

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/symfony-rich-console/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/symfony-rich-console/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Symfony rich console

This component integrates both Symfony Dependency Injection and Symfony Event Dispatcher components into Symfony Console applications.

Note: This is only intended if dealing with Symfony Console standalone applications, not web framework ones.

[image: Scrutinizer Quality Score] [https://scrutinizer-ci.com/g/rodrigodiez/symfony-rich-console/]
[image: SensioLabsInsight] [https://insight.sensiolabs.com/projects/a8297e5f-7fd1-4974-b0f0-cfcbc6a28917]

Example:

 public function run(InputInterface $input, OutputInterface $output)
 {
 // You can access services
 $myService = $this->container->get('my_service');
 $input->writeln('My service says ' . $myService->hello());

 // You can get parameters
 $myParam = $this->container->getParameter('my_param');

 // You can dispatch events and these will be received by their listeners / subscribers
 $event = new Event();
 $this->container->get('event_dispatcher')->dispatch('custom.event', $event);
 $input->writeln('My listeners says ' . $event->getValue());
 }

Installation

1. Download it using composer

Add rodrigodiez/symfony-rich-console to your composer.json

{
 "require": {
 "rodrigodiez/symfony-rich-console": "dev-master"
 }
}

Now, tell composer to download the component by typing

$ php composer.phar update rodrigodiez/symfony-rich-console

2. Create a console

You need a entry point file to instantiate and run your application. You can create it at app/console.

#!/usr/bin/env php

<?php
use Rodrigodiez\Component\RichConsole\Console\Application;

require_once('vendor/autoload.php');

$app = new Application();
$app->run();

Note that you must extend the custom Application class provided within this component.

The Application class constructor receives two optional parameters:

	configPath: String containing the config path. The application will try to find here the required parameters.yml file and other configuration files. Defaults to app/config.

	configFilenames: Array of file names located in $configPath which you want to be loaded into the container. Ej: array('services.yml'). You typically will define your commands, services, listeners, subscribers, etc in these files.

2. Create a parameters.yml file

This file is mandatory, it must be located in your configPath and it must contain, at least, the following info:

parameters:
 application_name: your_application_name
 application_version: your_application_version

3. Done!

Now you can execute your app by typing...

$php app/console

... but the result may be disappointing. This is because we didn’t yet registered any commands into the application.

Adding a configuration file

To be able to define your services (commands are defined as services too) it is necessary to create a configuration file in configPath and tell the application to load it:

//app/console

//...
$app = new Application(null, array('services.yml'));
//...

Registering commands

Simply register your command as a service and tag it as console.command.

app/config/services.yml
services:
 command_service:
 class: Your\Namespace\YourCommand
 tags:
 - { name: console.command }

If your command class implements Symfony\\Component\\DependencyInjection\\ContainerAwareInterface then container will be injected and you can retrieve it through its $container property.

Registering listeners and subscribers

app/config/services.yml
services:
 listener_service:
 class: Your\Namespace\YourListener
 tags:
 - { name: kernel.event_listener, method: onEventMethod }

 subscriber_service:
 class: Your\Namespace\YourSubscriber
 tags:
 - { name: kernel.event_subscriber }

That is all!

I hope this to be useful to somebody. Comments, issue reports and pull requests will be appreciated :)

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

