key

Verify master key

Encrypt and save in the user's session

_static/plus.png

_images/plantuml-836d824ac8d9a9fff6561a2759e9c6591e9410e0.png
Initialization

! Requests environment data within PKI

<

Sends password data encrypted

>

Decrypts the password, stores it and sends response |

<

_static/logo_icon_24_nobg.png

_static/minus.png

_static/up.png

_static/up-pressed.png

