

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Impressum / Imprint

Feel free to send an e-mail to hello@symlex.org if you have any questions,
need commercial support [https://blog.liquidbytes.net/contact/] or just want to say hello.

Responsible for editorial content according to § 5 TMG / § 55 RStV:

Michael Mayer

Zimmermannstr. 37

12163 Berlin

Germany

USt-ID: DE189758973

Community Chat

https://gitter.im/symlex/community

Privacy Policy

If you’re just browsing the website, Read the Docs collects the same basic information that most websites collect.
They use common internet technologies, such as cookies and web server logs.
They collect this basic information from everybody, whether they have an account or not.

The information they collect about all visitors includes:

	the visitor’s browser type

	language preference

	referring site

	the date and time of each visitor request

They also collect potentially personally-identifying information like Internet Protocol (IP) addresses.

See their Privacy Policy [https://docs.readthedocs.io/en/latest/privacy-policy.html] and DMCA Takedown Policy [https://docs.readthedocs.io/en/latest/dmca/].

Every contribution makes a difference

We welcome contributions of any kind including pull requests, ideas, bug reports,
testing, writing documentation, tutorials and blog posts. If you help with development,
you have the opportunity to learn Symfony, PHPUnit, Vue.js and much more.

Since we are already pretty much feature-complete for our own needs, it is well possible that you won’t find any open issues.
Issues labeled help wanted [https://github.com/symlex/symlex/labels/help%20wanted] /
easy [https://github.com/symlex/symlex/labels/easy] can be good (first) contributions otherwise.

Questions?

Feel free to send an e-mail to hello@symlex.org if you have any questions,
need commercial support [https://blog.liquidbytes.net/contact/] or just want to say hello.

Pull Requests

Our step-by-step guide [https://github.com/symlex/symlex/wiki/Pull-Requests] explains how to submit new features, bugfixes and documentation.

Feature Requests

You are welcome to add specific feature requests directly to our main GitHub issue tracker [https://github.com/symlex/symlex/issues]
or the corresponding sub-project if no similar idea [https://github.com/symlex/symlex/labels/idea]
or todo [https://github.com/symlex/symlex/labels/todo] already exists.
Please don’t use the issue tracker to ask general questions.

Reporting Bugs

Please use the GitHub issue tracker for symlex/symlex [https://github.com/symlex/symlex/issues] (complete framework stack),
symlex/symlex-core [https://github.com/symlex/symlex-core/issues] (kernel and router)
or the corresponding sub-project to report clearly identified bugs and impediments to us.
If you’re not sure, start by asking via email.
When reporting an issue, please provide the version in use and information about your environment like browser, operating system, installed memory, and processor type.

Donations

Please leave a star on GitHub [https://github.com/symlex/symlex] if you like this project, it provides enough motivation to keep going.
Thank you very much! <3

Symlex Core: Minimalistic Kernel and Routers based on Symfony Components

[image: Latest Stable Version] [https://packagist.org/packages/symlex/symlex-core]
[image: License] [https://packagist.org/packages/symlex/symlex-core]
[image: Test Coverage] [https://codecov.io/gh/symlex/symlex-core]
[image: Build Status] [https://travis-ci.org/symlex/symlex-core]

Symlex Core is maintained by Michael Mayer [https://blog.liquidbytes.net/about/] and
contains the Symlex kernel and routers as reusable components.

Feel free to send an e-mail to hello@symlex.org if you have any questions,
need commercial support [https://blog.liquidbytes.net/contact/] or just want to say hello.
We welcome contributions of any kind. If you have a bug or an idea, read our
guide before opening an issue.

Composer

To use this library in your project, simply run composer require symlex/symlex-core or
add “symlex/symlex-core” to your composer.json [https://getcomposer.org/doc/04-schema.md] file and run composer update:

{
 "require": {
 "php": ">=7.1",
 "symlex/symlex-core": "^4.1"
 }
}

Credits

A big thank you to everyone who made this possible!

Technologies

	PHP [http://www.php.net/] – Hypertext Preprocessor

	Symfony [https://symfony.com/] – High Performance PHP Framework for Web Development

	PHPUnit [https://phpunit.de/] – The PHP Testing Framework

	Vuetify [https://vuetifyjs.com/en/] – Vue.js [https://vuejs.org/] Material Component Framework

	Google [https://developers.google.com/] Material Design [https://material.io/]

Infrastructure

	GitHub [https://pages.github.com/] hosts our project homepage and all repositories

	Read the Docs [https://readthedocs.org/] hosts this user guide

	Travis-CI [https://travis-ci.org/symlex/symlex] builds and tests our code multiple times a day

	Docker Hub [https://hub.docker.com/r/symlex/symlex/] hosts our container images

Micro-Kernel for PHP Applications

[image: Latest Stable Version] [https://packagist.org/packages/symlex/di-microkernel]
[image: License] [https://packagist.org/packages/symlex/di-microkernel]
[image: Test Coverage] [https://codecov.io/gh/symlex/di-microkernel]
[image: Build Status] [https://travis-ci.org/symlex/di-microkernel]

This library contains a micro-kernel for bootstrapping almost any PHP application, including Silex [https://silex.symfony.com/],
Symlex [https://github.com/symlex/symlex] (a framework stack for agile Web development based on Symfony)
and Symfony Console [https://symfony.com/doc/current/components/console.html].
The kernel itself is just a few lines to set a bunch of environment parameters and create a service container
instance with that.

[image: Micro-Kernel Architecture]

Run an App

Creating a kernel instance and calling run() is enough to start an application:

#!/usr/bin/env php
<?php

// Composer autoloader
require_once 'vendor/autoload.php';

$app = new \DIMicroKernel\Kernel('console');

// Run the 'app' service defined in config/console.yml
$app->run();

Composer

To use this library in your project, simply run composer require symlex/di-microkernel or
add “symlex/di-microkernel” to your composer.json [https://getcomposer.org/doc/04-schema.md] file and run composer update:

{
 "require": {
 "php": ">=7.1",
 "symlex/di-microkernel": "^2.0"
 }
}

Doctrine ActiveRecord: Object-oriented CRUD for Doctrine DBAL

[image: Latest Stable Version] [https://packagist.org/packages/symlex/doctrine-active-record]
[image: License] [https://packagist.org/packages/symlex/doctrine-active-record]
[image: Test Coverage] [https://codecov.io/gh/symlex/doctrine-active-record]
[image: Build Status] [https://travis-ci.org/symlex/doctrine-active-record]

As a lightweight alternative to Doctrine ORM, this battle-tested library provides Business Model and Database Access Object (DAO) classes
that encapsulate Doctrine DBAL to provide high-performance, object-oriented CRUD (create, read, update, delete)
functionality for relational databases. It is a lot faster and less complex than Datamapper ORM implementations.

[image: Doctrine ActiveRecord]

Composer

To use this library in your project, simply run composer require symlex/doctrine-active-record or
add “symlex/doctrine-active-record” to your composer.json [https://getcomposer.org/doc/04-schema.md] file and run composer update:

{
 "require": {
 "php": ">=7.1",
 "symlex/doctrine-active-record": "^4.0"
 }
}

!!! info
This library is part of Symlex [https://symlex.org/] and not an official Doctrine project.

Getting Started

Command-line Application

Make sure you have PHP 7.1+ and Composer [https://getcomposer.org/] installed on your system.

Step 1: Run composer to create a new project from our example:

composer create-project symlex/stream-sampler myapp

Composer will ask for config values to generate app/config/parameters.yml for you.

Step 2: Use app/console to execute commands:

cd myapp
app/console sample -i internal -s 10

YAML files located in app/config configure the app based on parameters and services.
The main config file is app/config/console.yml.

Repository: https://github.com/symlex/stream-sampler

Web Applications

Before you start, make sure you have PHP 7.1+, Composer [https://getcomposer.org/] and Docker [https://www.docker.com/] installed on your system
(howto [https://docs.symlex.org/en/latest/osx/] for Mac OS X).
Instead of using Docker, you can set up your own runtime environment based on the existing
Dockerfiles [https://github.com/symlex/symlex/tree/master/app/docker].
We recommend using Nginx [https://www.nginx.com/] with PHP-FPM [http://php.net/manual/en/install.fpm.php]
and URL rewrite rules [https://github.com/symlex/symlex/blob/master/app/docker/nginx/site.conf] similar to Symfony.
In addition, you might need a database [https://dev.mysql.com/downloads/mysql/] plus
nodejs [https://nodejs.org/en/], npm [https://www.npmjs.com/] and yarn [https://yarnpkg.com/] to build the frontend.

Simple REST API

Step 1: Run composer to create a new project:

composer create-project symlex/rest-api myapp

Composer will ask for config values to generate app/config/parameters.yml for you.

Make sure storage/cache is writable so that cache files can be created by the app.

Step 2: Start nginx and PHP using docker-compose:

cd myapp
docker-compose up

Step 3: Open http://localhost:8088/example/123 in a browser (source [https://github.com/symlex/rest-api/blob/master/src/Controller/ExampleController.php]).

To open a terminal, run docker-compose exec php sh.

YAML files located in app/config configure the app based on parameters and services.
The main config file is app/config/rest.yml.

!!! note
If you add localhost-debug to your /etc/hosts and access the site with that, it will load in debug
mode (you’ll see a stack trace and other debug information on the error pages).

Repository: https://github.com/symlex/rest-api

Single-page Application

Step 1: Run composer to create a new project:

composer create-project symlex/symlex myapp

Composer will ask for config values to generate app/config/parameters.yml for you.

Make sure storage/cache is writable so that cache files can be created by the app.

Step 2: Start nginx, PHP and MySQL using docker-compose:

cd myapp
docker-compose up

!!! info
This docker-compose configuration is for testing and development purposes only.
You might need to tweak it if you run Docker with a different user for security reasons.
On OS X, the current release of Docker is really slow [https://twitter.com/lastzero/status/829191426391027712]
in executing PHP from the host’s file system.

Step 3: Let Phing [https://www.phing.info/] initialize the database and build the front-end components for you:

docker-compose exec php sh
bin/phing dev

!!! tip
You can also use this approach to execute other commands later (see build.xml). Alternatively, you can
install npm [https://www.npmjs.com/] and yarn [https://yarnpkg.com/] locally and link “db” to 127.0.0.1
in /etc/hosts to run them directly on your host.

Repository: https://github.com/symlex/symlex

Web UI

After successful installation, open the site at http://localhost:8081/ and log in as admin@example.com using the
password passwd.

!!! note
If you add localhost-debug to your /etc/hosts and access the site with that, it will load in debug
mode (you’ll see a stack trace and other debug information on the error pages).

[image: Screenshot]

MailHog

The mailhog [https://github.com/ian-kent/MailHog] user interface is available at http://localhost:8082/. It can be used
to receive and view mails automatically sent by the system, e.g. when new users are created.

[image: Screenshot]

Relationship with Symfony and Silex

Symlex was started in 2014 as a simple Silex boilerplate, since Silex itself doesn’t come with a “Standard Edition”
that points you in the right direction. Using Silex instead of Symfony was recommend by SensioLabs (the creators
of both frameworks) as a light-weight alternative to Symfony + FOSRestBundle for quickly building high-performance
REST services and single-page Web applications.

It was soon noticed that Pimple - the service container that comes with Silex - feels cumbersome for developers
coming from Symfony and makes it hard to reuse existing code. In addition, many Silex code examples and even real-world
applications accessed the service container from all parts of the code (not only the framework itself),
which circumvents inversion of control and leads to awkward testability. Symlex therefore promotes the strict use of dependency
injection and combines the convenience of a full-fledged service container with the speed of a micro-framework.

Today, Symlex has its own routing component (based on Symfony 4) and does not use Silex anymore.
The framework has proven to be useful for a large number of different applications. Some of them were based on the regular
Symfony kernel before and did the change because they were drowning in complexity and suffered from response times well
above 30 seconds in development mode. Symlex brought them back on track without big changes to their existing code base.

[image: Micro-Kernel Architecture]

 Easy & Secure Whitelist Validation for PHP

Easy & Secure Whitelist Validation for PHP

[image: Latest Stable Version] [https://packagist.org/packages/symlex/input-validation]
[image: License] [https://packagist.org/packages/symlex/input-validation]
[image: Test Coverage] [https://codecov.io/gh/symlex/input-validation]
[image: Build Status] [https://travis-ci.org/symlex/input-validation]

This library provides whitelist validation (“accept known good”) that is perfectly suited for building secure REST services. It uses programming language independent validation rules (plain array) that can be reused for additional client-side validation (JavaScript) or passed to template rendering engines such as Twig. By design, it is compatible with any framework and input source (HTML, REST, RPC, …).

A major advantage of this data source agnostic approach is that developers can do bottom-up development using unit tests to find bugs early and work on validation rules without an existing HTML frontend or storage backend. Use case specific input value validation is also more secure than general model validation, which often relies on a blacklist (“reject known bad”).

Besides basic validation rules such as type or length, more advanced features are supported as well - for example dependent fields, internationalization and multi-page forms. Validated values can be fetched individually, as flat array, by tag or by page.

The usage is simple: Form classes can inherit their definitions from each other. If needed, validation behavior can be changed using standard object-oriented methodologies. You don’t need to hold a PhD in design patterns to understand how it works.

Client-side, Form and Model Validation

The following visualization highlights the differences between client-side, form (input value) and model validation. Model validation generally operates on trusted data (internal system state) and should be repeatable at any point in time while input validation explicitly operates once on data that comes from untrusted sources (depending on the use case and user privileges). This separation makes it possible to build reusable models, controllers and forms that can be coupled through dependency injection (see REST controller example).

Think of form validation as whitelist validation (“accept known good”) and model validation as blacklist validation (“reject known bad”). Whitelist validation is more secure while blacklist validation prevents your model layer from being overly constrained to very specific use cases.

Invalid model data should always cause an exception to be thrown (otherwise the application can continue running without noticing the mistake) while invalid input values coming from external sources are not unexpected, but rather common (unless you got users that never make mistakes). Validation within a specific model may not be possible at all, if a set of input values must be validated together (because they depend on each other) but individual values are then stored in different models - at least it can create additional dependencies between models that would not be there otherwise up to the point that all models depend on each other. In short: The application may still work as expected, but the code is a mess.

From a theoretical standpoint, any complex system has more internal state than it exposes to the outside, thus it is never sufficient to use model validation only - except the model provides two sets of methods: some that are used internally and some that can be exposed to arbitrary input data from any source. Aside from side-effects such as limited user feedback (exception messages) and bloated model code, this approach may easily lead to serious security flaws. Malicious input data is a much higher threat to multi-user Web applications than to classical single-user desktop applications. Simple blacklist model validation may be fully sufficient for desktop applications, which are in full control of the user interface (view layer).

Client-side (JavaScript or HTML) form validation is always just a convenience feature and not reliable. However, with this library you can (at least partly) reuse existing server-side form validation rules to perform client-side validation, since they can be easily converted to JSON (for JavaScript) or be passed to template rendering engines such as Twig or Smarty (for HTML). Reusing model layer validation rules in a similar fashion is at least difficult, if not impossible.

See also Where to include business rule validation (OWASP) [https://www.owasp.org/index.php/Data_Validation#Where_to_include_business_rule_validation].

[image: Differences between client-side, input value (form) and model validation]

Composer

To use this library in your project, simply run composer require symlex/input-validation or
add “symlex/input-validation” to your composer.json [https://getcomposer.org/doc/04-schema.md] file and run composer update:

{
 "require": {
 "php": ">=7.1",
 "symlex/input-validation": "^4.0"
 }
}

 The MIT License (MIT)

The MIT License (MIT)

Copyright (c) 2013-2019 Michael Mayer and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 PHP, Composer and Docker on Mac OS X

PHP, Composer and Docker on Mac OS X

Mac OS X is shipped with outdated PHP versions. You can install a more current version via Homebrew [https://brew.sh/]
or download the latest version from Liip [https://php-osx.liip.ch/].

After installing a custom PHP version, you should add its path to your PATH in ~/.bash_profile:

export PATH="/usr/local/bin:/usr/local/php5/bin:$PATH"

Composer is available for download at https://getcomposer.org/download/ (follow the instructions). Please add /usr/local/bin to your path in ~/.bash_profile and move composer there instead of keeping composer.phar in your local project directory:

sudo mv composer.phar /usr/local/bin/composer

Docker - a free tool that provides easy-to-use container virtualization - is available for download at https://download.docker.com/mac/stable/Docker.dmg

To properly work with JavaScript, you should also install NodeJS [https://nodejs.org/en/download/] (includes npm) and Yarn [https://yarnpkg.com/en/]:

sudo npm install -g yarn

 Performance

Performance

It’s obvious that PHP framework performance mainly depends on the lines of code that have to be executed for each request.
While Symlex was designed to be simple and lean, a good performance is a very important by-product of this approach.

!!! quote
The best code is no code. Where there is no code, there are no bugs. No API to learn.
No awkward UI. The best refactors are deletions. ― Eric Elliott

 Who we are

Who we are

Michael Mayer

Symlex is maintained by Michael Mayer [https://blog.liquidbytes.net/about].
He released his first PHP framework [http://freshmeat.sourceforge.net/projects/awf] in 2001 and
has worked with various major framework vendors in the past.

You can find him on GitHub [https://github.com/lastzero], LinkedIn [https://www.linkedin.com/in/michaelmayer11/] and Twitter [https://twitter.com/lastzero]

Theresa Gresch

Theresa works as a freelance product manager and developer in Berlin. She helped testing
and refactoring large parts of the frontend.

You can find her on GitHub [https://github.com/graciousgrey] and LinkedIn [https://www.linkedin.com/in/theresa-gresch-886924103/]

Contributors

Thank you to everyone who contributed with code and feedback.
We do our best to mention those who contribute frequently or in a special way on this page.
Please let us know if you would like to be listed.

 Should I use Symlex?

Should I use Symlex?

Give it a try if you already like Symfony and would like to work in a leaner, more agile way.

!!! quote
Choice is the enemy of productivity. Put another way, if your solution does everything,
and has no opinions about anything, then it solves nothing. ― Asim Aslam

 Kernel

Kernel

Our light-weight kernel can bootstrap almost any PHP application. It is based on our
DIMicroKernel library. The kernel itself is just a few lines
to set environment parameters, initialize the Symfony service container and then start the app by calling run().

Configuration

YAML files located in config/ configure the application and all of it’s dependencies as a service. The filename matches
the application’s environment name (e.g. config/console.yml). The configuration can additionally be modified
for sub environments such as local or production by providing a matching config file like config/console.local.yml
(see app.sub_environment parameter). These files are in the same well documented [https://symfony.com/doc/current/components/dependency_injection.html]
format you might know from Symfony:

parameters:
 app.name: 'My App'
 app.version: '1.0'

services:
 doctrine.migrations.migrate:
 class: Doctrine\DBAL\Migrations\Tools\Console\Command\MigrateCommand

 app:
 class: Symfony\Component\Console\Application
 arguments: [%app.name%, %app.version%]
 public: true
 calls:
 - [add, ["@doctrine.migrations.migrate"]]

This provides a uniform approach for bootstrapping Web applications such as Symlex\Application\Web or command-line
applications like Symfony\Component\Console\Application (wrapped in Symlex\Application\Console) using the same kernel.
The result is much cleaner and leaner than the usual bootstrap and configuration madness you know from many frameworks.

Disable Caching

If debug mode is turned off, the service container configuration is cached by the kernel in the directory set as cache path.
You have to delete all cache files after updating the configuration. To disable caching completely, add
container.cache: false to your config parameters:

parameters:
 container.cache: false

Run multiple kernels via Symlex\Kernel\WebApps

!!! info
This is an experimental proof-of-concept. Feedback welcome.

As an alternative to Symfony bundles, Symlex\Kernel\WebApps is capable of running multiple apps based on Symlex\Kernel\App on the same Symlex installation:

<?php
$app = new WebApps('web', __DIR__ . '/../app', false);
$app->run();

It’s bootstrapped like a regular WebApp and subsequently bootstaps other Symlex apps according to the configuration in app/config/web.guests.yml (path, debug, prefix and domain are optional; bootstrap and config are required):

example:
 prefix: /example
 domain: www.example.com
 bootstrap: \Symlex\Kernel\WebApp
 config: web.yml
 debug: true
 path: vendors/foo/bar/app

default:
 bootstrap: \Symlex\Kernel\WebApp
 config: web.default.yml

!!! note
Assets in web/ like images, CSS or JavaScript in are not automatically shared in a way Assetic does this with Symfony bundles. If your apps not only provide Web services, you might have to create symbolic links or modify your HTML templates.

Interceptors

HTTP interceptors can be used to perform HTTP authentication or other actions (e.g. blocking certain IP ranges) before routing a request:

<?php

use Symlex\Kernel\App;

class WebApp extends App
{
 public function __construct($appPath, $debug = false)
 {
 parent::__construct('web', $appPath, $debug);
 }

 public function boot () {
 parent::boot();

 $container = $this->getContainer();

 /*
 * In app/config/web.yml:
 *
 * services:
 * http.interceptor:
 * class: Symlex\Router\HttpInterceptor
 */
 $interceptor = $container->get('http.interceptor');
 $interceptor->digestAuth(
 'Realm',
 array('foouser' => 'somepassword')
);

 $container
 ->get('router.error')
 ->route();

 $container
 ->get('router.rest')
 ->route('/api', 'controller.rest.');

 $container
 ->get('router.twig')
 ->route('', 'controller.web.');
 }
}

 Routers

Routers

There are 4 example routers included in this library. They configure the Symfony [https://symfony.com/doc/current/components/routing.html] router to perform the actual routing, so you can expect the same high performance.
After routing a request to the appropriate controller action, the router subsequently renders the response to ease controller testing (actions never directly return JSON or HTML):

Symlex\Router\Web\RestRouter handles REST requests (JSON)

Symlex\Router\Web\ErrorRouter renders exceptions as error messages (HTML or JSON)

Symlex\Router\Web\TwigRouter renders regular Web pages via Twig (HTML)

Symlex\Router\Web\TwigDefaultRouter is like TwigRouter but sends all requests to a default controller action (required for client-side routing e.g. with Vue.js)

It’s easy to create your own custom routing/rendering based on the existing examples.

Configuration

The application’s HTTP kernel class initializes the routers that were configured in the service container:

<?php

namespace Symlex\Kernel;

class WebApp extends App
{
 protected $urlPrefix = '';

 public function __construct($appPath, $debug = false)
 {
 parent::__construct('web', $appPath, $debug);
 }

 public function init()
 {
 if ($this->debug) {
 ini_set('display_errors', 1);
 }
 }

 public function getUrlPrefix($urlPrefixPostfix = ''): string
 {
 return $this->urlPrefix . $urlPrefixPostfix;
 }

 public function setUrlPrefix(string $urlPrefix)
 {
 $this->urlPrefix = $urlPrefix;
 }

 protected function setUp()
 {
 $container = $this->getContainer();

 // The error router catches errors and displays them
 $container
 ->get('router.error')
 ->route();

 // Routing for REST API calls
 $container
 ->get('router.rest')
 ->route($this->getUrlPrefix('/api'), 'controller.rest.');

 // All other requests are routed to matching actions
 $container
 ->get('router.twig')
 ->route($this->getUrlPrefix(), 'controller.web.');
 }
}

The REST and Twig routers accept optional URL (e.g. /api) and service name prefixes (e.g. controller.rest.).

Examples

Routing examples for the default HTTP kernel (Symlex\Kernel\WebApp):

GET / will be routed to controller.web.index service’s indexAction(Request $request)

POST /session/login will be routed to controller.web.session service’s postLoginAction(Request $request)

GET /api/users will be routed to controller.rest.users service’s cgetAction(Request $request)

POST /api/users will be routed to controller.rest.users service’s postAction(Request $request)

OPTIONS /api/users will be routed to controller.rest.users service’s coptionsAction(Request $request)

GET /api/users/123 will be routed to controller.rest.users service’s getAction($id, Request $request)

OPTIONS /api/users/123 will be routed to controller.rest.users service’s optionsAction($id, Request $request)

GET /api/users/123/comments will be routed to controller.rest.users service’s cgetCommentsAction($id, Request $request)

GET /api/users/123/comments/5 will be routed to controller.rest.users service’s getCommentsAction($id, $commendId, Request $request)

PUT /api/users/123/comments/5 will be routed to controller.rest.users service’s putCommentsAction($id, $commendId, Request $request)

The routers pass on the request instance to each matched controller action as last argument. It contains request parameters and headers as described in the Symfony documentation [http://symfony.com/doc/current/book/http_fundamentals.html#requests-and-responses-in-symfony].

Controller actions invoked by TwigRouter can either return nothing (the matching Twig template will be rendered), an array (the Twig template can access the values as variables) or a string (redirect URL).

REST controller actions (invoked by RestRouter) always return arrays, which are automatically converted to valid JSON. Delete actions can return null (“204 No Content”).

For more examples see framework documentation.

 Configuration

Configuration

YAML Files

YAML files located in config/ configure the application and all of it’s dependencies as a service. The filename matches
the application’s environment name (e.g. config/console.yml). The configuration can additionally be modified
for sub environments such as local or production by providing a matching config file like config/console.local.yml
(see app.sub_environment parameter). These files are in the same well documented [https://symfony.com/doc/current/components/dependency_injection.html] format you might know from Symfony:

parameters:
 app.name: 'My App'
 app.version: '1.0'

services:
 doctrine.migrations.migrate:
 class: Doctrine\DBAL\Migrations\Tools\Console\Command\MigrateCommand

 app:
 class: Symfony\Component\Console\Application
 public: true
 arguments: [%app.name%, %app.version%]
 calls:
 - [add, ["@doctrine.migrations.migrate"]]

This provides a uniform approach for bootstrapping Web applications like Silex\Application,
Symlex\Application\Web or command-line applications like Symfony\Component\Console\Application using the same kernel.
The result is much cleaner and leaner than the usual bootstrap and configuration madness you know from many frameworks.

Parameters

The kernel sets a number of default parameters that can be used for configuring services. The default values can be
changed via setter methods of the kernel or overwritten/extended by container config files
and environment variables (e.g. url: '%env(DATABASE_URL)%').

Parameter | Getter method | Setter method | Default value——————–|———————–|———————–|——————
app.name | getName() | setName() | ‘Kernel’
app.version | getVersion() | setVersion() | ‘1.0’
app.environment | getEnvironment() | setEnvironment() | ‘app’
app.sub_environment | getSubEnvironment() | setSubEnvironment() | ‘local’
app.debug | isDebug() | setDebug() | false
app.charset | getCharset() | setCharset() | ‘UTF-8’
app.path | getAppPath() | setAppPath() | ‘./’
app.config_path | getConfigPath() | setConfigPath() | ‘./config’
app.base_path | getBasePath() | setBasePath() | ‘../’
app.storage_path | getStoragePath() | setStoragePath() | ‘../storage’
app.log_path | getLogPath() | setLogPath() | ‘../storage/log’
app.cache_path | getCachePath() | setCachePath() | ‘../storage/cache’
app.src_path | getSrcPath() | setSrcPath() | ‘../src’

Customization

The kernel base class can be extended to customize it for a specific purpose such as long running console applications:

<?php

use DIMicroKernel\Kernel;

class ConsoleApp extends Kernel
{
 public function __construct($appPath, $debug = false)
 {
 parent::__construct('console', $appPath, $debug);
 }

 public function setUp()
 {
 set_time_limit(0);
 ini_set('memory_limit', '-1');
 }
}

Caching

If debug mode is turned off, the service container configuration is cached by the kernel in the directory set as cache path. You have to delete all cache files after updating the configuration. To disable caching completely, add container.cache: false to your configuration parameters:

parameters:
 container.cache: false

 Every contribution makes a difference

Every contribution makes a difference

We welcome contributions of any kind including pull requests, ideas, bug reports,
testing, writing documentation, tutorials and blog posts.

Since we are already pretty much feature-complete for our own needs, it is well possible that you won’t find any open issues.
Issues labeled help wanted [https://github.com/symlex/symlex/labels/help%20wanted] /
easy [https://github.com/symlex/symlex/labels/easy] can be good (first) contributions otherwise.

Questions?

DIMicroKernel is maintained by Michael Mayer [https://blog.liquidbytes.net/about/]. Feel free to send an e-mail to
hello@symlex.org if you have any questions, need commercial support [https://blog.liquidbytes.net/contact/]
or just want to say hello.

Pull Requests

Our step-by-step guide [https://github.com/symlex/symlex/wiki/Pull-Requests] explains how to submit new features, bugfixes and documentation.

Feature Requests

You are welcome to add specific feature requests directly to our main GitHub issue tracker [https://github.com/symlex/di-microkernel/issues]
or the corresponding sub-project if no similar idea [https://github.com/symlex/di-microkernel/labels/idea]
or todo [https://github.com/symlex/di-microkernel/labels/todo] already exists.
Please don’t use the issue tracker to ask general questions.

Reporting Bugs

Please use the GitHub issue tracker for symlex/di-microkernel [https://github.com/symlex/di-microkernel/issues]
or the corresponding sub-project to report clearly identified bugs and impediments to us.
If you’re not sure, start by asking via email.
When reporting an issue, please provide the version in use and information about your environment like browser, operating system, installed memory, and processor type.

Donations

Please leave a star on GitHub [https://github.com/symlex/di-microkernel] if you like this project, it provides enough motivation to keep going.
Thank you very much! <3

 Every contribution makes a difference

Every contribution makes a difference

We welcome contributions of any kind including pull requests, ideas, bug reports,
testing, writing documentation, tutorials and blog posts. If you help with development,
you have the opportunity to learn Symfony, PHPUnit, Vue.js and much more.

Since we are already pretty much feature-complete for our own needs, it is well possible that you won’t find any open issues.
Issues labeled help wanted [https://github.com/symlex/doctrine-active-record/labels/help%20wanted] /
easy [https://github.com/symlex/doctrine-active-record/labels/easy] can be good (first) contributions otherwise.

Questions?

Feel free to send an e-mail to hello@symlex.org if you have any questions,
need commercial support [https://blog.liquidbytes.net/contact/] or just want to say hello.

Pull Requests

Our step-by-step guide [https://github.com/symlex/symlex/wiki/Pull-Requests] explains how to submit new features, bugfixes and documentation.

Feature Requests

You are welcome to add specific feature requests directly to our main GitHub issue tracker [https://github.com/symlex/doctrine-active-record/issues]
or the corresponding sub-project if no similar idea [https://github.com/symlex/doctrine-active-record/labels/idea]
or todo [https://github.com/symlex/doctrine-active-record/labels/todo] already exists.
Please don’t use the issue tracker to ask general questions.

Reporting Bugs

Please use the GitHub issue tracker for symlex/doctrine-active-record [https://github.com/symlex/doctrine-active-record/issues]
or the corresponding sub-project to report clearly identified bugs and impediments to us.
If you’re not sure, start by asking via email.
When reporting an issue, please provide the version in use and information about your environment like browser, operating system, installed memory, and processor type.

Donations

Please leave a star on GitHub [https://github.com/symlex/doctrine-active-record] if you like this project, it provides enough motivation to keep going.
Thank you very much! <3

 Data Access Objects

Data Access Objects

DAOs directly deal with the database. They are suited for implementing custom methods using raw SQL,
if needed.

Configuration

DAO entities are configured using protected class properties:

<?php

// Database table name
protected $_tableName = '';
// Name or array of primary key(s)
protected $_primaryKey = 'id';
// 'db_column' => 'object_property'
protected $_fieldMap = array();
// Fields that should be hidden for getValues(), e.g. 'password'
protected $_hiddenFields = array();
// 'db_column' => Format::TYPE
protected $_formatMap = array();
// 'object_property' => 'db_column'
protected $_valueMap = array();
// Automatically update timestamps?
protected $_timestampEnabled = false;
// Column name for timestamp
protected $_timestampCreatedCol = 'created';
// Column name for timestamp
protected $_timestampUpdatedCol = 'updated';

Possible values for $_formatMap are defined as constants in Doctrine\ActiveRecord\Dao\Format:

<?php

const NONE = '';
const INT = 'int';
const FLOAT = 'float';
const STRING = 'string';
const ALPHANUMERIC = 'alphanumeric';
const SERIALIZED = 'serialized';
const JSON = 'json';
const CSV = 'csv';
const BOOL = 'bool';
const TIME = 'H:i:s';
// Support for microseconds (up to six digits)
const TIMEU = 'H:i:s.u';
// Support for timezone (e.g. "+0230")
const TIMETZ = 'H:i:sO';
// Support for microseconds & timezone
const TIMEUTZ = 'H:i:s.uO';
const DATE = 'Y-m-d';
const DATETIME = 'Y-m-d H:i:s';
// Support for microseconds (up to six digits)
const DATETIMEU = 'Y-m-d H:i:s.u';
// Support for timezone (e.g. "+0230")
const DATETIMETZ = 'Y-m-d H:i:sO';
// Support for microseconds & timezone
const DATETIMEUTZ = 'Y-m-d H:i:s.uO';
const TIMESTAMP = 'U';

!!! example
```php<?php

namespace App\Dao;

use Doctrine\ActiveRecord\Dao\EntityDao;

class UserDao extends EntityDao
{
    protected $_tableName = 'users';
    protected $_primaryKey = 'user_id';
    protected $_timestampEnabled = true;
}
```


Dao API

All DAOs expose the following public methods by default:

createDao(string $name): Returns a new DAO instance

beginTransaction(): Start a database transaction

commit(): Commit a database transaction

rollBack(): Roll back a database transaction

EntityDao API

In addition, Doctrine\ActiveRecord\Dao\EntityDao offers many powerful methods to easily deal with database table rows:

setData(array $data): Set raw data (changes can not be detected, e.g. when calling update())

setValues(array $data): Set multiple values

setDefinedValues(array $data): Set values that exist in the table schema only (slower than setValues())

getValues(): Returns all values as array

find($id): Find a row by primary key

reload(): Reload row values from database

getValues(): Returns all values as associative array

exists($id): Returns true, if a row with the given primary key exists

save(): Insert a new row

update(): Updates changed values in the database

delete(): Delete entity from database

getId(): Returns the ID of the currently loaded record (throws exception, if empty)

hasId(): Returns true, if the DAO instance has an ID assigned (primary key)

setId($id): Set primary key

findAll(array $cond = array(), $wrapResult = true): Returns all instances that match $cond (use search() or searchAll(), if you want to limit or sort the result set)

search(array $params): Returns a SearchResult object (see below for supported parameters)

wrapAll(array $rows): Create and return a new DAO for each array element

updateRelationTable(string $relationTable, string $primaryKeyName, string $foreignKeyName, array $existing, array $updated): Helper function to update n-to-m relationship tables

hasTimestampEnabled(): Returns true, if this DAO automatically adds timestamps when creating and updating rows

findList(string $colName, string $order = '', string $where = '', string $indexName = ''): Returns a key/value array (list) of all matching rows

getTableName(): Returns the name of the underlying database table

getPrimaryKeyName(): Returns the name of the primary key column (throws an exception, if primary key is an array)

 Examples

Examples

Basic Usage

<?php

use Doctrine\ActiveRecord\Dao\Factory as DaoFactory;
use Doctrine\ActiveRecord\Model\Factory;

$daoFactory = new DaoFactory($db);

$modelFactory = new Factory($daoFactory);
$modelFactory->setFactoryNamespace('App\Model');
$modelFactory->setFactoryPostfix('Model');

// Returns instance of App\Model\UserModel
$user = $modelFactory->create('User');

// Throws exception, if not found
$user->find(123);

if ($user->email == '') {
 // Update email
 $user->update(array('email' => 'user@example.com'));
}

// Returns instance of App\Model\GroupModel
$group = $user->createModel('Group');

REST Controller Context

Doctrine ActiveRecord is perfectly suited for building high-performance REST services.

This example shows how to work with the EntityModel in a REST controller context. Note, how easy it is to avoid deeply
nested structures. User model and form factory (provided by InputValidation) are injected as dependencies.

<?php

namespace App\Controller\Rest;

use Symfony\Component\HttpFoundation\Request;
use App\Exception\FormInvalidException;
use App\Form\FormFactory;
use App\Model\User;

class UsersController
{
 protected $user;
 protected $formFactory;

 public function __construct(User $user, FormFactory $formFactory)
 {
 $this->user = $user;
 $this->formFactory = $formFactory;
 }

 public function cgetAction(Request $request)
 {
 $options = array(
 'count' => $request->query->get('count', 50),
 'offset' => $request->query->get('offset', 0)
);

 return $this->user->search(array(), $options);
 }

 public function getAction($id)
 {
 return $this->user->find($id)->getValues();
 }

 public function deleteAction($id)
 {
 return $this->user->find($id)->delete();
 }

 public function putAction($id, Request $request)
 {
 $this->user->find($id);

 $form = $this->formFactory->create('User\Edit');
 $form
 ->setDefinedWritableValues($request->request->all())
 ->validate();

 if($form->hasErrors()) {
 throw new FormInvalidException($form->getFirstError());
 }

 $this->user->update($form->getValues());

 return $this->user->getValues();
 }

 public function postAction(Request $request)
 {
 $form = $this->formFactory->create('User\Create');

 $form
 ->setDefinedWritableValues($request->request->all())
 ->validate();

 if($form->hasErrors()) {
 throw new FormInvalidException($form->getFirstError());
 }

 $this->user->save($form->getValues());

 return $this->user->getValues();
 }
}

See also Easy & Secure Whitelist Validation for PHP.

 Business Models

Business Models

Models are logically located between Controllers - which render views and validate user input - and Data Access Objects (DAOs), that are low-level interfaces to a storage backend or Web service.

They are associated with their respective Dao using a protected class property:

// DAO class name without namespace or postfix
protected $_daoName = '';

Example

<?php

namespace App\Model;

use Doctrine\ActiveRecord\Model\EntityModel;

class User extends EntityModel
{
 protected $_daoName = 'User';

 public function delete()
 {
 $dao = $this->getEntityDao();
 $dao->is_deleted = 1;
 $dao->update();
 }

 public function undelete()
 {
 $dao = $this->getEntityDao();
 $dao->is_deleted = 0;
 $dao->update();
 }

 public function search(array $cond, array $options = array())
 {
 $cond['is_deleted'] = 0;
 return parent::search($cond, $options);
 }

 public function getValues()
 {
 $result = parent::getValues();
 unset($result['password']);
 return $result;
 }
}

Validation

How much validation should be implemented within a model? Wherever invalid data can lead to security issues or major inconsistencies, some core validation rules must be implemented in the model layer. Model exception messages usually don’t require translation (in multilingual applications), since invalid values should be recognized beforehand by a form class. If you expect certain exceptions, you should catch and handle them in your controllers.

API

Public interfaces of models are high-level and should reflect all use cases within their domain. There are a number of standard use-cases that are pre-implemented in the base class Doctrine\ActiveRecord\Model\EntityModel:

createModel(string $name = '', Dao $dao = null): Create a new model instance

find($id): Find a record by primary key

reload(): Reload values from database

findAll(array $cond = array(), $wrapResult = true): Find multiple records; if $wrapResult is false, plain DAOs are returned instead of model instances

search(array $cond, array $options = array()): Returns a SearchResult object ($options can contain count, offset, sort order etc, see search() in the DAO documentation above)

searchAll(array $cond = array(), $order = false): Simple version of search(), similar to findAll()

searchOne(array $cond = array()): Search a single record; throws an exception if 0 or more than one record are found

searchIds(array $cond, array $options = array()): Returns an array of matching primary keys for the given search condition

getModelName(): Returns the model name without prefix and postfix

getId(): Returns the ID of the currently loaded record (throws exception, if empty)

hasId(): Returns true, if the model instance has an ID assigned (primary key)

getValues(): Returns all model properties as associative array

getEntityTitle(): Returns the common name of this entity

isDeletable(): Returns true, if the model instance can be deleted with delete()

isUpdatable(): Returns true, if the model instance can be updated with update($values)

isCreatable(): Returns true, if new entities can be created in the database with create($values)

batchEdit(array $ids, array $properties): Update data for multiple records

getTableName(): Returns the name of the associated main database table

hasTimestampEnabled(): Returns true, if timestamps are enabled for the associated DAO

delete(): Permanently delete the entity record from the database

save(array $values): Create a new record using the values provided

update(array $values): Update model instance database record; before assigning multiple values to a model instance, data should be validated using a form class

 Performing Search Queries

Performing Search Queries

Parameters

EntityDao::search() accepts the following optional parameters to limit, filter and sort search results:

table: Table name

table_alias: Alias name for “table” (table reference for join and join_left)

cond: Search conditions as array (key/value or just values for raw SQL)

count: Maximum number of results (integer)

offset: Result offset (integer)

join: List of joined tables incl join condition e.g. array(array('u', 'phonenumbers', 'p', 'u.id = p.user_id')), see Doctrine DBAL manual

left_join: See join

columns: List of columns (array)

order: Sort order (if not false)

group: Group by (if not false)

wrap: If false, raw arrays are returned instead of DAO instances

ids_only: Return primary key values only

sql_filter: Raw SQL filter (WHERE)

id_filter: If not empty, limit result to this list of primary key IDs

Result Object

When calling search() on a EntityDao or EntityModel, you’ll get a SearchResult instance as return value.
It implements ArrayAccess, Serializable, IteratorAggregate and Countable and can be used either as array
or object with the following methods:

getAsArray(): Returns search result as array

getSortOrder(): Returns sort order as string

getSearchCount(): Returns search count (limit) as integer

getSearchOffset(): Returns search offset as integer

getResultCount(): Returns the number of actual query results (<= limit)

getTotalCount(): Returns total result count (in the database)

getAllResults(): Returns all results as array of EntityDao or EntityModel instances

getAllResultsAsArray(): Returns all results as nested array (e.g. to serialize it as JSON)

getFirstResult(): Returns first result EntityDao or EntityModel instance or throws an exception

 Unit Tests

Unit Tests

This library comes with a docker-compose.yml file for MySQL and database fixtures to run unit tests (MySQL will bind to 127.0.0.1:3308):

localhost# docker-compose up -d
localhost# docker-compose exec mysql sh
docker# cd /share/src/Tests/_fixtures
docker# mysql -u root --password=doctrine doctrine-active-record < schema.sql
docker# exit
localhost# bin/phpunit
PHPUnit 7.3.2 by Sebastian Bergmann and contributors.

... 65 / 91 (71%)
.......................... 91 / 91 (100%)

Time: 251 ms, Memory: 8.00MB

OK (91 tests, 249 assertions)
localhost# docker-compose down

 Should I use this library?

Should I use this library?

Pros

	Battle-tested in many large, commercial projects

	The active record pattern is perfectly suited for building REST services (create, read, update, delete)

	It is a lot faster and less complex than Datamapper ORM implementations

	Small code footprint

	Easy to write unit tests (record & replay fixtures can automatically be created, see existing test suite)

	Built on top of Doctrine DBAL

	Part of the Symlex [https://symlex.org/] framework stack for agile Web development

Cons

	While you can get commercial support [https://blog.liquidbytes.net/contact/],
this library is not backed by a major company and has a small community

	Don’t use it if you are not comfortable reading at least small amounts of library code (you’re welcome to ask for
help via email or send additional docs as pull request)

 Acceptance Tests

Acceptance Tests

A ready-to-use Codeception [https://codeception.com/] test suite for acceptance tests is located in app/codeception/:

/var/www/html# bin/codecept run
Codeception PHP Testing Framework v2.4.5
Powered by PHPUnit 6.5.12 by Sebastian Bergmann and contributors.

Acceptance Tests (8) --
✔ HomeCest: Open homepage (2.35s)
✔ HomeCest: Login (7.66s)
✔ HomeCest: View register form (2.85s)
✔ HomeCest: Check links on welcome page (14.70s)
✔ UserCest: Logout (7.67s)
✔ UserCest: View users page and forms (12.46s)
✔ UserCest: View edit profile page (7.26s)
✔ UserCest: View change password page (6.45s)

Time: 1.1 minutes, Memory: 12.00MB

OK (8 tests, 25 assertions)

Codeception’s main config file is codeception.yml in the project directory.

 Bundles

Bundles

There is no support for Symfony Bundles in Symlex as we strive to build focused, lean and fully testable applications.

	We found that using them often adds complexity to the overall architecture: They hide bootstrap / configuration details and encourage to build bloated applications

	Writing meaningful unit tests is not possible, if certain functionality is exclusively encoded in framework
configuration files or magically generated by bundles

	Acceptance tests could be created, but they are slow and not well suited for test driven development (TDD) and refactoring

!!! quote
I’ve seen many people trying to use FOSUserBundle.
I’ve been struggling with it for 6 hours now. Just to be able to make a custom user registration form.
The basic documentation is 6 pages long…
― Olivier Pons on Stack Overflow [http://stackoverflow.com/questions/19064719/fosuserbundle-what-is-the-point]

 Command-Line Interface

Command-Line Interface

Running app/console lists all commands available. The following commands including Doctrine Migrations
for creating and migrating database tables are supported out of the box:

Command | Description
————————-|—————————————————————————-
migrations:execute | Execute a single migration version up or down manually
migrations:generate | Generate a blank migration class
migrations:migrate | Execute a migration to a specified version or the latest available version
migrations:status | View the status of a set of migrations
migrations:version | Manually add and delete migration versions from the version table
database:create | Create the database configured in app/config/parameters.yml
database:drop | Drop the database configured in app/config/parameters.yml
database:insert-fixtures | Insert database fixtures for testing (see app/db/fixtures/)
user:create | Create a new user
user:delete | Delete a user
user:reset-password | Send password reset email to a user

Configuration

All commands are configured as service in app/config/console.yml:

!!! example
yaml command.user.reset-password: class: App\Command\UserResetPasswordCommand arguments: - 'user:reset-password' - "@service.mail" - "@model.user" - "@twig"

Development

To develop a custom command, simply create a new class in src/Command/, configure it as service and
add it to the console application:

!!! example
yaml app: class: Symfony\Component\Console\Application calls: - [add, ["@command.user.reset-password"]]

Symfony Console [https://symfony.com/doc/current/components/console.html] has a great documentaion,
in case you haven’t used it yet. You can also study our examples to get a better understanding.

!!! example
```php
<?php

namespace App\Command;

use App\Service\Mail;
use App\Model\User;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class UserResetPasswordCommand extends CommandAbstract
{
    protected $mail;
    protected $user;

    public function __construct($name, Mail $mail, User $user)
    {
        $this->mail = $mail;
        $this->user = $user;

        parent::__construct($name);
    }

    protected function configure()
    {
        $this->setDescription('Send password reset email to a user');

        $this->addArgument('email', InputArgument::REQUIRED, 'E-Mail');

        parent::configure();
    }

    protected function execute(InputInterface $input, OutputInterface $output)
    {
        $email = $input->getArgument('email');

        $user = $this->user->findByEmail($email);

        $this->mail->passwordReset($user);
    }
}
```


 Configuration

Configuration

YAML files located in app/config configure the entire system based on parameters and services.
The filename matches the application’s environment name (see Kernel constructor):

	app/config/web.yml configures Web (HTTP) applications bootstrapped in web/app.php

	app/config/console.yml configures command-line applications bootstrapped in app/console

These files are in the same format you know from Symfony. In addition to the regular services, they also contain the actual application as a service:

services:
 app:
 class: Symlex\Application\Web
 public: true

This provides a uniform approach for bootstrapping Web (Symlex\Application\Web) and command-line (Symfony\Component\Console\Application) applications with the same kernel.

!!! info
If debug mode is turned off, the service container is cached in storage/cache/. You have to run app/clearcache after updating the configuration. To disable caching completely, add container.cache: false to app/config/parameters.yml*

 Error Handling

Error Handling

Exceptions are automatically catched by the application and then passed on to ErrorRouter, which either renders an HTML error page or returns the error details as JSON (depending on the request headers). Exception class names are mapped to error codes in app/config/exceptions.yml:

parameters:
 exception.codes:
 InvalidArgumentException: 400
 App\Exception\UnauthorizedException: 401
 App\Exception\AccessDeniedException: 403
 App\Exception\FormInvalidException: 409
 Exception: 500

 exception.messages:
 400: 'Bad request'
 401: 'Unauthorized'
 403: 'Forbidden'
 404: 'Not Found'
 405: 'Method Not Allowed'
 500: 'Looks like something went wrong!'

services:
 router.error:
 class: Symlex\Router\Web\ErrorRouter
 public: true
 arguments:
 - "@app"
 - "@twig"
 - "%exception.codes%"
 - "%exception.messages%"
 - "%app.debug%"

The filename for Twig error templates is app/templates/error/[code].twig. If no template is found, the default template (default.twig) is used.

 Input Validation using Forms

Input Validation using Forms

Our InputValidation [https://github.com/symlex/input-validation] package provides
whitelist validation (“accept known good”) that is perfectly suited for building secure REST services. It uses programming language independent validation rules (plain array) that can be reused for additional client-side validation (JavaScript) or passed to template rendering engines such as Twig. By design, it is compatible with any framework and input source (HTML, REST, RPC, …).

A major advantage of this data source agnostic approach is that developers can do bottom-up development using unit tests to find bugs early and work on validation rules without an existing HTML frontend or storage backend. Use case specific input value validation is also more secure than general model validation, which often relies on a blacklist (“reject known bad”).

Besides basic validation rules such as type or length, more advanced features are supported as well - for example dependent fields, internationalization and multi-page forms. Validated values can be fetched individually, as flat array, by tag or by page.

The usage is simple: Form classes can inherit their definitions from each other. If needed, validation behavior can be changed using standard object-oriented methodologies. You don’t need to hold a PhD in design patterns to understand how it works.

!!! example
```php
<?php

namespace App\Form\User;

use App\Form\FormAbstract;

class ProfileForm extends FormAbstract
{
    protected function init(array $params = array())
    {
        $definition = [
            'userFirstName' => [
                'caption' => 'First Name',
                'type' => 'string',
                'min' => 2,
                'max' => 64,
                'required' => true,
            ],
            'userLastName' => [
                'caption' => 'Last Name',
                'type' => 'string',
                'min' => 2,
                'max' => 64,
                'required' => true,
            ],
            'userEmail' => [
                'caption' => 'E-mail',
                'type' => 'email',
                'max' => 127,
                'required' => true,
            ],
            'userNewsletter' => [
                'caption' => 'Receive newsletter and other occasional updates',
                'type' => 'bool',
                'required' => false,
            ]
       ];

        $this->setDefinition($definition);
    }
}
```


Properties

Name | Description
———————- | —————————————————————————————————
caption | Field title (used for form rendering and in validation messages)
type | Data type: int, numeric, scalar, list, bool, string, email, ip, url, date, datetime, time and switch
type_params | Optional parameters for data type validation
options | Array of possible values for the field (for select lists or radio button groups)
min | Minimum value for numbers/dates, length for strings or number of elements for lists
max | Maximum value for numbers/dates, length for strings or number of elements for lists
required | Field cannot be empty (if false, setDefinedValues() and setDefinedWritableValues() still throw an exception, if it does not exist at all)
optional | setDefinedValues() and setDefinedWritableValues() don’t throw an exception, if the field is missing in the input values (usefull for checkboxes or certain JavaScript frameworks, that do not submit any data for empty form elements e.g. AngularJS)
readonly | User is not allowed to change the field (not writable)
hidden | User can not see the field (no impact on the validation)
default | Default value
regex | Regular expression to match against
matches | Field value must match another form field (e.g. for password or email validation). Property can be prefixed with “!” to state that the fields must be different.
depends | Field is required, if the given form field is not empty
depends_value | Field is required, if the field defined in “depends” has this value
depends_value_empty | Field is required, if the field defined in “depends” is empty
depends_first_option | Field is required, if the field defined in “depends” has the first value (see “options”)
depends_last_option | Field is required, if the field defined in “depends” has the last value (see “options”)
page | Page number for multi-page forms
tags | Optional list of tags (can be used to extract values by tag, see getValuesByTag())

Client-side, Form and Model Validation

The following visualization highlights the differences between client-side, form (input value) and model validation. Model validation generally operates on trusted data (internal system state) and should be repeatable at any point in time while input validation explicitly operates once on data that comes from untrusted sources (depending on the use case and user privileges). This separation makes it possible to build reusable models, controllers and forms that can be coupled through dependency injection (see REST controller example).

Think of form validation as whitelist validation (“accept known good”) and model validation as blacklist validation (“reject known bad”). Whitelist validation is more secure while blacklist validation prevents your model layer from being overly constrained to very specific use cases.

Invalid model data should always cause an exception to be thrown (otherwise the application can continue running without noticing the mistake) while invalid input values coming from external sources are not unexpected, but rather common (unless you got users that never make mistakes). Validation within a specific model may not be possible at all, if a set of input values must be validated together (because they depend on each other) but individual values are then stored in different models - at least it can create additional dependencies between models that would not be there otherwise up to the point that all models depend on each other. In short: The application may still work as expected, but the code is a mess.

From a theoretical standpoint, any complex system has more internal state than it exposes to the outside, thus it is never sufficient to use model validation only - except the model provides two sets of methods: some that are used internally and some that can be exposed to arbitrary input data from any source. Aside from side-effects such as limited user feedback (exception messages) and bloated model code, this approach may easily lead to serious security flaws. Malicious input data is a much higher threat to multi-user Web applications than to classical single-user desktop applications. Simple blacklist model validation may be fully sufficient for desktop applications, which are in full control of the user interface (view layer).

Client-side (JavaScript or HTML) form validation is always just a convenience feature and not reliable. However, with this library you can (at least partly) reuse existing server-side form validation rules to perform client-side validation, since they can be easily converted to JSON (for JavaScript) or be passed to template rendering engines such as Twig or Smarty (for HTML). Reusing model layer validation rules in a similar fashion is at least difficult, if not impossible.

See also Where to include business rule validation (OWASP) [https://www.owasp.org/index.php/Data_Validation#Where_to_include_business_rule_validation].

[image: Differences between client-side, input value (form) and model validation]

 User Interface

User Interface

Our boilerplate code located in the frontend directory is there for your convenience and puts you straight on track for
building impressive single-page applications with Webpack [https://webpack.js.org/], Vue.js [https://vuejs.org/] and Vuetify [https://vuetifyjs.com/en/].

[image: Screenshot]

Frameworks

Vuetify [https://vuetifyjs.com/en/getting-started/quick-start] is a powerful open-source Material Design [https://material.io/] UI component framework for building modern single-page applications.

It is based on VueJS [https://vuejs.org/v2/guide/], a JavaScript library that combines the best ideas from AngularJS [https://angularjs.org/] (Google) and React [https://reactjs.org/] (Facebook); development is community driven and the API fairly stable.

Vuetify and VueJS are initialized in frontend/src/app.js [https://github.com/symlex/symlex/blob/master/frontend/src/app.js]. Webpack [https://webpack.js.org/concepts/] is used as a module loader / bundler. It creates single, optimized JS and CSS files in the server assets public build directory from the original source code. You can find the build configuration in frontend/webpack.config.js.

Building

A build can be triggered by running npm run dev (watches for changes and re-builds when needed) or npm run build (single build) in the frontend directory.

NPM [https://www.npmjs.com/] is the default package manager that comes with NodeJS [https://nodejs.org/en/docs/guides/], a JavaScript run-time environment that executes JavaScript code outside of a browser. We only use it as a task runner in this project. Dependencies should be installed and updated using Yarn [https://yarnpkg.com/en/docs/getting-started]. It is compatible with NPM, but faster and better suited for front-end development.

Dependencies

The full list of dependencies can be found in frontend/package.json. You need to run yarn install in the frontend directory to install them (automatically happens during installation, see build.xml). Run yarn add [package name] to add a new package (library or framework).

 Bootstrapping

Bootstrapping

Micro-Kernel

Bootstrapping is performed using a micro-kernel [https://github.com/symlex/di-microkernel]. It’s just a few lines to
set environment parameters, initialize the service container and run the app:

<?php

namespace DIMicroKernel;

class Kernel
{
 protected $environment;
 protected $debug;
 protected $appPath;

 public function __construct(
 $environment = 'app', $appPath = '', $debug = false)
 {
 $this->environment = $environment;
 $this->debug = $debug;
 $this->appPath = $appPath;

 $this->boot();
 }

 ...

 public function getApplication()
 {
 return $this->getContainer()->get('app');
 }

 public function run()
 {
 return $this->getApplication()->run();
 }
}

Customization

The kernel base class can be extended to customize it for a specific purpose (e.g. command line application):

<?php
namespace App\Kernel;

use DIMicroKernel\Kernel;

class ConsoleApp extends Kernel
{
 public function __construct($appPath, $debug = false)
 {
 parent::__construct('console', $appPath, $debug);
 }

 public function setUp()
 {
 chdir($this->getAppPath());
 set_time_limit(0);
 ini_set('memory_limit', '-1');
 }
}

Run an App

Creating a kernel instance and calling run() is enough to start any application (see app/console and web/app.php):

#!/usr/bin/env php
<?php

require_once __DIR__ . '/../vendor/autoload.php';

use App\Kernel\ConsoleApp;
$app = new ConsoleApp (__DIR__);
$app->run();

 Models and Database Abstraction

Models and Database Abstraction

Symlex isn’t designed for any specific database abstraction layer or model library.
Our examples are based on MySQL and Doctrine ActiveRecord.

As a lightweight alternative to Doctrine ORM, this library provides Business Model and Database Access Object (DAO) classes that encapsulate Doctrine DBAL to provide high-performance, object-oriented CRUD (create, read, update, delete) functionality for relational databases. It is a lot faster and less complex than Datamapper ORM implementations.

Business Models

Models are logically located between Controllers - which render views and validate user input - and Data Access Objects (DAOs), that are low-level interfaces to a storage backend or Web service.

Public interfaces of models are high-level and should reflect all use cases within their domain:

!!! example
```php
<?php

namespace App\Model;

use App\Exception\InvalidArgumentException;
use Doctrine\DBAL\Exception\UniqueConstraintViolationException;

class User extends ModelAbstract
{
    protected $_daoName = 'User';

    public function updatePassword($password)
    {
        if (strlen($password) < 8) {
            throw new InvalidArgumentException('Password is too short');
        }

        $hash = password_hash($password, PASSWORD_DEFAULT);

        $this->getDao()->userPassword = $hash;
        $this->getDao()->userPasswordResetToken = null;
        $this->getDao()->userVerificationToken = null;
        $this->getDao()->update();
    }
}
```


Data Access Objects

DAOs directly deal with database tables and raw SQL, if needed. Doctrine\ActiveRecord\Dao\Dao is suited to implement custom methods using raw SQL
while Doctrine\ActiveRecord\Dao\EntityDao offers many powerful methods to easily deal with database table rows:

!!! example
```php
<?php

namespace App\Dao;

class UserDao extends DaoAbstract
{
    protected $_tableName = 'users';
    protected $_primaryKey = 'userId';
    protected $_timestampEnabled = true;

    protected $_formatMap = [
        'userId' => Format::INT,
        'userRole' => Format::STRING,
        'userNewsletter' => Format::BOOL,
    ];

    protected $_hiddenFields = [
        'userPassword',
        'userPasswordResetToken',
        'userVerificationToken',
    ];
}
```


Workflow

This diagram illustrates how Controller, Model, DAO and database interact with each other:

[image: Doctrine ActiveRecord]

 Building REST Services

Building REST Services

Symlex REST controllers use a naming scheme similar to FOSRestBundle’s implicit resource name definition. The action name is derived from the request method and optional sub resources:

!!! example
```php
<?php

class UsersController
{
    ..

    public function cgetAction(Request $request)
    {} // [GET] /users

    public function coptionsAction(Request $request)
    {} // [OPTIONS] /users
    
    public function postAction(Request $request)
    {} // [POST] /users

    public function getAction($id, Request $request)
    {} // [GET] /users/{id}
    
    public function optionsAction($id, Request $request)
    {} // [OPTIONS] /users/{id}

    ..
    public function cgetCommentsAction($id, Request $request)
    {} // [GET] /users/{id}/comments
    
    public function getCommentsAction($id, $commentId, Request $request)
    {} // [GET] /users/{id}/comments/{commentId}

    ..
}
```


REST controller actions can either return an array, which is automatically converted to valid JSON, or a Symfony\Component\HttpFoundation\Response object.
Delete actions can also return null (“204 No Content”).

!!! Links example
- UsersController [https://github.com/symlex/symlex/blob/master/src/Controller/Rest/V1/UsersController.php]
- SessionController [https://github.com/symlex/symlex/blob/master/src/Controller/Rest/V1/SessionController.php]
- RegistrationController [https://github.com/symlex/symlex/blob/master/src/Controller/Rest/V1/RegistrationController.php]

Input Validation and Database Abstraction

The following example shows how to work with our battle-tested InputValidation
and Doctrine ActiveRecord libraries in a REST controller context. Note, how easy it is
to avoid deeply nested structures. User model and form factory are injected as dependencies.

!!! example
```php
<?php

namespace App\Controller\Rest;

use Symfony\Component\HttpFoundation\Request;
use App\Exception\FormInvalidException;
use App\Form\FormFactory;
use App\Model\User;

class UsersController
{
    protected $user;
    protected $formFactory;

    public function __construct(User $user, FormFactory $formFactory)
    {
        $this->user = $user;
        $this->formFactory = $formFactory;
    }
    
    public function cgetAction(Request $request)
    {
        $options = array(
            'count' => $request->query->get('count', 50),
            'offset' => $request->query->get('offset', 0)
        );
        
        return $this->user->search(array(), $options);
    }

    public function getAction($id)
    {
        return $this->user->find($id)->getValues();
    }

    public function deleteAction($id)
    {
        return $this->user->find($id)->delete();
    }

    public function putAction($id, Request $request)
    {
        $this->user->find($id);
        
        $form = $this->formFactory->create('User\Edit');
        $form->setDefinedWritableValues($request->request->all())->validate();

        if($form->hasErrors()) {
            throw new FormInvalidException($form->getFirstError());
        } 
        
        $this->user->update($form->getValues());

        return $this->user->getValues();
    }

    public function postAction(Request $request)
    {
        $form = $this->formFactory->create('User\Create');
        $form->setDefinedWritableValues($request->request->all())->validate();

        if($form->hasErrors()) {
            throw new FormInvalidException($form->getFirstError());
        }
        
        $this->user->save($form->getValues());

        return $this->user->getValues();
    }
}
```


 Routing and Rendering

Routing and Rendering

Matching requests to controller actions is performed based on convention instead of extensive configuration.

There are 4 example routers included in our core library. They configure the Symfony [https://symfony.com/doc/current/components/routing.html] router to perform the actual routing, so you can expect the same high performance.

After routing a request to the appropriate controller action, the router subsequently renders the response to ease controller testing:

Symlex\Router\Web\RestRouter handles REST requests (JSON)

Symlex\Router\Web\ErrorRouter renders exceptions as error messages (HTML or JSON)

Symlex\Router\Web\TwigRouter renders regular Web pages via Twig (HTML)

Symlex\Router\Web\TwigDefaultRouter is like TwigRouter but sends all requests to a default controller action (required for client-side routing e.g. with Vue.js)

Controller actions should not directly return JSON or HTML, but they can return Symfony Request objects
e.g. to return binary data or to implement special use cases.

Default Routes

Below, you’ll find a few examples based on our default configuration in App\Kernel\WebApp:

<?php

// The error router catches errors and displays them as error pages
$container->get('router.error')->route();

// Routing for REST API calls
$container->get('router.rest')
 ->route($this->getUrlPrefix('/api/v1'), 'controller.rest.v1.');

// All other requests are routed to a default controller action
$container->get('router.twig_default')
 ->route($this->getUrlPrefix(), 'controller.web.index', 'index');

// Uncomment the following line to enable server-side routing
// $container->get('router.twig')
// ->route($this->getUrlPrefix(), 'controller.web.');

All request (except those starting with /api/v1) will be routed to controller.web.index service’s indexAction(Request $request)

GET /api/v1/users will be routed to controller.rest.v1.users service’s cgetAction(Request $request)

POST /api/v1/users will be routed to controller.rest.v1.users service’s postAction(Request $request)

OPTIONS /api/v1/users will be routed to controller.rest.v1.users service’s coptionsAction(Request $request)

GET /api/v1/users/123 will be routed to controller.rest.v1.users service’s getAction($id, Request $request)

OPTIONS /api/v1/users/123 will be routed to controller.rest.v1.users service’s optionsAction($id, Request $request)

GET /api/v1/users/123/comments will be routed to controller.rest.v1.users service’s cgetCommentsAction($id, Request $request)

GET /api/v1/users/123/comments/5 will be routed to controller.rest.v1.users service’s getCommentsAction($id, $commendId, Request $request)

PUT /api/v1/users/123/comments/5 will be routed to controller.rest.v1.users service’s putCommentsAction($id, $commendId, Request $request)

If you uncomment router.twig in exchange for router.twig_default, requests (except those starting with /api/v1)
will be routed to matching web controller actions e.g.:

GET / will be routed to controller.web.index service’s indexAction(Request $request)

GET /foo will be routed to controller.web.foo service’s indexAction(Request $request)

GET /foo/bar will be routed to controller.web.foo service’s barAction(Request $request)

POST /foo/bar will be routed to controller.web.foo service’s postBarAction(Request $request)

Development

It’s easy to create your own custom routing based on our examples.

You should use a custom kernel in this case as your application’s HTTP kernel [https://github.com/symlex/symlex/blob/master/src/Kernel/WebApp.php]
is responsible for initializing routers and setting optional URL / service name prefixes.

 Running Unit Tests with PHPUnit

Running Unit Tests with PHPUnit

Symlex comes with a pre-configured PHPUnit environment that automatically executes tests found in src/:

/var/www/html# bin/phpunit
PHPUnit 6.5.12 by Sebastian Bergmann and contributors.

... 47 / 47 (100%)

Time: 3.43 seconds, Memory: 12.00MB

OK (47 tests, 145 assertions)

See also TestTools - Adds a service container and self-initializing fakes to PHPUnit [https://github.com/lastzero/test-tools]

 Controllers for Web Applications

Controllers for Web Applications

Symlex controllers are plain PHP classes by default. They are configured as public services either in app/config/web.yml (HTML) or app/config/rest.yml (REST):

controller.web.index:
 public: true
 class: App\Controller\Web\IndexController

controller.rest.v1.users:
 public: true
 class: App\Controller\Rest\V1\UsersController
 arguments: ["@service.session", "@model.factory", "@form.factory"]
 calls:
 - [setMailService, ["@service.mail"]]

!!! note
In many other frameworks, controllers aren’t services by default. Some developers are used to give
controllers direct access to the service container instead of using dependency injection, which makes testing more
difficult and leads to less portable code (framework lock-in).

The routers pass on the request instance to each matched controller action as last argument. It contains request parameters and headers as described on the Symfony documentation [http://symfony.com/doc/current/book/http_fundamentals.html#requests-and-responses-in-symfony].

Web controller actions can either return

	null: Matching Twig template will be rendered

	an array: Twig template can access those values as variables

	a string: User will be redirected to URL

	or a Symfony\Component\HttpFoundation\Response object

Twig’s template base directory can be configured in app/config/twig.yml (twig.path). The template filename is matching the request route: [twig.path]/[controller]/[action].twig.

If no controller or action name is given, index is the default e.g. index/index.twig will be used for rending /.

!!! example
```php
<?php

namespace App\Controller\Web;

class IndexController
{
    /**
     * Renders the template in app/templates/default/index.twig
     */
    public function indexAction()
    {
    }
}
```


 API Documentation

API Documentation

__construct(Translator $translator, Form\Validator $validator, Form\OptionsInterface $options, array $params = array())

The constructor requires instances of Symfony\Component\Translation\TranslatorInterface, InputValidation\Form\Validator, InputValidation\Form\OptionsInterface and an optional set of arbitrary parameters, which are passed to init(array $params = array()) (protected method for initializing the form).

setOptions(Form\OptionsInterface $options)

Sets an optional class instance to automatically fill option lists (see “options” form field property). OptionsInterface only requires a method get($listName) that returns an array of options.

getOptions(): Form\OptionsInterface

Returns the options instance

options(string $listName): array

Returns a list of options e.g. countries:

'country' => array(
 'type' => 'string',
 'caption' => 'Country',
 'default' => 'DE',
 'options' => $this->form->options('countries')
)

optionsWithDefault(string $listName, string $defaultLabel = ‘’): array

Returns a list of options with default label for no selection

'country' => array(
 'type' => 'string',
 'caption' => 'Country',
 'required' => true,
 'options' => $this->form->optionsWithDefault('countries')
)

getTranslator(): Translator

Returns the Translator instance (see __construct)

setTranslator(Translator $translator)

Sets the Translator instance (see __construct)

getValidator(): Validator

Returns the Validator instance (see __construct)

setValidator(Validator $validator)

Sets the Validator instance (see __construct)

getLocale()

Returns the current locale e.g. en, de or fr

setLocale($locale)

Sets the current locale e.g. en, de or fr

setDefinition(array $definition)

Sets the form field definition array (see example and form field properties)

getDefinition($key = null, $propertyName = null): mixed

Returns the form field definition(s). If $key is null, definitions for all fields are returned. If $propertyName is null and $key is not null, only the definition of the given field key are returned. If both arguments are not null, only the definition of the given form field property is returned (for example, getDefinition(‘firstname’, ‘type’) might return ‘string’). A FormException is thrown otherwise.

getFieldDefinition(string $name): array

Returns form field definition as array (wrapper for getDefinition)

getFieldProperty(string $name, string $property): mixed

Returns a field property from the form definition (wrapper for getDefinition)

addDefinition($key, array $definition)

Adds a single form field definition (see form field properties)

changeDefinition($key, array $changes)

Changes a single form field definition (see form field properties)

setGroups(array $groups)

Sets form field groups (optional feature, if you want to reuse your form definition to reder the form as HTML).

Example:

$form->setGroups(
 array(
 'name' => array('firstname', 'lastname'),
 'address' => array('street', 'housenr', 'zip', 'city')
)
);

getFieldAsArray(string $key): array

Returns field definition and value as JSON compatible array:

array (
 'name' => 'country',
 'caption' => 'Country',
 'default' => 'DE',
 'type' => 'string',
 'options' => array (
 array (
 'option' => 'US',
 'label' => 'United States',
),
 array (
 'option' => 'GB',
 'label' => 'United Kingdom',
),
 array (
 'option' => 'DE',
 'label' => 'Germany',
),
),
 'value' => 'DE',
 'uid' => 'id58a401f5a54e6',
),

getAsArray(): array

Returns the complete form (definition and all values) as JSON compatible array, which can be used to render the form in templates:

array (
 'company' => array (
 'name' => 'company',
 'caption' => 'Company',
 'type' => 'string',
 'value' => 'IBM',
 'uid' => 'id58a401f5a54d6',
),
 'country' => array (
 'name' => 'country',
 'caption' => 'Country',
 'default' => 'DE',
 'type' => 'string',
 'options' => array (
 array (
 'option' => 'US',
 'label' => 'United States',
),
 array (
 'option' => 'GB',
 'label' => 'United Kingdom',
),
 array (
 'option' => 'DE',
 'label' => 'Germany',
),
),
 'value' => 'DE',
 'uid' => 'id58a401f5a54e6',
),
),

getAsGroupedArray(): array

Returns grouped form field definitions and values (you must use setGroups() first):

array(
 'person' => array (
 'group_name' => 'person',
 'group_caption' => 'Person',
 'fields' => array(
 'person' => array (
 'name' => 'firstname',
 'caption' => 'First Name',
 'type' => 'string',
 'readonly' => true,
 'value' => NULL,
 'uid' => 'id58a401f5a5267',
),
 'lastname' => array (
 'name' => 'lastname',
 'caption' => 'Last Name',
 'type' => 'string',
 'readonly' => false,
 'value' => 'Mander',
 'uid' => 'id58a401f5a5279',
),
),
),
 'location' => array (
 'group_name' => 'location',
 'group_caption' => 'Location',
 'fields' => array (
 'company' => array (
 'name' => 'company',
 'caption' => 'Company',
 'type' => 'string',
 'value' => 'IBM',
 'uid' => 'id58a401f5a54d6',
),
 'country' => array (
 'name' => 'country',
 'caption' => 'Country',
 'type' => 'string',
 'default' => 'DE',
 'options' => array (
 array (
 'option' => 'US',
 'label' => 'United States',
),
 array (
 'option' => 'GB',
 'label' => 'United Kingdom',
),
 array (
 'option' => 'DE',
 'label' => 'Germany',
),
),
 'value' => 'DE',
 'uid' => 'id58a401f5a54e6',
),
),
),
),

setAllValues(array $values)

Sets all form values (does not check, if the fields exist or if the fields are writable by the user). Throws an exception, if you try to set values for undefined fields.

setDefinedValues(array $values)

Iterates through the form definition and sets the values for fields, that are present in the form definition.

setWritableValues(array $values)

Iterates through the passed value array and sets the values for fields, that are writable by the user.

setDefinedWritableValues(array $values)

Sets the values for fields, that are present in the form definition and that are writable by the user (recommended method for most use cases).

setWritableValuesOnPage(array $values, $page)

Sets the values for fields on the given page, that are present in the form definition and that are writable by the user (recommended method for most use cases, if the form contains multiple pages).

getValuesByPage()

Returns the form values for all elements grouped by page.

getValuesByTag($tag)

Returns the form values for all elements by tag (see “tags” form field property)

getValues()

Returns all form field values

getWritableValues()

Returns all user writable form field values

translate($token, array $params = array())

Uses the Translator adapter to translate the given string/token (accepts optional parameters for the translation string).

_($token, array $params = array())

Alias for translate()

addError($key, $token, array $params = array())

Adds a validation error (uses translate() for the error message internally)

validate()

Validates all form field values. You can use getErrors(), getErrorsByPage(), isValid() and hasErrors() to get the validation results.

hasErrors(): bool

Returns true, if the form has errors

isValid(): bool

eturns true, if the form is valid (has no errors)

getErrors(): array

Returns all errors and throws an exception, if the validation was not performed yet (you must call validate() before calling getErrors()).

getFirstError(): string

Returns the first error as string

getErrorsAsText(): string

Returns all errors as indented text (for command line applications)

getErrorsByPage(): array

Returns all errors grouped by page and throws an exception, if the validation was not performed yet (you must call validate() before calling getErrorsByPage()).

clearErrors()

Resets the validation and clears all errors

getHash(): string

Returns hash that uniquely identifies the form (for caching comprehensive forms)

 Every contribution makes a difference

Every contribution makes a difference

We welcome contributions of any kind including pull requests, ideas, bug reports,
testing, writing documentation, tutorials and blog posts. If you help with development,
you have the opportunity to learn Symfony, PHPUnit, Vue.js and much more.

Since we are already pretty much feature-complete for our own needs, it is well possible that you won’t find any open issues.
Issues labeled help wanted [https://github.com/symlex/input-validation/labels/help%20wanted] /
easy [https://github.com/symlex/input-validation/labels/easy] can be good (first) contributions otherwise.

Questions?

Feel free to send an e-mail to hello@symlex.org if you have any questions,
need commercial support [https://blog.liquidbytes.net/contact/] or just want to say hello.

Pull Requests

Our step-by-step guide [https://github.com/symlex/symlex/wiki/Pull-Requests] explains how to submit new features, bugfixes and documentation.

Feature Requests

You are welcome to add specific feature requests directly to our main GitHub issue tracker [https://github.com/symlex/input-validation/issues]
or the corresponding sub-project if no similar idea [https://github.com/symlex/input-validation/labels/idea]
or todo [https://github.com/symlex/input-validation/labels/todo] already exists.
Please don’t use the issue tracker to ask general questions.

Reporting Bugs

Please use the GitHub issue tracker for symlex/input-validation [https://github.com/symlex/input-validation/issues]
or the corresponding sub-project to report clearly identified bugs and impediments to us.
If you’re not sure, start by asking via email.
When reporting an issue, please provide the version in use and information about your environment like browser, operating system, installed memory, and processor type.

Donations

Please leave a star on GitHub [https://github.com/symlex/input-validation] if you like this project, it provides enough motivation to keep going.
Thank you very much! <3

 Form Definition

Form Definition

A detailed overview of field properties can be found below. $_('label') is used for optional translation of field captions or other strings - a number of different translation file formats such as YAML are supported for that (see Symfony Components [http://symfony.com/doc/current/components/translation.html] documentation)

<?php

use InputValidation\Form;

class UserForm extends Form
{
 protected function init(array $params = array())
 {
 $definition = [
 'username' => [
 'type' => 'string',
 'caption' => $this->_('username'),
 'required' => true,
 'min' => 3,
 'max' => 15
],
 'email' => [
 'type' => 'email',
 'caption' => $this->_('email_address'),
 'required' => true
],
 'gender' => [
 'type' => 'string',
 'caption' => $this->_('gender'),
 'required' => false,
 'options' => [
 'm' => 'Male',
 'f' => 'Female',
 'o' => 'Other'
],
 'optional' => true
],
 'birthday' => [
 'type' => 'date',
 'caption' => $this->_('birthday'),
 'required' => false
],
 'password' => [
 'type' => 'string',
 'caption' => $this->_('password'),
 'required' => true,
 'min' => 5,
 'max' => 30
],
 'password_again' => [
 'type' => 'string',
 'caption' => $this->_('password_again'),
 'required' => true,
 'matches' => 'password'
],
 'continent' => [
 'type' => 'string',
 'caption' => $this->_('region'),
 'required' => true,
 'options' => [
 'north_america' => 'North America',
 'south_america' => 'South Amertica',
 'europe' => 'Europe,
 'asia' => 'Asia',
 'australia' => 'Australia'
]
]
];

 $this->setDefinition($definition);
 }
}

Creating a Form Instance

You can create new form instances manually…

<?php

use InputValidation\Form;
use InputValidation\Form\Validator;
use InputValidation\Form\Options\YamlOptions;
use Symfony\Component\Translation\Translator;
use Symfony\Component\Translation\MessageSelector;
use Symfony\Component\Translation\Loader\YamlFileLoader;
use Symfony\Component\Translation\Loader\ArrayLoader;

$translator = new Translator('en', new MessageSelector);
$translator->addLoader('yaml', new YamlFileLoader);
$translator->addLoader('array', new ArrayLoader);

$validator = new Validator();

$options = new YamlOptions($translator);

$form = new Form($translator, $validator, $options);

… or using our Factory class:

<?php

use InputValidation\Form\Factory as FormFactory;

$formFactory = new FormFactory($translator, $validator, $options);
$formFactory->setFactoryNamespace('App\Form');
$formFactory->setFactoryPostfix('Form');

// Returns instance of App\Form\UserForm
$formFactory->create('User');

 REST Request Validation Example

REST Request Validation Example

This example shows how to validate user input in a REST controller context.
Note, how easy it is to avoid the deeply nested structures you often find in validation code. User model and form are injected as dependencies.

<?php

class UserController
{
 protected $user;
 protected $form;

 public function __construct(UserModel $user, UserForm $form)
 {
 $this->user = $user;
 $this->form = $form;
 }

 // Update User
 public function putAction(int $id, Request $request): array
 {
 // Find entity (throws exception, if not found)
 $this->user->find($id);

 // Form initialization with current values
 $this->form->setDefinedValues($this->user->getValues());

 // Set input values
 $this->form->setDefinedWritableValues($request->request->all());

 // Validation
 $this->form->validate();

 if($this->form->hasErrors()) {
 throw new FormInvalidException($this->form->getFirstError());
 }

 // Update values in database
 $this->user->update($this->form->getValues());

 // Return updated values
 return $this->user->getValues();
 }

 // Return form fields incl current values for User
 public function optionsAction(int $id): array
 {
 // Find entity (throws exception, if not found)
 $this->user->find($id);

 // Form initialization with current values
 $this->form->setDefinedValues($this->user->getValues());

 // Returns form as JSON compatible array incl all values
 return $this->form->getAsArray();
 }
}

See also Doctrine ActiveRecord - Object-oriented CRUD for Doctrine DBAL

 Field Properties

Field Properties

Name | Description
———————- | —————————————————————————————————
caption | Field title (used for form rendering and in validation messages)
type | Data type: int, numeric, scalar, list, bool, string, email, ip, url, date, datetime, time and switch
type_params | Optional parameters for data type validation
options | Array of possible values for the field (for select lists or radio button groups)
min | Minimum value for numbers/dates, length for strings or number of elements for lists
max | Maximum value for numbers/dates, length for strings or number of elements for lists
required | Field cannot be empty (if false, setDefinedValues() and setDefinedWritableValues() still throw an exception, if it does not exist at all)
optional | setDefinedValues() and setDefinedWritableValues() don’t throw an exception, if the field is missing in the input values (usefull for checkboxes or certain JavaScript frameworks, that do not submit any data for empty form elements e.g. AngularJS)
readonly | User is not allowed to change the field (not writable)
hidden | User can not see the field (no impact on the validation)
default | Default value
regex | Regular expression to match against
matches | Field value must match another form field (e.g. for password or email validation). Property can be prefixed with “!” to state that the fields must be different.
depends | Field is required, if the given form field is not empty
depends_value | Field is required, if the field defined in “depends” has this value
depends_value_empty | Field is required, if the field defined in “depends” is empty
depends_first_option | Field is required, if the field defined in “depends” has the first value (see “options”)
depends_last_option | Field is required, if the field defined in “depends” has the last value (see “options”)
page | Page number for multi-page forms
tags | Optional list of tags (can be used to extract values by tag, see getValuesByTag())

 Should I use this library?

Should I use this library?

Pros

	Battle-tested in many large, commercial projects

	It is perfectly suited for validating REST requests and building single-page applications

	Form definition can easily be serialized as JSON for client-side validation and form rendering with JavaScript

	Small code footprint and very fast

	Easy to write unit tests for

	Part of the Symlex [https://symlex.org/] framework stack for agile Web development

Cons

	While you can get commercial support [https://blog.