
Symfony Doc Documentation
Release stable

Dec 09, 2019

Contents

1 Symfony2 and HTTP Fundamentals 1
1.1 HTTP is Simple . 1
1.2 Requests and Responses in PHP . 3
1.3 Requests and Responses in Symfony . 4
1.4 The Journey from the Request to the Response . 5
1.5 Symfony2: Build your App, not your Tools. 8

2 Symfony2 versus Flat PHP 11
2.1 A simple Blog in flat PHP . 11
2.2 Adding a Blog “show” Page . 15
2.3 A “Front Controller” to the Rescue . 16
2.4 Better templates . 22
2.5 Learn more from the Cookbook . 22

3 Installing and Configuring Symfony 23
3.1 Installing a Symfony2 Distribution . 23
3.2 Beginning Development . 27
3.3 Using Source Control . 28

4 Creating Pages in Symfony2 29
4.1 Environments & Front Controllers . 29
4.2 Before you begin: Create the Bundle . 30
4.3 Step 1: Create the Route . 31
4.4 Step 2: Create the Controller . 31
4.5 Optional Step 3: Create the Template . 32
4.6 The Web Directory . 34
4.7 The Application (app) Directory . 34
4.8 The Source (src) Directory . 35
4.9 Creating a Bundle . 36
4.10 Bundle Directory Structure . 37
4.11 Default Configuration Dump . 38
4.12 Environment Configuration . 39

5 Controller 41
5.1 Requests, Controller, Response Lifecycle . 42
5.2 A Simple Controller . 42
5.3 Mapping a URL to a Controller . 43

i

5.4 Creating Static Pages . 45
5.5 The Base Controller Class . 45
5.6 Common Controller Tasks . 46
5.7 Managing Errors and 404 Pages . 49
5.8 Managing the Session . 49
5.9 The Response Object . 50
5.10 The Request Object . 51
5.11 Final Thoughts . 51
5.12 Learn more from the Cookbook . 51

6 Routing 53
6.1 Routing in Action . 53
6.2 Routing: Under the Hood . 54
6.3 Creating Routes . 55
6.4 Controller Naming Pattern . 58
6.5 Route Parameters and Controller Arguments . 59
6.6 Including External Routing Resources . 59
6.7 Visualizing & Debugging Routes . 60
6.8 Generating URLs . 60
6.9 Summary . 62
6.10 Learn more from the Cookbook . 62

7 Creating and using Templates 63
7.1 Templates . 63
7.2 Template Inheritance and Layouts . 65
7.3 Template Naming and Locations . 67
7.4 Tags and Helpers . 68
7.5 Including Stylesheets and Javascripts in Twig . 71
7.6 Global Template Variables . 72
7.7 Configuring and using the templating Service . 72
7.8 Overriding Bundle Templates . 72
7.9 Three-level Inheritance . 74
7.10 Output Escaping . 74
7.11 Debugging . 75
7.12 Syntax Checking . 76
7.13 Template Formats . 76
7.14 Final Thoughts . 77
7.15 Learn more from the Cookbook . 77

8 Databases and Doctrine 79
8.1 A Simple Example: A Product . 79
8.2 Querying for Objects . 87
8.3 Entity Relationships/Associations . 90
8.4 Configuration . 94
8.5 Lifecycle Callbacks . 94
8.6 Doctrine Extensions: Timestampable, Sluggable, etc. 95
8.7 Doctrine Field Types Reference . 95
8.8 Console Commands . 96
8.9 Summary . 97

9 Databases and Propel 99
9.1 A Simple Example: A Product . 99
9.2 Querying for Objects . 103
9.3 Relationships/Associations . 104
9.4 Lifecycle Callbacks . 106

ii

9.5 Behaviors . 106
9.6 Commands . 107

10 Testing 109
10.1 The PHPUnit Testing Framework . 109
10.2 Unit Tests . 109
10.3 Functional Tests . 110
10.4 Working with the Test Client . 114
10.5 The Crawler . 117
10.6 Testing Configuration . 119
10.7 Learn more . 121

11 Validation 123
11.1 The Basics of Validation . 123
11.2 Configuration . 125
11.3 Constraints . 125
11.4 Translation Constraint Messages . 126
11.5 Constraint Targets . 126
11.6 Validation Groups . 127
11.7 Group Sequence . 127
11.8 Validating Values and Arrays . 128
11.9 Final Thoughts . 129
11.10 Learn more from the Cookbook . 129

12 Forms 131
12.1 Creating a Simple Form . 131
12.2 Form Validation . 135
12.3 Built-in Field Types . 138
12.4 Field Type Guessing . 139
12.5 Rendering a Form in a Template . 140
12.6 Changing the Action and Method of a Form . 141
12.7 Creating Form Classes . 141
12.8 Forms and Doctrine . 144
12.9 Embedded Forms . 144
12.10 Form Theming . 146
12.11 CSRF Protection . 149
12.12 Using a Form without a Class . 150
12.13 Final Thoughts . 151
12.14 Learn more from the Cookbook . 151

13 Security 153
13.1 Basic Example: HTTP Authentication . 153
13.2 How Security Works: Authentication and Authorization . 154
13.3 Using a Traditional Login Form . 156
13.4 Authorization . 158
13.5 Users . 162
13.6 Roles . 165
13.7 Logging Out . 166
13.8 Access Control in Templates . 166
13.9 Access Control in Controllers . 166
13.10 Impersonating a User . 167
13.11 Stateless Authentication . 167
13.12 Utilities . 167
13.13 Final Words . 168
13.14 Learn more from the Cookbook . 168

iii

14 HTTP Cache 169
14.1 Caching on the Shoulders of Giants . 169
14.2 Caching with a Gateway Cache . 170
14.3 Introduction to HTTP Caching . 172
14.4 HTTP Expiration and Validation . 174
14.5 Using Edge Side Includes . 180
14.6 Cache Invalidation . 182
14.7 Summary . 182
14.8 Learn more from the Cookbook . 183

15 Translations 185
15.1 Configuration . 185
15.2 Basic Translation . 186
15.3 Message Catalogues . 187
15.4 Using Message Domains . 189
15.5 Handling the User’s Locale . 189
15.6 Pluralization . 190
15.7 Translations in Templates . 192
15.8 Forcing the Translator Locale . 194
15.9 Translating Database Content . 194
15.10 Translating Constraint Messages . 194
15.11 Summary . 194

16 Service Container 197
16.1 What is a Service? . 197
16.2 What is a Service Container? . 198
16.3 Creating/Configuring Services in the Container . 198
16.4 Service Parameters . 199
16.5 Importing other Container Configuration Resources . 200
16.6 Referencing (Injecting) Services . 202
16.7 Making References Optional . 203
16.8 Core Symfony and Third-Party Bundle Services . 203
16.9 Tags . 204
16.10 Debugging Services . 205
16.11 Learn more . 205

17 Performance 207
17.1 Use a Byte Code Cache (e.g. APC) . 207
17.2 Use Composer’s Class Map Functionality . 207
17.3 Caching the Autoloader with APC . 208
17.4 Use Bootstrap Files . 208

18 Internals 211
18.1 Overview . 211
18.2 Kernel . 212
18.3 The Event Dispatcher . 217
18.4 Profiler . 217
18.5 Learn more from the Cookbook . 219

19 The Symfony2 Stable API 221

Index 223

iv

CHAPTER 1

Symfony2 and HTTP Fundamentals

Congratulations! By learning about Symfony2, you’re well on your way towards being a more productive, well-
rounded and popular web developer (actually, you’re on your own for the last part). Symfony2 is built to get back to
basics: to develop tools that let you develop faster and build more robust applications, while staying out of your way.
Symfony is built on the best ideas from many technologies: the tools and concepts you’re about to learn represent the
efforts of thousands of people, over many years. In other words, you’re not just learning “Symfony”, you’re learning
the fundamentals of the web, development best practices, and how to use many amazing new PHP libraries, inside or
independently of Symfony2. So, get ready.

True to the Symfony2 philosophy, this chapter begins by explaining the fundamental concept common to web devel-
opment: HTTP. Regardless of your background or preferred programming language, this chapter is a must-read for
everyone.

1.1 HTTP is Simple

HTTP (Hypertext Transfer Protocol to the geeks) is a text language that allows two machines to communicate with
each other. That’s it! For example, when checking for the latest xkcd comic, the following (approximate) conversation
takes place:

images/http-xkcd.png

And while the actual language used is a bit more formal, it’s still dead-simple. HTTP is the term used to describe
this simple text-based language. And no matter how you develop on the web, the goal of your server is always to
understand simple text requests, and return simple text responses.

Symfony2 is built from the ground-up around that reality. Whether you realize it or not, HTTP is something you use
everyday. With Symfony2, you’ll learn how to master it.

1

http://xkcd.com/

Symfony Doc Documentation, Release stable

1.1.1 Step1: The Client sends a Request

Every conversation on the web starts with a request. The request is a text message created by a client (e.g. a browser,
an iPhone app, etc) in a special format known as HTTP. The client sends that request to a server, and then waits for the
response.

Take a look at the first part of the interaction (the request) between a browser and the xkcd web server:

images/http-xkcd-request.png

In HTTP-speak, this HTTP request would actually look something like this:

GET / HTTP/1.1
Host: xkcd.com
Accept: text/html
User-Agent: Mozilla/5.0 (Macintosh)

This simple message communicates everything necessary about exactly which resource the client is requesting. The
first line of an HTTP request is the most important and contains two things: the URI and the HTTP method.

The URI (e.g. /, /contact, etc) is the unique address or location that identifies the resource the client wants. The
HTTP method (e.g. GET) defines what you want to do with the resource. The HTTP methods are the verbs of the
request and define the few common ways that you can act upon the resource:

GET Retrieve the resource from the server
POST Create a resource on the server
PUT Update the resource on the server
DELETE Delete the resource from the server

With this in mind, you can imagine what an HTTP request might look like to delete a specific blog entry, for example:

DELETE /blog/15 HTTP/1.1

Note: There are actually nine HTTP methods defined by the HTTP specification, but many of them are not widely
used or supported. In reality, many modern browsers don’t support the PUT and DELETE methods.

In addition to the first line, an HTTP request invariably contains other lines of information called request headers. The
headers can supply a wide range of information such as the requested Host, the response formats the client accepts
(Accept) and the application the client is using to make the request (User-Agent). Many other headers exist and
can be found on Wikipedia’s List of HTTP header fields article.

1.1.2 Step 2: The Server returns a Response

Once a server has received the request, it knows exactly which resource the client needs (via the URI) and what the
client wants to do with that resource (via the method). For example, in the case of a GET request, the server prepares
the resource and returns it in an HTTP response. Consider the response from the xkcd web server:

2 Chapter 1. Symfony2 and HTTP Fundamentals

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Symfony Doc Documentation, Release stable

images/http-xkcd.png

Translated into HTTP, the response sent back to the browser will look something like this:

HTTP/1.1 200 OK
Date: Sat, 02 Apr 2011 21:05:05 GMT
Server: lighttpd/1.4.19
Content-Type: text/html

<html>
<!-- ... HTML for the xkcd comic -->

</html>

The HTTP response contains the requested resource (the HTML content in this case), as well as other information
about the response. The first line is especially important and contains the HTTP response status code (200 in this case).
The status code communicates the overall outcome of the request back to the client. Was the request successful? Was
there an error? Different status codes exist that indicate success, an error, or that the client needs to do something (e.g.
redirect to another page). A full list can be found on Wikipedia’s List of HTTP status codes article.

Like the request, an HTTP response contains additional pieces of information known as HTTP headers. For example,
one important HTTP response header is Content-Type. The body of the same resource could be returned in
multiple different formats like HTML, XML, or JSON and the Content-Type header uses Internet Media Types
like text/html to tell the client which format is being returned. A list of common media types can be found on
Wikipedia’s List of common media types article.

Many other headers exist, some of which are very powerful. For example, certain headers can be used to create a
powerful caching system.

1.1.3 Requests, Responses and Web Development

This request-response conversation is the fundamental process that drives all communication on the web. And as
important and powerful as this process is, it’s inescapably simple.

The most important fact is this: regardless of the language you use, the type of application you build (web, mobile,
JSON API), or the development philosophy you follow, the end goal of an application is always to understand each
request and create and return the appropriate response.

Symfony is architected to match this reality.

Tip: To learn more about the HTTP specification, read the original HTTP 1.1 RFC or the HTTP Bis, which is an
active effort to clarify the original specification. A great tool to check both the request and response headers while
browsing is the Live HTTP Headers extension for Firefox.

1.2 Requests and Responses in PHP

So how do you interact with the “request” and create a “response” when using PHP? In reality, PHP abstracts you a
bit from the whole process:

1.2. Requests and Responses in PHP 3

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://datatracker.ietf.org/wg/httpbis/
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/

Symfony Doc Documentation, Release stable

$uri = $_SERVER['REQUEST_URI'];
$foo = $_GET['foo'];

header('Content-type: text/html');
echo 'The URI requested is: '.$uri;
echo 'The value of the "foo" parameter is: '.$foo;

As strange as it sounds, this small application is in fact taking information from the HTTP request and using it to
create an HTTP response. Instead of parsing the raw HTTP request message, PHP prepares superglobal variables
such as $_SERVER and $_GET that contain all the information from the request. Similarly, instead of returning the
HTTP-formatted text response, you can use the header() function to create response headers and simply print out
the actual content that will be the content portion of the response message. PHP will create a true HTTP response and
return it to the client:

HTTP/1.1 200 OK
Date: Sat, 03 Apr 2011 02:14:33 GMT
Server: Apache/2.2.17 (Unix)
Content-Type: text/html

The URI requested is: /testing?foo=symfony
The value of the "foo" parameter is: symfony

1.3 Requests and Responses in Symfony

Symfony provides an alternative to the raw PHP approach via two classes that allow you to interact with the HTTP
request and response in an easier way. The Symfony\Component\HttpFoundation\Request class is a
simple object-oriented representation of the HTTP request message. With it, you have all the request information at
your fingertips:

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

// the URI being requested (e.g. /about) minus any query parameters
$request->getPathInfo();

// retrieve GET and POST variables respectively
$request->query->get('foo');
$request->request->get('bar', 'default value if bar does not exist');

// retrieve SERVER variables
$request->server->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files->get('foo');

// retrieve a COOKIE value
$request->cookies->get('PHPSESSID');

// retrieve an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

(continues on next page)

4 Chapter 1. Symfony2 and HTTP Fundamentals

Symfony Doc Documentation, Release stable

(continued from previous page)

$request->getMethod(); // GET, POST, PUT, DELETE, HEAD
$request->getLanguages(); // an array of languages the client accepts

As a bonus, the Request class does a lot of work in the background that you’ll never need to worry about. For
example, the isSecure() method checks the three different values in PHP that can indicate whether or not the user
is connecting via a secured connection (i.e. https).

ParameterBags and Request attributes

As seen above, the $_GET and $_POST variables are accessible via the public query and request properties
respectively. Each of these objects is a Symfony\Component\HttpFoundation\ParameterBag
object, which has methods like :method:‘Symfony\\Component\\HttpFoundation\\ParameterBag::get‘,
:method:‘Symfony\\Component\\HttpFoundation\\ParameterBag::has‘, :method:‘Symfony\\Component\\HttpFoundation\\ParameterBag::all‘
and more. In fact, every public property used in the previous example is some instance of the ParameterBag.

The Request class also has a public attributes property, which holds special data related to how the application
works internally. For the Symfony2 framework, the attributes holds the values returned by the matched route,
like _controller, id (if you have an {id} wildcard), and even the name of the matched route (_route). The
attributes property exists entirely to be a place where you can prepare and store context-specific information
about the request.

Symfony also provides a Response class: a simple PHP representation of an HTTP response message. This allows
your application to use an object-oriented interface to construct the response that needs to be returned to the client:

use Symfony\Component\HttpFoundation\Response;
$response = new Response();

$response->setContent('<html><body><h1>Hello world!</h1></body></html>');
$response->setStatusCode(200);
$response->headers->set('Content-Type', 'text/html');

// prints the HTTP headers followed by the content
$response->send();

If Symfony offered nothing else, you would already have a toolkit for easily accessing request information and an
object-oriented interface for creating the response. Even as you learn the many powerful features in Symfony, keep in
mind that the goal of your application is always to interpret a request and create the appropriate response based on
your application logic.

Tip: The Request and Response classes are part of a standalone component included with Symfony called
HttpFoundation. This component can be used entirely independently of Symfony and also provides classes for
handling sessions and file uploads.

1.4 The Journey from the Request to the Response

Like HTTP itself, the Request and Response objects are pretty simple. The hard part of building an application
is writing what comes in between. In other words, the real work comes in writing the code that interprets the request
information and creates the response.

Your application probably does many things, like sending emails, handling form submissions, saving things to a
database, rendering HTML pages and protecting content with security. How can you manage all of this and still keep

1.4. The Journey from the Request to the Response 5

Symfony Doc Documentation, Release stable

your code organized and maintainable?

Symfony was created to solve these problems so that you don’t have to.

1.4.1 The Front Controller

Traditionally, applications were built so that each “page” of a site was its own physical file:

index.php
contact.php
blog.php

There are several problems with this approach, including the inflexibility of the URLs (what if you wanted to change
blog.php to news.php without breaking all of your links?) and the fact that each file must manually include some
set of core files so that security, database connections and the “look” of the site can remain consistent.

A much better solution is to use a front controller: a single PHP file that handles every request coming into your
application. For example:

/index.php executes index.php
/index.php/contact executes index.php
/index.php/blog executes index.php

Tip: Using Apache’s mod_rewrite (or equivalent with other web servers), the URLs can easily be cleaned up to
be just /, /contact and /blog.

Now, every request is handled exactly the same way. Instead of individual URLs executing different PHP files, the
front controller is always executed, and the routing of different URLs to different parts of your application is done
internally. This solves both problems with the original approach. Almost all modern web apps do this - including apps
like WordPress.

1.4.2 Stay Organized

Inside your front controller, you have to figure out which code should be executed and what the content to return should
be. To figure this out, you’ll need to check the incoming URI and execute different parts of your code depending on
that value. This can get ugly quickly:

// index.php
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
$request = Request::createFromGlobals();
$path = $request->getPathInfo(); // the URI path being requested

if (in_array($path, array('', '/'))) {
$response = new Response('Welcome to the homepage.');

} elseif ($path == '/contact') {
$response = new Response('Contact us');

} else {
$response = new Response('Page not found.', 404);

}
$response->send();

Solving this problem can be difficult. Fortunately it’s exactly what Symfony is designed to do.

6 Chapter 1. Symfony2 and HTTP Fundamentals

Symfony Doc Documentation, Release stable

1.4.3 The Symfony Application Flow

When you let Symfony handle each request, life is much easier. Symfony follows the same simple pattern for every
request:

images/request-flow.png

Fig. 1: Incoming requests are interpreted by the routing and passed to controller functions that return Response
objects.

Each “page” of your site is defined in a routing configuration file that maps different URLs to different PHP functions.
The job of each PHP function, called a controller, is to use information from the request - along with many other tools
Symfony makes available - to create and return a Response object. In other words, the controller is where your code
goes: it’s where you interpret the request and create a response.

It’s that easy! To review:

• Each request executes a front controller file;

• The routing system determines which PHP function should be executed based on information from the request
and routing configuration you’ve created;

• The correct PHP function is executed, where your code creates and returns the appropriate Response object.

1.4.4 A Symfony Request in Action

Without diving into too much detail, here is this process in action. Suppose you want to add a /contact page to
your Symfony application. First, start by adding an entry for /contact to your routing configuration file:

Note: This example uses YAML to define the routing configuration. Routing configuration can also be written in
other formats such as XML or PHP.

When someone visits the /contact page, this route is matched, and the specified controller is executed. As you’ll
learn in the routing chapter, the AcmeDemoBundle:Main:contact string is a short syntax that points to a specific
PHP method contactAction inside a class called MainController:

// src/Acme/DemoBundle/Controller/MainController.php
namespace Acme\DemoBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class MainController
{

public function contactAction()
{

return new Response('<h1>Contact us!</h1>');
}

}

1.4. The Journey from the Request to the Response 7

Symfony Doc Documentation, Release stable

In this very simple example, the controller simply creates a Symfony\Component\HttpFoundation\Response
object with the HTML “<h1>Contact us!</h1>". In the controller chapter, you’ll learn how a controller can
render templates, allowing your “presentation” code (i.e. anything that actually writes out HTML) to live in a separate
template file. This frees up the controller to worry only about the hard stuff: interacting with the database, handling
submitted data, or sending email messages.

1.5 Symfony2: Build your App, not your Tools.

You now know that the goal of any app is to interpret each incoming request and create an appropriate response. As
an application grows, it becomes more difficult to keep your code organized and maintainable. Invariably, the same
complex tasks keep coming up over and over again: persisting things to the database, rendering and reusing templates,
handling form submissions, sending emails, validating user input and handling security.

The good news is that none of these problems is unique. Symfony provides a framework full of tools that allow you to
build your application, not your tools. With Symfony2, nothing is imposed on you: you’re free to use the full Symfony
framework, or just one piece of Symfony all by itself.

1.5.1 Standalone Tools: The Symfony2 Components

So what is Symfony2? First, Symfony2 is a collection of over twenty independent libraries that can be used inside
any PHP project. These libraries, called the Symfony2 Components, contain something useful for almost any situation,
regardless of how your project is developed. To name a few:

• HttpFoundation - Contains the Request and Response classes, as well as other classes for handling sessions
and file uploads;

• Routing - Powerful and fast routing system that allows you to map a specific URI (e.g. /contact) to some
information about how that request should be handled (e.g. execute the contactAction() method);

• Form - A full-featured and flexible framework for creating forms and handling form submissions;

• Validator A system for creating rules about data and then validating whether or not user-submitted data follows
those rules;

• ClassLoader An autoloading library that allows PHP classes to be used without needing to manually require
the files containing those classes;

• Templating A toolkit for rendering templates, handling template inheritance (i.e. a template is decorated with a
layout) and performing other common template tasks;

• Security - A powerful library for handling all types of security inside an application;

• Translation A framework for translating strings in your application.

Each and every one of these components is decoupled and can be used in any PHP project, regardless of whether or
not you use the Symfony2 framework. Every part is made to be used if needed and replaced when necessary.

1.5.2 The Full Solution: The Symfony2 Framework

So then, what is the Symfony2 Framework? The Symfony2 Framework is a PHP library that accomplishes two distinct
tasks:

1. Provides a selection of components (i.e. the Symfony2 Components) and third-party libraries (e.g. Swiftmailer
for sending emails);

2. Provides sensible configuration and a “glue” library that ties all of these pieces together.

8 Chapter 1. Symfony2 and HTTP Fundamentals

https://github.com/symfony/Form
https://github.com/symfony/Validator
https://github.com/symfony/Security
https://github.com/symfony/Translation
http://swiftmailer.org/

Symfony Doc Documentation, Release stable

The goal of the framework is to integrate many independent tools in order to provide a consistent experience for the
developer. Even the framework itself is a Symfony2 bundle (i.e. a plugin) that can be configured or replaced entirely.

Symfony2 provides a powerful set of tools for rapidly developing web applications without imposing on your applica-
tion. Normal users can quickly start development by using a Symfony2 distribution, which provides a project skeleton
with sensible defaults. For more advanced users, the sky is the limit.

1.5. Symfony2: Build your App, not your Tools. 9

Symfony Doc Documentation, Release stable

10 Chapter 1. Symfony2 and HTTP Fundamentals

CHAPTER 2

Symfony2 versus Flat PHP

Why is Symfony2 better than just opening up a file and writing flat PHP?

If you’ve never used a PHP framework, aren’t familiar with the MVC philosophy, or just wonder what all the hype is
around Symfony2, this chapter is for you. Instead of telling you that Symfony2 allows you to develop faster and better
software than with flat PHP, you’ll see for yourself.

In this chapter, you’ll write a simple application in flat PHP, and then refactor it to be more organized. You’ll travel
through time, seeing the decisions behind why web development has evolved over the past several years to where it is
now.

By the end, you’ll see how Symfony2 can rescue you from mundane tasks and let you take back control of your code.

2.1 A simple Blog in flat PHP

In this chapter, you’ll build the token blog application using only flat PHP. To begin, create a single page that displays
blog entries that have been persisted to the database. Writing in flat PHP is quick and dirty:

<?php
// index.php
$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

$result = mysql_query('SELECT id, title FROM post', $link);
?>

<!DOCTYPE html>
<html>

<head>
<title>List of Posts</title>

</head>
<body>

<h1>List of Posts</h1>

(continues on next page)

11

Symfony Doc Documentation, Release stable

(continued from previous page)

<?php while ($row = mysql_fetch_assoc($result)): ?>

<a href="/show.php?id=<?php echo $row['id'] ?>">
<?php echo $row['title'] ?>

<?php endwhile; ?>

</body>

</html>

<?php
mysql_close($link);
?>

That’s quick to write, fast to execute, and, as your app grows, impossible to maintain. There are several problems that
need to be addressed:

• No error-checking: What if the connection to the database fails?

• Poor organization: If the application grows, this single file will become increasingly unmaintainable. Where
should you put code to handle a form submission? How can you validate data? Where should code go for
sending emails?

• Difficult to reuse code: Since everything is in one file, there’s no way to reuse any part of the application for
other “pages” of the blog.

Note: Another problem not mentioned here is the fact that the database is tied to MySQL. Though not covered here,
Symfony2 fully integrates Doctrine, a library dedicated to database abstraction and mapping.

Let’s get to work on solving these problems and more.

2.1.1 Isolating the Presentation

The code can immediately gain from separating the application “logic” from the code that prepares the HTML “pre-
sentation”:

<?php
// index.php
$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

$result = mysql_query('SELECT id, title FROM post', $link);

$posts = array();
while ($row = mysql_fetch_assoc($result)) {

$posts[] = $row;
}

mysql_close($link);

// include the HTML presentation code
require 'templates/list.php';

12 Chapter 2. Symfony2 versus Flat PHP

http://www.doctrine-project.org

Symfony Doc Documentation, Release stable

The HTML code is now stored in a separate file (templates/list.php), which is primarily an HTML file that
uses a template-like PHP syntax:

<!DOCTYPE html>
<html>

<head>
<title>List of Posts</title>

</head>
<body>

<h1>List of Posts</h1>

<?php foreach ($posts as $post): ?>

<a href="/read?id=<?php echo $post['id'] ?>">
<?php echo $post['title'] ?>

<?php endforeach; ?>

</body>

</html>

By convention, the file that contains all of the application logic - index.php - is known as a “controller”. The term
controller is a word you’ll hear a lot, regardless of the language or framework you use. It refers simply to the area of
your code that processes user input and prepares the response.

In this case, the controller prepares data from the database and then includes a template to present that data. With the
controller isolated, you could easily change just the template file if you needed to render the blog entries in some other
format (e.g. list.json.php for JSON format).

2.1.2 Isolating the Application (Domain) Logic

So far the application contains only one page. But what if a second page needed to use the same database connection,
or even the same array of blog posts? Refactor the code so that the core behavior and data-access functions of the
application are isolated in a new file called model.php:

<?php
// model.php
function open_database_connection()
{

$link = mysql_connect('localhost', 'myuser', 'mypassword');
mysql_select_db('blog_db', $link);

return $link;
}

function close_database_connection($link)
{

mysql_close($link);
}

function get_all_posts()
{

$link = open_database_connection();

$result = mysql_query('SELECT id, title FROM post', $link);

(continues on next page)

2.1. A simple Blog in flat PHP 13

Symfony Doc Documentation, Release stable

(continued from previous page)

$posts = array();
while ($row = mysql_fetch_assoc($result)) {

$posts[] = $row;
}
close_database_connection($link);

return $posts;
}

Tip: The filename model.php is used because the logic and data access of an application is traditionally known as
the “model” layer. In a well-organized application, the majority of the code representing your “business logic” should
live in the model (as opposed to living in a controller). And unlike in this example, only a portion (or none) of the
model is actually concerned with accessing a database.

The controller (index.php) is now very simple:

<?php
require_once 'model.php';

$posts = get_all_posts();

require 'templates/list.php';

Now, the sole task of the controller is to get data from the model layer of the application (the model) and to call a
template to render that data. This is a very simple example of the model-view-controller pattern.

2.1.3 Isolating the Layout

At this point, the application has been refactored into three distinct pieces offering various advantages and the oppor-
tunity to reuse almost everything on different pages.

The only part of the code that can’t be reused is the page layout. Fix that by creating a new layout.php file:

<!-- templates/layout.php -->
<!DOCTYPE html>
<html>

<head>
<title><?php echo $title ?></title>

</head>
<body>

<?php echo $content ?>
</body>

</html>

The template (templates/list.php) can now be simplified to “extend” the layout:

<?php $title = 'List of Posts' ?>

<?php ob_start() ?>
<h1>List of Posts</h1>

<?php foreach ($posts as $post): ?>

(continues on next page)

14 Chapter 2. Symfony2 versus Flat PHP

Symfony Doc Documentation, Release stable

(continued from previous page)

<a href="/read?id=<?php echo $post['id'] ?>">
<?php echo $post['title'] ?>

<?php endforeach; ?>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

You’ve now introduced a methodology that allows for the reuse of the layout. Unfortunately, to accomplish this,
you’re forced to use a few ugly PHP functions (ob_start(), ob_get_clean()) in the template. Symfony2 uses
a Templating component that allows this to be accomplished cleanly and easily. You’ll see it in action shortly.

2.2 Adding a Blog “show” Page

The blog “list” page has now been refactored so that the code is better-organized and reusable. To prove it, add a blog
“show” page, which displays an individual blog post identified by an id query parameter.

To begin, create a new function in the model.php file that retrieves an individual blog result based on a given id:

// model.php
function get_post_by_id($id)
{

$link = open_database_connection();

$id = intval($id);
$query = 'SELECT date, title, body FROM post WHERE id = '.$id;
$result = mysql_query($query);
$row = mysql_fetch_assoc($result);

close_database_connection($link);

return $row;
}

Next, create a new file called show.php - the controller for this new page:

<?php
require_once 'model.php';

$post = get_post_by_id($_GET['id']);

require 'templates/show.php';

Finally, create the new template file - templates/show.php - to render the individual blog post:

<?php $title = $post['title'] ?>

<?php ob_start() ?>
<h1><?php echo $post['title'] ?></h1>

<div class="date"><?php echo $post['date'] ?></div>
<div class="body">

(continues on next page)

2.2. Adding a Blog “show” Page 15

Symfony Doc Documentation, Release stable

(continued from previous page)

<?php echo $post['body'] ?>
</div>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

Creating the second page is now very easy and no code is duplicated. Still, this page introduces even more lingering
problems that a framework can solve for you. For example, a missing or invalid id query parameter will cause the
page to crash. It would be better if this caused a 404 page to be rendered, but this can’t really be done easily yet.
Worse, had you forgotten to clean the id parameter via the intval() function, your entire database would be at risk
for an SQL injection attack.

Another major problem is that each individual controller file must include the model.php file. What if each con-
troller file suddenly needed to include an additional file or perform some other global task (e.g. enforce security)? As
it stands now, that code would need to be added to every controller file. If you forget to include something in one file,
hopefully it doesn’t relate to security. . .

2.3 A “Front Controller” to the Rescue

The solution is to use a front controller: a single PHP file through which all requests are processed. With a front
controller, the URIs for the application change slightly, but start to become more flexible:

Without a front controller
/index.php => Blog post list page (index.php executed)
/show.php => Blog post show page (show.php executed)

With index.php as the front controller
/index.php => Blog post list page (index.php executed)
/index.php/show => Blog post show page (index.php executed)

Tip: The index.php portion of the URI can be removed if using Apache rewrite rules (or equivalent). In that case,
the resulting URI of the blog show page would be simply /show.

When using a front controller, a single PHP file (index.php in this case) renders every request. For the blog post
show page, /index.php/show will actually execute the index.php file, which is now responsible for routing
requests internally based on the full URI. As you’ll see, a front controller is a very powerful tool.

2.3.1 Creating the Front Controller

You’re about to take a big step with the application. With one file handling all requests, you can centralize things such
as security handling, configuration loading, and routing. In this application, index.php must now be smart enough
to render the blog post list page or the blog post show page based on the requested URI:

<?php
// index.php

// load and initialize any global libraries
require_once 'model.php';
require_once 'controllers.php';

(continues on next page)

16 Chapter 2. Symfony2 versus Flat PHP

Symfony Doc Documentation, Release stable

(continued from previous page)

// route the request internally
$uri = $_SERVER['REQUEST_URI'];
if ('/index.php' == $uri) {

list_action();
} elseif ('/index.php/show' == $uri && isset($_GET['id'])) {

show_action($_GET['id']);
} else {

header('Status: 404 Not Found');
echo '<html><body><h1>Page Not Found</h1></body></html>';

}

For organization, both controllers (formerly index.php and show.php) are now PHP functions and each has been
moved into a separate file, controllers.php:

function list_action()
{

$posts = get_all_posts();
require 'templates/list.php';

}

function show_action($id)
{

$post = get_post_by_id($id);
require 'templates/show.php';

}

As a front controller, index.php has taken on an entirely new role, one that includes loading the core libraries and
routing the application so that one of the two controllers (the list_action() and show_action() functions)
is called. In reality, the front controller is beginning to look and act a lot like Symfony2’s mechanism for handling and
routing requests.

Tip: Another advantage of a front controller is flexible URLs. Notice that the URL to the blog post show page
could be changed from /show to /read by changing code in only one location. Before, an entire file needed to be
renamed. In Symfony2, URLs are even more flexible.

By now, the application has evolved from a single PHP file into a structure that is organized and allows for code reuse.
You should be happier, but far from satisfied. For example, the “routing” system is fickle, and wouldn’t recognize
that the list page (/index.php) should be accessible also via / (if Apache rewrite rules were added). Also, instead
of developing the blog, a lot of time is being spent working on the “architecture” of the code (e.g. routing, calling
controllers, templates, etc.). More time will need to be spent to handle form submissions, input validation, logging
and security. Why should you have to reinvent solutions to all these routine problems?

2.3.2 Add a Touch of Symfony2

Symfony2 to the rescue. Before actually using Symfony2, you need to download it. This can be done by using
Composer, which takes care of downloading the correct version and all its dependencies and provides an autoloader.
An autoloader is a tool that makes it possible to start using PHP classes without explicitly including the file containing
the class.

In your root directory, create a composer.json file with the following content:

{
"require": {

(continues on next page)

2.3. A “Front Controller” to the Rescue 17

Symfony Doc Documentation, Release stable

(continued from previous page)

"symfony/symfony": "2.3.*"
},
"autoload": {

"files": ["model.php","controllers.php"]
}

}

Next, download Composer and then run the following command, which will download Symfony into a vendor/ direc-
tory:

$ php composer.phar install

Beside downloading your dependencies, Composer generates a vendor/autoload.php file, which takes care of
autoloading for all the files in the Symfony Framework as well as the files mentioned in the autoload section of your
composer.json.

Core to Symfony’s philosophy is the idea that an application’s main job is to interpret each request and return a
response. To this end, Symfony2 provides both a Symfony\Component\HttpFoundation\Request and a
Symfony\Component\HttpFoundation\Response class. These classes are object-oriented representations
of the raw HTTP request being processed and the HTTP response being returned. Use them to improve the blog:

<?php
// index.php
require_once 'vendor/autoload.php';

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request::createFromGlobals();

$uri = $request->getPathInfo();
if ('/' == $uri) {

$response = list_action();
} elseif ('/show' == $uri && $request->query->has('id')) {

$response = show_action($request->query->get('id'));
} else {

$html = '<html><body><h1>Page Not Found</h1></body></html>';
$response = new Response($html, 404);

}

// echo the headers and send the response
$response->send();

The controllers are now responsible for returning a Response object. To make this easier, you can add a new
render_template() function, which, incidentally, acts quite a bit like the Symfony2 templating engine:

// controllers.php
use Symfony\Component\HttpFoundation\Response;

function list_action()
{

$posts = get_all_posts();
$html = render_template('templates/list.php', array('posts' => $posts));

return new Response($html);
}

(continues on next page)

18 Chapter 2. Symfony2 versus Flat PHP

http://getcomposer.org/download/

Symfony Doc Documentation, Release stable

(continued from previous page)

function show_action($id)
{

$post = get_post_by_id($id);
$html = render_template('templates/show.php', array('post' => $post));

return new Response($html);
}

// helper function to render templates
function render_template($path, array $args)
{

extract($args);
ob_start();
require $path;
$html = ob_get_clean();

return $html;
}

By bringing in a small part of Symfony2, the application is more flexible and reliable. The Request provides a
dependable way to access information about the HTTP request. Specifically, the getPathInfo() method returns
a cleaned URI (always returning /show and never /index.php/show). So, even if the user goes to /index.
php/show, the application is intelligent enough to route the request through show_action().

The Response object gives flexibility when constructing the HTTP response, allowing HTTP headers and content to
be added via an object-oriented interface. And while the responses in this application are simple, this flexibility will
pay dividends as your application grows.

2.3.3 The Sample Application in Symfony2

The blog has come a long way, but it still contains a lot of code for such a simple application. Along the way, you’ve
made a simple routing system and a method using ob_start() and ob_get_clean() to render templates. If,
for some reason, you needed to continue building this “framework” from scratch, you could at least use Symfony’s
standalone Routing and Templating components, which already solve these problems.

Instead of re-solving common problems, you can let Symfony2 take care of them for you. Here’s the same sample
application, now built in Symfony2:

// src/Acme/BlogBundle/Controller/BlogController.php
namespace Acme\BlogBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{

public function listAction()
{

$posts = $this->get('doctrine')->getManager()
->createQuery('SELECT p FROM AcmeBlogBundle:Post p')
->execute();

return $this->render(
'AcmeBlogBundle:Blog:list.html.php',
array('posts' => $posts)

(continues on next page)

2.3. A “Front Controller” to the Rescue 19

https://github.com/symfony/Routing
https://github.com/symfony/Templating

Symfony Doc Documentation, Release stable

(continued from previous page)

);
}

public function showAction($id)
{

$post = $this->get('doctrine')
->getManager()
->getRepository('AcmeBlogBundle:Post')
->find($id)

;

if (!$post) {
// cause the 404 page not found to be displayed
throw $this->createNotFoundException();

}

return $this->render(
'AcmeBlogBundle:Blog:show.html.php',
array('post' => $post)

);
}

}

The two controllers are still lightweight. Each uses the Doctrine ORM library to retrieve objects from the database
and the Templating component to render a template and return a Response object. The list template is now quite
a bit simpler:

<!-- src/Acme/BlogBundle/Resources/views/Blog/list.html.php -->
<?php $view->extend('::layout.html.php') ?>

<?php $view['slots']->set('title', 'List of Posts') ?>

<h1>List of Posts</h1>

<?php foreach ($posts as $post): ?>

<a href="<?php echo $view['router']->generate(
'blog_show',
array('id' => $post->getId())

) ?>">
<?php echo $post->getTitle() ?>

<?php endforeach; ?>

The layout is nearly identical:

<!-- app/Resources/views/layout.html.php -->
<!DOCTYPE html>
<html>

<head>
<title><?php echo $view['slots']->output(

'title',
'Default title'

) ?></title>
(continues on next page)

20 Chapter 2. Symfony2 versus Flat PHP

Symfony Doc Documentation, Release stable

(continued from previous page)

</head>
<body>

<?php echo $view['slots']->output('_content') ?>
</body>

</html>

Note: The show template is left as an exercise, as it should be trivial to create based on the list template.

When Symfony2’s engine (called the Kernel) boots up, it needs a map so that it knows which controllers to execute
based on the request information. A routing configuration map provides this information in a readable format:

app/config/routing.yml
blog_list:

path: /blog
defaults: { _controller: AcmeBlogBundle:Blog:list }

blog_show:
path: /blog/show/{id}
defaults: { _controller: AcmeBlogBundle:Blog:show }

Now that Symfony2 is handling all the mundane tasks, the front controller is dead simple. And since it does so little,
you’ll never have to touch it once it’s created (and if you use a Symfony2 distribution, you won’t even need to create
it!):

// web/app.php
require_once __DIR__.'/../app/bootstrap.php';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->handle(Request::createFromGlobals())->send();

The front controller’s only job is to initialize Symfony2’s engine (Kernel) and pass it a Request object to handle.
Symfony2’s core then uses the routing map to determine which controller to call. Just like before, the controller
method is responsible for returning the final Response object. There’s really not much else to it.

For a visual representation of how Symfony2 handles each request, see the request flow diagram.

2.3.4 Where Symfony2 Delivers

In the upcoming chapters, you’ll learn more about how each piece of Symfony works and the recommended organiza-
tion of a project. For now, let’s see how migrating the blog from flat PHP to Symfony2 has improved life:

• Your application now has clear and consistently organized code (though Symfony doesn’t force you into this).
This promotes reusability and allows for new developers to be productive in your project more quickly;

• 100% of the code you write is for your application. You don’t need to develop or maintain low-level utilities
such as autoloading, routing, or rendering controllers;

• Symfony2 gives you access to open source tools such as Doctrine and the Templating, Security, Form, Valida-
tion and Translation components (to name a few);

• The application now enjoys fully-flexible URLs thanks to the Routing component;

2.3. A “Front Controller” to the Rescue 21

Symfony Doc Documentation, Release stable

• Symfony2’s HTTP-centric architecture gives you access to powerful tools such as HTTP caching powered by
Symfony2’s internal HTTP cache or more powerful tools such as Varnish. This is covered in a later chapter
all about caching.

And perhaps best of all, by using Symfony2, you now have access to a whole set of high-quality open source
tools developed by the Symfony2 community! A good selection of Symfony2 community tools can be found on
KnpBundles.com.

2.4 Better templates

If you choose to use it, Symfony2 comes standard with a templating engine called Twig that makes templates faster to
write and easier to read. It means that the sample application could contain even less code! Take, for example, the list
template written in Twig:

{# src/Acme/BlogBundle/Resources/views/Blog/list.html.twig #}
{% extends "::layout.html.twig" %}

{% block title %}List of Posts{% endblock %}

{% block body %}
<h1>List of Posts</h1>

{% for post in posts %}

{{ post.title }}

{% endfor %}

{% endblock %}

The corresponding layout.html.twig template is also easier to write:

{# app/Resources/views/layout.html.twig #}
<!DOCTYPE html>
<html>

<head>
<title>{% block title %}Default title{% endblock %}</title>

</head>
<body>

{% block body %}{% endblock %}
</body>

</html>

Twig is well-supported in Symfony2. And while PHP templates will always be supported in Symfony2, the many
advantages of Twig will continue to be discussed. For more information, see the templating chapter.

2.5 Learn more from the Cookbook

• /cookbook/templating/PHP

• /cookbook/controller/service

22 Chapter 2. Symfony2 versus Flat PHP

https://www.varnish-cache.org/
http://knpbundles.com/
http://twig.sensiolabs.org

CHAPTER 3

Installing and Configuring Symfony

The goal of this chapter is to get you up and running with a working application built on top of Symfony. Fortunately,
Symfony offers “distributions”, which are functional Symfony “starter” projects that you can download and begin
developing in immediately.

Tip: If you’re looking for instructions on how best to create a new project and store it via source control, see Using
Source Control.

3.1 Installing a Symfony2 Distribution

Tip: First, check that you have installed and configured a Web server (such as Apache) with PHP 5.3.8 or higher. For
more information on Symfony2 requirements, see the requirements reference.

Symfony2 packages “distributions”, which are fully-functional applications that include the Symfony2 core libraries,
a selection of useful bundles, a sensible directory structure and some default configuration. When you download a
Symfony2 distribution, you’re downloading a functional application skeleton that can be used immediately to begin
developing your application.

Start by visiting the Symfony2 download page at http://symfony.com/download. On this page, you’ll see the Symfony
Standard Edition, which is the main Symfony2 distribution. There are 2 ways to get your project started:

3.1.1 Option 1) Composer

Composer is a dependency management library for PHP, which you can use to download the Symfony2 Standard
Edition.

Start by downloading Composer anywhere onto your local computer. If you have curl installed, it’s as easy as:

23

http://symfony.com/download
http://getcomposer.org/
http://getcomposer.org/download/

Symfony Doc Documentation, Release stable

curl -s https://getcomposer.org/installer | php

Note: If your computer is not ready to use Composer, you’ll see some recommendations when running this command.
Follow those recommendations to get Composer working properly.

Composer is an executable PHAR file, which you can use to download the Standard Distribution:

$ php composer.phar create-project symfony/framework-standard-edition /path/to/
→˓webroot/Symfony 2.3.0

Tip: For an exact version, replace “2.3.0” with the latest Symfony version. For details, see the Symfony Installation
Page

Tip: To download the vendor files faster, add the --prefer-dist option at the end of any Composer command.

This command may take several minutes to run as Composer downloads the Standard Distribution along with all of
the vendor libraries that it needs. When it finishes, you should have a directory that looks something like this:

path/to/webroot/ <- your web server directory (sometimes named htdocs or public)
Symfony/ <- the new directory

app/
cache/
config/
logs/

src/
...

vendor/
...

web/
app.php
...

3.1.2 Option 2) Download an Archive

You can also download an archive of the Standard Edition. Here, you’ll need to make two choices:

• Download either a .tgz or .zip archive - both are equivalent, download whatever you’re more comfortable
using;

• Download the distribution with or without vendors. If you’re planning on using more third-party libraries or
bundles and managing them via Composer, you should probably download “without vendors”.

Download one of the archives somewhere under your local web server’s root directory and unpack it. From a UNIX
command line, this can be done with one of the following commands (replacing ### with your actual filename):

for .tgz file
$ tar zxvf Symfony_Standard_Vendors_2.3.###.tgz

for a .zip file
$ unzip Symfony_Standard_Vendors_2.3.###.zip

24 Chapter 3. Installing and Configuring Symfony

http://symfony.com/download
http://symfony.com/download

Symfony Doc Documentation, Release stable

If you’ve downloaded “without vendors”, you’ll definitely need to read the next section.

Note: You can easily override the default directory structure. See /cookbook/configuration/override_dir_structure for
more information.

All public files and the front controller that handles incoming requests in a Symfony2 application live in the
Symfony/web/ directory. So, assuming you unpacked the archive into your web server’s or virtual host’s docu-
ment root, your application’s URLs will start with http://localhost/Symfony/web/.

Note: The following examples assume you don’t touch the document root settings so all URLs start with http://
localhost/Symfony/web/

3.1.3 Updating Vendors

At this point, you’ve downloaded a fully-functional Symfony project in which you’ll start to develop your own appli-
cation. A Symfony project depends on a number of external libraries. These are downloaded into the vendor/ directory
of your project via a library called Composer.

Depending on how you downloaded Symfony, you may or may not need to update your vendors right now. But,
updating your vendors is always safe, and guarantees that you have all the vendor libraries you need.

Step 1: Get Composer (The great new PHP packaging system)

curl -s http://getcomposer.org/installer | php

Make sure you download composer.phar in the same folder where the composer.json file is located (this is
your Symfony project root by default).

Step 2: Install vendors

$ php composer.phar install

This command downloads all of the necessary vendor libraries - including Symfony itself - into the vendor/ direc-
tory.

Note: If you don’t have curl installed, you can also just download the installer file manually at http:
//getcomposer.org/installer. Place this file into your project and then run:

php installer
php composer.phar install

Tip: When running php composer.phar install or php composer.phar update, composer will ex-
ecute post install/update commands to clear the cache and install assets. By default, the assets will be copied into your
web directory.

Instead of copying your Symfony assets, you can create symlinks if your operating system supports it. To create
symlinks, add an entry in the extra node of your composer.json file with the key symfony-assets-install
and the value symlink:

3.1. Installing a Symfony2 Distribution 25

http://getcomposer.org/
http://getcomposer.org/
http://getcomposer.org/installer
http://getcomposer.org/installer

Symfony Doc Documentation, Release stable

"extra": {
"symfony-app-dir": "app",
"symfony-web-dir": "web",
"symfony-assets-install": "symlink"

}

When passing relative instead of symlink to symfony-assets-install, the command will generate relative sym-
links.

3.1.4 Configuration and Setup

At this point, all of the needed third-party libraries now live in the vendor/ directory. You also have a default
application setup in app/ and some sample code inside the src/ directory.

Symfony2 comes with a visual server configuration tester to help make sure your Web server and PHP are configured
to use Symfony. Use the following URL to check your configuration:

http://localhost/config.php

If there are any issues, correct them now before moving on.

Setting up Permissions

One common issue is that the app/cache and app/logs directories must be writable both by the web server
and the command line user. On a UNIX system, if your web server user is different from your command line user,
you can run the following commands just once in your project to ensure that permissions will be setup properly.

1. Using ACL on a system that supports chmod +a

Many systems allow you to use the chmod +a command. Try this first, and if you get an error - try the next
method. This uses a command to try to determine your web server user and set is as APACHEUSER:

$ rm -rf app/cache/*
$ rm -rf app/logs/*

$ APACHEUSER=`ps aux | grep -E '[a]pache|[h]ttpd' | grep -v root | head -1
→˓| cut -d\ -f1`

$ sudo chmod +a "$APACHEUSER allow delete,write,append,file_inherit,
→˓directory_inherit" app/cache app/logs

$ sudo chmod +a "`whoami` allow delete,write,append,file_inherit,directory_
→˓inherit" app/cache app/logs

2. Using Acl on a system that does not support chmod +a

Some systems don’t support chmod +a, but do support another utility called setfacl. You may need to enable
ACL support on your partition and install setfacl before using it (as is the case with Ubuntu). This uses a command
to try to determine your web server user and set is as APACHEUSER:

$ APACHEUSER=`ps aux | grep -E '[a]pache|[h]ttpd' | grep -v root | head -1 | cut -
→˓d\ -f1`
$ sudo setfacl -R -m u:$APACHEUSER:rwX -m u:`whoami`:rwX app/cache app/logs
$ sudo setfacl -dR -m u:$APACHEUSER:rwX -m u:`whoami`:rwX app/cache app/logs

3. Without using ACL

26 Chapter 3. Installing and Configuring Symfony

https://help.ubuntu.com/community/FilePermissionsACLs
https://help.ubuntu.com/community/FilePermissionsACLs

Symfony Doc Documentation, Release stable

If you don’t have access to changing the ACL of the directories, you will need to change the umask so that the cache
and log directories will be group-writable or world-writable (depending if the web server user and the command line
user are in the same group or not). To achieve this, put the following line at the beginning of the app/console,
web/app.php and web/app_dev.php files:

umask(0002); // This will let the permissions be 0775

// or

umask(0000); // This will let the permissions be 0777

Note that using the ACL is recommended when you have access to them on your server because changing the umask
is not thread-safe.

When everything is fine, click on “Go to the Welcome page” to request your first “real” Symfony2 webpage:

http://localhost/app_dev.php/

Symfony2 should welcome and congratulate you for your hard work so far!

images/quick_tour/welcome.png

Tip: To get nice and short urls you should point the document root of your webserver or virtual host to the Symfony/
web/ directory. Though this is not required for development it is recommended at the time your application goes into
production as all system and configuration files become inaccessible to clients then. For information on configuring
your specific web server document root, read /cookbook/configuration/web_server_configuration or consult the official
documentation of your webserver: Apache | Nginx .

3.2 Beginning Development

Now that you have a fully-functional Symfony2 application, you can begin development! Your distribution may
contain some sample code - check the README.md file included with the distribution (open it as a text file) to learn
about what sample code was included with your distribution.

If you’re new to Symfony, check out “Creating Pages in Symfony2”, where you’ll learn how to create pages, change
configuration, and do everything else you’ll need in your new application.

Be sure to also check out the Cookbook, which contains a wide variety of articles about solving specific problems with
Symfony.

Note: If you want to remove the sample code from your distribution, take a look at this cookbook article: “/cook-
book/bundles/remove”

3.2. Beginning Development 27

http://httpd.apache.org/docs/current/mod/core.html#documentroot
http://wiki.nginx.org/Symfony

Symfony Doc Documentation, Release stable

3.3 Using Source Control

If you’re using a version control system like Git or Subversion, you can setup your version control system and
begin committing your project to it as normal. The Symfony Standard edition is the starting point for your new project.

For specific instructions on how best to setup your project to be stored in git, see /cookbook/workflow/new_project_git.

3.3.1 Ignoring the vendor/ Directory

If you’ve downloaded the archive without vendors, you can safely ignore the entire vendor/ directory and not commit
it to source control. With Git, this is done by creating and adding the following to a .gitignore file:

/vendor/

Now, the vendor directory won’t be committed to source control. This is fine (actually, it’s great!) because when
someone else clones or checks out the project, he/she can simply run the php composer.phar install script
to install all the necessary project dependencies.

28 Chapter 3. Installing and Configuring Symfony

CHAPTER 4

Creating Pages in Symfony2

Creating a new page in Symfony2 is a simple two-step process:

• Create a route: A route defines the URL (e.g. /about) to your page and specifies a controller (which is a PHP
function) that Symfony2 should execute when the URL of an incoming request matches the route path;

• Create a controller: A controller is a PHP function that takes the incoming request and transforms it into the
Symfony2 Response object that’s returned to the user.

This simple approach is beautiful because it matches the way that the Web works. Every interaction on the Web is
initiated by an HTTP request. The job of your application is simply to interpret the request and return the appropriate
HTTP response.

Symfony2 follows this philosophy and provides you with tools and conventions to keep your application organized as
it grows in users and complexity.

4.1 Environments & Front Controllers

Every Symfony application runs within an environment. An environment is a specific set of configuration and loaded
bundles, represented by a string. The same application can be run with different configurations by running the appli-
cation in different environments. Symfony2 comes with three environments defined — dev, test and prod — but
you can create your own as well.

Environments are useful by allowing a single application to have a dev environment built for debugging and a pro-
duction environment optimized for speed. You might also load specific bundles based on the selected environment.
For example, Symfony2 comes with the WebProfilerBundle (described below), enabled only in the dev and test
environments.

Symfony2 comes with two web-accessible front controllers: app_dev.php provides the dev environment, and
app.php provides the prod environment. All web accesses to Symfony2 normally go through one of these front
controllers. (The test environment is normally only used when running unit tests, and so doesn’t have a dedicated
front controller. The console tool also provides a front controller that can be used with any environment.)

When the front controller initializes the kernel, it provides two parameters: the environment, and also whether the
kernel should run in debug mode. To make your application respond faster, Symfony2 maintains a cache under the

29

Symfony Doc Documentation, Release stable

app/cache/ directory. When in debug mode is enabled (such as app_dev.php does by default), this cache
is flushed automatically whenever you make changes to any code or configuration. When running in debug mode,
Symfony2 runs slower, but your changes are reflected without having to manually clear the cache.

4.1.1 The “Hello Symfony!” Page

Start by building a spin-off of the classic “Hello World!” application. When you’re finished, the user will be able to
get a personal greeting (e.g. “Hello Symfony”) by going to the following URL:

http://localhost/app_dev.php/hello/Symfony

Actually, you’ll be able to replace Symfony with any other name to be greeted. To create the page, follow the simple
two-step process.

Note: The tutorial assumes that you’ve already downloaded Symfony2 and configured your webserver. The above
URL assumes that localhost points to the web directory of your new Symfony2 project. For detailed information
on this process, see the documentation on the web server you are using. Here’s the relevant documentation page for
some web server you might be using:

• For Apache HTTP Server, refer to Apache’s DirectoryIndex documentation

• For Nginx, refer to Nginx HttpCoreModule location documentation

4.2 Before you begin: Create the Bundle

Before you begin, you’ll need to create a bundle. In Symfony2, a bundle is like a plugin, except that all of the code in
your application will live inside a bundle.

A bundle is nothing more than a directory that houses everything related to a specific feature, including PHP classes,
configuration, and even stylesheets and Javascript files (see The Bundle System).

To create a bundle called AcmeHelloBundle (a play bundle that you’ll build in this chapter), run the following
command and follow the on-screen instructions (use all of the default options):

$ php app/console generate:bundle --namespace=Acme/HelloBundle --format=yml

Behind the scenes, a directory is created for the bundle at src/Acme/HelloBundle. A line is also automatically
added to the app/AppKernel.php file so that the bundle is registered with the kernel:

// app/AppKernel.php
public function registerBundles()
{

$bundles = array(
...,
new Acme\HelloBundle\AcmeHelloBundle(),

);
// ...

return $bundles;
}

Now that you have a bundle setup, you can begin building your application inside the bundle.

30 Chapter 4. Creating Pages in Symfony2

http://httpd.apache.org/docs/2.0/mod/mod_dir.html
http://wiki.nginx.org/HttpCoreModule#location

Symfony Doc Documentation, Release stable

4.3 Step 1: Create the Route

By default, the routing configuration file in a Symfony2 application is located at app/config/routing.yml.
Like all configuration in Symfony2, you can also choose to use XML or PHP out of the box to configure routes.

If you look at the main routing file, you’ll see that Symfony already added an entry when you generated the
AcmeHelloBundle:

This entry is pretty basic: it tells Symfony to load routing configuration from the Resources/config/routing.
yml file that lives inside the AcmeHelloBundle. This means that you place routing configuration directly in app/
config/routing.yml or organize your routes throughout your application, and import them from here.

Now that the routing.yml file from the bundle is being imported, add the new route that defines the URL of the
page that you’re about to create:

The routing consists of two basic pieces: the path, which is the URL that this route will match, and a defaults
array, which specifies the controller that should be executed. The placeholder syntax in the path ({name}) is a
wildcard. It means that /hello/Ryan, /hello/Fabien or any other similar URL will match this route. The
{name} placeholder parameter will also be passed to the controller so that you can use its value to personally greet
the user.

Note: The routing system has many more great features for creating flexible and powerful URL structures in your
application. For more details, see the chapter all about Routing.

4.4 Step 2: Create the Controller

When a URL such as /hello/Ryan is handled by the application, the hello route is matched and the
AcmeHelloBundle:Hello:index controller is executed by the framework. The second step of the page-creation
process is to create that controller.

The controller - AcmeHelloBundle:Hello:index is the logical name of the controller, and it maps to the
indexAction method of a PHP class called Acme\HelloBundle\Controller\HelloController. Start
by creating this file inside your AcmeHelloBundle:

// src/Acme/HelloBundle/Controller/HelloController.php
namespace Acme\HelloBundle\Controller;

class HelloController
{
}

In reality, the controller is nothing more than a PHP method that you create and Symfony executes. This is where your
code uses information from the request to build and prepare the resource being requested. Except in some advanced
cases, the end product of a controller is always the same: a Symfony2 Response object.

Create the indexAction method that Symfony will execute when the hello route is matched:

// src/Acme/HelloBundle/Controller/HelloController.php
namespace Acme\HelloBundle\Controller;

use Symfony\Component\HttpFoundation\Response;

class HelloController
{

(continues on next page)

4.3. Step 1: Create the Route 31

Symfony Doc Documentation, Release stable

(continued from previous page)

public function indexAction($name)
{

return new Response('<html><body>Hello '.$name.'!</body></html>');
}

}

The controller is simple: it creates a new Response object, whose first argument is the content that should be used
in the response (a small HTML page in this example).

Congratulations! After creating only a route and a controller, you already have a fully-functional page! If you’ve setup
everything correctly, your application should greet you:

http://localhost/app_dev.php/hello/Ryan

Tip: You can also view your app in the “prod” environment by visiting:

http://localhost/app.php/hello/Ryan

If you get an error, it’s likely because you need to clear your cache by running:

$ php app/console cache:clear --env=prod --no-debug

An optional, but common, third step in the process is to create a template.

Note: Controllers are the main entry point for your code and a key ingredient when creating pages. Much more
information can be found in the Controller Chapter.

4.5 Optional Step 3: Create the Template

Templates allow you to move all of the presentation (e.g. HTML code) into a separate file and reuse different portions
of the page layout. Instead of writing the HTML inside the controller, render a template instead:

1 // src/Acme/HelloBundle/Controller/HelloController.php
2 namespace Acme\HelloBundle\Controller;
3

4 use Symfony\Bundle\FrameworkBundle\Controller\Controller;
5

6 class HelloController extends Controller
7 {
8 public function indexAction($name)
9 {

10 return $this->render(
11 'AcmeHelloBundle:Hello:index.html.twig',
12 array('name' => $name)
13);
14

15 // render a PHP template instead
16 // return $this->render(
17 // 'AcmeHelloBundle:Hello:index.html.php',
18 // array('name' => $name)

(continues on next page)

32 Chapter 4. Creating Pages in Symfony2

Symfony Doc Documentation, Release stable

(continued from previous page)

19 //);
20 }
21 }

Note: In order to use the :method:‘Symfony\\Bundle\\FrameworkBundle\\Controller\\Controller::render‘
method, your controller must extend the Symfony\Bundle\FrameworkBundle\Controller\Controller
class, which adds shortcuts for tasks that are common inside controllers. This is done in the above example by adding
the use statement on line 4 and then extending Controller on line 6.

The render() method creates a Response object filled with the content of the given, rendered template. Like any
other controller, you will ultimately return that Response object.

Notice that there are two different examples for rendering the template. By default, Symfony2 supports two different
templating languages: classic PHP templates and the succinct but powerful Twig templates. Don’t be alarmed - you’re
free to choose either or even both in the same project.

The controller renders the AcmeHelloBundle:Hello:index.html.twig template, which uses the following
naming convention:

BundleName:ControllerName:TemplateName

This is the logical name of the template, which is mapped to a physical location using the following convention.

/path/to/BundleName/Resources/views/ControllerName/TemplateName

In this case, AcmeHelloBundle is the bundle name, Hello is the controller, and index.html.twig the tem-
plate:

Step through the Twig template line-by-line:

• line 2: The extends token defines a parent template. The template explicitly defines a layout file inside of
which it will be placed.

• line 4: The block token says that everything inside should be placed inside a block called body. As you’ll see,
it’s the responsibility of the parent template (base.html.twig) to ultimately render the block called body.

The parent template, ::base.html.twig, is missing both the BundleName and ControllerName portions of its
name (hence the double colon (::) at the beginning). This means that the template lives outside of the bundles and in
the app directory:

The base template file defines the HTML layout and renders the body block that you defined in the index.html.
twig template. It also renders a title block, which you could choose to define in the index.html.twig
template. Since you did not define the title block in the child template, it defaults to “Welcome!”.

Templates are a powerful way to render and organize the content for your page. A template can render anything, from
HTML markup, to CSS code, or anything else that the controller may need to return.

In the lifecycle of handling a request, the templating engine is simply an optional tool. Recall that the goal of each
controller is to return a Response object. Templates are a powerful, but optional, tool for creating the content for
that Response object.

4.5.1 The Directory Structure

After just a few short sections, you already understand the philosophy behind creating and rendering pages in Sym-
fony2. You’ve also already begun to see how Symfony2 projects are structured and organized. By the end of this
section, you’ll know where to find and put different types of files and why.

4.5. Optional Step 3: Create the Template 33

http://twig.sensiolabs.org

Symfony Doc Documentation, Release stable

Though entirely flexible, by default, each Symfony application has the same basic and recommended directory struc-
ture:

• app/: This directory contains the application configuration;

• src/: All the project PHP code is stored under this directory;

• vendor/: Any vendor libraries are placed here by convention;

• web/: This is the web root directory and contains any publicly accessible files;

4.6 The Web Directory

The web root directory is the home of all public and static files including images, stylesheets, and JavaScript files. It
is also where each front controller lives:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
$kernel->handle(Request::createFromGlobals())->send();

The front controller file (app.php in this example) is the actual PHP file that’s executed when using a Symfony2
application and its job is to use a Kernel class, AppKernel, to bootstrap the application.

Tip: Having a front controller means different and more flexible URLs than are used in a typical flat PHP application.
When using a front controller, URLs are formatted in the following way:

http://localhost/app.php/hello/Ryan

The front controller, app.php, is executed and the “internal:” URL /hello/Ryan is routed internally using the
routing configuration. By using Apache mod_rewrite rules, you can force the app.php file to be executed without
needing to specify it in the URL:

http://localhost/hello/Ryan

Though front controllers are essential in handling every request, you’ll rarely need to modify or even think about them.
They’ll be mentioned again briefly in the Environments section.

4.7 The Application (app) Directory

As you saw in the front controller, the AppKernel class is the main entry point of the application and is responsible
for all configuration. As such, it is stored in the app/ directory.

This class must implement two methods that define everything that Symfony needs to know about your application.
You don’t even need to worry about these methods when starting - Symfony fills them in for you with sensible defaults.

• registerBundles(): Returns an array of all bundles needed to run the application (see The Bundle System);

34 Chapter 4. Creating Pages in Symfony2

Symfony Doc Documentation, Release stable

• registerContainerConfiguration(): Loads the main application configuration resource file (see the
Application Configuration section).

In day-to-day development, you’ll mostly use the app/ directory to modify configuration and routing files in the app/
config/ directory (see Application Configuration). It also contains the application cache directory (app/cache), a
log directory (app/logs) and a directory for application-level resource files, such as templates (app/Resources).
You’ll learn more about each of these directories in later chapters.

Autoloading

When Symfony is loading, a special file - vendor/autoload.php - is included. This file is created by Com-
poser and will autoload all application files living in the src/ folder as well as all third-party libraries mentioned in
the composer.json file.

Because of the autoloader, you never need to worry about using include or require statements. Instead,
Composer uses the namespace of a class to determine its location and automatically includes the file on your behalf
the instant you need a class.

The autoloader is already configured to look in the src/ directory for any of your PHP classes. For autoloading to
work, the class name and path to the file have to follow the same pattern:

Class Name:
Acme\HelloBundle\Controller\HelloController

Path:
src/Acme/HelloBundle/Controller/HelloController.php

4.8 The Source (src) Directory

Put simply, the src/ directory contains all of the actual code (PHP code, templates, configuration files, stylesheets,
etc) that drives your application. When developing, the vast majority of your work will be done inside one or more
bundles that you create in this directory.

But what exactly is a bundle?

4.8.1 The Bundle System

A bundle is similar to a plugin in other software, but even better. The key difference is that everything is a bundle in
Symfony2, including both the core framework functionality and the code written for your application. Bundles are
first-class citizens in Symfony2. This gives you the flexibility to use pre-built features packaged in third-party bundles
or to distribute your own bundles. It makes it easy to pick and choose which features to enable in your application and
to optimize them the way you want.

Note: While you’ll learn the basics here, an entire cookbook entry is devoted to the organization and best practices
of bundles.

A bundle is simply a structured set of files within a directory that implement a single feature. You might create
a BlogBundle, a ForumBundle or a bundle for user management (many of these exist already as open source
bundles). Each directory contains everything related to that feature, including PHP files, templates, stylesheets,
JavaScripts, tests and anything else. Every aspect of a feature exists in a bundle and every feature lives in a bun-
dle.

An application is made up of bundles as defined in the registerBundles() method of the AppKernel class:

4.8. The Source (src) Directory 35

http://knpbundles.com

Symfony Doc Documentation, Release stable

// app/AppKernel.php
public function registerBundles()
{

$bundles = array(
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\SecurityBundle\SecurityBundle(),
new Symfony\Bundle\TwigBundle\TwigBundle(),
new Symfony\Bundle\MonologBundle\MonologBundle(),
new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),
new Symfony\Bundle\DoctrineBundle\DoctrineBundle(),
new Symfony\Bundle\AsseticBundle\AsseticBundle(),
new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),

);

if (in_array($this->getEnvironment(), array('dev', 'test'))) {
$bundles[] = new Acme\DemoBundle\AcmeDemoBundle();
$bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle();
$bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle();
$bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle();

}

return $bundles;
}

With the registerBundles() method, you have total control over which bundles are used by your application
(including the core Symfony bundles).

Tip: A bundle can live anywhere as long as it can be autoloaded (via the autoloader configured at app/autoload.
php).

4.9 Creating a Bundle

The Symfony Standard Edition comes with a handy task that creates a fully-functional bundle for you. Of course,
creating a bundle by hand is pretty easy as well.

To show you how simple the bundle system is, create a new bundle called AcmeTestBundle and enable it.

Tip: The Acme portion is just a dummy name that should be replaced by some “vendor” name that represents you or
your organization (e.g. ABCTestBundle for some company named ABC).

Start by creating a src/Acme/TestBundle/ directory and adding a new file called AcmeTestBundle.php:

// src/Acme/TestBundle/AcmeTestBundle.php
namespace Acme\TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeTestBundle extends Bundle
{
}

Tip: The name AcmeTestBundle follows the standard Bundle naming conventions. You could also choose to

36 Chapter 4. Creating Pages in Symfony2

Symfony Doc Documentation, Release stable

shorten the name of the bundle to simply TestBundle by naming this class TestBundle (and naming the file
TestBundle.php).

This empty class is the only piece you need to create the new bundle. Though commonly empty, this class is powerful
and can be used to customize the behavior of the bundle.

Now that you’ve created the bundle, enable it via the AppKernel class:

// app/AppKernel.php
public function registerBundles()
{

$bundles = array(
...,
// register your bundles
new Acme\TestBundle\AcmeTestBundle(),

);
// ...

return $bundles;
}

And while it doesn’t do anything yet, AcmeTestBundle is now ready to be used.

And as easy as this is, Symfony also provides a command-line interface for generating a basic bundle skeleton:

$ php app/console generate:bundle --namespace=Acme/TestBundle

The bundle skeleton generates with a basic controller, template and routing resource that can be customized. You’ll
learn more about Symfony2’s command-line tools later.

Tip: Whenever creating a new bundle or using a third-party bundle, always make sure the bundle has been enabled
in registerBundles(). When using the generate:bundle command, this is done for you.

4.10 Bundle Directory Structure

The directory structure of a bundle is simple and flexible. By default, the bundle system follows a set of conventions
that help to keep code consistent between all Symfony2 bundles. Take a look at AcmeHelloBundle, as it contains
some of the most common elements of a bundle:

• Controller/ contains the controllers of the bundle (e.g. HelloController.php);

• DependencyInjection/ holds certain dependency injection extension classes, which may import service
configuration, register compiler passes or more (this directory is not necessary);

• Resources/config/ houses configuration, including routing configuration (e.g. routing.yml);

• Resources/views/ holds templates organized by controller name (e.g. Hello/index.html.twig);

• Resources/public/ contains web assets (images, stylesheets, etc) and is copied or symbolically linked
into the project web/ directory via the assets:install console command;

• Tests/ holds all tests for the bundle.

A bundle can be as small or large as the feature it implements. It contains only the files you need and nothing else.

4.10. Bundle Directory Structure 37

Symfony Doc Documentation, Release stable

As you move through the book, you’ll learn how to persist objects to a database, create and validate forms, create
translations for your application, write tests and much more. Each of these has their own place and role within the
bundle.

4.10.1 Application Configuration

An application consists of a collection of bundles representing all of the features and capabilities of your application.
Each bundle can be customized via configuration files written in YAML, XML or PHP. By default, the main configu-
ration file lives in the app/config/ directory and is called either config.yml, config.xml or config.php
depending on which format you prefer:

Note: You’ll learn exactly how to load each file/format in the next section Environments.

Each top-level entry like framework or twig defines the configuration for a particular bundle. For example, the
framework key defines the configuration for the core Symfony FrameworkBundle and includes configuration
for the routing, templating, and other core systems.

For now, don’t worry about the specific configuration options in each section. The configuration file ships with sensible
defaults. As you read more and explore each part of Symfony2, you’ll learn about the specific configuration options
of each feature.

Configuration Formats

Throughout the chapters, all configuration examples will be shown in all three formats (YAML, XML and PHP).
Each has its own advantages and disadvantages. The choice of which to use is up to you:

• YAML: Simple, clean and readable (learn more about yaml in “/components/yaml/yaml_format”);

• XML: More powerful than YAML at times and supports IDE autocompletion;

• PHP: Very powerful but less readable than standard configuration formats.

4.11 Default Configuration Dump

You can dump the default configuration for a bundle in yaml to the console using the config:dump-reference
command. Here is an example of dumping the default FrameworkBundle configuration:

app/console config:dump-reference FrameworkBundle

The extension alias (configuration key) can also be used:

app/console config:dump-reference framework

Note: See the cookbook article: How to expose a Semantic Configuration for a Bundle for information on adding
configuration for your own bundle.

38 Chapter 4. Creating Pages in Symfony2

Symfony Doc Documentation, Release stable

4.11.1 Environments

An application can run in various environments. The different environments share the same PHP code (apart from
the front controller), but use different configuration. For instance, a dev environment will log warnings and errors,
while a prod environment will only log errors. Some files are rebuilt on each request in the dev environment (for the
developer’s convenience), but cached in the prod environment. All environments live together on the same machine
and execute the same application.

A Symfony2 project generally begins with three environments (dev, test and prod), though creating new environ-
ments is easy. You can view your application in different environments simply by changing the front controller in your
browser. To see the application in the dev environment, access the application via the development front controller:

http://localhost/app_dev.php/hello/Ryan

If you’d like to see how your application will behave in the production environment, call the prod front controller
instead:

http://localhost/app.php/hello/Ryan

Since the prod environment is optimized for speed; the configuration, routing and Twig templates are compiled into
flat PHP classes and cached. When viewing changes in the prod environment, you’ll need to clear these cached files
and allow them to rebuild:

$ php app/console cache:clear --env=prod --no-debug

Note: If you open the web/app.php file, you’ll find that it’s configured explicitly to use the prod environment:

$kernel = new AppKernel('prod', false);

You can create a new front controller for a new environment by copying this file and changing prod to some other
value.

Note: The test environment is used when running automated tests and cannot be accessed directly through the
browser. See the testing chapter for more details.

4.12 Environment Configuration

The AppKernel class is responsible for actually loading the configuration file of your choice:

// app/AppKernel.php
public function registerContainerConfiguration(LoaderInterface $loader)
{

$loader->load(
__DIR__.'/config/config_'.$this->getEnvironment().'.yml'

);
}

You already know that the .yml extension can be changed to .xml or .php if you prefer to use either XML or
PHP to write your configuration. Notice also that each environment loads its own configuration file. Consider the
configuration file for the dev environment.

4.12. Environment Configuration 39

Symfony Doc Documentation, Release stable

The imports key is similar to a PHP include statement and guarantees that the main configuration file (config.
yml) is loaded first. The rest of the file tweaks the default configuration for increased logging and other settings
conducive to a development environment.

Both the prod and test environments follow the same model: each environment imports the base configuration file
and then modifies its configuration values to fit the needs of the specific environment. This is just a convention, but
one that allows you to reuse most of your configuration and customize just pieces of it between environments.

4.12.1 Summary

Congratulations! You’ve now seen every fundamental aspect of Symfony2 and have hopefully discovered how easy
and flexible it can be. And while there are a lot of features still to come, be sure to keep the following basic points in
mind:

• Creating a page is a three-step process involving a route, a controller and (optionally) a template;

• Each project contains just a few main directories: web/ (web assets and the front controllers), app/ (config-
uration), src/ (your bundles), and vendor/ (third-party code) (there’s also a bin/ directory that’s used to
help updated vendor libraries);

• Each feature in Symfony2 (including the Symfony2 framework core) is organized into a bundle, which is a
structured set of files for that feature;

• The configuration for each bundle lives in the Resources/config directory of the bundle and can be
specified in YAML, XML or PHP;

• The global application configuration lives in the app/config directory;

• Each environment is accessible via a different front controller (e.g. app.php and app_dev.php) and loads
a different configuration file.

From here, each chapter will introduce you to more and more powerful tools and advanced concepts. The more you
know about Symfony2, the more you’ll appreciate the flexibility of its architecture and the power it gives you to rapidly
develop applications.

40 Chapter 4. Creating Pages in Symfony2

CHAPTER 5

Controller

A controller is a PHP function you create that takes information from the HTTP request and constructs and returns
an HTTP response (as a Symfony2 Response object). The response could be an HTML page, an XML document,
a serialized JSON array, an image, a redirect, a 404 error or anything else you can dream up. The controller contains
whatever arbitrary logic your application needs to render the content of a page.

See how simple this is by looking at a Symfony2 controller in action. The following controller would render a page
that simply prints Hello world!:

use Symfony\Component\HttpFoundation\Response;

public function helloAction()
{

return new Response('Hello world!');
}

The goal of a controller is always the same: create and return a Response object. Along the way, it might read
information from the request, load a database resource, send an email, or set information on the user’s session. But in
all cases, the controller will eventually return the Response object that will be delivered back to the client.

There’s no magic and no other requirements to worry about! Here are a few common examples:

• Controller A prepares a Response object representing the content for the homepage of the site.

• Controller B reads the slug parameter from the request to load a blog entry from the database and create a
Response object displaying that blog. If the slug can’t be found in the database, it creates and returns a
Response object with a 404 status code.

• Controller C handles the form submission of a contact form. It reads the form information from the request,
saves the contact information to the database and emails the contact information to the webmaster. Finally, it
creates a Response object that redirects the client’s browser to the contact form “thank you” page.

41

Symfony Doc Documentation, Release stable

5.1 Requests, Controller, Response Lifecycle

Every request handled by a Symfony2 project goes through the same simple lifecycle. The framework takes care of
the repetitive tasks and ultimately executes a controller, which houses your custom application code:

1. Each request is handled by a single front controller file (e.g. app.php or app_dev.php) that bootstraps the
application;

2. The Router reads information from the request (e.g. the URI), finds a route that matches that information, and
reads the _controller parameter from the route;

3. The controller from the matched route is executed and the code inside the controller creates and returns a
Response object;

4. The HTTP headers and content of the Response object are sent back to the client.

Creating a page is as easy as creating a controller (#3) and making a route that maps a URL to that controller (#2).

Note: Though similarly named, a “front controller” is different from the “controllers” talked about in this chapter.
A front controller is a short PHP file that lives in your web directory and through which all requests are directed. A
typical application will have a production front controller (e.g. app.php) and a development front controller (e.g.
app_dev.php). You’ll likely never need to edit, view or worry about the front controllers in your application.

5.2 A Simple Controller

While a controller can be any PHP callable (a function, method on an object, or a Closure), in Symfony2, a controller
is usually a single method inside a controller object. Controllers are also called actions.

1 // src/Acme/HelloBundle/Controller/HelloController.php
2 namespace Acme\HelloBundle\Controller;
3

4 use Symfony\Component\HttpFoundation\Response;
5

6 class HelloController
7 {
8 public function indexAction($name)
9 {

10 return new Response('<html><body>Hello '.$name.'!</body></html>');
11 }
12 }

Tip: Note that the controller is the indexAction method, which lives inside a controller class
(HelloController). Don’t be confused by the naming: a controller class is simply a convenient way to
group several controllers/actions together. Typically, the controller class will house several controllers/actions (e.g.
updateAction, deleteAction, etc).

This controller is pretty straightforward:

• line 4: Symfony2 takes advantage of PHP 5.3 namespace functionality to namespace the entire controller class.
The use keyword imports the Response class, which the controller must return.

42 Chapter 5. Controller

Symfony Doc Documentation, Release stable

• line 6: The class name is the concatenation of a name for the controller class (i.e. Hello) and the word
Controller. This is a convention that provides consistency to controllers and allows them to be referenced
only by the first part of the name (i.e. Hello) in the routing configuration.

• line 8: Each action in a controller class is suffixed with Action and is referenced in the routing configuration
by the action’s name (index). In the next section, you’ll create a route that maps a URI to this action. You’ll
learn how the route’s placeholders ({name}) become arguments to the action method ($name).

• line 10: The controller creates and returns a Response object.

5.3 Mapping a URL to a Controller

The new controller returns a simple HTML page. To actually view this page in your browser, you need to create a
route, which maps a specific URL path to the controller:

Going to /hello/ryan now executes the HelloController::indexAction() controller and passes in
ryan for the $name variable. Creating a “page” means simply creating a controller method and associated route.

Notice the syntax used to refer to the controller: AcmeHelloBundle:Hello:index. Symfony2 uses a flex-
ible string notation to refer to different controllers. This is the most common syntax and tells Symfony2 to look
for a controller class called HelloController inside a bundle named AcmeHelloBundle. The method
indexAction() is then executed.

For more details on the string format used to reference different controllers, see Controller Naming Pattern.

Note: This example places the routing configuration directly in the app/config/ directory. A better way to
organize your routes is to place each route in the bundle it belongs to. For more information on this, see Including
External Routing Resources.

Tip: You can learn much more about the routing system in the Routing chapter.

5.3.1 Route Parameters as Controller Arguments

You already know that the _controller parameter AcmeHelloBundle:Hello:index refers to a
HelloController::indexAction() method that lives inside the AcmeHelloBundle bundle. What’s more
interesting is the arguments that are passed to that method:

// src/Acme/HelloBundle/Controller/HelloController.php
namespace Acme\HelloBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class HelloController extends Controller
{

public function indexAction($name)
{

// ...
}

}

5.3. Mapping a URL to a Controller 43

Symfony Doc Documentation, Release stable

The controller has a single argument, $name, which corresponds to the {name} parameter from the matched route
(ryan in the example). In fact, when executing your controller, Symfony2 matches each argument of the controller
with a parameter from the matched route. Take the following example:

The controller for this can take several arguments:

public function indexAction($first_name, $last_name, $color)
{

// ...
}

Notice that both placeholder variables ({first_name}, {last_name}) as well as the default color variable
are available as arguments in the controller. When a route is matched, the placeholder variables are merged with the
defaults to make one array that’s available to your controller.

Mapping route parameters to controller arguments is easy and flexible. Keep the following guidelines in mind while
you develop.

• The order of the controller arguments does not matter

Symfony is able to match the parameter names from the route to the variable names in the controller
method’s signature. In other words, it realizes that the {last_name} parameter matches up with
the $last_name argument. The arguments of the controller could be totally reordered and still
work perfectly:

public function indexAction($last_name, $color, $first_name)
{

// ...
}

• Each required controller argument must match up with a routing parameter

The following would throw a RuntimeException because there is no foo parameter defined in
the route:

public function indexAction($first_name, $last_name, $color, $foo)
{

// ...
}

Making the argument optional, however, is perfectly ok. The following example would not throw an
exception:

public function indexAction($first_name, $last_name, $color, $foo = 'bar')
{

// ...
}

• Not all routing parameters need to be arguments on your controller

If, for example, the last_name weren’t important for your controller, you could omit it entirely:

public function indexAction($first_name, $color)
{

// ...
}

Tip: Every route also has a special _route parameter, which is equal to the name of the route that was matched

44 Chapter 5. Controller

Symfony Doc Documentation, Release stable

(e.g. hello). Though not usually useful, this is equally available as a controller argument.

5.3.2 The Request as a Controller Argument

For convenience, you can also have Symfony pass you the Request object as an argument to your controller. This is
especially convenient when you’re working with forms, for example:

use Symfony\Component\HttpFoundation\Request;

public function updateAction(Request $request)
{

$form = $this->createForm(...);

$form->handleRequest($request);
// ...

}

5.4 Creating Static Pages

You can create a static page without even creating a controller (only a route and template are needed).

Use it! See /cookbook/templating/render_without_controller.

5.5 The Base Controller Class

For convenience, Symfony2 comes with a base Controller class that assists with some of the most common
controller tasks and gives your controller class access to any resource it might need. By extending this Controller
class, you can take advantage of several helper methods.

Add the use statement atop the Controller class and then modify the HelloController to extend it:

// src/Acme/HelloBundle/Controller/HelloController.php
namespace Acme\HelloBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class HelloController extends Controller
{

public function indexAction($name)
{

return new Response('<html><body>Hello '.$name.'!</body></html>');
}

}

This doesn’t actually change anything about how your controller works. In the next section, you’ll learn about the
helper methods that the base controller class makes available. These methods are just shortcuts to using core Symfony2
functionality that’s available to you with or without the use of the base Controller class. A great way to see the core
functionality in action is to look in the Symfony\Bundle\FrameworkBundle\Controller\Controller
class itself.

5.4. Creating Static Pages 45

Symfony Doc Documentation, Release stable

Tip: Extending the base class is optional in Symfony; it contains useful shortcuts but nothing mandatory. You
can also extend Symfony\Component\DependencyInjection\ContainerAware. The service container
object will then be accessible via the container property.

Note: You can also define your Controllers as Services. This is optional, but can give you more control over the exact
dependencies that are injected into your controllers.

5.6 Common Controller Tasks

Though a controller can do virtually anything, most controllers will perform the same basic tasks over and over again.
These tasks, such as redirecting, forwarding, rendering templates and accessing core services, are very easy to manage
in Symfony2.

5.6.1 Redirecting

If you want to redirect the user to another page, use the redirect() method:

public function indexAction()
{

return $this->redirect($this->generateUrl('homepage'));
}

The generateUrl() method is just a helper function that generates the URL for a given route. For more informa-
tion, see the Routing chapter.

By default, the redirect() method performs a 302 (temporary) redirect. To perform a 301 (permanent) redirect,
modify the second argument:

public function indexAction()
{

return $this->redirect($this->generateUrl('homepage'), 301);
}

Tip: The redirect() method is simply a shortcut that creates a Response object that specializes in redirecting
the user. It’s equivalent to:

use Symfony\Component\HttpFoundation\RedirectResponse;

return new RedirectResponse($this->generateUrl('homepage'));

5.6.2 Forwarding

You can also easily forward to another controller internally with the forward() method. Instead of redirecting the
user’s browser, it makes an internal sub-request, and calls the specified controller. The forward() method returns
the Response object that’s returned from that controller:

46 Chapter 5. Controller

Symfony Doc Documentation, Release stable

public function indexAction($name)
{

$response = $this->forward('AcmeHelloBundle:Hello:fancy', array(
'name' => $name,
'color' => 'green',

));

// ... further modify the response or return it directly

return $response;
}

Notice that the forward() method uses the same string representation of the controller used in the routing configuration.
In this case, the target controller class will be HelloController inside some AcmeHelloBundle. The array
passed to the method becomes the arguments on the resulting controller. This same interface is used when embedding
controllers into templates (see Embedding Controllers). The target controller method should look something like the
following:

public function fancyAction($name, $color)
{

// ... create and return a Response object
}

And just like when creating a controller for a route, the order of the arguments to fancyAction doesn’t matter.
Symfony2 matches the index key names (e.g. name) with the method argument names (e.g. $name). If you change
the order of the arguments, Symfony2 will still pass the correct value to each variable.

Tip: Like other base Controller methods, the forward method is just a shortcut for core Symfony2 functional-
ity. A forward can be accomplished directly via the http_kernel service and returns a Response object:

$httpKernel = $this->container->get('http_kernel');
$response = $httpKernel->forward(

'AcmeHelloBundle:Hello:fancy',
array(

'name' => $name,
'color' => 'green',

)
);

5.6.3 Rendering Templates

Though not a requirement, most controllers will ultimately render a template that’s responsible for generating the
HTML (or other format) for the controller. The renderView() method renders a template and returns its content.
The content from the template can be used to create a Response object:

use Symfony\Component\HttpFoundation\Response;

$content = $this->renderView(
'AcmeHelloBundle:Hello:index.html.twig',
array('name' => $name)

);

return new Response($content);

5.6. Common Controller Tasks 47

Symfony Doc Documentation, Release stable

This can even be done in just one step with the render() method, which returns a Response object containing the
content from the template:

return $this->render(
'AcmeHelloBundle:Hello:index.html.twig',
array('name' => $name)

);

In both cases, the Resources/views/Hello/index.html.twig template inside the AcmeHelloBundle
will be rendered.

The Symfony templating engine is explained in great detail in the Templating chapter.

Tip: You can even avoid calling the render method by using the @Template annotation. See the FrameworkEx-
traBundle documentation more details.

Tip: The renderView method is a shortcut to direct use of the templating service. The templating service
can also be used directly:

$templating = $this->get('templating');
$content = $templating->render(

'AcmeHelloBundle:Hello:index.html.twig',
array('name' => $name)

);

Note: It is possible to render templates in deeper subdirectories as well, however be careful to avoid the pitfall of
making your directory structure unduly elaborate:

$templating->render(
'AcmeHelloBundle:Hello/Greetings:index.html.twig',
array('name' => $name)

);
// index.html.twig found in Resources/views/Hello/Greetings is rendered.

5.6.4 Accessing other Services

When extending the base controller class, you can access any Symfony2 service via the get() method. Here are
several common services you might need:

$request = $this->getRequest();

$templating = $this->get('templating');

$router = $this->get('router');

$mailer = $this->get('mailer');

There are countless other services available and you are encouraged to define your own. To list all available services,
use the container:debug console command:

48 Chapter 5. Controller

Symfony Doc Documentation, Release stable

$ php app/console container:debug

For more information, see the /book/service_container chapter.

5.7 Managing Errors and 404 Pages

When things are not found, you should play well with the HTTP protocol and return a 404 response. To do this, you’ll
throw a special type of exception. If you’re extending the base controller class, do the following:

public function indexAction()
{

// retrieve the object from database
$product = ...;
if (!$product) {

throw $this->createNotFoundException('The product does not exist');
}

return $this->render(...);
}

The createNotFoundException() method creates a special NotFoundHttpException object, which ul-
timately triggers a 404 HTTP response inside Symfony.

Of course, you’re free to throw any Exception class in your controller - Symfony2 will automatically return a 500
HTTP response code.

throw new \Exception('Something went wrong!');

In every case, a styled error page is shown to the end user and a full debug error page is shown to the developer
(when viewing the page in debug mode). Both of these error pages can be customized. For details, read the “/cook-
book/controller/error_pages” cookbook recipe.

5.8 Managing the Session

Symfony2 provides a nice session object that you can use to store information about the user (be it a real person using
a browser, a bot, or a web service) between requests. By default, Symfony2 stores the attributes in a cookie by using
the native PHP sessions.

Storing and retrieving information from the session can be easily achieved from any controller:

$session = $this->getRequest()->getSession();

// store an attribute for reuse during a later user request
$session->set('foo', 'bar');

// in another controller for another request
$foo = $session->get('foo');

// use a default value if the key doesn't exist
$filters = $session->get('filters', array());

These attributes will remain on the user for the remainder of that user’s session.

5.7. Managing Errors and 404 Pages 49

Symfony Doc Documentation, Release stable

5.8.1 Flash Messages

You can also store small messages that will be stored on the user’s session for exactly one additional request. This is
useful when processing a form: you want to redirect and have a special message shown on the next request. These
types of messages are called “flash” messages.

For example, imagine you’re processing a form submit:

public function updateAction()
{

$form = $this->createForm(...);

$form->handleRequest($this->getRequest());

if ($form->isValid()) {
// do some sort of processing

$this->get('session')->getFlashBag()->add(
'notice',
'Your changes were saved!'

);

return $this->redirect($this->generateUrl(...));
}

return $this->render(...);
}

After processing the request, the controller sets a notice flash message and then redirects. The name (notice)
isn’t significant - it’s just what you’re using to identify the type of the message.

In the template of the next action, the following code could be used to render the notice message:

By design, flash messages are meant to live for exactly one request (they’re “gone in a flash”). They’re designed to be
used across redirects exactly as you’ve done in this example.

5.9 The Response Object

The only requirement for a controller is to return a Response object. The
Symfony\Component\HttpFoundation\Response class is a PHP abstraction around the HTTP response -
the text-based message filled with HTTP headers and content that’s sent back to the client:

use Symfony\Component\HttpFoundation\Response;

// create a simple Response with a 200 status code (the default)
$response = new Response('Hello '.$name, 200);

// create a JSON-response with a 200 status code
$response = new Response(json_encode(array('name' => $name)));
$response->headers->set('Content-Type', 'application/json');

Tip: The headers property is a Symfony\Component\HttpFoundation\HeaderBag object with several
useful methods for reading and mutating the Response headers. The header names are normalized so that using
Content-Type is equivalent to content-type or even content_type.

50 Chapter 5. Controller

Symfony Doc Documentation, Release stable

Tip: There are also special classes to make certain kinds of responses easier:

• For JSON, there is Symfony\Component\HttpFoundation\JsonResponse. See component-http-
foundation-json-response.

• For files, there is Symfony\Component\HttpFoundation\BinaryFileResponse. See component-
http-foundation-serving-files.

5.10 The Request Object

Besides the values of the routing placeholders, the controller also has access to the Request object when extending
the base Controller class:

$request = $this->getRequest();

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array('en', 'fr'));

$request->query->get('page'); // get a $_GET parameter

$request->request->get('page'); // get a $_POST parameter

Like the Response object, the request headers are stored in a HeaderBag object and are easily accessible.

5.11 Final Thoughts

Whenever you create a page, you’ll ultimately need to write some code that contains the logic for that page. In
Symfony, this is called a controller, and it’s a PHP function that can do anything it needs in order to return the final
Response object that will be returned to the user.

To make life easier, you can choose to extend a base Controller class, which contains shortcut methods for many
common controller tasks. For example, since you don’t want to put HTML code in your controller, you can use the
render() method to render and return the content from a template.

In other chapters, you’ll see how the controller can be used to persist and fetch objects from a database, process form
submissions, handle caching and more.

5.12 Learn more from the Cookbook

• /cookbook/controller/error_pages

• /cookbook/controller/service

5.10. The Request Object 51

Symfony Doc Documentation, Release stable

52 Chapter 5. Controller

CHAPTER 6

Routing

Beautiful URLs are an absolute must for any serious web application. This means leaving behind ugly URLs like
index.php?article_id=57 in favor of something like /read/intro-to-symfony.

Having flexibility is even more important. What if you need to change the URL of a page from /blog to /news?
How many links should you need to hunt down and update to make the change? If you’re using Symfony’s router, the
change is simple.

The Symfony2 router lets you define creative URLs that you map to different areas of your application. By the end of
this chapter, you’ll be able to:

• Create complex routes that map to controllers

• Generate URLs inside templates and controllers

• Load routing resources from bundles (or anywhere else)

• Debug your routes

6.1 Routing in Action

A route is a map from a URL path to a controller. For example, suppose you want to match any URL like /blog/
my-post or /blog/all-about-symfony and send it to a controller that can look up and render that blog entry.
The route is simple:

New in version 2.2: The path option is new in Symfony2.2, pattern is used in older versions.

The path defined by the blog_show route acts like /blog/* where the wildcard is given the name slug. For the
URL /blog/my-blog-post, the slug variable gets a value of my-blog-post, which is available for you to
use in your controller (keep reading).

The _controller parameter is a special key that tells Symfony which controller should be executed when a URL
matches this route. The _controller string is called the logical name. It follows a pattern that points to a specific
PHP class and method:

53

Symfony Doc Documentation, Release stable

// src/Acme/BlogBundle/Controller/BlogController.php
namespace Acme\BlogBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{

public function showAction($slug)
{

// use the $slug variable to query the database
$blog = ...;

return $this->render('AcmeBlogBundle:Blog:show.html.twig', array(
'blog' => $blog,

));
}

}

Congratulations! You’ve just created your first route and connected it to a controller. Now, when you visit /blog/
my-post, the showAction controller will be executed and the $slug variable will be equal to my-post.

This is the goal of the Symfony2 router: to map the URL of a request to a controller. Along the way, you’ll learn all
sorts of tricks that make mapping even the most complex URLs easy.

6.2 Routing: Under the Hood

When a request is made to your application, it contains an address to the exact “resource” that the client is requesting.
This address is called the URL, (or URI), and could be /contact, /blog/read-me, or anything else. Take the
following HTTP request for example:

GET /blog/my-blog-post

The goal of the Symfony2 routing system is to parse this URL and determine which controller should be executed.
The whole process looks like this:

1. The request is handled by the Symfony2 front controller (e.g. app.php);

2. The Symfony2 core (i.e. Kernel) asks the router to inspect the request;

3. The router matches the incoming URL to a specific route and returns information about the route, including the
controller that should be executed;

4. The Symfony2 Kernel executes the controller, which ultimately returns a Response object.

images/request-flow.png

Fig. 1: The routing layer is a tool that translates the incoming URL into a specific controller to execute.

54 Chapter 6. Routing

Symfony Doc Documentation, Release stable

6.3 Creating Routes

Symfony loads all the routes for your application from a single routing configuration file. The file is usually app/
config/routing.yml, but can be configured to be anything (including an XML or PHP file) via the application
configuration file:

Tip: Even though all routes are loaded from a single file, it’s common practice to include additional routing resources.
To do so, just point out in the main routing configuration file which external files should be included. See the Including
External Routing Resources section for more information.

6.3.1 Basic Route Configuration

Defining a route is easy, and a typical application will have lots of routes. A basic route consists of just two parts: the
path to match and a defaults array:

This route matches the homepage (/) and maps it to the AcmeDemoBundle:Main:homepage controller. The
_controller string is translated by Symfony2 into an actual PHP function and executed. That process will be
explained shortly in the Controller Naming Pattern section.

6.3.2 Routing with Placeholders

Of course the routing system supports much more interesting routes. Many routes will contain one or more named
“wildcard” placeholders:

The path will match anything that looks like /blog/*. Even better, the value matching the {slug} placeholder will
be available inside your controller. In other words, if the URL is /blog/hello-world, a $slug variable, with
a value of hello-world, will be available in the controller. This can be used, for example, to load the blog post
matching that string.

The path will not, however, match simply /blog. That’s because, by default, all placeholders are required. This can
be changed by adding a placeholder value to the defaults array.

6.3.3 Required and Optional Placeholders

To make things more exciting, add a new route that displays a list of all the available blog posts for this imaginary blog
application:

So far, this route is as simple as possible - it contains no placeholders and will only match the exact URL /blog. But
what if you need this route to support pagination, where /blog/2 displays the second page of blog entries? Update
the route to have a new {page} placeholder:

Like the {slug} placeholder before, the value matching {page} will be available inside your controller. Its value
can be used to determine which set of blog posts to display for the given page.

But hold on! Since placeholders are required by default, this route will no longer match on simply /blog. Instead,
to see page 1 of the blog, you’d need to use the URL /blog/1! Since that’s no way for a rich web app to behave,
modify the route to make the {page} parameter optional. This is done by including it in the defaults collection:

By adding page to the defaults key, the {page} placeholder is no longer required. The URL /blog will match
this route and the value of the page parameter will be set to 1. The URL /blog/2 will also match, giving the page
parameter a value of 2. Perfect.

6.3. Creating Routes 55

Symfony Doc Documentation, Release stable

/blog {page} = 1
/blog/1 {page} = 1
/blog/2 {page} = 2

Tip: Routes with optional parameters at the end will not match on requests with a trailing slash (i.e. /blog/ will
not match, /blog will match).

6.3.4 Adding Requirements

Take a quick look at the routes that have been created so far:

Can you spot the problem? Notice that both routes have patterns that match URL’s that look like /blog/*. The
Symfony router will always choose the first matching route it finds. In other words, the blog_show route will never
be matched. Instead, a URL like /blog/my-blog-post will match the first route (blog) and return a nonsense
value of my-blog-post to the {page} parameter.

URL route parameters
/blog/2 blog {page} = 2
/blog/my-blog-post blog {page} = my-blog-post

The answer to the problem is to add route requirements. The routes in this example would work perfectly if the /
blog/{page} path only matched URLs where the {page} portion is an integer. Fortunately, regular expression
requirements can easily be added for each parameter. For example:

The \d+ requirement is a regular expression that says that the value of the {page} parameter must be a digit (i.e.
a number). The blog route will still match on a URL like /blog/2 (because 2 is a number), but it will no longer
match a URL like /blog/my-blog-post (because my-blog-post is not a number).

As a result, a URL like /blog/my-blog-post will now properly match the blog_show route.

URL route parameters
/blog/2 blog {page} = 2
/blog/my-blog-post blog_show {slug} = my-blog-post

Earlier Routes always Win

What this all means is that the order of the routes is very important. If the blog_show route were placed above
the blog route, the URL /blog/2 would match blog_show instead of blog since the {slug} parameter of
blog_show has no requirements. By using proper ordering and clever requirements, you can accomplish just
about anything.

Since the parameter requirements are regular expressions, the complexity and flexibility of each requirement is entirely
up to you. Suppose the homepage of your application is available in two different languages, based on the URL:

For incoming requests, the {culture} portion of the URL is matched against the regular expression (en|fr).

/ {culture} = en
/en {culture} = en
/fr {culture} = fr
/es won’t match this route

56 Chapter 6. Routing

Symfony Doc Documentation, Release stable

6.3.5 Adding HTTP Method Requirements

In addition to the URL, you can also match on the method of the incoming request (i.e. GET, HEAD, POST, PUT,
DELETE). Suppose you have a contact form with two controllers - one for displaying the form (on a GET request) and
one for processing the form when it’s submitted (on a POST request). This can be accomplished with the following
route configuration:

New in version 2.2: The methods option is added in Symfony2.2. Use the _method requirement in older versions.

Despite the fact that these two routes have identical paths (/contact), the first route will match only GET requests
and the second route will match only POST requests. This means that you can display the form and submit the form
via the same URL, while using distinct controllers for the two actions.

Note: If no methods are specified, the route will match on all methods.

6.3.6 Adding a Host

New in version 2.2: Host matching support was added in Symfony 2.2

You can also match on the HTTP host of the incoming request. For more information, see /compo-
nents/routing/hostname_pattern in the Routing component documentation.

6.3.7 Advanced Routing Example

At this point, you have everything you need to create a powerful routing structure in Symfony. The following is an
example of just how flexible the routing system can be:

As you’ve seen, this route will only match if the {culture} portion of the URL is either en or fr and if the
{year} is a number. This route also shows how you can use a dot between placeholders instead of a slash. URLs
matching this route might look like:

• /articles/en/2010/my-post

• /articles/fr/2010/my-post.rss

• /articles/en/2013/my-latest-post.html

The Special _format Routing Parameter

This example also highlights the special _format routing parameter. When using this parameter, the matched
value becomes the “request format” of the Request object. Ultimately, the request format is used for such things
such as setting the Content-Type of the response (e.g. a json request format translates into a Content-Type
of application/json). It can also be used in the controller to render a different template for each value of
_format. The _format parameter is a very powerful way to render the same content in different formats.

Note: Sometimes you want to make certain parts of your routes globally configurable. Symfony provides
you with a way to do this by leveraging service container parameters. Read more about this in “/cook-
book/routing/service_container_parameters.

6.3. Creating Routes 57

Symfony Doc Documentation, Release stable

6.3.8 Special Routing Parameters

As you’ve seen, each routing parameter or default value is eventually available as an argument in the controller method.
Additionally, there are three parameters that are special: each adds a unique piece of functionality inside your appli-
cation:

• _controller: As you’ve seen, this parameter is used to determine which controller is executed when the
route is matched;

• _format: Used to set the request format (read more);

• _locale: Used to set the locale on the request (read more);

Tip: If you use the _locale parameter in a route, that value will also be stored on the session so that subsequent
requests keep this same locale.

6.4 Controller Naming Pattern

Every route must have a _controller parameter, which dictates which controller should be executed when that
route is matched. This parameter uses a simple string pattern called the logical controller name, which Symfony maps
to a specific PHP method and class. The pattern has three parts, each separated by a colon:

bundle:controller:action

For example, a _controller value of AcmeBlogBundle:Blog:show means:

Bundle Controller Class Method Name
AcmeBlogBundle BlogController showAction

The controller might look like this:

// src/Acme/BlogBundle/Controller/BlogController.php
namespace Acme\BlogBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class BlogController extends Controller
{

public function showAction($slug)
{

// ...
}

}

Notice that Symfony adds the string Controller to the class name (Blog => BlogController) and Action
to the method name (show => showAction).

You could also refer to this controller using its fully-qualified class name and method:
Acme\BlogBundle\Controller\BlogController::showAction. But if you follow some simple
conventions, the logical name is more concise and allows more flexibility.

Note: In addition to using the logical name or the fully-qualified class name, Symfony supports a third way of
referring to a controller. This method uses just one colon separator (e.g. service_name:indexAction) and

58 Chapter 6. Routing

Symfony Doc Documentation, Release stable

refers to the controller as a service (see /cookbook/controller/service).

6.5 Route Parameters and Controller Arguments

The route parameters (e.g. {slug}) are especially important because each is made available as an argument to the
controller method:

public function showAction($slug)
{

// ...
}

In reality, the entire defaults collection is merged with the parameter values to form a single array. Each key of
that array is available as an argument on the controller.

In other words, for each argument of your controller method, Symfony looks for a route parameter of that name and
assigns its value to that argument. In the advanced example above, any combination (in any order) of the following
variables could be used as arguments to the showAction() method:

• $culture

• $year

• $title

• $_format

• $_controller

Since the placeholders and defaults collection are merged together, even the $_controller variable is avail-
able. For a more detailed discussion, see Route Parameters as Controller Arguments.

Tip: You can also use a special $_route variable, which is set to the name of the route that was matched.

6.6 Including External Routing Resources

All routes are loaded via a single configuration file - usually app/config/routing.yml (see Creating Routes
above). Commonly, however, you’ll want to load routes from other places, like a routing file that lives inside a bundle.
This can be done by “importing” that file:

Note: When importing resources from YAML, the key (e.g. acme_hello) is meaningless. Just be sure that it’s
unique so no other lines override it.

The resource key loads the given routing resource. In this example the resource is the full path to a file, where the
@AcmeHelloBundle shortcut syntax resolves to the path of that bundle. The imported file might look like this:

The routes from this file are parsed and loaded in the same way as the main routing file.

6.5. Route Parameters and Controller Arguments 59

Symfony Doc Documentation, Release stable

6.6.1 Prefixing Imported Routes

You can also choose to provide a “prefix” for the imported routes. For example, suppose you want the acme_hello
route to have a final path of /admin/hello/{name} instead of simply /hello/{name}:

The string /admin will now be prepended to the path of each route loaded from the new routing resource.

Tip: You can also define routes using annotations. See the FrameworkExtraBundle documentation to see how.

6.6.2 Adding a Host regex to Imported Routes

New in version 2.2: Host matching support was added in Symfony 2.2

You can set the host regex on imported routes. For more information, see component-routing-host-imported.

6.7 Visualizing & Debugging Routes

While adding and customizing routes, it’s helpful to be able to visualize and get detailed information about your
routes. A great way to see every route in your application is via the router:debug console command. Execute the
command by running the following from the root of your project.

$ php app/console router:debug

This command will print a helpful list of all the configured routes in your application:

homepage ANY /
contact GET /contact
contact_process POST /contact
article_show ANY /articles/{culture}/{year}/{title}.{_format}
blog ANY /blog/{page}
blog_show ANY /blog/{slug}

You can also get very specific information on a single route by including the route name after the command:

$ php app/console router:debug article_show

Likewise, if you want to test whether a URL matches a given route, you can use the router:match console com-
mand:

$ php app/console router:match /blog/my-latest-post

This command will print which route the URL matches.

Route "blog_show" matches

6.8 Generating URLs

The routing system should also be used to generate URLs. In reality, routing is a bi-
directional system: mapping the URL to a controller+parameters and a route+parameters
back to a URL. The :method:‘Symfony\\Component\\Routing\\Router::match‘ and

60 Chapter 6. Routing

Symfony Doc Documentation, Release stable

:method:‘Symfony\\Component\\Routing\\Router::generate‘ methods form this bi-directional system. Take
the blog_show example route from earlier:

$params = $this->get('router')->match('/blog/my-blog-post');
// array(
// 'slug' => 'my-blog-post',
// '_controller' => 'AcmeBlogBundle:Blog:show',
//)

$uri = $this->get('router')->generate('blog_show', array('slug' => 'my-blog-post'));
// /blog/my-blog-post

To generate a URL, you need to specify the name of the route (e.g. blog_show) and any wildcards (e.g. slug =
my-blog-post) used in the path for that route. With this information, any URL can easily be generated:

class MainController extends Controller
{

public function showAction($slug)
{

// ...

$url = $this->generateUrl(
'blog_show',
array('slug' => 'my-blog-post')

);
}

}

Note: In controllers that extend Symfony’s base Symfony\Bundle\FrameworkBundle\Controller\Controller,
you can use the :method:‘Symfony\\Bundle\\FrameworkBundle\\Controller\\Controller::generateUrl‘ method,
which call’s the router service’s :method:‘Symfony\\Component\\Routing\\Router::generate‘ method.

In an upcoming section, you’ll learn how to generate URLs from inside templates.

Tip: If the frontend of your application uses AJAX requests, you might want to be able to generate URLs in JavaScript
based on your routing configuration. By using the FOSJsRoutingBundle, you can do exactly that:

var url = Routing.generate(
'blog_show',
{"slug": 'my-blog-post'}

);

For more information, see the documentation for that bundle.

6.8.1 Generating Absolute URLs

By default, the router will generate relative URLs (e.g. /blog). To generate an absolute URL, simply pass true to
the third argument of the generate() method:

$this->get('router')->generate('blog_show', array('slug' => 'my-blog-post'), true);
// http://www.example.com/blog/my-blog-post

6.8. Generating URLs 61

https://github.com/FriendsOfSymfony/FOSJsRoutingBundle

Symfony Doc Documentation, Release stable

Note: The host that’s used when generating an absolute URL is the host of the current Request object. This is
detected automatically based on server information supplied by PHP. When generating absolute URLs for scripts run
from the command line, you’ll need to manually set the desired host on the RequestContext object:

$this->get('router')->getContext()->setHost('www.example.com');

6.8.2 Generating URLs with Query Strings

The generate method takes an array of wildcard values to generate the URI. But if you pass extra ones, they will
be added to the URI as a query string:

$this->get('router')->generate('blog', array('page' => 2, 'category' => 'Symfony'));
// /blog/2?category=Symfony

6.8.3 Generating URLs from a template

The most common place to generate a URL is from within a template when linking between pages in your application.
This is done just as before, but using a template helper function:

Absolute URLs can also be generated.

6.9 Summary

Routing is a system for mapping the URL of incoming requests to the controller function that should be called to
process the request. It both allows you to specify beautiful URLs and keeps the functionality of your application
decoupled from those URLs. Routing is a two-way mechanism, meaning that it should also be used to generate URLs.

6.10 Learn more from the Cookbook

• /cookbook/routing/scheme

62 Chapter 6. Routing

CHAPTER 7

Creating and using Templates

As you know, the controller is responsible for handling each request that comes into a Symfony2 application. In
reality, the controller delegates most of the heavy work to other places so that code can be tested and reused. When
a controller needs to generate HTML, CSS or any other content, it hands the work off to the templating engine. In
this chapter, you’ll learn how to write powerful templates that can be used to return content to the user, populate email
bodies, and more. You’ll learn shortcuts, clever ways to extend templates and how to reuse template code.

Note: How to render templates is covered in the controller page of the book.

7.1 Templates

A template is simply a text file that can generate any text-based format (HTML, XML, CSV, LaTeX . . .). The most
familiar type of template is a PHP template - a text file parsed by PHP that contains a mix of text and PHP code:

<!DOCTYPE html>
<html>

<head>
<title>Welcome to Symfony!</title>

</head>
<body>

<h1><?php echo $page_title ?></h1>

<ul id="navigation">
<?php foreach ($navigation as $item): ?>

<a href="<?php echo $item->getHref() ?>">

<?php echo $item->getCaption() ?>

<?php endforeach; ?>

(continues on next page)

63

Symfony Doc Documentation, Release stable

(continued from previous page)

</body>
</html>

But Symfony2 packages an even more powerful templating language called Twig. Twig allows you to write concise,
readable templates that are more friendly to web designers and, in several ways, more powerful than PHP templates:

<!DOCTYPE html>
<html>

<head>
<title>Welcome to Symfony!</title>

</head>
<body>

<h1>{{ page_title }}</h1>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

</body>

</html>

Twig defines two types of special syntax:

• {{ ... }}: “Says something”: prints a variable or the result of an expression to the template;

• {% ... %}: “Does something”: a tag that controls the logic of the template; it is used to execute statements
such as for-loops for example.

Note: There is a third syntax used for creating comments: {# this is a comment #}. This syntax can be
used across multiple lines like the PHP-equivalent /* comment */ syntax.

Twig also contains filters, which modify content before being rendered. The following makes the title variable all
uppercase before rendering it:

{{ title|upper }}

Twig comes with a long list of tags and filters that are available by default. You can even add your own extensions to
Twig as needed.

Tip: Registering a Twig extension is as easy as creating a new service and tagging it with twig.extension tag.

As you’ll see throughout the documentation, Twig also supports functions and new functions can be easily added. For
example, the following uses a standard for tag and the cycle function to print ten div tags, with alternating odd,
even classes:

{% for i in 0..10 %}
<div class="{{ cycle(['odd', 'even'], i) }}">
<!-- some HTML here -->

</div>
{% endfor %}

Throughout this chapter, template examples will be shown in both Twig and PHP.

64 Chapter 7. Creating and using Templates

http://twig.sensiolabs.org
http://twig.sensiolabs.org/doc/tags/index.html
http://twig.sensiolabs.org/doc/filters/index.html
http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension

Symfony Doc Documentation, Release stable

Tip: If you do choose to not use Twig and you disable it, you’ll need to implement your own exception handler via
the kernel.exception event.

Why Twig?

Twig templates are meant to be simple and won’t process PHP tags. This is by design: the Twig template system is
meant to express presentation, not program logic. The more you use Twig, the more you’ll appreciate and benefit
from this distinction. And of course, you’ll be loved by web designers everywhere.

Twig can also do things that PHP can’t, such as whitespace control, sandboxing, automatic and contextual output
escaping, and the inclusion of custom functions and filters that only affect templates. Twig contains little features
that make writing templates easier and more concise. Take the following example, which combines a loop with a
logical if statement:

{% for user in users if user.active %}

{{ user.username }}
{% else %}

No users found
{% endfor %}

7.1.1 Twig Template Caching

Twig is fast. Each Twig template is compiled down to a native PHP class that is rendered at runtime. The com-
piled classes are located in the app/cache/{environment}/twig directory (where {environment} is the
environment, such as dev or prod) and in some cases can be useful while debugging. See Environments for more
information on environments.

When debug mode is enabled (common in the dev environment), a Twig template will be automatically recompiled
when changes are made to it. This means that during development you can happily make changes to a Twig template
and instantly see the changes without needing to worry about clearing any cache.

When debugmode is disabled (common in the prod environment), however, you must clear the Twig cache directory
so that the Twig templates will regenerate. Remember to do this when deploying your application.

7.2 Template Inheritance and Layouts

More often than not, templates in a project share common elements, like the header, footer, sidebar or more. In
Symfony2, this problem is thought about differently: a template can be decorated by another one. This works exactly
the same as PHP classes: template inheritance allows you to build a base “layout” template that contains all the
common elements of your site defined as blocks (think “PHP class with base methods”). A child template can extend
the base layout and override any of its blocks (think “PHP subclass that overrides certain methods of its parent class”).

First, build a base layout file:

Note: Though the discussion about template inheritance will be in terms of Twig, the philosophy is the same between
Twig and PHP templates.

7.2. Template Inheritance and Layouts 65

Symfony Doc Documentation, Release stable

This template defines the base HTML skeleton document of a simple two-column page. In this example, three {%
block %} areas are defined (title, sidebar and body). Each block may be overridden by a child template or
left with its default implementation. This template could also be rendered directly. In that case the title, sidebar
and body blocks would simply retain the default values used in this template.

A child template might look like this:

Note: The parent template is identified by a special string syntax (::base.html.twig) that indicates that the
template lives in the app/Resources/views directory of the project. This naming convention is explained fully
in Template Naming and Locations.

The key to template inheritance is the {% extends %} tag. This tells the templating engine to first evaluate the
base template, which sets up the layout and defines several blocks. The child template is then rendered, at which
point the title and body blocks of the parent are replaced by those from the child. Depending on the value of
blog_entries, the output might look like this:

<!DOCTYPE html>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>My cool blog posts</title>

</head>
<body>

<div id="sidebar">

Home
Blog

</div>

<div id="content">
<h2>My first post</h2>
<p>The body of the first post.</p>

<h2>Another post</h2>
<p>The body of the second post.</p>

</div>
</body>

</html>

Notice that since the child template didn’t define a sidebar block, the value from the parent template is used instead.
Content within a {% block %} tag in a parent template is always used by default.

You can use as many levels of inheritance as you want. In the next section, a common three-level inheritance model
will be explained along with how templates are organized inside a Symfony2 project.

When working with template inheritance, here are some tips to keep in mind:

• If you use {% extends %} in a template, it must be the first tag in that template;

• The more {% block %} tags you have in your base templates, the better. Remember, child templates don’t
have to define all parent blocks, so create as many blocks in your base templates as you want and give each a
sensible default. The more blocks your base templates have, the more flexible your layout will be;

• If you find yourself duplicating content in a number of templates, it probably means you should move that
content to a {% block %} in a parent template. In some cases, a better solution may be to move the content
to a new template and include it (see Including other Templates);

66 Chapter 7. Creating and using Templates

Symfony Doc Documentation, Release stable

• If you need to get the content of a block from the parent template, you can use the {{ parent() }} function.
This is useful if you want to add to the contents of a parent block instead of completely overriding it:

{% block sidebar %}
<h3>Table of Contents</h3>

{# ... #}

{{ parent() }}
{% endblock %}

7.3 Template Naming and Locations

New in version 2.2: Namespaced path support was added in 2.2, allowing for template names like @AcmeDemo/
layout.html.twig. See /cookbook/templating/namespaced_paths for more details.

By default, templates can live in two different locations:

• app/Resources/views/: The applications views directory can contain application-wide base templates
(i.e. your application’s layouts) as well as templates that override bundle templates (see Overriding Bundle
Templates);

• path/to/bundle/Resources/views/: Each bundle houses its templates in its Resources/views
directory (and subdirectories). The majority of templates will live inside a bundle.

Symfony2 uses a bundle:controller:template string syntax for templates. This allows for several different types of
templates, each which lives in a specific location:

• AcmeBlogBundle:Blog:index.html.twig: This syntax is used to specify a template for a specific
page. The three parts of the string, each separated by a colon (:), mean the following:

– AcmeBlogBundle: (bundle) the template lives inside the AcmeBlogBundle (e.g. src/Acme/
BlogBundle);

– Blog: (controller) indicates that the template lives inside the Blog subdirectory of Resources/
views;

– index.html.twig: (template) the actual name of the file is index.html.twig.

Assuming that the AcmeBlogBundle lives at src/Acme/BlogBundle, the final path to the layout would
be src/Acme/BlogBundle/Resources/views/Blog/index.html.twig.

• AcmeBlogBundle::layout.html.twig: This syntax refers to a base template that’s specific to the
AcmeBlogBundle. Since the middle, “controller”, portion is missing (e.g. Blog), the template lives at
Resources/views/layout.html.twig inside AcmeBlogBundle.

• ::base.html.twig: This syntax refers to an application-wide base template or layout. Notice that the string
begins with two colons (::), meaning that both the bundle and controller portions are missing. This means that
the template is not located in any bundle, but instead in the root app/Resources/views/ directory.

In the Overriding Bundle Templates section, you’ll find out how each template living inside the AcmeBlogBundle,
for example, can be overridden by placing a template of the same name in the app/Resources/
AcmeBlogBundle/views/ directory. This gives the power to override templates from any vendor bundle.

Tip: Hopefully the template naming syntax looks familiar - it’s the same naming convention used to refer to Controller
Naming Pattern.

7.3. Template Naming and Locations 67

Symfony Doc Documentation, Release stable

7.3.1 Template Suffix

The bundle:controller:template format of each template specifies where the template file is located. Every template
name also has two extensions that specify the format and engine for that template.

• AcmeBlogBundle:Blog:index.html.twig - HTML format, Twig engine

• AcmeBlogBundle:Blog:index.html.php - HTML format, PHP engine

• AcmeBlogBundle:Blog:index.css.twig - CSS format, Twig engine

By default, any Symfony2 template can be written in either Twig or PHP, and the last part of the extension (e.g. .twig
or .php) specifies which of these two engines should be used. The first part of the extension, (e.g. .html, .css,
etc) is the final format that the template will generate. Unlike the engine, which determines how Symfony2 parses
the template, this is simply an organizational tactic used in case the same resource needs to be rendered as HTML
(index.html.twig), XML (index.xml.twig), or any other format. For more information, read the Template
Formats section.

Note: The available “engines” can be configured and even new engines added. See Templating Configuration for
more details.

7.4 Tags and Helpers

You already understand the basics of templates, how they’re named and how to use template inheritance. The hardest
parts are already behind you. In this section, you’ll learn about a large group of tools available to help perform the
most common template tasks such as including other templates, linking to pages and including images.

Symfony2 comes bundled with several specialized Twig tags and functions that ease the work of the template designer.
In PHP, the templating system provides an extensible helper system that provides useful features in a template context.

You’ve already seen a few built-in Twig tags ({% block %} & {% extends %}) as well as an example of a PHP
helper ($view['slots']). Here you will learn a few more.

7.4.1 Including other Templates

You’ll often want to include the same template or code fragment on several different pages. For example, in an
application with “news articles”, the template code displaying an article might be used on the article detail page, on a
page displaying the most popular articles, or in a list of the latest articles.

When you need to reuse a chunk of PHP code, you typically move the code to a new PHP class or function. The same
is true for templates. By moving the reused template code into its own template, it can be included from any other
template. First, create the template that you’ll need to reuse.

Including this template from any other template is simple:

The template is included using the {{ include() }} function. Notice that the template name follows the same
typical convention. The articleDetails.html.twig template uses an article variable, which we pass to
it. In this case, you could avoid doing this entirely, as all of the variables available in list.html.twig are also
available in articleDetails.html.twig (unless you set with_context to false).

Tip: The {'article': article} syntax is the standard Twig syntax for hash maps (i.e. an array with named
keys). If you needed to pass in multiple elements, it would look like this: {'foo': foo, 'bar': bar}.

68 Chapter 7. Creating and using Templates

http://twig.sensiolabs.org/doc/functions/include.html

Symfony Doc Documentation, Release stable

New in version 2.2: The include() function is a new Twig feature that’s available in Symfony 2.2. Prior, the {% include
%} tag tag was used.

7.4.2 Embedding Controllers

In some cases, you need to do more than include a simple template. Suppose you have a sidebar in your layout that
contains the three most recent articles. Retrieving the three articles may include querying the database or performing
other heavy logic that can’t be done from within a template.

The solution is to simply embed the result of an entire controller from your template. First, create a controller that
renders a certain number of recent articles:

// src/Acme/ArticleBundle/Controller/ArticleController.php
class ArticleController extends Controller
{

public function recentArticlesAction($max = 3)
{

// make a database call or other logic
// to get the "$max" most recent articles
$articles = ...;

return $this->render(
'AcmeArticleBundle:Article:recentList.html.twig',
array('articles' => $articles)

);
}

}

The recentList template is perfectly straightforward:

Note: Notice that the article URL is hardcoded in this example (e.g. /article/*slug*). This is a bad practice.
In the next section, you’ll learn how to do this correctly.

To include the controller, you’ll need to refer to it using the standard string syntax for controllers (i.e. bun-
dle:controller:action):

Whenever you find that you need a variable or a piece of information that you don’t have access to in a template,
consider rendering a controller. Controllers are fast to execute and promote good code organization and reuse.

7.4.3 Asynchronous Content with hinclude.js

Controllers can be embedded asynchronously using the hinclude.js javascript library. As the embedded content comes
from another page (or controller for that matter), Symfony2 uses a version of the standard render function to con-
figure hinclude tags:

Note: hinclude.js needs to be included in your page to work.

Note: When using a controller instead of a URL, you must enable the Symfony fragments configuration:

Default content (while loading or if javascript is disabled) can be set globally in your application configuration:

New in version 2.2: Default templates per render function was added in Symfony 2.2

7.4. Tags and Helpers 69

http://twig.sensiolabs.org/doc/functions/include.html
http://twig.sensiolabs.org/doc/tags/include.html
http://twig.sensiolabs.org/doc/tags/include.html
http://mnot.github.com/hinclude/
http://mnot.github.com/hinclude/

Symfony Doc Documentation, Release stable

You can define default templates per render function (which will override any global default template that is de-
fined):

Or you can also specify a string to display as the default content:

7.4.4 Linking to Pages

Creating links to other pages in your application is one of the most common jobs for a template. Instead of hardcoding
URLs in templates, use the path Twig function (or the router helper in PHP) to generate URLs based on the
routing configuration. Later, if you want to modify the URL of a particular page, all you’ll need to do is change the
routing configuration; the templates will automatically generate the new URL.

First, link to the “_welcome” page, which is accessible via the following routing configuration:

To link to the page, just use the path Twig function and refer to the route:

As expected, this will generate the URL /. Now for a more complicated route:

In this case, you need to specify both the route name (article_show) and a value for the {slug} parameter.
Using this route, revisit the recentList template from the previous section and link to the articles correctly:

Tip: You can also generate an absolute URL by using the url Twig function:

Home

The same can be done in PHP templates by passing a third argument to the generate() method:

<a href="<?php echo $view['router']->generate(
'_welcome',
array(),
true

) ?>">Home

7.4.5 Linking to Assets

Templates also commonly refer to images, Javascript, stylesheets and other assets. Of course you could hard-code
the path to these assets (e.g. /images/logo.png), but Symfony2 provides a more dynamic option via the asset
Twig function:

The asset function’s main purpose is to make your application more portable. If your application lives at the root of
your host (e.g. http://example.com), then the rendered paths should be /images/logo.png. But if your application
lives in a subdirectory (e.g. http://example.com/my_app), each asset path should render with the subdirectory (e.g. /
my_app/images/logo.png). The asset function takes care of this by determining how your application is
being used and generating the correct paths accordingly.

Additionally, if you use the asset function, Symfony can automatically append a query string to your asset, in order
to guarantee that updated static assets won’t be cached when deployed. For example, /images/logo.png might
look like /images/logo.png?v2. For more information, see the ref-framework-assets-version configuration op-
tion.

70 Chapter 7. Creating and using Templates

http://example.com
http://example.com/my_app

Symfony Doc Documentation, Release stable

7.5 Including Stylesheets and Javascripts in Twig

No site would be complete without including Javascript files and stylesheets. In Symfony, the inclusion of these assets
is handled elegantly by taking advantage of Symfony’s template inheritance.

Tip: This section will teach you the philosophy behind including stylesheet and Javascript assets in Symfony. Sym-
fony also packages another library, called Assetic, which follows this philosophy but allows you to do much more
interesting things with those assets. For more information on using Assetic see /cookbook/assetic/asset_management.

Start by adding two blocks to your base template that will hold your assets: one called stylesheets inside the
head tag and another called javascripts just above the closing body tag. These blocks will contain all of the
stylesheets and Javascripts that you’ll need throughout your site:

{# app/Resources/views/base.html.twig #}
<html>

<head>
{# ... #}

{% block stylesheets %}
<link href="{{ asset('/css/main.css') }}" rel="stylesheet" />

{% endblock %}
</head>
<body>

{# ... #}

{% block javascripts %}
<script src="{{ asset('/js/main.js') }}"></script>

{% endblock %}
</body>

</html>

That’s easy enough! But what if you need to include an extra stylesheet or Javascript from a child template? For
example, suppose you have a contact page and you need to include a contact.css stylesheet just on that page.
From inside that contact page’s template, do the following:

{# src/Acme/DemoBundle/Resources/views/Contact/contact.html.twig #}
{% extends '::base.html.twig' %}

{% block stylesheets %}
{{ parent() }}

<link href="{{ asset('/css/contact.css') }}" rel="stylesheet" />
{% endblock %}

{# ... #}

In the child template, you simply override the stylesheets block and put your new stylesheet tag inside of that
block. Of course, since you want to add to the parent block’s content (and not actually replace it), you should use the
parent() Twig function to include everything from the stylesheets block of the base template.

You can also include assets located in your bundles’ Resources/public folder. You will need to run the php
app/console assets:install target [--symlink] command, which moves (or symlinks) files into
the correct location. (target is by default “web”).

<link href="{{ asset('bundles/acmedemo/css/contact.css') }}" rel="stylesheet" />

7.5. Including Stylesheets and Javascripts in Twig 71

Symfony Doc Documentation, Release stable

The end result is a page that includes both the main.css and contact.css stylesheets.

7.6 Global Template Variables

During each request, Symfony2 will set a global template variable app in both Twig and PHP template engines by
default. The app variable is a Symfony\Bundle\FrameworkBundle\Templating\GlobalVariables
instance which will give you access to some application specific variables automatically:

• app.security - The security context.

• app.user - The current user object.

• app.request - The request object.

• app.session - The session object.

• app.environment - The current environment (dev, prod, etc).

• app.debug - True if in debug mode. False otherwise.

Tip: You can add your own global template variables. See the cookbook example on Global Variables.

7.7 Configuring and using the templating Service

The heart of the template system in Symfony2 is the templating Engine. This special object is responsible for
rendering templates and returning their content. When you render a template in a controller, for example, you’re
actually using the templating engine service. For example:

return $this->render('AcmeArticleBundle:Article:index.html.twig');

is equivalent to:

use Symfony\Component\HttpFoundation\Response;

$engine = $this->container->get('templating');
$content = $engine->render('AcmeArticleBundle:Article:index.html.twig');

return $response = new Response($content);

The templating engine (or “service”) is preconfigured to work automatically inside Symfony2. It can, of course, be
configured further in the application configuration file:

Several configuration options are available and are covered in the Configuration Appendix.

Note: The twig engine is mandatory to use the webprofiler (as well as many third-party bundles).

7.8 Overriding Bundle Templates

The Symfony2 community prides itself on creating and maintaining high quality bundles (see KnpBundles.com) for
a large number of different features. Once you use a third-party bundle, you’ll likely need to override and customize
one or more of its templates.

72 Chapter 7. Creating and using Templates

http://knpbundles.com

Symfony Doc Documentation, Release stable

Suppose you’ve included the imaginary open-source AcmeBlogBundle in your project (e.g. in the src/Acme/
BlogBundle directory). And while you’re really happy with everything, you want to override the blog “list”
page to customize the markup specifically for your application. By digging into the Blog controller of the
AcmeBlogBundle, you find the following:

public function indexAction()
{

// some logic to retrieve the blogs
$blogs = ...;

$this->render(
'AcmeBlogBundle:Blog:index.html.twig',
array('blogs' => $blogs)

);
}

When the AcmeBlogBundle:Blog:index.html.twig is rendered, Symfony2 actually looks in two different
locations for the template:

1. app/Resources/AcmeBlogBundle/views/Blog/index.html.twig

2. src/Acme/BlogBundle/Resources/views/Blog/index.html.twig

To override the bundle template, just copy the index.html.twig template from the bundle to app/Resources/
AcmeBlogBundle/views/Blog/index.html.twig (the app/Resources/AcmeBlogBundle direc-
tory won’t exist, so you’ll need to create it). You’re now free to customize the template.

Caution: If you add a template in a new location, you may need to clear your cache (php app/console
cache:clear), even if you are in debug mode.

This logic also applies to base bundle templates. Suppose also that each template in AcmeBlogBundle inherits
from a base template called AcmeBlogBundle::layout.html.twig. Just as before, Symfony2 will look in
the following two places for the template:

1. app/Resources/AcmeBlogBundle/views/layout.html.twig

2. src/Acme/BlogBundle/Resources/views/layout.html.twig

Once again, to override the template, just copy it from the bundle to app/Resources/AcmeBlogBundle/
views/layout.html.twig. You’re now free to customize this copy as you see fit.

If you take a step back, you’ll see that Symfony2 always starts by looking in the app/Resources/
{BUNDLE_NAME}/views/ directory for a template. If the template doesn’t exist there, it continues by checking
inside the Resources/views directory of the bundle itself. This means that all bundle templates can be overridden
by placing them in the correct app/Resources subdirectory.

Note: You can also override templates from within a bundle by using bundle inheritance. For more information, see
/cookbook/bundles/inheritance.

7.8.1 Overriding Core Templates

Since the Symfony2 framework itself is just a bundle, core templates can be overridden in the same way. For example,
the core TwigBundle contains a number of different “exception” and “error” templates that can be overridden by
copying each from the Resources/views/Exception directory of the TwigBundle to, you guessed it, the
app/Resources/TwigBundle/views/Exception directory.

7.8. Overriding Bundle Templates 73

Symfony Doc Documentation, Release stable

7.9 Three-level Inheritance

One common way to use inheritance is to use a three-level approach. This method works perfectly with the three
different types of templates that were just covered:

• Create a app/Resources/views/base.html.twig file that contains the main layout for your applica-
tion (like in the previous example). Internally, this template is called ::base.html.twig;

• Create a template for each “section” of your site. For example, an AcmeBlogBundle, would have a template
called AcmeBlogBundle::layout.html.twig that contains only blog section-specific elements;

{# src/Acme/BlogBundle/Resources/views/layout.html.twig #}
{% extends '::base.html.twig' %}

{% block body %}
<h1>Blog Application</h1>

{% block content %}{% endblock %}
{% endblock %}

• Create individual templates for each page and make each extend the appropriate section template. For example,
the “index” page would be called something close to AcmeBlogBundle:Blog:index.html.twig and
list the actual blog posts.

{# src/Acme/BlogBundle/Resources/views/Blog/index.html.twig #}
{% extends 'AcmeBlogBundle::layout.html.twig' %}

{% block content %}
{% for entry in blog_entries %}

<h2>{{ entry.title }}</h2>
<p>{{ entry.body }}</p>

{% endfor %}
{% endblock %}

Notice that this template extends the section template -(AcmeBlogBundle::layout.html.twig) which in-turn
extends the base application layout (::base.html.twig). This is the common three-level inheritance model.

When building your application, you may choose to follow this method or simply make each page template extend the
base application template directly (e.g. {% extends '::base.html.twig' %}). The three-template model
is a best-practice method used by vendor bundles so that the base template for a bundle can be easily overridden to
properly extend your application’s base layout.

7.10 Output Escaping

When generating HTML from a template, there is always a risk that a template variable may output unintended HTML
or dangerous client-side code. The result is that dynamic content could break the HTML of the resulting page or allow
a malicious user to perform a Cross Site Scripting (XSS) attack. Consider this classic example:

Imagine that the user enters the following code as his/her name:

<script>alert('hello!')</script>

Without any output escaping, the resulting template will cause a JavaScript alert box to pop up:

Hello <script>alert('hello!')</script>

74 Chapter 7. Creating and using Templates

http://en.wikipedia.org/wiki/Cross-site_scripting

Symfony Doc Documentation, Release stable

And while this seems harmless, if a user can get this far, that same user should also be able to write JavaScript that
performs malicious actions inside the secure area of an unknowing, legitimate user.

The answer to the problem is output escaping. With output escaping on, the same template will render harmlessly, and
literally print the script tag to the screen:

Hello <script>alert('helloe')</script>

The Twig and PHP templating systems approach the problem in different ways. If you’re using Twig, output escaping
is on by default and you’re protected. In PHP, output escaping is not automatic, meaning you’ll need to manually
escape where necessary.

7.10.1 Output Escaping in Twig

If you’re using Twig templates, then output escaping is on by default. This means that you’re protected out-of-the-box
from the unintentional consequences of user-submitted code. By default, the output escaping assumes that content is
being escaped for HTML output.

In some cases, you’ll need to disable output escaping when you’re rendering a variable that is trusted and contains
markup that should not be escaped. Suppose that administrative users are able to write articles that contain HTML
code. By default, Twig will escape the article body.

To render it normally, add the raw filter:

{{ article.body|raw }}

You can also disable output escaping inside a {% block %} area or for an entire template. For more information,
see Output Escaping in the Twig documentation.

7.10.2 Output Escaping in PHP

Output escaping is not automatic when using PHP templates. This means that unless you explicitly choose to escape
a variable, you’re not protected. To use output escaping, use the special escape() view method:

Hello <?php echo $view->escape($name) ?>

By default, the escape() method assumes that the variable is being rendered within an HTML context (and thus the
variable is escaped to be safe for HTML). The second argument lets you change the context. For example, to output
something in a JavaScript string, use the js context:

var myMsg = 'Hello <?php echo $view->escape($name, 'js') ?>';

7.11 Debugging

When using PHP, you can use var_dump() if you need to quickly find the value of a variable passed. This is useful,
for example, inside your controller. The same can be achieved when using Twig thanks to the debug extension.

Template parameters can then be dumped using the dump function:

{# src/Acme/ArticleBundle/Resources/views/Article/recentList.html.twig #}
{{ dump(articles) }}

{% for article in articles %}

(continues on next page)

7.11. Debugging 75

http://twig.sensiolabs.org/doc/api.html#escaper-extension

Symfony Doc Documentation, Release stable

(continued from previous page)

{{ article.title }}

{% endfor %}

The variables will only be dumped if Twig’s debug setting (in config.yml) is true. By default this means that
the variables will be dumped in the dev environment but not the prod environment.

7.12 Syntax Checking

You can check for syntax errors in Twig templates using the twig:lint console command:

You can check by filename:
$ php app/console twig:lint src/Acme/ArticleBundle/Resources/views/Article/recentList.
→˓html.twig

or by directory:
$ php app/console twig:lint src/Acme/ArticleBundle/Resources/views

or using the bundle name:
$ php app/console twig:lint @AcmeArticleBundle

7.13 Template Formats

Templates are a generic way to render content in any format. And while in most cases you’ll use templates to render
HTML content, a template can just as easily generate JavaScript, CSS, XML or any other format you can dream of.

For example, the same “resource” is often rendered in several different formats. To render an article index page in
XML, simply include the format in the template name:

• XML template name: AcmeArticleBundle:Article:index.xml.twig

• XML template filename: index.xml.twig

In reality, this is nothing more than a naming convention and the template isn’t actually rendered differently based on
its format.

In many cases, you may want to allow a single controller to render multiple different formats based on the “request
format”. For that reason, a common pattern is to do the following:

public function indexAction()
{

$format = $this->getRequest()->getRequestFormat();

return $this->render('AcmeBlogBundle:Blog:index.'.$format.'.twig');
}

The getRequestFormat on the Request object defaults to html, but can return any other format based on
the format requested by the user. The request format is most often managed by the routing, where a route can be
configured so that /contact sets the request format to html while /contact.xml sets the format to xml. For
more information, see the Advanced Example in the Routing chapter.

To create links that include the format parameter, include a _format key in the parameter hash:

76 Chapter 7. Creating and using Templates

Symfony Doc Documentation, Release stable

7.14 Final Thoughts

The templating engine in Symfony is a powerful tool that can be used each time you need to generate presentational
content in HTML, XML or any other format. And though templates are a common way to generate content in a
controller, their use is not mandatory. The Response object returned by a controller can be created with or without
the use of a template:

// creates a Response object whose content is the rendered template
$response = $this->render('AcmeArticleBundle:Article:index.html.twig');

// creates a Response object whose content is simple text
$response = new Response('response content');

Symfony’s templating engine is very flexible and two different template renderers are available by default: the tra-
ditional PHP templates and the sleek and powerful Twig templates. Both support a template hierarchy and come
packaged with a rich set of helper functions capable of performing the most common tasks.

Overall, the topic of templating should be thought of as a powerful tool that’s at your disposal. In some cases, you
may not need to render a template, and in Symfony2, that’s absolutely fine.

7.15 Learn more from the Cookbook

• /cookbook/templating/PHP

• /cookbook/controller/error_pages

• /cookbook/templating/twig_extension

7.14. Final Thoughts 77

Symfony Doc Documentation, Release stable

78 Chapter 7. Creating and using Templates

CHAPTER 8

Databases and Doctrine

One of the most common and challenging tasks for any application involves persisting and reading information to
and from a database. Fortunately, Symfony comes integrated with Doctrine, a library whose sole goal is to give you
powerful tools to make this easy. In this chapter, you’ll learn the basic philosophy behind Doctrine and see how easy
working with a database can be.

Note: Doctrine is totally decoupled from Symfony and using it is optional. This chapter is all about the Doctrine
ORM, which aims to let you map objects to a relational database (such as MySQL, PostgreSQL or Microsoft SQL). If
you prefer to use raw database queries, this is easy, and explained in the “/cookbook/doctrine/dbal” cookbook entry.

You can also persist data to MongoDB using Doctrine ODM library. For more information, read the “/bun-
dles/DoctrineMongoDBBundle/index” documentation.

8.1 A Simple Example: A Product

The easiest way to understand how Doctrine works is to see it in action. In this section, you’ll configure your database,
create a Product object, persist it to the database and fetch it back out.

Code along with the example

If you want to follow along with the example in this chapter, create an AcmeStoreBundle via:

$ php app/console generate:bundle --namespace=Acme/StoreBundle

8.1.1 Configuring the Database

Before you really begin, you’ll need to configure your database connection information. By convention, this informa-
tion is usually configured in an app/config/parameters.yml file:

79

http://www.doctrine-project.org/
http://www.mongodb.org/

Symfony Doc Documentation, Release stable

app/config/parameters.yml
parameters:

database_driver: pdo_mysql
database_host: localhost
database_name: test_project
database_user: root
database_password: password

...

Note: Defining the configuration via parameters.yml is just a convention. The parameters defined in that file are
referenced by the main configuration file when setting up Doctrine:

By separating the database information into a separate file, you can easily keep different versions of the
file on each server. You can also easily store database configuration (or any sensitive information) out-
side of your project, like inside your Apache configuration, for example. For more information, see /cook-
book/configuration/external_parameters.

Now that Doctrine knows about your database, you can have it create the database for you:

$ php app/console doctrine:database:create

Setting Up The Database to be UTF8

One mistake even seasoned developers make when starting a Symfony2 project is forgetting to setup default charset
and collation on their database, ending up with latin type collations, which are default for most databases. They
might even remember to do it the very first time, but forget that it’s all gone after running a relatively common
command during development:

$ php app/console doctrine:database:drop --force
$ php app/console doctrine:database:create

There’s no way to configure these defaults inside Doctrine, as it tries to be as agnostic as possible in terms of
environment configuration. One way to solve this problem is to configure server-level defaults.

Setting UTF8 defaults for MySQL is as simple as adding a few lines to your configuration file (typically my.cnf):

[mysqld]
collation-server = utf8_general_ci
character-set-server = utf8

Note: If you want to use SQLite as your database, you need to set the path where your database file should be stored:

8.1.2 Creating an Entity Class

Suppose you’re building an application where products need to be displayed. Without even thinking about Doctrine or
databases, you already know that you need a Product object to represent those products. Create this class inside the
Entity directory of your AcmeStoreBundle:

80 Chapter 8. Databases and Doctrine

Symfony Doc Documentation, Release stable

// src/Acme/StoreBundle/Entity/Product.php
namespace Acme\StoreBundle\Entity;

class Product
{

protected $name;

protected $price;

protected $description;
}

The class - often called an “entity”, meaning a basic class that holds data - is simple and helps fulfill the business
requirement of needing products in your application. This class can’t be persisted to a database yet - it’s just a simple
PHP class.

Tip: Once you learn the concepts behind Doctrine, you can have Doctrine create simple entity classes for you. This
will ask you interactive questions to help you build any entity:

$ php app/console doctrine:generate:entity

8.1.3 Add Mapping Information

Doctrine allows you to work with databases in a much more interesting way than just fetching rows of a column-based
table into an array. Instead, Doctrine allows you to persist entire objects to the database and fetch entire objects out of
the database. This works by mapping a PHP class to a database table, and the properties of that PHP class to columns
on the table:

images/book/doctrine_image_1.png

For Doctrine to be able to do this, you just have to create “metadata”, or configuration that tells Doctrine exactly how
the Product class and its properties should be mapped to the database. This metadata can be specified in a number
of different formats including YAML, XML or directly inside the Product class via annotations:

Note: A bundle can accept only one metadata definition format. For example, it’s not possible to mix YAML metadata
definitions with annotated PHP entity class definitions.

Tip: The table name is optional and if omitted, will be determined automatically based on the name of the entity
class.

Doctrine allows you to choose from a wide variety of different field types, each with their own options. For information
on the available field types, see the Doctrine Field Types Reference section.

See also:

8.1. A Simple Example: A Product 81

Symfony Doc Documentation, Release stable

You can also check out Doctrine’s Basic Mapping Documentation for all details about mapping information. If you
use annotations, you’ll need to prepend all annotations with ORM\ (e.g. ORM\Column(..)), which is not shown in
Doctrine’s documentation. You’ll also need to include the use Doctrine\ORM\Mapping as ORM; statement,
which imports the ORM annotations prefix.

Caution: Be careful that your class name and properties aren’t mapped to a protected SQL keyword (such as
group or user). For example, if your entity class name is Group, then, by default, your table name will be
group, which will cause an SQL error in some engines. See Doctrine’s Reserved SQL keywords documentation
on how to properly escape these names. Alternatively, if you’re free to choose your database schema, simply map
to a different table name or column name. See Doctrine’s Persistent classes and Property Mapping documentation.

Note: When using another library or program (ie. Doxygen) that uses annotations, you should place the
@IgnoreAnnotation annotation on the class to indicate which annotations Symfony should ignore.

For example, to prevent the @fn annotation from throwing an exception, add the following:

/**
* @IgnoreAnnotation("fn")

*/
class Product
// ...

8.1.4 Generating Getters and Setters

Even though Doctrine now knows how to persist a Product object to the database, the class itself isn’t really useful
yet. Since Product is just a regular PHP class, you need to create getter and setter methods (e.g. getName(),
setName()) in order to access its properties (since the properties are protected). Fortunately, Doctrine can do
this for you by running:

$ php app/console doctrine:generate:entities Acme/StoreBundle/Entity/Product

This command makes sure that all of the getters and setters are generated for the Product class. This is a safe
command - you can run it over and over again: it only generates getters and setters that don’t exist (i.e. it doesn’t
replace your existing methods).

Caution: Keep in mind that Doctrine’s entity generator produces simple getters/setters. You should check gener-
ated entities and adjust getter/setter logic to your own needs.

More about doctrine:generate:entities

With the doctrine:generate:entities command you can:

• generate getters and setters;

• generate repository classes configured with the @ORM\Entity(repositoryClass="...") anno-
tation;

• generate the appropriate constructor for 1:n and n:m relations.

82 Chapter 8. Databases and Doctrine

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#quoting-reserved-words
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#persistent-classes
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping

Symfony Doc Documentation, Release stable

The doctrine:generate:entities command saves a backup of the original Product.php named
Product.php~. In some cases, the presence of this file can cause a “Cannot redeclare class” error. It can be
safely removed. You can also use the --no-backup option to prevent generating these backup files.

Note that you don’t need to use this command. Doctrine doesn’t rely on code generation. Like with normal PHP
classes, you just need to make sure that your protected/private properties have getter and setter methods. Since this
is a common thing to do when using Doctrine, this command was created.

You can also generate all known entities (i.e. any PHP class with Doctrine mapping information) of a bundle or an
entire namespace:

$ php app/console doctrine:generate:entities AcmeStoreBundle
$ php app/console doctrine:generate:entities Acme

Note: Doctrine doesn’t care whether your properties are protected or private, or whether or not you have a
getter or setter function for a property. The getters and setters are generated here only because you’ll need them to
interact with your PHP object.

8.1.5 Creating the Database Tables/Schema

You now have a usable Product class with mapping information so that Doctrine knows exactly how to persist
it. Of course, you don’t yet have the corresponding product table in your database. Fortunately, Doctrine can
automatically create all the database tables needed for every known entity in your application. To do this, run:

$ php app/console doctrine:schema:update --force

Tip: Actually, this command is incredibly powerful. It compares what your database should look like (based on the
mapping information of your entities) with how it actually looks, and generates the SQL statements needed to update
the database to where it should be. In other words, if you add a new property with mapping metadata to Product and
run this task again, it will generate the “alter table” statement needed to add that new column to the existing product
table.

An even better way to take advantage of this functionality is via migrations, which allow you to generate these SQL
statements and store them in migration classes that can be run systematically on your production server in order to
track and migrate your database schema safely and reliably.

Your database now has a fully-functional product table with columns that match the metadata you’ve specified.

8.1.6 Persisting Objects to the Database

Now that you have a mapped Product entity and corresponding product table, you’re ready to persist data to the
database. From inside a controller, this is pretty easy. Add the following method to the DefaultController of
the bundle:

1 // src/Acme/StoreBundle/Controller/DefaultController.php
2

3 // ...
4 use Acme\StoreBundle\Entity\Product;
5 use Symfony\Component\HttpFoundation\Response;
6

(continues on next page)

8.1. A Simple Example: A Product 83

Symfony Doc Documentation, Release stable

(continued from previous page)

7 public function createAction()
8 {
9 $product = new Product();

10 $product->setName('A Foo Bar');
11 $product->setPrice('19.99');
12 $product->setDescription('Lorem ipsum dolor');
13

14 $em = $this->getDoctrine()->getManager();
15 $em->persist($product);
16 $em->flush();
17

18 return new Response('Created product id '.$product->getId());
19 }

Note: If you’re following along with this example, you’ll need to create a route that points to this action to see it
work.

Take a look at the previous example in more detail:

• lines 9-12 In this section, you instantiate and work with the $product object like any other, normal PHP
object.

• line 14 This line fetches Doctrine’s entity manager object, which is responsible for handling the process of
persisting and fetching objects to and from the database.

• line 15 The persist() method tells Doctrine to “manage” the $product object. This does not actually
cause a query to be made to the database (yet).

• line 16 When the flush() method is called, Doctrine looks through all of the objects that it’s managing to see
if they need to be persisted to the database. In this example, the $product object has not been persisted yet,
so the entity manager executes an INSERT query and a row is created in the product table.

Note: In fact, since Doctrine is aware of all your managed entities, when you call the flush() method, it calculates
an overall changeset and executes the most efficient query/queries possible. For example, if you persist a total of 100
Product objects and then subsequently call flush(), Doctrine will create a single prepared statement and re-use
it for each insert. This pattern is called Unit of Work, and it’s used because it’s fast and efficient.

When creating or updating objects, the workflow is always the same. In the next section, you’ll see how Doctrine is
smart enough to automatically issue an UPDATE query if the record already exists in the database.

Tip: Doctrine provides a library that allows you to programmatically load testing data into your project (i.e. “fixture
data”). For information, see /bundles/DoctrineFixturesBundle/index.

8.1.7 Fetching Objects from the Database

Fetching an object back out of the database is even easier. For example, suppose you’ve configured a route to display
a specific Product based on its id value:

public function showAction($id)
{

(continues on next page)

84 Chapter 8. Databases and Doctrine

Symfony Doc Documentation, Release stable

(continued from previous page)

$product = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Product')
->find($id);

if (!$product) {
throw $this->createNotFoundException(

'No product found for id '.$id
);

}

// ... do something, like pass the $product object into a template
}

Tip: You can achieve the equivalent of this without writing any code by using the @ParamConverter shortcut.
See the FrameworkExtraBundle documentation for more details.

When you query for a particular type of object, you always use what’s known as its “repository”. You can think of a
repository as a PHP class whose only job is to help you fetch entities of a certain class. You can access the repository
object for an entity class via:

$repository = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Product');

Note: The AcmeStoreBundle:Product string is a shortcut you can use anywhere in Doctrine instead of the full
class name of the entity (i.e. Acme\StoreBundle\Entity\Product). As long as your entity lives under the
Entity namespace of your bundle, this will work.

Once you have your repository, you have access to all sorts of helpful methods:

// query by the primary key (usually "id")
$product = $repository->find($id);

// dynamic method names to find based on a column value
$product = $repository->findOneById($id);
$product = $repository->findOneByName('foo');

// find *all* products
$products = $repository->findAll();

// find a group of products based on an arbitrary column value
$products = $repository->findByPrice(19.99);

Note: Of course, you can also issue complex queries, which you’ll learn more about in the Querying for Objects
section.

You can also take advantage of the useful findBy and findOneBymethods to easily fetch objects based on multiple
conditions:

// query for one product matching be name and price
$product = $repository->findOneBy(array('name' => 'foo', 'price' => 19.99));

(continues on next page)

8.1. A Simple Example: A Product 85

Symfony Doc Documentation, Release stable

(continued from previous page)

// query for all products matching the name, ordered by price
$products = $repository->findBy(

array('name' => 'foo'),
array('price' => 'ASC')

);

Tip: When you render any page, you can see how many queries were made in the bottom right corner of the web
debug toolbar.

images/book/doctrine_web_debug_toolbar.png

If you click the icon, the profiler will open, showing you the exact queries that were made.

8.1.8 Updating an Object

Once you’ve fetched an object from Doctrine, updating it is easy. Suppose you have a route that maps a product id to
an update action in a controller:

public function updateAction($id)
{

$em = $this->getDoctrine()->getManager();
$product = $em->getRepository('AcmeStoreBundle:Product')->find($id);

if (!$product) {
throw $this->createNotFoundException(

'No product found for id '.$id
);

}

$product->setName('New product name!');
$em->flush();

return $this->redirect($this->generateUrl('homepage'));
}

Updating an object involves just three steps:

1. fetching the object from Doctrine;

2. modifying the object;

3. calling flush() on the entity manager

86 Chapter 8. Databases and Doctrine

Symfony Doc Documentation, Release stable

Notice that calling $em->persist($product) isn’t necessary. Recall that this method simply tells Doctrine to
manage or “watch” the $product object. In this case, since you fetched the $product object from Doctrine, it’s
already managed.

8.1.9 Deleting an Object

Deleting an object is very similar, but requires a call to the remove() method of the entity manager:

$em->remove($product);
$em->flush();

As you might expect, the remove() method notifies Doctrine that you’d like to remove the given entity from the
database. The actual DELETE query, however, isn’t actually executed until the flush() method is called.

8.2 Querying for Objects

You’ve already seen how the repository object allows you to run basic queries without any work:

$repository->find($id);

$repository->findOneByName('Foo');

Of course, Doctrine also allows you to write more complex queries using the Doctrine Query Language (DQL). DQL
is similar to SQL except that you should imagine that you’re querying for one or more objects of an entity class (e.g.
Product) instead of querying for rows on a table (e.g. product).

When querying in Doctrine, you have two options: writing pure Doctrine queries or using Doctrine’s Query Builder.

8.2.1 Querying for Objects with DQL

Imagine that you want to query for products, but only return products that cost more than 19.99, ordered from
cheapest to most expensive. From inside a controller, do the following:

$em = $this->getDoctrine()->getManager();
$query = $em->createQuery(

'SELECT p
FROM AcmeStoreBundle:Product p
WHERE p.price > :price
ORDER BY p.price ASC'

)->setParameter('price', '19.99');

$products = $query->getResult();

If you’re comfortable with SQL, then DQL should feel very natural. The biggest difference is that you need to think
in terms of “objects” instead of rows in a database. For this reason, you select from AcmeStoreBundle:Product
and then alias it as p.

The getResult() method returns an array of results. If you’re querying for just one object, you can use the
getSingleResult() method instead:

$product = $query->getSingleResult();

8.2. Querying for Objects 87

Symfony Doc Documentation, Release stable

Caution: The getSingleResult() method throws a Doctrine\ORM\NoResultException exception
if no results are returned and a Doctrine\ORM\NonUniqueResultException if more than one result is
returned. If you use this method, you may need to wrap it in a try-catch block and ensure that only one result is
returned (if you’re querying on something that could feasibly return more than one result):

$query = $em->createQuery('SELECT ...')
->setMaxResults(1);

try {
$product = $query->getSingleResult();

} catch (\Doctrine\Orm\NoResultException $e) {
$product = null;

}
// ...

The DQL syntax is incredibly powerful, allowing you to easily join between entities (the topic of relations will be
covered later), group, etc. For more information, see the official Doctrine Doctrine Query Language documentation.

Setting Parameters

Take note of the setParameter() method. When working with Doctrine, it’s always a good idea to set any
external values as “placeholders”, which was done in the above query:

... WHERE p.price > :price ...

You can then set the value of the price placeholder by calling the setParameter() method:

->setParameter('price', '19.99')

Using parameters instead of placing values directly in the query string is done to prevent SQL injection attacks
and should always be done. If you’re using multiple parameters, you can set their values at once using the
setParameters() method:

->setParameters(array(
'price' => '19.99',
'name' => 'Foo',

))

8.2.2 Using Doctrine’s Query Builder

Instead of writing the queries directly, you can alternatively use Doctrine’s QueryBuilder to do the same job using
a nice, object-oriented interface. If you use an IDE, you can also take advantage of auto-completion as you type the
method names. From inside a controller:

$repository = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Product');

$query = $repository->createQueryBuilder('p')
->where('p.price > :price')
->setParameter('price', '19.99')
->orderBy('p.price', 'ASC')
->getQuery();

$products = $query->getResult();

88 Chapter 8. Databases and Doctrine

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html

Symfony Doc Documentation, Release stable

The QueryBuilder object contains every method necessary to build your query. By calling the getQuery()
method, the query builder returns a normal Query object, which is the same object you built directly in the previous
section.

For more information on Doctrine’s Query Builder, consult Doctrine’s Query Builder documentation.

8.2.3 Custom Repository Classes

In the previous sections, you began constructing and using more complex queries from inside a controller. In order to
isolate, test and reuse these queries, it’s a good idea to create a custom repository class for your entity and add methods
with your query logic there.

To do this, add the name of the repository class to your mapping definition.

Doctrine can generate the repository class for you by running the same command used earlier to generate the missing
getter and setter methods:

$ php app/console doctrine:generate:entities Acme

Next, add a new method - findAllOrderedByName() - to the newly generated repository class. This method
will query for all of the Product entities, ordered alphabetically.

// src/Acme/StoreBundle/Entity/ProductRepository.php
namespace Acme\StoreBundle\Entity;

use Doctrine\ORM\EntityRepository;

class ProductRepository extends EntityRepository
{

public function findAllOrderedByName()
{

return $this->getEntityManager()
->createQuery(

'SELECT p FROM AcmeStoreBundle:Product p ORDER BY p.name ASC'
)
->getResult();

}
}

Tip: The entity manager can be accessed via $this->getEntityManager() from inside the repository.

You can use this new method just like the default finder methods of the repository:

$em = $this->getDoctrine()->getManager();
$products = $em->getRepository('AcmeStoreBundle:Product')

->findAllOrderedByName();

Note: When using a custom repository class, you still have access to the default finder methods such as find() and
findAll().

8.2. Querying for Objects 89

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/query-builder.html

Symfony Doc Documentation, Release stable

8.3 Entity Relationships/Associations

Suppose that the products in your application all belong to exactly one “category”. In this case, you’ll need a
Category object and a way to relate a Product object to a Category object. Start by creating the Category
entity. Since you know that you’ll eventually need to persist the class through Doctrine, you can let Doctrine create
the class for you.

$ php app/console doctrine:generate:entity --entity="AcmeStoreBundle:Category" --
→˓fields="name:string(255)"

This task generates the Category entity for you, with an id field, a name field and the associated getter and setter
functions.

8.3.1 Relationship Mapping Metadata

To relate the Category and Product entities, start by creating a products property on the Category class:

First, since a Category object will relate to many Product objects, a products array property is added to hold
those Product objects. Again, this isn’t done because Doctrine needs it, but instead because it makes sense in the
application for each Category to hold an array of Product objects.

Note: The code in the __construct() method is important because Doctrine requires the $products property
to be an ArrayCollection object. This object looks and acts almost exactly like an array, but has some added
flexibility. If this makes you uncomfortable, don’t worry. Just imagine that it’s an array and you’ll be in good shape.

Tip: The targetEntity value in the decorator used above can reference any entity with a valid namespace, not just
entities defined in the same namespace. To relate to an entity defined in a different class or bundle, enter a full
namespace as the targetEntity.

Next, since each Product class can relate to exactly one Category object, you’ll want to add a $category
property to the Product class:

Finally, now that you’ve added a new property to both the Category and Product classes, tell Doctrine to generate
the missing getter and setter methods for you:

$ php app/console doctrine:generate:entities Acme

Ignore the Doctrine metadata for a moment. You now have two classes - Category and Product with a natural
one-to-many relationship. The Category class holds an array of Product objects and the Product object can
hold one Category object. In other words - you’ve built your classes in a way that makes sense for your needs. The
fact that the data needs to be persisted to a database is always secondary.

Now, look at the metadata above the $category property on the Product class. The information here tells doctrine
that the related class is Category and that it should store the id of the category record on a category_id field that
lives on the product table. In other words, the related Category object will be stored on the $category property,
but behind the scenes, Doctrine will persist this relationship by storing the category’s id value on a category_id
column of the product table.

90 Chapter 8. Databases and Doctrine

Symfony Doc Documentation, Release stable

images/book/doctrine_image_2.png

The metadata above the $products property of the Category object is less important, and simply tells Doctrine
to look at the Product.category property to figure out how the relationship is mapped.

Before you continue, be sure to tell Doctrine to add the new category table, and product.category_id
column, and new foreign key:

$ php app/console doctrine:schema:update --force

Note: This task should only be really used during development. For a more robust method of systematically updating
your production database, read about Doctrine migrations.

8.3.2 Saving Related Entities

Now you can see this new code in action! Imagine you’re inside a controller:

// ...

use Acme\StoreBundle\Entity\Category;
use Acme\StoreBundle\Entity\Product;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{

public function createProductAction()
{

$category = new Category();
$category->setName('Main Products');

$product = new Product();
$product->setName('Foo');
$product->setPrice(19.99);
// relate this product to the category
$product->setCategory($category);

$em = $this->getDoctrine()->getManager();
$em->persist($category);
$em->persist($product);
$em->flush();

return new Response(
'Created product id: '.$product->getId().' and category id: '.$category->

→˓getId()
);

}
}

Now, a single row is added to both the category and product tables. The product.category_id column for
the new product is set to whatever the id is of the new category. Doctrine manages the persistence of this relationship

8.3. Entity Relationships/Associations 91

Symfony Doc Documentation, Release stable

for you.

8.3.3 Fetching Related Objects

When you need to fetch associated objects, your workflow looks just like it did before. First, fetch a $product
object and then access its related Category:

public function showAction($id)
{

$product = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Product')
->find($id);

$categoryName = $product->getCategory()->getName();

// ...
}

In this example, you first query for a Product object based on the product’s id. This issues a
query for just the product data and hydrates the $product object with that data. Later, when you call
$product->getCategory()->getName(), Doctrine silently makes a second query to find the Category
that’s related to this Product. It prepares the $category object and returns it to you.

images/book/doctrine_image_3.png

What’s important is the fact that you have easy access to the product’s related category, but the category data isn’t
actually retrieved until you ask for the category (i.e. it’s “lazily loaded”).

You can also query in the other direction:

public function showProductAction($id)
{

$category = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Category')
->find($id);

$products = $category->getProducts();

// ...
}

In this case, the same things occurs: you first query out for a single Category object, and then Doctrine makes
a second query to retrieve the related Product objects, but only once/if you ask for them (i.e. when you call
->getProducts()). The $products variable is an array of all Product objects that relate to the given
Category object via their category_id value.

Relationships and Proxy Classes

This “lazy loading” is possible because, when necessary, Doctrine returns a “proxy” object in place of the true
object. Look again at the above example:

92 Chapter 8. Databases and Doctrine

Symfony Doc Documentation, Release stable

$product = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Product')
->find($id);

$category = $product->getCategory();

// prints "Proxies\AcmeStoreBundleEntityCategoryProxy"
echo get_class($category);

This proxy object extends the true Category object, and looks and acts exactly like it. The difference is that, by
using a proxy object, Doctrine can delay querying for the real Category data until you actually need that data
(e.g. until you call $category->getName()).

The proxy classes are generated by Doctrine and stored in the cache directory. And though you’ll probably never
even notice that your $category object is actually a proxy object, it’s important to keep it in mind.

In the next section, when you retrieve the product and category data all at once (via a join), Doctrine will return the
true Category object, since nothing needs to be lazily loaded.

8.3.4 Joining Related Records

In the above examples, two queries were made - one for the original object (e.g. a Category) and one for the related
object(s) (e.g. the Product objects).

Tip: Remember that you can see all of the queries made during a request via the web debug toolbar.

Of course, if you know up front that you’ll need to access both objects, you can avoid the second query by issuing a
join in the original query. Add the following method to the ProductRepository class:

// src/Acme/StoreBundle/Entity/ProductRepository.php
public function findOneByIdJoinedToCategory($id)
{

$query = $this->getEntityManager()
->createQuery('

SELECT p, c FROM AcmeStoreBundle:Product p
JOIN p.category c
WHERE p.id = :id'

)->setParameter('id', $id);

try {
return $query->getSingleResult();

} catch (\Doctrine\ORM\NoResultException $e) {
return null;

}
}

Now, you can use this method in your controller to query for a Product object and its related Category with just
one query:

public function showAction($id)
{

$product = $this->getDoctrine()
->getRepository('AcmeStoreBundle:Product')
->findOneByIdJoinedToCategory($id);

(continues on next page)

8.3. Entity Relationships/Associations 93

Symfony Doc Documentation, Release stable

(continued from previous page)

$category = $product->getCategory();

// ...
}

8.3.5 More Information on Associations

This section has been an introduction to one common type of entity relationship, the one-to-many relationship. For
more advanced details and examples of how to use other types of relations (e.g. one-to-one, many-to-many),
see Doctrine’s Association Mapping Documentation.

Note: If you’re using annotations, you’ll need to prepend all annotations with ORM\ (e.g. ORM\OneToMany), which
is not reflected in Doctrine’s documentation. You’ll also need to include the use Doctrine\ORM\Mapping as
ORM; statement, which imports the ORM annotations prefix.

8.4 Configuration

Doctrine is highly configurable, though you probably won’t ever need to worry about most of its options. To find out
more about configuring Doctrine, see the Doctrine section of the reference manual.

8.5 Lifecycle Callbacks

Sometimes, you need to perform an action right before or after an entity is inserted, updated, or deleted. These types
of actions are known as “lifecycle” callbacks, as they’re callback methods that you need to execute during different
stages of the lifecycle of an entity (e.g. the entity is inserted, updated, deleted, etc).

If you’re using annotations for your metadata, start by enabling the lifecycle callbacks. This is not necessary if you’re
using YAML or XML for your mapping:

/**
* @ORM\Entity()

* @ORM\HasLifecycleCallbacks()

*/
class Product
{

// ...
}

Now, you can tell Doctrine to execute a method on any of the available lifecycle events. For example, suppose you
want to set a createdAt date column to the current date, only when the entity is first persisted (i.e. inserted):

Note: The above example assumes that you’ve created and mapped a createdAt property (not shown here).

Now, right before the entity is first persisted, Doctrine will automatically call this method and the createdAt field
will be set to the current date.

This can be repeated for any of the other lifecycle events, which include:

94 Chapter 8. Databases and Doctrine

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html

Symfony Doc Documentation, Release stable

• preRemove

• postRemove

• prePersist

• postPersist

• preUpdate

• postUpdate

• postLoad

• loadClassMetadata

For more information on what these lifecycle events mean and lifecycle callbacks in general, see Doctrine’s Lifecycle
Events documentation

Lifecycle Callbacks and Event Listeners

Notice that the setCreatedAtValue() method receives no arguments. This is always the case for lifecy-
cle callbacks and is intentional: lifecycle callbacks should be simple methods that are concerned with internally
transforming data in the entity (e.g. setting a created/updated field, generating a slug value).

If you need to do some heavier lifting - like perform logging or send an email - you should register an external
class as an event listener or subscriber and give it access to whatever resources you need. For more information, see
/cookbook/doctrine/event_listeners_subscribers.

8.6 Doctrine Extensions: Timestampable, Sluggable, etc.

Doctrine is quite flexible, and a number of third-party extensions are available that allow you to easily perform repeated
and common tasks on your entities. These include thing such as Sluggable, Timestampable, Loggable, Translatable,
and Tree.

For more information on how to find and use these extensions, see the cookbook article about using common Doctrine
extensions.

8.7 Doctrine Field Types Reference

Doctrine comes with a large number of field types available. Each of these maps a PHP data type to a specific column
type in whatever database you’re using. The following types are supported in Doctrine:

• Strings

– string (used for shorter strings)

– text (used for larger strings)

• Numbers

– integer

– smallint

– bigint

– decimal

8.6. Doctrine Extensions: Timestampable, Sluggable, etc. 95

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#lifecycle-events
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#lifecycle-events

Symfony Doc Documentation, Release stable

– float

• Dates and Times (use a DateTime object for these fields in PHP)

– date

– time

– datetime

• Other Types

– boolean

– object (serialized and stored in a CLOB field)

– array (serialized and stored in a CLOB field)

For more information, see Doctrine’s Mapping Types documentation.

8.7.1 Field Options

Each field can have a set of options applied to it. The available options include type (defaults to string), name,
length, unique and nullable. Take a few examples:

Note: There are a few more options not listed here. For more details, see Doctrine’s Property Mapping documentation

8.8 Console Commands

The Doctrine2 ORM integration offers several console commands under the doctrine namespace. To view the
command list you can run the console without any arguments:

$ php app/console

A list of available commands will print out, many of which start with the doctrine: prefix. You can find out more
information about any of these commands (or any Symfony command) by running the help command. For example,
to get details about the doctrine:database:create task, run:

$ php app/console help doctrine:database:create

Some notable or interesting tasks include:

• doctrine:ensure-production-settings - checks to see if the current environment is configured
efficiently for production. This should always be run in the prod environment:

$ php app/console doctrine:ensure-production-settings --env=prod

• doctrine:mapping:import - allows Doctrine to introspect an existing database and create mapping in-
formation. For more information, see /cookbook/doctrine/reverse_engineering.

• doctrine:mapping:info - tells you all of the entities that Doctrine is aware of and whether or not there
are any basic errors with the mapping.

• doctrine:query:dql and doctrine:query:sql - allow you to execute DQL or SQL queries directly
from the command line.

96 Chapter 8. Databases and Doctrine

http://php.net/manual/en/class.datetime.php
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping

Symfony Doc Documentation, Release stable

Note: To be able to load data fixtures to your database, you will need to have the DoctrineFixturesBundle
bundle installed. To learn how to do it, read the “/bundles/DoctrineFixturesBundle/index” entry of the documentation.

Tip: This page shows working with Doctrine within a controller. You may also want to work with Doctrine elsewhere
in your application. The :method:‘Symfony\\Bundle\\FrameworkBundle\\Controller\\Controller::getDoctrine‘
method of the controller returns the doctrine service, you can work with this in the same way elsewhere by injecting
this into your own services. See /book/service_container for more on creating your own services.

8.9 Summary

With Doctrine, you can focus on your objects and how they’re useful in your application and worry about database
persistence second. This is because Doctrine allows you to use any PHP object to hold your data and relies on mapping
metadata information to map an object’s data to a particular database table.

And even though Doctrine revolves around a simple concept, it’s incredibly powerful, allowing you to create complex
queries and subscribe to events that allow you to take different actions as objects go through their persistence lifecycle.

For more information about Doctrine, see the Doctrine section of the cookbook, which includes the following articles:

• /bundles/DoctrineFixturesBundle/index

• /cookbook/doctrine/common_extensions

8.9. Summary 97

Symfony Doc Documentation, Release stable

98 Chapter 8. Databases and Doctrine

CHAPTER 9

Databases and Propel

One of the most common and challenging tasks for any application involves persisting and reading information to and
from a database. Symfony2 does not come integrated with any ORMs but the Propel integration is easy. To install
Propel, read Working With Symfony2 on the Propel documentation.

9.1 A Simple Example: A Product

In this section, you’ll configure your database, create a Product object, persist it to the database and fetch it back
out.

Code along with the example

If you want to follow along with the example in this chapter, create an AcmeStoreBundle via:

$ php app/console generate:bundle --namespace=Acme/StoreBundle

9.1.1 Configuring the Database

Before you can start, you’ll need to configure your database connection information. By convention, this information
is usually configured in an app/config/parameters.yml file:

app/config/parameters.yml
parameters:

database_driver: mysql
database_host: localhost
database_name: test_project
database_user: root
database_password: password
database_charset: UTF8

99

http://propelorm.org/cookbook/symfony2/working-with-symfony2.html#installation

Symfony Doc Documentation, Release stable

Note: Defining the configuration via parameters.yml is just a convention. The parameters defined in that file are
referenced by the main configuration file when setting up Propel:

These parameters defined in parameters.yml can now be included in the configuration file (config.yml):

propel:
dbal:

driver: "%database_driver%"
user: "%database_user%"
password: "%database_password%"
dsn: "%database_driver%:host=%database_host%;dbname=%database_name%;

→˓charset=%database_charset%"

Now that Propel knows about your database, Symfony2 can create the database for you:

$ php app/console propel:database:create

Note: In this example, you have one configured connection, named default. If you want to configure more than
one connection, read the PropelBundle configuration section.

9.1.2 Creating a Model Class

In the Propel world, ActiveRecord classes are known as models because classes generated by Propel contain some
business logic.

Note: For people who use Symfony2 with Doctrine2, models are equivalent to entities.

Suppose you’re building an application where products need to be displayed. First, create a schema.xml file inside
the Resources/config directory of your AcmeStoreBundle:

<?xml version="1.0" encoding="UTF-8" ?>
<database name="default"

namespace="Acme\StoreBundle\Model"
defaultIdMethod="native"

>
<table name="product">

<column name="id"
type="integer"
required="true"
primaryKey="true"
autoIncrement="true"

/>
<column name="name"

type="varchar"
primaryString="true"
size="100"

/>
<column name="price"

type="decimal"
/>
<column name="description"

(continues on next page)

100 Chapter 9. Databases and Propel

http://propelorm.org/cookbook/symfony2/working-with-symfony2.html#configuration

Symfony Doc Documentation, Release stable

(continued from previous page)

type="longvarchar"
/>

</table>
</database>

9.1.3 Building the Model

After creating your schema.xml, generate your model from it by running:

$ php app/console propel:model:build

This generates each model class to quickly develop your application in the Model/ directory the
AcmeStoreBundle bundle.

9.1.4 Creating the Database Tables/Schema

Now you have a usable Product class and all you need to persist it. Of course, you don’t yet have the corresponding
product table in your database. Fortunately, Propel can automatically create all the database tables needed for every
known model in your application. To do this, run:

$ php app/console propel:sql:build
$ php app/console propel:sql:insert --force

Your database now has a fully-functional product table with columns that match the schema you’ve specified.

Tip: You can run the last three commands combined by using the following command: php app/console
propel:build --insert-sql.

9.1.5 Persisting Objects to the Database

Now that you have a Product object and corresponding product table, you’re ready to persist data to the database.
From inside a controller, this is pretty easy. Add the following method to the DefaultController of the bundle:

// src/Acme/StoreBundle/Controller/DefaultController.php

// ...
use Acme\StoreBundle\Model\Product;
use Symfony\Component\HttpFoundation\Response;

public function createAction()
{

$product = new Product();
$product->setName('A Foo Bar');
$product->setPrice(19.99);
$product->setDescription('Lorem ipsum dolor');

$product->save();

return new Response('Created product id '.$product->getId());
}

9.1. A Simple Example: A Product 101

Symfony Doc Documentation, Release stable

In this piece of code, you instantiate and work with the $product object. When you call the save() method on it,
you persist it to the database. No need to use other services, the object knows how to persist itself.

Note: If you’re following along with this example, you’ll need to create a route that points to this action to see it in
action.

9.1.6 Fetching Objects from the Database

Fetching an object back from the database is even easier. For example, suppose you’ve configured a route to display a
specific Product based on its id value:

// ...
use Acme\StoreBundle\Model\ProductQuery;

public function showAction($id)
{

$product = ProductQuery::create()
->findPk($id);

if (!$product) {
throw $this->createNotFoundException(

'No product found for id '.$id
);

}

// ... do something, like pass the $product object into a template
}

9.1.7 Updating an Object

Once you’ve fetched an object from Propel, updating it is easy. Suppose you have a route that maps a product id to an
update action in a controller:

// ...
use Acme\StoreBundle\Model\ProductQuery;

public function updateAction($id)
{

$product = ProductQuery::create()
->findPk($id);

if (!$product) {
throw $this->createNotFoundException(

'No product found for id '.$id
);

}

$product->setName('New product name!');
$product->save();

return $this->redirect($this->generateUrl('homepage'));
}

Updating an object involves just three steps:

102 Chapter 9. Databases and Propel

Symfony Doc Documentation, Release stable

1. fetching the object from Propel (line 6 - 13);

2. modifying the object (line 15);

3. saving it (line 16).

9.1.8 Deleting an Object

Deleting an object is very similar to updating, but requires a call to the delete() method on the object:

$product->delete();

9.2 Querying for Objects

Propel provides generated Query classes to run both basic and complex queries without any work:

\Acme\StoreBundle\Model\ProductQuery::create()->findPk($id);

\Acme\StoreBundle\Model\ProductQuery::create()
->filterByName('Foo')
->findOne();

Imagine that you want to query for products which cost more than 19.99, ordered from cheapest to most expensive.
From inside a controller, do the following:

$products = \Acme\StoreBundle\Model\ProductQuery::create()
->filterByPrice(array('min' => 19.99))
->orderByPrice()
->find();

In one line, you get your products in a powerful oriented object way. No need to waste your time with SQL or
whatever, Symfony2 offers fully object oriented programming and Propel respects the same philosophy by providing
an awesome abstraction layer.

If you want to reuse some queries, you can add your own methods to the ProductQuery class:

// src/Acme/StoreBundle/Model/ProductQuery.php
class ProductQuery extends BaseProductQuery
{

public function filterByExpensivePrice()
{

return $this
->filterByPrice(array('min' => 1000));

}
}

But note that Propel generates a lot of methods for you and a simple findAllOrderedByName() can be written
without any effort:

\Acme\StoreBundle\Model\ProductQuery::create()
->orderByName()
->find();

9.2. Querying for Objects 103

Symfony Doc Documentation, Release stable

9.3 Relationships/Associations

Suppose that the products in your application all belong to exactly one “category”. In this case, you’ll need a
Category object and a way to relate a Product object to a Category object.

Start by adding the category definition in your schema.xml:

<?xml version="1.0" encoding="UTF-8" ?>
<database name="default"

namespace="Acme\StoreBundle\Model"
defaultIdMethod="native">
<table name="product">

<column name="id"
type="integer"
required="true"
primaryKey="true"
autoIncrement="true" />

<column name="name"
type="varchar"
primaryString="true"
size="100" />

<column name="price"
type="decimal" />

<column name="description"
type="longvarchar" />

<column name="category_id"
type="integer" />

<foreign-key foreignTable="category">
<reference local="category_id" foreign="id" />

</foreign-key>
</table>

<table name="category">
<column name="id"

type="integer"
required="true"
primaryKey="true"
autoIncrement="true" />

<column name="name"
type="varchar"
primaryString="true"
size="100" />

</table>
</database>

Create the classes:

$ php app/console propel:model:build

Assuming you have products in your database, you don’t want to lose them. Thanks to migrations, Propel will be able
to update your database without losing existing data.

104 Chapter 9. Databases and Propel

Symfony Doc Documentation, Release stable

$ php app/console propel:migration:generate-diff
$ php app/console propel:migration:migrate

Your database has been updated, you can continue writing your application.

9.3.1 Saving Related Objects

Now, try the code in action. Imagine you’re inside a controller:

// ...
use Acme\StoreBundle\Model\Category;
use Acme\StoreBundle\Model\Product;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{

public function createProductAction()
{

$category = new Category();
$category->setName('Main Products');

$product = new Product();
$product->setName('Foo');
$product->setPrice(19.99);
// relate this product to the category
$product->setCategory($category);

// save the whole
$product->save();

return new Response(
'Created product id: '.$product->getId().' and category id: '.$category->

→˓getId()
);

}
}

Now, a single row is added to both the category and product tables. The product.category_id column for
the new product is set to whatever the id is of the new category. Propel manages the persistence of this relationship for
you.

9.3.2 Fetching Related Objects

When you need to fetch associated objects, your workflow looks just like it did before. First, fetch a $product
object and then access its related Category:

// ...
use Acme\StoreBundle\Model\ProductQuery;

public function showAction($id)
{

$product = ProductQuery::create()
->joinWithCategory()
->findPk($id);

(continues on next page)

9.3. Relationships/Associations 105

Symfony Doc Documentation, Release stable

(continued from previous page)

$categoryName = $product->getCategory()->getName();

// ...
}

Note, in the above example, only one query was made.

9.3.3 More information on Associations

You will find more information on relations by reading the dedicated chapter on Relationships.

9.4 Lifecycle Callbacks

Sometimes, you need to perform an action right before or after an object is inserted, updated, or deleted. These types
of actions are known as “lifecycle” callbacks or “hooks”, as they’re callback methods that you need to execute during
different stages of the lifecycle of an object (e.g. the object is inserted, updated, deleted, etc).

To add a hook, just add a new method to the object class:

// src/Acme/StoreBundle/Model/Product.php

// ...
class Product extends BaseProduct
{

public function preInsert(\PropelPDO $con = null)
{

// do something before the object is inserted
}

}

Propel provides the following hooks:

• preInsert() code executed before insertion of a new object

• postInsert() code executed after insertion of a new object

• preUpdate() code executed before update of an existing object

• postUpdate() code executed after update of an existing object

• preSave() code executed before saving an object (new or existing)

• postSave() code executed after saving an object (new or existing)

• preDelete() code executed before deleting an object

• postDelete() code executed after deleting an object

9.5 Behaviors

All bundled behaviors in Propel are working with Symfony2. To get more information about how to use Propel
behaviors, look at the Behaviors reference section.

106 Chapter 9. Databases and Propel

http://propelorm.org/documentation/04-relationships.html
http://propelorm.org/documentation/#behaviors_reference

Symfony Doc Documentation, Release stable

9.6 Commands

You should read the dedicated section for Propel commands in Symfony2.

9.6. Commands 107

http://propelorm.org/cookbook/symfony2/working-with-symfony2#the_commands

Symfony Doc Documentation, Release stable

108 Chapter 9. Databases and Propel

CHAPTER 10

Testing

Whenever you write a new line of code, you also potentially add new bugs. To build better and more reliable applica-
tions, you should test your code using both functional and unit tests.

10.1 The PHPUnit Testing Framework

Symfony2 integrates with an independent library - called PHPUnit - to give you a rich testing framework. This chapter
won’t cover PHPUnit itself, but it has its own excellent documentation.

Note: Symfony2 works with PHPUnit 3.5.11 or later, though version 3.6.4 is needed to test the Symfony core code
itself.

Each test - whether it’s a unit test or a functional test - is a PHP class that should live in the Tests/ subdirectory of your
bundles. If you follow this rule, then you can run all of your application’s tests with the following command:

specify the configuration directory on the command line
$ phpunit -c app/

The -c option tells PHPUnit to look in the app/ directory for a configuration file. If you’re curious about the PHPUnit
options, check out the app/phpunit.xml.dist file.

Tip: Code coverage can be generated with the --coverage-html option.

10.2 Unit Tests

A unit test is usually a test against a specific PHP class. If you want to test the overall behavior of your application,
see the section about Functional Tests.

109

http://phpunit.de/manual/current/en/

Symfony Doc Documentation, Release stable

Writing Symfony2 unit tests is no different than writing standard PHPUnit unit tests. Suppose, for example, that you
have an incredibly simple class called Calculator in the Utility/ directory of your bundle:

// src/Acme/DemoBundle/Utility/Calculator.php
namespace Acme\DemoBundle\Utility;

class Calculator
{

public function add($a, $b)
{

return $a + $b;
}

}

To test this, create a CalculatorTest file in the Tests/Utility directory of your bundle:

// src/Acme/DemoBundle/Tests/Utility/CalculatorTest.php
namespace Acme\DemoBundle\Tests\Utility;

use Acme\DemoBundle\Utility\Calculator;

class CalculatorTest extends \PHPUnit_Framework_TestCase
{

public function testAdd()
{

$calc = new Calculator();
$result = $calc->add(30, 12);

// assert that your calculator added the numbers correctly!
$this->assertEquals(42, $result);

}
}

Note: By convention, the Tests/ sub-directory should replicate the directory of your bundle. So, if you’re testing a
class in your bundle’s Utility/ directory, put the test in the Tests/Utility/ directory.

Just like in your real application - autoloading is automatically enabled via the bootstrap.php.cache file (as
configured by default in the phpunit.xml.dist file).

Running tests for a given file or directory is also very easy:

run all tests in the Utility directory
$ phpunit -c app src/Acme/DemoBundle/Tests/Utility/

run tests for the Calculator class
$ phpunit -c app src/Acme/DemoBundle/Tests/Utility/CalculatorTest.php

run all tests for the entire Bundle
$ phpunit -c app src/Acme/DemoBundle/

10.3 Functional Tests

Functional tests check the integration of the different layers of an application (from the routing to the views). They are
no different from unit tests as far as PHPUnit is concerned, but they have a very specific workflow:

110 Chapter 10. Testing

Symfony Doc Documentation, Release stable

• Make a request;

• Test the response;

• Click on a link or submit a form;

• Test the response;

• Rinse and repeat.

10.3.1 Your First Functional Test

Functional tests are simple PHP files that typically live in the Tests/Controller directory of your bundle. If you
want to test the pages handled by your DemoController class, start by creating a new DemoControllerTest.
php file that extends a special WebTestCase class.

For example, the Symfony2 Standard Edition provides a simple functional test for its DemoController (Demo-
ControllerTest) that reads as follows:

// src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php
namespace Acme\DemoBundle\Tests\Controller;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class DemoControllerTest extends WebTestCase
{

public function testIndex()
{

$client = static::createClient();

$crawler = $client->request('GET', '/demo/hello/Fabien');

$this->assertGreaterThan(
0,
$crawler->filter('html:contains("Hello Fabien")')->count()

);
}

}

Tip: To run your functional tests, the WebTestCase class bootstraps the kernel of your application. In most
cases, this happens automatically. However, if your kernel is in a non-standard directory, you’ll need to modify your
phpunit.xml.dist file to set the KERNEL_DIR environment variable to the directory of your kernel:

<phpunit>
<!-- ... -->
<php>

<server name="KERNEL_DIR" value="/path/to/your/app/" />
</php>
<!-- ... -->

</phpunit>

The createClient() method returns a client, which is like a browser that you’ll use to crawl your site:

$crawler = $client->request('GET', '/demo/hello/Fabien');

10.3. Functional Tests 111

https://github.com/symfony/symfony-standard/blob/master/src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php
https://github.com/symfony/symfony-standard/blob/master/src/Acme/DemoBundle/Tests/Controller/DemoControllerTest.php

Symfony Doc Documentation, Release stable

The request() method (see more about the request method) returns a
Symfony\Component\DomCrawler\Crawler object which can be used to select elements in the Response,
click on links, and submit forms.

Tip: The Crawler only works when the response is an XML or an HTML document. To get the raw content response,
call $client->getResponse()->getContent().

Click on a link by first selecting it with the Crawler using either an XPath expression or a CSS selector, then use the
Client to click on it. For example, the following code finds all links with the text Greet, then selects the second one,
and ultimately clicks on it:

$link = $crawler->filter('a:contains("Greet")')->eq(1)->link();

$crawler = $client->click($link);

Submitting a form is very similar; select a form button, optionally override some form values, and submit the corre-
sponding form:

$form = $crawler->selectButton('submit')->form();

// set some values
$form['name'] = 'Lucas';
$form['form_name[subject]'] = 'Hey there!';

// submit the form
$crawler = $client->submit($form);

Tip: The form can also handle uploads and contains methods to fill in different types of form fields (e.g. select()
and tick()). For details, see the Forms section below.

Now that you can easily navigate through an application, use assertions to test that it actually does what you expect it
to. Use the Crawler to make assertions on the DOM:

// Assert that the response matches a given CSS selector.
$this->assertGreaterThan(0, $crawler->filter('h1')->count());

Or, test against the Response content directly if you just want to assert that the content contains some text, or if the
Response is not an XML/HTML document:

$this->assertRegExp(
'/Hello Fabien/',
$client->getResponse()->getContent()

);

More about the request() method:

The full signature of the request() method is:

request(
$method,
$uri,
array $parameters = array(),
array $files = array(),
array $server = array(),
$content = null,
$changeHistory = true

)112 Chapter 10. Testing

Symfony Doc Documentation, Release stable

The server array is the raw values that you’d expect to normally find in the PHP $_SERVER superglobal. For
example, to set the Content-Type, Referer and X-Requested-With’ HTTP headers, you’d pass the following (mind
the ‘HTTP_ prefix for non standard headers):

$client->request(
'GET',
'/demo/hello/Fabien',
array(),
array(),
array(

'CONTENT_TYPE' => 'application/json',
'HTTP_REFERER' => '/foo/bar',
'HTTP_X-Requested-With' => 'XMLHttpRequest',

)
);

Useful Assertions

To get you started faster, here is a list of the most common and useful test assertions:

// Assert that there is at least one h2 tag
// with the class "subtitle"
$this->assertGreaterThan(

0,
$crawler->filter('h2.subtitle')->count()

);

// Assert that there are exactly 4 h2 tags on the page
$this->assertCount(4, $crawler->filter('h2'));

// Assert that the "Content-Type" header is "application/json"
$this->assertTrue(

$client->getResponse()->headers->contains(
'Content-Type',
'application/json'

)
);

// Assert that the response content matches a regexp.
$this->assertRegExp('/foo/', $client->getResponse()->getContent());

// Assert that the response status code is 2xx
$this->assertTrue($client->getResponse()->isSuccessful());
// Assert that the response status code is 404
$this->assertTrue($client->getResponse()->isNotFound());
// Assert a specific 200 status code
$this->assertEquals(

200,
$client->getResponse()->getStatusCode()

);

// Assert that the response is a redirect to /demo/contact
$this->assertTrue(

$client->getResponse()->isRedirect('/demo/contact')
);
// or simply check that the response is a redirect to any URL
$this->assertTrue($client->getResponse()->isRedirect());

10.3. Functional Tests 113

http://php.net/manual/en/reserved.variables.server.php

Symfony Doc Documentation, Release stable

10.4 Working with the Test Client

The Test Client simulates an HTTP client like a browser and makes requests into your Symfony2 application:

$crawler = $client->request('GET', '/hello/Fabien');

The request() method takes the HTTP method and a URL as arguments and returns a Crawler instance.

Use the Crawler to find DOM elements in the Response. These elements can then be used to click on links and submit
forms:

$link = $crawler->selectLink('Go elsewhere...')->link();
$crawler = $client->click($link);

$form = $crawler->selectButton('validate')->form();
$crawler = $client->submit($form, array('name' => 'Fabien'));

The click() and submit() methods both return a Crawler object. These methods are the best way to browse
your application as it takes care of a lot of things for you, like detecting the HTTP method from a form and giving you
a nice API for uploading files.

Tip: You will learn more about the Link and Form objects in the Crawler section below.

The request method can also be used to simulate form submissions directly or perform more complex requests:

// Directly submit a form (but using the Crawler is easier!)
$client->request('POST', '/submit', array('name' => 'Fabien'));

// Submit a raw JSON string in the request body
$client->request(

'POST',
'/submit',
array(),
array(),
array('CONTENT_TYPE' => 'application/json'),
'{"name":"Fabien"}'

);

// Form submission with a file upload
use Symfony\Component\HttpFoundation\File\UploadedFile;

$photo = new UploadedFile(
'/path/to/photo.jpg',
'photo.jpg',
'image/jpeg',
123

);
$client->request(

'POST',
'/submit',
array('name' => 'Fabien'),
array('photo' => $photo)

(continues on next page)

114 Chapter 10. Testing

Symfony Doc Documentation, Release stable

(continued from previous page)

);

// Perform a DELETE requests, and pass HTTP headers
$client->request(

'DELETE',
'/post/12',
array(),
array(),
array('PHP_AUTH_USER' => 'username', 'PHP_AUTH_PW' => 'pa$$word')

);

Last but not least, you can force each request to be executed in its own PHP process to avoid any side-effects when
working with several clients in the same script:

$client->insulate();

10.4.1 Browsing

The Client supports many operations that can be done in a real browser:

$client->back();
$client->forward();
$client->reload();

// Clears all cookies and the history
$client->restart();

10.4.2 Accessing Internal Objects

New in version 2.3: The getInternalRequest() and getInternalResponse() method were added in
Symfony 2.3.

If you use the client to test your application, you might want to access the client’s internal objects:

$history = $client->getHistory();
$cookieJar = $client->getCookieJar();

You can also get the objects related to the latest request:

// the HttpKernel request instance
$request = $client->getRequest();

// the BrowserKit request instance
$request = $client->getInternalRequest();

// the HttpKernel response instance
$response = $client->getResponse();

// the BrowserKit response instance
$response = $client->getInternalResponse();

$crawler = $client->getCrawler();

If your requests are not insulated, you can also access the Container and the Kernel:

10.4. Working with the Test Client 115

Symfony Doc Documentation, Release stable

$container = $client->getContainer();
$kernel = $client->getKernel();

10.4.3 Accessing the Container

It’s highly recommended that a functional test only tests the Response. But under certain very rare circumstances, you
might want to access some internal objects to write assertions. In such cases, you can access the dependency injection
container:

$container = $client->getContainer();

Be warned that this does not work if you insulate the client or if you use an HTTP layer. For a list of services available
in your application, use the container:debug console task.

Tip: If the information you need to check is available from the profiler, use it instead.

10.4.4 Accessing the Profiler Data

On each request, you can enable the Symfony profiler to collect data about the internal handling of that request. For
example, the profiler could be used to verify that a given page executes less than a certain number of database queries
when loading.

To get the Profiler for the last request, do the following:

// enable the profiler for the very next request
$client->enableProfiler();

$crawler = $client->request('GET', '/profiler');

// get the profile
$profile = $client->getProfile();

For specific details on using the profiler inside a test, see the /cookbook/testing/profiling cookbook entry.

10.4.5 Redirecting

When a request returns a redirect response, the client does not follow it automatically. You can examine the response
and force a redirection afterwards with the followRedirect() method:

$crawler = $client->followRedirect();

If you want the client to automatically follow all redirects, you can force him with the followRedirects()
method:

$client->followRedirects();

116 Chapter 10. Testing

Symfony Doc Documentation, Release stable

10.5 The Crawler

A Crawler instance is returned each time you make a request with the Client. It allows you to traverse HTML docu-
ments, select nodes, find links and forms.

10.5.1 Traversing

Like jQuery, the Crawler has methods to traverse the DOM of an HTML/XML document. For example, the following
finds all input[type=submit] elements, selects the last one on the page, and then selects its immediate parent
element:

$newCrawler = $crawler->filter('input[type=submit]')
->last()
->parents()
->first()

;

Many other methods are also available:

Method Description
filter('h1.title') Nodes that match the CSS selector
filterXpath('h1') Nodes that match the XPath expression
eq(1) Node for the specified index
first() First node
last() Last node
siblings() Siblings
nextAll() All following siblings
previousAll() All preceding siblings
parents() Returns the parent nodes
children() Returns children nodes
reduce($lambda) Nodes for which the callable does not return false

Since each of these methods returns a new Crawler instance, you can narrow down your node selection by chaining
the method calls:

$crawler
->filter('h1')
->reduce(function ($node, $i) {

if (!$node->getAttribute('class')) {
return false;

}
})
->first();

Tip: Use the count() function to get the number of nodes stored in a Crawler: count($crawler)

10.5.2 Extracting Information

The Crawler can extract information from the nodes:

10.5. The Crawler 117

Symfony Doc Documentation, Release stable

// Returns the attribute value for the first node
$crawler->attr('class');

// Returns the node value for the first node
$crawler->text();

// Extracts an array of attributes for all nodes
// (_text returns the node value)
// returns an array for each element in crawler,
// each with the value and href
$info = $crawler->extract(array('_text', 'href'));

// Executes a lambda for each node and return an array of results
$data = $crawler->each(function ($node, $i)
{

return $node->attr('href');
});

10.5.3 Links

To select links, you can use the traversing methods above or the convenient selectLink() shortcut:

$crawler->selectLink('Click here');

This selects all links that contain the given text, or clickable images for which the alt attribute contains the given
text. Like the other filtering methods, this returns another Crawler object.

Once you’ve selected a link, you have access to a special Link object, which has helpful methods specific to links
(such as getMethod() and getUri()). To click on the link, use the Client’s click()method and pass it a Link
object:

$link = $crawler->selectLink('Click here')->link();

$client->click($link);

10.5.4 Forms

Just like links, you select forms with the selectButton() method:

$buttonCrawlerNode = $crawler->selectButton('submit');

Note: Notice that you select form buttons and not forms as a form can have several buttons; if you use the traversing
API, keep in mind that you must look for a button.

The selectButton() method can select button tags and submit input tags. It uses several different parts of
the buttons to find them:

• The value attribute value;

• The id or alt attribute value for images;

• The id or name attribute value for button tags.

118 Chapter 10. Testing

Symfony Doc Documentation, Release stable

Once you have a Crawler representing a button, call the form()method to get a Form instance for the form wrapping
the button node:

$form = $buttonCrawlerNode->form();

When calling the form() method, you can also pass an array of field values that overrides the default ones:

$form = $buttonCrawlerNode->form(array(
'name' => 'Fabien',
'my_form[subject]' => 'Symfony rocks!',

));

And if you want to simulate a specific HTTP method for the form, pass it as a second argument:

$form = $buttonCrawlerNode->form(array(), 'DELETE');

The Client can submit Form instances:

$client->submit($form);

The field values can also be passed as a second argument of the submit() method:

$client->submit($form, array(
'name' => 'Fabien',
'my_form[subject]' => 'Symfony rocks!',

));

For more complex situations, use the Form instance as an array to set the value of each field individually:

// Change the value of a field
$form['name'] = 'Fabien';
$form['my_form[subject]'] = 'Symfony rocks!';

There is also a nice API to manipulate the values of the fields according to their type:

// Select an option or a radio
$form['country']->select('France');

// Tick a checkbox
$form['like_symfony']->tick();

// Upload a file
$form['photo']->upload('/path/to/lucas.jpg');

Tip: You can get the values that will be submitted by calling the getValues() method on the Form ob-
ject. The uploaded files are available in a separate array returned by getFiles(). The getPhpValues() and
getPhpFiles() methods also return the submitted values, but in the PHP format (it converts the keys with square
brackets notation - e.g. my_form[subject] - to PHP arrays).

10.6 Testing Configuration

The Client used by functional tests creates a Kernel that runs in a special test environment. Since Symfony loads
the app/config/config_test.yml in the test environment, you can tweak any of your application’s settings
specifically for testing.

10.6. Testing Configuration 119

Symfony Doc Documentation, Release stable

For example, by default, the swiftmailer is configured to not actually deliver emails in the test environment. You
can see this under the swiftmailer configuration option:

You can also use a different environment entirely, or override the default debug mode (true) by passing each as
options to the createClient() method:

$client = static::createClient(array(
'environment' => 'my_test_env',
'debug' => false,

));

If your application behaves according to some HTTP headers, pass them as the second argument of
createClient():

$client = static::createClient(array(), array(
'HTTP_HOST' => 'en.example.com',
'HTTP_USER_AGENT' => 'MySuperBrowser/1.0',

));

You can also override HTTP headers on a per request basis:

$client->request('GET', '/', array(), array(), array(
'HTTP_HOST' => 'en.example.com',
'HTTP_USER_AGENT' => 'MySuperBrowser/1.0',

));

Tip: The test client is available as a service in the container in the test environment (or wherever the framework.test
option is enabled). This means you can override the service entirely if you need to.

10.6.1 PHPUnit Configuration

Each application has its own PHPUnit configuration, stored in the phpunit.xml.dist file. You can edit this file
to change the defaults or create a phpunit.xml file to tweak the configuration for your local machine.

Tip: Store the phpunit.xml.dist file in your code repository, and ignore the phpunit.xml file.

By default, only the tests stored in “standard” bundles are run by the phpunit command (standard being tests in
the src/*/Bundle/Tests or src/*/Bundle/*Bundle/Tests directories) But you can easily add more
directories. For instance, the following configuration adds the tests from the installed third-party bundles:

<!-- hello/phpunit.xml.dist -->
<testsuites>

<testsuite name="Project Test Suite">
<directory>../src/*/*Bundle/Tests</directory>
<directory>../src/Acme/Bundle/*Bundle/Tests</directory>

</testsuite>
</testsuites>

To include other directories in the code coverage, also edit the <filter> section:

<!-- ... -->
<filter>

<whitelist>
(continues on next page)

120 Chapter 10. Testing

Symfony Doc Documentation, Release stable

(continued from previous page)

<directory>../src</directory>
<exclude>

<directory>../src/*/*Bundle/Resources</directory>
<directory>../src/*/*Bundle/Tests</directory>
<directory>../src/Acme/Bundle/*Bundle/Resources</directory>
<directory>../src/Acme/Bundle/*Bundle/Tests</directory>

</exclude>
</whitelist>

</filter>

10.7 Learn more

• /components/dom_crawler

• /components/css_selector

• /cookbook/testing/http_authentication

• /cookbook/testing/insulating_clients

• /cookbook/testing/profiling

• /cookbook/testing/bootstrap

10.7. Learn more 121

Symfony Doc Documentation, Release stable

122 Chapter 10. Testing

CHAPTER 11

Validation

Validation is a very common task in web applications. Data entered in forms needs to be validated. Data also needs to
be validated before it is written into a database or passed to a web service.

Symfony2 ships with a Validator component that makes this task easy and transparent. This component is based on
the JSR303 Bean Validation specification.

11.1 The Basics of Validation

The best way to understand validation is to see it in action. To start, suppose you’ve created a plain-old-PHP object
that you need to use somewhere in your application:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{

public $name;
}

So far, this is just an ordinary class that serves some purpose inside your application. The goal of validation is to tell
you whether or not the data of an object is valid. For this to work, you’ll configure a list of rules (called constraints)
that the object must follow in order to be valid. These rules can be specified via a number of different formats (YAML,
XML, annotations, or PHP).

For example, to guarantee that the $name property is not empty, add the following:

Tip: Protected and private properties can also be validated, as well as “getter” methods (see Constraint Targets).

123

https://github.com/symfony/Validator
http://jcp.org/en/jsr/detail?id=303

Symfony Doc Documentation, Release stable

11.1.1 Using the validator Service

Next, to actually validate an Author object, use the validate method on the validator service (class
Symfony\Component\Validator\Validator). The job of the validator is easy: to read the constraints
(i.e. rules) of a class and verify whether or not the data on the object satisfies those constraints. If validation fails, an
array of errors is returned. Take this simple example from inside a controller:

// ...
use Symfony\Component\HttpFoundation\Response;
use Acme\BlogBundle\Entity\Author;

public function indexAction()
{

$author = new Author();
// ... do something to the $author object

$validator = $this->get('validator');
$errors = $validator->validate($author);

if (count($errors) > 0) {
return new Response(print_r($errors, true));

}

return new Response('The author is valid! Yes!');
}

If the $name property is empty, you will see the following error message:

Acme\BlogBundle\Author.name:
This value should not be blank

If you insert a value into the name property, the happy success message will appear.

Tip: Most of the time, you won’t interact directly with the validator service or need to worry about printing out
the errors. Most of the time, you’ll use validation indirectly when handling submitted form data. For more information,
see the Validation and Forms.

You could also pass the collection of errors into a template.

if (count($errors) > 0) {
return $this->render('AcmeBlogBundle:Author:validate.html.twig', array(

'errors' => $errors,
));

}

Inside the template, you can output the list of errors exactly as needed:

Note: Each validation error (called a “constraint violation”), is represented by a
Symfony\Component\Validator\ConstraintViolation object.

124 Chapter 11. Validation

Symfony Doc Documentation, Release stable

11.1.2 Validation and Forms

The validator service can be used at any time to validate any object. In reality, however, you’ll usually work
with the validator indirectly when working with forms. Symfony’s form library uses the validator service
internally to validate the underlying object after values have been submitted. The constraint violations on the object
are converted into FieldError objects that can easily be displayed with your form. The typical form submission
workflow looks like the following from inside a controller:

// ...
use Acme\BlogBundle\Entity\Author;
use Acme\BlogBundle\Form\AuthorType;
use Symfony\Component\HttpFoundation\Request;

public function updateAction(Request $request)
{

$author = new Author();
$form = $this->createForm(new AuthorType(), $author);

$form->handleRequest($request);

if ($form->isValid()) {
// the validation passed, do something with the $author object

return $this->redirect($this->generateUrl(...));
}

return $this->render('BlogBundle:Author:form.html.twig', array(
'form' => $form->createView(),

));
}

Note: This example uses an AuthorType form class, which is not shown here.

For more information, see the Forms chapter.

11.2 Configuration

The Symfony2 validator is enabled by default, but you must explicitly enable annotations if you’re using the annotation
method to specify your constraints:

11.3 Constraints

The validator is designed to validate objects against constraints (i.e. rules). In order to validate an object, simply
map one or more constraints to its class and then pass it to the validator service.

Behind the scenes, a constraint is simply a PHP object that makes an assertive statement. In real life, a constraint could
be: “The cake must not be burned”. In Symfony2, constraints are similar: they are assertions that a condition is true.
Given a value, a constraint will tell you whether or not that value adheres to the rules of the constraint.

11.2. Configuration 125

Symfony Doc Documentation, Release stable

11.3.1 Supported Constraints

Symfony2 packages a large number of the most commonly-needed constraints:

You can also create your own custom constraints. This topic is covered in the “/cook-
book/validation/custom_constraint” article of the cookbook.

11.3.2 Constraint Configuration

Some constraints, like NotBlank, are simple whereas others, like the Choice constraint, have several configuration
options available. Suppose that the Author class has another property, gender that can be set to either “male” or
“female”:

The options of a constraint can always be passed in as an array. Some constraints, however, also allow you to pass the
value of one, “default”, option in place of the array. In the case of the Choice constraint, the choices options can
be specified in this way.

This is purely meant to make the configuration of the most common option of a constraint shorter and quicker.

If you’re ever unsure of how to specify an option, either check the API documentation for the constraint or play it safe
by always passing in an array of options (the first method shown above).

11.4 Translation Constraint Messages

For information on translating the constraint messages, see Translating Constraint Messages.

11.5 Constraint Targets

Constraints can be applied to a class property (e.g. name) or a public getter method (e.g. getFullName). The first
is the most common and easy to use, but the second allows you to specify more complex validation rules.

11.5.1 Properties

Validating class properties is the most basic validation technique. Symfony2 allows you to validate private, protected
or public properties. The next listing shows you how to configure the $firstName property of an Author class to
have at least 3 characters.

11.5.2 Getters

Constraints can also be applied to the return value of a method. Symfony2 allows you to add a constraint to any public
method whose name starts with “get” or “is”. In this guide, both of these types of methods are referred to as “getters”.

The benefit of this technique is that it allows you to validate your object dynamically. For example, suppose you want
to make sure that a password field doesn’t match the first name of the user (for security reasons). You can do this by
creating an isPasswordLegal method, and then asserting that this method must return true:

Now, create the isPasswordLegal() method, and include the logic you need:

126 Chapter 11. Validation

Symfony Doc Documentation, Release stable

public function isPasswordLegal()
{

return $this->firstName != $this->password;
}

Note: The keen-eyed among you will have noticed that the prefix of the getter (“get” or “is”) is omitted in the
mapping. This allows you to move the constraint to a property with the same name later (or vice versa) without
changing your validation logic.

11.5.3 Classes

Some constraints apply to the entire class being validated. For example, the Callback constraint is a generic constraint
that’s applied to the class itself. When that class is validated, methods specified by that constraint are simply executed
so that each can provide more custom validation.

11.6 Validation Groups

So far, you’ve been able to add constraints to a class and ask whether or not that class passes all of the defined
constraints. In some cases, however, you’ll need to validate an object against only some of the constraints on that
class. To do this, you can organize each constraint into one or more “validation groups”, and then apply validation
against just one group of constraints.

For example, suppose you have a User class, which is used both when a user registers and when a user updates his/her
contact information later:

With this configuration, there are two validation groups:

• User - contains the constraints that belong to no other group, and is considered the Default group. (This
group is useful for Group Sequence);

• registration - contains the constraints on the email and password fields only.

To tell the validator to use a specific group, pass one or more group names as the second argument to the validate()
method:

$errors = $validator->validate($author, array('registration'));

If no groups are specified, all constraints that belong in group Default will be applied.

Of course, you’ll usually work with validation indirectly through the form library. For information on how to use
validation groups inside forms, see Validation Groups.

11.7 Group Sequence

In some cases, you want to validate your groups by steps. To do this, you can use the GroupSequence feature. In
the case, an object defines a group sequence, and then the groups in the group sequence are validated in order.

Tip: Group sequences cannot contain the group Default, as this would create a loop. Instead, use the group
{ClassName} (e.g. User).

11.6. Validation Groups 127

Symfony Doc Documentation, Release stable

For example, suppose you have a User class and want to validate that the username and the password are different
only if all other validation passes (in order to avoid multiple error messages).

In this example, it will first validate all constraints in the group User (which is the same as the Default group).
Only if all constraints in that group are valid, the second group, Strict, will be validated.

11.7.1 Group Sequence Providers

Imagine a User entity which can be a normal user or a premium user. When it’s a premium user, some extra constraints
should be added to the user entity (e.g. the credit card details). To dynamically determine which groups should
be activated, you can create a Group Sequence Provider. First, create the entity and a new constraint group called
Premium:

Now, change the User class to implement Symfony\Component\Validator\GroupSequenceProviderInterface
and add the :method:‘Symfony\\Component\\Validator\\GroupSequenceProviderInterface::getGroupSequence‘,
which should return an array of groups to use. Also, add the @Assert\GroupSequenceProvider annotation
to the class. If you imagine that a method called isPremium returns true if the user is a premium member, then your
code might look like this:

// src/Acme/DemoBundle/Entity/User.php
namespace Acme\DemoBundle\Entity;

// ...
use Symfony\Component\Validator\GroupSequenceProviderInterface;

/**
* @Assert\GroupSequenceProvider

* ...

*/
class User implements GroupSequenceProviderInterface
{

// ...

public function getGroupSequence()
{

$groups = array('User');

if ($this->isPremium()) {
$groups[] = 'Premium';

}

return $groups;
}

}

11.8 Validating Values and Arrays

So far, you’ve seen how you can validate entire objects. But sometimes, you just want to validate a simple value - like
to verify that a string is a valid email address. This is actually pretty easy to do. From inside a controller, it looks like
this:

use Symfony\Component\Validator\Constraints\Email;
// ...

(continues on next page)

128 Chapter 11. Validation

Symfony Doc Documentation, Release stable

(continued from previous page)

public function addEmailAction($email)
{

$emailConstraint = new Email();
// all constraint "options" can be set this way
$emailConstraint->message = 'Invalid email address';

// use the validator to validate the value
$errorList = $this->get('validator')->validateValue(

$email,
$emailConstraint

);

if (count($errorList) == 0) {
// this IS a valid email address, do something

} else {
// this is *not* a valid email address
$errorMessage = $errorList[0]->getMessage();

// ... do something with the error
}

// ...
}

By calling validateValue on the validator, you can pass in a raw value and the constraint object that you want to
validate that value against. A full list of the available constraints - as well as the full class name for each constraint -
is available in the constraints reference section .

The validateValuemethod returns a Symfony\Component\Validator\ConstraintViolationList
object, which acts just like an array of errors. Each error in the collection is a
Symfony\Component\Validator\ConstraintViolation object, which holds the error message on
its getMessage method.

11.9 Final Thoughts

The Symfony2 validator is a powerful tool that can be leveraged to guarantee that the data of any object is “valid”.
The power behind validation lies in “constraints”, which are rules that you can apply to properties or getter methods of
your object. And while you’ll most commonly use the validation framework indirectly when using forms, remember
that it can be used anywhere to validate any object.

11.10 Learn more from the Cookbook

• /cookbook/validation/custom_constraint

11.9. Final Thoughts 129

Symfony Doc Documentation, Release stable

130 Chapter 11. Validation

CHAPTER 12

Forms

Dealing with HTML forms is one of the most common - and challenging - tasks for a web developer. Symfony2
integrates a Form component that makes dealing with forms easy. In this chapter, you’ll build a complex form from
the ground-up, learning the most important features of the form library along the way.

Note: The Symfony form component is a standalone library that can be used outside of Symfony2 projects. For more
information, see the Symfony2 Form Component on Github.

12.1 Creating a Simple Form

Suppose you’re building a simple todo list application that will need to display “tasks”. Because your users will need
to edit and create tasks, you’re going to need to build a form. But before you begin, first focus on the generic Task
class that represents and stores the data for a single task:

// src/Acme/TaskBundle/Entity/Task.php
namespace Acme\TaskBundle\Entity;

class Task
{

protected $task;

protected $dueDate;

public function getTask()
{

return $this->task;
}
public function setTask($task)
{

$this->task = $task;
}

(continues on next page)

131

https://github.com/symfony/Form

Symfony Doc Documentation, Release stable

(continued from previous page)

public function getDueDate()
{

return $this->dueDate;
}
public function setDueDate(\DateTime $dueDate = null)
{

$this->dueDate = $dueDate;
}

}

Note: If you’re coding along with this example, create the AcmeTaskBundle first by running the following
command (and accepting all of the default options):

$ php app/console generate:bundle --namespace=Acme/TaskBundle

This class is a “plain-old-PHP-object” because, so far, it has nothing to do with Symfony or any other library. It’s
quite simply a normal PHP object that directly solves a problem inside your application (i.e. the need to represent a
task in your application). Of course, by the end of this chapter, you’ll be able to submit data to a Task instance (via
an HTML form), validate its data, and persist it to the database.

12.1.1 Building the Form

Now that you’ve created a Task class, the next step is to create and render the actual HTML form. In Symfony2,
this is done by building a form object and then rendering it in a template. For now, this can all be done from inside a
controller:

// src/Acme/TaskBundle/Controller/DefaultController.php
namespace Acme\TaskBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Acme\TaskBundle\Entity\Task;
use Symfony\Component\HttpFoundation\Request;

class DefaultController extends Controller
{

public function newAction(Request $request)
{

// create a task and give it some dummy data for this example
$task = new Task();
$task->setTask('Write a blog post');
$task->setDueDate(new \DateTime('tomorrow'));

$form = $this->createFormBuilder($task)
->add('task', 'text')
->add('dueDate', 'date')
->add('save', 'submit')
->getForm();

return $this->render('AcmeTaskBundle:Default:new.html.twig', array(
'form' => $form->createView(),

));

(continues on next page)

132 Chapter 12. Forms

Symfony Doc Documentation, Release stable

(continued from previous page)

}
}

Tip: This example shows you how to build your form directly in the controller. Later, in the “Creating Form Classes”
section, you’ll learn how to build your form in a standalone class, which is recommended as your form becomes
reusable.

Creating a form requires relatively little code because Symfony2 form objects are built with a “form builder”. The
form builder’s purpose is to allow you to write simple form “recipes”, and have it do all the heavy-lifting of actually
building the form.

In this example, you’ve added two fields to your form - task and dueDate - corresponding to the task and
dueDate properties of the Task class. You’ve also assigned each a “type” (e.g. text, date), which, among
other things, determines which HTML form tag(s) is rendered for that field. Finally, you added a submit button for
submitting the form to the server.

New in version 2.3: Support for submit buttons was added in Symfony 2.3. Before that, you had to add buttons to the
form’s HTML manually.

Symfony2 comes with many built-in types that will be discussed shortly (see Built-in Field Types).

12.1.2 Rendering the Form

Now that the form has been created, the next step is to render it. This is done by passing a special form “view”
object to your template (notice the $form->createView() in the controller above) and using a set of form helper
functions:

images/book/form-simple.png

Note: This example assumes that you submit the form in a “POST” request and to the same URL that it was displayed
in. You will learn later how to change the request method and the target URL of the form.

That’s it! By printing form(form), each field in the form is rendered, along with a label and error message (if there
is one). The form function also surrounds everything in the necessary HTML form tag. As easy as this is, it’s not
very flexible (yet). Usually, you’ll want to render each form field individually so you can control how the form looks.
You’ll learn how to do that in the “Rendering a Form in a Template” section.

Before moving on, notice how the rendered task input field has the value of the task property from the $task
object (i.e. “Write a blog post”). This is the first job of a form: to take data from an object and translate it into a format
that’s suitable for being rendered in an HTML form.

Tip: The form system is smart enough to access the value of the protected task property via the getTask() and
setTask() methods on the Task class. Unless a property is public, it must have a “getter” and “setter” method
so that the form component can get and put data onto the property. For a Boolean property, you can use an “isser”

12.1. Creating a Simple Form 133

Symfony Doc Documentation, Release stable

or “hasser” method (e.g. isPublished() or hasReminder()) instead of a getter (e.g. getPublished() or
getReminder()).

12.1.3 Handling Form Submissions

The second job of a form is to translate user-submitted data back to the properties of an object. To make this happen,
the submitted data from the user must be written into the form. Add the following functionality to your controller:

// ...
use Symfony\Component\HttpFoundation\Request;

public function newAction(Request $request)
{

// just setup a fresh $task object (remove the dummy data)
$task = new Task();

$form = $this->createFormBuilder($task)
->add('task', 'text')
->add('dueDate', 'date')
->add('save', 'submit')
->getForm();

$form->handleRequest($request);

if ($form->isValid()) {
// perform some action, such as saving the task to the database

return $this->redirect($this->generateUrl('task_success'));
}

// ...
}

New in version 2.3: The :method:‘Symfony\\Component\\Form\\FormInterface::handleRequest‘ method was
added in Symfony 2.3. Previously, the $request was passed to the submit method - a strategy which is dep-
recated and will be removed in Symfony 3.0. For details on that method, see cookbook-form-submit-request.

This controller follows a common pattern for handling forms, and has three possible paths:

1. When initially loading the page in a browser, the form is simply created and rendered.
:method:‘Symfony\\Component\\Form\\FormInterface::handleRequest‘ recognizes that the form was
not submitted and does nothing. :method:‘Symfony\\Component\\Form\\FormInterface::isValid‘ returns
false if the form was not submitted.

2. When the user submits the form, :method:‘Symfony\\Component\\Form\\FormInterface::handleRequest‘
recognizes this and immediately writes the submitted data back into the task and dueDate properties of
the $task object. Then this object is validated. If it is invalid (validation is covered in the next section),
:method:‘Symfony\\Component\\Form\\FormInterface::isValid‘ returns false again, so the form is ren-
dered together with all validation errors;

Note: You can use the method :method:‘Symfony\\Component\\Form\\FormInterface::isSubmitted‘ to
check whether a form was submitted, regardless of whether or not the submitted data is actually valid.

3. When the user submits the form with valid data, the submitted data is again written into the form, but this time
:method:‘Symfony\\Component\\Form\\FormInterface::isValid‘ returns true. Now you have the opportu-

134 Chapter 12. Forms

Symfony Doc Documentation, Release stable

nity to perform some actions using the $task object (e.g. persisting it to the database) before redirecting the
user to some other page (e.g. a “thank you” or “success” page).

Note: Redirecting a user after a successful form submission prevents the user from being able to hit “refresh”
and re-post the data.

12.1.4 Submitting Forms with Multiple Buttons

New in version 2.3: Support for buttons in forms was added in Symfony 2.3.

When your form contains more than one submit button, you will want to check which of the buttons was clicked to
adapt the program flow in your controller. Let’s add a second button with the caption “Save and add” to our form:

$form = $this->createFormBuilder($task)
->add('task', 'text')
->add('dueDate', 'date')
->add('save', 'submit')
->add('saveAndAdd', 'submit')
->getForm();

In your controller, use the button’s :method:‘Symfony\\Component\\Form\\ClickableInterface::isClicked‘ method
for querying if the “Save and add” button was clicked:

if ($form->isValid()) {
// ... perform some action, such as saving the task to the database

$nextAction = $form->get('saveAndAdd')->isClicked()
? 'task_new'
: 'task_success';

return $this->redirect($this->generateUrl($nextAction));
}

12.2 Form Validation

In the previous section, you learned how a form can be submitted with valid or invalid data. In Symfony2, validation is
applied to the underlying object (e.g. Task). In other words, the question isn’t whether the “form” is valid, but whether
or not the $task object is valid after the form has applied the submitted data to it. Calling $form->isValid() is
a shortcut that asks the $task object whether or not it has valid data.

Validation is done by adding a set of rules (called constraints) to a class. To see this in action, add validation constraints
so that the task field cannot be empty and the dueDate field cannot be empty and must be a valid DateTime object.

That’s it! If you re-submit the form with invalid data, you’ll see the corresponding errors printed out with the form.

HTML5 Validation

As of HTML5, many browsers can natively enforce certain validation constraints on the client side. The most
common validation is activated by rendering a required attribute on fields that are required. For browsers that
support HTML5, this will result in a native browser message being displayed if the user tries to submit the form
with that field blank.

12.2. Form Validation 135

Symfony Doc Documentation, Release stable

Generated forms take full advantage of this new feature by adding sensible HTML attributes that trigger the valida-
tion. The client-side validation, however, can be disabled by adding the novalidate attribute to the form tag or
formnovalidate to the submit tag. This is especially useful when you want to test your server-side validation
constraints, but are being prevented by your browser from, for example, submitting blank fields.

Validation is a very powerful feature of Symfony2 and has its own dedicated chapter.

12.2.1 Validation Groups

Tip: If you’re not using validation groups, then you can skip this section.

If your object takes advantage of validation groups, you’ll need to specify which validation group(s) your form should
use:

$form = $this->createFormBuilder($users, array(
'validation_groups' => array('registration'),

))->add(...);

If you’re creating form classes (a good practice), then you’ll need to add the following to the
setDefaultOptions() method:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'validation_groups' => array('registration'),

));
}

In both of these cases, only the registration validation group will be used to validate the underlying object.

12.2.2 Disabling Validation

New in version 2.3: The ability to set validation_groups to false was added in Symfony 2.3, although setting it
to an empty array achieved the same result in previous versions.

Sometimes it is useful to suppress the validation of a form altogether. For these cases, you can skip the call to
:method:‘Symfony\\Component\\Form\\FormInterface::isValid‘ in your controller. If this is not possible, you can
alternatively set the validation_groups option to false or an empty array:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'validation_groups' => false,

));
}

Note that when you do that, the form will still run basic integrity checks, for example whether an uploaded file was
too large or whether non-existing fields were submitted. If you want to suppress validation completely, remove the
:method:‘Symfony\\Component\\Form\\FormInterface::isValid‘ call from your controller.

136 Chapter 12. Forms

Symfony Doc Documentation, Release stable

12.2.3 Groups based on the Submitted Data

If you need some advanced logic to determine the validation groups (e.g. based on submitted data), you can set the
validation_groups option to an array callback:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'validation_groups' => array(

'Acme\AcmeBundle\Entity\Client',
'determineValidationGroups',

),
));

}

This will call the static method determineValidationGroups() on the Client class after the form is sub-
mitted, but before validation is executed. The Form object is passed as an argument to that method (see next example).
You can also define whole logic inline by using a Closure:

use Symfony\Component\Form\FormInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'validation_groups' => function(FormInterface $form) {

$data = $form->getData();
if (Entity\Client::TYPE_PERSON == $data->getType()) {

return array('person');
} else {

return array('company');
}

},
));

}

12.2.4 Groups based on the Clicked Button

New in version 2.3: Support for buttons in forms was added in Symfony 2.3.

When your form contains multiple submit buttons, you can change the validation group depending on which button is
used to submit the form. For example, consider a form in a wizard that lets you advance to the next step or go back to
the previous step. Let’s assume also that when returning to the previous step, the data of the form should be saved, but
not validated.

First, we need to add the two buttons to the form:

$form = $this->createFormBuilder($task)
// ...
->add('nextStep', 'submit')
->add('previousStep', 'submit')
->getForm();

Then, we configure the button for returning to the previous step to run specific validation groups. In this example, we
want it to suppress validation, so we set its validation_groups options to false:

12.2. Form Validation 137

Symfony Doc Documentation, Release stable

$form = $this->createFormBuilder($task)
// ...
->add('previousStep', 'submit', array(

'validation_groups' => false,
))
->getForm();

Now the form will skip your validation constraints. It will still validate basic integrity constraints, such as checking
whether an uploaded file was too large or whether you tried to submit text in a number field.

12.3 Built-in Field Types

Symfony comes standard with a large group of field types that cover all of the common form fields and data types
you’ll encounter:

You can also create your own custom field types. This topic is covered in the “/cook-
book/form/create_custom_field_type” article of the cookbook.

12.3.1 Field Type Options

Each field type has a number of options that can be used to configure it. For example, the dueDate field is currently
being rendered as 3 select boxes. However, the date field can be configured to be rendered as a single text box (where
the user would enter the date as a string in the box):

->add('dueDate', 'date', array('widget' => 'single_text'))

images/book/form-simple2.png

Each field type has a number of different options that can be passed to it. Many of these are specific to the field type
and details can be found in the documentation for each type.

The required option

The most common option is the required option, which can be applied to any field. By default, the required
option is set to true, meaning that HTML5-ready browsers will apply client-side validation if the field is left
blank. If you don’t want this behavior, either set the required option on your field to false or disable HTML5
validation.

Also note that setting the required option to true will not result in server-side validation to be applied. In other
words, if a user submits a blank value for the field (either with an old browser or web service, for example), it will
be accepted as a valid value unless you use Symfony’s NotBlank or NotNull validation constraint.

In other words, the required option is “nice”, but true server-side validation should always be used.

138 Chapter 12. Forms

Symfony Doc Documentation, Release stable

The label option

The label for the form field can be set using the label option, which can be applied to any field:

->add('dueDate', 'date', array(
'widget' => 'single_text',
'label' => 'Due Date',

))

The label for a field can also be set in the template rendering the form, see below.

12.4 Field Type Guessing

Now that you’ve added validation metadata to the Task class, Symfony already knows a bit about your fields. If you
allow it, Symfony can “guess” the type of your field and set it up for you. In this example, Symfony can guess from
the validation rules that both the task field is a normal text field and the dueDate field is a date field:

public function newAction()
{

$task = new Task();

$form = $this->createFormBuilder($task)
->add('task')
->add('dueDate', null, array('widget' => 'single_text'))
->add('save', 'submit')
->getForm();

}

The “guessing” is activated when you omit the second argument to the add() method (or if you pass null to it). If
you pass an options array as the third argument (done for dueDate above), these options are applied to the guessed
field.

Caution: If your form uses a specific validation group, the field type guesser will still consider all validation
constraints when guessing your field types (including constraints that are not part of the validation group(s) being
used).

12.4.1 Field Type Options Guessing

In addition to guessing the “type” for a field, Symfony can also try to guess the correct values of a number of field
options.

Tip: When these options are set, the field will be rendered with special HTML attributes that provide for HTML5
client-side validation. However, it doesn’t generate the equivalent server-side constraints (e.g. Assert\Length).
And though you’ll need to manually add your server-side validation, these field type options can then be guessed from
that information.

• required: The required option can be guessed based on the validation rules (i.e. is the field NotBlank
or NotNull) or the Doctrine metadata (i.e. is the field nullable). This is very useful, as your client-side
validation will automatically match your validation rules.

12.4. Field Type Guessing 139

Symfony Doc Documentation, Release stable

• max_length: If the field is some sort of text field, then the max_length option can be guessed from the
validation constraints (if Length or Range is used) or from the Doctrine metadata (via the field’s length).

Note: These field options are only guessed if you’re using Symfony to guess the field type (i.e. omit or pass null as
the second argument to add()).

If you’d like to change one of the guessed values, you can override it by passing the option in the options field array:

->add('task', null, array('max_length' => 4))

12.5 Rendering a Form in a Template

So far, you’ve seen how an entire form can be rendered with just one line of code. Of course, you’ll usually need much
more flexibility when rendering:

Take a look at each part:

• form_start(form) - Renders the start tag of the form.

• form_errors(form) - Renders any errors global to the whole form (field-specific errors are displayed next
to each field);

• form_row(form.dueDate) - Renders the label, any errors, and the HTML form widget for the given field
(e.g. dueDate) inside, by default, a div element;

• form_end() - Renders the end tag of the form and any fields that have not yet been rendered. This is useful
for rendering hidden fields and taking advantage of the automatic CSRF Protection.

The majority of the work is done by the form_row helper, which renders the label, errors and HTML form widget of
each field inside a div tag by default. In the Form Theming section, you’ll learn how the form_row output can be
customized on many different levels.

Tip: You can access the current data of your form via form.vars.value:

12.5.1 Rendering each Field by Hand

The form_row helper is great because you can very quickly render each field of your form (and the markup used for
the “row” can be customized as well). But since life isn’t always so simple, you can also render each field entirely by
hand. The end-product of the following is the same as when you used the form_row helper:

If the auto-generated label for a field isn’t quite right, you can explicitly specify it:

Some field types have additional rendering options that can be passed to the widget. These options are documented
with each type, but one common options is attr, which allows you to modify attributes on the form element. The
following would add the task_field class to the rendered input text field:

If you need to render form fields “by hand” then you can access individual values for fields such as the id, name and
label. For example to get the id:

To get the value used for the form field’s name attribute you need to use the full_name value:

140 Chapter 12. Forms

Symfony Doc Documentation, Release stable

12.5.2 Twig Template Function Reference

If you’re using Twig, a full reference of the form rendering functions is available in the reference manual. Read this to
know everything about the helpers available and the options that can be used with each.

12.6 Changing the Action and Method of a Form

So far, the form_start() helper has been used to render the form’s start tag and we assumed that each form is
submitted to the same URL in a POST request. Sometimes you want to change these parameters. You can do so in a
few different ways. If you build your form in the controller, you can use setAction() and setMethod():

$form = $this->createFormBuilder($task)
->setAction($this->generateUrl('target_route'))
->setMethod('GET')
->add('task', 'text')
->add('dueDate', 'date')
->add('save', 'submit')
->getForm();

Note: This example assumes that you’ve created a route called target_route that points to the controller that
processes the form.

In Creating Form Classes you will learn how to move the form building code into separate classes. When using an
external form class in the controller, you can pass the action and method as form options:

$form = $this->createForm(new TaskType(), $task, array(
'action' => $this->generateUrl('target_route'),
'method' => 'GET',

));

Finally, you can override the action and method in the template by passing them to the form() or the
form_start() helper:

Note: If the form’s method is not GET or POST, but PUT, PATCH or DELETE, Symfony2 will insert a hidden
field with the name “_method” that stores this method. The form will be submitted in a normal POST request, but
Symfony2’s router is capable of detecting the “_method” parameter and will interpret the request as PUT, PATCH or
DELETE request. Read the cookbook chapter “/cookbook/routing/method_parameters” for more information.

12.7 Creating Form Classes

As you’ve seen, a form can be created and used directly in a controller. However, a better practice is to build the form
in a separate, standalone PHP class, which can then be reused anywhere in your application. Create a new class that
will house the logic for building the task form:

// src/Acme/TaskBundle/Form/Type/TaskType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

(continues on next page)

12.6. Changing the Action and Method of a Form 141

Symfony Doc Documentation, Release stable

(continued from previous page)

class TaskType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('task')
->add('dueDate', null, array('widget' => 'single_text'))
->add('save', 'submit');

}

public function getName()
{

return 'task';
}

}

This new class contains all the directions needed to create the task form (note that the getName() method should
return a unique identifier for this form “type”). It can be used to quickly build a form object in the controller:

// src/Acme/TaskBundle/Controller/DefaultController.php

// add this new use statement at the top of the class
use Acme\TaskBundle\Form\Type\TaskType;

public function newAction()
{

$task = ...;
$form = $this->createForm(new TaskType(), $task);

// ...
}

Placing the form logic into its own class means that the form can be easily reused elsewhere in your project. This is
the best way to create forms, but the choice is ultimately up to you.

Setting the data_class

Every form needs to know the name of the class that holds the underlying data (e.g.
Acme\TaskBundle\Entity\Task). Usually, this is just guessed based off of the object passed to the
second argument to createForm (i.e. $task). Later, when you begin embedding forms, this will no longer be
sufficient. So, while not always necessary, it’s generally a good idea to explicitly specify the data_class option
by adding the following to your form type class:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\TaskBundle\Entity\Task',

));
}

Tip: When mapping forms to objects, all fields are mapped. Any fields on the form that do not exist on the mapped
object will cause an exception to be thrown.

142 Chapter 12. Forms

Symfony Doc Documentation, Release stable

In cases where you need extra fields in the form (for example: a “do you agree with these terms” checkbox) that will
not be mapped to the underlying object, you need to set the mapped option to false:

use Symfony\Component\Form\FormBuilderInterface;

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('task')
->add('dueDate', null, array('mapped' => false))
->add('save', 'submit');

}

Additionally, if there are any fields on the form that aren’t included in the submitted data, those fields will be explicitly
set to null.

The field data can be accessed in a controller with:

$form->get('dueDate')->getData();

12.7.1 Defining your Forms as Services

Defining your form type as a service is a good practice and makes it really easy to use in your application.

That’s it! Now you can use your form type directly in a controller:

// src/Acme/TaskBundle/Controller/DefaultController.php
// ...

public function newAction()
{

$task = ...;
$form = $this->createForm('task', $task);

// ...
}

or even use from within the form type of another form:

// src/Acme/TaskBundle/Form/Type/ListType.php
// ...

class ListType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('someTask', 'task');
}

}

Read form-cookbook-form-field-service for more information.

12.7. Creating Form Classes 143

Symfony Doc Documentation, Release stable

12.8 Forms and Doctrine

The goal of a form is to translate data from an object (e.g. Task) to an HTML form and then translate user-submitted
data back to the original object. As such, the topic of persisting the Task object to the database is entirely unrelated to
the topic of forms. But, if you’ve configured the Task class to be persisted via Doctrine (i.e. you’ve added mapping
metadata for it), then persisting it after a form submission can be done when the form is valid:

if ($form->isValid()) {
$em = $this->getDoctrine()->getManager();
$em->persist($task);
$em->flush();

return $this->redirect($this->generateUrl('task_success'));
}

If, for some reason, you don’t have access to your original $task object, you can fetch it from the form:

$task = $form->getData();

For more information, see the Doctrine ORM chapter.

The key thing to understand is that when the form is submitted, the submitted data is transferred to the underlying
object immediately. If you want to persist that data, you simply need to persist the object itself (which already contains
the submitted data).

12.9 Embedded Forms

Often, you’ll want to build a form that will include fields from many different objects. For example, a registration
form may contain data belonging to a User object as well as many Address objects. Fortunately, this is easy and
natural with the form component.

12.9.1 Embedding a Single Object

Suppose that each Task belongs to a simple Category object. Start, of course, by creating the Category object:

// src/Acme/TaskBundle/Entity/Category.php
namespace Acme\TaskBundle\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Category
{

/**
* @Assert\NotBlank()

*/
public $name;

}

Next, add a new category property to the Task class:

// ...

class Task

(continues on next page)

144 Chapter 12. Forms

Symfony Doc Documentation, Release stable

(continued from previous page)

{
// ...

/**
* @Assert\Type(type="Acme\TaskBundle\Entity\Category")

*/
protected $category;

// ...

public function getCategory()
{

return $this->category;
}

public function setCategory(Category $category = null)
{

$this->category = $category;
}

}

Now that your application has been updated to reflect the new requirements, create a form class so that a Category
object can be modified by the user:

// src/Acme/TaskBundle/Form/Type/CategoryType.php
namespace Acme\TaskBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class CategoryType extends AbstractType
{

public function buildForm(FormBuilderInterface $builder, array $options)
{

$builder->add('name');
}

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\TaskBundle\Entity\Category',

));
}

public function getName()
{

return 'category';
}

}

The end goal is to allow the Category of a Task to be modified right inside the task form itself. To accomplish this,
add a category field to the TaskType object whose type is an instance of the new CategoryType class:

use Symfony\Component\Form\FormBuilderInterface;

(continues on next page)

12.9. Embedded Forms 145

Symfony Doc Documentation, Release stable

(continued from previous page)

public function buildForm(FormBuilderInterface $builder, array $options)
{

// ...

$builder->add('category', new CategoryType());
}

The fields from CategoryType can now be rendered alongside those from the TaskType class. To activate vali-
dation on CategoryType, add the cascade_validation option to TaskType:

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\TaskBundle\Entity\Task',
'cascade_validation' => true,

));
}

Render the Category fields in the same way as the original Task fields:

When the user submits the form, the submitted data for the Category fields are used to construct an instance of
Category, which is then set on the category field of the Task instance.

The Category instance is accessible naturally via $task->getCategory() and can be persisted to the database
or used however you need.

12.9.2 Embedding a Collection of Forms

You can also embed a collection of forms into one form (imagine a Category form with many Product sub-forms).
This is done by using the collection field type.

For more information see the “/cookbook/form/form_collections” cookbook entry and the collection field type refer-
ence.

12.10 Form Theming

Every part of how a form is rendered can be customized. You’re free to change how each form “row” renders, change
the markup used to render errors, or even customize how a textarea tag should be rendered. Nothing is off-limits,
and different customizations can be used in different places.

Symfony uses templates to render each and every part of a form, such as label tags, input tags, error messages
and everything else.

In Twig, each form “fragment” is represented by a Twig block. To customize any part of how a form renders, you just
need to override the appropriate block.

In PHP, each form “fragment” is rendered via an individual template file. To customize any part of how a form renders,
you just need to override the existing template by creating a new one.

To understand how this works, customize the form_row fragment and add a class attribute to the div element that
surrounds each row. To do this, create a new template file that will store the new markup:

The form_row form fragment is used when rendering most fields via the form_row function. To tell the form
component to use your new form_row fragment defined above, add the following to the top of the template that
renders the form:

146 Chapter 12. Forms

Symfony Doc Documentation, Release stable

The form_theme tag (in Twig) “imports” the fragments defined in the given template and uses them when rendering
the form. In other words, when the form_row function is called later in this template, it will use the form_row
block from your custom theme (instead of the default form_row block that ships with Symfony).

Your custom theme does not have to override all the blocks. When rendering a block which is not overridden in your
custom theme, the theming engine will fall back to the global theme (defined at the bundle level).

If several custom themes are provided they will be searched in the listed order before falling back to the global theme.

To customize any portion of a form, you just need to override the appropriate fragment. Knowing exactly which block
or file to override is the subject of the next section.

{# src/Acme/TaskBundle/Resources/views/Default/new.html.twig #}

{% form_theme form with 'AcmeTaskBundle:Form:fields.html.twig' %}

{% form_theme form with ['AcmeTaskBundle:Form:fields.html.twig',
→˓'AcmeTaskBundle:Form:fields2.html.twig'] %}

For a more extensive discussion, see /cookbook/form/form_customization.

12.10.1 Form Fragment Naming

In Symfony, every part of a form that is rendered - HTML form elements, errors, labels, etc - is defined in a base
theme, which is a collection of blocks in Twig and a collection of template files in PHP.

In Twig, every block needed is defined in a single template file (form_div_layout.html.twig) that lives inside the Twig
Bridge. Inside this file, you can see every block needed to render a form and every default field type.

In PHP, the fragments are individual template files. By default they are located in the Resources/views/Form directory
of the framework bundle (view on GitHub).

Each fragment name follows the same basic pattern and is broken up into two pieces, separated by a single underscore
character (_). A few examples are:

• form_row - used by form_row to render most fields;

• textarea_widget - used by form_widget to render a textarea field type;

• form_errors - used by form_errors to render errors for a field;

Each fragment follows the same basic pattern: type_part. The type portion corresponds to the field type being
rendered (e.g. textarea, checkbox, date, etc) whereas the part portion corresponds to what is being rendered
(e.g. label, widget, errors, etc). By default, there are 4 possible parts of a form that can be rendered:

label (e.g. form_label) renders the field’s label
widget (e.g. form_widget) renders the field’s HTML representation
errors (e.g. form_errors) renders the field’s errors
row (e.g. form_row) renders the field’s entire row (label, widget & errors)

Note: There are actually 2 other parts - rows and rest - but you should rarely if ever need to worry about overriding
them.

By knowing the field type (e.g. textarea) and which part you want to customize (e.g. widget), you can construct
the fragment name that needs to be overridden (e.g. textarea_widget).

12.10. Form Theming 147

https://github.com/symfony/symfony/blob/2.2/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig
https://github.com/symfony/symfony/tree/2.2/src/Symfony/Bridge/Twig
https://github.com/symfony/symfony/tree/2.2/src/Symfony/Bridge/Twig
https://github.com/symfony/symfony/tree/2.2/src/Symfony/Bundle/FrameworkBundle/Resources/views/Form

Symfony Doc Documentation, Release stable

12.10.2 Template Fragment Inheritance

In some cases, the fragment you want to customize will appear to be missing. For example, there is no
textarea_errors fragment in the default themes provided with Symfony. So how are the errors for a textarea
field rendered?

The answer is: via the form_errors fragment. When Symfony renders the errors for a textarea type, it looks first
for a textarea_errors fragment before falling back to the form_errors fragment. Each field type has a parent
type (the parent type of textarea is text, its parent is form), and Symfony uses the fragment for the parent type
if the base fragment doesn’t exist.

So, to override the errors for only textarea fields, copy the form_errors fragment, rename it to
textarea_errors and customize it. To override the default error rendering for all fields, copy and customize
the form_errors fragment directly.

Tip: The “parent” type of each field type is available in the form type reference for each field type.

12.10.3 Global Form Theming

In the above example, you used the form_theme helper (in Twig) to “import” the custom form fragments into just
that form. You can also tell Symfony to import form customizations across your entire project.

Twig

To automatically include the customized blocks from the fields.html.twig template created earlier in all tem-
plates, modify your application configuration file:

Any blocks inside the fields.html.twig template are now used globally to define form output.

Customizing Form Output all in a Single File with Twig

In Twig, you can also customize a form block right inside the template where that customization is needed:

{% extends '::base.html.twig' %}

{# import "_self" as the form theme #}
{% form_theme form _self %}

{# make the form fragment customization #}
{% block form_row %}

{# custom field row output #}
{% endblock form_row %}

{% block content %}
{# ... #}

{{ form_row(form.task) }}
{% endblock %}

The {% form_theme form _self %} tag allows form blocks to be customized directly inside the template
that will use those customizations. Use this method to quickly make form output customizations that will only ever
be needed in a single template.

148 Chapter 12. Forms

Symfony Doc Documentation, Release stable

Caution: This {% form_theme form _self %} functionality will only work if your template extends
another. If your template does not, you must point form_theme to a separate template.

PHP

To automatically include the customized templates from the Acme/TaskBundle/Resources/views/Form
directory created earlier in all templates, modify your application configuration file:

Any fragments inside the Acme/TaskBundle/Resources/views/Form directory are now used globally to
define form output.

12.11 CSRF Protection

CSRF - or Cross-site request forgery - is a method by which a malicious user attempts to make your legitimate users
unknowingly submit data that they don’t intend to submit. Fortunately, CSRF attacks can be prevented by using a
CSRF token inside your forms.

The good news is that, by default, Symfony embeds and validates CSRF tokens automatically for you. This means
that you can take advantage of the CSRF protection without doing anything. In fact, every form in this chapter has
taken advantage of the CSRF protection!

CSRF protection works by adding a hidden field to your form - called _token by default - that contains a value
that only you and your user knows. This ensures that the user - not some other entity - is submitting the given data.
Symfony automatically validates the presence and accuracy of this token.

The _token field is a hidden field and will be automatically rendered if you include the form_end() function in
your template, which ensures that all un-rendered fields are output.

The CSRF token can be customized on a form-by-form basis. For example:

use Symfony\Component\OptionsResolver\OptionsResolverInterface;

class TaskType extends AbstractType
{

// ...

public function setDefaultOptions(OptionsResolverInterface $resolver)
{

$resolver->setDefaults(array(
'data_class' => 'Acme\TaskBundle\Entity\Task',
'csrf_protection' => true,
'csrf_field_name' => '_token',
// a unique key to help generate the secret token
'intention' => 'task_item',

));
}

// ...
}

To disable CSRF protection, set the csrf_protection option to false. Customizations can also be made globally
in your project. For more information, see the form configuration reference section.

12.11. CSRF Protection 149

http://en.wikipedia.org/wiki/Cross-site_request_forgery

Symfony Doc Documentation, Release stable

Note: The intention option is optional but greatly enhances the security of the generated token by making it
different for each form.

12.12 Using a Form without a Class

In most cases, a form is tied to an object, and the fields of the form get and store their data on the properties of that
object. This is exactly what you’ve seen so far in this chapter with the Task class.

But sometimes, you may just want to use a form without a class, and get back an array of the submitted data. This is
actually really easy:

// make sure you've imported the Request namespace above the class
use Symfony\Component\HttpFoundation\Request;
// ...

public function contactAction(Request $request)
{

$defaultData = array('message' => 'Type your message here');
$form = $this->createFormBuilder($defaultData)

->add('name', 'text')
->add('email', 'email')
->add('message', 'textarea')
->add('send', 'submit')
->getForm();

$form->handleRequest($request);

if ($form->isValid()) {
// data is an array with "name", "email", and "message" keys
$data = $form->getData();

}

// ... render the form
}

By default, a form actually assumes that you want to work with arrays of data, instead of an object. There are exactly
two ways that you can change this behavior and tie the form to an object instead:

1. Pass an object when creating the form (as the first argument to createFormBuilder or the second argument
to createForm);

2. Declare the data_class option on your form.

If you don’t do either of these, then the form will return the data as an array. In this example, since $defaultData
is not an object (and no data_class option is set), $form->getData() ultimately returns an array.

Tip: You can also access POST values (in this case “name”) directly through the request object, like so:

$this->get('request')->request->get('name');

Be advised, however, that in most cases using the getData() method is a better choice, since it returns the data (usually
an object) after it’s been transformed by the form framework.

150 Chapter 12. Forms

Symfony Doc Documentation, Release stable

12.12.1 Adding Validation

The only missing piece is validation. Usually, when you call $form->isValid(), the object is validated by reading
the constraints that you applied to that class. If your form is mapped to an object (i.e. you’re using the data_class
option or passing an object to your form), this is almost always the approach you want to use. See /book/validation for
more details.

But if the form is not mapped to an object and you instead want to retrieve a simple array of your submitted data, how
can you add constraints to the data of your form?

The answer is to setup the constraints yourself, and attach them to the individual fields. The overall approach is
covered a bit more in the validation chapter, but here’s a short example:

New in version 2.1: The constraints option, which accepts a single constraint or an array of constraints (before
2.1, the option was called validation_constraint, and only accepted a single constraint) is new to Symfony
2.1.

use Symfony\Component\Validator\Constraints\Length;
use Symfony\Component\Validator\Constraints\NotBlank;

$builder
->add('firstName', 'text', array(

'constraints' => new Length(array('min' => 3)),
))
->add('lastName', 'text', array(

'constraints' => array(
new NotBlank(),
new Length(array('min' => 3)),

),
))

;

Tip: If you are using Validation Groups, you need to either reference the Default group when creating the form,
or set the correct group on the constraint you are adding.

new NotBlank(array('groups' => array('create', 'update'))

12.13 Final Thoughts

You now know all of the building blocks necessary to build complex and functional forms for your application. When
building forms, keep in mind that the first goal of a form is to translate data from an object (Task) to an HTML form
so that the user can modify that data. The second goal of a form is to take the data submitted by the user and to re-apply
it to the object.

There’s still much more to learn about the powerful world of forms, such as how to handle file uploads with Doctrine
or how to create a form where a dynamic number of sub-forms can be added (e.g. a todo list where you can keep
adding more fields via Javascript before submitting). See the cookbook for these topics. Also, be sure to lean on the
field type reference documentation, which includes examples of how to use each field type and its options.

12.14 Learn more from the Cookbook

• /cookbook/doctrine/file_uploads

12.13. Final Thoughts 151

Symfony Doc Documentation, Release stable

• File Field Reference

• Creating Custom Field Types

• /cookbook/form/form_customization

• /cookbook/form/dynamic_form_modification

• /cookbook/form/data_transformers

152 Chapter 12. Forms

CHAPTER 13

Security

Security is a two-step process whose goal is to prevent a user from accessing a resource that he/she should not have
access to.

In the first step of the process, the security system identifies who the user is by requiring the user to submit some sort
of identification. This is called authentication, and it means that the system is trying to find out who you are.

Once the system knows who you are, the next step is to determine if you should have access to a given resource. This
part of the process is called authorization, and it means that the system is checking to see if you have privileges to
perform a certain action.

images/book/security_authentication_authorization.png

Since the best way to learn is to see an example, start by securing your application with HTTP Basic authentication.

Note: Symfony’s security component is available as a standalone PHP library for use inside any PHP project.

13.1 Basic Example: HTTP Authentication

The security component can be configured via your application configuration. In fact, most standard security setups are
just a matter of using the right configuration. The following configuration tells Symfony to secure any URL matching /
admin/* and to ask the user for credentials using basic HTTP authentication (i.e. the old-school username/password
box):

Tip: A standard Symfony distribution separates the security configuration into a separate file (e.g. app/config/
security.yml). If you don’t have a separate security file, you can put the configuration directly into your main

153

Symfony Doc Documentation, Release stable

config file (e.g. app/config/config.yml).

The end result of this configuration is a fully-functional security system that looks like the following:

• There are two users in the system (ryan and admin);

• Users authenticate themselves via the basic HTTP authentication prompt;

• Any URL matching /admin/* is secured, and only the admin user can access it;

• All URLs not matching /admin/* are accessible by all users (and the user is never prompted to login).

Let’s look briefly at how security works and how each part of the configuration comes into play.

13.2 How Security Works: Authentication and Authorization

Symfony’s security system works by determining who a user is (i.e. authentication) and then checking to see if that
user should have access to a specific resource or URL.

13.2.1 Firewalls (Authentication)

When a user makes a request to a URL that’s protected by a firewall, the security system is activated. The job of the
firewall is to determine whether or not the user needs to be authenticated, and if he does, to send a response back to
the user initiating the authentication process.

A firewall is activated when the URL of an incoming request matches the configured firewall’s regular expression
pattern config value. In this example, the pattern (^/) will match every incoming request. The fact that the
firewall is activated does not mean, however, that the HTTP authentication username and password box is displayed
for every URL. For example, any user can access /foo without being prompted to authenticate.

images/book/security_anonymous_user_access.png

This works first because the firewall allows anonymous users via the anonymous configuration parameter. In other
words, the firewall doesn’t require the user to fully authenticate immediately. And because no special role is needed
to access /foo (under the access_control section), the request can be fulfilled without ever asking the user to
authenticate.

If you remove the anonymous key, the firewall will always make a user fully authenticate immediately.

13.2.2 Access Controls (Authorization)

If a user requests /admin/foo, however, the process behaves differently. This is because of the access_control
configuration section that says that any URL matching the regular expression pattern ^/admin (i.e. /admin or
anything matching /admin/*) requires the ROLE_ADMIN role. Roles are the basis for most authorization: a user
can access /admin/foo only if it has the ROLE_ADMIN role.

154 Chapter 13. Security

Symfony Doc Documentation, Release stable

images/book/security_anonymous_user_denied_authorization.png

Like before, when the user originally makes the request, the firewall doesn’t ask for any identification. However, as
soon as the access control layer denies the user access (because the anonymous user doesn’t have the ROLE_ADMIN
role), the firewall jumps into action and initiates the authentication process. The authentication process depends on the
authentication mechanism you’re using. For example, if you’re using the form login authentication method, the user
will be redirected to the login page. If you’re using HTTP authentication, the user will be sent an HTTP 401 response
so that the user sees the username and password box.

The user now has the opportunity to submit its credentials back to the application. If the credentials are valid, the
original request can be re-tried.

images/book/security_ryan_no_role_admin_access.png

In this example, the user ryan successfully authenticates with the firewall. But since ryan doesn’t have the
ROLE_ADMIN role, he’s still denied access to /admin/foo. Ultimately, this means that the user will see some
sort of message indicating that access has been denied.

Tip: When Symfony denies the user access, the user sees an error screen and receives a 403 HTTP status code
(Forbidden). You can customize the access denied error screen by following the directions in the Error Pages
cookbook entry to customize the 403 error page.

Finally, if the admin user requests /admin/foo, a similar process takes place, except now, after being authenticated,
the access control layer will let the request pass through:

images/book/security_admin_role_access.png

The request flow when a user requests a protected resource is straightforward, but incredibly flexible. As you’ll
see later, authentication can be handled in any number of ways, including via a form login, X.509 certificate, or by
authenticating the user via Twitter. Regardless of the authentication method, the request flow is always the same:

1. A user accesses a protected resource;

2. The application redirects the user to the login form;

3. The user submits its credentials (e.g. username/password);

4. The firewall authenticates the user;

5. The authenticated user re-tries the original request.

Note: The exact process actually depends a little bit on which authentication mechanism you’re using. For example,

13.2. How Security Works: Authentication and Authorization 155

Symfony Doc Documentation, Release stable

when using form login, the user submits its credentials to one URL that processes the form (e.g. /login_check)
and then is redirected back to the originally requested URL (e.g. /admin/foo). But with HTTP authentication, the
user submits its credentials directly to the original URL (e.g. /admin/foo) and then the page is returned to the user
in that same request (i.e. no redirect).

These types of idiosyncrasies shouldn’t cause you any problems, but they’re good to keep in mind.

Tip: You’ll also learn later how anything can be secured in Symfony2, including specific controllers, objects, or even
PHP methods.

13.3 Using a Traditional Login Form

Tip: In this section, you’ll learn how to create a basic login form that continues to use the hard-coded users that are
defined in the security.yml file.

To load users from the database, please read /cookbook/security/entity_provider. By reading that article and this
section, you can create a full login form system that loads users from the database.

So far, you’ve seen how to blanket your application beneath a firewall and then protect access to certain areas with
roles. By using HTTP Authentication, you can effortlessly tap into the native username/password box offered by all
browsers. However, Symfony supports many authentication mechanisms out of the box. For details on all of them, see
the Security Configuration Reference.

In this section, you’ll enhance this process by allowing the user to authenticate via a traditional HTML login form.

First, enable form login under your firewall:

Tip: If you don’t need to customize your login_path or check_path values (the values used here are the default
values), you can shorten your configuration:

Now, when the security system initiates the authentication process, it will redirect the user to the login form (/login
by default). Implementing this login form visually is your job. First, create the two routes you used in the security
configuration: the login route will display the login form (i.e. /login) and the login_check route will handle
the login form submission (i.e. /login_check):

Note: You will not need to implement a controller for the /login_check URL as the firewall will automatically
catch and process any form submitted to this URL.

New in version 2.1: As of Symfony 2.1, you must have routes configured for your login_path, check_path
logout keys. These keys can be route names (as shown in this example) or URLs that have routes configured for
them.

Notice that the name of the login route matches the login_path config value, as that’s where the security system
will redirect users that need to login.

Next, create the controller that will display the login form:

156 Chapter 13. Security

Symfony Doc Documentation, Release stable

// src/Acme/SecurityBundle/Controller/SecurityController.php;
namespace Acme\SecurityBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\Security\Core\SecurityContext;

class SecurityController extends Controller
{

public function loginAction()
{

$request = $this->getRequest();
$session = $request->getSession();

// get the login error if there is one
if ($request->attributes->has(SecurityContext::AUTHENTICATION_ERROR)) {

$error = $request->attributes->get(
SecurityContext::AUTHENTICATION_ERROR

);
} else {

$error = $session->get(SecurityContext::AUTHENTICATION_ERROR);
$session->remove(SecurityContext::AUTHENTICATION_ERROR);

}

return $this->render(
'AcmeSecurityBundle:Security:login.html.twig',
array(

// last username entered by the user
'last_username' => $session->get(SecurityContext::LAST_USERNAME),
'error' => $error,

)
);

}
}

Don’t let this controller confuse you. As you’ll see in a moment, when the user submits the form, the security system
automatically handles the form submission for you. If the user had submitted an invalid username or password, this
controller reads the form submission error from the security system so that it can be displayed back to the user.

In other words, your job is to display the login form and any login errors that may have occurred, but the security
system itself takes care of checking the submitted username and password and authenticating the user.

Finally, create the corresponding template:

Tip: The error variable passed into the template is an instance of
Symfony\Component\Security\Core\Exception\AuthenticationException. It may con-
tain more information - or even sensitive information - about the authentication failure, so use it wisely!

The form has very few requirements. First, by submitting the form to /login_check (via the login_check
route), the security system will intercept the form submission and process the form for you automatically. Second,
the security system expects the submitted fields to be called _username and _password (these field names can be
configured).

And that’s it! When you submit the form, the security system will automatically check the user’s credentials and either
authenticate the user or send the user back to the login form where the error can be displayed.

Let’s review the whole process:

1. The user tries to access a resource that is protected;

13.3. Using a Traditional Login Form 157

Symfony Doc Documentation, Release stable

2. The firewall initiates the authentication process by redirecting the user to the login form (/login);

3. The /login page renders login form via the route and controller created in this example;

4. The user submits the login form to /login_check;

5. The security system intercepts the request, checks the user’s submitted credentials, authenticates the user if they
are correct, and sends the user back to the login form if they are not.

By default, if the submitted credentials are correct, the user will be redirected to the original page that was requested
(e.g. /admin/foo). If the user originally went straight to the login page, he’ll be redirected to the homepage. This
can be highly customized, allowing you to, for example, redirect the user to a specific URL.

For more details on this and how to customize the form login process in general, see /cookbook/security/form_login.

Avoid Common Pitfalls

When setting up your login form, watch out for a few common pitfalls.

1. Create the correct routes

First, be sure that you’ve defined the login and login_check routes correctly and that they correspond to the
login_path and check_path config values. A misconfiguration here can mean that you’re redirected to a 404
page instead of the login page, or that submitting the login form does nothing (you just see the login form over and
over again).

2. Be sure the login page isn’t secure

Also, be sure that the login page does not require any roles to be viewed. For example, the following configuration
- which requires the ROLE_ADMIN role for all URLs (including the /login URL), will cause a redirect loop:

Removing the access control on the /login URL fixes the problem:

Also, if your firewall does not allow for anonymous users, you’ll need to create a special firewall that allows
anonymous users for the login page:

3. Be sure ‘‘/login_check‘‘ is behind a firewall

Next, make sure that your check_path URL (e.g. /login_check) is behind the firewall you’re using
for your form login (in this example, the single firewall matches all URLs, including /login_check). If
/login_check doesn’t match any firewall, you’ll receive a Unable to find the controller for
path "/login_check" exception.

4. Multiple firewalls don’t share security context

If you’re using multiple firewalls and you authenticate against one firewall, you will not be authenticated against any
other firewalls automatically. Different firewalls are like different security systems. To do this you have to explicitly
specify the same reference-security-firewall-context for different firewalls. But usually for most applications, having
one main firewall is enough.

13.4 Authorization

The first step in security is always authentication. Once the user has been authenticated, authorization begins. Autho-
rization provides a standard and powerful way to decide if a user can access any resource (a URL, a model object, a
method call, . . .). This works by assigning specific roles to each user, and then requiring different roles for different
resources.

The process of authorization has two different sides:

158 Chapter 13. Security

Symfony Doc Documentation, Release stable

1. The user has a specific set of roles;

2. A resource requires a specific role in order to be accessed.

In this section, you’ll focus on how to secure different resources (e.g. URLs, method calls, etc) with different roles.
Later, you’ll learn more about how roles are created and assigned to users.

13.4.1 Securing Specific URL Patterns

The most basic way to secure part of your application is to secure an entire URL pattern. You’ve seen this already
in the first example of this chapter, where anything matching the regular expression pattern ^/admin requires the
ROLE_ADMIN role.

You can define as many URL patterns as you need - each is a regular expression.

Tip: Prepending the path with ^ ensures that only URLs beginning with the pattern are matched. For example,
a path of simply /admin (without the ^) would correctly match /admin/foo but would also match URLs like
/foo/admin.

13.4.2 Understanding how access_control works

For each incoming request, Symfony2 checks each access_control entry to find one that matches the current re-
quest. As soon as it finds a matching access_control entry, it stops - only the first matching access_control
is used to enforce access.

Each access_control has several options that configure two different things:

• (a) should the incoming request match this access control entry

• (b) once it matches, should some sort of access restriction be enforced:

(a) Matching Options

Symfony2 creates an instance of Symfony\Component\HttpFoundation\RequestMatcher for each
access_control entry, which determines whether or not a given access control should be used on this request.
The following access_control options are used for matching:

• path

• ip or ips

• host

• methods

Take the following access_control entries as an example:

For each incoming request, Symfony will decide which access_control to use based on the URI, the client’s IP
address, the incoming host name, and the request method. Remember, the first rule that matches is used, and if ip,
host or method are not specified for an entry, that access_control will match any ip, host or method:

13.4. Authorization 159

Symfony Doc Documentation, Release stable

URI IP HOST METHODaccess_controlWhy?
/
admin/
user

127.0.0.1ex-
am-
ple.com

GET rule #1
(ROLE_USER_IP)

The URI matches path and the IP matches ip.

/
admin/
user

127.0.0.1sym-
fony.com

GET rule #1
(ROLE_USER_IP)

The path and ip still match. This would also
match the ROLE_USER_HOST entry, but only the first
access_control match is used.

/
admin/
user

168.0.0.1sym-
fony.com

GET rule #2
(ROLE_USER_HOST)

The ip doesn’t match the first rule, so the second rule (which
matches) is used.

/
admin/
user

168.0.0.1sym-
fony.com

POST rule #2
(ROLE_USER_HOST)

The second rule still matches. This would also match the
third rule (ROLE_USER_METHOD), but only the first matched
access_control is used.

/
admin/
user

168.0.0.1ex-
am-
ple.com

POST rule #3
(ROLE_USER_METHOD)

The ip and host don’t match the first two entries, but the third
- ROLE_USER_METHOD - matches and is used.

/
admin/
user

168.0.0.1ex-
am-
ple.com

GET rule #4
(ROLE_USER)

The ip, host and method prevent the first three entries from
matching. But since the URI matches the path pattern of the
ROLE_USER entry, it is used.

/foo 127.0.0.1sym-
fony.com

POST matches no
entries

This doesn’t match any access_control rules, since its URI
doesn’t match any of the path values.

(b) Access Enforcement

Once Symfony2 has decided which access_control entry matches (if any), it then enforces access restrictions
based on the roles and requires_channel options:

• role If the user does not have the given role(s), then access is denied (internally, an
Symfony\Component\Security\Core\Exception\AccessDeniedException is thrown);

• requires_channel If the incoming request’s channel (e.g. http) does not match this value (e.g. https),
the user will be redirected (e.g. redirected from http to https, or vice versa).

Tip: If access is denied, the system will try to authenticate the user if not already (e.g. redirect the user to
the login page). If the user is already logged in, the 403 “access denied” error page will be shown. See /cook-
book/controller/error_pages for more information.

13.4.3 Securing by IP

Certain situations may arise when you may need to restrict access to a given path based on IP. This is particularly
relevant in the case of Edge Side Includes (ESI), for example. When ESI is enabled, it’s recommended to secure
access to ESI URLs. Indeed, some ESI may contain some private content like the current logged in user’s information.
To prevent any direct access to these resources from a web browser (by guessing the ESI URL pattern), the ESI route
must be secured to be only visible from the trusted reverse proxy cache.

New in version 2.3: Version 2.3 allows multiple IP addresses in a single rule with the ips: [a, b] construct.
Prior to 2.3, users should create one rule per IP address to match and use the ip key instead of ips.

Here is an example of how you might secure all ESI routes that start with a given prefix, /esi, from outside access:

Here is how it works when the path is /esi/something coming from the 10.0.0.1 IP:

• The first access control rule is ignored as the path matches but the ip does not match either of the IPs listed;

160 Chapter 13. Security

Symfony Doc Documentation, Release stable

• The second access control rule is enabled (the only restriction being the path and it matches): as the user
cannot have the ROLE_NO_ACCESS role as it’s not defined, access is denied (the ROLE_NO_ACCESS role can
be anything that does not match an existing role, it just serves as a trick to always deny access).

Now, if the same request comes from 127.0.0.1 or ::1 (the IPv6 loopback address):

• Now, the first access control rule is enabled as both the path and the ip match: access is allowed as the user
always has the IS_AUTHENTICATED_ANONYMOUSLY role.

• The second access rule is not examined as the first rule matched.

13.4.4 Securing by Channel

You can also require a user to access a URL via SSL; just use the requires_channel argument in any
access_control entries:

13.4.5 Securing a Controller

Protecting your application based on URL patterns is easy, but may not be fine-grained enough in certain cases. When
necessary, you can easily force authorization from inside a controller:

// ...
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

public function helloAction($name)
{

if (false === $this->get('security.context')->isGranted('ROLE_ADMIN')) {
throw new AccessDeniedException();

}

// ...
}

You can also choose to install and use the optional JMSSecurityExtraBundle, which can secure your controller
using annotations:

// ...
use JMS\SecurityExtraBundle\Annotation\Secure;

/**
* @Secure(roles="ROLE_ADMIN")

*/
public function helloAction($name)
{

// ...
}

For more information, see the JMSSecurityExtraBundle documentation.

13.4.6 Securing other Services

In fact, anything in Symfony can be protected using a strategy similar to the one seen in the previous section. For
example, suppose you have a service (i.e. a PHP class) whose job is to send emails from one user to another. You can
restrict use of this class - no matter where it’s being used from - to users that have a specific role.

13.4. Authorization 161

http://jmsyst.com/bundles/JMSSecurityExtraBundle/1.2

Symfony Doc Documentation, Release stable

For more information on how you can use the security component to secure different services and methods in your
application, see /cookbook/security/securing_services.

13.4.7 Access Control Lists (ACLs): Securing Individual Database Objects

Imagine you are designing a blog system where your users can comment on your posts. Now, you want a user to be
able to edit his own comments, but not those of other users. Also, as the admin user, you yourself want to be able to
edit all comments.

The security component comes with an optional access control list (ACL) system that you can use when you need
to control access to individual instances of an object in your system. Without ACL, you can secure your system
so that only certain users can edit blog comments in general. But with ACL, you can restrict or allow access on a
comment-by-comment basis.

For more information, see the cookbook article: /cookbook/security/acl.

13.5 Users

In the previous sections, you learned how you can protect different resources by requiring a set of roles for a resource.
This section explores the other side of authorization: users.

13.5.1 Where do Users come from? (User Providers)

During authentication, the user submits a set of credentials (usually a username and password). The job of the au-
thentication system is to match those credentials against some pool of users. So where does this list of users come
from?

In Symfony2, users can come from anywhere - a configuration file, a database table, a web service, or anything else you
can dream up. Anything that provides one or more users to the authentication system is known as a “user provider”.
Symfony2 comes standard with the two most common user providers: one that loads users from a configuration file
and one that loads users from a database table.

Specifying Users in a Configuration File

The easiest way to specify your users is directly in a configuration file. In fact, you’ve seen this already in the example
in this chapter.

This user provider is called the “in-memory” user provider, since the users aren’t stored anywhere in a database. The
actual user object is provided by Symfony (Symfony\Component\Security\Core\User\User).

Tip: Any user provider can load users directly from configuration by specifying the users configuration parameter
and listing the users beneath it.

Caution: If your username is completely numeric (e.g. 77) or contains a dash (e.g. user-name), you should
use that alternative syntax when specifying users in YAML:

users:
- { name: 77, password: pass, roles: 'ROLE_USER' }
- { name: user-name, password: pass, roles: 'ROLE_USER' }

162 Chapter 13. Security

Symfony Doc Documentation, Release stable

For smaller sites, this method is quick and easy to setup. For more complex systems, you’ll want to load your users
from the database.

Loading Users from the Database

If you’d like to load your users via the Doctrine ORM, you can easily do this by creating a User class and configuring
the entity provider.

Tip: A high-quality open source bundle is available that allows your users to be stored via the Doctrine ORM or
ODM. Read more about the FOSUserBundle on GitHub.

With this approach, you’ll first create your own User class, which will be stored in the database.

// src/Acme/UserBundle/Entity/User.php
namespace Acme\UserBundle\Entity;

use Symfony\Component\Security\Core\User\UserInterface;
use Doctrine\ORM\Mapping as ORM;

/**
* @ORM\Entity

*/
class User implements UserInterface
{

/**
* @ORM\Column(type="string", length=255)

*/
protected $username;

// ...
}

As far as the security system is concerned, the only requirement for your custom user class is that it implements the
Symfony\Component\Security\Core\User\UserInterface interface. This means that your concept of
a “user” can be anything, as long as it implements this interface.

Note: The user object will be serialized and saved in the session during requests, therefore it is recommended that
you implement the Serializable interface in your user object. This is especially important if your User class has a
parent class with private properties.

Next, configure an entity user provider, and point it to your User class:

With the introduction of this new provider, the authentication system will attempt to load a User object from the
database by using the username field of that class.

Note: This example is just meant to show you the basic idea behind the entity provider. For a full working
example, see /cookbook/security/entity_provider.

For more information on creating your own custom provider (e.g. if you needed to load users via a web service), see
/cookbook/security/custom_provider.

13.5. Users 163

https://github.com/FriendsOfSymfony/FOSUserBundle
http://php.net/manual/en/class.serializable.php

Symfony Doc Documentation, Release stable

13.5.2 Encoding the User’s Password

So far, for simplicity, all the examples have stored the users’ passwords in plain text (whether those users are stored
in a configuration file or in a database somewhere). Of course, in a real application, you’ll want to encode your users’
passwords for security reasons. This is easily accomplished by mapping your User class to one of several built-in
“encoders”. For example, to store your users in memory, but obscure their passwords via sha1, do the following:

By setting the iterations to 1 and the encode_as_base64 to false, the password is simply run through the
sha1 algorithm one time and without any extra encoding. You can now calculate the hashed password either pro-
grammatically (e.g. hash('sha1', 'ryanpass')) or via some online tool like functions-online.com

If you’re creating your users dynamically (and storing them in a database), you can use even tougher hashing algo-
rithms and then rely on an actual password encoder object to help you encode passwords. For example, suppose your
User object is Acme\UserBundle\Entity\User (like in the above example). First, configure the encoder for
that user:

In this case, you’re using the stronger sha512 algorithm. Also, since you’ve simply specified the algorithm (sha512)
as a string, the system will default to hashing your password 5000 times in a row and then encoding it as base64. In
other words, the password has been greatly obfuscated so that the hashed password can’t be decoded (i.e. you can’t
determine the password from the hashed password).

New in version 2.2: As of Symfony 2.2 you can also use the PBKDF2 and BCrypt password encoders.

Determining the Hashed Password

If you have some sort of registration form for users, you’ll need to be able to determine the hashed password so that
you can set it on your user. No matter what algorithm you configure for your user object, the hashed password can
always be determined in the following way from a controller:

$factory = $this->get('security.encoder_factory');
$user = new Acme\UserBundle\Entity\User();

$encoder = $factory->getEncoder($user);
$password = $encoder->encodePassword('ryanpass', $user->getSalt());
$user->setPassword($password);

13.5.3 Retrieving the User Object

After authentication, the User object of the current user can be accessed via the security.context service.
From inside a controller, this will look like:

public function indexAction()
{

$user = $this->get('security.context')->getToken()->getUser();
}

In a controller this can be shortcut to:

public function indexAction()
{

$user = $this->getUser();
}

164 Chapter 13. Security

http://www.functions-online.com/sha1.html

Symfony Doc Documentation, Release stable

Note: Anonymous users are technically authenticated, meaning that the isAuthenticated() method of
an anonymous user object will return true. To check if your user is actually authenticated, check for the
IS_AUTHENTICATED_FULLY role.

In a Twig Template this object can be accessed via the app.user key, which calls the
:method:‘GlobalVariables::getUser()<Symfony\\Bundle\\FrameworkBundle\\Templating\\GlobalVariables::getUser>‘
method:

13.5.4 Using Multiple User Providers

Each authentication mechanism (e.g. HTTP Authentication, form login, etc) uses exactly one user provider, and will
use the first declared user provider by default. But what if you want to specify a few users via configuration and the
rest of your users in the database? This is possible by creating a new provider that chains the two together:

Now, all authentication mechanisms will use the chain_provider, since it’s the first specified. The
chain_provider will, in turn, try to load the user from both the in_memory and user_db providers.

Tip: If you have no reasons to separate your in_memory users from your user_db users, you can accomplish this
even more easily by combining the two sources into a single provider:

You can also configure the firewall or individual authentication mechanisms to use a specific provider. Again, unless
a provider is specified explicitly, the first provider is always used:

In this example, if a user tries to login via HTTP authentication, the authentication system will use the in_memory
user provider. But if the user tries to login via the form login, the user_db provider will be used (since it’s the default
for the firewall as a whole).

For more information about user provider and firewall configuration, see the /reference/configuration/security.

13.6 Roles

The idea of a “role” is key to the authorization process. Each user is assigned a set of roles and then each resource
requires one or more roles. If the user has the required roles, access is granted. Otherwise access is denied.

Roles are pretty simple, and are basically strings that you can invent and use as needed (though roles are objects
internally). For example, if you need to start limiting access to the blog admin section of your website, you could
protect that section using a ROLE_BLOG_ADMIN role. This role doesn’t need to be defined anywhere - you can just
start using it.

Note: All roles must begin with the ROLE_ prefix to be managed by Symfony2. If you define your own roles with a
dedicated Role class (more advanced), don’t use the ROLE_ prefix.

13.6.1 Hierarchical Roles

Instead of associating many roles to users, you can define role inheritance rules by creating a role hierarchy:

In the above configuration, users with ROLE_ADMIN role will also have the ROLE_USER role. The
ROLE_SUPER_ADMIN role has ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH and ROLE_USER (inherited from
ROLE_ADMIN).

13.6. Roles 165

Symfony Doc Documentation, Release stable

13.7 Logging Out

Usually, you’ll also want your users to be able to log out. Fortunately, the firewall can handle this automatically for
you when you activate the logout config parameter:

Once this is configured under your firewall, sending a user to /logout (or whatever you configure the path to be),
will un-authenticate the current user. The user will then be sent to the homepage (the value defined by the target
parameter). Both the path and target config parameters default to what’s specified here. In other words, unless
you need to customize them, you can omit them entirely and shorten your configuration:

Note that you will not need to implement a controller for the /logout URL as the firewall takes care of everything.
You do, however, need to create a route so that you can use it to generate the URL:

Caution: As of Symfony 2.1, you must have a route that corresponds to your logout path. Without this route,
logging out will not work.

Once the user has been logged out, he will be redirected to whatever path is defined by the target parameter above
(e.g. the homepage). For more information on configuring the logout, see the Security Configuration Reference.

13.8 Access Control in Templates

If you want to check if the current user has a role inside a template, use the built-in helper function:

Note: If you use this function and are not at a URL where there is a firewall active, an exception will be thrown.
Again, it’s almost always a good idea to have a main firewall that covers all URLs (as has been shown in this chapter).

13.9 Access Control in Controllers

If you want to check if the current user has a role in your controller, use the
:method:‘Symfony\\Component\\Security\\Core\\SecurityContext::isGranted‘ method of the security con-
text:

public function indexAction()
{

// show different content to admin users
if ($this->get('security.context')->isGranted('ROLE_ADMIN')) {

// ... load admin content here
}

// ... load other regular content here
}

Note: A firewall must be active or an exception will be thrown when the isGranted method is called. See the note
above about templates for more details.

166 Chapter 13. Security

Symfony Doc Documentation, Release stable

13.10 Impersonating a User

Sometimes, it’s useful to be able to switch from one user to another without having to logout and login again (for
instance when you are debugging or trying to understand a bug a user sees that you can’t reproduce). This can be
easily done by activating the switch_user firewall listener:

To switch to another user, just add a query string with the _switch_user parameter and the username as the value
to the current URL:

http://example.com/somewhere?_switch_user=thomas

To switch back to the original user, use the special _exit username:

http://example.com/somewhere?_switch_user=_exit

During impersonation, the user is provided with a special role called ROLE_PREVIOUS_ADMIN. In a template, for
instance, this role can be used to show a link to exit impersonation:

Of course, this feature needs to be made available to a small group of users. By default, access is restricted to users
having the ROLE_ALLOWED_TO_SWITCH role. The name of this role can be modified via the role setting. For
extra security, you can also change the query parameter name via the parameter setting:

13.11 Stateless Authentication

By default, Symfony2 relies on a cookie (the Session) to persist the security context of the user. But if you use
certificates or HTTP authentication for instance, persistence is not needed as credentials are available for each request.
In that case, and if you don’t need to store anything else between requests, you can activate the stateless authentication
(which means that no cookie will be ever created by Symfony2):

Note: If you use a form login, Symfony2 will create a cookie even if you set stateless to true.

13.12 Utilities

New in version 2.2: The StringUtils and SecureRandom classes were added in Symfony 2.2

The Symfony Security Component comes with a collection of nice utilities related to security. These utilities are used
by Symfony, but you should also use them if you want to solve the problem they address.

13.12.1 Comparing Strings

The time it takes to compare two strings depends on their differences. This can be used by an attacker when the two
strings represent a password for instance; it is known as a Timing attack.

Internally, when comparing two passwords, Symfony uses a constant-time algorithm; you can use the same strategy in
your own code thanks to the Symfony\Component\Security\Core\Util\StringUtils class:

use Symfony\Component\Security\Core\Util\StringUtils;

// is password1 equals to password2?
$bool = StringUtils::equals($password1, $password2);

13.10. Impersonating a User 167

http://en.wikipedia.org/wiki/Timing_attack

Symfony Doc Documentation, Release stable

13.12.2 Generating a secure Random Number

Whenever you need to generate a secure random number, you are highly encouraged to use the Symfony
Symfony\Component\Security\Core\Util\SecureRandom class:

use Symfony\Component\Security\Core\Util\SecureRandom;

$generator = new SecureRandom();
$random = $generator->nextBytes(10);

The :method:‘Symfony\\Component\\Security\\Core\\Util\\SecureRandom::nextBytes‘ methods returns a random
string composed of the number of characters passed as an argument (10 in the above example).

The SecureRandom class works better when OpenSSL is installed but when it’s not available, it falls back to an internal
algorithm, which needs a seed file to work correctly. Just pass a file name to enable it:

$generator = new SecureRandom('/some/path/to/store/the/seed.txt');
$random = $generator->nextBytes(10);

Note: You can also access a secure random instance directly from the Symfony dependency injection container; its
name is security.secure_random.

13.13 Final Words

Security can be a deep and complex issue to solve correctly in your application. Fortunately, Symfony’s security
component follows a well-proven security model based around authentication and authorization. Authentication,
which always happens first, is handled by a firewall whose job is to determine the identity of the user through several
different methods (e.g. HTTP authentication, login form, etc). In the cookbook, you’ll find examples of other methods
for handling authentication, including how to implement a “remember me” cookie functionality.

Once a user is authenticated, the authorization layer can determine whether or not the user should have access to a
specific resource. Most commonly, roles are applied to URLs, classes or methods and if the current user doesn’t have
that role, access is denied. The authorization layer, however, is much deeper, and follows a system of “voting” so that
multiple parties can determine if the current user should have access to a given resource. Find out more about this and
other topics in the cookbook.

13.14 Learn more from the Cookbook

• Forcing HTTP/HTTPS

• Blacklist users by IP address with a custom voter

• Access Control Lists (ACLs)

• /cookbook/security/remember_me

168 Chapter 13. Security

CHAPTER 14

HTTP Cache

The nature of rich web applications means that they’re dynamic. No matter how efficient your application, each request
will always contain more overhead than serving a static file.

And for most Web applications, that’s fine. Symfony2 is lightning fast, and unless you’re doing some serious heavy-
lifting, each request will come back quickly without putting too much stress on your server.

But as your site grows, that overhead can become a problem. The processing that’s normally performed on every
request should be done only once. This is exactly what caching aims to accomplish.

14.1 Caching on the Shoulders of Giants

The most effective way to improve performance of an application is to cache the full output of a page and then bypass
the application entirely on each subsequent request. Of course, this isn’t always possible for highly dynamic websites,
or is it? In this chapter, you’ll see how the Symfony2 cache system works and why this is the best possible approach.

The Symfony2 cache system is different because it relies on the simplicity and power of the HTTP cache as defined in
the HTTP specification. Instead of reinventing a caching methodology, Symfony2 embraces the standard that defines
basic communication on the Web. Once you understand the fundamental HTTP validation and expiration caching
models, you’ll be ready to master the Symfony2 cache system.

For the purposes of learning how to cache with Symfony2, the subject is covered in four steps:

1. A gateway cache, or reverse proxy, is an independent layer that sits in front of your application. The reverse
proxy caches responses as they’re returned from your application and answers requests with cached responses
before they hit your application. Symfony2 provides its own reverse proxy, but any reverse proxy can be used.

2. HTTP cache headers are used to communicate with the gateway cache and any other caches between your
application and the client. Symfony2 provides sensible defaults and a powerful interface for interacting with the
cache headers.

3. HTTP expiration and validation are the two models used for determining whether cached content is fresh (can
be reused from the cache) or stale (should be regenerated by the application).

169

Symfony Doc Documentation, Release stable

4. Edge Side Includes (ESI) allow HTTP cache to be used to cache page fragments (even nested fragments) inde-
pendently. With ESI, you can even cache an entire page for 60 minutes, but an embedded sidebar for only 5
minutes.

Since caching with HTTP isn’t unique to Symfony, many articles already exist on the topic. If you’re new to HTTP
caching, Ryan Tomayko’s article Things Caches Do is highly recommended . Another in-depth resource is Mark
Nottingham’s Cache Tutorial.

14.2 Caching with a Gateway Cache

When caching with HTTP, the cache is separated from your application entirely and sits between your application and
the client making the request.

The job of the cache is to accept requests from the client and pass them back to your application. The cache will also
receive responses back from your application and forward them on to the client. The cache is the “middle-man” of the
request-response communication between the client and your application.

Along the way, the cache will store each response that is deemed “cacheable” (See Introduction to HTTP Caching).
If the same resource is requested again, the cache sends the cached response to the client, ignoring your application
entirely.

This type of cache is known as a HTTP gateway cache and many exist such as Varnish, Squid in reverse proxy mode,
and the Symfony2 reverse proxy.

14.2.1 Types of Caches

But a gateway cache isn’t the only type of cache. In fact, the HTTP cache headers sent by your application are
consumed and interpreted by up to three different types of caches:

• Browser caches: Every browser comes with its own local cache that is mainly useful for when you hit “back” or
for images and other assets. The browser cache is a private cache as cached resources aren’t shared with anyone
else;

• Proxy caches: A proxy is a shared cache as many people can be behind a single one. It’s usually installed by
large corporations and ISPs to reduce latency and network traffic;

• Gateway caches: Like a proxy, it’s also a shared cache but on the server side. Installed by network administra-
tors, it makes websites more scalable, reliable and performant.

Tip: Gateway caches are sometimes referred to as reverse proxy caches, surrogate caches, or even HTTP accelerators.

Note: The significance of private versus shared caches will become more obvious when caching responses containing
content that is specific to exactly one user (e.g. account information) is discussed.

Each response from your application will likely go through one or both of the first two cache types. These caches are
outside of your control but follow the HTTP cache directions set in the response.

14.2.2 Symfony2 Reverse Proxy

Symfony2 comes with a reverse proxy (also called a gateway cache) written in PHP. Enable it and cacheable responses
from your application will start to be cached right away. Installing it is just as easy. Each new Symfony2 application

170 Chapter 14. HTTP Cache

http://tomayko.com/writings/things-caches-do
http://www.mnot.net/cache_docs/
https://www.varnish-cache.org/
http://wiki.squid-cache.org/SquidFaq/ReverseProxy

Symfony Doc Documentation, Release stable

comes with a pre-configured caching kernel (AppCache) that wraps the default one (AppKernel). The caching
Kernel is the reverse proxy.

To enable caching, modify the code of a front controller to use the caching kernel:

// web/app.php
require_once __DIR__.'/../app/bootstrap.php.cache';
require_once __DIR__.'/../app/AppKernel.php';
require_once __DIR__.'/../app/AppCache.php';

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
// wrap the default AppKernel with the AppCache one
$kernel = new AppCache($kernel);
$request = Request::createFromGlobals();
$response = $kernel->handle($request);
$response->send();
$kernel->terminate($request, $response);

The caching kernel will immediately act as a reverse proxy - caching responses from your application and returning
them to the client.

Tip: The cache kernel has a special getLog() method that returns a string representation of what happened in the
cache layer. In the development environment, use it to debug and validate your cache strategy:

error_log($kernel->getLog());

The AppCache object has a sensible default configuration, but it can be finely tuned via a set of options you can set
by overriding the :method:‘Symfony\\Bundle\\FrameworkBundle\\HttpCache\\HttpCache::getOptions‘ method:

// app/AppCache.php
use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;

class AppCache extends HttpCache
{

protected function getOptions()
{

return array(
'debug' => false,
'default_ttl' => 0,
'private_headers' => array('Authorization', 'Cookie'),
'allow_reload' => false,
'allow_revalidate' => false,
'stale_while_revalidate' => 2,
'stale_if_error' => 60,

);
}

}

Tip: Unless overridden in getOptions(), the debug option will be set to automatically be the debug value of the
wrapped AppKernel.

Here is a list of the main options:

14.2. Caching with a Gateway Cache 171

Symfony Doc Documentation, Release stable

• default_ttl: The number of seconds that a cache entry should be considered fresh when no explicit fresh-
ness information is provided in a response. Explicit Cache-Control or Expires headers override this
value (default: 0);

• private_headers: Set of request headers that trigger “private” Cache-Control behavior on responses
that don’t explicitly state whether the response is public or private via a Cache-Control directive.
(default: Authorization and Cookie);

• allow_reload: Specifies whether the client can force a cache reload by including a Cache-Control
“no-cache” directive in the request. Set it to true for compliance with RFC 2616 (default: false);

• allow_revalidate: Specifies whether the client can force a cache revalidate by including a
Cache-Control “max-age=0” directive in the request. Set it to true for compliance with RFC 2616 (de-
fault: false);

• stale_while_revalidate: Specifies the default number of seconds (the granularity is the second as the
Response TTL precision is a second) during which the cache can immediately return a stale response while it
revalidates it in the background (default: 2); this setting is overridden by the stale-while-revalidate
HTTP Cache-Control extension (see RFC 5861);

• stale_if_error: Specifies the default number of seconds (the granularity is the second) during which the
cache can serve a stale response when an error is encountered (default: 60). This setting is overridden by the
stale-if-error HTTP Cache-Control extension (see RFC 5861).

If debug is true, Symfony2 automatically adds a X-Symfony-Cache header to the response containing useful
information about cache hits and misses.

Changing from one Reverse Proxy to Another

The Symfony2 reverse proxy is a great tool to use when developing your website or when you deploy your website
to a shared host where you cannot install anything beyond PHP code. But being written in PHP, it cannot be as fast
as a proxy written in C. That’s why it is highly recommended you use Varnish or Squid on your production servers
if possible. The good news is that the switch from one proxy server to another is easy and transparent as no code
modification is needed in your application. Start easy with the Symfony2 reverse proxy and upgrade later to Varnish
when your traffic increases.

For more information on using Varnish with Symfony2, see the How to use Varnish cookbook chapter.

Note: The performance of the Symfony2 reverse proxy is independent of the complexity of the application. That’s
because the application kernel is only booted when the request needs to be forwarded to it.

14.3 Introduction to HTTP Caching

To take advantage of the available cache layers, your application must be able to communicate which responses are
cacheable and the rules that govern when/how that cache should become stale. This is done by setting HTTP cache
headers on the response.

Tip: Keep in mind that “HTTP” is nothing more than the language (a simple text language) that web clients (e.g.
browsers) and web servers use to communicate with each other. HTTP caching is the part of that language that allows
clients and servers to exchange information related to caching.

HTTP specifies four response cache headers that are looked at here:

172 Chapter 14. HTTP Cache

Symfony Doc Documentation, Release stable

• Cache-Control

• Expires

• ETag

• Last-Modified

The most important and versatile header is the Cache-Control header, which is actually a collection of various
cache information.

Note: Each of the headers will be explained in full detail in the HTTP Expiration and Validation section.

14.3.1 The Cache-Control Header

The Cache-Control header is unique in that it contains not one, but various pieces of information about the
cacheability of a response. Each piece of information is separated by a comma:

Cache-Control: private, max-age=0, must-revalidate

Cache-Control: max-age=3600, must-revalidate

Symfony provides an abstraction around the Cache-Control header to make its creation more manageable:

// ...

use Symfony\Component\HttpFoundation\Response;

$response = new Response();

// mark the response as either public or private
$response->setPublic();
$response->setPrivate();

// set the private or shared max age
$response->setMaxAge(600);
$response->setSharedMaxAge(600);

// set a custom Cache-Control directive
$response->headers->addCacheControlDirective('must-revalidate', true);

14.3.2 Public vs Private Responses

Both gateway and proxy caches are considered “shared” caches as the cached content is shared by more than one user.
If a user-specific response were ever mistakenly stored by a shared cache, it might be returned later to any number
of different users. Imagine if your account information were cached and then returned to every subsequent user who
asked for their account page!

To handle this situation, every response may be set to be public or private:

• public: Indicates that the response may be cached by both private and shared caches;

• private: Indicates that all or part of the response message is intended for a single user and must not be cached
by a shared cache.

Symfony conservatively defaults each response to be private. To take advantage of shared caches (like the Symfony2
reverse proxy), the response will need to be explicitly set as public.

14.3. Introduction to HTTP Caching 173

Symfony Doc Documentation, Release stable

14.3.3 Safe Methods

HTTP caching only works for “safe” HTTP methods (like GET and HEAD). Being safe means that you never change
the application’s state on the server when serving the request (you can of course log information, cache data, etc). This
has two very reasonable consequences:

• You should never change the state of your application when responding to a GET or HEAD request. Even if
you don’t use a gateway cache, the presence of proxy caches mean that any GET or HEAD request may or may
not actually hit your server;

• Don’t expect PUT, POST or DELETE methods to cache. These methods are meant to be used when mutating
the state of your application (e.g. deleting a blog post). Caching them would prevent certain requests from
hitting and mutating your application.

14.3.4 Caching Rules and Defaults

HTTP 1.1 allows caching anything by default unless there is an explicit Cache-Control header. In practice, most
caches do nothing when requests have a cookie, an authorization header, use a non-safe method (i.e. PUT, POST,
DELETE), or when responses have a redirect status code.

Symfony2 automatically sets a sensible and conservative Cache-Control header when none is set by the developer
by following these rules:

• If no cache header is defined (Cache-Control, Expires, ETag or Last-Modified),
Cache-Control is set to no-cache, meaning that the response will not be cached;

• If Cache-Control is empty (but one of the other cache headers is present), its value is set to private,
must-revalidate;

• But if at least one Cache-Control directive is set, and no ‘public’ or private directives have been explic-
itly added, Symfony2 adds the private directive automatically (except when s-maxage is set).

14.4 HTTP Expiration and Validation

The HTTP specification defines two caching models:

• With the expiration model, you simply specify how long a response should be considered “fresh” by including
a Cache-Control and/or an Expires header. Caches that understand expiration will not make the same
request until the cached version reaches its expiration time and becomes “stale”;

• When pages are really dynamic (i.e. their representation changes often), the validation model is often necessary.
With this model, the cache stores the response, but asks the server on each request whether or not the cached
response is still valid. The application uses a unique response identifier (the Etag header) and/or a timestamp
(the Last-Modified header) to check if the page has changed since being cached.

The goal of both models is to never generate the same response twice by relying on a cache to store and return “fresh”
responses.

Reading the HTTP Specification

The HTTP specification defines a simple but powerful language in which clients and servers can communicate. As
a web developer, the request-response model of the specification dominates your work. Unfortunately, the actual
specification document - RFC 2616 - can be difficult to read.

174 Chapter 14. HTTP Cache

http://tools.ietf.org/html/rfc2616#section-13.2
http://tools.ietf.org/html/rfc2616#section-13.3
http://tools.ietf.org/html/rfc2616

Symfony Doc Documentation, Release stable

There is an on-going effort (HTTP Bis) to rewrite the RFC 2616. It does not describe a new version of HTTP, but
mostly clarifies the original HTTP specification. The organization is also improved as the specification is split into
seven parts; everything related to HTTP caching can be found in two dedicated parts (P4 - Conditional Requests
and P6 - Caching: Browser and intermediary caches).

As a web developer, you are strongly urged to read the specification. Its clarity and power - even more than ten
years after its creation - is invaluable. Don’t be put-off by the appearance of the spec - its contents are much more
beautiful than its cover.

14.4.1 Expiration

The expiration model is the more efficient and straightforward of the two caching models and should be used whenever
possible. When a response is cached with an expiration, the cache will store the response and return it directly without
hitting the application until it expires.

The expiration model can be accomplished using one of two, nearly identical, HTTP headers: Expires or
Cache-Control.

14.4.2 Expiration with the Expires Header

According to the HTTP specification, “the Expires header field gives the date/time after which the response is con-
sidered stale.” The Expires header can be set with the setExpires() Response method. It takes a DateTime
instance as an argument:

$date = new DateTime();
$date->modify('+600 seconds');

$response->setExpires($date);

The resulting HTTP header will look like this:

Expires: Thu, 01 Mar 2011 16:00:00 GMT

Note: The setExpires() method automatically converts the date to the GMT timezone as required by the speci-
fication.

Note that in HTTP versions before 1.1 the origin server wasn’t required to send the Date header. Consequently the
cache (e.g. the browser) might need to rely onto his local clock to evaluate the Expires header making the lifetime
calculation vulnerable to clock skew. Another limitation of the Expires header is that the specification states that
“HTTP/1.1 servers should not send Expires dates more than one year in the future.”

14.4.3 Expiration with the Cache-Control Header

Because of the Expires header limitations, most of the time, you should use the Cache-Control header instead.
Recall that the Cache-Control header is used to specify many different cache directives. For expiration, there are
two directives, max-age and s-maxage. The first one is used by all caches, whereas the second one is only taken
into account by shared caches:

14.4. HTTP Expiration and Validation 175

http://tools.ietf.org/wg/httpbis/
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-12
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-12

Symfony Doc Documentation, Release stable

// Sets the number of seconds after which the response
// should no longer be considered fresh
$response->setMaxAge(600);

// Same as above but only for shared caches
$response->setSharedMaxAge(600);

The Cache-Control header would take on the following format (it may have additional directives):

Cache-Control: max-age=600, s-maxage=600

14.4.4 Validation

When a resource needs to be updated as soon as a change is made to the underlying data, the expiration model falls
short. With the expiration model, the application won’t be asked to return the updated response until the cache finally
becomes stale.

The validation model addresses this issue. Under this model, the cache continues to store responses. The difference
is that, for each request, the cache asks the application whether or not the cached response is still valid. If the cache
is still valid, your application should return a 304 status code and no content. This tells the cache that it’s ok to return
the cached response.

Under this model, you mainly save bandwidth as the representation is not sent twice to the same client (a 304 response
is sent instead). But if you design your application carefully, you might be able to get the bare minimum data needed
to send a 304 response and save CPU also (see below for an implementation example).

Tip: The 304 status code means “Not Modified”. It’s important because with this status code the response does not
contain the actual content being requested. Instead, the response is simply a light-weight set of directions that tell
cache that it should use its stored version.

Like with expiration, there are two different HTTP headers that can be used to implement the validation model: ETag
and Last-Modified.

14.4.5 Validation with the ETag Header

The ETag header is a string header (called the “entity-tag”) that uniquely identifies one representation of the target
resource. It’s entirely generated and set by your application so that you can tell, for example, if the /about resource
that’s stored by the cache is up-to-date with what your application would return. An ETag is like a fingerprint and is
used to quickly compare if two different versions of a resource are equivalent. Like fingerprints, each ETag must be
unique across all representations of the same resource.

To see a simple implementation, generate the ETag as the md5 of the content:

public function indexAction()
{

$response = $this->render('MyBundle:Main:index.html.twig');
$response->setETag(md5($response->getContent()));
$response->setPublic(); // make sure the response is public/cacheable
$response->isNotModified($this->getRequest());

return $response;
}

176 Chapter 14. HTTP Cache

Symfony Doc Documentation, Release stable

The :method:‘Symfony\\Component\\HttpFoundation\\Response::isNotModified‘ method compares the ETag
sent with the Request with the one set on the Response. If the two match, the method automatically sets the
Response status code to 304.

This algorithm is simple enough and very generic, but you need to create the whole Response before being able to
compute the ETag, which is sub-optimal. In other words, it saves on bandwidth, but not CPU cycles.

In the Optimizing your Code with Validation section, you’ll see how validation can be used more intelligently to
determine the validity of a cache without doing so much work.

Tip: Symfony2 also supports weak ETags by passing true as the second argument to the
:method:‘Symfony\\Component\\HttpFoundation\\Response::setETag‘ method.

14.4.6 Validation with the Last-Modified Header

The Last-Modified header is the second form of validation. According to the HTTP specification, “The
Last-Modified header field indicates the date and time at which the origin server believes the representation
was last modified.” In other words, the application decides whether or not the cached content has been updated based
on whether or not it’s been updated since the response was cached.

For instance, you can use the latest update date for all the objects needed to compute the resource representation as the
value for the Last-Modified header value:

public function showAction($articleSlug)
{

// ...

$articleDate = new \DateTime($article->getUpdatedAt());
$authorDate = new \DateTime($author->getUpdatedAt());

$date = $authorDate > $articleDate ? $authorDate : $articleDate;

$response->setLastModified($date);
// Set response as public. Otherwise it will be private by default.
$response->setPublic();

if ($response->isNotModified($this->getRequest())) {
return $response;

}

// ... do more work to populate the response with the full content

return $response;
}

The :method:‘Symfony\\Component\\HttpFoundation\\Response::isNotModified‘ method compares the
If-Modified-Since header sent by the request with the Last-Modified header set on the response.
If they are equivalent, the Response will be set to a 304 status code.

Note: The If-Modified-Since request header equals the Last-Modified header of the last response sent
to the client for the particular resource. This is how the client and server communicate with each other and decide
whether or not the resource has been updated since it was cached.

14.4. HTTP Expiration and Validation 177

Symfony Doc Documentation, Release stable

14.4.7 Optimizing your Code with Validation

The main goal of any caching strategy is to lighten the load on the application. Put another way, the less you do in
your application to return a 304 response, the better. The Response::isNotModified() method does exactly
that by exposing a simple and efficient pattern:

use Symfony\Component\HttpFoundation\Response;

public function showAction($articleSlug)
{

// Get the minimum information to compute
// the ETag or the Last-Modified value
// (based on the Request, data is retrieved from
// a database or a key-value store for instance)
$article = ...;

// create a Response with a ETag and/or a Last-Modified header
$response = new Response();
$response->setETag($article->computeETag());
$response->setLastModified($article->getPublishedAt());

// Set response as public. Otherwise it will be private by default.
$response->setPublic();

// Check that the Response is not modified for the given Request
if ($response->isNotModified($this->getRequest())) {

// return the 304 Response immediately
return $response;

} else {
// do more work here - like retrieving more data
$comments = ...;

// or render a template with the $response you've already started
return $this->render(

'MyBundle:MyController:article.html.twig',
array('article' => $article, 'comments' => $comments),
$response

);
}

}

When the Response is not modified, the isNotModified() automatically sets the response status code
to 304, removes the content, and removes some headers that must not be present for 304 responses (see
:method:‘Symfony\\Component\\HttpFoundation\\Response::setNotModified‘).

14.4.8 Varying the Response

So far, it’s been assumed that each URI has exactly one representation of the target resource. By default, HTTP caching
is done by using the URI of the resource as the cache key. If two people request the same URI of a cacheable resource,
the second person will receive the cached version.

Sometimes this isn’t enough and different versions of the same URI need to be cached based on one or more request
header values. For instance, if you compress pages when the client supports it, any given URI has two representations:
one when the client supports compression, and one when it does not. This determination is done by the value of the
Accept-Encoding request header.

In this case, you need the cache to store both a compressed and uncompressed version of the response for the particular

178 Chapter 14. HTTP Cache

Symfony Doc Documentation, Release stable

URI and return them based on the request’s Accept-Encoding value. This is done by using the Vary response
header, which is a comma-separated list of different headers whose values trigger a different representation of the
requested resource:

Vary: Accept-Encoding, User-Agent

Tip: This particular Vary header would cache different versions of each resource based on the URI and the value of
the Accept-Encoding and User-Agent request header.

The Response object offers a clean interface for managing the Vary header:

// set one vary header
$response->setVary('Accept-Encoding');

// set multiple vary headers
$response->setVary(array('Accept-Encoding', 'User-Agent'));

The setVary() method takes a header name or an array of header names for which the response varies.

14.4.9 Expiration and Validation

You can of course use both validation and expiration within the same Response. As expiration wins over validation,
you can easily benefit from the best of both worlds. In other words, by using both expiration and validation, you can
instruct the cache to serve the cached content, while checking back at some interval (the expiration) to verify that the
content is still valid.

14.4.10 More Response Methods

The Response class provides many more methods related to the cache. Here are the most useful ones:

// Marks the Response stale
$response->expire();

// Force the response to return a proper 304 response with no content
$response->setNotModified();

Additionally, most cache-related HTTP headers can be set via the single
:method:‘Symfony\\Component\\HttpFoundation\\Response::setCache‘ method:

// Set cache settings in one call
$response->setCache(array(

'etag' => $etag,
'last_modified' => $date,
'max_age' => 10,
's_maxage' => 10,
'public' => true,
// 'private' => true,

));

14.4. HTTP Expiration and Validation 179

Symfony Doc Documentation, Release stable

14.5 Using Edge Side Includes

Gateway caches are a great way to make your website perform better. But they have one limitation: they can only
cache whole pages. If you can’t cache whole pages or if parts of a page has “more” dynamic parts, you are out of luck.
Fortunately, Symfony2 provides a solution for these cases, based on a technology called ESI, or Edge Side Includes.
Akamaï wrote this specification almost 10 years ago, and it allows specific parts of a page to have a different caching
strategy than the main page.

The ESI specification describes tags you can embed in your pages to communicate with the gateway cache. Only one
tag is implemented in Symfony2, include, as this is the only useful one outside of Akamaï context:

<!DOCTYPE html>
<html>

<body>
<!-- ... some content -->

<!-- Embed the content of another page here -->
<esi:include src="http://..." />

<!-- ... more content -->
</body>

</html>

Note: Notice from the example that each ESI tag has a fully-qualified URL. An ESI tag represents a page fragment
that can be fetched via the given URL.

When a request is handled, the gateway cache fetches the entire page from its cache or requests it from the backend
application. If the response contains one or more ESI tags, these are processed in the same way. In other words,
the gateway cache either retrieves the included page fragment from its cache or requests the page fragment from the
backend application again. When all the ESI tags have been resolved, the gateway cache merges each into the main
page and sends the final content to the client.

All of this happens transparently at the gateway cache level (i.e. outside of your application). As you’ll see, if you
choose to take advantage of ESI tags, Symfony2 makes the process of including them almost effortless.

14.5.1 Using ESI in Symfony2

First, to use ESI, be sure to enable it in your application configuration:

Now, suppose you have a page that is relatively static, except for a news ticker at the bottom of the content. With ESI,
you can cache the news ticker independent of the rest of the page.

public function indexAction()
{

$response = $this->render('MyBundle:MyController:index.html.twig');
// set the shared max age - which also marks the response as public
$response->setSharedMaxAge(600);

return $response;
}

In this example, the full-page cache has a lifetime of ten minutes. Next, include the news ticker in the template by
embedding an action. This is done via the render helper (See Embedding Controllers for more details).

180 Chapter 14. HTTP Cache

http://www.w3.org/TR/esi-lang

Symfony Doc Documentation, Release stable

As the embedded content comes from another page (or controller for that matter), Symfony2 uses the standard render
helper to configure ESI tags:

By using the esi renderer (via the render_esi Twig function), you tell Symfony2 that the action should be ren-
dered as an ESI tag. You might be wondering why you would want to use a helper instead of just writing the ESI tag
yourself. That’s because using a helper makes your application work even if there is no gateway cache installed.

When using the default render function (or setting the renderer to inline), Symfony2 merges the included page
content into the main one before sending the response to the client. But if you use the esi renderer (i.e. call
render_esi), and if Symfony2 detects that it’s talking to a gateway cache that supports ESI, it generates an ESI
include tag. But if there is no gateway cache or if it does not support ESI, Symfony2 will just merge the included page
content within the main one as it would have done if you had used render.

Note: Symfony2 detects if a gateway cache supports ESI via another Akamaï specification that is supported out of
the box by the Symfony2 reverse proxy.

The embedded action can now specify its own caching rules, entirely independent of the master page.

public function newsAction($max)
{

// ...

$response->setSharedMaxAge(60);
}

With ESI, the full page cache will be valid for 600 seconds, but the news component cache will only last for 60
seconds.

When using a controller reference, the ESI tag should reference the embedded action as an accessible URL so the
gateway cache can fetch it independently of the rest of the page. Symfony2 takes care of generating a unique URL
for any controller reference and it is able to route them properly thanks to a listener that must be enabled in your
configuration:

One great advantage of the ESI renderer is that you can make your application as dynamic as needed and at the same
time, hit the application as little as possible.

Tip: The listener only responds to local IP addresses or trusted proxies.

Note: Once you start using ESI, remember to always use the s-maxage directive instead of max-age. As the
browser only ever receives the aggregated resource, it is not aware of the sub-components, and so it will obey the
max-age directive and cache the entire page. And you don’t want that.

The render_esi helper supports two other useful options:

• alt: used as the alt attribute on the ESI tag, which allows you to specify an alternative URL to be used if the
src cannot be found;

• ignore_errors: if set to true, an onerror attribute will be added to the ESI with a value of continue
indicating that, in the event of a failure, the gateway cache will simply remove the ESI tag silently.

14.5. Using Edge Side Includes 181

Symfony Doc Documentation, Release stable

14.6 Cache Invalidation

“There are only two hard things in Computer Science: cache invalidation and naming things.” –Phil
Karlton

You should never need to invalidate cached data because invalidation is already taken into account natively in the HTTP
cache models. If you use validation, you never need to invalidate anything by definition; and if you use expiration and
need to invalidate a resource, it means that you set the expires date too far away in the future.

Note: Since invalidation is a topic specific to each type of reverse proxy, if you don’t worry about invalidation, you
can switch between reverse proxies without changing anything in your application code.

Actually, all reverse proxies provide ways to purge cached data, but you should avoid them as much as possible. The
most standard way is to purge the cache for a given URL by requesting it with the special PURGE HTTP method.

Here is how you can configure the Symfony2 reverse proxy to support the PURGE HTTP method:

// app/AppCache.php

// ...
use Symfony\Bundle\FrameworkBundle\HttpCache\HttpCache;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

class AppCache extends HttpCache
{

protected function invalidate(Request $request, $catch = false)
{

if ('PURGE' !== $request->getMethod()) {
return parent::invalidate($request, $catch);

}

$response = new Response();
if (!$this->getStore()->purge($request->getUri())) {

$response->setStatusCode(404, 'Not purged');
} else {

$response->setStatusCode(200, 'Purged');
}

return $response;
}

}

Caution: You must protect the PURGE HTTP method somehow to avoid random people purging your cached
data.

14.7 Summary

Symfony2 was designed to follow the proven rules of the road: HTTP. Caching is no exception. Mastering the
Symfony2 cache system means becoming familiar with the HTTP cache models and using them effectively. This
means that, instead of relying only on Symfony2 documentation and code examples, you have access to a world of
knowledge related to HTTP caching and gateway caches such as Varnish.

182 Chapter 14. HTTP Cache

Symfony Doc Documentation, Release stable

14.8 Learn more from the Cookbook

• /cookbook/cache/varnish

14.8. Learn more from the Cookbook 183

Symfony Doc Documentation, Release stable

184 Chapter 14. HTTP Cache

CHAPTER 15

Translations

The term “internationalization” (often abbreviated i18n) refers to the process of abstracting strings and other locale-
specific pieces out of your application and into a layer where they can be translated and converted based on the user’s
locale (i.e. language and country). For text, this means wrapping each with a function capable of translating the text
(or “message”) into the language of the user:

// text will *always* print out in English
echo 'Hello World';

// text can be translated into the end-user's language or
// default to English
echo $translator->trans('Hello World');

Note: The term locale refers roughly to the user’s language and country. It can be any string that your application
uses to manage translations and other format differences (e.g. currency format). The ISO639-1 language code, an
underscore (_), then the ISO3166 Alpha-2 country code (e.g. fr_FR for French/France) is recommended.

In this chapter, you’ll learn how to prepare an application to support multiple locales and then how to create translations
for multiple locales. Overall, the process has several common steps:

1. Enable and configure Symfony’s Translation component;

2. Abstract strings (i.e. “messages”) by wrapping them in calls to the Translator;

3. Create translation resources for each supported locale that translate each message in the application;

4. Determine, set and manage the user’s locale for the request and optionally on the user’s entire session.

15.1 Configuration

Translations are handled by a Translator service that uses the user’s locale to lookup and return translated mes-
sages. Before using it, enable the Translator in your configuration:

185

http://en.wikipedia.org/wiki/Internationalization_and_localization
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes

Symfony Doc Documentation, Release stable

The fallback option defines the fallback locale when a translation does not exist in the user’s locale.

Tip: When a translation does not exist for a locale, the translator first tries to find the translation for the language (fr
if the locale is fr_FR for instance). If this also fails, it looks for a translation using the fallback locale.

The locale used in translations is the one stored on the request. This is typically set via a _locale attribute on your
routes (see The Locale and the URL).

15.2 Basic Translation

Translation of text is done through the translator service (Symfony\Component\Translation\Translator).
To translate a block of text (called a message), use the :method:‘Symfony\\Component\\Translation\\Translator::trans‘
method. Suppose, for example, that you’re translating a simple message from inside a controller:

// ...
use Symfony\Component\HttpFoundation\Response;

public function indexAction()
{

$translated = $this->get('translator')->trans('Symfony2 is great');

return new Response($translated);
}

When this code is executed, Symfony2 will attempt to translate the message “Symfony2 is great” based on the locale
of the user. For this to work, you need to tell Symfony2 how to translate the message via a “translation resource”,
which is a collection of message translations for a given locale. This “dictionary” of translations can be created in
several different formats, XLIFF being the recommended format:

Now, if the language of the user’s locale is French (e.g. fr_FR or fr_BE), the message will be translated into
J'aime Symfony2.

15.2.1 The Translation Process

To actually translate the message, Symfony2 uses a simple process:

• The locale of the current user, which is stored on the request (or stored as _locale on the session), is
determined;

• A catalog of translated messages is loaded from translation resources defined for the locale (e.g. fr_FR).
Messages from the fallback locale are also loaded and added to the catalog if they don’t already exist. The end
result is a large “dictionary” of translations. See Message Catalogues for more details;

• If the message is located in the catalog, the translation is returned. If not, the translator returns the original
message.

When using the trans() method, Symfony2 looks for the exact string inside the appropriate message catalog and
returns it (if it exists).

15.2.2 Message Placeholders

Sometimes, a message containing a variable needs to be translated:

186 Chapter 15. Translations

Symfony Doc Documentation, Release stable

// ...
use Symfony\Component\HttpFoundation\Response;

public function indexAction($name)
{

$translated = $this->get('translator')->trans('Hello '.$name);

return new Response($translated);
}

However, creating a translation for this string is impossible since the translator will try to look up the exact message,
including the variable portions (e.g. “Hello Ryan” or “Hello Fabien”). Instead of writing a translation for every
possible iteration of the $name variable, you can replace the variable with a “placeholder”:

// ...
use Symfony\Component\HttpFoundation\Response;

public function indexAction($name)
{

$translated = $this->get('translator')->trans(
'Hello %name%',
array('%name%' => $name)

);

return new Response($translated);
}

Symfony2 will now look for a translation of the raw message (Hello %name%) and then replace the placeholders
with their values. Creating a translation is done just as before:

Note: The placeholders can take on any form as the full message is reconstructed using the PHP strtr function.
However, the %var% notation is required when translating in Twig templates, and is overall a sensible convention to
follow.

As you’ve seen, creating a translation is a two-step process:

1. Abstract the message that needs to be translated by processing it through the Translator.

2. Create a translation for the message in each locale that you choose to support.

The second step is done by creating message catalogues that define the translations for any number of different locales.

15.3 Message Catalogues

When a message is translated, Symfony2 compiles a message catalogue for the user’s locale and looks in it for a
translation of the message. A message catalogue is like a dictionary of translations for a specific locale. For example,
the catalogue for the fr_FR locale might contain the following translation:

Symfony2 is Great => J'aime Symfony2

It’s the responsibility of the developer (or translator) of an internationalized application to create these translations.
Translations are stored on the filesystem and discovered by Symfony, thanks to some conventions.

15.3. Message Catalogues 187

http://www.php.net/manual/en/function.strtr.php

Symfony Doc Documentation, Release stable

Tip: Each time you create a new translation resource (or install a bundle that includes a translation resource), be sure
to clear your cache so that Symfony can discover the new translation resource:

$ php app/console cache:clear

15.3.1 Translation Locations and Naming Conventions

Symfony2 looks for message files (i.e. translations) in the following locations:

• the <kernel root directory>/Resources/translations directory;

• the <kernel root directory>/Resources/<bundle name>/translations directory;

• the Resources/translations/ directory of the bundle.

The locations are listed with the highest priority first. That is you can override the translation messages of a bundle in
any of the top 2 directories.

The override mechanism works at a key level: only the overridden keys need to be listed in a higher priority message
file. When a key is not found in a message file, the translator will automatically fall back to the lower priority message
files.

The filename of the translations is also important as Symfony2 uses a convention to determine details about the
translations. Each message file must be named according to the following path: domain.locale.loader:

• domain: An optional way to organize messages into groups (e.g. admin, navigation or the default
messages) - see Using Message Domains;

• locale: The locale that the translations are for (e.g. en_GB, en, etc);

• loader: How Symfony2 should load and parse the file (e.g. xliff, php or yml).

The loader can be the name of any registered loader. By default, Symfony provides the following loaders:

• xliff: XLIFF file;

• php: PHP file;

• yml: YAML file.

The choice of which loader to use is entirely up to you and is a matter of taste.

Note: You can also store translations in a database, or any other storage by providing a custom class implementing the
Symfony\Component\Translation\Loader\LoaderInterface interface. See the dic-tags-translation-
loader tag for more information.

15.3.2 Creating Translations

The act of creating translation files is an important part of “localization” (often abbreviated L10n). Translation files
consist of a series of id-translation pairs for the given domain and locale. The source is the identifier for the individual
translation, and can be the message in the main locale (e.g. “Symfony is great”) of your application or a unique
identifier (e.g. “symfony2.great” - see the sidebar below):

Symfony2 will discover these files and use them when translating either “Symfony2 is great” or “symfony2.great” into
a French language locale (e.g. fr_FR or fr_BE).

188 Chapter 15. Translations

http://en.wikipedia.org/wiki/Internationalization_and_localization

Symfony Doc Documentation, Release stable

Using Real or Keyword Messages

This example illustrates the two different philosophies when creating messages to be translated:

$translated = $translator->trans('Symfony2 is great');

$translated = $translator->trans('symfony2.great');

In the first method, messages are written in the language of the default locale (English in this case). That message
is then used as the “id” when creating translations.

In the second method, messages are actually “keywords” that convey the idea of the message. The keyword message
is then used as the “id” for any translations. In this case, translations must be made for the default locale (i.e. to
translate symfony2.great to Symfony2 is great).

The second method is handy because the message key won’t need to be changed in every translation file if you
decide that the message should actually read “Symfony2 is really great” in the default locale.

The choice of which method to use is entirely up to you, but the “keyword” format is often recommended.

Additionally, the php and yaml file formats support nested ids to avoid repeating yourself if you use keywords
instead of real text for your ids:

The multiple levels are flattened into single id/translation pairs by adding a dot (.) between every level, therefore
the above examples are equivalent to the following:

15.4 Using Message Domains

As you’ve seen, message files are organized into the different locales that they translate. The message files can also
be organized further into “domains”. When creating message files, the domain is the first portion of the filename. The
default domain is messages. For example, suppose that, for organization, translations were split into three different
domains: messages, admin and navigation. The French translation would have the following message files:

• messages.fr.xliff

• admin.fr.xliff

• navigation.fr.xliff

When translating strings that are not in the default domain (messages), you must specify the domain as the third
argument of trans():

$this->get('translator')->trans('Symfony2 is great', array(), 'admin');

Symfony2 will now look for the message in the admin domain of the user’s locale.

15.5 Handling the User’s Locale

The locale of the current user is stored in the request and is accessible via the request object:

// access the request object in a standard controller
$request = $this->getRequest();

$locale = $request->getLocale();

(continues on next page)

15.4. Using Message Domains 189

Symfony Doc Documentation, Release stable

(continued from previous page)

$request->setLocale('en_US');

It is also possible to store the locale in the session instead of on a per request basis. If you do this, each subsequent
request will have this locale.

$this->get('session')->set('_locale', 'en_US');

See the The Locale and the URL section below about setting the locale via routing.

15.5.1 Fallback and Default Locale

If the locale hasn’t been set explicitly in the session, the fallback_locale configuration parameter will be used
by the Translator. The parameter defaults to en (see Configuration).

Alternatively, you can guarantee that a locale is set on each user’s request by defining a default_locale for the
framework:

New in version 2.1: The default_locale parameter was defined under the session key originally, however, as of
2.1 this has been moved. This is because the locale is now set on the request instead of the session.

15.5.2 The Locale and the URL

Since you can store the locale of the user in the session, it may be tempting to use the same URL to display a resource
in many different languages based on the user’s locale. For example, http://www.example.com/contact
could show content in English for one user and French for another user. Unfortunately, this violates a fundamental
rule of the Web: that a particular URL returns the same resource regardless of the user. To further muddy the problem,
which version of the content would be indexed by search engines?

A better policy is to include the locale in the URL. This is fully-supported by the routing system using the special
_locale parameter:

When using the special _locale parameter in a route, the matched locale will automatically be set on the user’s session.
In other words, if a user visits the URI /fr/contact, the locale fr will automatically be set as the locale for the
user’s session.

You can now use the user’s locale to create routes to other translated pages in your application.

15.6 Pluralization

Message pluralization is a tough topic as the rules can be quite complex. For instance, here is the mathematic repre-
sentation of the Russian pluralization rules:

(($number % 10 == 1) && ($number % 100 != 11))
? 0
: ((($number % 10 >= 2)

&& ($number % 10 <= 4)
&& (($number % 100 < 10)
|| ($number % 100 >= 20)))

? 1
: 2

);

190 Chapter 15. Translations

Symfony Doc Documentation, Release stable

As you can see, in Russian, you can have three different plural forms, each given an index of 0, 1 or 2. For each form,
the plural is different, and so the translation is also different.

When a translation has different forms due to pluralization, you can provide all the forms as a string separated by a
pipe (|):

'There is one apple|There are %count% apples'

To translate pluralized messages, use the :method:‘Symfony\\Component\\Translation\\Translator::transChoice‘
method:

$translated = $this->get('translator')->transChoice(
'There is one apple|There are %count% apples',
10,
array('%count%' => 10)

);

The second argument (10 in this example), is the number of objects being described and is used to determine which
translation to use and also to populate the %count% placeholder.

Based on the given number, the translator chooses the right plural form. In English, most words have a singular form
when there is exactly one object and a plural form for all other numbers (0, 2, 3. . .). So, if count is 1, the translator
will use the first string (There is one apple) as the translation. Otherwise it will use There are %count%
apples.

Here is the French translation:

'Il y a %count% pomme|Il y a %count% pommes'

Even if the string looks similar (it is made of two sub-strings separated by a pipe), the French rules are different: the
first form (no plural) is used when count is 0 or 1. So, the translator will automatically use the first string (Il y a
%count% pomme) when count is 0 or 1.

Each locale has its own set of rules, with some having as many as six different plural forms with complex rules behind
which numbers map to which plural form. The rules are quite simple for English and French, but for Russian, you’d
may want a hint to know which rule matches which string. To help translators, you can optionally “tag” each string:

'one: There is one apple|some: There are %count% apples'

'none_or_one: Il y a %count% pomme|some: Il y a %count% pommes'

The tags are really only hints for translators and don’t affect the logic used to determine which plural form to use. The
tags can be any descriptive string that ends with a colon (:). The tags also do not need to be the same in the original
message as in the translated one.

Tip: As tags are optional, the translator doesn’t use them (the translator will only get a string based on its position in
the string).

15.6.1 Explicit Interval Pluralization

The easiest way to pluralize a message is to let Symfony2 use internal logic to choose which string to use based on a
given number. Sometimes, you’ll need more control or want a different translation for specific cases (for 0, or when
the count is negative, for example). For such cases, you can use explicit math intervals:

15.6. Pluralization 191

Symfony Doc Documentation, Release stable

'{0} There are no apples|{1} There is one apple|]1,19] There are %count% apples|[20,
→˓Inf] There are many apples'

The intervals follow the ISO 31-11 notation. The above string specifies four different intervals: exactly 0, exactly 1,
2-19, and 20 and higher.

You can also mix explicit math rules and standard rules. In this case, if the count is not matched by a specific interval,
the standard rules take effect after removing the explicit rules:

'{0} There are no apples|[20,Inf] There are many apples|There is one apple|a_few:
→˓There are %count% apples'

For example, for 1 apple, the standard rule There is one apple will be used. For 2-19 apples, the second
standard rule There are %count% apples will be selected.

An Symfony\Component\Translation\Interval can represent a finite set of numbers:

{1,2,3,4}

Or numbers between two other numbers:

[1, +Inf[
]-1,2[

The left delimiter can be [(inclusive) or] (exclusive). The right delimiter can be [(exclusive) or] (inclusive).
Beside numbers, you can use -Inf and +Inf for the infinite.

15.7 Translations in Templates

Most of the time, translation occurs in templates. Symfony2 provides native support for both Twig and PHP templates.

15.7.1 Twig Templates

Symfony2 provides specialized Twig tags (trans and transchoice) to help with message translation of static
blocks of text:

{% trans %}Hello %name%{% endtrans %}

{% transchoice count %}
{0} There are no apples|{1} There is one apple|]1,Inf] There are %count% apples

{% endtranschoice %}

The transchoice tag automatically gets the %count% variable from the current context and passes it to the trans-
lator. This mechanism only works when you use a placeholder following the %var% pattern.

Tip: If you need to use the percent character (%) in a string, escape it by doubling it: {% trans %}Percent:
%percent%%%{% endtrans %}

You can also specify the message domain and pass some additional variables:

192 Chapter 15. Translations

http://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals

Symfony Doc Documentation, Release stable

{% trans with {'%name%': 'Fabien'} from "app" %}Hello %name%{% endtrans %}

{% trans with {'%name%': 'Fabien'} from "app" into "fr" %}Hello %name%{% endtrans %}

{% transchoice count with {'%name%': 'Fabien'} from "app" %}
{0} %name%, there are no apples|{1} %name%, there is one apple|]1,Inf] %name%,

→˓there are %count% apples
{% endtranschoice %}

The trans and transchoice filters can be used to translate variable texts and complex expressions:

{{ message|trans }}

{{ message|transchoice(5) }}

{{ message|trans({'%name%': 'Fabien'}, "app") }}

{{ message|transchoice(5, {'%name%': 'Fabien'}, 'app') }}

Tip: Using the translation tags or filters have the same effect, but with one subtle difference: automatic output
escaping is only applied to translations using a filter. In other words, if you need to be sure that your translated is not
output escaped, you must apply the raw filter after the translation filter:

{# text translated between tags is never escaped #}
{% trans %}

<h3>foo</h3>
{% endtrans %}

{% set message = '<h3>foo</h3>' %}

{# strings and variables translated via a filter is escaped by default #}
{{ message|trans|raw }}
{{ '<h3>bar</h3>'|trans|raw }}

Tip: You can set the translation domain for an entire Twig template with a single tag:

{% trans_default_domain "app" %}

Note that this only influences the current template, not any “included” templates (in order to avoid side effects).

15.7.2 PHP Templates

The translator service is accessible in PHP templates through the translator helper:

<?php echo $view['translator']->trans('Symfony2 is great') ?>

<?php echo $view['translator']->transChoice(
'{0} There is no apples|{1} There is one apple|]1,Inf[There are %count% apples',
10,
array('%count%' => 10)

) ?>

15.7. Translations in Templates 193

Symfony Doc Documentation, Release stable

15.8 Forcing the Translator Locale

When translating a message, Symfony2 uses the locale from the current request or the fallback locale if necessary.
You can also manually specify the locale to use for translation:

$this->get('translator')->trans(
'Symfony2 is great',
array(),
'messages',
'fr_FR'

);

$this->get('translator')->transChoice(
'{0} There are no apples|{1} There is one apple|]1,Inf[There are %count% apples',
10,
array('%count%' => 10),
'messages',
'fr_FR'

);

15.9 Translating Database Content

The translation of database content should be handled by Doctrine through the Translatable Extension. For more
information, see the documentation for that library.

15.10 Translating Constraint Messages

The best way to understand constraint translation is to see it in action. To start, suppose you’ve created a plain-old-PHP
object that you need to use somewhere in your application:

// src/Acme/BlogBundle/Entity/Author.php
namespace Acme\BlogBundle\Entity;

class Author
{

public $name;
}

Add constraints though any of the supported methods. Set the message option to the translation source text. For
example, to guarantee that the $name property is not empty, add the following:

Create a translation file under the validators catalog for the constraint messages, typically in the Resources/
translations/ directory of the bundle. See Message Catalogues for more details.

15.11 Summary

With the Symfony2 Translation component, creating an internationalized application no longer needs to be a painful
process and boils down to just a few basic steps:

194 Chapter 15. Translations

https://github.com/l3pp4rd/DoctrineExtensions

Symfony Doc Documentation, Release stable

• Abstract messages in your application by wrapping each in either the
:method:‘Symfony\\Component\\Translation\\Translator::trans‘ or :method:‘Symfony\\Component\\Translation\\Translator::transChoice‘
methods;

• Translate each message into multiple locales by creating translation message files. Symfony2 discovers and
processes each file because its name follows a specific convention;

• Manage the user’s locale, which is stored on the request, but can also be set on the user’s session.

15.11. Summary 195

Symfony Doc Documentation, Release stable

196 Chapter 15. Translations

CHAPTER 16

Service Container

A modern PHP application is full of objects. One object may facilitate the delivery of email messages while another
may allow you to persist information into a database. In your application, you may create an object that manages your
product inventory, or another object that processes data from a third-party API. The point is that a modern application
does many things and is organized into many objects that handle each task.

This chapter is about a special PHP object in Symfony2 that helps you instantiate, organize and retrieve the many
objects of your application. This object, called a service container, will allow you to standardize and centralize the
way objects are constructed in your application. The container makes your life easier, is super fast, and emphasizes
an architecture that promotes reusable and decoupled code. Since all core Symfony2 classes use the container, you’ll
learn how to extend, configure and use any object in Symfony2. In large part, the service container is the biggest
contributor to the speed and extensibility of Symfony2.

Finally, configuring and using the service container is easy. By the end of this chapter, you’ll be comfortable creating
your own objects via the container and customizing objects from any third-party bundle. You’ll begin writing code
that is more reusable, testable and decoupled, simply because the service container makes writing good code so easy.

Tip: If you want to know a lot more after reading this chapter, check out the Dependency Injection Component
Documentation.

16.1 What is a Service?

Put simply, a Service is any PHP object that performs some sort of “global” task. It’s a purposefully-generic name
used in computer science to describe an object that’s created for a specific purpose (e.g. delivering emails). Each
service is used throughout your application whenever you need the specific functionality it provides. You don’t have
to do anything special to make a service: simply write a PHP class with some code that accomplishes a specific task.
Congratulations, you’ve just created a service!

Note: As a rule, a PHP object is a service if it is used globally in your application. A single Mailer service is used
globally to send email messages whereas the many Message objects that it delivers are not services. Similarly, a

197

Symfony Doc Documentation, Release stable

Product object is not a service, but an object that persists Product objects to a database is a service.

So what’s the big deal then? The advantage of thinking about “services” is that you begin to think about separating
each piece of functionality in your application into a series of services. Since each service does just one job, you can
easily access each service and use its functionality wherever you need it. Each service can also be more easily tested
and configured since it’s separated from the other functionality in your application. This idea is called service-oriented
architecture and is not unique to Symfony2 or even PHP. Structuring your application around a set of independent
service classes is a well-known and trusted object-oriented best-practice. These skills are key to being a good developer
in almost any language.

16.2 What is a Service Container?

A Service Container (or dependency injection container) is simply a PHP object that manages the instantiation of
services (i.e. objects).

For example, suppose you have a simple PHP class that delivers email messages. Without a service container, you
must manually create the object whenever you need it:

use Acme\HelloBundle\Mailer;

$mailer = new Mailer('sendmail');
$mailer->send('ryan@foobar.net', ...);

This is easy enough. The imaginary Mailer class allows you to configure the method used to deliver the email
messages (e.g. sendmail, smtp, etc). But what if you wanted to use the mailer service somewhere else? You
certainly don’t want to repeat the mailer configuration every time you need to use the Mailer object. What if you
needed to change the transport from sendmail to smtp everywhere in the application? You’d need to hunt
down every place you create a Mailer service and change it.

16.3 Creating/Configuring Services in the Container

A better answer is to let the service container create the Mailer object for you. In order for this to work, you must
teach the container how to create the Mailer service. This is done via configuration, which can be specified in
YAML, XML or PHP:

Note: When Symfony2 initializes, it builds the service container using the application config-
uration (app/config/config.yml by default). The exact file that’s loaded is dictated by the
AppKernel::registerContainerConfiguration() method, which loads an environment-specific con-
figuration file (e.g. config_dev.yml for the dev environment or config_prod.yml for prod).

An instance of the Acme\HelloBundle\Mailer object is now available via the service container. The container
is available in any traditional Symfony2 controller where you can access the services of the container via the get()
shortcut method:

class HelloController extends Controller
{

// ...

public function sendEmailAction()
{

(continues on next page)

198 Chapter 16. Service Container

http://wikipedia.org/wiki/Service-oriented_architecture
http://wikipedia.org/wiki/Service-oriented_architecture

Symfony Doc Documentation, Release stable

(continued from previous page)

// ...
$mailer = $this->get('my_mailer');
$mailer->send('ryan@foobar.net', ...);

}
}

When you ask for the my_mailer service from the container, the container constructs the object and returns it. This
is another major advantage of using the service container. Namely, a service is never constructed until it’s needed. If
you define a service and never use it on a request, the service is never created. This saves memory and increases the
speed of your application. This also means that there’s very little or no performance hit for defining lots of services.
Services that are never used are never constructed.

As an added bonus, the Mailer service is only created once and the same instance is returned each time you ask for
the service. This is almost always the behavior you’ll need (it’s more flexible and powerful), but you’ll learn later how
you can configure a service that has multiple instances in the “/cookbook/service_container/scopes” cookbook article.

Note: In this example, the controller extends Symfony’s base Controller, which gives you access to the service
container itself. You can then use the get method to locate and retrieve the my_mailer service from the service
container. You can also define your controllers as services. This is a bit more advanced and not necessary, but it allows
you to inject only the services you need into your controller.

16.4 Service Parameters

The creation of new services (i.e. objects) via the container is pretty straightforward. Parameters make defining
services more organized and flexible:

The end result is exactly the same as before - the difference is only in how you defined the service. By surrounding
the my_mailer.class and my_mailer.transport strings in percent (%) signs, the container knows to look
for parameters with those names. When the container is built, it looks up the value of each parameter and uses it in the
service definition.

Note: If you want to use a string that starts with an @ sign as a parameter value (i.e. a very safe mailer password) in a
yaml file, you need to escape it by adding another @ sign (This only applies to the YAML format):

app/config/parameters.yml
parameters:

This will be parsed as string "@securepass"
mailer_password: "@@securepass"

Note: The percent sign inside a parameter or argument, as part of the string, must be escaped with another percent
sign:

<argument type="string">http://symfony.com/?foo=%%s&bar=%%d</argument>

16.4. Service Parameters 199

Symfony Doc Documentation, Release stable

Caution: You may receive a Symfony\Component\DependencyInjection\Exception\ScopeWideningInjectionException
when passing the request service as an argument. To understand this problem better and learn how to solve it,
refer to the cookbook article /cookbook/service_container/scopes.

The purpose of parameters is to feed information into services. Of course there was nothing wrong with defining the
service without using any parameters. Parameters, however, have several advantages:

• separation and organization of all service “options” under a single parameters key;

• parameter values can be used in multiple service definitions;

• when creating a service in a bundle (this follows shortly), using parameters allows the service to be easily
customized in your application.

The choice of using or not using parameters is up to you. High-quality third-party bundles will always use parameters
as they make the service stored in the container more configurable. For the services in your application, however, you
may not need the flexibility of parameters.

16.4.1 Array Parameters

Parameters can also contain array values. See component-di-parameters-array.

16.5 Importing other Container Configuration Resources

Tip: In this section, service configuration files are referred to as resources. This is to highlight the fact that, while
most configuration resources will be files (e.g. YAML, XML, PHP), Symfony2 is so flexible that configuration could
be loaded from anywhere (e.g. a database or even via an external web service).

The service container is built using a single configuration resource (app/config/config.yml by default). All
other service configuration (including the core Symfony2 and third-party bundle configuration) must be imported from
inside this file in one way or another. This gives you absolute flexibility over the services in your application.

External service configuration can be imported in two different ways. The first - and most common method - is via
the imports directive. Later, you’ll learn about the second method, which is the flexible and preferred method for
importing service configuration from third-party bundles.

16.5.1 Importing Configuration with imports

So far, you’ve placed your my_mailer service container definition directly in the application configuration file (e.g.
app/config/config.yml). Of course, since the Mailer class itself lives inside the AcmeHelloBundle, it
makes more sense to put the my_mailer container definition inside the bundle as well.

First, move the my_mailer container definition into a new container resource file inside AcmeHelloBundle. If
the Resources or Resources/config directories don’t exist, create them.

The definition itself hasn’t changed, only its location. Of course the service container doesn’t know about the new
resource file. Fortunately, you can easily import the resource file using the imports key in the application configu-
ration.

The imports directive allows your application to include service container configuration resources from any other
location (most commonly from bundles). The resource location, for files, is the absolute path to the resource file.

200 Chapter 16. Service Container

Symfony Doc Documentation, Release stable

The special @AcmeHello syntax resolves the directory path of the AcmeHelloBundle bundle. This helps you
specify the path to the resource without worrying later if you move the AcmeHelloBundle to a different directory.

16.5.2 Importing Configuration via Container Extensions

When developing in Symfony2, you’ll most commonly use the imports directive to import container configuration
from the bundles you’ve created specifically for your application. Third-party bundle container configuration, includ-
ing Symfony2 core services, are usually loaded using another method that’s more flexible and easy to configure in
your application.

Here’s how it works. Internally, each bundle defines its services very much like you’ve seen so far. Namely, a
bundle uses one or more configuration resource files (usually XML) to specify the parameters and services for that
bundle. However, instead of importing each of these resources directly from your application configuration using the
imports directive, you can simply invoke a service container extension inside the bundle that does the work for you.
A service container extension is a PHP class created by the bundle author to accomplish two things:

• import all service container resources needed to configure the services for the bundle;

• provide semantic, straightforward configuration so that the bundle can be configured without interacting with
the flat parameters of the bundle’s service container configuration.

In other words, a service container extension configures the services for a bundle on your behalf. And as you’ll see in
a moment, the extension provides a sensible, high-level interface for configuring the bundle.

Take the FrameworkBundle - the core Symfony2 framework bundle - as an example. The presence of the following
code in your application configuration invokes the service container extension inside the FrameworkBundle:

When the configuration is parsed, the container looks for an extension that can handle the framework configuration
directive. The extension in question, which lives in the FrameworkBundle, is invoked and the service configuration
for the FrameworkBundle is loaded. If you remove the framework key from your application configuration file
entirely, the core Symfony2 services won’t be loaded. The point is that you’re in control: the Symfony2 framework
doesn’t contain any magic or perform any actions that you don’t have control over.

Of course you can do much more than simply “activate” the service container extension of the FrameworkBundle.
Each extension allows you to easily customize the bundle, without worrying about how the internal services are
defined.

In this case, the extension allows you to customize the error_handler, csrf_protection, router config-
uration and much more. Internally, the FrameworkBundle uses the options specified here to define and configure
the services specific to it. The bundle takes care of creating all the necessary parameters and services for the
service container, while still allowing much of the configuration to be easily customized. As an added bonus, most
service container extensions are also smart enough to perform validation - notifying you of options that are missing or
the wrong data type.

When installing or configuring a bundle, see the bundle’s documentation for how the services for the bundle should be
installed and configured. The options available for the core bundles can be found inside the Reference Guide.

Note: Natively, the service container only recognizes the parameters, services, and imports directives. Any
other directives are handled by a service container extension.

If you want to expose user friendly configuration in your own bundles, read the “/cookbook/bundles/extension” cook-
book recipe.

16.5. Importing other Container Configuration Resources 201

Symfony Doc Documentation, Release stable

16.6 Referencing (Injecting) Services

So far, the original my_mailer service is simple: it takes just one argument in its constructor, which is easily
configurable. As you’ll see, the real power of the container is realized when you need to create a service that depends
on one or more other services in the container.

As an example, suppose you have a new service, NewsletterManager, that helps to manage the preparation and
delivery of an email message to a collection of addresses. Of course the my_mailer service is already really good
at delivering email messages, so you’ll use it inside NewsletterManager to handle the actual delivery of the
messages. This pretend class might look something like this:

// src/Acme/HelloBundle/Newsletter/NewsletterManager.php
namespace Acme\HelloBundle\Newsletter;

use Acme\HelloBundle\Mailer;

class NewsletterManager
{

protected $mailer;

public function __construct(Mailer $mailer)
{

$this->mailer = $mailer;
}

// ...
}

Without using the service container, you can create a new NewsletterManager fairly easily from inside a con-
troller:

use Acme\HelloBundle\Newsletter\NewsletterManager;

// ...

public function sendNewsletterAction()
{

$mailer = $this->get('my_mailer');
$newsletter = new NewsletterManager($mailer);
// ...

}

This approach is fine, but what if you decide later that the NewsletterManager class needs a second or third
constructor argument? What if you decide to refactor your code and rename the class? In both cases, you’d need to
find every place where the NewsletterManager is instantiated and modify it. Of course, the service container
gives you a much more appealing option:

In YAML, the special @my_mailer syntax tells the container to look for a service named my_mailer and to pass
that object into the constructor of NewsletterManager. In this case, however, the specified service my_mailer
must exist. If it does not, an exception will be thrown. You can mark your dependencies as optional - this will be
discussed in the next section.

Using references is a very powerful tool that allows you to create independent service classes with well-defined depen-
dencies. In this example, the newsletter_manager service needs the my_mailer service in order to function.
When you define this dependency in the service container, the container takes care of all the work of instantiating the
objects.

202 Chapter 16. Service Container

Symfony Doc Documentation, Release stable

16.6.1 Optional Dependencies: Setter Injection

Injecting dependencies into the constructor in this manner is an excellent way of ensuring that the dependency is
available to use. If you have optional dependencies for a class, then “setter injection” may be a better option. This
means injecting the dependency using a method call rather than through the constructor. The class would look like
this:

namespace Acme\HelloBundle\Newsletter;

use Acme\HelloBundle\Mailer;

class NewsletterManager
{

protected $mailer;

public function setMailer(Mailer $mailer)
{

$this->mailer = $mailer;
}

// ...
}

Injecting the dependency by the setter method just needs a change of syntax:

Note: The approaches presented in this section are called “constructor injection” and “setter injection”. The Sym-
fony2 service container also supports “property injection”.

16.7 Making References Optional

Sometimes, one of your services may have an optional dependency, meaning that the dependency is not required for
your service to work properly. In the example above, the my_mailer service must exist, otherwise an exception will
be thrown. By modifying the newsletter_manager service definition, you can make this reference optional. The
container will then inject it if it exists and do nothing if it doesn’t:

In YAML, the special @? syntax tells the service container that the dependency is optional. Of course, the
NewsletterManager must also be written to allow for an optional dependency:

public function __construct(Mailer $mailer = null)
{

// ...
}

16.8 Core Symfony and Third-Party Bundle Services

Since Symfony2 and all third-party bundles configure and retrieve their services via the container, you can easily
access them or even use them in your own services. To keep things simple, Symfony2 by default does not require that
controllers be defined as services. Furthermore Symfony2 injects the entire service container into your controller. For
example, to handle the storage of information on a user’s session, Symfony2 provides a session service, which you
can access inside a standard controller as follows:

16.7. Making References Optional 203

Symfony Doc Documentation, Release stable

public function indexAction($bar)
{

$session = $this->get('session');
$session->set('foo', $bar);

// ...
}

In Symfony2, you’ll constantly use services provided by the Symfony core or other third-party bundles to perform
tasks such as rendering templates (templating), sending emails (mailer), or accessing information on the request
(request).

You can take this a step further by using these services inside services that you’ve created for your application. Be-
ginning by modifying the NewsletterManager to use the real Symfony2 mailer service (instead of the pretend
my_mailer). Also pass the templating engine service to the NewsletterManager so that it can generate the
email content via a template:

namespace Acme\HelloBundle\Newsletter;

use Symfony\Component\Templating\EngineInterface;

class NewsletterManager
{

protected $mailer;

protected $templating;

public function __construct(
\Swift_Mailer $mailer,
EngineInterface $templating

) {
$this->mailer = $mailer;
$this->templating = $templating;

}

// ...
}

Configuring the service container is easy:

The newsletter_manager service now has access to the core mailer and templating services. This is a
common way to create services specific to your application that leverage the power of different services within the
framework.

Tip: Be sure that the swiftmailer entry appears in your application configuration. As was mentioned in Im-
porting Configuration via Container Extensions, the swiftmailer key invokes the service extension from the
SwiftmailerBundle, which registers the mailer service.

16.9 Tags

In the same way that a blog post on the Web might be tagged with things such as “Symfony” or “PHP”, services
configured in your container can also be tagged. In the service container, a tag implies that the service is meant to be
used for a specific purpose. Take the following example:

204 Chapter 16. Service Container

Symfony Doc Documentation, Release stable

The twig.extension tag is a special tag that the TwigBundle uses during configuration. By giving the service
this twig.extension tag, the bundle knows that the foo.twig.extension service should be registered as a
Twig extension with Twig. In other words, Twig finds all services tagged with twig.extension and automatically
registers them as extensions.

Tags, then, are a way to tell Symfony2 or other third-party bundles that your service should be registered or used in
some special way by the bundle.

The following is a list of tags available with the core Symfony2 bundles. Each of these has a different effect on your
service and many tags require additional arguments (beyond just the name parameter).

For a list of all the tags available in the core Symfony Framework, check out /reference/dic_tags.

16.10 Debugging Services

You can find out what services are registered with the container using the console. To show all services and the class
for each service, run:

$ php app/console container:debug

By default only public services are shown, but you can also view private services:

$ php app/console container:debug --show-private

You can get more detailed information about a particular service by specifying its id:

$ php app/console container:debug my_mailer

16.11 Learn more

• /components/dependency_injection/parameters

• /components/dependency_injection/compilation

• /components/dependency_injection/definitions

• /components/dependency_injection/factories

• /components/dependency_injection/parentservices

• /components/dependency_injection/tags

• /cookbook/controller/service

• /cookbook/service_container/scopes

• /cookbook/service_container/compiler_passes

• /components/dependency_injection/advanced

16.10. Debugging Services 205

Symfony Doc Documentation, Release stable

206 Chapter 16. Service Container

CHAPTER 17

Performance

Symfony2 is fast, right out of the box. Of course, if you really need speed, there are many ways that you can make
Symfony even faster. In this chapter, you’ll explore many of the most common and powerful ways to make your
Symfony application even faster.

17.1 Use a Byte Code Cache (e.g. APC)

One of the best (and easiest) things that you should do to improve your performance is to use a “byte code cache”. The
idea of a byte code cache is to remove the need to constantly recompile the PHP source code. There are a number of
byte code caches available, some of which are open source. The most widely used byte code cache is probably APC

Using a byte code cache really has no downside, and Symfony2 has been architected to perform really well in this type
of environment.

17.1.1 Further Optimizations

Byte code caches usually monitor the source files for changes. This ensures that if the source of a file changes, the
byte code is recompiled automatically. This is really convenient, but obviously adds overhead.

For this reason, some byte code caches offer an option to disable these checks. Obviously, when disabling these checks,
it will be up to the server admin to ensure that the cache is cleared whenever any source files change. Otherwise, the
updates you’ve made won’t be seen.

For example, to disable these checks in APC, simply add apc.stat=0 to your php.ini configuration.

17.2 Use Composer’s Class Map Functionality

By default, the Symfony2 standard edition uses Composer’s autoloader in the autoload.php file. This autoloader is
easy to use, as it will automatically find any new classes that you’ve placed in the registered directories.

207

http://en.wikipedia.org/wiki/List_of_PHP_accelerators
http://php.net/manual/en/book.apc.php
https://github.com/symfony/symfony-standard/blob/master/app/autoload.php

Symfony Doc Documentation, Release stable

Unfortunately, this comes at a cost, as the loader iterates over all configured namespaces to find a particular file,
making file_exists calls until it finally finds the file it’s looking for.

The simplest solution is to tell Composer to build a “class map” (i.e. a big array of the locations of all the classes).
This can be done from the command line, and might become part of your deploy process:

php composer.phar dump-autoload --optimize

Internally, this builds the big class map array in vendor/composer/autoload_classmap.php.

17.3 Caching the Autoloader with APC

Another solution is to cache the location of each class after it’s located the first time. Symfony comes with a class
- Symfony\Component\ClassLoader\ApcClassLoader - that does exactly this. To use it, just adapt your
front controller file. If you’re using the Standard Distribution, this code should already be available as comments in
this file:

// app.php
// ...

$loader = require_once __DIR__.'/../app/bootstrap.php.cache';

// Use APC for autoloading to improve performance
// Change 'sf2' by the prefix you want in order
// to prevent key conflict with another application
/*
$loader = new ApcClassLoader('sf2', $loader);
$loader->register(true);

*/

// ...

Note: When using the APC autoloader, if you add new classes, they will be found automatically and everything will
work the same as before (i.e. no reason to “clear” the cache). However, if you change the location of a particular
namespace or prefix, you’ll need to flush your APC cache. Otherwise, the autoloader will still be looking at the old
location for all classes inside that namespace.

17.4 Use Bootstrap Files

To ensure optimal flexibility and code reuse, Symfony2 applications leverage a variety of classes and 3rd party com-
ponents. But loading all of these classes from separate files on each request can result in some overhead. To reduce
this overhead, the Symfony2 Standard Edition provides a script to generate a so-called bootstrap file, consisting of
multiple classes definitions in a single file. By including this file (which contains a copy of many of the core classes),
Symfony no longer needs to include any of the source files containing those classes. This will reduce disc IO quite a
bit.

If you’re using the Symfony2 Standard Edition, then you’re probably already using the bootstrap file. To be sure, open
your front controller (usually app.php) and check to make sure that the following line exists:

require_once __DIR__.'/../app/bootstrap.php.cache';

Note that there are two disadvantages when using a bootstrap file:

208 Chapter 17. Performance

https://github.com/sensio/SensioDistributionBundle/blob/master/Composer/ScriptHandler.php

Symfony Doc Documentation, Release stable

• the file needs to be regenerated whenever any of the original sources change (i.e. when you update the Symfony2
source or vendor libraries);

• when debugging, one will need to place break points inside the bootstrap file.

If you’re using Symfony2 Standard Edition, the bootstrap file is automatically rebuilt after updating the vendor libraries
via the php composer.phar install command.

17.4.1 Bootstrap Files and Byte Code Caches

Even when using a byte code cache, performance will improve when using a bootstrap file since there will be fewer
files to monitor for changes. Of course if this feature is disabled in the byte code cache (e.g. apc.stat=0 in APC),
there is no longer a reason to use a bootstrap file.

17.4. Use Bootstrap Files 209

Symfony Doc Documentation, Release stable

210 Chapter 17. Performance

CHAPTER 18

Internals

Looks like you want to understand how Symfony2 works and how to extend it. That makes me very happy! This
section is an in-depth explanation of the Symfony2 internals.

Note: You need to read this section only if you want to understand how Symfony2 works behind the scene, or if you
want to extend Symfony2.

18.1 Overview

The Symfony2 code is made of several independent layers. Each layer is built on top of the previous one.

Tip: Autoloading is not managed by the framework directly; it’s done by using Composer’s autoloader (vendor/
autoload.php), which is included in the app/autoload.php file.

18.1.1 HttpFoundation Component

The deepest level is the :namespace:‘Symfony\\Component\\HttpFoundation‘ component. HttpFoundation pro-
vides the main objects needed to deal with HTTP. It is an Object-Oriented abstraction of some native PHP functions
and variables:

• The Symfony\Component\HttpFoundation\Request class abstracts the main PHP global variables
like $_GET, $_POST, $_COOKIE, $_FILES, and $_SERVER;

• The Symfony\Component\HttpFoundation\Response class abstracts some PHP functions like
header(), setcookie(), and echo;

• The Symfony\Component\HttpFoundation\Session class and
Symfony\Component\HttpFoundation\SessionStorage\SessionStorageInterface
interface abstract session management session_*() functions.

211

Symfony Doc Documentation, Release stable

Note: Read more about the HttpFoundation Component.

18.1.2 HttpKernel Component

On top of HttpFoundation is the :namespace:‘Symfony\\Component\\HttpKernel‘ component. HttpKernel handles
the dynamic part of HTTP; it is a thin wrapper on top of the Request and Response classes to standardize the way
requests are handled. It also provides extension points and tools that makes it the ideal starting point to create a Web
framework without too much overhead.

It also optionally adds configurability and extensibility, thanks to the Dependency Injection component and a powerful
plugin system (bundles).

See also:

Read more about the HttpKernel Component, Dependency Injection and Bundles.

18.1.3 FrameworkBundle Bundle

The :namespace:‘Symfony\\Bundle\\FrameworkBundle‘ bundle is the bundle that ties the main components and
libraries together to make a lightweight and fast MVC framework. It comes with a sensible default configuration and
conventions to ease the learning curve.

18.2 Kernel

The Symfony\Component\HttpKernel\HttpKernel class is the central class
of Symfony2 and is responsible for handling client requests. Its main goal is
to “convert” a Symfony\Component\HttpFoundation\Request object to a
Symfony\Component\HttpFoundation\Response object.

Every Symfony2 Kernel implements Symfony\Component\HttpKernel\HttpKernelInterface:

function handle(Request $request, $type = self::MASTER_REQUEST, $catch = true)

18.2.1 Controllers

To convert a Request to a Response, the Kernel relies on a “Controller”. A Controller can be any valid PHP callable.

The Kernel delegates the selection of what Controller should be executed to an implementation of
Symfony\Component\HttpKernel\Controller\ControllerResolverInterface:

public function getController(Request $request);

public function getArguments(Request $request, $controller);

The :method:‘Symfony\\Component\\HttpKernel\\Controller\\ControllerResolverInterface::getController‘
method returns the Controller (a PHP callable) associated with the given Request. The default imple-
mentation (Symfony\Component\HttpKernel\Controller\ControllerResolver) looks for
a _controller request attribute that represents the controller name (a “class::method” string, like
Bundle\BlogBundle\PostController:indexAction).

212 Chapter 18. Internals

Symfony Doc Documentation, Release stable

Tip: The default implementation uses the Symfony\Bundle\FrameworkBundle\EventListener\RouterListener
to define the _controller Request attribute (see kernel.request Event).

The :method:‘Symfony\\Component\\HttpKernel\\Controller\\ControllerResolverInterface::getArguments‘
method returns an array of arguments to pass to the Controller callable. The default implementation automatically
resolves the method arguments, based on the Request attributes.

Matching Controller method arguments from Request attributes

For each method argument, Symfony2 tries to get the value of a Request attribute with the same name. If it is not
defined, the argument default value is used if defined:

// Symfony2 will look for an 'id' attribute (mandatory)
// and an 'admin' one (optional)
public function showAction($id, $admin = true)
{

// ...
}

18.2.2 Handling Requests

The :method:‘Symfony\\Component\\HttpKernel\\HttpKernel::handle‘ method takes a Request and always re-
turns a Response. To convert the Request, handle() relies on the Resolver and an ordered chain of Event
notifications (see the next section for more information about each Event):

1. Before doing anything else, the kernel.request event is notified – if one of the listeners returns a
Response, it jumps to step 8 directly;

2. The Resolver is called to determine the Controller to execute;

3. Listeners of the kernel.controller event can now manipulate the Controller callable the way they want
(change it, wrap it, . . .);

4. The Kernel checks that the Controller is actually a valid PHP callable;

5. The Resolver is called to determine the arguments to pass to the Controller;

6. The Kernel calls the Controller;

7. If the Controller does not return a Response, listeners of the kernel.view event can convert the Controller
return value to a Response;

8. Listeners of the kernel.response event can manipulate the Response (content and headers);

9. The Response is returned.

If an Exception is thrown during processing, the kernel.exception is notified and listeners are given a chance to
convert the Exception to a Response. If that works, the kernel.response event is notified; if not, the Exception
is re-thrown.

If you don’t want Exceptions to be caught (for embedded requests for instance), disable the kernel.exception
event by passing false as the third argument to the handle() method.

18.2. Kernel 213

Symfony Doc Documentation, Release stable

18.2.3 Internal Requests

At any time during the handling of a request (the ‘master’ one), a sub-request can be handled. You can pass the request
type to the handle() method (its second argument):

• HttpKernelInterface::MASTER_REQUEST;

• HttpKernelInterface::SUB_REQUEST.

The type is passed to all events and listeners can act accordingly (some processing must only occur on the master
request).

18.2.4 Events

Each event thrown by the Kernel is a subclass of Symfony\Component\HttpKernel\Event\KernelEvent.
This means that each event has access to the same basic information:

• :method:‘Symfony\\Component\\HttpKernel\\Event\\KernelEvent::getRequestType‘ - re-
turns the type of the request (HttpKernelInterface::MASTER_REQUEST or
HttpKernelInterface::SUB_REQUEST);

• :method:‘Symfony\\Component\\HttpKernel\\Event\\KernelEvent::getKernel‘ - returns the Kernel han-
dling the request;

• :method:‘Symfony\\Component\\HttpKernel\\Event\\KernelEvent::getRequest‘ - returns the current
Request being handled.

getRequestType()

The getRequestType() method allows listeners to know the type of the request. For instance, if a listener must
only be active for master requests, add the following code at the beginning of your listener method:

use Symfony\Component\HttpKernel\HttpKernelInterface;

if (HttpKernelInterface::MASTER_REQUEST !== $event->getRequestType()) {
// return immediately
return;

}

Tip: If you are not yet familiar with the Symfony2 Event Dispatcher, read the Event Dispatcher Component Docu-
mentation section first.

kernel.request Event

Event Class: Symfony\Component\HttpKernel\Event\GetResponseEvent

The goal of this event is to either return a Response object immediately or setup variables so that a Controller can
be called after the event. Any listener can return a Response object via the setResponse() method on the event.
In this case, all other listeners won’t be called.

This event is used by FrameworkBundle to populate the _controller Request attribute, via the
Symfony\Bundle\FrameworkBundle\EventListener\RouterListener. RequestListener uses a
Symfony\Component\Routing\RouterInterface object to match the Request and determine the Con-
troller name (stored in the _controller Request attribute).

214 Chapter 18. Internals

Symfony Doc Documentation, Release stable

See also:

Read more on the kernel.request event.

kernel.controller Event

Event Class: Symfony\Component\HttpKernel\Event\FilterControllerEvent

This event is not used by FrameworkBundle, but can be an entry point used to modify the controller that should be
executed:

use Symfony\Component\HttpKernel\Event\FilterControllerEvent;

public function onKernelController(FilterControllerEvent $event)
{

$controller = $event->getController();
// ...

// the controller can be changed to any PHP callable
$event->setController($controller);

}

See also:

Read more on the kernel.controller event.

kernel.view Event

Event Class: Symfony\Component\HttpKernel\Event\GetResponseForControllerResultEvent

This event is not used by FrameworkBundle, but it can be used to implement a view sub-system. This event is
called only if the Controller does not return a Response object. The purpose of the event is to allow some other
return value to be converted into a Response.

The value returned by the Controller is accessible via the getControllerResult method:

use Symfony\Component\HttpKernel\Event\GetResponseForControllerResultEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelView(GetResponseForControllerResultEvent $event)
{

$val = $event->getControllerResult();
$response = new Response();

// ... some how customize the Response from the return value

$event->setResponse($response);
}

See also:

Read more on the kernel.view event.

kernel.response Event

Event Class: Symfony\Component\HttpKernel\Event\FilterResponseEvent

The purpose of this event is to allow other systems to modify or replace the Response object after its creation:

18.2. Kernel 215

Symfony Doc Documentation, Release stable

public function onKernelResponse(FilterResponseEvent $event)
{

$response = $event->getResponse();

// ... modify the response object
}

The FrameworkBundle registers several listeners:

• Symfony\Component\HttpKernel\EventListener\ProfilerListener: collects data for the
current request;

• Symfony\Bundle\WebProfilerBundle\EventListener\WebDebugToolbarListener: in-
jects the Web Debug Toolbar;

• Symfony\Component\HttpKernel\EventListener\ResponseListener: fixes the Response
Content-Type based on the request format;

• Symfony\Component\HttpKernel\EventListener\EsiListener: adds a
Surrogate-Control HTTP header when the Response needs to be parsed for ESI tags.

See also:

Read more on the kernel.response event.

kernel.terminate Event

The purpose of this event is to perform “heavier” tasks after the response was already served to the client.

See also:

Read more on the kernel.terminate event.

kernel.exception Event

Event Class: Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent

FrameworkBundle registers an Symfony\Component\HttpKernel\EventListener\ExceptionListener
that forwards the Request to a given Controller (the value of the exception_listener.controller pa-
rameter – must be in the class::method notation).

A listener on this event can create and set a Response object, create and set a new Exception object, or do
nothing:

use Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelException(GetResponseForExceptionEvent $event)
{

$exception = $event->getException();
$response = new Response();
// setup the Response object based on the caught exception
$event->setResponse($response);

// you can alternatively set a new Exception
// $exception = new \Exception('Some special exception');
// $event->setException($exception);

}

216 Chapter 18. Internals

Symfony Doc Documentation, Release stable

Note: As Symfony ensures that the Response status code is set to the most appropriate one depending on the excep-
tion, setting the status on the response won’t work. If you want to overwrite the status code (which you should not
without a good reason), set the X-Status-Code header:

return new Response(
'Error',
404 // ignored,
array('X-Status-Code' => 200)

);

18.3 The Event Dispatcher

The event dispatcher is a standalone component that is responsible for much of the underlying logic and flow behind
a Symfony request. For more information, see the Event Dispatcher Component Documentation.

See also:

Read more on the kernel.exception event.

18.4 Profiler

When enabled, the Symfony2 profiler collects useful information about each request made to your application and
store them for later analysis. Use the profiler in the development environment to help you to debug your code and
enhance performance; use it in the production environment to explore problems after the fact.

You rarely have to deal with the profiler directly as Symfony2 provides visualizer tools like the Web Debug Toolbar
and the Web Profiler. If you use the Symfony2 Standard Edition, the profiler, the web debug toolbar, and the web
profiler are all already configured with sensible settings.

Note: The profiler collects information for all requests (simple requests, redirects, exceptions, Ajax requests, ESI
requests; and for all HTTP methods and all formats). It means that for a single URL, you can have several associated
profiling data (one per external request/response pair).

18.4.1 Visualizing Profiling Data

Using the Web Debug Toolbar

In the development environment, the web debug toolbar is available at the bottom of all pages. It displays a good
summary of the profiling data that gives you instant access to a lot of useful information when something does not
work as expected.

If the summary provided by the Web Debug Toolbar is not enough, click on the token link (a string made of 13 random
characters) to access the Web Profiler.

Note: If the token is not clickable, it means that the profiler routes are not registered (see below for configuration
information).

18.3. The Event Dispatcher 217

Symfony Doc Documentation, Release stable

Analyzing Profiling data with the Web Profiler

The Web Profiler is a visualization tool for profiling data that you can use in development to debug your code and
enhance performance; but it can also be used to explore problems that occur in production. It exposes all information
collected by the profiler in a web interface.

Accessing the Profiling information

You don’t need to use the default visualizer to access the profiling information. But how can you retrieve profiling
information for a specific request after the fact? When the profiler stores data about a Request, it also associates a
token with it; this token is available in the X-Debug-Token HTTP header of the Response:

$profile = $container->get('profiler')->loadProfileFromResponse($response);

$profile = $container->get('profiler')->loadProfile($token);

Tip: When the profiler is enabled but not the web debug toolbar, or when you want to get the token for an Ajax
request, use a tool like Firebug to get the value of the X-Debug-Token HTTP header.

Use the :method:‘Symfony\\Component\\HttpKernel\\Profiler\\Profiler::find‘ method to access tokens based on
some criteria:

// get the latest 10 tokens
$tokens = $container->get('profiler')->find('', '', 10);

// get the latest 10 tokens for all URL containing /admin/
$tokens = $container->get('profiler')->find('', '/admin/', 10);

// get the latest 10 tokens for local requests
$tokens = $container->get('profiler')->find('127.0.0.1', '', 10);

If you want to manipulate profiling data on a different machine than the one where the informa-
tion were generated, use the :method:‘Symfony\\Component\\HttpKernel\\Profiler\\Profiler::export‘ and
:method:‘Symfony\\Component\\HttpKernel\\Profiler\\Profiler::import‘ methods:

// on the production machine
$profile = $container->get('profiler')->loadProfile($token);
$data = $profiler->export($profile);

// on the development machine
$profiler->import($data);

Configuration

The default Symfony2 configuration comes with sensible settings for the profiler, the web debug toolbar, and the web
profiler. Here is for instance the configuration for the development environment:

When only-exceptions is set to true, the profiler only collects data when an exception is thrown by the appli-
cation.

When intercept-redirects is set to true, the web profiler intercepts the redirects and gives you the opportu-
nity to look at the collected data before following the redirect.

If you enable the web profiler, you also need to mount the profiler routes:

218 Chapter 18. Internals

Symfony Doc Documentation, Release stable

As the profiler adds some overhead, you might want to enable it only under certain circumstances in the production
environment. The only-exceptions settings limits profiling to 500 pages, but what if you want to get information
when the client IP comes from a specific address, or for a limited portion of the website? You can use a Profiler
Matcher, learn more about that in “/cookbook/profiler/matchers”.

18.5 Learn more from the Cookbook

• /cookbook/testing/profiling

• /cookbook/profiler/data_collector

• /cookbook/event_dispatcher/class_extension

• /cookbook/event_dispatcher/method_behavior

18.5. Learn more from the Cookbook 219

Symfony Doc Documentation, Release stable

220 Chapter 18. Internals

CHAPTER 19

The Symfony2 Stable API

The Symfony2 stable API is a subset of all Symfony2 published public methods (components and core bundles) that
share the following properties:

• The namespace and class name won’t change;

• The method name won’t change;

• The method signature (arguments and return value type) won’t change;

• The semantic of what the method does won’t change.

The implementation itself can change though. The only valid case for a change in the stable API is in order to fix a
security issue.

The stable API is based on a whitelist, tagged with @api. Therefore, everything not tagged explicitly is not part of the
stable API.

Tip: Any third party bundle should also publish its own stable API.

As of Symfony 2.0, the following components have a public tagged API:

• BrowserKit

• ClassLoader

• Console

• CssSelector

• DependencyInjection

• DomCrawler

• EventDispatcher

• Filesystem (as of Symfony 2.1)

• Finder

221

Symfony Doc Documentation, Release stable

• HttpFoundation

• HttpKernel

• Locale

• Process

• Routing

• Templating

• Translation

• Validator

• Yaml

222 Chapter 19. The Symfony2 Stable API

Index

C
Cache, 168

Cache-Control header, 173, 175
Conditional get, 177
Configuration, 179
ESI, 179
Etag header, 176
Expires header, 175
Gateway, 170
HTTP, 172
HTTP expiration, 175
Invalidation, 181
Last-Modified header, 177
Proxy, 170
Reverse proxy, 170
Safe methods, 173
Symfony2 reverse proxy, 170
Twig, 65
Types of, 170
Validation, 176
Vary, 178

CLI
Doctrine ORM, 96

Configuration
Cache, 179
PHPUnit, 120
Tests, 119
Validation, 125

Controller, 40
404 pages, 49
Accessing services, 48
Base controller class, 45
Common tasks, 46
Controller arguments, 43
Forwarding, 46
Managing errors, 49
Redirecting, 46
Rendering templates, 47
Request object, 51

Request-controller-response
lifecycle, 41

Response object, 50
Routes and controllers, 43
Simple example, 42
String naming format, 58
The session, 49

D
Dependency Injection

Container, 195
Directory Structure, 33
Doctrine, 77

Adding mapping metadata, 81
Forms, 143
ORM console commands, 96

E
Environments

Configuration, 39
Introduction, 38

ESI, 179
Event

Kernel, 214
kernel.controller, 215
kernel.exception, 216
kernel.request, 214
kernel.response, 215
kernel.terminate, 216
kernel.view, 215

Event Dispatcher, 217

F
Forms, 129

Basic template rendering, 133
Built-in field types, 138
Changing the action and method, 141
Create a form in a controller, 132
Create a simple form, 131
Creating form classes, 141

223

Symfony Doc Documentation, Release stable

CSRF protection, 149
Customizing fields, 146
Disabling validation, 136
Doctrine, 143
Embedded forms, 144
Field type guessing, 139
Field type options, 138
Global Theming, 148
Handling form submissions, 134
Multiple Submit Buttons, 135
Rendering each field by hand, 140
Rendering in a template, 140
Template fragment inheritance, 147
Template fragment naming, 147
Theming, 146
Validation, 135
Validation groups, 136
Validation groups based on clicked

button, 137
Validation groups based on

submitted data, 136
With no class, 150

H
HTTP

304, 177
Request-response paradigm, 1

HTTP headers
Cache-Control, 173, 175
Etag, 176
Expires, 175
Last-Modified, 177
Vary, 178

I
Installation, 22
Internals, 209

Controller resolver, 212
Internal requests, 213
Kernel, 212
Request handling, 213

J
Javascript

Including Javascripts, 70

K
Kernel

Event, 214

P
Page creation, 28

Environments & Front Controllers, 29
Example, 30

Performance
Autoloader, 207
Bootstrap files, 208
Byte code cache, 207

PHPUnit
Configuration, 120

Profiler, 217
Using the profiler service, 218
Visualizing, 217, 218

Propel, 97

R
Routing, 51

_format parameter, 57
Absolute URLs, 61
Advanced example, 57
Basics, 53
Controllers, 58
Creating routes, 54
Debugging, 60
Generating URLs, 60
Generating URLs in a template, 62
Importing routing resources, 59
Method requirement, 57
Placeholders, 55
Requirements, 56
Under the hood, 54

S
Security, 152
Service Container, 195

Configuring services, 198
Extension configuration, 201
Imports, 200
Referencing services, 201
What is a service container?, 198
What is a service?, 197

Session, 49
Flash messages, 49

Stable API, 219
Stylesheets

Including stylesheets, 70
Symfony2 Components, 8
Symfony2 Fundamentals, 1

Requests and responses, 3

T
Template

Overriding exception templates, 73
Overriding templates, 72

Templating, 62
Embedding action, 69
File locations, 67
Formats, 75

224 Index

Symfony Doc Documentation, Release stable

Helpers, 68
Including other templates, 68
Including stylesheets and

Javascripts, 70
Inheritance, 65
Linking to assets, 70
Linking to pages, 70
Naming conventions, 67
Output escaping, 74
Tags and helpers, 68
The templating service, 72
Three-level inheritance pattern, 73
What is a template?, 63

Tests, 107, 205
Assertions, 113
Client, 114
Configuration, 119
Crawler, 116
Functional tests, 110
Unit tests, 109

Translations, 183
Basic translation, 186
Configuration, 185
Creating translation resources, 188
Fallback and default locale, 190
In templates, 192
Message catalogues, 187
Message domains, 189
Message placeholders, 186
Pluralization, 190
Translation resource locations, 188
User’s locale, 189

Twig
Cache, 65
Introduction, 64

V
Validation, 121

Configuration, 125
Constraint targets, 126
Constraints, 125
Constraints configuration, 126
Getter constraints, 126
Property constraints, 126
The basics, 123
Using the validator, 123
Validating raw values, 127
Validation with forms, 124

Index 225

	Symfony2 and HTTP Fundamentals
	HTTP is Simple
	Requests and Responses in PHP
	Requests and Responses in Symfony
	The Journey from the Request to the Response
	Symfony2: Build your App, not your Tools.

	Symfony2 versus Flat PHP
	A simple Blog in flat PHP
	Adding a Blog “show” Page
	A “Front Controller” to the Rescue
	Better templates
	Learn more from the Cookbook

	Installing and Configuring Symfony
	Installing a Symfony2 Distribution
	Beginning Development
	Using Source Control

	Creating Pages in Symfony2
	Environments & Front Controllers
	Before you begin: Create the Bundle
	Step 1: Create the Route
	Step 2: Create the Controller
	Optional Step 3: Create the Template
	The Web Directory
	The Application (app) Directory
	The Source (src) Directory
	Creating a Bundle
	Bundle Directory Structure
	Default Configuration Dump
	Environment Configuration

	Controller
	Requests, Controller, Response Lifecycle
	A Simple Controller
	Mapping a URL to a Controller
	Creating Static Pages
	The Base Controller Class
	Common Controller Tasks
	Managing Errors and 404 Pages
	Managing the Session
	The Response Object
	The Request Object
	Final Thoughts
	Learn more from the Cookbook

	Routing
	Routing in Action
	Routing: Under the Hood
	Creating Routes
	Controller Naming Pattern
	Route Parameters and Controller Arguments
	Including External Routing Resources
	Visualizing & Debugging Routes
	Generating URLs
	Summary
	Learn more from the Cookbook

	Creating and using Templates
	Templates
	Template Inheritance and Layouts
	Template Naming and Locations
	Tags and Helpers
	Including Stylesheets and Javascripts in Twig
	Global Template Variables
	Configuring and using the templating Service
	Overriding Bundle Templates
	Three-level Inheritance
	Output Escaping
	Debugging
	Syntax Checking
	Template Formats
	Final Thoughts
	Learn more from the Cookbook

	Databases and Doctrine
	A Simple Example: A Product
	Querying for Objects
	Entity Relationships/Associations
	Configuration
	Lifecycle Callbacks
	Doctrine Extensions: Timestampable, Sluggable, etc.
	Doctrine Field Types Reference
	Console Commands
	Summary

	Databases and Propel
	A Simple Example: A Product
	Querying for Objects
	Relationships/Associations
	Lifecycle Callbacks
	Behaviors
	Commands

	Testing
	The PHPUnit Testing Framework
	Unit Tests
	Functional Tests
	Working with the Test Client
	The Crawler
	Testing Configuration
	Learn more

	Validation
	The Basics of Validation
	Configuration
	Constraints
	Translation Constraint Messages
	Constraint Targets
	Validation Groups
	Group Sequence
	Validating Values and Arrays
	Final Thoughts
	Learn more from the Cookbook

	Forms
	Creating a Simple Form
	Form Validation
	Built-in Field Types
	Field Type Guessing
	Rendering a Form in a Template
	Changing the Action and Method of a Form
	Creating Form Classes
	Forms and Doctrine
	Embedded Forms
	Form Theming
	CSRF Protection
	Using a Form without a Class
	Final Thoughts
	Learn more from the Cookbook

	Security
	Basic Example: HTTP Authentication
	How Security Works: Authentication and Authorization
	Using a Traditional Login Form
	Authorization
	Users
	Roles
	Logging Out
	Access Control in Templates
	Access Control in Controllers
	Impersonating a User
	Stateless Authentication
	Utilities
	Final Words
	Learn more from the Cookbook

	HTTP Cache
	Caching on the Shoulders of Giants
	Caching with a Gateway Cache
	Introduction to HTTP Caching
	HTTP Expiration and Validation
	Using Edge Side Includes
	Cache Invalidation
	Summary
	Learn more from the Cookbook

	Translations
	Configuration
	Basic Translation
	Message Catalogues
	Using Message Domains
	Handling the User’s Locale
	Pluralization
	Translations in Templates
	Forcing the Translator Locale
	Translating Database Content
	Translating Constraint Messages
	Summary

	Service Container
	What is a Service?
	What is a Service Container?
	Creating/Configuring Services in the Container
	Service Parameters
	Importing other Container Configuration Resources
	Referencing (Injecting) Services
	Making References Optional
	Core Symfony and Third-Party Bundle Services
	Tags
	Debugging Services
	Learn more

	Performance
	Use a Byte Code Cache (e.g. APC)
	Use Composer’s Class Map Functionality
	Caching the Autoloader with APC
	Use Bootstrap Files

	Internals
	Overview
	Kernel
	The Event Dispatcher
	Profiler
	Learn more from the Cookbook

	The Symfony2 Stable API
	Index

