
switchy Documentation
Release 0.1.alpha

Tyler Goodlet

August 30, 2016

Contents

1 Overview 3

2 Installation and Dependencies 5

3 Features 7

4 User Guide 9

Python Module Index 53

i

ii

switchy Documentation, Release 0.1.alpha

Fast FreeSWITCH control purpose-built upon traffic theory and stress testing.

Contents 1

https://freeswitch.org/confluence/display/FREESWITCH
https://en.wikipedia.org/wiki/Teletraffic_engineering
https://en.wikipedia.org/wiki/Stress_testing

switchy Documentation, Release 0.1.alpha

2 Contents

CHAPTER 1

Overview

Switchy intends to be a fast control library for harnessing the power of the FreeSWITCH telephony engine whilst
leveraging the expressiveness of Python. It relies on the FreeSWITCH ESL inbound method for control and was
originally built for generating traffic using FreeSWITCH clusters.

3

https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound

switchy Documentation, Release 0.1.alpha

4 Chapter 1. Overview

CHAPTER 2

Installation and Dependencies

See instructions on the github page.

5

https://github.com/sangoma/switchy

switchy Documentation, Release 0.1.alpha

6 Chapter 2. Installation and Dependencies

CHAPTER 3

Features

• drive multiple FreeSWITCH processes as a traffic generator

• write services in pure Python to process flows from a FreeSWITCH cluster

• build a dialplan system using a Flask-like routing API

• record, display and export CDR and performance metrics captured during stress tests

• async without requiring twisted

3.1 FreeSWITCH Configuration

Switchy relies on some baseline server deployment steps for import-and-go usage.

7

switchy Documentation, Release 0.1.alpha

8 Chapter 3. Features

CHAPTER 4

User Guide

4.1 FreeSWITCH configuration and deployment

switchy relies on some basic FreeSWITCH configuration steps in order to enable remote control via the ESL inbound
method. Most importantly, the ESL configuration file must be modified to listen on a known socket of choice and a
park-only extension must be added to FreeSWITCH‘s XML dialplan. switchy comes packaged with an example park
only dialplan which you can copy-paste into your existing server(s).

4.1.1 Event Socket

In order for switchy to talk to FreeSWITCH you must enable ESL to listen on all IP ad-
drs at port 8021. This can configured by simply making the following change to the
${FS_CONF_ROOT}/conf/autoload_configs/event_socket.conf.xml configuration file:

-- <param name="listen-ip" value="127.0.0.1"/>
++ <param name="listen-ip" value="::"/>

Depending on your FS version, additional acl configuration may be required.

4.1.2 Park only dialplan

An XML dialplan extension which places all inbound sessions into the park state should be added to all target
FreeSWITCH servers you wish to control with switchy. An example context (switchydp.xml) is included in the
conf directory of the source code. If using this file you can enable switchy to control all calls received by a particular
FreeSWITCH SIP profile by setting the "switchy" context.

As an example you can modify FreeSWITCH‘s default external profile found at
${FS_CONF_ROOT}/conf/sip_profiles/external.xml:

<!-- Contents of -->
-- <param name="context" value="public"/>
++ <param name="context" value="switchy"/>

Note: You can also add a park extension to your existing dialplan such that only a subset of calls relinquish control
to switchy (especially useful if you’d like to test on an extant production system).

9

https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound
https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan
https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Configuration
https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-ACL
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Extensions
https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools:+park
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Context
https://github.com/sangoma/switchy/tree/master/conf
https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-SIPProfiles
https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External

switchy Documentation, Release 0.1.alpha

4.1.3 Configuring software under test

For (stress) testing, the system under test should be configured to route calls back to the originating FreeSWITCH
(cluster) such that the originator hosts both the caller and callee user agents (potentially using the same SIP profile):

FreeSWITCH cluster Target test network or
device

-------------- outbound sessions ---------------------
| Originator | --------------------> | Device under test |
| | <-------------------- | (in loopback) |
-------------- inbound sessions ---------------------

This allows switchy to perform call tracking (associate outbound with inbound SIP sessions) and thus assume full
control of call flow as well as measure signalling latency and other teletraffic metrics.

Example proxy dialplan

If your system to test is simply another FreeSWITCH instance then it is highly recommended to use a “proxy” dialplan
to route SIP sessions back to the originator (caller):

<!-- Proxy Dialplan - forward calls to requested destination -->
<condition field="${sip_req_uri}" expression="^(.+)$">

<action application="bridge" data="sofia/${sofia_profile_name}/${sip_req_uri}"/>
</condition>

Note: This could have alternatively be implemented as a switchy app.

Configuring FreeSWITCH for stress testing

Before attempting to stress test FreeSWITCH itself be sure you’ve read the performance and dialplans sections of the
wiki.

You’ll typically want to raise the max-sessions and sessions-per-second parameters in au-
toload_configs/switch.conf.xml:

<param name="max-sessions" value="20000"/>
<!-- Max channels to create per second -->
<param name="sessions-per-second" value="1000"/>

This prevents FreeSWITCH from rejecting calls at high loads. However, if your intention is to see how FreeSWITCH
behaves at those parameters limits, you can always set values that suit those purposes.

In order to reduce load due to logging it’s recommended you reduce your core logging level. This is also done in
autoload_configs/switch.conf.xml:

<!-- Default Global Log Level - value is one of debug,info,notice,warning,err,crit,alert -->
<param name="loglevel" value="warning"/>

You will also probably want to raise the file descriptor count.

Note: You have to run ulimit in the same shell where you start a FreeSWITCH process.

10 Chapter 4. User Guide

https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-SIPProfiles
https://freeswitch.org/confluence/display/FREESWITCH/Performance+Testing+and+Configurations
https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-Dialplan
https://freeswitch.org/confluence/display/FREESWITCH/Performance+Testing+and+Configurations#PerformanceTestingandConfigurations-RecommendedULIMITsettings

switchy Documentation, Release 0.1.alpha

4.2 Connection wrappers

ESL connection wrapper

class switchy.connection.Connection(host, port=‘8021’, auth=’ClueCon’, locked=True,
lock=None)

Connection wrapper which can provide mutex attr access making the underlying ESL.ESLconnection thread
safe.

(Note: must be explicitly connected before use.)

api(cmd, errcheck=True)
Invoke esl api command (with error checking by default). Returns an ESL.ESLEvent instance for event
type “SOCKET_DATA”.

cmd(cmd)
Return the string-body output from invoking a command.

connect(host=None, port=None, auth=None)
Reconnect if disconnected

connected()
Return bool indicating if this connection is active

disconnect()
Rewrap disconnect to avoid deadlocks

subscribe(event_types, fmt=’plain’)
Subscribe connection to receive events for all names in event_types

switchy.connection.check_con(con)
Raise a connection error if this connection is down.

4.3 Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state through event processing and command
invocation.

class switchy.observe.Client(host=‘127.0.0.1’, port=‘8021’, auth=’ClueCon’,
call_tracking_header=None, listener=None, logger=None)

Interface for synchronous server control using the esl “inbound method” as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

api(cmd, exc=True)
Invoke esl api command with error checking Returns an ESL.ESLEvent instance for event type
“SOCKET_DATA”.

bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)
Execute a non blocking api call and handle it to completion

cmd [string] command to execute

listener [EvenListener instance] listener which will handle bg job events for this cmd

callback [callable] Object to call once the listener collects the bj event result. By default the listener calls
back the job instance with the response from the ‘BACKGROUND_JOB’ event’s body content plus
any kwargs passed here.

4.2. Connection wrappers 11

https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

switchy Documentation, Release 0.1.alpha

cmd(cmd)
Return the string-body output from invoking a command

connect()
Connect this client

connected()
Check if connection is active

disconnect()
Disconnect the client’s underlying connection

hupall(group_id=None)
Hangup all calls associated with this client by iterating all managed call apps and hupall-ing with the apps
callback id. If :var:‘group_id‘ is provided look up the corresponding app an hang up calls for that specific
app.

load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **pre-
post_kwargs)

Load annotated callbacks and from a namespace and add them to this client’s listener’s callback chain.

Parameters ns – A namespace-like object containing functions marked with @event_callback
(can be a module, class or instance).

Params str on_value app group id key to be used for registering app callbacks with the
EventListener. This value will be inserted in the originate command as an X-header and
used to look up which app callbacks should be invoked for each received event.

originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None,
bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

Originate a call using FreeSWITCH ‘originate’ command. A non-blocking bgapi call is used by default.

see build_originate_cmd()

orig_kwargs: additional originate cmd builder kwargs forwarded to build_originate_cmd()
call

instance of Job a background job

set_orig_cmd(*args, **kwargs)
Return a formatted originate command string conforming to the syntax dictated by mod_commands of the
form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>] [<context>] [<cid_name>]
[<cid_num>] [<timeout_sec>]

dest_url [str] call destination url with format <username_uri>@<domain>:<port>

profile [str] sofia profile (UA) name to use for making outbound call

dp_extension: str destination dp extension where the originating session (a-leg) will processed just after
the call is answered

etc...

originate command [string or callable] full cmd string if uuid_str is not None, else callable f(uuid_str)
-> full cmd string

unload_app(on_value, ns=None)
Unload all callbacks associated with a particular app on_value id. If ns is provided unload only the call-
backs from that particular subapp.

12 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

class switchy.observe.EventListener(host=‘127.0.0.1’, port=‘8021’, auth=’ClueCon’,
session_map=None, bg_jobs=None, rx_con=None,
call_tracking_header=’variable_call_uuid’,
app_id_headers=None, autorecon=30, max_limit=inf,
_tx_lock=None)

ESL Listener which tracks FreeSWITCH state using an observer pattern. This implementation utilizes a back-
ground event loop (single thread) and one Connection.

The main purpose is to enable event oriented state tracking of various slave process objects and call entities.

add_callback(evname, ident, callback, *args, **kwargs)
Register a callback for events of type evname to be called with provided args, kwargs when an event is
received by this listener.

evname [string] name of mod_event event type you wish to subscribe for with the provided callback

callback [callable] callable which will be invoked when events of type evname are received on this lis-
tener’s rx connection

args, kwargs [initial arguments which will be partially applied to] callback right now

add_handler(evname, handler)
Register an event handler for events of type evname. If a handler for evname already exists or if evname is
in the unsubscribe list an error will be raised.

bg_jobs
Background jobs collection

block_jobs()
Block the event loop from processing background job events (useful for registering for job events - see
self.register_job)

This will block the event loop thread permanently starting on the next received background job event. Be
sure to run ‘unblock_jobs’ immediately after registering your job.

connect()
Connect and initialize all contained esl sockets (namely self._rx_con and self._tx_con)

connected()
Return a bool representing the aggregate cons status

count_calls()
Count the number of active calls hosted by the slave process

count_failed()
Return the failed session count

default_handlers
The map of default event handlers described by this listener

disconnect()
Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may see an indefinite block!

epoch
Time first event was received from server

get_id(e, default=None)
Acquire the client/consumer (app) id for event :var:‘e‘

get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)
Return a new esl connection to the specified FS server and optionally subscribe to any events actively
handled by this listener

4.3. Observer components 13

switchy Documentation, Release 0.1.alpha

server [string] fs server ip

port [string] port to connect on

auth [string] authorization username

register_events [bool] indicates whether or not the connection should be subscribed to receive all default
events declared by the listener’s ‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

ident(host=’unknown-host’)
Pretty str repr of connection-like instances.

is_alive()
Return bool indicating if listener is running (i.e. the background event loop is executing).

iter_cons()
Return an iterator over all attributes of this instance which are esl connections.

lookup_sess(e)
The most basic handler template which looks up the locally tracked session corresponding to event e and
updates it with event data

register_job(event, **kwargs)
Register for a job to be handled when the appropriate event arrives. Once an event corresponding to the
job is received, the bgjob event handler will ‘consume’ it and invoke its callback.

event [ESL.ESLevent] as returned from an ESLConnection.bgapi call

kwargs [dict] same signatures as for Job.__init__

bj : an instance of Job (a background job)

remove_callback(evname, ident, callback)
Remove the callback object registered under :var:‘evname‘ and :var:‘ident‘.

reset()
Clear all internal stats and counters

start()
Start this listener’s event loop in a thread to start tracking the slave-server’s state

status()
Return the status of ESL connections in a dict A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

unblock_jobs()
Unblock the event loop from processing background job events

unsubscribe(events)
Unsubscribe this listener from an events of a cetain type

events [string or iterable] name of mod_event event type(s) you wish to unsubscribe from (FS server will
not be told to send you events of this type)

uptime
Uptime in minutes as per last received event time stamp

wait(timeout=None)
Wait until the event loop thread terminates or timeout.

14 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

waitfor(sess, varname, timeout=None)
Wait on a boolen variable varname to be set to true for session sess as read from sess.vars[’varname’].
This call blocks until the attr is set to True most usually by a callback.

Do not call this from the event loop thread!

switchy.observe.active_client(*args, **kwds)
A context manager which delivers an active Client containing a started EventListener with applications loaded
that were passed in the apps map

switchy.observe.con_repr(self)
Repr with a [<connection-status>] slapped in

switchy.observe.get_listener(host, port=‘8021’, auth=’ClueCon’, mng=None, mng_init=None,
**kwargs)

Listener factory which can be used to load a local instance or a shared proxy using multiprocessing.managers

switchy.observe.get_pool(contacts, **kwargs)
Construct and return a slave pool from a sequence of contact information.

4.4 Models

Models representing FreeSWITCH entities

class switchy.models.Call(uuid, session)
A collection of sessions which a compose a call

append(sess)
Append a session to this call and update the ref to the last recently added session

first
A reference to the session making up the initial leg of this call

get_peer(sess)
Convenience helper which can determine whether sess is one of first or last and returns the other when the
former is true

hangup()
Hangup up this call

last
A reference to the session making up the final leg of this call

class switchy.models.Events(event=None)
Event collection which for most intents and purposes should quack like a collections.deque. Data lookups are
delegated to the internal deque of events in lilo order.

get(key, default=None)
Return default if not found Should be faster then handling the key error?

pprint(index=0)
Print serialized event data in chronological order to stdout

update(event)
Append an ESL.ESLEvent

class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})
A background job future. The interface closely matches multiprocessing.pool.AsyncResult.

Parameters

4.4. Models 15

switchy Documentation, Release 0.1.alpha

• uuid (str) – job uuid returned directly by SOCKET_DATA event

• sess_uuid (str) – optional session uuid if job is associated with an active FS session

fail(resp, *args, **kwargs)
Fail this job optionally adding an exception for its result

get(timeout=None)
Get the result for this job waiting up to timeout seconds. Raises TimeoutError on if job does complete
within alotted time.

ready()
Return bool indicating whether job has completed

result
The final result

successful()
Return bool determining whether job completed without error

update(event)
Update job state/data using an event

wait(timeout=None)
Wait until job has completed or timeout has expired

class switchy.models.Session(event, uuid=None, con=None)
Session API and state tracking.

breakmedia()
Stop playback of media on this session and move on in the dialplan.

bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)
Bridge this session using uuid_broadcast (so async). By default the current profile is used to bridge to the
SIP Request-URI.

broadcast(path, leg=’‘, hangup_cause=None)
Execute an application on a chosen leg(s) with optional hangup afterwards. uuid_broadcast
<uuid> app[![hangup_cause]]::args [aleg|bleg|both]

bypass_media(state)
Re-invite a bridged node out of the media path for this session

clear_tasks()
Clear all scheduled tasks for this session.

deflect(uri)
Send a refer to the client. The only parameter should be the SIP URI to contact (with or without “sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

echo()
Echo back all audio recieved

get(key, default=None)
Get latest event header field for key.

hangup(cause=’NORMAL_CLEARING’)
Hangup this session with the provided cause hangup type keyword.

host
Return the hostname/ip address for the host which this session is currently active

16 Chapter 4. User Guide

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

switchy Documentation, Release 0.1.alpha

is_inbound()
Return bool indicating whether this is an inbound session

is_outbound()
Return bool indicating whether this is an outbound session

log
Local logger instance.

mute(direction=’write’, level=1)
Mute the current session. level determines the degree of comfort noise to generate if > 1.

park()
Park this session

playback(args, start_sample=None, endless=False, leg=’aleg’, params=None)
Playback a file on this session

Parameters

• args (str or tuple) – arguments or path to audio file for playback app

• leg (str) – call leg to transmit the audio on

record(action, path, rx_only=True)
Record audio from this session to a local file on the slave filesystem using the uuid_record command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

respond(response)
Respond immediately with the following response code. see the FreeSWITCH respond dialplan applica-
tion

sched_dtmf(delay, sequence, tone_duration=None)
Schedule dtmf sequence to be played on this channel.

Parameters

• delay (float) – scheduled future time when dtmf tones should play

• sequence (str) – sequence of dtmf digits to play

sched_hangup(timeout, cause=’NORMAL_CLEARING’)
Schedule this session to hangup after timeout seconds.

send_dtmf(sequence, duration=’w’)
Send a dtmf sequence with constant tone durations

setvar(var, value)
Set variable to value

setvars(params)
Set all variables in map params with a single command

start_record(path, rx_only=False, stereo=False, rate=16000)
Record audio from this session to a local file on the slave filesystem using the record_session cmd. By
default recordings are sampled at 16kHz.

stop_record(path=’all’, delay=0)
Stop recording audio from this session to a local file on the slave filesystem using the stop_record_session
cmd.

time
Time stamp for the most recent received event

4.4. Models 17

http://docs.python.org/library/functions.html#str
https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record
https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#str
https://freeswitch.org/confluence/display/FREESWITCH/record_session
https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session

switchy Documentation, Release 0.1.alpha

unmute(**kwargs)
Unmute the write buffer for this session

unsetvar(var)
Unset a channel var.

update(event)
Update state/data using an ESL.ESLEvent

uptime
Time elapsed since the Session.create_ev to the most recent received event.

4.5 Distributed cluster tools

Manage pools of freeswitch slaves

class switchy.distribute.MultiEval(slaves, delegator=<type ‘itertools.cycle’>, accessor=’.’)
Invoke arbitrary python expressions on a collection of objects

attrs(obj)
Cache of obj attributes since python has no built in for getting them all...

evals(expr, **kwargs)
Evaluate expression on all slave sub-components (Warning: this is the slowest call)

expr: str python expression to evaluate on slave components

folder(func, expr, **kwargs)
Same as reducer but takes in a binary function

partial(expr, **kwargs)
Return a partial which will eval bytcode compiled from expr

reducer(func, expr, itertype=’‘, **kwargs)
Reduces the iter retured by evals(expr) into a single value using the reducer func

switchy.distribute.SlavePool(slaves)
A slave pool for controlling multiple (Client, EventListener) pairs with ease

4.6 Synchronous Calling

Make calls synchronously

switchy.sync.sync_caller(*args, **kwds)
Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once it has entered a stable state. The caller
returns the active originating Session and a waitfor blocker method as output.

4.7 Built-in Apps

Built-in applications

class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)
Manage apps over a cluster/slavepool.

18 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

iterapps()
Iterable over all unique contained subapps

load_app(app, app_id=None, ppkwargs=None, with_measurers=())
Load and activate an app for use across all slaves in the cluster.

load_multi_app(apps_iter, app_id=None, **kwargs)
Load a “composed” app (multiple apps using a single app name/id) by providing an iterable of (app,
prepost_kwargs) tuples. Whenever the app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

switchy.apps.app(*args, **kwargs)
Decorator to register switchy application classes. Example usage:

@app
class CoolAppController(object):

pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):

pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):

pass

switchy.apps.get(name)
Get a registered app by name or None if one isn’t registered.

switchy.apps.groupbymod()
Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

switchy.apps.iterapps()
Iterable over all registered apps.

switchy.apps.load(packages=(), imp_excs=(‘pandas’,))
Load by importing all built-in apps along with any apps found in the provided packages list.

Parameters packages (str | module) – package (names or actual modules)

Return type dict[str, types.ModuleType]

switchy.apps.register(cls, name=None)
Register an app in the global registry

4.7.1 Load testing

Call generator app for load testing

class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True,
app_id=None, **kwargs)

An auto-dialer built for stress testing.

4.7. Built-in Apps 19

switchy Documentation, Release 0.1.alpha

check_state(ident)
Compare current state to ident

hard_hupall()
Hangup all calls for all slaves, period, even if they weren’t originated by this instance and stop the burst
loop.

hupall()
Send the ‘hupall’ command to hangup all active calls.

is_alive()
Indicate whether the call burst thread is up

load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)
Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves. If it is a class then new instances will be
instantiated for each Client-Observer pair and thus state will have per slave scope.

max_rate
The maximum rate value which can be set. Setting rate any higher will simply clip to this value.

originate_cmd
Originate str used for making calls

setup()
Apply load test settings on the slave server

shutdown()
Shutdown this originator instance and hanging up all active calls and triggering the burst loop to exit.

start()
Start the originate burst loop by starting and/or notifying a worker thread to begin. Changes state INITIAL
| STOPPED -> ORIGINATING.

state
The current operating state as a string

stop()
Stop originate loop if currently originating sessions. Change state ORIGINATING -> STOPPED

stopped()
Return bool indicating if in the stopped state.

waitwhile(state_or_predicate=<function <lambda>>, **kwargs)
If state_or_predicate’ is a func, block until it evaluates to ‘False. If it is a str block until the internal state
matches that value. The default predicate waits for all calls to end and for activation of the “STOPPED”
state. See switchy.utils.waitwhile for more details on predicate usage.

class switchy.apps.call_gen.State(state=0)
Enumeration to represent the originator state machine

class switchy.apps.call_gen.WeightedIterator(counter=None)
Pseudo weighted round robin iterator. Delivers items interleaved in weighted order.

cycle()
Endlessly iterates the most up to date keys in counts. Allows for real-time weight updating from another
thread.

switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)
Originator factory

20 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

switchy.apps.call_gen.limiter(pairs)
Yield slave pairs up until a slave has reached a number of calls less then or equal to it’s predefined capacity limit

4.7.2 Measurement Collection

CDR app for collecting signalling latency and performance stats.

class switchy.apps.measure.cdr.CDR
Collect call detail record info including call oriented event time stamps and and active sessions data which can
be used for per call metrics computations.

log_stats(sess, job)
Append measurement data only once per call

on_create(sess)
Store total (cluster) session count at channel create time

switchy.apps.measure.cdr.call_metrics(df)
Default call measurements computed from data retrieved by the CDR app.

System stats collection using ‘psutil‘_

class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)
A switchy app for capturing system performance stats during load test using the ‘psutil‘_ module.

An instance of this app should be loaded if rate limited data gathering is to be shared across multiple slaves
(threads).

switchy.apps.measure.sys.sys_stats(df)
Reindex on the call index to allign with call metrics data and interpolate.

4.7.3 Media testing

Common testing call flows

class switchy.apps.players.PlayRec
Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality. The filename provided must exist in
the FreeSWITCH sounds directory such that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename>
points to a valid wave file.

on_stop(sess)
On stop either trigger a new playing of the signal if more iterations are required or hangup the call. If the
current call is being recorded schedule the recordings to stop and expect downstream callbacks to schedule
call teardown.

trigger_playback(sess)
Trigger clip playback on the given session by doing the following: - Start playing a silence stream on the
peer session - This will in turn trigger a speech playback on this session in the “PLAYBACK_START”
callback

class switchy.apps.players.RecInfo(host, caller, callee)

callee
Alias for field number 2

caller
Alias for field number 1

4.7. Built-in Apps 21

switchy Documentation, Release 0.1.alpha

host
Alias for field number 0

class switchy.apps.players.TonePlay
Play a ‘milli-watt’ tone on the outbound leg and echo it back on the inbound

Dtmf tools

class switchy.apps.dtmf.DtmfChecker
Play dtmf tones as defined by the iterable attr sequence with tone duration. Verify the rx sequence matches what
was transmitted.

For each session which is answered start a sequence check. For any session that fails digit matching store it
locally in the failed attribute.

Bert testing

class switchy.apps.bert.Bert
Call application which runs the bert test application on both legs of a call

See the docs for mod_bert and discussion by the author here.

hangup_on_error
Toggle whether to hangup calls when a bert test fails

on_lost_sync(sess)
Increment counters on synchronization failure

The following stats can be retrieved using the latest version of mod_bert:

sync_lost_percent - Error percentage within the analysis window sync_lost_count - How many
times sync has been lost cng_count - Counter of comfort noise packets err_samples - Number of
samples that did not match the sequence

on_park(sess)
Knows how to get us riled up

on_timeout(sess)
Mark session as bert time out

two_sided
Toggle whether to run the bert_test application on all sessions of the call. Leaving this False means all
other legs will simply run the echo application.

4.8 Command Builders

Command wrappers and helpers

switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile=’external’,
gateway=None, app_name=’park’,
app_arg_str=’‘, dp_exten=None, dp_type=’xml’,
dp_context=’default’, proxy=None, end-
point=’sofia’, timeout=60, caller_id=’Mr_Switchy’,
caller_id_num=‘1112223333’, codec=’PCMU’,
abs_codec=’‘, xheaders=None, **kwargs)

Return a formatted originate command string conforming to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>] [<context>] [<cid_name>]
[<cid_num>] [<timeout_sec>]

dest_url [str] call destination url with format <username_uri>@<domain>:<port>

22 Chapter 4. User Guide

https://freeswitch.org/confluence/display/FREESWITCH/mod_bert
https://github.com/moises-silva/freeswitch/issues/1

switchy Documentation, Release 0.1.alpha

profile [str] sofia profile (UA) name to use for making outbound call

dp_extension: str destination dp extension where the originating session (a-leg) will processed just after the
call is answered

etc...

originate command [string or callable] full cmd string if uuid_str is not None, else callable f(uuid_str) -> full
cmd string

4.9 Utils

handy utilities

exception switchy.utils.APIError
ESL api error

exception switchy.utils.ConfigurationError
Config error

switchy.utils.DictProxy(d, extra_attrs={})
A dictionary proxy object which provides attribute access to elements

exception switchy.utils.ESLError
An error pertaining to the connection

exception switchy.utils.TimeoutError
Timing error

class switchy.utils.Timer(timer=None)
Simple timer that reports an elapsed duration since the last reset.

elapsed()
Returns the elapsed time since the last reset

last_time
Last time the timer was reset

reset()
Reset the timer start point to now

switchy.utils.compose(func_1, func_2)
(f1, f2) -> function The function returned is a composition of f1 and f2.

switchy.utils.dirinfo(inst)
Return common info useful for dir output

switchy.utils.event2dict(event)
Return event serialized data in a python dict Warning: this function is kinda slow!

switchy.utils.get_args(func)
Return the argument names found in func’s signature in a tuple

Returns the argnames, kwargnames defined by func

Return type tuple

switchy.utils.get_event_time(event, epoch=0.0)
Return micro-second time stamp value in seconds

switchy.utils.get_logger(name=None)
Return the package log or a sub-log for name if provided.

4.9. Utils 23

http://docs.python.org/library/functions.html#tuple

switchy Documentation, Release 0.1.alpha

switchy.utils.get_name(obj)
Return a name for object checking the usual places

switchy.utils.is_callback(func)
Check whether func is valid as a callback

switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())
Iteratively import all submodules of a module, including subpackages with optional recursion.

Parameters package (str | module) – package (name or actual module)

Return type (dict[str, types.ModuleType], dict[str, ImportError])

switchy.utils.log_to_stderr(level=None)
Turn on logging and add a handler which writes to stderr

switchy.utils.ncompose(*funcs)
Perform n-function composition

switchy.utils.param2header(name)
Return the appropriate event header name corresponding to the named parameter name which should be used
when the param is received as a header in event data.

Most often this is just the original parameter name with a ’variable_’ prefix. This is pretty much a shitty
hack (thanks goes to FS for the asymmetry in variable referencing...)

switchy.utils.pstr(self, host=’unknown-host’)
Pretty str repr of connection-like instances.

switchy.utils.uncons(first, *rest)
Unpack args into first element and tail as tuple

switchy.utils.uuid()
Return a new uuid1 string

switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)
Block until predicate evaluates to False.

Parameters

• predicate (function) – predicate function

• timeout (float) – time to wait in seconds for predicate to eval False

• period (float) – poll loop sleep period in seconds

Raises TimeoutError – if predicate does not eval to False within timeout

switchy.utils.xheaderify(header_name)
Prefix the given name with the freeswitch xheader token thus transforming it into an fs xheader variable

4.10 API Reference

Note: This reference is not entirely comprehensive and is expected to change.

4.10.1 Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s ESLConnection type is found in connection.py.

24 Chapter 4. User Guide

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

switchy Documentation, Release 0.1.alpha

4.10.2 Observer components

The core event processing loop and logic and Client interface can be found in observe.py. There are also some
synchronous helpers hidden within.

4.10.3 Call Control Apps

All the built in apps can be found in the switchy.apps subpackage.

4.10.4 Model types

The Models api holds automated wrappers for interacting with different FreeSWITCH channel and session objects as
if they were local instances.

• Session - represents a FreeSWITCH session entity and provides a rich method api for control using call
management commands.

• Job - provides a synchronous interface for background job handling.

4.10.5 Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

• MultiEval - Invoke arbitrary python expressions on a collection of objects.

• SlavePool - a subclass which adds oberver component helper methods.

4.11 Quick-Start - Originating a single call

Assuming you’ve gone through the required deployment steps to setup at least one slave, initiating a call becomes very
simple using the Switchy command line:

$ switchy run vm-host sip-cannon --profile external --proxy myproxy.com --rate 1 --limit 1 --max-offered 1

...

Aug 26 21:59:01 [INFO] switchy cli.py:114 : Slave sip-cannon.qa.sangoma.local SIP address is at 10.10.8.19:5080
Aug 26 21:59:01 [INFO] switchy cli.py:114 : Slave vm-host.qa.sangoma.local SIP address is at 10.10.8.21:5080
Aug 26 21:59:01 [INFO] switchy cli.py:120 : Starting load test for server dut-008.qa.sangoma.local at 1cps using 2 slaves
<Originator: active-calls=0 state=INITIAL total-originated-sessions=0 rate=1 limit=1 max-offered=1 duration=5>

...

<Originator: active-calls=1 state=STOPPED total-originated-sessions=1 rate=1 limit=1 max-offered=1 duration=5>
Waiting on 1 active calls to finish
Waiting on 1 active calls to finish
Waiting on 1 active calls to finish
Waiting on 1 active calls to finish
Load test finished!

The Switchy run sub-command takes several options and a list of slaves (or at least one) IP address or hostname. In
this example switchy connected to the specified slaves, found the specified SIP profile and initiated a single call with
a duration of 5 seconds to the device under test (set with the proxy option).

4.11. Quick-Start - Originating a single call 25

https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands
https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands

switchy Documentation, Release 0.1.alpha

For more information on the switchy command line see here.

4.11.1 Originating a single call programatically from Python

Making a call with switchy is quite simple using the built-in sync_caller() context manager. Again, if you’ve
gone through the required deployment steps, initiating a call becomes as simple as a few lines of python code

1 from switchy import sync_caller
2 from switchy.apps.players import TonePlay
3

4 # here '192.168.0.10' would be the address of the server running a
5 # FS process to be used as the call generator
6 with sync_caller('192.168.0.10', apps={"tone": TonePlay}) as caller:
7

8 # initiates a call to the originating profile on port 5080 using
9 # the `TonePlay` app and block until answered / the originate job completes

10 sess, waitfor = caller('Fred@{}:{}'.format(caller.client.host, 5080), "tone")
11 # let the tone play a bit
12 time.sleep(5)
13 # tear down the call
14 sess.hangup()

The most important lines are the with statement and line 10. What happens behind the scenes here is the following:

• at the with, necessary internal Switchy components are instantiated in memory and connected to a FreeSWITCH
process listening on the fsip ESL ip address.

• at the caller(), an originate() command is invoked asynchronously via a bgapi() call.

• the background Job returned by that command is handled to completion synchronously wherein the call blocks
until the originating session has reached the connected state.

• the corresponding origininating Session is returned along with a reference to a
switchy.observe.EventListener.waitfor() blocker method.

• the call is kept up for 1 second and then hungup.

• internal Switchy components are disconnected from the FreeSWITCH process at the close of the with block.

Note that the sync_caller api is not normally used for stress testing as it used to initiate calls synchronously. It becomes
far more useful when using FreeSWITCH for functional testing using your own custom call flow apps.

4.11.2 Example source code

Some more extensive examples are found in the unit tests sources :

Listing 4.1: test_sync_call.py

1 # This Source Code Form is subject to the terms of the Mozilla Public
2 # License, v. 2.0. If a copy of the MPL was not distributed with this
3 # file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 """
5 Tests for synchronous call helper
6 """
7 import time
8 from switchy import sync_caller
9 from switchy.apps.players import TonePlay, PlayRec

10

26 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

11

12 def test_toneplay(fsip):
13 '''Test the synchronous caller with a simple toneplay
14 '''
15 with sync_caller(fsip, apps={"TonePlay": TonePlay}) as caller:
16 # have the external prof call itself by default
17 assert 'TonePlay' in caller.app_names
18 sess, waitfor = caller(
19 "doggy@{}:{}".format(caller.client.host, 5080),
20 'TonePlay',
21 timeout=3,
22)
23 assert sess.is_outbound()
24 time.sleep(1)
25 sess.hangup()
26 time.sleep(0.1)
27 assert caller.client.listener.count_calls() == 0
28

29

30 def test_playrec(fsip):
31 '''Test the synchronous caller with a simulated conversation using the the
32 `PlayRec` app. Currently this test does no audio checking but merely
33 verifies the callback chain is invoked as expected.
34 '''
35 with sync_caller(fsip, apps={"PlayRec": PlayRec}) as caller:
36 # have the external prof call itself by default
37 caller.apps.PlayRec['PlayRec'].rec_rate = 1
38 sess, waitfor = caller(
39 "doggy@{}:{}".format(caller.client.host, 5080),
40 'PlayRec',
41 timeout=10,
42)
43 waitfor(sess, 'recorded', timeout=15)
44 waitfor(sess.call.get_peer(sess), 'recorded', timeout=15)
45 assert sess.call.vars['record']
46 time.sleep(1)
47 assert sess.hungup
48

49

50 def test_alt_call_tracking_header(fsip):
51 '''Test that an alternate `EventListener.call_tracking_header` (in this
52 case using the 'Caller-Destination-Number' channel variable) can be used
53 to associate sessions into calls.
54 '''
55 with sync_caller(fsip) as caller:
56 # use the destination number as the call association var
57 caller.client.listener.call_tracking_header = 'Caller-Destination-Number'
58 dest = 'doggy'
59 # have the external prof call itself by default
60 sess, waitfor = caller(
61 "{}@{}:{}".format(dest, caller.client.host, 5080),
62 'TonePlay', # the default app
63 timeout=3,
64)
65 assert sess.is_outbound()
66 # call should be indexed by the req uri username
67 assert dest in caller.client.listener.calls
68 call = caller.client.listener.calls[dest]

4.11. Quick-Start - Originating a single call 27

switchy Documentation, Release 0.1.alpha

69 time.sleep(1)
70 assert call.first is sess
71 assert call.last
72 call.hangup()
73 time.sleep(0.1)
74 assert caller.client.listener.count_calls() == 0
75

76

77 def test_untracked_call(fsip):
78 with sync_caller(fsip) as caller:
79 # use an invalid chan var for call tracking
80 caller.client.listener.call_tracking_header = 'doggypants'
81 # have the external prof call itself by default
82 sess, waitfor = caller(
83 "{}@{}:{}".format('jonesy', caller.client.host, 5080),
84 'TonePlay', # the default app
85 timeout=3,
86)
87 # calls should be created for both inbound and outbound sessions
88 # since our tracking variable is nonsense
89 l = caller.client.listener
90 # assert len(l.sessions) == len(l.calls) == 2
91 assert l.count_sessions() == l.count_calls() == 2
92 sess.hangup()
93 time.sleep(0.1)
94 # no calls or sessions should be active
95 assert l.count_sessions() == l.count_calls() == 0
96 assert not l.sessions and not l.calls

Run manually

You can run this code from the unit test directory quite simply:

>>> from tests.test_sync_call import test_toneplay
>>> test_toneplay('fs_slave_hostname')

Run with pytest

If you have pytest installed you can run this test like so:

$ py.test --fshost='fs_slave_hostname' tests/test_sync_caller

Implementation details

The implementation of sync_caller() is shown below and can be referenced alongside the Internals tutorial to
gain a better understanding of the inner workings of Switchy’s api:

1 # This Source Code Form is subject to the terms of the Mozilla Public
2 # License, v. 2.0. If a copy of the MPL was not distributed with this
3 # file, You can obtain one at http://mozilla.org/MPL/2.0/.
4 """
5 Make calls synchronously
6 """
7 from contextlib import contextmanager
8 from switchy.apps.players import TonePlay

28 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

9 from switchy.observe import active_client
10

11

12 @contextmanager
13 def sync_caller(host, port='8021', password='ClueCon',
14 apps={'TonePlay': TonePlay}):
15 '''Deliver a provisioned synchronous caller function.
16

17 A caller let's you make a call synchronously returning control once
18 it has entered a stable state. The caller returns the active originating
19 `Session` and a `waitfor` blocker method as output.
20 '''
21 with active_client(host, port=port, auth=password, apps=apps) as client:
22

23 def caller(dest_url, app_name, timeout=30, waitfor=None,
24 **orig_kwargs):
25 # override the channel variable used to look up the intended
26 # switchy app to be run for this call
27 if caller.app_lookup_vars:
28 client.listener.app_id_vars.extend(caller.app_lookup_vars)
29

30 job = client.originate(dest_url, app_id=app_name, **orig_kwargs)
31 job.get(timeout)
32 if not job.successful():
33 raise job.result
34 call = client.listener.sessions[job.sess_uuid].call
35 orig_sess = call.first # first sess is the originator
36 if waitfor:
37 var, time = waitfor
38 client.listener.waitfor(orig_sess, var, time)
39

40 return orig_sess, client.listener.waitfor
41

42 # attach apps handle for easy interactive use
43 caller.app_lookup_vars = []
44 caller.apps = client.apps
45 caller.client = client
46 caller.app_names = client._apps.keys()
47 yield caller

4.12 Call Applications

switchy supports writing and composing call control applications written in pure Python. An app is simply a names-
pace which defines a set of event callbacks 1.

Apps are somewhat analogous to extensions in FreeSWITCH‘s XML dialplan interface and can similarly be activated
using any event header or channel variable value of your choosing. Callbacks are invoked based on the recieved event
type.

Apps can be implemented each as a standalone Python namespace which can hold state and be mutated at runtime.
This allows for all sorts of dynamic call processing logic. Apps can also be shared across a FreeSWITCH process
cluster allowing for centralized call processing overtop a scalable service system.

Applications are loaded either using a Client or, in the case of an switchy cluster Service, an AppManager instance.

1 Although this may change in the future with the introduction of native asyncio coroutines in Python 3.5.

4.12. Call Applications 29

https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Extensions
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan
https://freeswitch.org/confluence/display/FREESWITCH/Event+List#EventList-Eventfields
https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables
https://freeswitch.org/confluence/display/FREESWITCH/Event+List
https://freeswitch.org/confluence/display/FREESWITCH/Event+List
https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces
https://docs.python.org/3/library/asyncio.html

switchy Documentation, Release 0.1.alpha

4.12.1 API

Apps are usually implemented as plain old Python classes which contain methods decorated using the
switchy.marks module.

Currently the marks supported would be one of:

@event_callback("EVENT_NAME")
@handler("EVENT_NAME")

Where EVENT_NAME is any of the strings supported by the ESL event type list.

Additionally, app types can support a prepost() callable which serves as a setup/teardown fixture mechanism for
the app to do pre/post app loading execution. It can be either of a function or generator.

Note: For examples using prepost() see the extensive set of built-in apps under switchy.apps.

Event Callbacks

event_callbacks are methods which typically receive a type from switchy.models as their first (and only)
argument. This type is most often a Session.

Note: Technically the method will receive whatever is returned as the 2nd value from the preceeding event handler
looked up in the event processing loop, but this is an implementation detail and may change in the future.

Here is a simple callback which counts the number of answered sessions in a global:

import switchy

num_calls = 0

@switchy.event_callback('CHANNEL_ANSWER')
def counter(session):

global num_calls
num_calls += 1

Note: This is meant to be a simple example and not actually implemented for practical use.
switchy.observe.EventListener.count_calls() exists for this very purpose.

Event Handlers

An event handler is any callable marked by handler() which is expected to handle a received ESLEvent object and
process it within the EventListener event loop. It’s function signature should expect a single argument, that being
the received event.

Example handlers can be found in the EventListener such as the default CHANNEL_ANSWER handler

def _handle_answer(self, e):
'''Handle answer events

Returns

30 Chapter 4. User Guide

https://docs.python.org/3/tutorial/classes.html#a-first-look-at-classes
https://freeswitch.org/confluence/display/FREESWITCH/Event+List

switchy Documentation, Release 0.1.alpha

sess : session instance corresponding to uuid
'''
uuid = e.getHeader('Unique-ID')
sess = self.sessions.get(uuid, None)
if sess:

self.log.debug('answered session {} with call direction {}'
.format(uuid, e.getHeader('Call-Direction')))

sess.answered = True
self.total_answered_sessions += 1
sess.update(e)
return True, sess

else:
self.log.warn('Skipping answer of {}'.format(uuid))
return False, None

As you can see a knowledge of the underlying ESL SWIG python package usually is required for handler implemen-
tations.

4.12.2 Examples

TonePlay

As a first example here is the TonePlay app which is provided as a built-in for Switchy

class TonePlay(object):
"""Play a 'milli-watt' tone on the outbound leg and echo it back
on the inbound
"""
@event_callback('CHANNEL_PARK')
def on_park(self, sess):

if sess.is_inbound():
sess.answer()

@event_callback("CHANNEL_ANSWER")
def on_answer(self, sess):

inbound leg simply echos back the tone
if sess.is_inbound():

sess.echo()

play infinite tones on calling leg
if sess.is_outbound():

sess.broadcast('playback::{loops=-1}tone_stream://%(251,0,1004)')

Clients who load this app will originate calls wherein a simple tone is played infinitely and echoed back to the
caller until each call is hung up.

Proxier

An example of the proxy dialplan can be implemented quite trivially:

import switchy

class Proxier(object):
@switchy.event_callback('CHANNEL_PARK')
def on_park(self, sess):

4.12. Call Applications 31

https://freeswitch.org/confluence/display/FREESWITCH/Python+ESL

switchy Documentation, Release 0.1.alpha

if sess.is_inbound():
sess.bridge(dest_url="${sip_req_user}@${sip_req_host}:${sip_req_port}")

CDR

The measurement application used by the Originator to gather stress testing performance metrics from call detail
records:

class CDR(object):
"""Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.
"""
fields = [

('switchy_app', 'S50'),
('hangup_cause', 'S50'),
('caller_create', 'float64'),
('caller_answer', 'float64'),
('caller_req_originate', 'float64'),
('caller_originate', 'float64'),
('caller_hangup', 'float64'),
('job_launch', 'float64'),
('callee_create', 'float64'),
('callee_answer', 'float64'),
('callee_hangup', 'float64'),
('failed_calls', 'uint32'),
('active_sessions', 'uint32'),
('erlangs', 'uint32'),

]

operators = {
'call_metrics': call_metrics,
'call_types': call_types,
'hcm': hcm,

}

def __init__(self):
self.log = utils.get_logger(__name__)
self._call_counter = itertools.count(0)

def new_storer(self):
return DataStorer(self.__class__.__name__, dtype=self.fields)

def prepost(self, listener, storer=None, pool=None, orig=None):
self.listener = listener
self.orig = orig
create our own storer if we're not loaded as a `Measurer`
self._ds = storer if storer else self.new_storer()
self.pool = weakref.proxy(pool) if pool else self.listener

@property
def storer(self):

return self._ds

@event_callback('CHANNEL_CREATE')
def on_create(self, sess):

"""Store total (cluster) session count at channel create time

32 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

"""
call_vars = sess.call.vars
call number tracking
if not call_vars.get('call_index', None):

call_vars['call_index'] = next(self._call_counter)
capture the current erlangs / call count
call_vars['session_count'] = self.pool.count_sessions()
call_vars['erlangs'] = self.pool.count_calls()

@event_callback('CHANNEL_ORIGINATE')
def on_originate(self, sess):

store local time stamp for originate
sess.times['originate'] = sess.time
sess.times['req_originate'] = time.time()

@event_callback('CHANNEL_ANSWER')
def on_answer(self, sess):

sess.times['answer'] = sess.time

@event_callback('CHANNEL_HANGUP')
def log_stats(self, sess, job):

"""Append measurement data only once per call
"""
sess.times['hangup'] = sess.time
call = sess.call

if call.sessions: # still session(s) remaining to be hungup
call.caller = call.first
call.callee = call.last
if job:

call.job = job
return # stop now since more sessions are expected to hangup

all other sessions have been hungup so store all measurements
caller = getattr(call, 'caller', None)
if not caller:

most likely only one leg was established and the call failed
(i.e. call.caller was never assigned above)
caller = sess

callertimes = caller.times
callee = getattr(call, 'callee', None)
calleetimes = callee.times if callee else None

pool = self.pool
job = getattr(call, 'job', None)
NOTE: the entries here correspond to the listed `CDR.fields`
rollover = self._ds.append_row((

caller.appname,
caller['Hangup-Cause'],
callertimes['create'], # invite time index
callertimes['answer'],
callertimes['req_originate'], # local time stamp
callertimes['originate'],
callertimes['hangup'],
2nd leg may not be successfully established
job.launch_time if job else None,
calleetimes['create'] if callee else None,

4.12. Call Applications 33

switchy Documentation, Release 0.1.alpha

calleetimes['answer'] if callee else None,
calleetimes['hangup'] if callee else None,
pool.count_failed(),
call.vars['session_count'],
call.vars['erlangs'],

))
if rollover:

self.log.debug('wrote data to disk')

It simply inserts the call record data on hangup once for each call.

PlayRec

This more involved application demonstrates FreeSWITCH‘s ability to play and record rtp streams locally which can
be used in tandem with MOS to do audio quality checking:

class PlayRec(object):
'''Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.
'''
timer = utils.Timer()

def prepost(
self,
client,
filename='ivr-founder_of_freesource.wav',
category='ivr',
clip_length=4.25, # measured empirically for the clip above
sample_rate=8000,
iterations=1, # number of times the speech clip will be played
callback=None,
rec_period=5.0, # in seconds (i.e. 1 recording per period)
rec_stereo=False,

):
self.filename = filename
self.category = category
self.framerate = sample_rate
self.clip_length = clip_length
if callback:

assert inspect.isfunction(callback), 'callback must be a function'
assert len(inspect.getargspec(callback)[0]) == 1

self.callback = callback
self.rec_period = rec_period
self.stereo = rec_stereo
self.log = utils.get_logger(self.__class__.__name__)
self.silence = 'silence_stream://0' # infinite silence stream
self.iterations = iterations
self.tail = 1.0

slave specific
soundsdir = client.cmd('global_getvar sounds_dir')
self.soundsprefix = client.cmd('global_getvar sound_prefix')
older FS versions don't return the deep path

34 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

if soundsdir == self.soundsprefix:
self.soundsprefix = '/'.join((self.soundsprefix, 'en/us/callie'))

self.recsdir = client.cmd('global_getvar recordings_dir')
self.audiofile = '{}/{}/{}/{}'.format(

self.soundsprefix, self.category, self.framerate, self.filename)
self.call2recs = OrderedDict()
self.host = client.host

self.stats = OrderedDict()

def __setduration__(self, value):
"""Called when an originator changes it's `duration` attribute
"""
if value == float('inf'):

self.iterations, self.tail = value, 1.0
else:

self.iterations, self.tail = divmod(value, self.clip_length)
if self.tail < 1.0:

self.tail = 1.0

@event_callback("CHANNEL_PARK")
def on_park(self, sess):

if sess.is_inbound():
sess.answer()

@event_callback("CHANNEL_ANSWER")
def on_answer(self, sess):

call = sess.call
if sess.is_inbound():

rec the callee stream
elapsed = self.timer.elapsed()
if elapsed >= self.rec_period:

filename = '{}/callee_{}.wav'.format(self.recsdir, sess.uuid)
sess.start_record(filename, stereo=self.stereo)
self.call2recs.setdefault(call.uuid, {})['callee'] = filename
call.vars['record'] = True
mark all rec calls to NOT be hung up automatically
(see the `Originator`'s bj callback)
call.vars['noautohangup'] = True
self.timer.reset()

set call length
call.vars['iterations'] = self.iterations
call.vars['tail'] = self.tail

if sess.is_outbound():
if call.vars.get('record'): # call is already recording

rec the caller stream
filename = '{}/caller_{}.wav'.format(self.recsdir, sess.uuid)
sess.start_record(filename, stereo=self.stereo)
self.call2recs.setdefault(call.uuid, {})['caller'] = filename

else:
self.trigger_playback(sess)

always enable a jitter buffer
sess.broadcast('jitterbuffer::60')

4.12. Call Applications 35

switchy Documentation, Release 0.1.alpha

@event_callback("PLAYBACK_START")
def on_play(self, sess):

fp = sess['Playback-File-Path']
self.log.debug("Playing file '{}' for session '{}'"

.format(fp, sess.uuid))

self.log.debug("fp is '{}'".format(fp))
if fp == self.audiofile:

sess.vars['clip'] = 'signal'
elif fp == self.silence:

if playing silence tell the peer to start playing a signal
sess.vars['clip'] = 'silence'
peer = sess.call.get_peer(sess)
if peer: # may have already been hungup

peer.breakmedia()
peer.playback(self.audiofile)

@event_callback("PLAYBACK_STOP")
def on_stop(self, sess):

'''On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.
'''
self.log.debug("Finished playing '{}' for session '{}'".format(

sess['Playback-File-Path'], sess.uuid))
if sess.vars['clip'] == 'signal':

vars = sess.call.vars
vars['playback_count'] += 1

if vars['playback_count'] < vars['iterations']:
sess.playback(self.silence)

else:
no more clips are expected to play
if vars.get('record'): # stop recording both ends

tail = vars['tail']
sess.stop_record(delay=tail)
peer = sess.call.get_peer(sess)
if peer: # may have already been hungup

infinite silence must be manually killed
peer.breakmedia()
peer.stop_record(delay=tail)

else:
hangup calls not being recorded immediately
self.log.debug("sending hangup for session '{}'"

.format(sess.uuid))
if not sess.hungup:

sess.sched_hangup(0.5) # delay hangup slightly

def trigger_playback(self, sess):
'''Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
"PLAYBACK_START" callback
'''
peer = sess.call.get_peer(sess)
peer.playback(self.silence) # play infinite silence
peer.vars['clip'] = 'silence'

36 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

start counting number of clips played
sess.call.vars['playback_count'] = 0

@event_callback("RECORD_START")
def on_rec(self, sess):

self.log.debug("Recording file '{}' for session '{}'".format(
sess['Record-File-Path'], sess.uuid)

)
mark this session as "currently recording"
sess.vars['recorded'] = False
sess.setvar('timer_name', 'soft')

start signal playback on the caller
if sess.is_outbound():

self.trigger_playback(sess)

@event_callback("RECORD_STOP")
def on_recstop(self, sess):

self.log.debug("Finished recording file '{}' for session '{}'".format(
sess['Record-File-Path'], sess.uuid))

mark as recorded so user can block with `EventListener.waitfor`
sess.vars['recorded'] = True
if sess.hungup:

self.log.warn(
"sess '{}' was already hungup prior to recording completion?"
.format(sess.uuid))

if sess.call.vars.get('record'):
self.stats[sess.uuid] = sess.con.api(
'json {{"command": "mediaStats", "data": {{"uuid": "{0}"}}}}'
.format(sess.uuid)
).getBody()

if the far end has finished recording then hangup the call
if sess.call.get_peer(sess).vars.get('recorded', True):

self.log.debug("sending hangup for session '{}'".format(sess.uuid))
if not sess.hungup:

sess.sched_hangup(0.5) # delay hangup slightly
recs = self.call2recs[sess.call.uuid]

invoke callback for each recording
if self.callback:

self.callback(
RecInfo(self.host, recs['caller'], recs['callee'])

)

For further examples check out the apps sub-package which also includes the very notorious
switchy.apps.call_gen.Originator.

4.13 Building a cluster service

switchy supports building full fledged routing systems just like you can with FreeSWITCH‘s XML dialplan but with
the added benefit that you can use a centralized “dialplan” to control a FreeSWITCH process cluster.

This means call control logic can reside in one (or more) switchy process(es) running on a separate server allowing
you to separate the brains and logic from the muscle and functionality when designing a scalable FreeSWITCH service

4.13. Building a cluster service 37

https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan

switchy Documentation, Release 0.1.alpha

system.

A service is very easy to create given a set of deployed Freeswitch processes:

from switchy import Service, event_callback

class Proxier(object):
"""Proxy all inbound calls to the destination specified in the SIP
Request-URI.
"""
@event_callback('CHANNEL_PARK')
def on_park(self, sess):

if sess.is_inbound():
sess.bridge(dest_url="${sip_req_uri}")

s = Service(['FS_host1.com', 'FS_host2.com', 'FS_host3.com'])
s.apps.load_app(Proxier, app_id='default')
s.run() # blocks forever

In this example all three of our FreeSWITCH servers load a Proxier app which simply bridges calls to the destination
requested in the SIP Request-URI header. The app_id=’default’ kwarg is required to tell the internal event loop that
this app should be used as the default (i.e. when no other app has consumed the event/session for processing).

4.13.1 Flask -like routing

Using the Router app we can define a routing system reminiscent of flask.

Let’s start with an example of blocking certain codes:

from switchy.apps.routers import Router

router = Router(guards={
'Call-Direction': 'inbound',
'variable_sofia_profile': 'external'})

@router.route('00(.*)|011(.*)', response='407')
def reject_international(sess, match, router, response):

sess.respond(response)
sess.hangup()

There’s a few things going on here:

• A Router is created with a guard dict which determines strict constraints on event headers which must be
matched exactly for the Router to invoke registered (via @route) functions.

• We decorate a function, reject_international, which registers it to be invoked whenever an interna-
tional number is dialed and will block such numbers with a SIP 407 response code.

• The first 3 arguments to reject_international are required, namely, sess, match, and router and
correspond to the Session, re.MatchObject, and Router respectively.

In summmary, we can define patterns which must be matched against event headers before a particular route function
will be invoked.

The signature for Router.route which comes from PatternCaller is:

@route(pattern, field=None, kwargs)

and works by taking in a regex pattern, an optional field (default is ’Caller-Destination-Number’)
and kwargs. The pattern must be matched against the field event header in order for the route to be called
with kwargs (i.e. reject_international(**kwargs)).

38 Chapter 4. User Guide

http://flask.pocoo.org/docs/0.11/quickstart/#routing
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example16:Blockcertaincodes
https://docs.python.org/3/library/re.html#match-objects
https://freeswitch.org/confluence/display/FREESWITCH/Event+List

switchy Documentation, Release 0.1.alpha

Let’s extend our example to include some routes which bridge differently based on the default
’Caller-Destination-Number’ event header:

from switchy.apps.routers import Router

router = Router({'Call-Direction': 'inbound'})

@router.route('00(.*)|011(.*)', response='407')
@router.route('1(.*)', gateway='long_distance_trunk')
@router.route('2[1-9]{3}$', out_profile='internal', proxy='salespbx.com')
@router.route('4[1-9]{3}$', out_profile='internal', proxy='supportpbx.com')
def bridge2dest(sess, match, router, out_profile=None, gateway=None,

proxy=None, response=None):
if response:

sess.log.warn("Rejecting international call to {}".format(
sess['Caller-Destination-Number']))

sess.respond(response)
sess.hangup()

sess.bridge(
bridge back out the same profile if not specified
(the default action taken by bridge)
profile=out_profile,
gateway=gateway,
always use the SIP Request-URI
dest_url=sess['variable_sip_req_uri'],
proxy=proxy,

)

Which defines that:

• all international calls will be blocked.

• any inbound calls prefixed with 1 will be bridged to our long distance provider.

• all 2xxx dialed numbers will be directed to the sales PBX.

• all 4xxx dialed numbers will be directed to the support PBX.

Notice that we can parameterize the inputs to the routing function using kwargs. This lets you specify data inputs
you’d like used when a particular field matches. If not provided, sensible defaults can be specified in the function
signature.

Also note that the idea of transferring to a context becomes a simple function call:

@router.route("^(XXXxxxxxxx)$")
def test_did(sess, match, router):

call our route function from above
return bridge2dest(sess, match, router, profile='external')

Just as before, we can run our router as a service and use a single “dialplan” for all nodes in our FreeSWITCH
cluster:

s = Service(['FS_host1.com', 'FS_host2.com', 'FS_host3.com'])
s.apps.load_app(router, app_id='default')
s.run() # blocks forever

Note: If you’d like to try out switchy routes alongside your existing XML dialplan (assuming you’ve added the park
only context in your existing config) you can either pass in {"Caller-Context": "switchy"} as a guard
or you can load the router with:

4.13. Building a cluster service 39

https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+bridge
https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example9:RoutingDIDtoanextension

switchy Documentation, Release 0.1.alpha

s.apps.load_app(router, app_id=’switchy’, header=’Caller-Context’)

Replicating XML dialplan features

The main difference with using switchy for call control is that everything is processed at runtime as opposed to having
separate parse and execute phases.

Retrieving Variables

Accessing variable values from FreeSWITCH is already built into switchy‘s Session API using traditional getitem
access.

Basic Logic

As a first note, you can accomplish any “logical” field pattern match either directly in Python or by the regex expression
to Router.route:

Here is the equivalent of the logical AND example:

from datetime import datetime

@router.route('^500$')
def on_sunday(sess, match, router, profile='internal', did='500'):

"""On Sunday no one works in support...
"""
did = '531' if datetime.today().weekday() == 6 else did
sess.bridge('{}@example.com'.format(did), profile=profile)

And the same for logical OR example:

import re

by regex
@router.route('^500$|^502$')
def either_ext(sess, match, router):

sess.answer()
sess.playback('ivr/ivr-welcome_to_freeswitch.wav')

by if statement
@router.route('^.*$')
def match(sess, match, router):

if re.match("^Michael\s*S?\s*Collins", sess['variable_caller_id_name']) or\
re.match("^1001|3757|2816$", sess['variable_caller_id_number']):

sess.playback("ivr/ivr-dude_you_rock.wav")
else:

sess.playback("ivr/ivr-dude_you_suck.wav")

Nesting logic

Nested conditions Can be easily accomplished using plain old if statements:

40 Chapter 4. User Guide

https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-AccessingVariables
https://docs.python.org/3/reference/datamodel.html#object.__getitem__
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example2:LogicalAND
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example3:LogicalOR
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-NestedConditions
https://docs.python.org/3/tutorial/controlflow.html#if-statements

switchy Documentation, Release 0.1.alpha

@router.route('^1.*(\d)$')
def play_wavfile(sess, match, router):

get the last digit
last_digit = match.groups()[0]

only play the extra file when last digit is '3'
if last_digit == '3':

sess.playback('foo.wav')

always played if the first digit is '1'
sess.playback('bar.wav')

Break on true

Halting all further route execution (known as break on true) can be done by raising a special error:

@router.route('^1.*(\d)$')
def play_wavfile(sess, match, router):

sess.playback('foo.wav')

if not sess['Caller-Destination-Number'] == "1100":
raise router.StopRouting # stop all further routing

Record a random sampling of call center agents

Here’s an example of randomly recording call-center agents who block their outbound CID:

import random

@router.route('^*67(\d+)$')
def block_cid(sess, match, router):

did = match.groups()[0]

if sess.is_outbound():
mask CID
sess.broadcast('privacy::full')
sess.setvars({'privacy': 'yes', 'sip_h_Privacy': 'id'})

if random.randint(1, 6) == 4:
sess.log.debug("recording a sneaky agent to /tmp/agents/")
sess.start_record('/tmp/agents/{}_to_{}.wav'.format(sess.uuid, did))

4.14 Call generation and stress testing

Switchy contains a built in auto-dialer which enables you to drive multiple FreeSWITCH processes as a call generator
cluster.

Once you have a set of servers deployed, have started FreeSWITCH processes on each and have configured ESL to
listen on the default 8021 port, simply load the originator app passing in a sequence of slave server host names:

>>> from switchy import get_originator
>>> originator = get_originator(['hostnameA', 'hostnameB', 'hostnameC'])
>>> originator

4.14. Call generation and stress testing 41

https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-break="on-true"

switchy Documentation, Release 0.1.alpha

<Originator: '0' active calls, state=[INITIAL], rate=30 limit=1
max_sessions=inf duration=10.03>

Note: If using ESL ports different then the default 8021, simply pass a sequence of (host, port) socket pairs to the
get_originator factory.

Now we have a binding to an Originator instance which is a non-blocking Switchy application allowing us to
originate calls from our FreeSWITCH cluster.

Notice the load settings such as rate, limit and duration shown in the output of the originator’s __repr__() method.
These parameters determine the type of traffic which will be originated from the cluster to your target software under
test (SUT) and downstream callee systems.

In order to ensure that calls are made successfully it is recommended that the SUT system loop calls back to the
originating server’s caller. This allows switchy to associate outbound and inbound SIP sessions into calls. As an
example if the called system is another FreeSWITCH server under test then you can configure a proxy dialplan.

4.14.1 A single call generator

For simplicity’s sake let’s assume for now that we only wish to use one FreeSWITCH process as a call generator. This
simplifies the following steps which otherwise require the more advanced switchy.distribute module’s cluster
helper components for orchestration and config of call routing. That is, assume for now we only passed ‘vm-host’ to
the originator factory function above.

To ensure all systems in your test environment are configured correctly try launching a single call (by keeping limit=1)
and verify that it connects and stays active:

>>> originator.start()
Feb 24 12:59:14 [ERROR] switchy.Originator@['vm-host'] call_gen.py:363 : 'MainProcess' failed with:
Traceback (most recent call last):

File "sangoma/switchy/apps/call_gen.py", line 333, in _serve_forever
"you must first set an originate command")

ConfigurationError: you must first set an originate command

Before we can start generating calls we must set the command which will be used by the application when instructing
each slave to originate a call.

Note: The error above was not raised as a Python exception but instead just printed to the screen to avoid terminating
the event processing loop in the switchy.observe.EventListener.

Let’s set an originate command which will call our SUT as it’s first hop with a destination of ourselves using the default
external profile and the FreeSWITCH built in park application for the outbound session’s post-connect execution:

>>> originator.pool.clients[0].set_orig_cmd(
dest_url='doggy@hostnameA:5080,
profile='external',
app_name='park',
proxy='doggy@intermediary_hostname:5060',

)
>>> originator.originate_cmd # show the rendered command str
['originate {{originator_codec=PCMU,switchy_client={app_id},
originate_caller_id_name=Mr_Switchy,originate_timeout=60,absolute_codec_string=,
sip_h_X-originating_session_uuid={uuid_str},sip_h_X-switchy_client={app_id},

42 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

origination_uuid={uuid_str}}}sofia/external/doggy@hostnameA:5060;
fs_path=sip:goodboy@intermediary_hostname:5060 &park()']

The underlying originate command has now been set for the first client in the Orignator app’s client
pool. You might notice that the command is a format string which has some placeholder variables
set. It is the job of the switchy.observe.Client to fill in these values at runtime (i.e. when the
switchy.observe.Client.originate() is called). For more info on the originate cmd wrapper see
build_originate_cmd(). Also see the Internals tutorial.

Try starting again:

>>> originator.start()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "switchy/apps/call_gen.py", line 479, in start
raise utils.ConfigurationError("No apps have been loaded")

switchy.utils.ConfigurationError: No apps have been loaded

We need to explicitly load a switchy app which will be used to process originated (and possibly received) calls.
For stress testing the switchy.apps.bert.Bert app is recommended as it performs a stringent audio check
alongside a traditional call flow using mod_bert:

>>> from switchy.apps.bert import Bert
>>> originator.load_app(Bert)

Note: The Originator actually supports loading multiple (groups of) apps with different weights such that you can
execute multiple call flows in parallel. This can be useful for simulating auto-dialer traffic:

>>> from switchy.apps.blockers import CalleeRingback, CalleeBlockOnInvite
>>> originator.load_app(CalleeRingback, ppkwargs={'caller_hup_after': 5, 'ring_response': 'ring_ready'}, weight=33)
>>> originator.load_app(CalleeBlockonInvite, ppkwargs={'response': 404}, weight=33)
>>> originator.load_app(Bert, weight=34)

Try starting once more:

>>> originator.start()
Feb 24 14:12:35 [INFO] switchy.Originator@['vm-host'] call_gen.py:395 : starting loop thread
Feb 24 14:12:35 [INFO] switchy.Originator@['vm-host'] call_gen.py:376 : State Change: 'INITIAL' -> 'ORIGINATING'

At this point there should be one active call from your caller (bridged) through the SUT and then received by the
callee. You can check the Originator status via it’s __repr__() again:

>>> originator
<Originator: '1' active calls, state=[ORIGINATING], rate=30 limit=1 max_sessions=inf duration=10.0333333333>

Warning: If you start seeing immediate errors such as:

Feb 24 14:12:35 [ERROR] switchy.EventListener@vm-host observe.py:730 : Job '16f6313e-bc59-11e4-8b27-1b3a3a6a886d' corresponding to session '16f8964a-bc59-11e4-9c96-74d02bc595d7' failed with:
-ERR NORMAL_TEMPORARY_FAILURE

it may mean your callee isn’t configured correctly. Stop the Originator and Check the FreeSWITCH slave’s logs
to debug.

The Originator will keep offering new calls indefinitely with duration seconds allowing up to limit‘s (in erlangs)
worth of concurrent calls until stopped. That is, continuous load is offered until you either stop or hupall calls. You
can verify this by ssh-ing to the slave and calling the status command from fs_cli.

4.14. Call generation and stress testing 43

https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-originate
https://freeswitch.org/confluence/display/FREESWITCH/mod_bert
https://freeswitch.org/confluence/display/FREESWITCH/Command-Line+Interface+fs_cli

switchy Documentation, Release 0.1.alpha

You can now increase the call load parameters:

>>> originator.rate = 50 # increase the call rate
>>> originator.limit = 1000 # increase max concurrent call limit (erlangs)
wait approx. 3 seconds
>>> originator
<Originator: '148' active calls, state=[INITIAL], rate=50 limit=1000 max_sessions=inf duration=30.0>

Note how the duration attribute was changed automatically. This is because the Originator computes the correct
average call-holding time by the most basic erlang formula. Feel free to modify the load parameters in real-time as
you please to suit your load test requirements.

To tear down calls you can use one of stop() or hupall(). The former will simply stop the burst loop and let
calls slowly teardown as per the duration attr whereas the latter will forcefully abort all calls associated with a given
Client:

>>> originator.hupall()
Feb 24 16:37:16 [WARNING] switchy.Originator@['vm-host'] call_gen.py:425 : Stopping all calls with hupall!
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:376 : State Change: 'ORIGINATING' -> 'STOPPED'
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:357 : stopping burst loop...
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:326 : Waiting for start command...
Feb 24 16:37:16 [ERROR] switchy.EventListener@vm-host observe.py:730 : Job '4d8823c4-bc6d-11e4-af92-1b3a3a6a886d' corresponding to session '4d837b3a-bc6d-11e4-9c2e-74d02bc595d7' failed with:
-ERR NORMAL_CLEARING
Feb 24 16:37:16 [ERROR] switchy.EventListener@vm-host observe.py:730 : Job '4d8f509a-bc6d-11e4-afa3-1b3a3a6a886d' corresponding to session '4d8aacb6-bc6d-11e4-9c2e-74d02bc595d7' failed with:
-ERR NORMAL_CLEARING
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:231 : all sessions have ended...

When hupall-ing, a couple NORMAL_CLEARING errors are totally normal.

4.14.2 Slave cluster

In order to deploy call generation clusters some slightly more advanced configuration steps are required to properly
provision the switchy.apps.call_gen.Originator. As mentioned previous, this involves use of handy
cluster helper components provided with Switchy.

The main trick is to configure each switchy.observe.Client to have the appropriate originate command
set such that calls are routed to where you expect. A clever and succint way to accomplish this is by using the
switchy.distribute.SlavePool. Luckily the Originator app is built with one internally by default.

Configuration can now be done with something like:

originator.pool.evals(
("""client.set_orig_cmd('park@{}:5080'.format(client.server),
app_name='park',
proxy='doggy@{}:5060'.format(ip_addr))"""),
ip_addr='intermediary_hostname.some.domain'

)

This will result in each slave calling itself through the intermediary system. The pool.evals method essentially allows
you to invoke arbitrary Python expressions across all slaves in the cluster.

For more details see Cluster tooling .

4.14.3 Measurement collection

By default, the Originator collects call detail records using the built-in CDR app. Given that you have pan-
das installed this data and additional stress testing metrics can be accessed in pandas DataFrames via the
switchy.apps.call_gen.Originator.measurers object:

44 Chapter 4. User Guide

http://en.wikipedia.org/wiki/Erlang_%28unit%29#Traffic_measurements_of_a_telephone_circuit
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe

switchy Documentation, Release 0.1.alpha

>>> orig.measurers.stores.CDR
switchy_app hangup_cause caller_create caller_answer caller_req_originate caller_originate caller_hangup job_launch callee_create callee_answer callee_hangup failed_calls active_sessions erlangs

0 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 8 4
1 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 12 6
2 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 22 11
3 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 6 3
...
1056 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 1992 996

>>> originator.measurers.ops.call_metrics
active_sessions answer_latency avg_call_rate call_duration \

0 8 0.020000 NaN 20.880000
1 12 0.020000 NaN 20.820000
2 22 0.020000 NaN 20.660000
3 2 0.020000 NaN 20.980000
...

call_rate call_setup_latency erlangs failed_calls \
0 25.000024 0.060000 4 0
1 49.999452 0.060000 6 0
2 50.000048 0.060000 11 0
3 NaN 0.120000 1 0
...

If you have matplotlib installed you can also plot the results using Originator.measurers.plot().

If you do not have have pandas installed then the CDR records are still stored in a local csv file and can be read into a
list of lists using the same orig.measurers.stores.CDR attribute.

More to come...

4.15 Command line

Switchy provides a convenient cli to initiate load tests with the help of click. The program is installed as binary
switchy:

$ switchy
Usage: switchy [OPTIONS] COMMAND [ARGS]...

Options:
--help Show this message and exit.

Commands:
list-apps
plot
run

A few sub-commands are provided. For example you can list the applications available (Call Applications determine
call flows):

$ switchy list-apps
Collected 5 built-in apps from 7 modules:

switchy.apps.bert:

`Bert`: Call application which runs the bert test application on both legs of a call

4.15. Command line 45

http://matplotlib.org/
http://click.pocoo.org/5/

switchy Documentation, Release 0.1.alpha

See the docs for `mod_bert`_ and discussion by the author `here`_.

.. _mod_bert:
https://freeswitch.org/confluence/display/FREESWITCH/mod_bert

.. _here:
https://github.com/moises-silva/freeswitch/issues/1

switchy.apps.players:

`TonePlay`: Play a 'milli-watt' tone on the outbound leg and echo it back on the inbound

`PlayRec`: Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such that
${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a valid wave file.

switchy.apps.dtmf:

`DtmfChecker`: Play dtmf tones as defined by the iterable attr `sequence` with tone `duration`.
Verify the rx sequence matches what was transmitted. For each session which is answered start
a sequence check. For any session that fails digit matching store it locally in the `failed` attribute.

switchy.apps.routers:

`Bridger`: Bridge sessions within a call an arbitrary number of times.

The applications listed can be used with the app option to the run sub-command. run is the main sub-command used
to start a load test. Here is the help:

$ switchy run --help
Usage: switchy run [OPTIONS] SLAVES...

Options:
--proxy TEXT Hostname or IP address of the proxy device

(this is usually the device you are testing)
[required]

--profile TEXT Profile to use for outbound calls in the
load slaves

--rate TEXT Call rate
--limit TEXT Maximum number of concurrent calls
--max-offered TEXT Maximum number of calls to place before

stopping the program
--duration TEXT Duration of calls in seconds
--interactive / --non-interactive

Whether to jump into an interactive session
after setting up the call originator

--debug / --no-debug Whether to enable debugging
--app TEXT Switchy application to execute (see list-

apps command to list available apps)
--metrics-file TEXT Store metrics at the given file location
--help Show this message and exit.

The SLAVES argument can be one or more IP’s or hostnames for each configured FreeSWITCH process used to
originate traffic. The proxy option is required and must be the IP address or hostname of the device you are testing.
All slaves will direct traffic to the specified proxy.

The other options are not strictly required but typically you will want to at least specify a given call rate using the rate
option, max number of concurrent calls (erlangs) with limit and possibly max number of calls offered with max-offered.

46 Chapter 4. User Guide

switchy Documentation, Release 0.1.alpha

For example, to start a test using an slave located at 1.1.1.1 to test device at 2.2.2.2 with a maximum of 2000 calls at
30 calls per second and stopping after placing 100,000 calls you can do:

$ switchy run 1.1.1.1 --profile external --proxy 2.2.2.2 --rate 30 --limit 2000 --max-offered 100000

Slave 1.1.1.1 SIP address is at 1.1.1.1:5080
Starting load test for server 2.2.2.2 at 30cps using 1 slaves
...

Note that the profile option is also important and the profile must exist already for all specified slaves.

In this case the call duration would be automatically calculated to sustain that call rate and that max calls exactly, but
you can tweak the call duration in seconds using the duration option.

Additionally you can use the metrics-file option to store call metrics in a file. You can then use the plot sub-command
to generate graphs of the collected data using matplotlib if installed.

4.16 Session API

switchy wraps FreeSWITCH‘s event header fields and call management commands inside the
switchy.models.Session type.

There is already slew of supported commands and we encourage you to add any more you might require via a pull
request on github.

4.16.1 Accessing FreeSWITCH variables

Every Session instance has access to all it’s latest received event headers via standard python __getitem__
access:

sess['Caller-Direction']

All chronological event data is kept until a Session is destroyed. If you’d like to access older state you can use the
underlying Events instance:

access the first value of my_var
sess.events[-1]['variable_my_var']

Note that there are some distinctions to be made between different types of variable access and in particular it would
seem that FreeSWITCH‘s event headers follow the info app names:

standard headers require no prefix
sess['FreeSWITCH-IPv6']
sess['Channel-State']
sess['Unique-ID']

channel variables require a 'variable_' prefix
sess['variable_sip_req_uri']
sess['variable_sip_contact_user']
sess['variable_read_codec']
sess['sip_h_X-switchy_app']

4.16. Session API 47

https://freeswitch.org/confluence/display/FREESWITCH/Event+List
https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands
https://github.com/sangoma/switchy
https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-AccessingVariables
https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables#ChannelVariables-InfoApplicationVariableNames(variable_xxxx)

switchy Documentation, Release 0.1.alpha

4.17 Internals tutorial

Getting familiar with Switchy’s guts means learning to put the appropriate components together to generate a call.
This simple guide is meant to provide some commentary surrounding low level components and interfaces so that you
can begin reading the source code. It is assumed you are already familiar with the prerequisite deployment steps.

4.17.1 Primary Components

Currently there are 3 main objects in Switchy for driving FreeSWITCH:

Connection - a thread safe wrapper around the ESL SWIG python package‘s ESLConnection

EventListener - the type that contains the core event processing loop and logic

• Primarily concerned with observing and tracking the state of a single FreeSWITCH process

• Normally a one-to-one pairing of listeners to slave processes/servers is recommended to ensure deterministic
control.

• Contains a Connection used mostly for receiving events only transmitting ESL commands when dictated by
Switchy apps

Client - a client for controlling FreeSWITCH using the ESL inbound method

• contains a Connection for direct synchronous commands and optionally an EventListener for
processing asynchronous calls

For this guide we will focus mostly on the latter two since they are the primary higher level components the rest of the
library builds upon.

4.17.2 Using a Client and EventListener pair

A Client can be used for invoking or sending synchronous commands to the FreeSWITCH process. It handles ESL
api calls entirely on it’s own.

To connect simply pass the hostname or ip address of the slave server at instantiation:

>>> from switchy import Client
>>> client = Client('vm-host')
>>> client.connect() # could have passed the hostname here as well
>>> client.api('status') # call ESL `api` command directly
<ESL.ESLevent; proxy of <Swig Object of type 'ESLevent *' at 0x28c1d10> >

>>> client.cmd('global_getvar local_ip_v4') # `api` wrapper which returns event body content
'10.10.8.21'

>>> client.cmd('not a real command')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "switchy/observe.py", line 1093, in cmd

return self.api(cmd).getBody().strip()
File "switchy/observe.py", line 1084, in api

consumed, response = EventListener._handle_socket_data(event)
File "switchy/observe.py", line 651, in _handle_socket_data

raise APIError(body)
switchy.utils.APIError: -ERR not Command not found!

Now let’s initiate a call originating from the slave process’s caller which is by default the external sip profile:

48 Chapter 4. User Guide

https://freeswitch.org/confluence/display/FREESWITCH/Python+ESL
https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External

switchy Documentation, Release 0.1.alpha

>>> client.originate(dest_url='9196@intermediary_hostname:5060')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "switchy/observe.py", line 1177, in originate

listener = self._assert_alive(listener)
File "switchy/observe.py", line 1115, in _assert_alive

assert self.listener, "No listener associated with this client"
File "switchy/observe.py", line 973, in get_listener

"No listener has been assigned for this client")
AttributeError: No listener has been assigned for this client

The Client implements originate by making an asynchronous ESL bgapi call to the slave process. In order to track
the eventual results of that call, an EventListener must be used which will collect the state changes triggered by the
command (i.e. as received in event data from the slave process).

With this current architecture you can think of a listener as an object from which you can track FreeSWITCH state
and a client as an interface which drives the slave process using commands to trigger new state(s). Again, any time a
Client makes an asynchronous call an EventListener is needed to handle and report back the result(s).

Let’s create and assign an EventListener:

>>> from switchy import get_listener
>>> l = get_listener('vm-host')
>>> l # initially disconnected to allow for unsubcriptions from the default event set
<EventListener [disconnected]>
>>> l.connect()
Feb 25 10:33:05 [INFO] switchy.EventListener@vm-host observe.py:346 : Connected listener 'd2d4ee82-bd02-11e4-8b48-74d02bc595d7' to 'vm-host'
>>> l
<EventListener [connected]>
>>> l.start()
Feb 25 10:35:30 [INFO] switchy.EventListener@vm-host observe.py:287 : starting event loop thread
>>> client.listener = l

Note: Alternatively an EventListener can be passed to the Client at instatiation time.

Now let’s attempt our originate once more this time executing the 9197 extension once the caller is answered, and
calling the echo extension, 9196, at the callee end:

>>> client.originate('9196@vm-host:5080',
dp_exten=9197,
proxy='intermediary_hostname:5060'

)
<switchy.models.Job at 0x7feea01c6c90>

>>> client.listener.calls # check the active calls collection
OrderedDict([('72451178-bd0c-11e4-9d26-74d02bc595d7', <Call(72451178-bd0c-11e4-9d26-74d02bc595d7, 2 sessions)>)])

Note: See the default dialplan packaged with stock FreeSWITCH. Use of these extensions assumes you have assigned
the external sip profile to use the default dialplan by assigning it’s context parameter

The async originate call returns to us a switchy.models.Job instance (as would any call
to switchy.observe.Client.bgapi()). A Job provides the same interface as that of the
multiprocessing.pool.AsyncResult and can be handled to completion synchronously:

4.17. Internals tutorial 49

https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External
http://docs.python.org/library/multiprocessing.html#multiprocessing.pool.AsyncResult

switchy Documentation, Release 0.1.alpha

>>> job = client.originate('9196@vm-host:5080',
dp_exten=9197,
proxy='intermediary_hostname:5060

)
>>> job.get(timeout=30) # block up to 30 seconds waiting for result
'4d9b4128-bd0f-11e4-9d26-74d02bc595d7' # the originated session uuid

>>> job.sess_uuid # a special attr which is always reserved for originate results (i.e. session ids)
'4d9b4128-bd0f-11e4-9d26-74d02bc595d7'

>>> client.hupall() # hangup the call

4.17.3 Call control using Switchy apps

To use Switchy at its fullest potential, applications can be written to process state tracked by the EventListener.
The main benefit is that apps can be written in pure Python somewhat like the mod_python module provided with
FreeSWITCH. Switchy gives the added benefit that the Python process does not have to run on the slave machine and
in fact multiple applications can be managed independently of multiple slave configurations thanks to Switchy’s use
of the ESL inbound method.

App Loading

Switchy apps are loaded using switchy.observe.Client.load_app(). Each app is referenced by it’s appro-
priate name (if none is provided) which allows for the appropriate callback lookups to be completed by the EventLis-
tener.

We can now accomplish the same tone play steps from above using the built-in TonePlay app:

>>> from switchy.apps.players import TonePlay
>>> client.load_app(TonePlay)
Feb 25 13:27:43 [INFO] switchy.Client@vm-host observe.py:1020 : Loading call app 'TonePlay'
'fd27be58-bd1b-11e4-b22d-74d02bc595d7' # the app uuid since None provided

>>> client.apps.TonePlay
<switchy.apps.players.TonePlay at 0x7f7c5fdaf650>

>>> isinstance(client.apps.TonePlay, TonePlay) # Loading the app type instantiates it
True

Note: App loading is atomic so if you mess up app implementation you don’t have to worry that inserted callbacks
are left registered with the EventListener

Assuming the Switchy park-only dialplan is used by the external sip profile we can now originate our call again:

>>> job = client.originate('park@vm-host:5080',
proxy='intermediary_hostname:5060',
app_id=client.apps.TonePlay.cid

)
>>> job.wait(10) # wait for call to connect
>>> call = client.listener.calls[job.sess_uuid] # look up the call by originating sess uuid
>>> call.hangup()

50 Chapter 4. User Guide

https://freeswitch.org/confluence/display/FREESWITCH/mod_python
https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound
https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External

switchy Documentation, Release 0.1.alpha

4.17.4 Example Snippet

As a summary, here is an snippet showing all these steps together:

import time
from switchy import Client, EventListener
from switchy.apps.players import TonePlay

init
listener = EventListener('vm-host')
client = Client('vm-host', listener=listener)
client.connect()
listener.connect()
listener.start()

app load
id = client.load_app(TonePlay)
make a call
job = client.originate(

dest_url='park@vm-host',
proxy='intermediary_hostname',
app_id=id

)
sessid = job.get(30)
assert sessid == job.sess_uuid
hangup
call = client.listener.calls[job.sess_uuid]
orig_sess = call.sessions[0] # get the originating session
time.sleep(10) # let it play a bit
orig_sess.hangup()

Conveniently enough, the boilerplate here is almost exactly what the active_client() context manager does
internally. An example of usage can be found in the quickstart guide.

4.18 Running Unit Tests

Switchy’s unit test set relies on pytest and tox. Tests require a FreeSWITCH slave process which has been deployed
with the required baseline config and can be accessed by hostname.

To run all tests invoke tox from the source dir and pass the FS hostname:

tox -e ALL -- --fshost=hostname.fs.com

SIPp and pysipp are required to be installed locally in order to run call/load tests.

To run multi-slave tests at least two slave hostnames are required:

tox -e ALL -- --fsslaves='["fs.slave.hostname1","fs.slave.hostname2"]'

4.18. Running Unit Tests 51

http://pytest.org
http://tox.readthedocs.io
https://github.com/SIPp/sipp
https://github.com/SIPp/pysipp

switchy Documentation, Release 0.1.alpha

52 Chapter 4. User Guide

Python Module Index

s
switchy.apps, 18
switchy.apps.bert, 22
switchy.apps.call_gen, 19
switchy.apps.dtmf, 22
switchy.apps.measure.cdr, 21
switchy.apps.measure.sys, 21
switchy.apps.players, 21
switchy.commands, 22
switchy.connection, 11
switchy.distribute, 18
switchy.models, 15
switchy.observe, 11
switchy.sync, 18
switchy.utils, 23

53

switchy Documentation, Release 0.1.alpha

54 Python Module Index

Index

A
active_client() (in module switchy.observe), 15
add_callback() (switchy.observe.EventListener method),

13
add_handler() (switchy.observe.EventListener method),

13
api() (switchy.connection.Connection method), 11
api() (switchy.observe.Client method), 11
APIError, 23
app() (in module switchy.apps), 19
append() (switchy.models.Call method), 15
AppManager (class in switchy.apps), 18
attrs() (switchy.distribute.MultiEval method), 18

B
Bert (class in switchy.apps.bert), 22
bg_jobs (switchy.observe.EventListener attribute), 13
bgapi() (switchy.observe.Client method), 11
block_jobs() (switchy.observe.EventListener method), 13
breakmedia() (switchy.models.Session method), 16
bridge() (switchy.models.Session method), 16
broadcast() (switchy.models.Session method), 16
build_originate_cmd() (in module switchy.commands),

22
bypass_media() (switchy.models.Session method), 16

C
Call (class in switchy.models), 15
call_metrics() (in module switchy.apps.measure.cdr), 21
callee (switchy.apps.players.RecInfo attribute), 21
caller (switchy.apps.players.RecInfo attribute), 21
CDR (class in switchy.apps.measure.cdr), 21
check_con() (in module switchy.connection), 11
check_state() (switchy.apps.call_gen.Originator method),

19
clear_tasks() (switchy.models.Session method), 16
Client (class in switchy.observe), 11
cmd() (switchy.connection.Connection method), 11
cmd() (switchy.observe.Client method), 12
compose() (in module switchy.utils), 23

con_repr() (in module switchy.observe), 15
ConfigurationError, 23
connect() (switchy.connection.Connection method), 11
connect() (switchy.observe.Client method), 12
connect() (switchy.observe.EventListener method), 13
connected() (switchy.connection.Connection method), 11
connected() (switchy.observe.Client method), 12
connected() (switchy.observe.EventListener method), 13
Connection (class in switchy.connection), 11
count_calls() (switchy.observe.EventListener method), 13
count_failed() (switchy.observe.EventListener method),

13
cycle() (switchy.apps.call_gen.WeightedIterator method),

20

D
default_handlers (switchy.observe.EventListener at-

tribute), 13
deflect() (switchy.models.Session method), 16
DictProxy() (in module switchy.utils), 23
dirinfo() (in module switchy.utils), 23
disconnect() (switchy.connection.Connection method), 11
disconnect() (switchy.observe.Client method), 12
disconnect() (switchy.observe.EventListener method), 13
DtmfChecker (class in switchy.apps.dtmf), 22

E
echo() (switchy.models.Session method), 16
elapsed() (switchy.utils.Timer method), 23
epoch (switchy.observe.EventListener attribute), 13
ESLError, 23
evals() (switchy.distribute.MultiEval method), 18
event2dict() (in module switchy.utils), 23
EventListener (class in switchy.observe), 12
Events (class in switchy.models), 15

F
fail() (switchy.models.Job method), 16
first (switchy.models.Call attribute), 15
folder() (switchy.distribute.MultiEval method), 18

55

switchy Documentation, Release 0.1.alpha

G
get() (in module switchy.apps), 19
get() (switchy.models.Events method), 15
get() (switchy.models.Job method), 16
get() (switchy.models.Session method), 16
get_args() (in module switchy.utils), 23
get_event_time() (in module switchy.utils), 23
get_id() (switchy.observe.EventListener method), 13
get_listener() (in module switchy.observe), 15
get_logger() (in module switchy.utils), 23
get_name() (in module switchy.utils), 23
get_new_con() (switchy.observe.EventListener method),

13
get_originator() (in module switchy.apps.call_gen), 20
get_peer() (switchy.models.Call method), 15
get_pool() (in module switchy.observe), 15
groupbymod() (in module switchy.apps), 19

H
hangup() (switchy.models.Call method), 15
hangup() (switchy.models.Session method), 16
hangup_on_error (switchy.apps.bert.Bert attribute), 22
hard_hupall() (switchy.apps.call_gen.Originator method),

20
host (switchy.apps.players.RecInfo attribute), 21
host (switchy.models.Session attribute), 16
hupall() (switchy.apps.call_gen.Originator method), 20
hupall() (switchy.observe.Client method), 12

I
ident() (switchy.observe.EventListener method), 14
is_alive() (switchy.apps.call_gen.Originator method), 20
is_alive() (switchy.observe.EventListener method), 14
is_callback() (in module switchy.utils), 24
is_inbound() (switchy.models.Session method), 16
is_outbound() (switchy.models.Session method), 17
iter_cons() (switchy.observe.EventListener method), 14
iter_import_submods() (in module switchy.utils), 24
iterapps() (in module switchy.apps), 19
iterapps() (switchy.apps.AppManager method), 18

J
Job (class in switchy.models), 15

L
last (switchy.models.Call attribute), 15
last_time (switchy.utils.Timer attribute), 23
limiter() (in module switchy.apps.call_gen), 20
load() (in module switchy.apps), 19
load_app() (switchy.apps.AppManager method), 19
load_app() (switchy.apps.call_gen.Originator method),

20
load_app() (switchy.observe.Client method), 12

load_multi_app() (switchy.apps.AppManager method),
19

log (switchy.models.Session attribute), 17
log_stats() (switchy.apps.measure.cdr.CDR method), 21
log_to_stderr() (in module switchy.utils), 24
lookup_sess() (switchy.observe.EventListener method),

14

M
max_rate (switchy.apps.call_gen.Originator attribute), 20
MultiEval (class in switchy.distribute), 18
mute() (switchy.models.Session method), 17

N
ncompose() (in module switchy.utils), 24

O
on_create() (switchy.apps.measure.cdr.CDR method), 21
on_lost_sync() (switchy.apps.bert.Bert method), 22
on_park() (switchy.apps.bert.Bert method), 22
on_stop() (switchy.apps.players.PlayRec method), 21
on_timeout() (switchy.apps.bert.Bert method), 22
originate() (switchy.observe.Client method), 12
originate_cmd (switchy.apps.call_gen.Originator at-

tribute), 20
Originator (class in switchy.apps.call_gen), 19

P
param2header() (in module switchy.utils), 24
park() (switchy.models.Session method), 17
partial() (switchy.distribute.MultiEval method), 18
playback() (switchy.models.Session method), 17
PlayRec (class in switchy.apps.players), 21
pprint() (switchy.models.Events method), 15
pstr() (in module switchy.utils), 24

R
ready() (switchy.models.Job method), 16
RecInfo (class in switchy.apps.players), 21
record() (switchy.models.Session method), 17
reducer() (switchy.distribute.MultiEval method), 18
register() (in module switchy.apps), 19
register_job() (switchy.observe.EventListener method),

14
remove_callback() (switchy.observe.EventListener

method), 14
reset() (switchy.observe.EventListener method), 14
reset() (switchy.utils.Timer method), 23
respond() (switchy.models.Session method), 17
result (switchy.models.Job attribute), 16
route() (built-in function), 38

S
sched_dtmf() (switchy.models.Session method), 17

56 Index

switchy Documentation, Release 0.1.alpha

sched_hangup() (switchy.models.Session method), 17
send_dtmf() (switchy.models.Session method), 17
Session (class in switchy.models), 16
set_orig_cmd() (switchy.observe.Client method), 12
setup() (switchy.apps.call_gen.Originator method), 20
setvar() (switchy.models.Session method), 17
setvars() (switchy.models.Session method), 17
shutdown() (switchy.apps.call_gen.Originator method),

20
SlavePool() (in module switchy.distribute), 18
start() (switchy.apps.call_gen.Originator method), 20
start() (switchy.observe.EventListener method), 14
start_record() (switchy.models.Session method), 17
State (class in switchy.apps.call_gen), 20
state (switchy.apps.call_gen.Originator attribute), 20
status() (switchy.observe.EventListener method), 14
stop() (switchy.apps.call_gen.Originator method), 20
stop_record() (switchy.models.Session method), 17
stopped() (switchy.apps.call_gen.Originator method), 20
subscribe() (switchy.connection.Connection method), 11
successful() (switchy.models.Job method), 16
switchy.apps (module), 18
switchy.apps.bert (module), 22
switchy.apps.call_gen (module), 19
switchy.apps.dtmf (module), 22
switchy.apps.measure.cdr (module), 21
switchy.apps.measure.sys (module), 21
switchy.apps.players (module), 21
switchy.commands (module), 22
switchy.connection (module), 11
switchy.distribute (module), 18
switchy.models (module), 15
switchy.observe (module), 11
switchy.sync (module), 18
switchy.utils (module), 23
sync_caller() (in module switchy.sync), 18
sys_stats() (in module switchy.apps.measure.sys), 21
SysStats (class in switchy.apps.measure.sys), 21

T
time (switchy.models.Session attribute), 17
TimeoutError, 23
Timer (class in switchy.utils), 23
TonePlay (class in switchy.apps.players), 22
trigger_playback() (switchy.apps.players.PlayRec

method), 21
two_sided (switchy.apps.bert.Bert attribute), 22

U
unblock_jobs() (switchy.observe.EventListener method),

14
uncons() (in module switchy.utils), 24
unload_app() (switchy.observe.Client method), 12
unmute() (switchy.models.Session method), 17

unsetvar() (switchy.models.Session method), 18
unsubscribe() (switchy.observe.EventListener method),

14
update() (switchy.models.Events method), 15
update() (switchy.models.Job method), 16
update() (switchy.models.Session method), 18
uptime (switchy.models.Session attribute), 18
uptime (switchy.observe.EventListener attribute), 14
uuid() (in module switchy.utils), 24

W
wait() (switchy.models.Job method), 16
wait() (switchy.observe.EventListener method), 14
waitfor() (switchy.observe.EventListener method), 14
waitwhile() (in module switchy.utils), 24
waitwhile() (switchy.apps.call_gen.Originator method),

20
WeightedIterator (class in switchy.apps.call_gen), 20

X
xheaderify() (in module switchy.utils), 24

Index 57

	Overview
	Installation and Dependencies
	Features
	User Guide
	Python Module Index

