

Overview

This project is part of the EU H2020 SynchroniCity [https://synchronicity-iot.eu] project and it is based on the FIWARE Business API Ecosystem [https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri].

The SynchroniCity IoT Data Marketplace [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace] is a joint component made up of the FIWARE Business Framework and a set of APIs (and its
reference implementations) provided by the TMForum. This component allows the monetization of different kind of assets
(both digital and physical) during the whole service life cycle, from offering creation to its charging, accounting
and revenue settlement and sharing. The SynchroniCity IoT Data Marketplace exposes its complete functionality through TMForum
standard APIs; concretely, it includes the catalog management, ordering management, inventory management,
usage management, billing, customer, and party APIs.

The SynchroniCity IoT Data Marketplace is not a single software repository, but it is composed of different projects which
work coordinately to provide the complete functionality.

Concretely, the SynchroniCity IoT Data Marketplace is made of the following components:

	Reference implementations of TM Forum APIs: Reference implementation of the catalog management, ordering management, inventory management, usage management, billing, customer, and party APIs.

	Business Ecosystem Charging Backend: Is the component in charge of processing the different pricing models, the accounting information, and the revenue sharing reports. With this information, the Business Ecosystem Charging Backend is able to calculate amounts to be charged, charge customers, and pay sellers.

	Business Ecosystem RSS: Is in charge of distributing the revenues originated by the usage of a given data source among the involved stakeholders. In particular, it focuses on distributing part of the revenue generated by a data source between the SynchroniCity IoT Data Marketplace instance provider and the Data Provider(s) responsible for the data source.

	Business Ecosystem Logic Proxy: Acts as the endpoint for accessing the SynchroniCity IoT Data Marketplace. On the one hand, it orchestrates the APIs validating user requests, including authentication, authorization, and the content of the request from a business logic point of view. On the other hand, it serves a web portal that can be used to interact with the system.

Index

	Installation and Administration Guide

	The guide for maintainers that explains how to install it.

	User Guide

	The guide for users that explains how to use it.

Documentation

	Installation and Administration Guide
	Introduction

	Installation

	Configuration

	Sanity Check Procedures

	Diagnosis Procedures

	User Guide
	Introduction

	Profile Configuration

	Admin

	Seller

	Customer

Installation and Administration Guide

Introduction

This installation and administration guide covers the SynchroniCity IoT Data Marketplace [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace] based on the Business API Ecosystem [https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri] version 6.4.0, corresponding to FIWARE release 6.
Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included but aren’t.
Please send them by creating an issue at GitHub Issues [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace/issues/new]

Installation

The SynchroniCity IoT Data Marketplace can be deployed with Docker. For all the components that made up the
SynchroniCity IoT Data Marketplace (based on the Business API Ecosystem [https://github.com/FIWARE-TMForum/Business-API-Ecosystem] it has been provided a Docker image that can be used
jointly with docker-compose in order to deploy and configure the ecosystem.

Requirements

The SynchroniCity IoT Data Marketplace is not a single software, but a set of modules that
work together for proving business capabilities. In this regard, this section contains the basic dependencies of
the different components that made up the SynchroniCity IoT Data Marketplace.

Note

The SynchroniCity IoT Data Marketplace requires instances of MySQL and MongoDB running. In this regard, you have three possibilities:

	You can have your own instances deployed in your machine

	You can manually run docker containers before executing the SynchroniCity IoT Data Marketplace

	You can use docker-compose to automatically deploy both components

OAuth2 Authentication requirements

The SynchroniCity IoT Data Marketplace authenticates with the [FIWARE identity manager](http://fiware-idm.readthedocs.io/en/latest/).
It is needed to register an application in this portal in order to acquire the OAuth2 credentials.

There you have to use the following info for registering the app:

	Name: The name you want for your instance

	URL: Host and port where you plan to run the instance. [http]|https://host:port/

	Callback URL: URL to be called in the OAuth process. [http]|https://host:port/auth/fiware/callback

You must also create a new role called ‘seller’ and assign this role to the user authorized to be seller (data provider) in the marketplace.

Deploying the SynchroniCity IoT Data Marketplace

As stated, it is possible to deploy the SynchroniCity IoT Data Marketplace using the Docker images available for each of its
modules with docker-compose. In particular, the following images have to be deployed:

	bae-apis-synchronicity (https://hub.docker.com/r/angelocapossele/bae-apis-synchronicity/): Image including the TMForum APIs

	biz-ecosystem-rss (https://hub.docker.com/r/conwetlab/biz-ecosystem-rss/): Image Including the BAE RSS module

	charging-backend-synchronicity (https://hub.docker.com/r/angelocapossele/charging-backend-synchronicity/): Image including the charging backend module

	logic-proxy-synchronicity (https://hub.docker.com/r/conwetlab/angelocapossele/logic-proxy-synchronicity/): Image including the logic proxy module

For deploying the SynchroniCity IoT Data Marketplace the first step is creating a docker-compose.yml file with the following contents (or use the one provided in this GitHub repo):

version: '3'
services:
 mongo:
 image: mongo:3.2
 restart: always
 ports:
 - 27017:27017
 networks:
 main:
 volumes:
 - ./mongo-data:/data/db

 mysql:
 image: mysql:latest
 restart: always
 ports:
 - 3333:3306
 volumes:
 - ./mysql-data:/var/lib/mysql
 networks:
 main:
 environment:
 - MYSQL_ROOT_PASSWORD=my-secret-pw
 - MYSQL_DATABASE=RSS

 charging:
 image: angelocapossele/charging-backend-synchronicity:v6.4.0
 restart: always
 links:
 - mongo
 depends_on:
 - mongo
 - apis
 - rss
 ports:
 - 8006:8006
 networks:
 main:
 aliases:
 - charging.docker
 volumes:
 - ./charging-bills:/business-ecosystem-charging-backend/src/media/bills
 - ./charging-assets:/business-ecosystem-charging-backend/src/media/assets
 - ./charging-plugins:/business-ecosystem-charging-backend/src/plugins
 - ./charging-settings:/business-ecosystem-charging-backend/src/user_settings
 environment:
 - PAYPAL_CLIENT_ID=client_id_here
 - PAYPAL_CLIENT_SECRET=client_secret_here

 proxy:
 image: angelocapossele/logic-proxy-synchronicity:v6.4.0
 restart: always
 links:
 - mongo
 depends_on:
 - mongo
 - apis
 ports:
 - 8004:8004
 networks:
 main:
 aliases:
 - proxy.docker
 volumes:
 - ./proxy-conf:/business-ecosystem-logic-proxy/etc
 - ./proxy-indexes:/business-ecosystem-logic-proxy/indexes
 - ./proxy-themes:/business-ecosystem-logic-proxy/themes
 - ./proxy-static:/business-ecosystem-logic-proxy/static
 environment:
 - NODE_ENV=development

 apis:
 image: angelocapossele/bae-apis-synchronicity:v6.4.0
 restart: always
 ports:
 - 4848:4848
 - 8080:8080
 links:
 - mysql
 depends_on:
 - mysql
 networks:
 main:
 aliases:
 - apis.docker
 volumes:
 - ./apis-conf:/etc/default/tmf/
 environment:
 - MYSQL_ROOT_PASSWORD=my-secret-pw
 - MYSQL_HOST=mysql

 rss:
 image: conwetlab/biz-ecosystem-rss:v6.4.0
 restart: always
 ports:
 - 9999:8080
 - 4444:4848
 - 1111:8181
 links:
 - mysql
 depends_on:
 - mysql
 networks:
 main:
 aliases:
 - rss.docker
 volumes:
 - ./rss-conf:/etc/default/rss

networks:
 main:
 external: true

Configuration

The next step is providing all the configuration files required by the different components using the configured volumes.
It is possible to find valid configuration files (as well as the docker-compose.yml) in this GitHub repo [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace].

As you can see, the different modules include environment variables and volumes. In particular:

Charging

The charging-backend-synchronicity needs the following environment variables:

	PAYPAL_CLIENT_ID: the client id of your application PayPal credentials used for charging users (a Sandbox account can be used for testing).

	PAYPAL_CLIENT_SECRET: the client secret of your application PayPal credentials used for charging users (a Sandbox account can be used for testing).

Additionally, the charging-backend-synchronicity image contains 4 volumes. In particular:

	/business-ecosystem-charging-backend/src/media/bills: This directory contains the PDF invoices generated by the Business Ecosystem Charging Backend

	/business-ecosystem-charging-backend/src/media/assets: This directory contains the different digital assets uploaded by sellers to the Business Ecosystem Charging Backend

	/business-ecosystem-charging-backend/src/plugins: This directory is used for providing asset plugins (see section Installing the Orion Query Plugin)

	/business-ecosystem-charging-backend/src/user_settings: This directory must include the settings.py and services_settings.py files with the software configuration.

More specifically, the services_settings.py includes:

	KEYSTONE_PROTOCOL: http or https

	KEYSTONE_HOST: host where is running the IDM (e.g., ‘idm.docker’)

	KEYROCK_PORT: port number where the Keyrock instance is listening (e.g., ‘8000’)

	KEYSTONE_PORT: port number where the Keystone instance is listening (e.g., ‘5000’)

	KEYSTONE_USER: admin username of the IDM (e.g., ‘idm’)

	KEYSTONE_PWD: admin password of the IDM (e.g., ‘idm’)

	ADMIN_DOMAIN: admin domain on the IDM (e.g., ‘Default’)

	APP_CLIENT_ID: Client ID of the Orion context broker registered on the IDM

	APP_CLIENT_SECRET: Client Secret of the Orion Context Broker registered on the IDM

Logic Proxy

The logic-proxy-synchronicity image contains 4 volumes. In particular:

	/business-ecosystem-logic-proxy/etc: This directory must include the config.js file with the software configuration

	/business-ecosystem-logic-proxy/indexes: This directory contains the indexes used by the SynchroniCity IoT Data Marketplace for searching

	/business-ecosystem-logic-proxy/themes: This directory contains the themes that can be used to customize the web portal

	/business-ecosystem-logic-proxy/static: This directory includes the static files ready to be rendered including the selected theme and js files

Finally, the logic-proxy-synchronicity uses the environment variable NODE_ENV to determine if the software is being used
in development or in production mode.

Note

The config.js file must include an extra setting not provided by default called config.extPort that must include the port where the proxy is going to run in the host machine

Once you have created the files, run the following command

$ docker-compose up

Then, the SynchroniCity IoT Data Marketplace should be up and running in http://YOUR_HOST:PORT/ replacing YOUR_HOST by the host of your machine and PORT by the port provided in the Business Ecosystem Logic Proxy configuration

Once the different containers are running, you can stop them using

$ docker-compose stop

And start them again using

$ docker-compose start

Additionally, you can terminate the different containers by executing

$ docker-compose down

Installing the Orion Query Plugin

The SynchroniCity IoT Data Marketplace is intended to support the monetization of different kind of data sources. The different
kind of data sources that may be wanted to be monetized will be heterogeneous and potentially very different between them.

Additionally, for each type of data source different validations and activation mechanisms will be required. For example, if the
data source is an NGSI entity, it will be required to validate that the provider is the owner of that entity. Moreover, when a customer
acquires the access to that entity, it will be required to notify the Identity Management component that a new user has access to it.

The huge differences between the different types of data sources that can be monetized in the SynchroniCity IoT Data Marketplace makes
impossible to include its validations and characteristics as part of the core software. For this reason, it has been created
a plugin based solution, where all the characteristics of a data source type are implemented in a plugin that can be loaded
in the SynchroniCity IoT Data Marketplace.

As you may know, the SynchroniCity IoT Data Marketplace is able to sell NGSI compliant data sources. To support this functionality,
it must be installed the Orion Query plugin (also included in this GitHub repo [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace])
as follows

	Copy the plugin file into the host directory of the volume /business-ecosystem-charging-backend/src/plugins

	Enter the running container

$ docker exec -i -t your-container /bin/bash

	Go to the installation directory

$ cd /apis/business-ecosystem-charging-backend/src

	Load the plugin

$./manage.py loadplugin ./plugins/Orion.zip

	Restart Apache

$ service apache2 restart

Note

For specific details on how to create a plugin and its internal structure, have a look at the Business API Ecosystem Programmer Guide [http://business-api-ecosystem.readthedocs.io/en/v6.4.0/programmer-guide.html]

Sanity Check Procedures

The Sanity Check Procedures are the steps that a System Administrator will take to verify that an installation is ready
to be tested. This is therefore a preliminary set of tests to ensure that obvious or basic malfunctioning is fixed before
proceeding to unit tests, integration tests and user validation.

End to End Testing

Please note that the following information is required before starting with the process:
* The host and port where the Proxy is running
* A valid IdM user with the Seller role

To Check if the SynchroniCity IoT Data Marketplace is running, follow the next steps:

	Open a browser and enter to the SynchroniCity IoT Data Marketplace

	Click on the Sign In Button

[image: _images/sanity1.png]

	Provide your credentials in the IdM page

[image: _images/sanity2.png]

	Go to the Revenue Sharing section

[image: _images/sanity3.png]

	Ensure that the default RS Model has been created

[image: _images/sanity4.png]

	Go to My Stock section and click on New for creating a new catalog

[image: _images/sanity6.png]

	Provide a name and a description and click on Next. Then click on Create

[image: _images/sanity7.png]
[image: _images/sanity8.png]
[image: _images/sanity9.png]

	Click on Launched, and then click on Update

[image: _images/sanity11.png]

	Go to Home, and ensure the new catalog appears

[image: _images/sanity13.png]

List of Running Processes

We need to check that Java for the Glassfish server (APIs and RSS), python (Charging Backend) and Node (Proxy) are running,
as well as MongoDB and MySQL databases. If we execute the following command:

ps -ewF | grep 'java\|mongodb\|mysql\|python\|node' | grep -v grep

It should show something similar to the following:

mongodb 1014 1 0 3458593 49996 0 sep08 ? 00:22:30 /usr/bin/mongod --config /etc/mongodb.conf
mysql 1055 1 0 598728 64884 2 sep08 ? 00:02:21 /usr/sbin/mysqld
francis+ 15932 27745 0 65187 39668 0 14:53 pts/24 00:00:08 python ./manage.py runserver 0.0.0.0:8006
francis+ 15939 15932 1 83472 38968 0 14:53 pts/24 00:00:21 /home/user/business-ecosystem-charging-backend/src/virtenv/bin/python ./manage.py runserver 0.0.0.0:8006
francis+ 16036 15949 0 330473 163556 0 14:54 pts/25 00:00:08 node server.js
root 1572 1 0 1142607 1314076 3 sep08 ? 00:37:40 /usr/lib/jvm/java-8-oracle/bin/java -cp /opt/biz-ecosystem/glassfish ...

Network interfaces Up & Open

To check the ports in use and listening, execute the command:

$ sudo netstat -nltp

The expected results must be something similar to the following:

Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:8006 0.0.0.0:* LISTEN 15939/python
tcp 0 0 127.0.0.1:27017 0.0.0.0:* LISTEN 1014/mongod
tcp 0 0 127.0.0.1:28017 0.0.0.0:* LISTEN 1014/mongod
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 1055/mysqld
tcp6 0 0 :::80 :::* LISTEN 16036/node
tcp6 0 0 :::8686 :::* LISTEN 1572/java
tcp6 0 0 :::4848 :::* LISTEN 1572/java
tcp6 0 0 :::8080 :::* LISTEN 1572/java
tcp6 0 0 :::8181 :::* LISTEN 1572/java

Databases

The last step in the sanity check, once we have identified the processes and ports, is to check that MySQL and MongoDB
databases are up and accepting queries. We can check that MySQL is working, with the following command:

$ mysql -u <user> -p<password>

You should see something similar to:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 174
Server version: 5.5.47-0ubuntu0.14.04.1 (Ubuntu)

Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

For MongoDB, execute the following command:

$ mongo <database> -u <user> -p <password>

You should see something similar to:

MongoDB shell version: 2.4.9
connecting to: <database>
>

Diagnosis Procedures

The Diagnosis Procedures are the first steps that a System Administrator will take to locate the source of an error in a GE.
Once the nature of the error is identified with these tests, the system admin will very often have to resort to more concrete
and specific testing to pinpoint the exact point of error and a possible solution. Such specific testing is out of the scope
of this section.

Resource Availability

Memory use depends on the number of concurrent users as well as the free memory available and the hard disk.
The SynchroniCity IoT Data Marketplace requires a minimum of 1024 MB of available RAM memory, but 2048 MB of free memory are recomended.
Moreover, the SynchroniCity IoT Data Marketplace requires at least 15 GB of hard disk space.

Remote Service Access

N/A

Resource Consumption

Resource consumption strongly depends on the load, especially on the number of concurrent users logged in.

	Glassfish main memory consumption should be between 500 MB and 2048 MB

	MongoDB main memory consumption should be between 30 MB and 500 MB

	Pyhton main memory consumption should be between 30 MB and 200 MB

	Node main memory consumption should be between 30 MB and 200 MB

	MySQL main memory consumption should be between 30 MB and 500 MB

I/O Flows

The only expected I/O flow is of type HTTP, on port defined in the Logic Proxy configuration file

User Guide

Introduction

This user guide covers the SynchroniCity IoT Data Marketplace [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace] based on the Business API Ecosystem [https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri] version 6.4.0, corresponding to FIWARE release 6.
Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included but aren’t.
Please send them by creating an issue at GitHub Issues [https://github.com/caposseleDigicat/SynchroniCityDataMarketplace/issues/new]

This user guide contains a description of the different tasks that can be performed in the SynchroniCity IoT Data Marketplace using
its web interface. This section is organized so that actions related to a particular user role are grouped together.

Profile Configuration

All the users of the system can configure their profile, so they can configure their personal information as well as their
billing addresses and contact mediums.

To configure the user profile, the first step is opening the user Settings located in the user menu.

[image: _images/profile1.png]
In the displayed view, it can be seen that some information related to the account is already included (Username, Email, Access token).
This information is the one provided by the IdM after the login process.

The profile to be updated depends on whether the user is acting on behalf an organization or himself. In both cases, to
update the profile, fill in the required information and click on Update.

For users, personal information is provided.

[image: _images/profile2.png]

Note

Only the First name and Last name fields are mandatory

Once you have created your profile, you can include contact mediums by going to the Contact mediums section.
In the Contact Medium section, there are two different tabs. On the one hand, the Billing addresses tab, where you
can register the billing addresses you will be able to use when creating orders and purchasing data.

To create a blling address, fill in the fields and click on Create

[image: _images/profile4.png]
Once created, you can edit the address by clicking on the Edit button of the specific address, and changing the
wanted fields.

[image: _images/profile5.png]
[image: _images/profile6.png]
On the other hand, if you have the Seller role you can create Business Addresses, which can be used by your customers
in order to allow them to contact you. In the Business Addresses tab you can create, different kind of contact mediums, including emails, phones, and addresses.
To create a contact medium, fill in the fields and click on Create

[image: _images/profile8.png]
[image: _images/profile9.png]
[image: _images/profile10.png]
You can Edit or Remove the contact medium by clicking on the corresponding button

[image: _images/profile11.png]

Admin

If the user of the SynchroniCity IoT Data Marketplace is an admin, he will be able to access the Administration section of the
web portal. This section is located in the user menu.

[image: _images/cat1.png]

Manage Categories

Admin users are authorized to create the system categories that can be used by Sellers to categorize their catalogs,
data sources, and offerings.

To create categories, go to the Administration section, and click on New

[image: _images/cat2.png]
Then, provide a name and an optional description for the category. Once the information has been included, click on Next, and then on Create

[image: _images/cat3.png]
[image: _images/cat4.png]
Categories in the SynchroniCity IoT Data Marketplace can be nested, so you can choose a parent category if you want while creating.

[image: _images/cat5.png]
Existing categories can be updated. To edit a category click on the category name.

[image: _images/cat6.png]
Then edit the corresponding fields and click on Update.

[image: _images/cat7.png]

Seller

If the user of the SynchroniCity IoT Data Marketplace has the Seller role, he will be able to share and monetize his data sources by creating
catalogs, data source specifications and offerings. All these objects are managed accessing My Stock section.

[image: _images/catalog2.png]

Manage Catalogs

The Catalogs section is the one that is open by default when the seller accesses My Stock section. This section
contains the catalogs the seller has created. Additionally, it has been defined several mechanisms for searching and filtering the list of catalogs displayed. On the one
hand, it is possible to search catalogs by keyword using the search input provided in the menu bar. On the other hand,
it is possible to specify how catalog list should be sorted or filter the shown catalogs by status and the role you are
playing. To do that, click on Filters, choose the required parameters, and click on Close.

[image: _images/catalog9.png]
To create a new catalog click on the New button. Then, provide a name and an optional description for the catalog.
Once you have filled the fields, click on Next, and then on Create

[image: _images/catalog4.png]
[image: _images/catalog5.png]
Sellers can also update their catalogs. To do that, click on the name of the catalog to open the update view.

[image: _images/catalog6.png]
Then, update the fields you want to modify and click on Update. In this view, it is possible to change the Status of the
catalog. To start monetizing the catalog, and make it appear in the Home you have to change its status to Launched

[image: _images/catalog7.png]
[image: _images/catalog8.png]

Manage Data Source Specifications

Data Source Specifications represent the data source being offered. To list your data source specifications
go to My Stock section and click on Data source specifications.

[image: _images/product2.png]
In the same way as catalogs, data source specifications can be searched by keyword, sorted, or filtered by status and whether
they are bundles or not. To filter or sort data source specifications, click on Filters, choose the appropriate properties, and click on Close

[image: _images/product3.png]
Additionally, it is possible to switch between the grid view and the tabular view using the provided buttons.

[image: _images/product5.png]
To create a new data source specification click on New. In the displayed view, provide the general information of the data source spec. including its name, version, and an optional
description. In addition, you have to include the data source brand (Your brand), and an ID number which identifies the data source
in your environment. Then, click on Next.

[image: _images/product7.png]
In the next step you you will be required to provide the asset.

For providing the asset, you have to choose between the available asset types, choose how to provide the asset between the
available options, provide the asset, and include all the required information.

[image: _images/product10.png]

Note

Application ID has to be the same application ID of the Orion Context Broker instance registered on the IdM where your data source belongs.
Fiware-Service is the header used to register your data source as an entity on the Orion Context Broker. If your user does not have a provider
role for that specific Fiware-Service (e.g., TenantRZ1:provider) you will not be allowed to publish data source specification for that entity.

The next step in the creation of a data source spec. is including its characteristics. For including a new characteristic click on
New Characteristic

[image: _images/product12.png]
In the form, include the name, the type (string or number) and an optional description. Then create the values of the
characteristic by filling the Create a value input and clicking on +.

[image: _images/product13.png]
Once you have included all the characteristic info, save it clicking on Create

[image: _images/product14.png]
Once you have included all the required characteristics click on Next

[image: _images/product15.png]
In the next step you can include a picture for your data source spec. You have two options, providing an URL pointing to the
picture or directly uploading it. Once provided click Next
(Image credit for this example: oNline Web Fonts [http://www.onlinewebfonts.com])

[image: _images/product16.png]
Once done click on Next and then on Create

[image: _images/product19b.png]
Sellers can update their data source. To do that click on the data source specification to be updated.

[image: _images/product20.png]
Update the required values and click on Update. Note that for start selling an offering that includes the data source specification
you will be required to change its status to Launched

[image: _images/product21.png]
[image: _images/product22.png]

Manage Data Offerings

Data Offerings are the entities that contain the license, pricing models and revenue sharing info used to monetize a data source specification.
To list your data offerings, go to My Stock section and click on Offerings

[image: _images/offering2.png]
The existing data source offerings can be searched by keyword, sorted, or filtered by status and whether they are bundles or not.
To filter or sort data offerings, click on Filters, choose the appropriate properties, and click on Close

[image: _images/offering3.png]
Additionally, it is possible to switch between the grid view and the tabular view by clicking on the specific button.

[image: _images/offering5.png]
To create a new offering click on New. In the displayed form, include the basic info of the offering. Including, its name, version, an optional description, and
an optional set of places where the offering is available. Once the information has been provided click on Next

[image: _images/offering7.png]
In the next step, you can choose whether your offering is a bundle or not. In this case, offering bundles are logical
containers that allow you to provide new pricing models when a set of offerings are acquired together.
If you want to create a bundle you will be required to include at least two bundled offerings.

[image: _images/offering9.png]
In the next step you have to select the data source specification that is going to be monetized in the current offering. Once
selected click on Next.

[image: _images/offering10.png]
Then, you have to select the catalog where you want to publish you offering and click on Next

[image: _images/offering11.png]
In the next step, you can optionally choose categories for you offering. Once done, click on Next

[image: _images/offering12.png]
In the next step, you can specify the terms and conditions that apply to your offering and that must be accepted by those
customers who want to acquire it. Note that the terms and conditions are not mandatory.

[image: _images/offering25.png]
You have 3 options. You can select a standard open data license among the ones available

[image: _images/offering26.png]
Or you can customize your license by using the wizard menu

[image: _images/offering27.png]
Or you can describe your license by using the free-text form

[image: _images/offering28.png]
Once you have defined your license click on Next

The next step is the most important for the offering. In the displayed form you can create different price plans for
you offering, which will be selectable by customers when acquiring the offering. If you do not include any price plan
the offering in considered free.

To include a new price plan the first step is clicking on New Price Plan

[image: _images/offering13.png]
For creating the price plan, you have to provide a name, and an optional description. Then, you have to choose the type
of price plan between the provided options.

The available types are: one time for payments that are made once when purchasing the offering, recurring for charges
that are made periodically (e.g a monthly payment), and usage for charges that are calculated applying the pricing model
to the actual usage made of the acquired service.

If you choose one time, you have to provide the price and the currency.

[image: _images/offering14.png]
Once you have created you pricing model click on Next

[image: _images/offering17.png]
In the last step of the process, you have to choose the revenue sharing model to be applied to you offering between the
available ones. Once done, click on Next and then on Create.

[image: _images/offering19.png]
[image: _images/offering20.png]
Sellers can also edit their offerings. To do that click on the offering to be updated.
In the displayed form, change the fields you want to edit and click on Update. Note that for start selling you offering
you have to update its status to Launched

[image: _images/offering22.png]
[image: _images/offering24.png]

Customer

All of the users of the system have by default the Customer role. Customers are able to create orders for acquiring
offerings.

List Available Offerings

All the available (Launched) offerings appear in the Home page of the SynchroniCity IoT Data Marketplace, so they can be seen by
customers. Additionally, customers can select a specific catalog of offerings by clicking on it.

[image: _images/search2.png]
[image: _images/search3.png]
Moreover, customers can filter the shown offerings by category using the categories dropdown and choosing the wanted one.

[image: _images/search4.png]
Customers can also filter bundle or single offerings using the Filters modal as well as choosing its sorting.

[image: _images/search6.png]
Customers can open the details of an offering by clicking on it. In the displayed view, it is shown the general info about
the offering and its included data source, the characteristics of the data source, and the price plans of the offering.

[image: _images/search8.png]

Create Order

Customers can create orders for acquiring offerings. The different offerings to be included in an order are managed using
the Shopping Cart.

To include an offering in the shopping cart there are two possibilities. You can click on the Add to Cart button located
in the offering panel when searching, or you can click on the Add to Cart button located in the offering details view.

[image: _images/order1.png]
[image: _images/order2.png]
If the offering has configurable characteristics, multiple price plans or terms and conditions, a modal will be displayed where you can select
your preferred options

[image: _images/order3.png]
[image: _images/order4.png]
Once you have included all the offerings you want to acquire to the shopping cart, you can create the order clicking on
Shopping Cart, and then on Checkout

[image: _images/order5.png]
Then, you have to select one of your billing addresses.

Once you have provided all the required information you can start the order creation clicking on Checkout

[image: _images/order7.png]
If the offering has a price plan, you will be redirected to PayPal so you can pay for the offerings according to their pricing models

[image: _images/order8.png]

Manage Acquired Data Offerings

The data you have acquired are located in My Inventory, there you can list them, check their status, or retrieve the access token required to access them.
In this view, it is possible to filter you data by its status. To do that click on Filters, select the related statuses,
and click on Close

[image: _images/inv2.png]
[image: _images/inv3.png]
It is also possible to switch between the grid and tabular views using the related buttons

[image: _images/inv5.png]
You can manage a specific acquired data source clicking on it. In the displayed view, you can see the general info of the acquired data source, and the characteristics and pricing you have selected.

[image: _images/inv7.png]
[image: _images/inv8.png]
Additionally, you can generate an access token for the data source accessing to the Access tab. To generate a new access token insert your IdM password and press the Token button.

[image: _images/inv9.png]
[image: _images/inv10.png]

Access Acquired Data Offerings

To access and consume the data you have acquired, you first need to locate on the characteristic of your data source,
the url pointing to that data and the Fiware-Service, if available, related to that data.

[image: _images/access1.png]
You will also need to retrieve or generate a new token as shown in the prevoius section.

[image: _images/access2.png]
Once you have these information you can use them to create your request. In this example we are using these information,
specifically the url, the X-Auth-Token, and the Fiware-Service to build a GET request by using Postman. Note that the
Fiware-Service might be optional if not present in the characteristic of your data source.

[image: _images/access3.png]
To generate a new access token without accessing to the marketplace you can use the Refresh Token

[image: _images/access4.png]
You will also need to retrieve the appId related to the data source that you wish to access. You can find the appId on the characteristic of your data source

[image: _images/access5.png]
Once you have these information you can use them to generate a new access token by performing a POST request on this API

http://[marketplace_url]:[marketplace_port]/charging/api/token/refresh

with header Content-Type: application/json and body

{
"refresh_token": "ibFRhNqsiHi9huM3dG7KeNtXld5cRJ",
"appId": "53626045d3bd4f8c84487f77944fa586"
}

[image: _images/access6.png]

Index

Plugins Guide

Introduction

This plugins guide covers the available plugins (defining digital asset types) for the Business API Ecosystem v6.4.0
Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included but aren’t.
Please send them to the “Contact Person” email that appears in the Catalogue page for this GEi [https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri]. Or create an issue at GitHub Issues [https://github.com/FIWARE-TMForum/Business-API-Ecosystem/issues/new]

Basic File and Basic URL

The Basic File and Basic URL plugins are available at GitHub [https://github.com/FIWARE-TMForum/biz-basic-plugins]
These plugins are intended to enable the creation of digital products in the Business API Ecosystem without the need
of specifying a particular type or validation process. In this regard, these plugins allow the publication of any file
or any URL as digital asset respectively, and can be used for the creation of simple file catalogs or for testing the
Business API Ecosystem.

These plugins do not implement any event handler.

WireCloud Component

The WireCloud Component plugin is available in GitHub [https://github.com/FIWARE-TMForum/wstore-wirecloud-plugin].
This plugin defines an asset type intended to manage and monetize the different WireCloud components (Widgets, Operators,
and Mashups) in particular by enabling the creation of product specifications providing the WGT file of the specific
component. (For more details on the WireCloud platform see its documentation in ReadTheDocs [https://wirecloud.readthedocs.io])

The WireCloud component plugin allows to provide the WGT file in the two ways supported by the Business API Ecosystem,
that is, uploading the WGT file when creating the product and providing a URL where the platform can download the file.

In addition, the plugin only allows the media type Mashable application component. Nevertheless, the plugin code uses the WGT
metainfo to determine the type of the WireCloud component (Widget, Operator, or Mashup) and overrides the media type with the
proper one understood by the WireCloud platform (wirecloud/widget, wirecloud/operator or wirecloud/mashup).

[image: ./images/plugin/wirecloud1.png]
[image: ./images/plugin/wirecloud2.png]
This plugin implements the following event handlers:

	on_post_product_spec_validation: In this handler the plugin validates the WGT file to ensure that it is a valid WireCloud Component

	on_post_product_spec_attachment: In this handler the plugin determines the media type of the WGT file and overrides the media type value in the specific product specification

CKAN Dataset and CKAN API Dataset

The CKAN Dataset and CKAN API Dataset plugins are available in GitHub [https://github.com/FIWARE-TMForum/biz-ckan-plugin].
These plugins define an asset type intended to manage and monetize datasets offered in a CKAN instance. In particular,
these plugins are able to validate the dataset, validate the rights of the seller creating a product specification to sell
the provided dataset, and manage the access to the dataset of those customers who acquire it.

The difference between both plugins is the type of data included as a resource in the CKAN dataset. In particular,
CKAN API Dataset expects the data to be served by an external API secured with the FIWARE security framework. In this
regard, the CKAN API Dataset also validates the permissions of the seller in the data service and grants customers access to it
using the FIWARE IdM roles and permissions.

Is important to notice that by default CKAN does not provide a mechanism to publish protected datasets or an API for
managing the access rights to the published datasets. In this regard, the CKAN instance to be monetized has to be extended
with the following CKAN plugins:

	ckanext-oauth2 [https://github.com/conwetlab/ckanext-oauth2]: This extension allows to use an external OAuth2 Identity Manager
for managing CKAN users. In particular, this extension must be used, in this context, to authenticate users using the same
FIWARE IdM instance as the specific Business API Ecosystem instance, so both systems (CKAN and Business API Ecosystem)
share their users.

	ckanext-privatedatasets [https://github.com/conwetlab/ckanext-privatedatasets]: This extension allows to create
protected datasets in CKAN which can only be accessed by a set of users selected by the dataset owner. Moreover, this
extension exposes an API that can be used to add or remove authorized users from a dataset.

In addition, if the ckanext-storepublisher [https://github.com/FIWARE-TMForum/ckanext-storepublisher] plugin is installed
in CKAN, the CKAN dataset or CKAN API Dataset plugin must be installed in the Business API Ecosystem, since the aforementioned CKAN extension
uses the CKAN Dataset or CKAN API Dataset asset type (depending on the dataset resource) for creating product specifications.

The CKAN Dataset plugin only allows to provide the asset with a URL that must match the dataset URL in CKAN.

[image: ./images/plugin/ckan1.png]
This plugin implements the following event handlers:

	on_pre_product_spec_validation: In this handler the plugin validates that the provided URL is a valid CKAN dataset and
that the user creating the product specification is its owner.

	on_product_acquisition: In this handler the plugin uses the CKAN instance API in order to grant access to the user
who has acquired a dataset.

	on_product_suspension: In this handler the plugin uses the CKAN instance API in order to revoke access to a dataset
when a user has not paid or when the user cancels a subscription.

On the other hand, the CKAN API Dataset also requires an Acquisition role to be provided. This role is the one that
will be granted to customers in the IdM in order to enable their access to the backend service, so the role must exist
and define a proper set of permissions for accessing the data.

[image: ./images/plugin/ckan2.png]
This plugins implements the following event handlers:

	on_pre_product_spec_validation: In this handler the plugin validates that the provided URL is a valid CKAN dataset and
that the user creating the product specification is its owner.

	on_post_product_spec_validation: In this handler, the plugin validates that the API resources included in the CKAN
dataset are valid, the permissions of the seller to offer that services, and that the provided acquisition role exist and
is valid.

	on_post_product_offering_validation: In this handler the plugin validates that pricing models are supported when
creating a pay-per-use offering

	on_product_acquisition: In this handler the plugin uses the CKAN instance API in order to grant access to the user
who has acquired a dataset.

	on_product_suspension: In this handler the plugin uses the CKAN instance API in order to revoke access to a dataset
when a user has not paid or when the user cancels a subscription.

	get_pending_accounting: In this handler, the plugins retrieves pending accounting information when the access to the
data has been acquired under a pay-per-use pricing model.

In addition, the CKAN API Dataset requires some settings to be configured before being deployed. This settings are available
in the setting.py file, and are:

	AUTH_METHOD: Authorization mechanism used by the backend service, idm or umbrella

	UMBRELLA_KEY: API Key used for accessing to the API Umbrella instance used to secure the backend service

	UMBRELLA_ADMIN_TOKEN: Admin token used for accessing to the API Umbrella instance used to secure the backend service

	KEYSTONE_USER: Keystone user used for authenticate requests to the FIWARE IdM

	KEYSTONE_PASSWORD: Keystone password used for authenticate requests to the FIWARE IdM

	KEYSTONE_HOST: Host of the Keystone service of the FIWARE IdM used for authorizing customers

Accountable Service

The Accountable Service plugin is available in GitHub.
This plugin defines a generic asset type which is used jointly with the Accounting Proxy [https://github.com/FIWARE-TMForum/Accounting-Proxy]
in order to offer services under a pay-per-use model. In particular, this plugin is able to validate services URLs,
validate sellers permissions, generate API keys for the Accounting Proxy, validate offering pricing models, and manage
customers access rights to the offered services.

Taking into account that this plugin is intended tyo work coordinately with an instance of the Accounting Proxy, all
the assets to be registered using the Accountable Service type must be registered in the proxy as described in the
Accounting Proxy section.

The Accountable Service plugin only allows to provide the assets with a URL that must match the service one.

[image: ./images/plugin/accounting1.png]
This plugin implements the following event handlers:

	on_post_product_spec_validation: In this event handler the plugin validates that the provided URL belongs to a valid
service registered in an instance of the Accounting Proxy, and that the user creating the product specification is its owner.
In addition, this handler generates an API key for the Accounting Proxy to be used when it feeds the Business API Ecosystem
with accounting information.

	on_post_product_offering_validation: In this event handler the plugin validates the pricing model of a product offering
where the service is going to be sold. Specifically, it validates that all the price plans which can be selected by a
customer are usage models and that the units (calls, seconds, mb, etc) are supported by the Accounting Proxy.

	on_product_acquisition: This event handler is used to grant access to a user who has acquired a service by sending
a notification to the proxy, including also the unit to be accounted (price plan selected).

	on_product_suspension: This event handler is used to in order to revoke access to a service when a user has not
paid or when the user cancels a subscription.

Accounting Proxy

The Accounting Proxy can be found in GitHub [https://github.com/FIWARE-TMForum/Accounting-Proxy]. This software
is a NodeJs server intended to manage services offered in the Business API Ecosystem. In particular, it is able to
authenticate users, authorize or deny users to access to a particular service depending on the acquisition, the URL,
or the HTTP method used, and account the usage made of the service so users can be charged on pay-per-use basis.

Having this software deployed allows service owners to protect their services and offer them in the Business API Ecosystem
without the need of making any modification in the specific service.

Installation

This software is a pure NodeJS server, to install basic dependencies execute the following command:

$ npm install

Configuration

All the Accounting Proxy configuration is saved in the config.js file in the root of the project.

In order to have the accounting proxy running it is needed to fill the following information:

	
	config.accounting_proxy: Basic information of the accounting deployment.

	
	
	https: set this variable to undefined to start the service over HTTP.

	
	enabled: set this option to true to start the service over HTTPS and activate the certificate validation for some administration requests (see Proxy API).

	certFile: path to the server certificate in PEM format.

	keyFile: path to the private key of the server.

	caFile: path to the CA file.

	port: port where the accounting proxy server is listening.

{
 https: {
 enabled: true,
 certFile: 'ssl/server1.pem',
 keyFile: 'ssl/server1.key',
 caFile: 'ssl/fake_ca.pem'
 },
 port: 9000
}

	
	config.database: Database configuration used by the proxy.

	
	type: database type. Two possible options: ./db (sqlite database) or ./db_Redis (redis database).

	name: database name. If the database type select is redis, then this field selects the database number (0 to 14; 15 is reserved for testing).

	redis_host: redis database host.

	redis_port: redis database port.

{
 type: './db',
 name: 'accountingDB.sqlite',
 redis_host: 'localhost',
 redis_port: 6379
}

	
	config.modules: An array of supported accounting modules for accounting in different ways. Possible options are:

	
	call: the accounting is incremented in one unit each time the user send a request.

	megabyte: counts the response amount of data (in megabytes).

	millisecond: counts the request duration (in milliseconds).

{
 accounting: ['call', 'megabyte', 'millisecond']
}

Other accounting modules can be implemented and included to the proxy (see Accounting modules).

	
	config.usageAPI: the information of the usage management API where the usage specifications and the accounting information will be sent.

	*host: Business API Ecosystem host.
* port: Business API Ecosystem port.
* path: path of the usage management API.
* schedule: defines the daemon service schedule to notify the accounting information to the Business API Ecosystem. The format is similar to the cron tab format: “MINUTE HOUR DAY_OF_MONTH MONTH_OF_YEAR DAY_OF_WEEK YEAR (optional)”. By the default, the usage notifications will be sent every day at 00:00.

{
 host: 'localhost',
 port: 8080,
 path: '/DSUsageManagement/api/usageManagement/v2',
 schedule: '00 00 * * *'
}

	config.api.administration_paths: configuration of the administration paths. Default accounting paths are:

{
 api: {
 administration_paths: {
 keys: '/accounting_proxy/keys',
 units: '/accounting_proxy/units',
 newBuy: '/accounting_proxy/newBuy',
 checkURL: '/accounting_proxy/urls',
 deleteBuy: '/accounting_proxy/deleteBuy'
 }
 }
}

The Accounting Proxy can be used to proxy an Orion Context Broker, supporting the accounting of subscriptions. To do that,
the following configuration params are used:

	
	config.resources: configuration of the resources accounted by the proxy.

	
	contextBroker: set this option to true if the resource accounted is an Orion Context Broker. Otherwise set this option to false (default value).

	notification_port: port where the accounting proxy is listening to subscription notifications from the Orion Context Broker (port 9002 by default).

{
 contextBroker: true,
 notification_port: 9002
}

Administration

The Accounting Proxy is able to manage multiple services. In this regard, it has been provided a cli tool that can be
used by admins in order to register, delete, and manage its services. The available commands are:

	./cli addService [-c | –context-broker] <publicPath> <url> <appId> <httpMethod> [otherHttpMethods…]: This command is used to register
a new service in the Accounting Proxy. It receives the following parameters

	publicPath: Path where the service will be made available to external users. There are two valid patterns for the
public path: (1) Providing a path with a single component (/publicpath) will make the Accounting Proxy accept requests
to sub-paths of the specified one (i.e having a public path /publicpath requests to /publicpath/more/path are accepted).
This pattern is typically used when you are offering the access to an API with multiple resources. (2) Providing a
complete path (/this/is/the/final/resource/path?color=Blue&shape=rectangular) will make the Accounting Proxy to
accept only requests to the exact registered path including query strings. This pattern is typically used when you are
offering a single URL, like a Context Broker query.

	url: URL where your service is actually running and where requests to the proxy will be redirected. Note that in
this case all the URL is provided (including the host) since the accounting proxy allows the management of services
running in different servers.

	appId: ID of the service given by the FIWARE IdM. This id is used in order to ensure that the access tokens provided
by users are valid for the accessed service

	HTTP methods: List of HTTP methods that are allowed to access to the registered service

	
	Options:

	
	-c, –context-broker: the service is an Orion Context broker service (config.contextBroker must be set to true in config.js).

Following you can find two examples in order to clarify the options available for registering a service:

$./cli addService /apacheapp http://localhost:5000/ 1111 GET PUT POST

In this case, there is a service running in the port 5000 which is made available though the /apacheapp path, allowing
only GET, PUT, and POST HTTP request. Supposing that the Accounting Proxy is running in the host accounting.proxy.com in the
port 8000, the following requests will be accepted by it:

GET http://accounting.proxy.com:8000/apacheapp
GET http://accounting.proxy.com:8000/apacheapp/resource1/
POST http://accounting.proxy.com:8000/apacheapp/resource1/resource2

Note

The Accounting Proxy does not care about the API or the semantics of the monitored service, so it may accept
a request to a URL which does not exists in the service, resulting in a usual 404 error given by the later

Additionally, a complete path can be provided, as in the following example:

$./cli addService /broker/v1/contextEntities/Room2/attributes/temperature http://localhost:1026/v1/contextEntities/Room2/attributes/temperature 1111 GET

In this example, there is a Context Broker running in the port 1026 and a specific query is made available through the
Accounting proxy, so only the following request is accepted:

GET http://accounting.proxy.com:8000/broker/v1/contextEntities/Room2/attributes/temperature

Note

For making the proxy transparent to final users is a good practice to use the same path in the external path and in
the URL when providing a complete path. Nevertheless, this is not mandatory, so it is possible to create an alias for
a query (i.e /room2/temperature for the previous example)

	./cli getService [-p <publicPath>]: This command is used to retrieve the URL, the application ID and the type
(Context Broker or not) of all registered services.

	
	Options:

	
	-p, –publicPath <path>: only displays the information of the specified service.

	./cli deleteService <publicPath>: This command is used to delete the service associated with the public path.

	./cli addAdmin <userId>: This command is used to add a new administrator.

	./cli deleteAdmin <userId>: This command is used to delete the specified admin.

	./cli bindAdmin <userId> <publicPath>: This command is used to add the specified administrator to the service specified by the public path.

	./cli unbindAdmin <userId> <publicPath>: This command is used to delete the specified administrator for the specified service by its public path.

	./cli getAdmins <publicPath>: This command is used to display all the administrators for the specified service.

To display a brief description of the cli tool you can use : ./cli -h or ./cli –help. In addition, to get
information for a specific command you can use: ./cli help [cmd].

Authentication and Authorization

The Accounting Proxy relies on the FIWARE IdM for authenticating users. To do that, the proxy expects that all the requests
include a header Authorization: Bearer access_token or X-Auth-Token: access_token with a valid access token given
by the IdM.

Moreover, if the authentication process has succeed, the Accounting Proxy validates the permissions of the user to access
to specific service. To do that, it checks if the user has been registered as an admin of the service or if the user has
acquired the service.

Is important to notice, that the Business API Ecosystem allows sellers to offer a service in different offerings with
different pricing models. In this regard, having just the access token is not enough to determine the accounting unit
(pricing model) that has to be used to account the usage of the service. It may happen, that a valid user has acquired
the access to a service in two different offerings with two different models (i.e calls and seconds), so the proxy
needs extra info to determine the unit to account (in this example calls or seconds). To deal with that problem, the
Accounting Proxy generates an API Key which identifies the service, the user, and the accounting unit, so including
it in a header X-API-Key: api_key when making requests, enables it to know what unit to account.

Note

The X-API-Key header is not intended to provide an extra level of security, but just to remove the possible incertitude
around the request

Proxy API

The Accounting Proxy runs by default in the port 9000; nevertheless, this port can be configured as described in Configuration
section. In this regard, the different services configured though the administration cli tool can be accessed directly
in the root of the proxy using the public path defined for the service.

In addition, the Accounting Proxy has an administration API which can be accessed though the reserved path /accounting_proxy.
Following, you can find the different services exposed in the administration API:

POST …/newBuy

This service is used by the Business API Ecosystem to notify a new buy. If the accounting proxy has been started over
HTTPS, these requests should be signed with the Business API Ecosystem key; otherwise, they will be rejected.

{
 "orderId": "...",
 "productId": "...",
 "customer": "...",
 "productSpecification": {
 "url": "...",
 "unit": "...",
 "recordType": "..."
 }
}

	orderId: order identifier.

	productId: product identifier.

	customer: customer id.

	url: base url of the service.

	unit: accounting unit (megabyte, call, etc).

	recordType: type of accounting.

POST …/deleteBuy

This service is used by the Business API Ecosystem to notify a terminated buy. If the accounting proxy has been started over HTTPS, these
requests should be signed with the Business API Ecosystem key; otherwise, they will be rejected.

{
 "orderId": "...",
 "productId": "...",
 "customer": "...",
 "productSpecification": {
 "url": "..."
 }
}

	orderId: order identifier.

	productId: product identifier.

	customer: customer id.

	url: base url of the service.

POST …/urls

This service is used by the Business API Ecosystem to check if an URL is a valid registered service. This requests require
the “authorization” header with a valid access token from the IdM and the user must be an administrator of the service.
If the accounting proxy has been started over HTTPS, these requests should be signed with the Business API Ecosystem key cert; otherwise,
they will be rejected.

{
 "url": "..."
}

GET …/keys

Retrieve the user’s API_KEYs in a json. This request require the “authorization” header with a valid access token from the IdM.

[
 {
 "apiKey": "...",
 "productId": "...",
 "orderId": "...",
 "url": "..."
 },
 {
 "apiKey": "...",
 "productId": "...",
 "orderId": "...",
 "url": "..."
 }
]

GET …/units

Retrieve the supported accounting units by the accounting proxy in a JSON. This requests require the “authorization”
header with a valid access token from the IdM.

{
 "units": ["..."]
}

Accounting modules

By default, the Accounting Proxy includes three different modules for accounting. Nevertheless, it is possible to extend
the proxy with new modules by creating them in the acc_modules directory, those modules have to have the following structure:

/** Accounting module for unit: XXXXXX */

var count = function (countInfo, callback) {
 // Code to do the accounting goes here
 //

 return callback(error, amount);
}

var getSpecification = function () {
 return specification;
}

The function count receives two parameters:
* countInfo: object containing both, the request made by the user and the response returned by the service

{
 request: { // Request object used by the proxy to make the request to the service.
 headers: {

 },
 body: {

 },
 ...
 },
 response: { // Response object received from the service.
 headers: {

 },
 body: {

 },
 elapsedTime: , // Response time
 ...
 }
}

	
	callback: function, which is used to retrieve the accounting value or the error message. The callback expects 2 parameters:

	
	error: string with a description of the error if there is one. Otherwise, null.

	amount: number with the amount to be added to the current accounting.

The function getSpecification should return a javascript object with the usage specification for the accounting unit
according to the TMF635 usage management API (TMF635 usage Management API [https://www.tmforum.org/resources/standard/tmf635-usage-management-api-rest-specification-r14-5-0/]).

Finally, add the name of the developed accounting module to the config.modules array in the config.js file (the
accounting module name is the name of the file, e.g. megabyte and megabyte.js) and restart the Accounting Proxy.

Programmer Guide

Introduction

This programmer guide covers the Business API Ecosystem version 6.4.0, corresponding to FIWARE release 6.
Any feedback on this document is highly welcomed, including bugs, typos or things you think should be included but aren’t.
Please send them to the “Contact Person” email that appears in the Catalogue page for this GEi [https://catalogue.fiware.org/enablers/business-api-ecosystem-biz-ecosystem-ri]. Or create an issue at GitHub Issues [https://github.com/FIWARE-TMForum/Business-API-Ecosystem/issues/new]

The Business API Ecosystem allows to offer any kind of digital asset. In this regard, some kind of digital assets may
require to perform specific actions and validations that require to know the format of the asset. To deal with this
issue the Business API Ecosystem allows to register types of assets by creating plugins. This section explains how these plugins are created.

Additionally, the Business API Ecosystem exposes an API that can be used by developers in order to integrate the monetization
features offered with their own solutions. The complete description of this API can be found in:

	Apiary [http://docs.fiwaretmfbizecosystem.apiary.io]

	GitHub Pages [https://fiware-tmforum.github.io/Business-API-Ecosystem/]

Plugin Package

Business API Ecosystem plugins must be packaged in a zip. This file will contain all the sources of the plugin and a
configuration file called package.json in the root of the zip. This configuration file allows to specify some aspects
of the behaviour of the plugin and contains the following fields:

	name: Name given to the resource type. This is the field that will be shown to providers

	author: Author of the plugin.

	formats: List that specify the different allowed formats for providing an asset of the given type. This list can contain the values “URL” and “FILE”.

	module: This field is used to specify the main class of the Plugin.

	version: Current version of the plugin.

	media_types: List of allowed media types that can be selected when providing an asset of the given type

	pull_accounting (optional): This flag is used to indicate that the service defined by the plugin is not pushing accounting
information to the usage API of the Business API Ecosystem, but exposing an API that must be queried to retrieve this information.

	form (optional): This field is used to define a custom form that will be displayed for retrieving asset-specific meta data.
This field is defined as an object where keys are the name of the metadata property and values define the following information:

	type: Type of the particular metadata property. Allowed values are text, textarea, checkbox and select mapping
the form input types to be displayed for retrieving the data.

	label: Label to be displayed jointly with the form input.

	default: Default value to be used if no value provided for the property

	placeholder (text and textarea): Placeholder to be included within the form input

	options (select): List of valid options when the input is a select. It includes text and value for each entry.

Following you can find an example of a package.json file:

{
 "name": "Test Resource",
 "author": "fdelavega",
 "formats": ["FILE"],
 "module": "plugin.TestPlugin",
 "version": "1.0",
 "media_types": ["application/zip"],
 "form": {
 "auth_type": {
 "type": "select",
 "label": "Auth type",
 "options": [{
 "text": "OAuth2",
 "value": "oauth2"
 }, {
 "text": "API Key",
 "value": "key"
 }]
 },
 "token_required": {
 "type": "checkbox",
 "label": "Token required?",
 "default": true
 },
 "auth_server": {
 "type": "text",
 "label": "Auth Server",
 "placeholder": "https://authservice.com/auth"
 }
 }
}

The source code of the plugin must be written in Python and must contain a main class that must be a child class of
the Plugin class defined in the Charging Backend of the Business API Ecosystem. Following you can find an example of a plugin main class.

from wstore.asset_manager.resource_plugins.plugin import Plugin

class TestPlugin(Plugin):
 def on_pre_product_spec_validation(self, provider, asset_t, media_type, url):
 pass

 def on_post_product_spec_validation(self, provider, asset):
 pass

 def on_pre_product_spec_attachment(self, asset, asset_t, product_spec):
 pass

 def on_post_product_spec_attachment(self, asset, asset_t, product_spec):
 pass

 def on_pre_product_spec_upgrade(self, asset, asset_t, product_spec):
 pass

 def on_post_product_spec_upgrade(self, asset, asset_t, product_spec):
 pass

 def on_pre_product_offering_validation(self, asset, product_offering):
 pass

 def on_post_product_offering_validation(self, asset, product_offering):
 pass

 def on_product_acquisition(self, asset, contract, order):
 pass

 def on_product_suspension(self, asset, contract, order):
 pass

 def get_usage_specs(self):
 return []

 def get_pending_accounting(self, asset, contract, order):
 return [], Date()

Implementing Event Handlers

It can be seen in the previous section that the main class of a plugin can implement some methods that are inherited from
the Charging Backend Plugin class. This methods can be used to implement handlers of the different events of the life cycle
of a product containing the asset. Concretely, the following events have been defined:

	on_pre_product_spec_validation: This method is executed when creating a new digital product containing an asset of
the given type, before validating the product spec contents and saving the asset info in the database. This method can
be used for validating the asset format or the seller permissions to sell the asset.

	on_post_product_spec_validation: This method is executed when creating a new digital product containing an asset
of the given type, after validating the product spec and saving the asset info in the database. This method can be used
if the plugin require to know some specific info of the asset model

	on_pre_product_spec_attachment: This method is executed when creating a new digital product containing an asset of
the given type, after saving the product spec in the catalog API database but before attaching the product spec id to
the asset model. This method can be used if the plugin require to know the id in the catalog of the product spec

	on_post_product_spec_attachment: This method is executed when creating a new digital product containing an asset of
the given type, after saving the product spec in the catalog API database and after attaching the product spec id to the
asset model. This method can be used if the plugin require to know the id in the catalog of the product spec

	on_pre_product_spec_upgrade: This method is executed when a digital product is being upgraded (a new version of the
asset has been provided). This method can be used in order to validate the new digital asset before saving the upgrade

	on_post_product_spec_upgrade: This method is executed when a digital product have been upgraded. This method can be
used to send notifications or retrieve new information of the product specification.

	on_pre_product_offering_validation: This method is executed when creating a new product offering containing an asset
of the given type, before validating its pricing model. This method can be used to make extra validations on the pricing
model, for example check if the unit of an usage model is supported by the given asset

	on_post_product_offering_validation: This method is executed when creating a new product offering containing an
asset of the given type, after validating its pricing model. This method can be used to make extra validations on the
pricing model, for example check if the unit of an usage model is supported by the given asset

	on_product_acquisition: This method is called when a product containing an asset of the given type has been acquired.
This method can be used to activate the service for the customer and give him access rights.

	on_product_suspension: This method is called when a product containing an asset of the given type has been suspended
for a customer (e.g he has not paid). Tjis method can be used to suspend the service for the customer and remove his
access rights

	get_usage_specs: This method must be implemented when the flag pull_accounting is set to true and must return the list
of usage specifications the service is able to monitor. For each usage specification a name and a description must be
provided (e.g name: API Call, description: Number of calls made to…)

	get_pending_accounting: This method must be implemented when the flag pull_accounting is set to true. This method
must implement the client able to access to the service the plugin is defining in order to retrieve pending accounting
information for a giving contract. It must return the list of pending accounting including:

	date: Timestamp of the accounting record

	unit: Monitored unit

	value: Actual usage made by the customer

As can be seen in the Plugin example, the different handler methods receive some parameters with relevant information and
objects. In particular:

on_pre_product_spec_validation

	provider: User object containing the user who is creating the product specification (The User object is described later)

	asset_t: String containing the asset type, it must be equal to the one defined in package.json

	media_type: String containing the media type of the asset included in the product being created

	url: String containing the url of the asset included in the product being created

on_post_product_spec_validation

	provider: User object containing the user who is creating the product specification (The User object is described later)

	asset: Asset object with the recently created asset (The Asset object is described later)

on_pre_product_spec_attachment

	asset: Asset object where the created product specification id is going to be attached

	asset_t: String containing the asset type, it must be equal to the one defined in package.json

	product_spec: JSON with the raw product specification information that is going to be used for the attachment. (The structure of this JSON object can be found in the Open Api documentation)

on_post_product_spec_attachment

	asset: Asset object where the created product specification id has been attached

	asset_t: String containing the asset type, it must be equal to the one defined in package.json

	product_spec: JSON with the raw product specification information that has been used for the attachment. (The structure of this JSON object can be found in the Open Api documentation)

on_pre_product_spec_upgrade

	asset: Asset object that have been upgraded

	asset_t: String containing the asset type, it must be equal to the one defined in package.json

	product_spec: JSON with the raw product specification information that is going to be used for the upgrade. (The structure of this JSON object can be found in the Open Api documentation)

on_post_product_spec_upgrade

	asset: Asset object that have been upgraded

	asset_t: String containing the asset type, it must be equal to the one defined in package.json

	product_spec: JSON with the raw product specification information that has been used for the upgrade. (The structure of this JSON object can be found in the Open Api documentation)

on_pre_product_offering_validation

	asset: Asset object included in the offering being created

	product_offering: JSON with the raw product offering information that is going to be validated. (The structure of this JSON object can be found in the Open Api documentation)

on_post_product_offering_validation

	asset: Asset object included in the offering being created

	product_offering: JSON with the raw product offering information that has been validated. (The structure of this JSON object can be found in the Open Api documentation)

on_product_acquisition

	asset: Asset object that has been acquired

	contract: Contract object including the information of the acquired offering which contains the asset. (The Contract object is described later)

	order: Order object including the information of the order where the asset was acquired. (The Order object is described later)

on_product_suspension

	asset: Asset object that has been suspended

	contract: Contract object including the information of the acquired offering which contains the asset

	order: Order object including the information of the order where the asset was acquired

get_pending_accounting

	asset: Asset object whose usage information has to be retrieved

	contract: Contract object including the information of the acquired offering which contains the asset

	order: Order object including the information of the order where the asset was acquired

Handler Objects

Following you can find the information regarding the different objects used in plugin handlers

	
	User: Django model object with the following fields

	
	username: Username of the user

	email: Email of the user

	complete_name: Complete name of the user

	
	Asset: Django model object with the following fields

	
	product_id: Id of the product specification which includes the asset

	version: Version of the product specification which includes the asset

	provider: User object of the user that created the asset

	content_type: media type of the asset

	download_link: URL of the asset if it is a service in an external server

	resource_path: Path to the asset file if it is uploaded in the server

	resource_type: Type of the asset as defined in the package.json file of the related plug-in

	is_public: If true the asset can be downloaded by any user without the need of acquiring it

	meta_info: JSON with any related information. This field is useful to include specific info from the plugin code

Additionally, it includes the following methods:

	get_url: Returns the URL where the asset can be accessed

	get_uri: Returns the url where the asset info can be accessed

	
	Contract: Django model with the following fields

	
	item_id: Id of the order item which generated the current contract

	offering: Offering object with the information of the offering acquired in the current contract (The offering object is described later)

	product_id: Id of the inventory product created as a result if the acquisition of the specified offering

	pricing_model: JSON with the pricing model that is used in the current contract for charging the customer who acquired the included offering

	last_charge: Datetime object with the date and time of the last charge to the customer

	charges: List of Charge objects contaning the info of the different times the customer has been charged in the context of the current contract

	correlation_number: Next expected correlation number for usage documents. This field is only used when the pricing model is usage

	last_usage: Datetime object with the date and time of the last usage document received. This field is only used when the pricing model is usage

	revenue_class: Product class of the involved offering for revenue sharing

	terminated: Specified whether the contract has been terminated (the customer has no longer access to the acquired asset)

	
	Offering: Django model with the following fields

	
	off_id: Id of the product offering

	name: Name of the offering

	version: Version of the offering

	description: Description of the offering

	asset: Asset offered in the offering

	
	Charge Django model with the following fields

	
	date: Datetime object with the date and time of the charge

	cost: Total amount charged

	duty_free: Amount charged without taxes

	currency: Currency of the charge

	concept: Concept of the charge (initial, renovation, usage)

	invoice: Path to the PDF file containing the invoice of the charge

	
	Order: Django model with the following fields

	
	order_id: Id of the product order

	customer: User object of the customer of the order

	date: Datetime object with the date and time of the order creation

	tax_address: JSON with the billing address used by the customer in the order

	contracts: List of Conctract objects, one for earch offering acquired in the order

Additionally, it includes the following methods:

	get_item_contract: Returns a contract given an item_id

	get_product_contract: Returns a contract given a product_id

Managing Plugins

Once the plugin has been packaged in a zip file, the Charging Backend of the Business API Ecosystem offers some management
command that can be used to manage the plugins.

When a new plugin is registered, The Business API Ecosystem automatically generates an id for the plugin that is used for
managing it. To register a new plugin the following command is used:

python manage.py loadplugin TestPlugin.zip

It is also possible to list the existing plugins in order to retrieve the generated ids:

python manage.py listplugins

To remove a plugin it is needed to provide the plugin id. This can be done using the following command:

python manage.py removeplugin test-plugin

 _images/search8.png
SYNCHRONICITY IoT Data Marketplace Rropping cant @ cusomer

A

< Back)

Air quality
===
Freo
™ Add to cat
2 Avout o Characteristios 5 Prce plans % Relationships
This s a new ofering
ExtraInfo
Offering Vorsion Last Updated
01 Frday, April 6th 2018, 1:44 pm
Product Name Product Version
Air qualty 01
Brand 1D Numbor

My brand 123

_static/ajax-loader.gif

_images/search4.png
SYNCHRONICITY IoT Data Marketplace Rropping cant @ cusomer

New catalog

3hoursago

new catalog

Q search | = Fiters
‘Search by catalog ® Category

>

> My catalog
> New catalog

Air quality

0.1 anhourago
This s @ new offering

_images/search6.png
Search filters
Type
® Al

O Single
O Bundle

Sort By

(@® Last Updated
(O Name

_images/cat1.png
SYNCHRONICITY loT Data Marketplace B snopping cart @) acmin

% Al categories e

My inventory
No offerings found. admin
Search by catalog admin@admin.com
Search... @ Administration
> Al @ Settings

> My catalog @ Sign out

_images/cat2.png
SYNCHRONICITY Administration B snopping cart @) acmin

< Back

Category No categories found.

@ Categories

_images/access5.png
S\{I\IC H ROPJIC'T\{ My |nvent0ry g Shopping Cart @ rz_test_marketplace

E My inventory

I Products |

M Data orders

test

About &} Characteristics &, Access B3 Price plan [@) Charges

Asset type

Type of the data source described in this product specification
@ Orion Query

Media type

Media type of the data source described in this product specification
@ NGSIv2

Location

URL pointing to the data source described in this product specification
@ http://test.com/v2/entities?type=type224

appld

this product specification

© 53626045d3bd4f8c84487f77944a586

_images/access6.png
Authorization Headers (1) Body® PrerequestScript Tests Cookies Code
formdata © xwww-form-urlencoded ® raw © binary JSON (application/json)
1-{
2 + "bFRANGS LHi9nUM3dG7KeNEXLASCRI]',
3 5362604503004 F8C84487 779440586
4}
Body Cookies (1) Headers(11) TestResults Staus: 200K Time: T78ms Size: 7298
Prefty Raw Preview | JSON v mQ
=i

CLUGGNFY FXTNUpaSUNFyOPHX7BGISp" ,
Bearer”,

QKQULVCMX FSgit<r3F i TOASThd6L" ,

_static/comment-bright.png

_images/cat5.png
SYNCHRONICITY Administration

‘Shopping Cart

@ admin

< Back

Category

@ Categories

New Category

|

2 Finish

Step 1: General

Enter aname

Sub category

Enter a description (optional)

This is a sub category

Choose a parent category

Last Updated

aminute ago

Next

_images/cat6.png
SYNCHRONCITY Administration

< Back List
Category Status

® Launched
¥ Categories |

® Launched

Name
Category

Category / Sub category

g Shopping Cart (&) admin

Last Updated
aminute ago

afew seconds ago

_images/cat3.png
SYNCHRONICITY Administration

‘Shopping Cart

@ admin

o
Category New Category
o |

2 Finish

Step 1: General

Enter aname

Category

Enter a description (optional)

This is a new category|

Choose a parent category

Next

_images/cat4.png
SYNCHRONCITY Administration

< Back

Category

@ Categories

Step 2: Finish

Name
Category

Status

SN
Active Launched Retired

Description

This is a new category

g Shopping Cart (&) admin

Obsolete

_images/cat7.png
SYNCHRONICITY Administration

‘Shopping Cart

@ admin

< Back

Category

@ Categories

General
Name
Sub category
Status
Active Launched Retired

Description (optional)

This is a sub category

Obsolete

Update

_images/catalog2.png
SYNCHRONICITY My Stock Broppngcart @ customer

Status Name Role Last Updated

Q search | = Fiters

 Launched My catalog Owner 18 hours ago

8 Cataiogs

B Data source specifications

© Oferings

_images/search2.png
SYNCHRONICITY loT Data Marketplace

T

Q search | = Fiters

Y

Search by catalog

> m | Air quality

0.1 anhourago
> My catalog

This s @ new offering

 Noweataog |

_images/search3.png
SYNCHRONICITY IoT Data Marketplace Rropping cant @ cusomer

New catalog

3hoursago

anew catalog

Q search Fiters

Search by catalog

>

> My catalog
> New catalog

Air quality

0.1 anhourago
anew offering

Froe

_images/sanity8.png
SYNCHRONICITY My Stock # Snopping cart (@) customer

Home

My inventory New catalog
1 General
Revenue sharing
2 Finish
My catalog
8 Catalogs |
Status
B Product Specifications. [—
Active Launched Retired Obsolete
© Offerings
Description

This is a catalog

_images/sanity9.png
SYNCHRONICITY My Stock # Snopping cart (@) customer

Home

My inventory My catalog

About & Parties © Offerings

Revenue sharing
General

8 Catalogs | Name
B Product Specifications My catalog
© Offerings | Status

. -

Active Launched Retired Obsolete

Description (optional)

This is a catalog

_images/catalog4.png
SYNCHRONICITY My Stock

My inventory

Revenue sharing

& Catalogs
8 Data source specifcations.

© Oferings.

New catalog

2Fiish

| T——

Step 1: General
Enter a name.

New catalog

Enter a description (optons)

@ e

This s a new catalog

Next

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Installation and Administration Guide

 		
 Introduction

 		
 Installation

 		
 Requirements

 		
 Deploying the SynchroniCity IoT Data Marketplace

 		
 Configuration

 		
 Charging

 		
 Logic Proxy

 		
 Installing the Orion Query Plugin

 		
 Sanity Check Procedures

 		
 End to End Testing

 		
 List of Running Processes

 		
 Network interfaces Up & Open

 		
 Databases

 		
 Diagnosis Procedures

 		
 Resource Availability

 		
 Remote Service Access

 		
 Resource Consumption

 		
 I/O Flows

 		
 User Guide

 		
 Introduction

 		
 Profile Configuration

 		
 Admin

 		
 Manage Categories

 		
 Seller

 		
 Manage Catalogs

 		
 Manage Data Source Specifications

 		
 Manage Data Offerings

 		
 Customer

 		
 List Available Offerings

 		
 Create Order

 		
 Manage Acquired Data Offerings

 		
 Access Acquired Data Offerings

_images/catalog7.png
SYNCHRONICITY My Stock

& Catalogs

8 Data source specifcations.

© Oferings.

New catalog
& Apout & Partes
General
Name
New catalog
Status
— -
Active Launched Retirod

Description (sptons)

This i new catalog

Bsroppng ot @ cusomer

© Oferings.

Obsolete

_images/catalog8.png
SYNCHRONICITY My Stock

Status

 Launched

 Launched

8 Cataiogs

8 Data source specifcations.

© Oferings

Name
My catalog

Now catalog

Owner

Owner

Broppngcart @ customer

Q search | = Fiters

Last Updated
18 hours ago

afow seconds ago

_images/catalog5.png
SYNCHRONICITY My Stock Broppngcart @ customer
= [

New catalog
1 General Step 2: Finish
Name
Fin
New catalog

8 Cataogs |

Status
B Data source specifications -

Active Launched Retred Obsolete

© Offerings

Description

This s a new catalog

_images/catalog6.png
SYNCHRONICITY My Stock

8 Cataiogs

8 Data source specifcations.

© Oferings

Status
 Launched

o Active

Name
My catalog

Now catalog

Broppngcart @ customer

Q search | = Fiters

Last Updated
18 hours ago

aminute ago

_images/inv2.png
SYNCHRONICITY My Inventory R sropping cart @ consumer
Home Q Search = Filters “

B Products | ‘

& Data orders

Air quality
vo.1 in 10 minutes
This is a new offering

Active

_images/inv3.png
Search filters
Status

O Created
& Active

O Suspended
O Terminated

_images/catalog9.png
Search filters
Status

W Active
(¥ Launched
() Retired
(O Obsolete

Role

® Al
O Owner

O seller

Sort By

(@© Last Updated
O Name

_images/inv10.png
SYNCHRONICITY My Inventory Bsnopping cart @ consumer

Home

@ Data orders

Air quality

About @ Characteristics @ Access 5 Price plan @ Charges

Access

To generate an access token insert your password and press Token.

Token

us4Yaioyg71lokyBumabX9ZQRLAVmC

Password Generate

_images/inv5.png
SYNCHRONICITY My Inventory B sropping cart @) consumer
Search. Q Search = Filters o E

Home
Status Offering Name Offering Version Order Date

B Products | oneme Airquaiiy w1 in7 minutes

4 Data orders.

_images/inv7.png
SYNCHRONICITY My Inventory R sropping cart @ consumer

Home List A Detalls
B Products |
& Data orders

Air quality

About @} Characteristics @ Access 5 Price plan @ Charges

General

Description
No description provided.
Offering

Air quality

Start date

in 10 minutes

Terms and condition

Attribution 4.0 International (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/

_images/inv8.png
SYNCHRONICITY My Inventory Roumigont @ conmmr

| N

@ Dazcrgers

Air quality

9 Avout & Craractostics @, ccess

Prce pan @ Charges

New characteristic

© Craractorsicvave

Asset type

© Oreon Query

Media type

© nesw2

Location

© rtiloep docker 7000 2lentttes/arauarty

Fiware-Service

© Teraninzt

_images/offering11.png
SYNCHRONICITY My Stock

My inventory

Revenue sharing
& Catalogs
8 Data source specifcations.

© Oferings.

-

New offering
1 General
2 Product Spec. Seh
3 Catalogus -~
4 Cuimgory © Launched
8 License © Launched
& Price Plans
7 RS Model

& Finish

Step 3: Catalogue

Name
My catalog

New catalog

Broppngcart @ customer

Role

Owner

Q search
Last Updated
21 hours ago
2hours ago
Next

_images/offering12.png
SYNCHRONICITY My Stock

My inventory

Revenue sharing
& Catalogs

8 Data source specifcations.

© Oferings.

New offering

1 General

2 Product Spec.

3 Catalogue

5 License

& Price Plans

7 RS Model

& Finish

Step 4: Category
Ghoose categories (sptons)
Name
Category

Category / Sub category.

| T——

Last Updated
2hours ago

2hours ago

@ e

_images/inv9.png
SYNCHRONICITY My Inventory Bsnopping cart @ consumer

Rl i Detis

Home

B Products |

@ Data orders

Air quality

About @ Characteristics @ Access 5 Price plan @ Charges

Access

To generate an access token insert your password and press Token.

Token

Generate

_images/offering10.png
SYNCHRONICITY My Stock

My inventory

Revenue sharing
& Catalogs

8 Data source specifcations.

© Oferings.

New offering

1 General Step 2: Product Spec.

oo

3 Catalogue Status Name ©
4 Category olanched Arquaity 123
5 License @lanched Datasource 101
& Price Plans

7 RS Model

& Finish

Brand
My brand

My brand

Broppngcart @ customer

ga«

Updated
42 minutes ago

21 hours ago

Next

_images/offering17.png
Broppngcart @ customer

SYNCHRONICITY My Stock

Home = ust
My invontory New offering
1 Goneral Step 6: Price Plans
Rovenuo shari e - - .
" 2 Proguct Spec Nar Descrpti o ot
& Catalogs 3 Catalogue Now price plan This is a new price plan oer @@
Data source speciations
. 4 Cotegory Now pce pian
o ones -
Next
7 RS Modsl

& Finish

_images/offering19.png
SYNCHRONICITY My Stock Broppngcart @ customer

Home
My inventory New offering
1 General Step 7: RS Model
Revenue sharing 2 Product Spoe Product Ciass Platform Percentage Provider Percontage _N* Stakeholdors
8 Catalogs 3 Cataogue defautfovente 30 o N
& Data source specifications. 4 Gategory -
oo | oo
6 price Plans

e

& Finish

_images/offering13.png
Broppngcart @ customer

SYNCHRONICITY My Stock
= st m

New offering

1 General Step 6: Price Plans

No price plans included

2 Product Spec.

8 Gataiogs 3 Catalogue New price plan

8 Data source specifations 4 Gategory
Noxt

© Oferings. | 5 Licenso.

7 RS Model

& Finish

_images/offering14.png
SYNCHRONICITY My Stock Broppngcart @ customer

Home
My inventory New offering
1 General Step 6: Price Plans
Revenuo sharing PR e]
8 Cataogs 3 cataogue New price plan
& Data source specifcations. 4 Category Enter a name Choose a type
© Oferings. | 5 Lcense New price plan ONETME ~
= Entora price
7 RS Model © | R~
. Entor a descripion oona

‘This is a new price plan|

Next

_images/offering20.png
SYNCHRONICITY My Stock

P
j—
fis
pr—— B
preee -
PRSI .
© o [o
.
s

Poroomingcat @ customer

Step : Finisn
Generst

Places

Productspec.

e

Last Updatad
anrorago

Last Updatad
2rosa

_images/offering22.png
SYNCHRONICITY My Stock | T—— @ customer

= ust

& Cataogs

I Data source specifcations.

Air quality
© Orerings
About 5 price plans @ Categories
General
Name Version
A quaity 01
Product Spec. Last Updated
A quaity Today at 1:43 PM
Statue
[
Active Launched Retired Obsolete

Description (spiona)

This ks @ new offering

Places.

_images/offering2.png
Broppngcart @ customer

e [l

SYNCHRONICITY My Stock

Q search

8 Cataogs
B Data source specifications.
© Offerigs New offering

o1 2hours ago

This s @ new offering

Obsolete

_images/offering26.png
SYNCHRONICITY My Stock

My inventory.

Revenue sharing
8 Catalogs

B Data source specifications

© Ofierings.

New offering

1 General

2 Product Spec.

3 Catalogue

4 Category

5L

& Price Plans

7 RS Model

& Finish

Boingcon

Step 5: License
Choose a type

‘Standard open data cense
Standard open data licenses.

Attibution 4.0 International (GG BY 4.0) +

® owsomer

Next

_images/offering27.png
SYNCHRONICITY My Stock Bsroppng ot @ cusomer

Home
My inventory New offering
1 Ganeral Step 5: License
Rovenue sharing Ghoose atype
2 Product Spec.
Custom license (wizard) ~
& catalogs 3 Catalogue
Custom license (wizard)
I Data source specifations PP e
© orerngs | Gustom cense

Enter a description (spions)

& Price Plans
s is a custom license
7 RS Model
8 Finish Exctusivity Soctor
Non-exclusive ~ Alsactors
Region Timeframe.
United Kingdom 1year ~
Purpose Transferabilty
Allpurposes No sublicansing ight +

Next

_images/offering24.png
SYNCHRONICITY My Stock | T—— @ customer

P - |

L

& Cataogs

I Data source specifcations.
Air quality

0.1 afow seconds ago
This s @ new offering

© oferings

[
Launched

_images/offering25.png
SYNCHRONICITY My Stock Broppngcart @ customer

., o
1 General Step 5: License
S e
& Cutslogs 3 Catalogue
e -
W Data s < Catogory
- |

& Finish

_images/offering5.png
SYNCHRONICITY My Stock

Status

@ Obsolete

8 Cataiogs

8 Data source specifcations.

© Orerings

Now offering

Product Spec.

Data source

Broppngcart @ customer

Q search

Type

= Fiters

Last Updated

2hours ago

_images/offering28.png
SYNCHRONICITY My Stock

My inventory

Revenue sharing
& Catalogs

8 Data source specifcations.

© Oferings.

New offering

1 General

2 Product Spec.

3 Catalogue

4 Catogory

5L

6 Price Plans

7 RS Model

& Finish

| T——

Step 5: License
Choose a type
Gustom licens (reo-toxt) +

Custom license (free-text)
Tite

Gustom lcense
Enter a description

@ e

This s a custom fosnsel

Next

_images/offering3.png
Search filters
Status

™ Active
(¥ Launched
[Retired
(O Obsolete

Type
® All

O Single
O Bundle

Sort By

(@® Last Updated
(O Name

_images/order1.png
SYNCHRONICITY IoT Data Marketplace

T

Q search Fiters

Y

Search by catalog

> Air quality

0.1 2hoursago
> My catalog .

anew offering
> New catalog

Froe

_images/order2.png
SYNCHRONICITY IoT Data Marketplace Rropping cant @ cusomer

Ny

< Back)

Air quality
===
Freo
2 Avout o Characteristios 5 Prce plans % Relationships
This s a new ofering
ExtraInfo
Offering Vorsion Last Updated
01 Frday, April 6th 2018, 1:44 pm
Product Name Product Version
Air qualty 01
Brand 1D Numbor

My brand 123

_images/offering7.png
SYNCHRONICITY My Stock Broppngcart @ customer
Home = [

My inventory New offering
Step 1: General
Revenue sharing Enter a name Entor avorsion
2 Product Spec.
A qualty 01
& catalogs 3 Catalogue
Entera description (eptors)
Data source specifications.
. # Catogory Trisis a new offering
o omes: [v
& Price Plans
Enter places (eptors)
7 RS Model +
8 Finish

Next

_images/offering9.png
SYNCHRONICITY My Stock

My inventory

Revenue sharing
& Catalogs

8 Data source specifcations.

© Oferings.

New offering

1 General Step 2: Product Spec.

oo

3 Catalogue Stotus Name
4 Gatogory @ Launchod A quality

5 Licanse @lanched Data source
& Prico Plans

7 RS Model

& Finish

123

101

Broppngcart @ customer

Brand Type
myband EZT3
myband XT3

Updated
43 minutes ago

21 hours ago

Next

_images/order5.png
SYNCHRONICITY IoT Data Marketplace Bsroppng ot @ cusomer

. oy MYSHOPPING CART

‘ & Aoy x
x1

Fiters

Search by catalog
> Al Air quality

w1 2hours ago
> My catalog

This s @ new offering
> New catalog

-

_images/order7.png
SYNCHRONICITY My Shopping Cart

< Back el

ut

Confirm and checkout

Choose a biling address

Email addross.

customer@maritplace.com

Shopping Cart
Air quality

Postal address.

Stroat

012345 City (State)
Anupa

Boroppnacart @ customer

Tolophone number

Mobile, +447400000000

_images/order3.png
Available Options

1. Characteristcs. 2. Terms & Conditons

New characteristic

This s new charactaristic
® Characterstc value

Asset type

Type of the data source described i this product spacification
® Orion Query

Media type

Media type of the data source described inths product specification
© Nesi2

Location

URL pointing o the data source described in this product specification
@ hitpuipep docker: 7000 entittes/airquaity

Fiware-Service

Fivare-Servia of the data source described i this product specfication
© Tenantzt

_images/order4.png
Available Options

1. Characteristcs. 2. Terms & Conditons

Terms and condition
Attribution 4.0 International (CC BY 4.0)

https: //creativeconmons. ora/ Licenses/by/4.0/

@1 have read and agreed the terms and conditions

_images/order8.png
Store account's Test Store

P PayPal
‘,‘@N
8 A

Bienvenido(a) de nuevo, Altor. ¢No es usted?

Enviar a Cambiar > .
§ Una forma mas segura de
Aitor Magan
calle Vilamark 76993- 17469, 02001, Albacee, Albacste pagar
Espafia No importa dénde compre, su informacion esta
mas segura con PayPal: no compartimos sus
datos con el vendedor.
Pagar con

P | Saldo de PayPal

Continuar 5

Podra revisar e pedido antes de completar la compra.

Este vendedor necesita su direccion de facturacion para realizar este pago.

Gancelar y volver a Store account's Test Store. Acuerdos legales Privacidad Opinion ©1999-2016 @

_static/up.png

_images/product10.png
SYNCHRONICITY My Stock

Home
My invontory New product
Revenue sharing

8 Cataogs 3 Characteristcs

4 Attachments

B Data source specfcations |

© Oferings. 5 Finish

Broppngcart @ customer

Step 2: Assets

Digital Assot Type
Orion Query.

How to provide?
URL B

Asset URL.
http/pep.docker.7000A2/entiites/airqualty

Media Type
Nasiv2 o

‘Application ID (Orion ID registered on the IDM, e.9.,
‘o0IcBC2317044861ad20941497747290)

DICRRRATI044801 2004 1097747288

Fiware-Service (e.g., TenantRZ1)

TenantAz1

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/access2.png
S\{ [\IC H RO l\” Cl T { My |nventory g Shopping Cart @ rz_test_marketplace

My inventory

B Products |

m Data orders

test

About ¥ Characteristics &, Access B3 Price plan [@ Charges

Access

To generate an access token insert your password and press Token.

Token Refresh Token
mJbTIMwfn8lYcssMP3nnAWgfFVIUBD ibFRhNgsiHi9huM3dG7KeNtXld5cRJ
Password Generate

_images/access3.png
GET

Headers (2)

Key value
X-Auth-Token

uséYaioyg?1loky6umAbX9ZQRLAVIMC
Fiware-Service

TenantRz1

©)

JsON

"id": “airquality”,
Atr-Quality”,

Description

Ferems “ s

Status: 200 0K

Bulk Edit

Time: 300 ms.

Cookles Code

Presets v

S20: 3348

_images/access1.png
SYNCHRONICITY My Inventory

B Procucs |

@ Dazcrgers

0 Aot
New characteristic

© Craractorsicvave

Asset type

© Oreon Query

Media type

© nesw2

Location

"

Air quality
o socess

Fiware-Service

| TR p—

Prce pan @ Charges

_images/access4.png
S\{ [\IC H RO l\” Cl T\{ My |nventory g Shopping Cart @ rz_test_marketplace

My inventory

B Products |

m Data orders

test

About ¥ Characteristics &, Access B3 Price plan [@ Charges

Access

To generate an access token insert your password and press Token.

Token Refresh Token
mJbTIMwfn8lYcssMP3nnAWgfFVIUBD ibFRhNgsiHi9huM3dG7KeNtXld5cRJ
Password Generate

_images/product15.png
SYNCHRONICITY My Stock Broppngcart @ customer

Home = ust
My inventory New product
P Step 3: Characteristics.
Revenue sharing 2 Assets # Namo Typo Values Dofaut Delete
8 Cataogs 1 Nowcharacterstic sting | Characteristicvalue Charactersticvaive ()
B Data source specications | s Atschments + e o

© offrings 5 Finish
Next

_images/product16.png
Bsropprg car - @ eustomer

SYNCHRONICITY My Stock

.|

New product

Step 4: Attachments

8 Catalogs 3 Charactoristics
T
© Ofarings
How to provide? Upload picture
Upload pictrs ® Ghoose e Bc9BaBeGdBeactcoRrBR4e7ida0S21 prg

Next

_images/product13.png
SYNCHRONICITY My Stock

My inventory New product
o
"o 2 Assets.
‘o

N

© Oferings. 5 Finish

Bsroppng ot @ cusomer

Step 3: Characteristics

No characteristic included.

Enteraname
New characteristic

Enter a description (spions)
This s new characteristic

Must bo at least one value for each characteristic.

Create a value

Characterstc value +

Next

_images/product14.png
SYNCHRONICITY My Stock Broppngcart @ customer
:

Home
y imvontory New product
I Step 3: Characteristics
Revenu sharing 2 pose No charctmat ckxied.
8 Catsogs Enteraname Ghoosea type
B Data source speciations | 4 Atachments Now characterstc sing B
© oferngs s i Enter a description pies)

This s new characteristic

Values
© Dofault | Graractoristc value B

Create a value

Next

_images/product20.png
SYNCHRONICITY My Stock | T—— @ customer

Ppee -
8 Cus
I Data source specifications.
© Offerigs Air quality Data source
it
- .

Launched

_images/product21.png
SYNCHRONICITY My Stock | T—— @ customer

Y

= st

& Cataogs

I Data source specifcations.

Air quality
© offerings P
Apout o Characteristics 2 Attachments % Rolationships
General
Name Version
A quaity
Statue
[
Active Launched Retired Obsolete
Brand 1D Number
My brand 128

Description (sptiona)

This s an air quality data source

_images/product19b.png
SYNCHRONICITY My Stock Broppngcart @ customer

Home
My inventory New product
| Goneral Step 5: Finish
Revenue sharing e Version
2 poses
Arquay o1
& Cataogs 3 Characortios
Status
I Data source specifations | U .
retve Launched Retred Obsaete
© Offerings
Brand 0 Number
My brana s
Descrption

This s an air quality data source

Characteristics.
¥ Name Type Values Defaut

1 Newchamcteristic sting Characteristicvalue Characteristic value
Attachments.

Picture URL
hitp/proxy.docker 8004/charging/media/assets/customer/Arqualty_8c9%adead6eacts

_images/product2.png
Broppngcart @ customer

. -

SYNCHRONICITY My Stock

& Cataogs

B Data soure speciations
© Oferngs Data source
w1 19 hous ago

This s a data source
specification

[
Launched

_images/product22.png
SYNCHRONICITY My Stock R sropping cant @ customer

aoue | = [

—— @
I Data source specifications.

© Offerigs Air quality Data source
w1 afow seconds ago 20 hours ago
Tris s an ai qualty data source a data source
specifcation
- e R

Launched Launched

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_images/product12.png
SYNCHRONICITY My Stock Bsroppng ot @ cusomer

New product

1 General Step 3: Characteristics

No characteristic included.

2 Assets

& Catalogs Sharacteristics
3 Characterst + New Characteristic

N
e

© Offerings 5 Finish

_images/profile10.png
SYNCHRONICITY

< Back

Personal settings

& General

 Contact mediums

Settings ﬁ Shopping Cart (@) customer

@ Biling aodresses 18 Business addresses

© This information s pubic 50 t may be viewed by anyore.

Medium Detals Actions
Emall address business@address.com ° o
Telephone number Mobile, +447400000000 o0

New business address

Medium
Postal address
Street
Street
2ip Code city
01234 city
State / Province Country
State ((Anba B}

_images/profile11.png
SYNCHRONICITY

< Back

Personal settings

& General

 Contact mediums

Settings ﬁ Shopping Cart (@) customer

@ Biling aodresses 18 Business addresses

© This information s pubic 50 t may be viewed by anyore.

My business addresses

Modum Detals Actions

Emall address business@address.com ° o

‘Telephone number Moble, +447400000000 ° o
St

Postal address 01284 Gity (State) 20
Awa

New business address

Medium
Emall address B

_images/product7.png
SYNCHRONICITY My Stock

My inventory.

Revenue sharing
8 Catalogs
B Data source specifications

© Ofierings.

New product

1 General

2 nssets

3 Characteristics

4 Attachments

5 Finish

Step 1: General
Enter a name.
A quaity

Enter a brand

My brand

Entor a description (optons)

“This s an air quality data source

Broppngcart @ customer

Enter aversion

01

Enter an ID Number

123

Next

_images/profile1.png
SYNCHRONICITY My Inventory B sropping cart @ customer

No products found.

customer
customer@marketplace.com

1 Settings

® Sign out

B Products

& Data orders

_images/profile5.png
SYNCHRONICITY Settings R snoppng cart @) customer

< Back @ Biling addresses 8 Business addresses
Personal settings © The biling addresses il be used in your orders.
& General

My billing addresses
= Contact mediums
Emal address Postal address Telephone number Actions

Stret
customer@marketplace.com 012345 City (State) Mobile, +447400000000 (-]
Aruba

_images/profile6.png
Billing address

Emall address
Email

customer@marketplace.com

Postal address
Street

2Zip Code
012345

State / Province

State

Telephone number
Type
Mobile

Number

R

7400000000

_images/profile2.png
SYNCHRONICITY Settings B sroppingcart @) customer

< Back

Account
Personal settings Usename Acoess token
customer Mi4pgXBOoBITtYhjoiOO0pDGNMDbBED
& General
Email
= Contact mediums
customer@marketplace.com
Profile

‘This information is public 5o it may be viewed by anyone.

First name Last name.
customer customer
Title Marital status
Prefer not to say 4§ (Prefernottosay B
Gender Nationality
Prefer not to say B
Birth
Date.
1970-01-01
Country Place.

Prefer not to say

_images/profile4.png
SYNCHRONICITY Settings B sroppingcart @) customer

< Back @ Biling addresses 18 Business addresses
Personal settings © The billing addresses will be used in your orders.
& General

New shipping address

 Contact mediums
Emall address

Emall
customer@maretplace.com
Postal address.
Street
Street
2ip Code city
012345 city
State / Province Country
State Arba B
Telephone number
Type Number
Mobile 8 +44 - 7400000000

_images/product3.png
Search filters
Status

™ Active
(¥ Launched
[Retired
(O Obsolete

Type
® All

O Single
O Bundle

Sort By

(@® Last Updated
(O Name

_images/product5.png
SYNCHRONICITY My Stock

Status

 Launched

8 Catalogs

B Data source specifications

© offerings

Data source

Broppngcart @ customer

Q search

Type

Y - |

Last Updated

18 hours ago

_images/sanity2.png
SYNCHRONCITY

Log In

SYNCHRONCITY =~ =

Synchronicity opens up a global loT market where cities) remember me
and businesses develop shared digital services to improve -
the lives of citizens and grow local economies

Sign up | Forgot password | Didn't receive
confirmation instructions?

_images/sanity3.png
SYNCHRONICITY IoT Data Marketplace

My inventory

My stock

Search by catalog

Search.

> Al

No offerings found.

Search.

Q Shopping Cart (@) customer

Q Search

= Filters

_images/sanity11.png
SYNCHRONICITY My Stock # Snopping cart (@) customer

Home

My inventory My catalog
About & Parties © Offerings
Revenue sharing
General

8 Catalogs Name

B Product Specifications My catalog

© Offerings Status

e e
Active Launched Retired Obsolete

Description (optional)

This is a catalog

_images/sanity13.png
SYNCHRONICITY I1oT Data Marketplace R srompngcat @ customer
Searoh Q searcn | == Fiters

No offerings found.

My inventory
My stock

Revenue sharing
Search by catalog

Search.

> Al

> My catalog

_images/sanity7.png
SYNCHRONICITY My Stock

My inventory New 109
Step 1: Genera!
Enter a name
2 Finish

My catalog

& Catalogs |

Enter a description (optional)

B Product Specifications This is a catalog

© Offerings

Q Shopping Cart (@) customer

Next

_images/sanity4.png
SYNCHRONICITY Revenue Sharing R sroppngoat @ customer
st L

Home
My inventory Product Class Platform Percentage Provider Percentage N° Stakeholders
My stock defaultRevenue E 70 °

< RS Models

= Transactions

& RS Reports

_images/sanity6.png
SYNCHRONCITY My Stock B srcppingcart @ custorer
Home m Search. Q Search | = Filters

My inventory

No catalogs found.

Revenue sharing

& Catalogs
B Product Specifications.

© Offerings

_images/profile9.png
SYNCHRONICITY Settings

< Back

Personal settings

& General

 Contact mediums

@ Biling addresses

My business addresses

Emall address

New business address

Medium
Telephone number

Type
Mobile

B sroppngcat @ customer

1B Business addresses.

© This information s pubic 50 t may be viewed by anyore.

Details

business@adaress.com

Number

Actions

8 +44 - 7400000000

_images/sanity1.png
SYNCHRONICITY IoT Data Marketplace
Search by catalog Search. Q Search = Filters

Search,

No offerings found.
> Al

_images/profile8.png
SYNCHRONICITY Settings

< Back

Personal settings

& General

 Contact mediums

B sroppngcat @ customer

@ Biling aodresses 18 Business addresses

New business address

Medium
Emall address

© This information s pubic 50 t may be viewed by anyore.

business@address.com

