

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/syntree-website/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/syntree-website/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Requirements List

Last updated on 22/02/17

This list is split into hierarchical categories. Requirements in Tier 1 are absolutely essential; requirements in Tier 2 are important but less essential, and so on. This categorization is based on my own goals. Tier 1 items should be prioritized over Tier 2 items, Tier 2 over Tier 3, etc.

Tier 1

	!Create nodes either with keyboard shortcuts or using the mouse
	!Click in empty space to draw a new node connected to the nearest parent

	!Down arrow key = create child

	!Left/right arrow keys = create sibling

	!All arrow keys can also be used to navigate the tree

	!Will automatically create a node if there is nothing to select

	!Hold CTRL to force node creation (except on up arrow)

	!When navigating to multiple children (down), goes to the one most recently selected or the left-most node

	!Nodes are positioned automatically

	!Nodes can be labelled

	!Subtrees can be deleted

	!Empty nodes are automatically removed (if you create them and then go back)

Tier 2

	Easily export/embed tree diagrams
	With different file formats

	Save trees as special format that can be read back into the drawer (with formatting included)

	Allow user to upload tree, or open one saved in db

	Pan the view of the tree

	!Convert visual tree to bracket notation and vice versa
	!Export as bracket notation (LaTeX syntax)

Tier 3

	Delete intermediate nodes without deleting their children

	Use triangles to represent abbreviated structure

	Represent syntactic movement with arrows

	Draw multiple trees within one ‘page’

	Drag and drop nodes to new parents

	Copy/paste nodes and groups of nodes

Tier 4

	Zoom

	Be restricted to a certain library of production rules, for example, X-Bar theory

	Import previously created trees as fragments

	!Have multiple pages

	Format text fully
	!Change node color/style as group(s)

	Remove a node from the flow of automatic line angling, positioning and anchoring it where the user desires

	Highlight dependency relationships (c-command, child/parent, etc.)

Class Analysis of Tier 2 Use Cases (#4 and #5)

This is a historical document, from November 2016. It may have some out of date terms or other idiosyncrasies compared to updated documents like Use Cases or the Class Diagram.

Nouns from Tier 2 Use Cases (that do not appear in Tier 1)

	Button

	Alert
- Message
- Button

	File dialog

	File

	Menu
- Dropdown menu

	Dialog

	File type

	Base node

	Option(s)

	“Shadow” tree

Analysis

Several of these are clearly graphical elements (button, alert) that really don’t have a clear place to reside in the class diagram as it is. There are several graphical elements so far, existing as properties of Node and Workspace and Branch. The issue is further complicated by the fact that things like buttons may be implemented as HTML elements rather than SVG elements. It is likely that Button would be a good class, and possibly Alert as well (although this might also be a method of Workspace). In any case, it is clear that some restructuring will be needed to accommodate the multiplication of graphical elements.

“File dialog” should not need to be represented in our custom code, as it is built into the browser and we are just accessing it. Custom dialogs, on the other hand, (see exporting use cases) will likely need their own class. This would suggest that having Alerts be a method of Workspace is not the right way to go, and instead we might want to lean towards something like an overarching Modal class (which has child classes Alert and Dialog and etc.).

Menus are yet another graphical element that needs to be handled. Perhaps we need to simply make a Graphic class, from which all graphical elements that need to be represented in code can use. At the very least, such a class for controls (as opposed to pieces of the tree) might be a good idea.

The “shadow” tree is particularly difficult. At first it might be tempting to think of it as a method of Tree, but the fact is that it can be called on subtrees as well and how are we to deal with that? It is obviously ridiculous to make every subtree a Tree with it’s own shadow method (consider the number of possible subtrees for even a moderately sized Tree). Potentially this shadow tree could be categorized as a graphical interaction and thus handled by Workspace or another graphical management class.

Class Analysis of Use Case #1: Creating a Syntax Tree

This is a historical document (from November 2016). It may have some out of date terms or other idiosyncrasies compared to updated documents like Use Cases or the Class Diagram.

Nouns

	GUI

	User

	Node
	Root node

	Child node

	Sibling node

	Textbox

	Border

	Syntax tree

Analysis

I have established that Node is probably the most important class here. A syntax tree is composed of nodes and an overwhelming majority of the operation involve interactions between Nodes. The noun ‘textbox’ is referring to the visual representation of a node in the GUI, so we can encapsulate that within the Node class. Similarly with the border or highlight. As to the various types of nodes, these are best represented as Node instances with different properties and relations to one another.

The second most important class here will be the (syntax) Tree class. It will serve as a way to hold the nodes as a mapped collection rather than what amounts to a linked list. It will also serve to hold methods that operate on large numbers of nodes in a non-transversal way, such as retrieving nodes at a certain offset from the root. Furthermore, it can carry state variables such as the currently selected node.

The user is the user, and within the syntax tree drawer itself there is no reason to represent them in code (this will change when it comes to the website itself).

The GUI itself can be thought of as several components, specifically the SVG workspace and the elements within it, the Snap.svg javascript library which allows for easier SVG manipulation, and the various functions of jQuery which allow for other visual manipulations. It remains to be seen whether having these various visual tools encapsulated in a single class would be useful. As of now they exist as an implicit layer in between any underlying classes and the output the user sees. Of particular concern are event listeners, which can also be thought of as part of the GUI, but have no real home in the code as of now.

Use Case #5: Uploading a Tree

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

Steps

	User: clicks “Upload” button in toolbar

	App: displays standard file dialog with file type defaulted to ‘.tree’

	User: selects desired ‘.tree’ file

	User: clicks “Open” or equivalent in standard file dialog

	App: loads and displays Tree from file

Use Case #4: Exporting a Tree

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

	User has created a Tree

Steps

	User: clicks “Export” button in the toolbar

	App: displays modal dialog containing:
	a list of radio inputs labeled with different file types

	a text input with content “myfile .txt”

	buttons labelled “Export” and “Cancel”

	User: clicks radio input for desired file type

	App: displays file name input as having the file type extension matching User’s selection

	User: types in desired file name in text input

	User: clicks “Export” button in modal dialog

	App: downloads file to User’s computer, via built-in browser functionality

Use Case #1: Creating a Syntax Tree

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

Steps

	App: displays a single Node with label ‘S’

	App: displays Node ‘S’ as highlighted, to indicate that it is the selected Node

	User: presses the down arrow key, to create a child node

	App: displays a new node a set distance down from the root Node ‘S’

	App: sets focus to a text box (editor) which visually represents the new child Node

	User: types in the child Node’s editor, labelling it ‘NP’

	User: presses enter to confirm the edit

	App: displays the child Node as just text (no text box), reading ‘NP’

	App: displays Node ‘NP’ as highlighted, to show that it is selected

	User: presses the right arrow key, to create a sibling Node

	App: displays Node ‘NP’ as shifted to the left, and a new child Node to the right, forming an equilateral triangle with the root Node ‘S’

	App: sets focus to a text box (editor) which visually represents the new child Node

	User: labels the new child Node ‘VP’ and presses enter

	App: displays Node ‘VP’ as highlighted, to show that it is selected

	User: presses the left arrow key to navigate back to Node ‘NP’

	App: displays Node ‘NP’ as highlighted to show that it is selected

	User: presses the down arrow key to create a child Node

	User: draws the rest of the syntax tree, using the methods from steps 3 - 17

Use Case #7: Toggling a Branch’s Triangle Display

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

	There is a child Node ‘The big blue cat’ of root Node ‘S’

Steps

	User: clicks the Branch between root Node ‘S’ and its child Node

	App: displays the clicked Branch as highlighted, to show that it is selected

	App: displays a circular button at the Branch’s midpoint, containing a small vertical line icon

	User: clicks the circular button

	App: displays the Branch as a triangle, with a single point just below the root Node ‘S’ and two points at each upper corner of the child Node ‘The big blue cat’

	App: displays the circular button as containing a small triangular icon

Use Case #3: Deleting Nodes

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

	There is a tree with many Nodes

Steps

	User: selects a Node which has both a parent and at least one child

	App: displays this Node as selected

	User: presses either “Backspace” or “Delete” key, or clicks the small ‘x’ button to the top right of the Node

	App: removes the selected Node and all its descendants from the display

Use Case #1: Creating a Movement Arrow

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

	There is a child Node ‘A’ of the root Node ‘S’

	There is a child Node ‘B’ of the root Node ‘S’

	The child Node ‘A’ is the selected Node

Steps

	App: displays Node ‘A’ as highlighted, to show that it is selected

	User: holds the CTRL key and clicks on Node ‘B’

	App: displays a dashed arrow curving from Node ‘A’ to Node ‘B’

	App: displays arrow as highlighted, to show that it is selected

	App: displays one red and one blue circle representing the control points of the boolean curve that is the arrow’s path

	User: drags one of the control point markers

	App: updates the arrow’s path to match the changing control point

Use Case #2: Forcing Node Creation

Actors

	User (User)

	Syntree app (App)

Preconditions

	User has opened the application

	There is a child Node ‘NP’ of the root Node ‘S’

	There is a child Node ‘VP’ of the root Node ‘S’

	The child Node ‘NP’ is the selected Node

Steps

	User: holds the CTRL and SHIFT keys and presses the left arrow key, to force creation of a child Node

	App: rather than navigating to the existing sibling Node ‘VP’, displays a new Node in between the Node ‘NP’ and the Node ‘VP’

	App: displays all three child Nodes equidistant from one another, forming an equilateral triangle shape with the root Node ‘S’

	App: sets focus to the new child Node’s editor

	User: labels the new child Node ‘A’ and presses enter

	App: displays new child Node ‘A’ as highlighted to show that it is selected

Requirements List

Last updated on 22/02/17

This list is split into hierarchical categories. Requirements in Tier 1 are absolutely essential; requirements in Tier 2 are important but less essential, and so on. This categorization is based on my own goals. Tier 1 items should be prioritized over Tier 2 items, Tier 2 over Tier 3, etc.

Tier 1

	!Create nodes either with keyboard shortcuts or using the mouse
	!Click in empty space to draw a new node connected to the nearest parent

	!Down arrow key = create child

	!Left/right arrow keys = create sibling

	!All arrow keys can also be used to navigate the tree

	!Will automatically create a node if there is nothing to select

	!Hold CTRL to force node creation (except on up arrow)

	!When navigating to multiple children (down), goes to the one most recently selected or the left-most node

	!Nodes are positioned automatically

	!Nodes can be labelled

	!Subtrees can be deleted

	!Empty nodes are automatically removed (if you create them and then go back)

Tier 2

	Easily export/embed tree diagrams
	With different file formats

	Save trees as special format that can be read back into the drawer (with formatting included)

	Allow user to upload tree, or open one saved in db

	Pan the view of the tree

	!Convert visual tree to bracket notation and vice versa
	!Export as bracket notation (LaTeX syntax)

Tier 3

	Delete intermediate nodes without deleting their children

	Use triangles to represent abbreviated structure

	Represent syntactic movement with arrows

	Draw multiple trees within one ‘page’

	Drag and drop nodes to new parents

	Copy/paste nodes and groups of nodes

Tier 4

	Zoom

	Be restricted to a certain library of production rules, for example, X-Bar theory

	Import previously created trees as fragments

	!Have multiple pages

	Format text fully
	!Change node color/style as group(s)

	Remove a node from the flow of automatic line angling, positioning and anchoring it where the user desires

	Highlight dependency relationships (c-command, child/parent, etc.)

 _static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment-close.png

_static/comment-bright.png

