

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	switchy 0.1.alpha documentation

switchy

Fast FreeSWITCH [https://freeswitch.org/confluence/display/FREESWITCH] control purpose-built upon traffic theory [https://en.wikipedia.org/wiki/Teletraffic_engineering] and stress testing [https://en.wikipedia.org/wiki/Stress_testing].

Overview

Switchy intends to be a fast control library for harnessing the power of
the FreeSWITCH telephony engine whilst leveraging the expressiveness of
Python. It relies on the FreeSWITCH ESL inbound [https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound] method for control and
was originally built for generating traffic using FreeSWITCH clusters.

Installation and Dependencies

See instructions on the github [https://github.com/sangoma/switchy] page.

Features

	drive multiple FreeSWITCH processes as a traffic generator

	write services in pure Python to process flows from a FreeSWITCH cluster

	build a dialplan system using a Flask-like routing API

	record, display and export CDR and performance metrics captured during stress tests

	async without requiring twisted

FreeSWITCH Configuration

Switchy relies on some baseline server deployment steps for
import-and-go usage.

User Guide

	FreeSWITCH configuration and deployment

	Quick-Start - Originating a single call

	Building a cluster service

	Call generation and stress testing

	Call Applications

	Command line

	Session API

	Internals tutorial

	API Reference

	Running Unit Tests

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

FreeSWITCH configuration and deployment

switchy relies on some basic FreeSWITCH configuration steps in order to enable
remote control via the ESL inbound method [https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound].
Most importantly, the ESL configuration file must be modified to listen
on a known socket of choice and a park-only extension must be added to
FreeSWITCH‘s XML dialplan [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan]. switchy comes packaged with an example
park only dialplan which you can copy-paste into your
existing server(s).

Event Socket

In order for switchy to talk to FreeSWITCH you must enable ESL [https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Configuration] to listen on all
IP addrs at port 8021. This can configured by simply making the following change to
the ${FS_CONF_ROOT}/conf/autoload_configs/event_socket.conf.xml configuration file:

-- <param name="listen-ip" value="127.0.0.1"/>
++ <param name="listen-ip" value="::"/>

Depending on your FS version, additional acl configuration [https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-ACL] may be required.

Park only dialplan

An XML dialplan extension [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Extensions] which places all inbound sessions into the
park [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools:+park] state should be added to all target FreeSWITCH servers you wish to control with
switchy. An example context [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Context] (switchydp.xml) is included in the conf [https://github.com/sangoma/switchy/tree/master/conf] directory
of the source code. If using this file you can enable switchy to control all calls
received by a particular FreeSWITCH SIP profile [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-SIPProfiles] by setting the "switchy" context.

As an example you can modify FreeSWITCH‘s default external [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External] profile found
at ${FS_CONF_ROOT}/conf/sip_profiles/external.xml:

<!-- Contents of -->
-- <param name="context" value="public"/>
++ <param name="context" value="switchy"/>

Note

You can also add a park extension to your existing dialplan such that
only a subset of calls relinquish control to switchy (especially
useful if you’d like to test on an extant production system).

Configuring software under test

For (stress) testing, the system under test should be configured to route calls back
to the originating FreeSWITCH (cluster) such that the originator hosts both the
caller and callee user agents (potentially using the same SIP profile [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-SIPProfiles]):

FreeSWITCH cluster Target test network or
 device

-------------- outbound sessions ---------------------
| Originator | --------------------> | Device under test |
| | <-------------------- | (in loopback) |
-------------- inbound sessions ---------------------

This allows switchy to perform call tracking (associate outbound with inbound
SIP sessions) and thus assume full control of call flow as well as measure signalling
latency and other teletraffic metrics.

Example proxy dialplan

If your system to test is simply another FreeSWITCH instance then it is
highly recommended to use a “proxy” dialplan to route SIP sessions back
to the originator (caller):

<!-- Proxy Dialplan - forward calls to requested destination -->
<condition field="${sip_req_uri}" expression="^(.+)$">
 <action application="bridge" data="sofia/${sofia_profile_name}/${sip_req_uri}"/>
</condition>

Note

This could have alternatively be implemented as a switchy app.

Configuring FreeSWITCH for stress testing

Before attempting to stress test FreeSWITCH itself be sure you’ve read the
performance [https://freeswitch.org/confluence/display/FREESWITCH/Performance+Testing+and+Configurations] and dialplans [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-Dialplan] sections of the wiki.

You’ll typically want to raise the max-sessions and sessions-per-second
parameters in autoload_configs/switch.conf.xml:

<param name="max-sessions" value="20000"/>
<!-- Max channels to create per second -->
<param name="sessions-per-second" value="1000"/>

This prevents FreeSWITCH from rejecting calls at high loads. However, if your intention
is to see how FreeSWITCH behaves at those parameters limits, you can always set values
that suit those purposes.

In order to reduce load due to logging it’s recommended you reduce your core logging level.
This is also done in autoload_configs/switch.conf.xml:

<!-- Default Global Log Level - value is one of debug,info,notice,warning,err,crit,alert -->
<param name="loglevel" value="warning"/>

You will also probably want to raise the file descriptor count [https://freeswitch.org/confluence/display/FREESWITCH/Performance+Testing+and+Configurations#PerformanceTestingandConfigurations-RecommendedULIMITsettings].

Note

You have to run ulimit in the same shell where you start a FreeSWITCH
process.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

Quick-Start - Originating a single call

Assuming you’ve gone through the required deployment steps to setup at least one slave, initiating a call becomes
very simple using the Switchy command line:

$ switchy run vm-host sip-cannon --profile external --proxy myproxy.com --rate 1 --limit 1 --max-offered 1

...

Aug 26 21:59:01 [INFO] switchy cli.py:114 : Slave sip-cannon.qa.sangoma.local SIP address is at 10.10.8.19:5080
Aug 26 21:59:01 [INFO] switchy cli.py:114 : Slave vm-host.qa.sangoma.local SIP address is at 10.10.8.21:5080
Aug 26 21:59:01 [INFO] switchy cli.py:120 : Starting load test for server dut-008.qa.sangoma.local at 1cps using 2 slaves
<Originator: active-calls=0 state=INITIAL total-originated-sessions=0 rate=1 limit=1 max-offered=1 duration=5>

...

<Originator: active-calls=1 state=STOPPED total-originated-sessions=1 rate=1 limit=1 max-offered=1 duration=5>
Waiting on 1 active calls to finish
Waiting on 1 active calls to finish
Waiting on 1 active calls to finish
Waiting on 1 active calls to finish
Load test finished!

The Switchy run sub-command takes several options and a list
of slaves (or at least one) IP address or hostname. In this
example switchy connected to the specified slaves, found the specified SIP
profile and initiated a single call with a duration of 5 seconds to the
device under test (set with the proxy option).

For more information on the switchy command line see here.

Originating a single call programatically from Python

Making a call with switchy is quite simple using the built-in
sync_caller() context manager.
Again, if you’ve gone through the required deployment steps, initiating a call becomes as simple as a few lines of python
code

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from switchy import sync_caller
from switchy.apps.players import TonePlay

here '192.168.0.10' would be the address of the server running a
FS process to be used as the call generator
with sync_caller('192.168.0.10', apps={"tone": TonePlay}) as caller:

 # initiates a call to the originating profile on port 5080 using
 # the `TonePlay` app and block until answered / the originate job completes
 sess, waitfor = caller('Fred@{}:{}'.format(caller.client.host, 5080), "tone")
 # let the tone play a bit
 time.sleep(5)
 # tear down the call
 sess.hangup()

The most important lines are the with statement and line 10.
What happens behind the scenes here is the following:

	at the with, necessary internal Switchy components are instantiated in memory
and connected to a FreeSWITCH process listening on the fsip ESL ip address.

	at the caller(), an originate() command is
invoked asynchronously via a bgapi() call.

	the background Job returned by that command is handled
to completion synchronously wherein the call blocks until the originating session has
reached the connected state.

	the corresponding origininating Session is returned along with
a reference to a switchy.observe.EventListener.waitfor() blocker method.

	the call is kept up for 1 second and then hungup.

	internal Switchy components are disconnected from the FreeSWITCH process at the close of the
with block.

Note that the sync_caller api is not normally used for stress testing
as it used to initiate calls synchronously. It becomes far more useful when using
FreeSWITCH for functional testing using your own custom call flow apps.

Example source code

Some more extensive examples are found in the unit tests sources :

test_sync_call.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

	# This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
"""
Tests for synchronous call helper
"""
import time
from switchy import sync_caller
from switchy.apps.players import TonePlay, PlayRec

def test_toneplay(fsip):
 '''Test the synchronous caller with a simple toneplay
 '''
 with sync_caller(fsip, apps={"TonePlay": TonePlay}) as caller:
 # have the external prof call itself by default
 assert 'TonePlay' in caller.app_names
 sess, waitfor = caller(
 "doggy@{}:{}".format(caller.client.host, 5080),
 'TonePlay',
 timeout=3,
)
 assert sess.is_outbound()
 time.sleep(1)
 sess.hangup()
 time.sleep(0.1)
 assert caller.client.listener.count_calls() == 0

def test_playrec(fsip):
 '''Test the synchronous caller with a simulated conversation using the the
 `PlayRec` app. Currently this test does no audio checking but merely
 verifies the callback chain is invoked as expected.
 '''
 with sync_caller(fsip, apps={"PlayRec": PlayRec}) as caller:
 # have the external prof call itself by default
 caller.apps.PlayRec['PlayRec'].rec_rate = 1
 sess, waitfor = caller(
 "doggy@{}:{}".format(caller.client.host, 5080),
 'PlayRec',
 timeout=10,
)
 waitfor(sess, 'recorded', timeout=15)
 waitfor(sess.call.get_peer(sess), 'recorded', timeout=15)
 assert sess.call.vars['record']
 time.sleep(1)
 assert sess.hungup

def test_alt_call_tracking_header(fsip):
 '''Test that an alternate `EventListener.call_tracking_header` (in this
 case using the 'Caller-Destination-Number' channel variable) can be used
 to associate sessions into calls.
 '''
 with sync_caller(fsip) as caller:
 # use the destination number as the call association var
 caller.client.listener.call_tracking_header = 'Caller-Destination-Number'
 dest = 'doggy'
 # have the external prof call itself by default
 sess, waitfor = caller(
 "{}@{}:{}".format(dest, caller.client.host, 5080),
 'TonePlay', # the default app
 timeout=3,
)
 assert sess.is_outbound()
 # call should be indexed by the req uri username
 assert dest in caller.client.listener.calls
 call = caller.client.listener.calls[dest]
 time.sleep(1)
 assert call.first is sess
 assert call.last
 call.hangup()
 time.sleep(0.1)
 assert caller.client.listener.count_calls() == 0

def test_untracked_call(fsip):
 with sync_caller(fsip) as caller:
 # use an invalid chan var for call tracking
 caller.client.listener.call_tracking_header = 'doggypants'
 # have the external prof call itself by default
 sess, waitfor = caller(
 "{}@{}:{}".format('jonesy', caller.client.host, 5080),
 'TonePlay', # the default app
 timeout=3,
)
 # calls should be created for both inbound and outbound sessions
 # since our tracking variable is nonsense
 l = caller.client.listener
 # assert len(l.sessions) == len(l.calls) == 2
 assert l.count_sessions() == l.count_calls() == 2
 sess.hangup()
 time.sleep(0.1)
 # no calls or sessions should be active
 assert l.count_sessions() == l.count_calls() == 0
 assert not l.sessions and not l.calls

Run manually

You can run this code from the unit test directory quite simply:

>>> from tests.test_sync_call import test_toneplay
>>> test_toneplay('fs_slave_hostname')

Run with pytest

If you have pytest installed you can run this test like so:

$ py.test --fshost='fs_slave_hostname' tests/test_sync_caller

Implementation details

The implementation of sync_caller() is shown
below and can be referenced alongside the Internals tutorial to gain a better
understanding of the inner workings of Switchy’s api:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	# This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
"""
Make calls synchronously
"""
from contextlib import contextmanager
from switchy.apps.players import TonePlay
from switchy.observe import active_client

@contextmanager
def sync_caller(host, port='8021', password='ClueCon',
 apps={'TonePlay': TonePlay}):
 '''Deliver a provisioned synchronous caller function.

 A caller let's you make a call synchronously returning control once
 it has entered a stable state. The caller returns the active originating
 `Session` and a `waitfor` blocker method as output.
 '''
 with active_client(host, port=port, auth=password, apps=apps) as client:

 def caller(dest_url, app_name, timeout=30, waitfor=None,
 **orig_kwargs):
 # override the channel variable used to look up the intended
 # switchy app to be run for this call
 if caller.app_lookup_vars:
 client.listener.app_id_vars.extend(caller.app_lookup_vars)

 job = client.originate(dest_url, app_id=app_name, **orig_kwargs)
 job.get(timeout)
 if not job.successful():
 raise job.result
 call = client.listener.sessions[job.sess_uuid].call
 orig_sess = call.first # first sess is the originator
 if waitfor:
 var, time = waitfor
 client.listener.waitfor(orig_sess, var, time)

 return orig_sess, client.listener.waitfor

 # attach apps handle for easy interactive use
 caller.app_lookup_vars = []
 caller.apps = client.apps
 caller.client = client
 caller.app_names = client._apps.keys()
 yield caller

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Building a cluster service

Call Applications

switchy supports writing and composing call control applications written in
pure Python. An app is simply a namespace [https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces] which defines a set of event
callbacks [1].

Apps are somewhat analogous to extensions [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Extensions] in FreeSWITCH‘s
XML dialplan [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan] interface and can similarly be activated using any
event header [https://freeswitch.org/confluence/display/FREESWITCH/Event+List#EventList-Eventfields] or channel variable [https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables] value of your choosing.
Callbacks are invoked based on the recieved event type [https://freeswitch.org/confluence/display/FREESWITCH/Event+List].

Apps can be implemented each as a standalone Python namespace [https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces] which can
hold state and be mutated at runtime. This allows for all sorts of dynamic call
processing logic. Apps can also be shared across a FreeSWITCH process cluster
allowing for centralized call processing overtop a scalable service system.

Applications are loaded either using a Client
or, in the case of an switchy cluster Service, an
AppManager instance.

API

Apps are usually implemented as plain old Python classes [https://docs.python.org/3/tutorial/classes.html#a-first-look-at-classes] which contain
methods decorated using the switchy.marks module.

Currently the marks supported would be one of:

@event_callback("EVENT_NAME")
@handler("EVENT_NAME")

Where EVENT_NAME is any of the strings supported by the ESL event type [https://freeswitch.org/confluence/display/FREESWITCH/Event+List]
list.

Additionally, app types can support a prepost() callable which serves
as a setup/teardown fixture mechanism for the app to do pre/post app loading
execution. It can be either of a function or generator.

Note

For examples using prepost() see the extensive set of built-in
apps under switchy.apps.

Event Callbacks

event_callbacks are methods which typically receive a type from
switchy.models as their first (and only) argument. This
type is most often a Session.

Note

Technically the method will receive whatever is returned as the 2nd
value from the preceeding event handler looked up in the event
processing loop, but this is an implementation detail and may change
in the future.

Here is a simple callback which counts the number of answered sessions in
a global:

import switchy

num_calls = 0

@switchy.event_callback('CHANNEL_ANSWER')
def counter(session):
 global num_calls
 num_calls += 1

Note

This is meant to be a simple example and not actually
implemented for practical use.
switchy.observe.EventListener.count_calls() exists
for this very purpose.

Event Handlers

An event handler is any callable marked by handler() which
is expected to handle a received ESLEvent object and process it within the
EventListener event loop. It’s function signature
should expect a single argument, that being the received event.

Example handlers can be found in the EventListener
such as the default CHANNEL_ANSWER handler

 def _handle_answer(self, e):
 '''Handle answer events

 Returns

 sess : session instance corresponding to uuid
 '''
 uuid = e.getHeader('Unique-ID')
 sess = self.sessions.get(uuid, None)
 if sess:
 self.log.debug('answered session {} with call direction {}'
 .format(uuid, e.getHeader('Call-Direction')))
 sess.answered = True
 self.total_answered_sessions += 1
 sess.update(e)
 return True, sess
 else:
 self.log.warn('Skipping answer of {}'.format(uuid))
 return False, None

As you can see a knowledge of the underlying ESL SWIG python
package [https://freeswitch.org/confluence/display/FREESWITCH/Python+ESL] usually is required for handler implementations.

Examples

TonePlay

As a first example here is the TonePlay
app which is provided as a built-in for Switchy

class TonePlay(object):
 """Play a 'milli-watt' tone on the outbound leg and echo it back
 on the inbound
 """
 @event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.answer()

 @event_callback("CHANNEL_ANSWER")
 def on_answer(self, sess):
 # inbound leg simply echos back the tone
 if sess.is_inbound():
 sess.echo()

 # play infinite tones on calling leg
 if sess.is_outbound():
 sess.broadcast('playback::{loops=-1}tone_stream://%(251,0,1004)')

Clients who load this app will originate
calls wherein a simple tone is played infinitely and echoed back to
the caller until each call is hung up.

Proxier

An example of the proxy dialplan can be
implemented quite trivially:

import switchy

class Proxier(object):
 @switchy.event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.bridge(dest_url="${sip_req_user}@${sip_req_host}:${sip_req_port}")

CDR

The measurement application used by the
Originator to gather stress testing
performance metrics from call detail records:

class CDR(object):
 """Collect call detail record info including call oriented event time
 stamps and and active sessions data which can be used for per call metrics
 computations.
 """
 fields = [
 ('switchy_app', 'S50'),
 ('hangup_cause', 'S50'),
 ('caller_create', 'float64'),
 ('caller_answer', 'float64'),
 ('caller_req_originate', 'float64'),
 ('caller_originate', 'float64'),
 ('caller_hangup', 'float64'),
 ('job_launch', 'float64'),
 ('callee_create', 'float64'),
 ('callee_answer', 'float64'),
 ('callee_hangup', 'float64'),
 ('failed_calls', 'uint32'),
 ('active_sessions', 'uint32'),
 ('erlangs', 'uint32'),
]

 operators = {
 'call_metrics': call_metrics,
 # 'call_types': call_types,
 # 'hcm': hcm,
 }

 def __init__(self):
 self.log = utils.get_logger(__name__)
 self._call_counter = itertools.count(0)

 def new_storer(self):
 return DataStorer(self.__class__.__name__, dtype=self.fields)

 def prepost(self, listener, storer=None, pool=None, orig=None):
 self.listener = listener
 self.orig = orig
 # create our own storer if we're not loaded as a `Measurer`
 self._ds = storer if storer else self.new_storer()
 self.pool = weakref.proxy(pool) if pool else self.listener

 @property
 def storer(self):
 return self._ds

 @event_callback('CHANNEL_CREATE')
 def on_create(self, sess):
 """Store total (cluster) session count at channel create time
 """
 call_vars = sess.call.vars
 # call number tracking
 if not call_vars.get('call_index', None):
 call_vars['call_index'] = next(self._call_counter)
 # capture the current erlangs / call count
 call_vars['session_count'] = self.pool.count_sessions()
 call_vars['erlangs'] = self.pool.count_calls()

 @event_callback('CHANNEL_ORIGINATE')
 def on_originate(self, sess):
 # store local time stamp for originate
 sess.times['originate'] = sess.time
 sess.times['req_originate'] = time.time()

 @event_callback('CHANNEL_ANSWER')
 def on_answer(self, sess):
 sess.times['answer'] = sess.time

 @event_callback('CHANNEL_HANGUP')
 def log_stats(self, sess, job):
 """Append measurement data only once per call
 """
 sess.times['hangup'] = sess.time
 call = sess.call

 if call.sessions: # still session(s) remaining to be hungup
 call.caller = call.first
 call.callee = call.last
 if job:
 call.job = job
 return # stop now since more sessions are expected to hangup

 # all other sessions have been hungup so store all measurements
 caller = getattr(call, 'caller', None)
 if not caller:
 # most likely only one leg was established and the call failed
 # (i.e. call.caller was never assigned above)
 caller = sess

 callertimes = caller.times
 callee = getattr(call, 'callee', None)
 calleetimes = callee.times if callee else None

 pool = self.pool
 job = getattr(call, 'job', None)
 # NOTE: the entries here correspond to the listed `CDR.fields`
 rollover = self._ds.append_row((
 caller.appname,
 caller['Hangup-Cause'],
 callertimes['create'], # invite time index
 callertimes['answer'],
 callertimes['req_originate'], # local time stamp
 callertimes['originate'],
 callertimes['hangup'],
 # 2nd leg may not be successfully established
 job.launch_time if job else None,
 calleetimes['create'] if callee else None,
 calleetimes['answer'] if callee else None,
 calleetimes['hangup'] if callee else None,
 pool.count_failed(),
 call.vars['session_count'],
 call.vars['erlangs'],
))
 if rollover:
 self.log.debug('wrote data to disk')

It simply inserts the call record data on hangup once for each call.

PlayRec

This more involved application demonstrates FreeSWITCH‘s ability to play
and record rtp streams locally which can be used in tandem with MOS to do
audio quality checking:

class PlayRec(object):
 '''Play a recording to the callee and record it onto the local file system

 This app can be used in tandem with MOS scoring to verify audio quality.
 The filename provided must exist in the FreeSWITCH sounds directory such
 that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
 valid wave file.
 '''
 timer = utils.Timer()

 def prepost(
 self,
 client,
 filename='ivr-founder_of_freesource.wav',
 category='ivr',
 clip_length=4.25, # measured empirically for the clip above
 sample_rate=8000,
 iterations=1, # number of times the speech clip will be played
 callback=None,
 rec_period=5.0, # in seconds (i.e. 1 recording per period)
 rec_stereo=False,
):
 self.filename = filename
 self.category = category
 self.framerate = sample_rate
 self.clip_length = clip_length
 if callback:
 assert inspect.isfunction(callback), 'callback must be a function'
 assert len(inspect.getargspec(callback)[0]) == 1
 self.callback = callback
 self.rec_period = rec_period
 self.stereo = rec_stereo
 self.log = utils.get_logger(self.__class__.__name__)
 self.silence = 'silence_stream://0' # infinite silence stream
 self.iterations = iterations
 self.tail = 1.0

 # slave specific
 soundsdir = client.cmd('global_getvar sounds_dir')
 self.soundsprefix = client.cmd('global_getvar sound_prefix')
 # older FS versions don't return the deep path
 if soundsdir == self.soundsprefix:
 self.soundsprefix = '/'.join((self.soundsprefix, 'en/us/callie'))

 self.recsdir = client.cmd('global_getvar recordings_dir')
 self.audiofile = '{}/{}/{}/{}'.format(
 self.soundsprefix, self.category, self.framerate, self.filename)
 self.call2recs = OrderedDict()
 self.host = client.host

 # self.stats = OrderedDict()

 def __setduration__(self, value):
 """Called when an originator changes it's `duration` attribute
 """
 if value == float('inf'):
 self.iterations, self.tail = value, 1.0
 else:
 self.iterations, self.tail = divmod(value, self.clip_length)
 if self.tail < 1.0:
 self.tail = 1.0

 @event_callback("CHANNEL_PARK")
 def on_park(self, sess):
 if sess.is_inbound():
 sess.answer()

 @event_callback("CHANNEL_ANSWER")
 def on_answer(self, sess):
 call = sess.call
 if sess.is_inbound():
 # rec the callee stream
 elapsed = self.timer.elapsed()
 if elapsed >= self.rec_period:
 filename = '{}/callee_{}.wav'.format(self.recsdir, sess.uuid)
 sess.start_record(filename, stereo=self.stereo)
 self.call2recs.setdefault(call.uuid, {})['callee'] = filename
 call.vars['record'] = True
 # mark all rec calls to NOT be hung up automatically
 # (see the `Originator`'s bj callback)
 call.vars['noautohangup'] = True
 self.timer.reset()

 # set call length
 call.vars['iterations'] = self.iterations
 call.vars['tail'] = self.tail

 if sess.is_outbound():
 if call.vars.get('record'): # call is already recording
 # rec the caller stream
 filename = '{}/caller_{}.wav'.format(self.recsdir, sess.uuid)
 sess.start_record(filename, stereo=self.stereo)
 self.call2recs.setdefault(call.uuid, {})['caller'] = filename
 else:
 self.trigger_playback(sess)

 # always enable a jitter buffer
 # sess.broadcast('jitterbuffer::60')

 @event_callback("PLAYBACK_START")
 def on_play(self, sess):
 fp = sess['Playback-File-Path']
 self.log.debug("Playing file '{}' for session '{}'"
 .format(fp, sess.uuid))

 self.log.debug("fp is '{}'".format(fp))
 if fp == self.audiofile:
 sess.vars['clip'] = 'signal'
 elif fp == self.silence:
 # if playing silence tell the peer to start playing a signal
 sess.vars['clip'] = 'silence'
 peer = sess.call.get_peer(sess)
 if peer: # may have already been hungup
 peer.breakmedia()
 peer.playback(self.audiofile)

 @event_callback("PLAYBACK_STOP")
 def on_stop(self, sess):
 '''On stop either trigger a new playing of the signal if more
 iterations are required or hangup the call.
 If the current call is being recorded schedule the recordings to stop
 and expect downstream callbacks to schedule call teardown.
 '''
 self.log.debug("Finished playing '{}' for session '{}'".format(
 sess['Playback-File-Path'], sess.uuid))
 if sess.vars['clip'] == 'signal':
 vars = sess.call.vars
 vars['playback_count'] += 1

 if vars['playback_count'] < vars['iterations']:
 sess.playback(self.silence)
 else:
 # no more clips are expected to play
 if vars.get('record'): # stop recording both ends
 tail = vars['tail']
 sess.stop_record(delay=tail)
 peer = sess.call.get_peer(sess)
 if peer: # may have already been hungup
 # infinite silence must be manually killed
 peer.breakmedia()
 peer.stop_record(delay=tail)
 else:
 # hangup calls not being recorded immediately
 self.log.debug("sending hangup for session '{}'"
 .format(sess.uuid))
 if not sess.hungup:
 sess.sched_hangup(0.5) # delay hangup slightly

 def trigger_playback(self, sess):
 '''Trigger clip playback on the given session by doing the following:
 - Start playing a silence stream on the peer session
 - This will in turn trigger a speech playback on this session in the
 "PLAYBACK_START" callback
 '''
 peer = sess.call.get_peer(sess)
 peer.playback(self.silence) # play infinite silence
 peer.vars['clip'] = 'silence'
 # start counting number of clips played
 sess.call.vars['playback_count'] = 0

 @event_callback("RECORD_START")
 def on_rec(self, sess):
 self.log.debug("Recording file '{}' for session '{}'".format(
 sess['Record-File-Path'], sess.uuid)
)
 # mark this session as "currently recording"
 sess.vars['recorded'] = False
 # sess.setvar('timer_name', 'soft')

 # start signal playback on the caller
 if sess.is_outbound():
 self.trigger_playback(sess)

 @event_callback("RECORD_STOP")
 def on_recstop(self, sess):
 self.log.debug("Finished recording file '{}' for session '{}'".format(
 sess['Record-File-Path'], sess.uuid))
 # mark as recorded so user can block with `EventListener.waitfor`
 sess.vars['recorded'] = True
 if sess.hungup:
 self.log.warn(
 "sess '{}' was already hungup prior to recording completion?"
 .format(sess.uuid))

 # if sess.call.vars.get('record'):
 # self.stats[sess.uuid] = sess.con.api(
 # 'json {{"command": "mediaStats", "data": {{"uuid": "{0}"}}}}'
 # .format(sess.uuid)
 #).getBody()

 # if the far end has finished recording then hangup the call
 if sess.call.get_peer(sess).vars.get('recorded', True):
 self.log.debug("sending hangup for session '{}'".format(sess.uuid))
 if not sess.hungup:
 sess.sched_hangup(0.5) # delay hangup slightly
 recs = self.call2recs[sess.call.uuid]

 # invoke callback for each recording
 if self.callback:
 self.callback(
 RecInfo(self.host, recs['caller'], recs['callee'])
)

For further examples check out the apps
sub-package which also includes the very notorious
switchy.apps.call_gen.Originator.

	[1]	Although this may change in the future with the introduction of native
asyncio [https://docs.python.org/3/library/asyncio.html] coroutines in Python 3.5.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

Building a cluster service

switchy supports building full fledged routing systems just like you can
with FreeSWITCH‘s XML dialplan [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan] but with the added benefit that you
can use a centralized “dialplan” to control a FreeSWITCH process cluster.

This means call control logic can reside in one (or more) switchy process(es)
running on a separate server allowing you to separate the brains and
logic from the muscle and functionality when designing a scalable
FreeSWITCH service system.

A service is very easy to create given a set of deployed
Freeswitch processes:

from switchy import Service, event_callback

class Proxier(object):
 """Proxy all inbound calls to the destination specified in the SIP
 Request-URI.
 """
 @event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.bridge(dest_url="${sip_req_uri}")

s = Service(['FS_host1.com', 'FS_host2.com', 'FS_host3.com'])
s.apps.load_app(Proxier, app_id='default')
s.run() # blocks forever

In this example all three of our FreeSWITCH servers load a Proxier
app which simply bridges calls to the destination requested in
the SIP Request-URI header. The app_id=’default’ kwarg is required to tell
the internal event loop that this app should be used as the default (i.e. when
no other app has consumed the event/session for processing).

Flask-like routing

Using the Router app we
can define a routing system reminiscent of flask [http://flask.pocoo.org/docs/0.11/quickstart/#routing].

Let’s start with an example of blocking certain codes [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example16:Blockcertaincodes]:

from switchy.apps.routers import Router

router = Router(guards={
 'Call-Direction': 'inbound',
 'variable_sofia_profile': 'external'})

@router.route('00(.*)|011(.*)', response='407')
def reject_international(sess, match, router, response):
 sess.respond(response)
 sess.hangup()

There’s a few things going on here:

	A Router is created with a guard
dict which determines strict constraints on event headers which
must be matched exactly for the Router to invoke registered
(via @route) functions.

	We decorate a function, reject_international, which registers it to be
invoked whenever an international number is dialed and will block such numbers
with a SIP 407 response code.

	The first 3 arguments to reject_international are required,
namely, sess, match, and router and correspond to the
Session, re.MatchObject [https://docs.python.org/3/library/re.html#match-objects], and
Router respectively.

In summmary, we can define patterns which must be matched against
event headers [https://freeswitch.org/confluence/display/FREESWITCH/Event+List] before a particular route function will be invoked.

The signature for Router.route which comes from
PatternCaller is:

	
@route(pattern, field=None, kwargs)

	

and works by taking in a regex pattern, an optional field (default
is 'Caller-Destination-Number') and kwargs.
The pattern must be matched against the field event header in order for
the route to be called with kwargs (i.e. reject_international(**kwargs)).

Let’s extend our example to include some routes which bridge [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+bridge] differently
based on the default 'Caller-Destination-Number' event header:

from switchy.apps.routers import Router

router = Router({'Call-Direction': 'inbound'})

@router.route('00(.*)|011(.*)', response='407')
@router.route('1(.*)', gateway='long_distance_trunk')
@router.route('2[1-9]{3}$', out_profile='internal', proxy='salespbx.com')
@router.route('4[1-9]{3}$', out_profile='internal', proxy='supportpbx.com')
def bridge2dest(sess, match, router, out_profile=None, gateway=None,
 proxy=None, response=None):
 if response:
 sess.log.warn("Rejecting international call to {}".format(
 sess['Caller-Destination-Number']))
 sess.respond(response)
 sess.hangup()

 sess.bridge(
 # bridge back out the same profile if not specified
 # (the default action taken by bridge)
 profile=out_profile,
 gateway=gateway,
 # always use the SIP Request-URI
 dest_url=sess['variable_sip_req_uri'],
 proxy=proxy,
)

Which defines that:

	all international calls will be blocked.

	any inbound calls prefixed with 1 will be bridged to our long distance provider.

	all 2xxx dialed numbers will be directed to the sales PBX.

	all 4xxx dialed numbers will be directed to the support PBX.

Notice that we can parameterize the inputs to the routing function
using kwargs [https://docs.python.org/3/tutorial/controlflow.html#keyword-arguments]. This lets you specify data inputs you’d like used when
a particular field matches. If not provided, sensible defaults can be
specified in the function signature.

Also note that the idea of transferring to a context [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example9:RoutingDIDtoanextension] becomes a simple function call:

@router.route("^(XXXxxxxxxx)$")
def test_did(sess, match, router):
 # call our route function from above
 return bridge2dest(sess, match, router, profile='external')

Just as before, we can run our router as a service and use a
single “dialplan” for all nodes in our FreeSWITCH cluster:

s = Service(['FS_host1.com', 'FS_host2.com', 'FS_host3.com'])
s.apps.load_app(router, app_id='default')
s.run() # blocks forever

Note

If you’d like to try out switchy routes alongside your existing
XML dialplan (assuming you’ve added the park only
context in your existing config) you can either pass in
{"Caller-Context": "switchy"} as a guard or you can load
the router with:

s.apps.load_app(router, app_id='switchy', header='Caller-Context')

Replicating XML dialplan features

The main difference with using switchy for call control is that
everything is processed at runtime as opposed to having separate parse
and execute phases.

Retrieving Variables

Accessing variable [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-AccessingVariables] values from FreeSWITCH is already built into
switchy‘s Session API using traditional getitem [https://docs.python.org/3/reference/datamodel.html#object.__getitem__] access.

Basic Logic

As a first note, you can accomplish any “logical” field pattern match
either directly in Python or by the regex expression to Router.route:

Here is the equivalent of the logical AND [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example2:LogicalAND] example:

from datetime import datetime

@router.route('^500$')
def on_sunday(sess, match, router, profile='internal', did='500'):
 """On Sunday no one works in support...
 """
 did = '531' if datetime.today().weekday() == 6 else did
 sess.bridge('{}@example.com'.format(did), profile=profile)

And the same for logical OR [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Example3:LogicalOR] example:

import re

by regex
@router.route('^500$|^502$')
def either_ext(sess, match, router):
 sess.answer()
 sess.playback('ivr/ivr-welcome_to_freeswitch.wav')

by if statement
@router.route('^.*$')
def match(sess, match, router):
 if re.match("^Michael\s*S?\s*Collins", sess['variable_caller_id_name']) or\
 re.match("^1001|3757|2816$", sess['variable_caller_id_number']):
 sess.playback("ivr/ivr-dude_you_rock.wav")
 else:
 sess.playback("ivr/ivr-dude_you_suck.wav")

Nesting logic

Nested conditions [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-NestedConditions] Can be easily accomplished using plain old if statements [https://docs.python.org/3/tutorial/controlflow.html#if-statements]:

@router.route('^1.*(\d)$')
def play_wavfile(sess, match, router):
 # get the last digit
 last_digit = match.groups()[0]

 # only play the extra file when last digit is '3'
 if last_digit == '3':
 sess.playback('foo.wav')

 # always played if the first digit is '1'
 sess.playback('bar.wav')

Break on true

Halting all further route execution (known as break on true [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-break=”on-true”]) can be done
by raising a special error:

@router.route('^1.*(\d)$')
def play_wavfile(sess, match, router):
 sess.playback('foo.wav')

 if not sess['Caller-Destination-Number'] == "1100":
 raise router.StopRouting # stop all further routing

Record a random sampling of call center agents

Here’s an example of randomly recording call-center agents who block
their outbound CID:

import random

@router.route('^*67(\d+)$')
def block_cid(sess, match, router):
 did = match.groups()[0]

 if sess.is_outbound():
 # mask CID
 sess.broadcast('privacy::full')
 sess.setvars({'privacy': 'yes', 'sip_h_Privacy': 'id'})

 if random.randint(1, 6) == 4:
 sess.log.debug("recording a sneaky agent to /tmp/agents/")
 sess.start_record('/tmp/agents/{}_to_{}.wav'.format(sess.uuid, did))

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

Call generation and stress testing

Switchy contains a built in auto-dialer which enables you to drive
multiple FreeSWITCH processes as a call generator cluster.

Once you have a set of servers deployed, have started
FreeSWITCH processes on each and have configured ESL to listen
on the default 8021 port, simply load the originator app passing in
a sequence of slave server host names:

>>> from switchy import get_originator
>>> originator = get_originator(['hostnameA', 'hostnameB', 'hostnameC'])
>>> originator
<Originator: '0' active calls, state=[INITIAL], rate=30 limit=1
max_sessions=inf duration=10.03>

Note

If using ESL ports different then the default 8021, simply pass
a sequence of (host, port) socket pairs to the
get_originator factory.

Now we have a binding to an Originator
instance which is a non-blocking Switchy application allowing us
to originate calls from our FreeSWITCH cluster.

Notice the load settings such as rate, limit and duration shown in the
output of the originator’s __repr__() method. These parameters
determine the type of traffic which will be originated from the cluster
to your target software under test (SUT) and downstream callee systems.

In order to ensure that calls are made successfully it is recommended that
the SUT system loop calls back to the originating server’s
caller. This allows switchy to associate outbound and inbound SIP sessions
into calls. As an example if the called system is another FreeSWITCH server under
test then you can configure a proxy dialplan.

A single call generator

For simplicity’s sake let’s assume for now that we only wish to use
one FreeSWITCH process as a call generator. This simplifies the following steps
which otherwise require the more advanced switchy.distribute module’s
cluster helper components for orchestration and config of call routing.
That is, assume for now we only passed ‘vm-host’ to the originator factory
function above.

To ensure all systems in your test environment are configured correctly
try launching a single call (by keeping limit=1) and verify that it connects
and stays active:

>>> originator.start()
Feb 24 12:59:14 [ERROR] switchy.Originator@['vm-host'] call_gen.py:363 : 'MainProcess' failed with:
Traceback (most recent call last):
 File "sangoma/switchy/apps/call_gen.py", line 333, in _serve_forever
 "you must first set an originate command")
ConfigurationError: you must first set an originate command

Before we can start generating calls we must set the command which will be used by the
application when instructing each slave to originate a call.

Note

The error above was not raised as a Python exception but instead just printed to
the screen to avoid terminating the event processing loop in the
switchy.observe.EventListener.

Let’s set an originate command which will call our SUT
as it’s first hop with a destination of ourselves using the default
external profile and the FreeSWITCH built in park application for
the outbound session’s post-connect execution:

>>> originator.pool.clients[0].set_orig_cmd(
 dest_url='doggy@hostnameA:5080,
 profile='external',
 app_name='park',
 proxy='doggy@intermediary_hostname:5060',
)
>>> originator.originate_cmd # show the rendered command str
['originate {{originator_codec=PCMU,switchy_client={app_id},
originate_caller_id_name=Mr_Switchy,originate_timeout=60,absolute_codec_string=,
sip_h_X-originating_session_uuid={uuid_str},sip_h_X-switchy_client={app_id},
origination_uuid={uuid_str}}}sofia/external/doggy@hostnameA:5060;
fs_path=sip:goodboy@intermediary_hostname:5060 &park()']

The underlying originate [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-originate] command has now been
set for the first client in the Orignator app’s client pool. You might
notice that the command is a format string which has some
placeholder variables set. It is the job of the switchy.observe.Client
to fill in these values at runtime (i.e. when the switchy.observe.Client.originate() is called).
For more info on the originate cmd wrapper see build_originate_cmd().
Also see the Internals tutorial.

Try starting again:

>>> originator.start()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "switchy/apps/call_gen.py", line 479, in start
 raise utils.ConfigurationError("No apps have been loaded")
switchy.utils.ConfigurationError: No apps have been loaded

We need to explicitly load a switchy app which will be
used to process originated (and possibly received) calls. For stress
testing the switchy.apps.bert.Bert app is recommended as it
performs a stringent audio check alongside a traditional call flow using
mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert]:

>>> from switchy.apps.bert import Bert
>>> originator.load_app(Bert)

Note

The Originator actually supports loading multiple (groups of) apps
with different weights such that you can execute multiple call
flows in parallel. This can be useful for simulating auto-dialer traffic:

>>> from switchy.apps.blockers import CalleeRingback, CalleeBlockOnInvite
>>> originator.load_app(CalleeRingback, ppkwargs={'caller_hup_after': 5, 'ring_response': 'ring_ready'}, weight=33)
>>> originator.load_app(CalleeBlockonInvite, ppkwargs={'response': 404}, weight=33)
>>> originator.load_app(Bert, weight=34)

Try starting once more:

>>> originator.start()
Feb 24 14:12:35 [INFO] switchy.Originator@['vm-host'] call_gen.py:395 : starting loop thread
Feb 24 14:12:35 [INFO] switchy.Originator@['vm-host'] call_gen.py:376 : State Change: 'INITIAL' -> 'ORIGINATING'

At this point there should be one active call from your caller (bridged) through the
SUT and then received by the callee. You can check the Originator status
via it’s __repr__() again:

>>> originator
<Originator: '1' active calls, state=[ORIGINATING], rate=30 limit=1 max_sessions=inf duration=10.0333333333>

Warning

If you start seeing immediate errors such as:

Feb 24 14:12:35 [ERROR] switchy.EventListener@vm-host observe.py:730 : Job '16f6313e-bc59-11e4-8b27-1b3a3a6a886d' corresponding to session '16f8964a-bc59-11e4-9c96-74d02bc595d7' failed with:
-ERR NORMAL_TEMPORARY_FAILURE

it may mean your callee isn’t configured correctly. Stop the Originator and Check the FreeSWITCH slave’s logs to debug.

The Originator will keep offering new calls indefinitely with duration seconds
allowing up to limit‘s (in erlangs) worth of concurrent calls until stopped.
That is, continuous load is offered until you either stop or hupall calls.
You can verify this by ssh-ing to the slave and calling the status
command from fs_cli [https://freeswitch.org/confluence/display/FREESWITCH/Command-Line+Interface+fs_cli].

You can now increase the call load parameters:

>>> originator.rate = 50 # increase the call rate
>>> originator.limit = 1000 # increase max concurrent call limit (erlangs)
wait approx. 3 seconds
>>> originator
<Originator: '148' active calls, state=[INITIAL], rate=50 limit=1000 max_sessions=inf duration=30.0>

Note how the duration attribute was changed automatically. This is
because the Originator computes the correct average call-holding time
by the most basic erlang formula [http://en.wikipedia.org/wiki/Erlang_%28unit%29#Traffic_measurements_of_a_telephone_circuit]. Feel free to modify the load parameters
in real-time as you please to suit your load test requirements.

To tear down calls you can use one of stop() or
hupall(). The former will simply stop the burst
loop and let calls slowly teardown as per the duration attr whereas the latter will forcefully
abort all calls associated with a given Client:

>>> originator.hupall()
Feb 24 16:37:16 [WARNING] switchy.Originator@['vm-host'] call_gen.py:425 : Stopping all calls with hupall!
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:376 : State Change: 'ORIGINATING' -> 'STOPPED'
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:357 : stopping burst loop...
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:326 : Waiting for start command...
Feb 24 16:37:16 [ERROR] switchy.EventListener@vm-host observe.py:730 : Job '4d8823c4-bc6d-11e4-af92-1b3a3a6a886d' corresponding to session '4d837b3a-bc6d-11e4-9c2e-74d02bc595d7' failed with:
-ERR NORMAL_CLEARING
Feb 24 16:37:16 [ERROR] switchy.EventListener@vm-host observe.py:730 : Job '4d8f509a-bc6d-11e4-afa3-1b3a3a6a886d' corresponding to session '4d8aacb6-bc6d-11e4-9c2e-74d02bc595d7' failed with:
-ERR NORMAL_CLEARING
Feb 24 16:37:16 [INFO] switchy.Originator@['vm-host'] call_gen.py:231 : all sessions have ended...

When hupall-ing, a couple NORMAL_CLEARING errors are totally normal.

Slave cluster

In order to deploy call generation clusters some slightly more advanced
configuration steps are required to properly provision the
switchy.apps.call_gen.Originator. As mentioned previous,
this involves use of handy cluster helper components provided with
Switchy.

The main trick is to configure each switchy.observe.Client to have
the appropriate originate command set such that calls are routed to
where you expect. A clever and succint way to accomplish this is by
using the switchy.distribute.SlavePool. Luckily the
Originator app is built with one internally by default.

Configuration can now be done with something like:

originator.pool.evals(
 ("""client.set_orig_cmd('park@{}:5080'.format(client.server),
 app_name='park',
 proxy='doggy@{}:5060'.format(ip_addr))"""),
 ip_addr='intermediary_hostname.some.domain'
)

This will result in each slave calling itself through the intermediary
system. The pool.evals method essentially allows you to invoke
arbitrary Python expressions across all slaves in the cluster.

For more details see Cluster tooling .

Measurement collection

By default, the Originator collects call detail records using the built-in
CDR app. Given that you have pandas [http://pandas.pydata.org/pandas-docs/stable/] installed this data and
additional stress testing metrics can be accessed in pandas DataFrames [http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe] via the
switchy.apps.call_gen.Originator.measurers object:

>>> orig.measurers.stores.CDR
 switchy_app hangup_cause caller_create caller_answer caller_req_originate caller_originate caller_hangup job_launch callee_create callee_answer callee_hangup failed_calls active_sessions erlangs
0 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 8 4
1 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 12 6
2 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 22 11
3 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 6 3
...
1056 Bert NORMAL_CLEARING 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 1.463601e+09 0 1992 996

>>> originator.measurers.ops.call_metrics
 active_sessions answer_latency avg_call_rate call_duration \
0 8 0.020000 NaN 20.880000
1 12 0.020000 NaN 20.820000
2 22 0.020000 NaN 20.660000
3 2 0.020000 NaN 20.980000
...

 call_rate call_setup_latency erlangs failed_calls \
0 25.000024 0.060000 4 0
1 49.999452 0.060000 6 0
2 50.000048 0.060000 11 0
3 NaN 0.120000 1 0
...

If you have matplotlib [http://matplotlib.org/] installed you can also plot the results using
Originator.measurers.plot().

If you do not have have pandas installed then the CDR records are
still stored in a local csv file and can be read into a list of lists
using the same orig.measurers.stores.CDR attribute.

More to come...

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Building a cluster service

Call Applications

switchy supports writing and composing call control applications written in
pure Python. An app is simply a namespace [https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces] which defines a set of event
callbacks [1].

Apps are somewhat analogous to extensions [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Extensions] in FreeSWITCH‘s
XML dialplan [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan] interface and can similarly be activated using any
event header [https://freeswitch.org/confluence/display/FREESWITCH/Event+List#EventList-Eventfields] or channel variable [https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables] value of your choosing.
Callbacks are invoked based on the recieved event type [https://freeswitch.org/confluence/display/FREESWITCH/Event+List].

Apps can be implemented each as a standalone Python namespace [https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces] which can
hold state and be mutated at runtime. This allows for all sorts of dynamic call
processing logic. Apps can also be shared across a FreeSWITCH process cluster
allowing for centralized call processing overtop a scalable service system.

Applications are loaded either using a Client
or, in the case of an switchy cluster Service, an
AppManager instance.

API

Apps are usually implemented as plain old Python classes [https://docs.python.org/3/tutorial/classes.html#a-first-look-at-classes] which contain
methods decorated using the switchy.marks module.

Currently the marks supported would be one of:

@event_callback("EVENT_NAME")
@handler("EVENT_NAME")

Where EVENT_NAME is any of the strings supported by the ESL event type [https://freeswitch.org/confluence/display/FREESWITCH/Event+List]
list.

Additionally, app types can support a prepost() callable which serves
as a setup/teardown fixture mechanism for the app to do pre/post app loading
execution. It can be either of a function or generator.

Note

For examples using prepost() see the extensive set of built-in
apps under switchy.apps.

Event Callbacks

event_callbacks are methods which typically receive a type from
switchy.models as their first (and only) argument. This
type is most often a Session.

Note

Technically the method will receive whatever is returned as the 2nd
value from the preceeding event handler looked up in the event
processing loop, but this is an implementation detail and may change
in the future.

Here is a simple callback which counts the number of answered sessions in
a global:

import switchy

num_calls = 0

@switchy.event_callback('CHANNEL_ANSWER')
def counter(session):
 global num_calls
 num_calls += 1

Note

This is meant to be a simple example and not actually
implemented for practical use.
switchy.observe.EventListener.count_calls() exists
for this very purpose.

Event Handlers

An event handler is any callable marked by handler() which
is expected to handle a received ESLEvent object and process it within the
EventListener event loop. It’s function signature
should expect a single argument, that being the received event.

Example handlers can be found in the EventListener
such as the default CHANNEL_ANSWER handler

 def _handle_answer(self, e):
 '''Handle answer events

 Returns

 sess : session instance corresponding to uuid
 '''
 uuid = e.getHeader('Unique-ID')
 sess = self.sessions.get(uuid, None)
 if sess:
 self.log.debug('answered session {} with call direction {}'
 .format(uuid, e.getHeader('Call-Direction')))
 sess.answered = True
 self.total_answered_sessions += 1
 sess.update(e)
 return True, sess
 else:
 self.log.warn('Skipping answer of {}'.format(uuid))
 return False, None

As you can see a knowledge of the underlying ESL SWIG python
package [https://freeswitch.org/confluence/display/FREESWITCH/Python+ESL] usually is required for handler implementations.

Examples

TonePlay

As a first example here is the TonePlay
app which is provided as a built-in for Switchy

class TonePlay(object):
 """Play a 'milli-watt' tone on the outbound leg and echo it back
 on the inbound
 """
 @event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.answer()

 @event_callback("CHANNEL_ANSWER")
 def on_answer(self, sess):
 # inbound leg simply echos back the tone
 if sess.is_inbound():
 sess.echo()

 # play infinite tones on calling leg
 if sess.is_outbound():
 sess.broadcast('playback::{loops=-1}tone_stream://%(251,0,1004)')

Clients who load this app will originate
calls wherein a simple tone is played infinitely and echoed back to
the caller until each call is hung up.

Proxier

An example of the proxy dialplan can be
implemented quite trivially:

import switchy

class Proxier(object):
 @switchy.event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.bridge(dest_url="${sip_req_user}@${sip_req_host}:${sip_req_port}")

CDR

The measurement application used by the
Originator to gather stress testing
performance metrics from call detail records:

class CDR(object):
 """Collect call detail record info including call oriented event time
 stamps and and active sessions data which can be used for per call metrics
 computations.
 """
 fields = [
 ('switchy_app', 'S50'),
 ('hangup_cause', 'S50'),
 ('caller_create', 'float64'),
 ('caller_answer', 'float64'),
 ('caller_req_originate', 'float64'),
 ('caller_originate', 'float64'),
 ('caller_hangup', 'float64'),
 ('job_launch', 'float64'),
 ('callee_create', 'float64'),
 ('callee_answer', 'float64'),
 ('callee_hangup', 'float64'),
 ('failed_calls', 'uint32'),
 ('active_sessions', 'uint32'),
 ('erlangs', 'uint32'),
]

 operators = {
 'call_metrics': call_metrics,
 # 'call_types': call_types,
 # 'hcm': hcm,
 }

 def __init__(self):
 self.log = utils.get_logger(__name__)
 self._call_counter = itertools.count(0)

 def new_storer(self):
 return DataStorer(self.__class__.__name__, dtype=self.fields)

 def prepost(self, listener, storer=None, pool=None, orig=None):
 self.listener = listener
 self.orig = orig
 # create our own storer if we're not loaded as a `Measurer`
 self._ds = storer if storer else self.new_storer()
 self.pool = weakref.proxy(pool) if pool else self.listener

 @property
 def storer(self):
 return self._ds

 @event_callback('CHANNEL_CREATE')
 def on_create(self, sess):
 """Store total (cluster) session count at channel create time
 """
 call_vars = sess.call.vars
 # call number tracking
 if not call_vars.get('call_index', None):
 call_vars['call_index'] = next(self._call_counter)
 # capture the current erlangs / call count
 call_vars['session_count'] = self.pool.count_sessions()
 call_vars['erlangs'] = self.pool.count_calls()

 @event_callback('CHANNEL_ORIGINATE')
 def on_originate(self, sess):
 # store local time stamp for originate
 sess.times['originate'] = sess.time
 sess.times['req_originate'] = time.time()

 @event_callback('CHANNEL_ANSWER')
 def on_answer(self, sess):
 sess.times['answer'] = sess.time

 @event_callback('CHANNEL_HANGUP')
 def log_stats(self, sess, job):
 """Append measurement data only once per call
 """
 sess.times['hangup'] = sess.time
 call = sess.call

 if call.sessions: # still session(s) remaining to be hungup
 call.caller = call.first
 call.callee = call.last
 if job:
 call.job = job
 return # stop now since more sessions are expected to hangup

 # all other sessions have been hungup so store all measurements
 caller = getattr(call, 'caller', None)
 if not caller:
 # most likely only one leg was established and the call failed
 # (i.e. call.caller was never assigned above)
 caller = sess

 callertimes = caller.times
 callee = getattr(call, 'callee', None)
 calleetimes = callee.times if callee else None

 pool = self.pool
 job = getattr(call, 'job', None)
 # NOTE: the entries here correspond to the listed `CDR.fields`
 rollover = self._ds.append_row((
 caller.appname,
 caller['Hangup-Cause'],
 callertimes['create'], # invite time index
 callertimes['answer'],
 callertimes['req_originate'], # local time stamp
 callertimes['originate'],
 callertimes['hangup'],
 # 2nd leg may not be successfully established
 job.launch_time if job else None,
 calleetimes['create'] if callee else None,
 calleetimes['answer'] if callee else None,
 calleetimes['hangup'] if callee else None,
 pool.count_failed(),
 call.vars['session_count'],
 call.vars['erlangs'],
))
 if rollover:
 self.log.debug('wrote data to disk')

It simply inserts the call record data on hangup once for each call.

PlayRec

This more involved application demonstrates FreeSWITCH‘s ability to play
and record rtp streams locally which can be used in tandem with MOS to do
audio quality checking:

class PlayRec(object):
 '''Play a recording to the callee and record it onto the local file system

 This app can be used in tandem with MOS scoring to verify audio quality.
 The filename provided must exist in the FreeSWITCH sounds directory such
 that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
 valid wave file.
 '''
 timer = utils.Timer()

 def prepost(
 self,
 client,
 filename='ivr-founder_of_freesource.wav',
 category='ivr',
 clip_length=4.25, # measured empirically for the clip above
 sample_rate=8000,
 iterations=1, # number of times the speech clip will be played
 callback=None,
 rec_period=5.0, # in seconds (i.e. 1 recording per period)
 rec_stereo=False,
):
 self.filename = filename
 self.category = category
 self.framerate = sample_rate
 self.clip_length = clip_length
 if callback:
 assert inspect.isfunction(callback), 'callback must be a function'
 assert len(inspect.getargspec(callback)[0]) == 1
 self.callback = callback
 self.rec_period = rec_period
 self.stereo = rec_stereo
 self.log = utils.get_logger(self.__class__.__name__)
 self.silence = 'silence_stream://0' # infinite silence stream
 self.iterations = iterations
 self.tail = 1.0

 # slave specific
 soundsdir = client.cmd('global_getvar sounds_dir')
 self.soundsprefix = client.cmd('global_getvar sound_prefix')
 # older FS versions don't return the deep path
 if soundsdir == self.soundsprefix:
 self.soundsprefix = '/'.join((self.soundsprefix, 'en/us/callie'))

 self.recsdir = client.cmd('global_getvar recordings_dir')
 self.audiofile = '{}/{}/{}/{}'.format(
 self.soundsprefix, self.category, self.framerate, self.filename)
 self.call2recs = OrderedDict()
 self.host = client.host

 # self.stats = OrderedDict()

 def __setduration__(self, value):
 """Called when an originator changes it's `duration` attribute
 """
 if value == float('inf'):
 self.iterations, self.tail = value, 1.0
 else:
 self.iterations, self.tail = divmod(value, self.clip_length)
 if self.tail < 1.0:
 self.tail = 1.0

 @event_callback("CHANNEL_PARK")
 def on_park(self, sess):
 if sess.is_inbound():
 sess.answer()

 @event_callback("CHANNEL_ANSWER")
 def on_answer(self, sess):
 call = sess.call
 if sess.is_inbound():
 # rec the callee stream
 elapsed = self.timer.elapsed()
 if elapsed >= self.rec_period:
 filename = '{}/callee_{}.wav'.format(self.recsdir, sess.uuid)
 sess.start_record(filename, stereo=self.stereo)
 self.call2recs.setdefault(call.uuid, {})['callee'] = filename
 call.vars['record'] = True
 # mark all rec calls to NOT be hung up automatically
 # (see the `Originator`'s bj callback)
 call.vars['noautohangup'] = True
 self.timer.reset()

 # set call length
 call.vars['iterations'] = self.iterations
 call.vars['tail'] = self.tail

 if sess.is_outbound():
 if call.vars.get('record'): # call is already recording
 # rec the caller stream
 filename = '{}/caller_{}.wav'.format(self.recsdir, sess.uuid)
 sess.start_record(filename, stereo=self.stereo)
 self.call2recs.setdefault(call.uuid, {})['caller'] = filename
 else:
 self.trigger_playback(sess)

 # always enable a jitter buffer
 # sess.broadcast('jitterbuffer::60')

 @event_callback("PLAYBACK_START")
 def on_play(self, sess):
 fp = sess['Playback-File-Path']
 self.log.debug("Playing file '{}' for session '{}'"
 .format(fp, sess.uuid))

 self.log.debug("fp is '{}'".format(fp))
 if fp == self.audiofile:
 sess.vars['clip'] = 'signal'
 elif fp == self.silence:
 # if playing silence tell the peer to start playing a signal
 sess.vars['clip'] = 'silence'
 peer = sess.call.get_peer(sess)
 if peer: # may have already been hungup
 peer.breakmedia()
 peer.playback(self.audiofile)

 @event_callback("PLAYBACK_STOP")
 def on_stop(self, sess):
 '''On stop either trigger a new playing of the signal if more
 iterations are required or hangup the call.
 If the current call is being recorded schedule the recordings to stop
 and expect downstream callbacks to schedule call teardown.
 '''
 self.log.debug("Finished playing '{}' for session '{}'".format(
 sess['Playback-File-Path'], sess.uuid))
 if sess.vars['clip'] == 'signal':
 vars = sess.call.vars
 vars['playback_count'] += 1

 if vars['playback_count'] < vars['iterations']:
 sess.playback(self.silence)
 else:
 # no more clips are expected to play
 if vars.get('record'): # stop recording both ends
 tail = vars['tail']
 sess.stop_record(delay=tail)
 peer = sess.call.get_peer(sess)
 if peer: # may have already been hungup
 # infinite silence must be manually killed
 peer.breakmedia()
 peer.stop_record(delay=tail)
 else:
 # hangup calls not being recorded immediately
 self.log.debug("sending hangup for session '{}'"
 .format(sess.uuid))
 if not sess.hungup:
 sess.sched_hangup(0.5) # delay hangup slightly

 def trigger_playback(self, sess):
 '''Trigger clip playback on the given session by doing the following:
 - Start playing a silence stream on the peer session
 - This will in turn trigger a speech playback on this session in the
 "PLAYBACK_START" callback
 '''
 peer = sess.call.get_peer(sess)
 peer.playback(self.silence) # play infinite silence
 peer.vars['clip'] = 'silence'
 # start counting number of clips played
 sess.call.vars['playback_count'] = 0

 @event_callback("RECORD_START")
 def on_rec(self, sess):
 self.log.debug("Recording file '{}' for session '{}'".format(
 sess['Record-File-Path'], sess.uuid)
)
 # mark this session as "currently recording"
 sess.vars['recorded'] = False
 # sess.setvar('timer_name', 'soft')

 # start signal playback on the caller
 if sess.is_outbound():
 self.trigger_playback(sess)

 @event_callback("RECORD_STOP")
 def on_recstop(self, sess):
 self.log.debug("Finished recording file '{}' for session '{}'".format(
 sess['Record-File-Path'], sess.uuid))
 # mark as recorded so user can block with `EventListener.waitfor`
 sess.vars['recorded'] = True
 if sess.hungup:
 self.log.warn(
 "sess '{}' was already hungup prior to recording completion?"
 .format(sess.uuid))

 # if sess.call.vars.get('record'):
 # self.stats[sess.uuid] = sess.con.api(
 # 'json {{"command": "mediaStats", "data": {{"uuid": "{0}"}}}}'
 # .format(sess.uuid)
 #).getBody()

 # if the far end has finished recording then hangup the call
 if sess.call.get_peer(sess).vars.get('recorded', True):
 self.log.debug("sending hangup for session '{}'".format(sess.uuid))
 if not sess.hungup:
 sess.sched_hangup(0.5) # delay hangup slightly
 recs = self.call2recs[sess.call.uuid]

 # invoke callback for each recording
 if self.callback:
 self.callback(
 RecInfo(self.host, recs['caller'], recs['callee'])
)

For further examples check out the apps
sub-package which also includes the very notorious
switchy.apps.call_gen.Originator.

	[1]	Although this may change in the future with the introduction of native
asyncio [https://docs.python.org/3/library/asyncio.html] coroutines in Python 3.5.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

Command line

Switchy provides a convenient cli to initiate load tests with the help
of click [http://click.pocoo.org/5/]. The program is installed as binary switchy:

$ switchy
Usage: switchy [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.

Commands:
 list-apps
 plot
 run

A few sub-commands are provided.
For example you can list the applications available (Call Applications determine call flows):

$ switchy list-apps
Collected 5 built-in apps from 7 modules:

switchy.apps.bert:

`Bert`: Call application which runs the bert test application on both legs of a call

 See the docs for `mod_bert`_ and discussion by the author `here`_.

 .. _mod_bert:
 https://freeswitch.org/confluence/display/FREESWITCH/mod_bert
 .. _here:
 https://github.com/moises-silva/freeswitch/issues/1

switchy.apps.players:

`TonePlay`: Play a 'milli-watt' tone on the outbound leg and echo it back on the inbound

`PlayRec`: Play a recording to the callee and record it onto the local file system

 This app can be used in tandem with MOS scoring to verify audio quality.
 The filename provided must exist in the FreeSWITCH sounds directory such that
 ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a valid wave file.

switchy.apps.dtmf:

`DtmfChecker`: Play dtmf tones as defined by the iterable attr `sequence` with tone `duration`.
 Verify the rx sequence matches what was transmitted. For each session which is answered start
 a sequence check. For any session that fails digit matching store it locally in the `failed` attribute.

switchy.apps.routers:

`Bridger`: Bridge sessions within a call an arbitrary number of times.

The applications listed can be used with the app option to the run sub-command.
run is the main sub-command used to start a load test. Here is the help:

$ switchy run --help
Usage: switchy run [OPTIONS] SLAVES...

Options:
 --proxy TEXT Hostname or IP address of the proxy device
 (this is usually the device you are testing)
 [required]
 --profile TEXT Profile to use for outbound calls in the
 load slaves
 --rate TEXT Call rate
 --limit TEXT Maximum number of concurrent calls
 --max-offered TEXT Maximum number of calls to place before
 stopping the program
 --duration TEXT Duration of calls in seconds
 --interactive / --non-interactive
 Whether to jump into an interactive session
 after setting up the call originator
 --debug / --no-debug Whether to enable debugging
 --app TEXT Switchy application to execute (see list-
 apps command to list available apps)
 --metrics-file TEXT Store metrics at the given file location
 --help Show this message and exit.

The SLAVES argument can be one or more IP’s or hostnames for each configured FreeSWITCH process
used to originate traffic. The proxy option is required and must be the IP address or hostname
of the device you are testing. All slaves will direct traffic to the specified proxy.

The other options are not strictly required but typically you will want to at least specify a given call rate
using the rate option, max number of concurrent calls (erlangs) with limit and possibly max number of
calls offered with max-offered.

For example, to start a test using an slave located at 1.1.1.1 to test device at 2.2.2.2 with a maximum of
2000 calls at 30 calls per second and stopping after placing 100,000 calls you can do:

$ switchy run 1.1.1.1 --profile external --proxy 2.2.2.2 --rate 30 --limit 2000 --max-offered 100000

Slave 1.1.1.1 SIP address is at 1.1.1.1:5080
Starting load test for server 2.2.2.2 at 30cps using 1 slaves
...

Note that the profile option is also important and the profile must exist already for all specified slaves.

In this case the call duration would be automatically calculated to sustain that call rate and that max calls
exactly, but you can tweak the call duration in seconds using the duration option.

Additionally you can use the metrics-file option to store call metrics in a file.
You can then use the plot sub-command to generate graphs of the collected data using
matplotlib if installed.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Building a cluster service

Call Applications

switchy supports writing and composing call control applications written in
pure Python. An app is simply a namespace [https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces] which defines a set of event
callbacks [1].

Apps are somewhat analogous to extensions [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-Extensions] in FreeSWITCH‘s
XML dialplan [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan] interface and can similarly be activated using any
event header [https://freeswitch.org/confluence/display/FREESWITCH/Event+List#EventList-Eventfields] or channel variable [https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables] value of your choosing.
Callbacks are invoked based on the recieved event type [https://freeswitch.org/confluence/display/FREESWITCH/Event+List].

Apps can be implemented each as a standalone Python namespace [https://docs.python.org/3/tutorial/classes.html#python-scopes-and-namespaces] which can
hold state and be mutated at runtime. This allows for all sorts of dynamic call
processing logic. Apps can also be shared across a FreeSWITCH process cluster
allowing for centralized call processing overtop a scalable service system.

Applications are loaded either using a Client
or, in the case of an switchy cluster Service, an
AppManager instance.

API

Apps are usually implemented as plain old Python classes [https://docs.python.org/3/tutorial/classes.html#a-first-look-at-classes] which contain
methods decorated using the switchy.marks module.

Currently the marks supported would be one of:

@event_callback("EVENT_NAME")
@handler("EVENT_NAME")

Where EVENT_NAME is any of the strings supported by the ESL event type [https://freeswitch.org/confluence/display/FREESWITCH/Event+List]
list.

Additionally, app types can support a prepost() callable which serves
as a setup/teardown fixture mechanism for the app to do pre/post app loading
execution. It can be either of a function or generator.

Note

For examples using prepost() see the extensive set of built-in
apps under switchy.apps.

Event Callbacks

event_callbacks are methods which typically receive a type from
switchy.models as their first (and only) argument. This
type is most often a Session.

Note

Technically the method will receive whatever is returned as the 2nd
value from the preceeding event handler looked up in the event
processing loop, but this is an implementation detail and may change
in the future.

Here is a simple callback which counts the number of answered sessions in
a global:

import switchy

num_calls = 0

@switchy.event_callback('CHANNEL_ANSWER')
def counter(session):
 global num_calls
 num_calls += 1

Note

This is meant to be a simple example and not actually
implemented for practical use.
switchy.observe.EventListener.count_calls() exists
for this very purpose.

Event Handlers

An event handler is any callable marked by handler() which
is expected to handle a received ESLEvent object and process it within the
EventListener event loop. It’s function signature
should expect a single argument, that being the received event.

Example handlers can be found in the EventListener
such as the default CHANNEL_ANSWER handler

 def _handle_answer(self, e):
 '''Handle answer events

 Returns

 sess : session instance corresponding to uuid
 '''
 uuid = e.getHeader('Unique-ID')
 sess = self.sessions.get(uuid, None)
 if sess:
 self.log.debug('answered session {} with call direction {}'
 .format(uuid, e.getHeader('Call-Direction')))
 sess.answered = True
 self.total_answered_sessions += 1
 sess.update(e)
 return True, sess
 else:
 self.log.warn('Skipping answer of {}'.format(uuid))
 return False, None

As you can see a knowledge of the underlying ESL SWIG python
package [https://freeswitch.org/confluence/display/FREESWITCH/Python+ESL] usually is required for handler implementations.

Examples

TonePlay

As a first example here is the TonePlay
app which is provided as a built-in for Switchy

class TonePlay(object):
 """Play a 'milli-watt' tone on the outbound leg and echo it back
 on the inbound
 """
 @event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.answer()

 @event_callback("CHANNEL_ANSWER")
 def on_answer(self, sess):
 # inbound leg simply echos back the tone
 if sess.is_inbound():
 sess.echo()

 # play infinite tones on calling leg
 if sess.is_outbound():
 sess.broadcast('playback::{loops=-1}tone_stream://%(251,0,1004)')

Clients who load this app will originate
calls wherein a simple tone is played infinitely and echoed back to
the caller until each call is hung up.

Proxier

An example of the proxy dialplan can be
implemented quite trivially:

import switchy

class Proxier(object):
 @switchy.event_callback('CHANNEL_PARK')
 def on_park(self, sess):
 if sess.is_inbound():
 sess.bridge(dest_url="${sip_req_user}@${sip_req_host}:${sip_req_port}")

CDR

The measurement application used by the
Originator to gather stress testing
performance metrics from call detail records:

class CDR(object):
 """Collect call detail record info including call oriented event time
 stamps and and active sessions data which can be used for per call metrics
 computations.
 """
 fields = [
 ('switchy_app', 'S50'),
 ('hangup_cause', 'S50'),
 ('caller_create', 'float64'),
 ('caller_answer', 'float64'),
 ('caller_req_originate', 'float64'),
 ('caller_originate', 'float64'),
 ('caller_hangup', 'float64'),
 ('job_launch', 'float64'),
 ('callee_create', 'float64'),
 ('callee_answer', 'float64'),
 ('callee_hangup', 'float64'),
 ('failed_calls', 'uint32'),
 ('active_sessions', 'uint32'),
 ('erlangs', 'uint32'),
]

 operators = {
 'call_metrics': call_metrics,
 # 'call_types': call_types,
 # 'hcm': hcm,
 }

 def __init__(self):
 self.log = utils.get_logger(__name__)
 self._call_counter = itertools.count(0)

 def new_storer(self):
 return DataStorer(self.__class__.__name__, dtype=self.fields)

 def prepost(self, listener, storer=None, pool=None, orig=None):
 self.listener = listener
 self.orig = orig
 # create our own storer if we're not loaded as a `Measurer`
 self._ds = storer if storer else self.new_storer()
 self.pool = weakref.proxy(pool) if pool else self.listener

 @property
 def storer(self):
 return self._ds

 @event_callback('CHANNEL_CREATE')
 def on_create(self, sess):
 """Store total (cluster) session count at channel create time
 """
 call_vars = sess.call.vars
 # call number tracking
 if not call_vars.get('call_index', None):
 call_vars['call_index'] = next(self._call_counter)
 # capture the current erlangs / call count
 call_vars['session_count'] = self.pool.count_sessions()
 call_vars['erlangs'] = self.pool.count_calls()

 @event_callback('CHANNEL_ORIGINATE')
 def on_originate(self, sess):
 # store local time stamp for originate
 sess.times['originate'] = sess.time
 sess.times['req_originate'] = time.time()

 @event_callback('CHANNEL_ANSWER')
 def on_answer(self, sess):
 sess.times['answer'] = sess.time

 @event_callback('CHANNEL_HANGUP')
 def log_stats(self, sess, job):
 """Append measurement data only once per call
 """
 sess.times['hangup'] = sess.time
 call = sess.call

 if call.sessions: # still session(s) remaining to be hungup
 call.caller = call.first
 call.callee = call.last
 if job:
 call.job = job
 return # stop now since more sessions are expected to hangup

 # all other sessions have been hungup so store all measurements
 caller = getattr(call, 'caller', None)
 if not caller:
 # most likely only one leg was established and the call failed
 # (i.e. call.caller was never assigned above)
 caller = sess

 callertimes = caller.times
 callee = getattr(call, 'callee', None)
 calleetimes = callee.times if callee else None

 pool = self.pool
 job = getattr(call, 'job', None)
 # NOTE: the entries here correspond to the listed `CDR.fields`
 rollover = self._ds.append_row((
 caller.appname,
 caller['Hangup-Cause'],
 callertimes['create'], # invite time index
 callertimes['answer'],
 callertimes['req_originate'], # local time stamp
 callertimes['originate'],
 callertimes['hangup'],
 # 2nd leg may not be successfully established
 job.launch_time if job else None,
 calleetimes['create'] if callee else None,
 calleetimes['answer'] if callee else None,
 calleetimes['hangup'] if callee else None,
 pool.count_failed(),
 call.vars['session_count'],
 call.vars['erlangs'],
))
 if rollover:
 self.log.debug('wrote data to disk')

It simply inserts the call record data on hangup once for each call.

PlayRec

This more involved application demonstrates FreeSWITCH‘s ability to play
and record rtp streams locally which can be used in tandem with MOS to do
audio quality checking:

class PlayRec(object):
 '''Play a recording to the callee and record it onto the local file system

 This app can be used in tandem with MOS scoring to verify audio quality.
 The filename provided must exist in the FreeSWITCH sounds directory such
 that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
 valid wave file.
 '''
 timer = utils.Timer()

 def prepost(
 self,
 client,
 filename='ivr-founder_of_freesource.wav',
 category='ivr',
 clip_length=4.25, # measured empirically for the clip above
 sample_rate=8000,
 iterations=1, # number of times the speech clip will be played
 callback=None,
 rec_period=5.0, # in seconds (i.e. 1 recording per period)
 rec_stereo=False,
):
 self.filename = filename
 self.category = category
 self.framerate = sample_rate
 self.clip_length = clip_length
 if callback:
 assert inspect.isfunction(callback), 'callback must be a function'
 assert len(inspect.getargspec(callback)[0]) == 1
 self.callback = callback
 self.rec_period = rec_period
 self.stereo = rec_stereo
 self.log = utils.get_logger(self.__class__.__name__)
 self.silence = 'silence_stream://0' # infinite silence stream
 self.iterations = iterations
 self.tail = 1.0

 # slave specific
 soundsdir = client.cmd('global_getvar sounds_dir')
 self.soundsprefix = client.cmd('global_getvar sound_prefix')
 # older FS versions don't return the deep path
 if soundsdir == self.soundsprefix:
 self.soundsprefix = '/'.join((self.soundsprefix, 'en/us/callie'))

 self.recsdir = client.cmd('global_getvar recordings_dir')
 self.audiofile = '{}/{}/{}/{}'.format(
 self.soundsprefix, self.category, self.framerate, self.filename)
 self.call2recs = OrderedDict()
 self.host = client.host

 # self.stats = OrderedDict()

 def __setduration__(self, value):
 """Called when an originator changes it's `duration` attribute
 """
 if value == float('inf'):
 self.iterations, self.tail = value, 1.0
 else:
 self.iterations, self.tail = divmod(value, self.clip_length)
 if self.tail < 1.0:
 self.tail = 1.0

 @event_callback("CHANNEL_PARK")
 def on_park(self, sess):
 if sess.is_inbound():
 sess.answer()

 @event_callback("CHANNEL_ANSWER")
 def on_answer(self, sess):
 call = sess.call
 if sess.is_inbound():
 # rec the callee stream
 elapsed = self.timer.elapsed()
 if elapsed >= self.rec_period:
 filename = '{}/callee_{}.wav'.format(self.recsdir, sess.uuid)
 sess.start_record(filename, stereo=self.stereo)
 self.call2recs.setdefault(call.uuid, {})['callee'] = filename
 call.vars['record'] = True
 # mark all rec calls to NOT be hung up automatically
 # (see the `Originator`'s bj callback)
 call.vars['noautohangup'] = True
 self.timer.reset()

 # set call length
 call.vars['iterations'] = self.iterations
 call.vars['tail'] = self.tail

 if sess.is_outbound():
 if call.vars.get('record'): # call is already recording
 # rec the caller stream
 filename = '{}/caller_{}.wav'.format(self.recsdir, sess.uuid)
 sess.start_record(filename, stereo=self.stereo)
 self.call2recs.setdefault(call.uuid, {})['caller'] = filename
 else:
 self.trigger_playback(sess)

 # always enable a jitter buffer
 # sess.broadcast('jitterbuffer::60')

 @event_callback("PLAYBACK_START")
 def on_play(self, sess):
 fp = sess['Playback-File-Path']
 self.log.debug("Playing file '{}' for session '{}'"
 .format(fp, sess.uuid))

 self.log.debug("fp is '{}'".format(fp))
 if fp == self.audiofile:
 sess.vars['clip'] = 'signal'
 elif fp == self.silence:
 # if playing silence tell the peer to start playing a signal
 sess.vars['clip'] = 'silence'
 peer = sess.call.get_peer(sess)
 if peer: # may have already been hungup
 peer.breakmedia()
 peer.playback(self.audiofile)

 @event_callback("PLAYBACK_STOP")
 def on_stop(self, sess):
 '''On stop either trigger a new playing of the signal if more
 iterations are required or hangup the call.
 If the current call is being recorded schedule the recordings to stop
 and expect downstream callbacks to schedule call teardown.
 '''
 self.log.debug("Finished playing '{}' for session '{}'".format(
 sess['Playback-File-Path'], sess.uuid))
 if sess.vars['clip'] == 'signal':
 vars = sess.call.vars
 vars['playback_count'] += 1

 if vars['playback_count'] < vars['iterations']:
 sess.playback(self.silence)
 else:
 # no more clips are expected to play
 if vars.get('record'): # stop recording both ends
 tail = vars['tail']
 sess.stop_record(delay=tail)
 peer = sess.call.get_peer(sess)
 if peer: # may have already been hungup
 # infinite silence must be manually killed
 peer.breakmedia()
 peer.stop_record(delay=tail)
 else:
 # hangup calls not being recorded immediately
 self.log.debug("sending hangup for session '{}'"
 .format(sess.uuid))
 if not sess.hungup:
 sess.sched_hangup(0.5) # delay hangup slightly

 def trigger_playback(self, sess):
 '''Trigger clip playback on the given session by doing the following:
 - Start playing a silence stream on the peer session
 - This will in turn trigger a speech playback on this session in the
 "PLAYBACK_START" callback
 '''
 peer = sess.call.get_peer(sess)
 peer.playback(self.silence) # play infinite silence
 peer.vars['clip'] = 'silence'
 # start counting number of clips played
 sess.call.vars['playback_count'] = 0

 @event_callback("RECORD_START")
 def on_rec(self, sess):
 self.log.debug("Recording file '{}' for session '{}'".format(
 sess['Record-File-Path'], sess.uuid)
)
 # mark this session as "currently recording"
 sess.vars['recorded'] = False
 # sess.setvar('timer_name', 'soft')

 # start signal playback on the caller
 if sess.is_outbound():
 self.trigger_playback(sess)

 @event_callback("RECORD_STOP")
 def on_recstop(self, sess):
 self.log.debug("Finished recording file '{}' for session '{}'".format(
 sess['Record-File-Path'], sess.uuid))
 # mark as recorded so user can block with `EventListener.waitfor`
 sess.vars['recorded'] = True
 if sess.hungup:
 self.log.warn(
 "sess '{}' was already hungup prior to recording completion?"
 .format(sess.uuid))

 # if sess.call.vars.get('record'):
 # self.stats[sess.uuid] = sess.con.api(
 # 'json {{"command": "mediaStats", "data": {{"uuid": "{0}"}}}}'
 # .format(sess.uuid)
 #).getBody()

 # if the far end has finished recording then hangup the call
 if sess.call.get_peer(sess).vars.get('recorded', True):
 self.log.debug("sending hangup for session '{}'".format(sess.uuid))
 if not sess.hungup:
 sess.sched_hangup(0.5) # delay hangup slightly
 recs = self.call2recs[sess.call.uuid]

 # invoke callback for each recording
 if self.callback:
 self.callback(
 RecInfo(self.host, recs['caller'], recs['callee'])
)

For further examples check out the apps
sub-package which also includes the very notorious
switchy.apps.call_gen.Originator.

	[1]	Although this may change in the future with the introduction of native
asyncio [https://docs.python.org/3/library/asyncio.html] coroutines in Python 3.5.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

Session API

switchy wraps FreeSWITCH‘s event header fields [https://freeswitch.org/confluence/display/FREESWITCH/Event+List] and call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands]
inside the switchy.models.Session type.

There is already slew of supported commands and we encourage you to
add any more you might require via a pull request on github [https://github.com/sangoma/switchy].

Accessing FreeSWITCH variables

Every Session instance has access to all it’s latest received event
headers via standard python __getitem__ access:

sess['Caller-Direction']

All chronological event data is kept until a Session is destroyed.
If you’d like to access older state you can use the underlying
Events instance:

access the first value of my_var
sess.events[-1]['variable_my_var']

Note that there are some distinctions to be made between different types
of variable access [https://freeswitch.org/confluence/display/FREESWITCH/XML+Dialplan#XMLDialplan-AccessingVariables] and in particular it would seem that
FreeSWITCH‘s event headers follow the info app names [https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables#ChannelVariables-InfoApplicationVariableNames(variable_xxxx)]:

standard headers require no prefix
sess['FreeSWITCH-IPv6']
sess['Channel-State']
sess['Unique-ID']

channel variables require a 'variable_' prefix
sess['variable_sip_req_uri']
sess['variable_sip_contact_user']
sess['variable_read_codec']
sess['sip_h_X-switchy_app']

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

Internals tutorial

Getting familiar with Switchy’s guts means learning to put the
appropriate components together to generate a call. This simple guide is
meant to provide some commentary surrounding low level components and
interfaces so that you can begin reading the source code.
It is assumed you are already familiar with the prerequisite
deployment steps.

Primary Components

Currently there are 3 main objects in Switchy for driving
FreeSWITCH:

Connection - a thread safe wrapper around the
ESL SWIG python package [https://freeswitch.org/confluence/display/FREESWITCH/Python+ESL]‘s ESLConnection

EventListener - the type that contains the core
event processing loop and logic

	Primarily concerned with observing and tracking the state of
a single FreeSWITCH process

	Normally a one-to-one pairing of listeners to slave processes/servers
is recommended to ensure deterministic control.

	Contains a Connection used mostly for receiving
events only transmitting ESL commands when dictated by Switchy apps

	Client - a client for controlling FreeSWITCH using the ESL inbound method

	
	contains a Connection for direct synchronous commands and
optionally an EventListener for processing asynchronous calls

For this guide we will focus mostly on the latter two since they are the
primary higher level components the rest of the library builds upon.

Using a Client and EventListener pair

A Client can be used for invoking or sending synchronous commands to the
FreeSWITCH process. It handles ESL api calls entirely on it’s own.

To connect simply pass the hostname or ip address of the slave server at
instantiation:

>>> from switchy import Client
>>> client = Client('vm-host')
>>> client.connect() # could have passed the hostname here as well
>>> client.api('status') # call ESL `api` command directly
<ESL.ESLevent; proxy of <Swig Object of type 'ESLevent *' at 0x28c1d10> >

>>> client.cmd('global_getvar local_ip_v4') # `api` wrapper which returns event body content
'10.10.8.21'

>>> client.cmd('not a real command')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "switchy/observe.py", line 1093, in cmd
 return self.api(cmd).getBody().strip()
 File "switchy/observe.py", line 1084, in api
 consumed, response = EventListener._handle_socket_data(event)
 File "switchy/observe.py", line 651, in _handle_socket_data
 raise APIError(body)
switchy.utils.APIError: -ERR not Command not found!

Now let’s initiate a call originating from the slave process’s
caller which is by default the external [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External] sip profile:

>>> client.originate(dest_url='9196@intermediary_hostname:5060')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "switchy/observe.py", line 1177, in originate
 listener = self._assert_alive(listener)
 File "switchy/observe.py", line 1115, in _assert_alive
 assert self.listener, "No listener associated with this client"
 File "switchy/observe.py", line 973, in get_listener
 "No listener has been assigned for this client")
 AttributeError: No listener has been assigned for this client

The Client implements originate by making an asynchronous ESL
bgapi call to the slave process. In order to track the eventual
results of that call, an EventListener must be used which will
collect the state changes triggered by the command (i.e. as received in
event data from the slave process).

With this current architecture you can think of a listener as an object
from which you can track FreeSWITCH state and a client as an interface
which drives the slave process using commands to trigger new state(s).
Again, any time a Client makes an asynchronous call an EventListener is
needed to handle and report back the result(s).

Let’s create and assign an EventListener:

>>> from switchy import get_listener
>>> l = get_listener('vm-host')
>>> l # initially disconnected to allow for unsubcriptions from the default event set
<EventListener [disconnected]>
>>> l.connect()
Feb 25 10:33:05 [INFO] switchy.EventListener@vm-host observe.py:346 : Connected listener 'd2d4ee82-bd02-11e4-8b48-74d02bc595d7' to 'vm-host'
>>> l
<EventListener [connected]>
>>> l.start()
Feb 25 10:35:30 [INFO] switchy.EventListener@vm-host observe.py:287 : starting event loop thread
>>> client.listener = l

Note

Alternatively an EventListener can be passed to the Client at
instatiation time.

Now let’s attempt our originate once more this time executing the 9197
extension once the caller is answered, and calling the echo extension,
9196, at the callee end:

>>> client.originate('9196@vm-host:5080',
 dp_exten=9197,
 proxy='intermediary_hostname:5060'
)
<switchy.models.Job at 0x7feea01c6c90>

>>> client.listener.calls # check the active calls collection
OrderedDict([('72451178-bd0c-11e4-9d26-74d02bc595d7', <Call(72451178-bd0c-11e4-9d26-74d02bc595d7, 2 sessions)>)])

Note

See the default dialplan packaged with stock FreeSWITCH.
Use of these extensions assumes you have assigned the external [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External] sip
profile to use the default dialplan by assigning it’s context parameter

The async originate call returns to us a switchy.models.Job
instance (as would any call to switchy.observe.Client.bgapi()).
A Job provides the same interface as that of the
multiprocessing.pool.AsyncResult [http://docs.python.org/library/multiprocessing.html#multiprocessing.pool.AsyncResult] and can be handled to
completion synchronously:

>>> job = client.originate('9196@vm-host:5080',
 dp_exten=9197,
 proxy='intermediary_hostname:5060
)
>>> job.get(timeout=30) # block up to 30 seconds waiting for result
'4d9b4128-bd0f-11e4-9d26-74d02bc595d7' # the originated session uuid

>>> job.sess_uuid # a special attr which is always reserved for originate results (i.e. session ids)
'4d9b4128-bd0f-11e4-9d26-74d02bc595d7'

>>> client.hupall() # hangup the call

Call control using Switchy apps

To use Switchy at its fullest potential, applications can be
written to process state tracked by the EventListener. The main
benefit is that apps can be written in pure Python somewhat like the
mod_python [https://freeswitch.org/confluence/display/FREESWITCH/mod_python]
module provided with FreeSWITCH. Switchy gives the added benefit that
the Python process does not have to run on the slave machine and in fact
multiple applications can be managed independently of multiple
slave configurations thanks to Switchy’s use of the ESL inbound [https://freeswitch.org/confluence/display/FREESWITCH/mod_event_socket#mod_event_socket-Inbound] method.

App Loading

Switchy apps are loaded using switchy.observe.Client.load_app().
Each app is referenced by it’s appropriate name (if none is provided) which
allows for the appropriate callback lookups to be completed by the EventListener.

We can now accomplish the same tone play steps from above using the
built-in TonePlay app:

>>> from switchy.apps.players import TonePlay
>>> client.load_app(TonePlay)
Feb 25 13:27:43 [INFO] switchy.Client@vm-host observe.py:1020 : Loading call app 'TonePlay'
'fd27be58-bd1b-11e4-b22d-74d02bc595d7' # the app uuid since None provided

>>> client.apps.TonePlay
<switchy.apps.players.TonePlay at 0x7f7c5fdaf650>

>>> isinstance(client.apps.TonePlay, TonePlay) # Loading the app type instantiates it
True

Note

App loading is atomic so if you mess up app implementation you don’t have
to worry that inserted callbacks are left registered with the EventListener

Assuming the Switchy park-only dialplan is used by the
external [https://freeswitch.org/confluence/display/FREESWITCH/Configuring+FreeSWITCH#ConfiguringFreeSWITCH-External] sip profile we can now originate our call again:

>>> job = client.originate('park@vm-host:5080',
 proxy='intermediary_hostname:5060',
 app_id=client.apps.TonePlay.cid
)
>>> job.wait(10) # wait for call to connect
>>> call = client.listener.calls[job.sess_uuid] # look up the call by originating sess uuid
>>> call.hangup()

Example Snippet

As a summary, here is an snippet showing all these steps together:

import time
from switchy import Client, EventListener
from switchy.apps.players import TonePlay

init
listener = EventListener('vm-host')
client = Client('vm-host', listener=listener)
client.connect()
listener.connect()
listener.start()

app load
id = client.load_app(TonePlay)
make a call
job = client.originate(
 dest_url='park@vm-host',
 proxy='intermediary_hostname',
 app_id=id
)
sessid = job.get(30)
assert sessid == job.sess_uuid
hangup
call = client.listener.calls[job.sess_uuid]
orig_sess = call.sessions[0] # get the originating session
time.sleep(10) # let it play a bit
orig_sess.hangup()

Conveniently enough, the boilerplate here
is almost exactly what the active_client()
context manager does internally. An example of usage can be found in
the quickstart guide.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Connection wrappers

ESL connection wrapper

	
class switchy.connection.Connection(host, port='8021', auth='ClueCon', locked=True, lock=None)

	Connection wrapper which can provide mutex attr access making the
underlying ESL.ESLconnection thread safe.

(Note: must be explicitly connected before use.)

	
api(cmd, errcheck=True)

	Invoke esl api command (with error checking by default).
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
cmd(cmd)

	Return the string-body output from invoking a command.

	
connect(host=None, port=None, auth=None)

	Reconnect if disconnected

	
connected()

	Return bool indicating if this connection is active

	
disconnect()

	Rewrap disconnect to avoid deadlocks

	
subscribe(event_types, fmt='plain')

	Subscribe connection to receive events for all names
in event_types

	
switchy.connection.check_con(con)

	Raise a connection error if this connection is down.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Observer components

Observer machinery.

Includes components for observing and controlling FreeSWITCH server state
through event processing and command invocation.

	
class switchy.observe.Client(host='127.0.0.1', port='8021', auth='ClueCon', call_tracking_header=None, listener=None, logger=None)

	Interface for synchronous server control using the esl “inbound method”
as described here:
https://wiki.freeswitch.org/wiki/Mod_event_socket#Inbound

Provides a high level interface for interaction with an event listener.

	
api(cmd, exc=True)

	Invoke esl api command with error checking
Returns an ESL.ESLEvent instance for event type “SOCKET_DATA”.

	
bgapi(cmd, listener=None, callback=None, client_id=None, **jobkwargs)

	Execute a non blocking api call and handle it to completion

	cmd : string

	command to execute

	listener : EvenListener instance

	listener which will handle bg job events for this cmd

	callback : callable

	Object to call once the listener collects the bj event result.
By default the listener calls back the job instance with the
response from the ‘BACKGROUND_JOB’ event’s body content plus any
kwargs passed here.

	
cmd(cmd)

	Return the string-body output from invoking a command

	
connect()

	Connect this client

	
connected()

	Check if connection is active

	
disconnect()

	Disconnect the client’s underlying connection

	
hupall(group_id=None)

	Hangup all calls associated with this client
by iterating all managed call apps and hupall-ing
with the apps callback id. If :var:`group_id` is provided
look up the corresponding app an hang up calls for that
specific app.

	
load_app(ns, on_value=None, header=None, prepend=False, funcargsmap=None, **prepost_kwargs)

	Load annotated callbacks and from a namespace and add them
to this client’s listener’s callback chain.

	Parameters:	ns – A namespace-like object containing functions marked with
@event_callback (can be a module, class or instance).

	Params str on_value:

		app group id key to be used for registering app
callbacks with the EventListener. This value will be inserted in
the originate command as an X-header and used to look up which
app callbacks should be invoked for each received event.

	
originate(dest_url=None, uuid_func=<function uuid>, app_id=None, listener=None, bgapi_kwargs={}, rep_fields={}, **orig_kwargs)

	Originate a call using FreeSWITCH ‘originate’ command.
A non-blocking bgapi call is used by default.

see build_originate_cmd()

	orig_kwargs: additional originate cmd builder kwargs forwarded to

	build_originate_cmd() call

instance of Job a background job

	
set_orig_cmd(*args, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

	
unload_app(on_value, ns=None)

	Unload all callbacks associated with a particular app
on_value id.
If ns is provided unload only the callbacks from that particular
subapp.

	
class switchy.observe.EventListener(host='127.0.0.1', port='8021', auth='ClueCon', session_map=None, bg_jobs=None, rx_con=None, call_tracking_header='variable_call_uuid', app_id_headers=None, autorecon=30, max_limit=inf, _tx_lock=None)

	ESL Listener which tracks FreeSWITCH state using an observer pattern.
This implementation utilizes a background event loop (single thread)
and one Connection.

The main purpose is to enable event oriented state tracking of various
slave process objects and call entities.

	
add_callback(evname, ident, callback, *args, **kwargs)

	Register a callback for events of type evname to be called
with provided args, kwargs when an event is received by this listener.

	evname : string

	name of mod_event event type you wish to subscribe for with the
provided callback

	callback : callable

	callable which will be invoked when events of type evname are
received on this listener’s rx connection

	args, kwargs : initial arguments which will be partially applied to

	callback right now

	
add_handler(evname, handler)

	Register an event handler for events of type evname.
If a handler for evname already exists or if evname is in the
unsubscribe list an error will be raised.

	
bg_jobs

	Background jobs collection

	
block_jobs()

	Block the event loop from processing
background job events (useful for registering for
job events - see self.register_job)

This will block the event loop thread permanently starting on the next
received background job event. Be sure to run ‘unblock_jobs’
immediately after registering your job.

	
connect()

	Connect and initialize all contained esl sockets
(namely self._rx_con and self._tx_con)

	
connected()

	Return a bool representing the aggregate cons status

	
count_calls()

	Count the number of active calls hosted by the slave process

	
count_failed()

	Return the failed session count

	
default_handlers

	The map of default event handlers described by this listener

	
disconnect()

	Shutdown this listener’s bg thread and disconnect all esl sockets.

This method should not be called by the event loop thread or you may
see an indefinite block!

	
epoch

	Time first event was received from server

	
get_id(e, default=None)

	Acquire the client/consumer (app) id for event :var:`e`

	
get_new_con(server=None, port=None, auth=None, register_events=False, **kwargs)

	Return a new esl connection to the specified FS server and optionally
subscribe to any events actively handled by this listener

	server : string

	fs server ip

	port : string

	port to connect on

	auth : string

	authorization username

	register_events : bool

	indicates whether or not the connection should be subscribed
to receive all default events declared by the listener’s
‘default_handlers’ map

kwargs : same as for .connection.Connection

con : Connection

	
ident(host='unknown-host')

	Pretty str repr of connection-like instances.

	
is_alive()

	Return bool indicating if listener is running
(i.e. the background event loop is executing).

	
iter_cons()

	Return an iterator over all attributes of this instance which are
esl connections.

	
lookup_sess(e)

	The most basic handler template which looks up the locally tracked
session corresponding to event e and updates it with event data

	
register_job(event, **kwargs)

	Register for a job to be handled when the appropriate event arrives.
Once an event corresponding to the job is received, the bgjob event
handler will ‘consume’ it and invoke its callback.

	event : ESL.ESLevent

	as returned from an ESLConnection.bgapi call

	kwargs : dict

	same signatures as for Job.__init__

bj : an instance of Job (a background job)

	
remove_callback(evname, ident, callback)

	Remove the callback object registered under
:var:`evname` and :var:`ident`.

	
reset()

	Clear all internal stats and counters

	
start()

	Start this listener’s event loop in a thread to start tracking
the slave-server’s state

	
status()

	Return the status of ESL connections in a dict
A value of True indicates that the connection is active.
Returns map of con names -> connected() bools.

	
unblock_jobs()

	Unblock the event loop from processing
background job events

	
unsubscribe(events)

	Unsubscribe this listener from an events of a cetain type

	events : string or iterable

	name of mod_event event type(s) you wish to unsubscribe from
(FS server will not be told to send you events of this type)

	
uptime

	Uptime in minutes as per last received event time stamp

	
wait(timeout=None)

	Wait until the event loop thread terminates or timeout.

	
waitfor(sess, varname, timeout=None)

	Wait on a boolen variable varname to be set to true for
session sess as read from sess.vars[‘varname’].
This call blocks until the attr is set to True most usually
by a callback.

Do not call this from the event loop thread!

	
switchy.observe.active_client(*args, **kwds)

	A context manager which delivers an active Client containing a started
EventListener with applications loaded that were passed in the apps map

	
switchy.observe.con_repr(self)

	Repr with a [<connection-status>] slapped in

	
switchy.observe.get_listener(host, port='8021', auth='ClueCon', mng=None, mng_init=None, **kwargs)

	Listener factory which can be used to load a local instance or a shared
proxy using multiprocessing.managers

	
switchy.observe.get_pool(contacts, **kwargs)

	Construct and return a slave pool from a sequence of
contact information.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Models

Models representing FreeSWITCH entities

	
class switchy.models.Call(uuid, session)

	A collection of sessions which a compose a call

	
append(sess)

	Append a session to this call and update the ref to the last
recently added session

	
first

	A reference to the session making up the initial leg of this call

	
get_peer(sess)

	Convenience helper which can determine whether sess is one of
first or last and returns the other when the former is true

	
hangup()

	Hangup up this call

	
last

	A reference to the session making up the final leg of this call

	
class switchy.models.Events(event=None)

	Event collection which for most intents and purposes should quack like
a collections.deque. Data lookups are delegated to the internal
deque of events in lilo order.

	
get(key, default=None)

	Return default if not found
Should be faster then handling the key error?

	
pprint(index=0)

	Print serialized event data in chronological order to stdout

	
update(event)

	Append an ESL.ESLEvent

	
class switchy.models.Job(event, sess_uuid=None, callback=None, client_id=None, kwargs={})

	A background job future.
The interface closely matches multiprocessing.pool.AsyncResult.

	Parameters:	
	uuid (str [http://docs.python.org/library/functions.html#str]) – job uuid returned directly by SOCKET_DATA event

	sess_uuid (str [http://docs.python.org/library/functions.html#str]) – optional session uuid if job is associated with an
active FS session

	
fail(resp, *args, **kwargs)

	Fail this job optionally adding an exception for its result

	
get(timeout=None)

	Get the result for this job waiting up to timeout seconds.
Raises TimeoutError on if job does complete within alotted time.

	
ready()

	Return bool indicating whether job has completed

	
result

	The final result

	
successful()

	Return bool determining whether job completed without error

	
update(event)

	Update job state/data using an event

	
wait(timeout=None)

	Wait until job has completed or timeout has expired

	
class switchy.models.Session(event, uuid=None, con=None)

	Session API and state tracking.

	
breakmedia()

	Stop playback of media on this session and move on in the dialplan.

	
bridge(dest_url=None, profile=None, gateway=None, proxy=None, params=None)

	Bridge this session using uuid_broadcast (so async).
By default the current profile is used to bridge to the SIP
Request-URI.

	
broadcast(path, leg='', hangup_cause=None)

	Execute an application on a chosen leg(s) with optional hangup
afterwards.
uuid_broadcast <uuid> app[![hangup_cause]]::args [aleg|bleg|both]

	
bypass_media(state)

	Re-invite a bridged node out of the media path for this session

	
clear_tasks()

	Clear all scheduled tasks for this session.

	
deflect(uri)

	Send a refer to the client.
The only parameter should be the SIP URI to contact (with or without
“sip:”):

<action application="deflect" data="sip:someone@somewhere.com" />

	
echo()

	Echo back all audio recieved

	
get(key, default=None)

	Get latest event header field for key.

	
hangup(cause='NORMAL_CLEARING')

	Hangup this session with the provided cause hangup type keyword.

	
host

	Return the hostname/ip address for the host which this session is
currently active

	
is_inbound()

	Return bool indicating whether this is an inbound session

	
is_outbound()

	Return bool indicating whether this is an outbound session

	
log

	Local logger instance.

	
mute(direction='write', level=1)

	Mute the current session. level determines the degree of comfort
noise to generate if > 1.

	
park()

	Park this session

	
playback(args, start_sample=None, endless=False, leg='aleg', params=None)

	Playback a file on this session

	Parameters:	
	args (str or tuple) – arguments or path to audio file for playback app

	leg (str [http://docs.python.org/library/functions.html#str]) – call leg to transmit the audio on

	
record(action, path, rx_only=True)

	Record audio from this session to a local file on the slave filesystem
using the uuid_record [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-uuid_record] command:

uuid_record <uuid> [start|stop|mask|unmask] <path> [<limit>]

	
respond(response)

	Respond immediately with the following response code.
see the FreeSWITCH respond [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+respond] dialplan application

	
sched_dtmf(delay, sequence, tone_duration=None)

	Schedule dtmf sequence to be played on this channel.

	Parameters:	
	delay (float [http://docs.python.org/library/functions.html#float]) – scheduled future time when dtmf tones should play

	sequence (str [http://docs.python.org/library/functions.html#str]) – sequence of dtmf digits to play

	
sched_hangup(timeout, cause='NORMAL_CLEARING')

	Schedule this session to hangup after timeout seconds.

	
send_dtmf(sequence, duration='w')

	Send a dtmf sequence with constant tone durations

	
setvar(var, value)

	Set variable to value

	
setvars(params)

	Set all variables in map params with a single command

	
start_record(path, rx_only=False, stereo=False, rate=16000)

	Record audio from this session to a local file on the slave filesystem
using the record_session [https://freeswitch.org/confluence/display/FREESWITCH/record_session] cmd. By default recordings are sampled at
16kHz.

	
stop_record(path='all', delay=0)

	Stop recording audio from this session to a local file on the slave
filesystem using the stop_record_session [https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools%3A+stop_record_session] cmd.

	
time

	Time stamp for the most recent received event

	
unmute(**kwargs)

	Unmute the write buffer for this session

	
unsetvar(var)

	Unset a channel var.

	
update(event)

	Update state/data using an ESL.ESLEvent

	
uptime

	Time elapsed since the Session.create_ev to the most recent
received event.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Distributed cluster tools

Manage pools of freeswitch slaves

	
class switchy.distribute.MultiEval(slaves, delegator=<type 'itertools.cycle'>, accessor='.')

	Invoke arbitrary python expressions on a collection of objects

	
attrs(obj)

	Cache of obj attributes since python has no built in for getting
them all...

	
evals(expr, **kwargs)

	Evaluate expression on all slave sub-components
(Warning: this is the slowest call)

	expr: str

	python expression to evaluate on slave components

	
folder(func, expr, **kwargs)

	Same as reducer but takes in a binary function

	
partial(expr, **kwargs)

	Return a partial which will eval bytcode compiled from expr

	
reducer(func, expr, itertype='', **kwargs)

	Reduces the iter retured by evals(expr) into a single value
using the reducer func

	
switchy.distribute.SlavePool(slaves)

	A slave pool for controlling multiple (Client, EventListener)
pairs with ease

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Synchronous Calling

Make calls synchronously

	
switchy.sync.sync_caller(*args, **kwds)

	Deliver a provisioned synchronous caller function.

A caller let’s you make a call synchronously returning control once
it has entered a stable state. The caller returns the active originating
Session and a waitfor blocker method as output.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Command Builders

Command wrappers and helpers

	
switchy.commands.build_originate_cmd(dest_url, uuid_str=None, profile='external', gateway=None, app_name='park', app_arg_str='', dp_exten=None, dp_type='xml', dp_context='default', proxy=None, endpoint='sofia', timeout=60, caller_id='Mr_Switchy', caller_id_num='1112223333', codec='PCMU', abs_codec='', xheaders=None, **kwargs)

	Return a formatted originate command string conforming
to the syntax dictated by mod_commands of the form:

originate <call url> <exten>|&<application_name>(<app_args>) [<dialplan>]
[<context>] [<cid_name>] [<cid_num>] [<timeout_sec>]

	dest_url : str

	call destination url with format <username_uri>@<domain>:<port>

	profile : str

	sofia profile (UA) name to use for making outbound call

	dp_extension: str

	destination dp extension where the originating session (a-leg) will
processed just after the call is answered

etc...

	originate command : string or callable

	full cmd string if uuid_str is not None,
else callable f(uuid_str) -> full cmd string

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Built-in Apps

Built-in applications

	
class switchy.apps.AppManager(pool, ppfuncargs=None, **kwargs)

	Manage apps over a cluster/slavepool.

	
iterapps()

	Iterable over all unique contained subapps

	
load_app(app, app_id=None, ppkwargs=None, with_measurers=())

	Load and activate an app for use across all slaves in the cluster.

	
load_multi_app(apps_iter, app_id=None, **kwargs)

	Load a “composed” app (multiple apps using a single app name/id)
by providing an iterable of (app, prepost_kwargs) tuples. Whenever the
app is triggered from and event loop all callbacks from all apps will
be invoked in the order then were loaded here.

	
switchy.apps.app(*args, **kwargs)

	Decorator to register switchy application classes.
Example usage:

@app
class CoolAppController(object):
 pass

This will register the class as a switchy app.
The name of the app defaults to `class.__name__`.
The help for the app is taken from `class.__doc__`.

You can also provide an alternative name via a
decorator argument:

@app('CoolName')
class CoolAppController(object):
 pass

or with a keyword arg:

@app(name='CoolName')
class CoolAppController(object):
 pass

	
switchy.apps.get(name)

	Get a registered app by name or None if one isn’t registered.

	
switchy.apps.groupbymod()

	Return an iterable which delivers tuples (<modulename>, <apps_subiter>)

	
switchy.apps.iterapps()

	Iterable over all registered apps.

	
switchy.apps.load(packages=(), imp_excs=('pandas',))

	Load by importing all built-in apps along with any apps found in the
provided packages list.

	Parameters:	packages (str | module) – package (names or actual modules)

	Return type:	dict[str, types.ModuleType]

	
switchy.apps.register(cls, name=None)

	Register an app in the global registry

Load testing

Call generator app for load testing

	
class switchy.apps.call_gen.Originator(slavepool, debug=False, auto_duration=True, app_id=None, **kwargs)

	An auto-dialer built for stress testing.

	
check_state(ident)

	Compare current state to ident

	
hard_hupall()

	Hangup all calls for all slaves, period, even if they weren’t originated by
this instance and stop the burst loop.

	
hupall()

	Send the ‘hupall’ command to hangup all active calls.

	
is_alive()

	Indicate whether the call burst thread is up

	
load_app(app, app_id=None, ppkwargs={}, weight=1, with_metrics=True)

	Load a call control app for use across the entire slave cluster.

If app is an instance then it’s state will be shared by all slaves.
If it is a class then new instances will be instantiated for each
Client-Observer pair and thus state will have per slave scope.

	
max_rate

	The maximum rate value which can be set.
Setting rate any higher will simply clip to this value.

	
originate_cmd

	Originate str used for making calls

	
setup()

	Apply load test settings on the slave server

	
shutdown()

	Shutdown this originator instance and hanging up all
active calls and triggering the burst loop to exit.

	
start()

	Start the originate burst loop by starting and/or notifying a worker
thread to begin. Changes state INITIAL | STOPPED -> ORIGINATING.

	
state

	The current operating state as a string

	
stop()

	Stop originate loop if currently originating sessions.
Change state ORIGINATING -> STOPPED

	
stopped()

	Return bool indicating if in the stopped state.

	
waitwhile(state_or_predicate=<function <lambda>>, **kwargs)

	If state_or_predicate’ is a func, block until it evaluates to `False.
If it is a str block until the internal state matches that value.
The default predicate waits for all calls to end and for activation of
the “STOPPED” state.
See switchy.utils.waitwhile for more details on predicate usage.

	
class switchy.apps.call_gen.State(state=0)

	Enumeration to represent the originator state machine

	
class switchy.apps.call_gen.WeightedIterator(counter=None)

	Pseudo weighted round robin iterator. Delivers items interleaved
in weighted order.

	
cycle()

	Endlessly iterates the most up to date keys in counts.
Allows for real-time weight updating from another thread.

	
switchy.apps.call_gen.get_originator(contacts, *args, **kwargs)

	Originator factory

	
switchy.apps.call_gen.limiter(pairs)

	Yield slave pairs up until a slave has reached a number of calls
less then or equal to it’s predefined capacity limit

Measurement Collection

CDR app for collecting signalling latency and performance stats.

	
class switchy.apps.measure.cdr.CDR

	Collect call detail record info including call oriented event time
stamps and and active sessions data which can be used for per call metrics
computations.

	
log_stats(sess, job)

	Append measurement data only once per call

	
on_create(sess)

	Store total (cluster) session count at channel create time

	
switchy.apps.measure.cdr.call_metrics(df)

	Default call measurements computed from data retrieved by
the CDR app.

System stats collection using `psutil`_

	
class switchy.apps.measure.sys.SysStats(psutil, rpyc=None)

	A switchy app for capturing system performance stats during load test
using the `psutil`_ module.

An instance of this app should be loaded if rate limited data gathering is
to be shared across multiple slaves (threads).

	
switchy.apps.measure.sys.sys_stats(df)

	Reindex on the call index to allign with call metrics data
and interpolate.

Media testing

Common testing call flows

	
class switchy.apps.players.PlayRec

	Play a recording to the callee and record it onto the local file system

This app can be used in tandem with MOS scoring to verify audio quality.
The filename provided must exist in the FreeSWITCH sounds directory such
that ${FS_CONFIG_ROOT}/${sound_prefix}/<category>/<filename> points to a
valid wave file.

	
on_stop(sess)

	On stop either trigger a new playing of the signal if more
iterations are required or hangup the call.
If the current call is being recorded schedule the recordings to stop
and expect downstream callbacks to schedule call teardown.

	
trigger_playback(sess)

	Trigger clip playback on the given session by doing the following:
- Start playing a silence stream on the peer session
- This will in turn trigger a speech playback on this session in the
“PLAYBACK_START” callback

	
class switchy.apps.players.RecInfo(host, caller, callee)

	
	
callee

	Alias for field number 2

	
caller

	Alias for field number 1

	
host

	Alias for field number 0

	
class switchy.apps.players.TonePlay

	Play a ‘milli-watt’ tone on the outbound leg and echo it back
on the inbound

Dtmf tools

	
class switchy.apps.dtmf.DtmfChecker

	Play dtmf tones as defined by the iterable attr sequence with
tone duration. Verify the rx sequence matches what was transmitted.

For each session which is answered start a sequence check. For any session
that fails digit matching store it locally in the failed attribute.

Bert testing

	
class switchy.apps.bert.Bert

	Call application which runs the bert test application on both
legs of a call

See the docs for mod_bert [https://freeswitch.org/confluence/display/FREESWITCH/mod_bert] and discussion by the author here [https://github.com/moises-silva/freeswitch/issues/1].

	
hangup_on_error

	Toggle whether to hangup calls when a bert test fails

	
on_lost_sync(sess)

	Increment counters on synchronization failure

The following stats can be retrieved using the latest version of
mod_bert:

sync_lost_percent - Error percentage within the analysis window
sync_lost_count - How many times sync has been lost
cng_count - Counter of comfort noise packets
err_samples - Number of samples that did not match the sequence

	
on_park(sess)

	Knows how to get us riled up

	
on_timeout(sess)

	Mark session as bert time out

	
two_sided

	Toggle whether to run the bert_test application
on all sessions of the call. Leaving this False means
all other legs will simply run the echo application.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

 	API Reference

Utils

handy utilities

	
exception switchy.utils.APIError

	ESL api error

	
exception switchy.utils.ConfigurationError

	Config error

	
switchy.utils.DictProxy(d, extra_attrs={})

	A dictionary proxy object which provides attribute access to elements

	
exception switchy.utils.ESLError

	An error pertaining to the connection

	
exception switchy.utils.TimeoutError

	Timing error

	
class switchy.utils.Timer(timer=None)

	Simple timer that reports an elapsed duration since the last reset.

	
elapsed()

	Returns the elapsed time since the last reset

	
last_time

	Last time the timer was reset

	
reset()

	Reset the timer start point to now

	
switchy.utils.compose(func_1, func_2)

	(f1, f2) -> function
The function returned is a composition of f1 and f2.

	
switchy.utils.dirinfo(inst)

	Return common info useful for dir output

	
switchy.utils.event2dict(event)

	Return event serialized data in a python dict
Warning: this function is kinda slow!

	
switchy.utils.get_args(func)

	Return the argument names found in func’s signature in a tuple

	Returns:	the argnames, kwargnames defined by func

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
switchy.utils.get_event_time(event, epoch=0.0)

	Return micro-second time stamp value in seconds

	
switchy.utils.get_logger(name=None)

	Return the package log or a sub-log for name if provided.

	
switchy.utils.get_name(obj)

	Return a name for object checking the usual places

	
switchy.utils.is_callback(func)

	Check whether func is valid as a callback

	
switchy.utils.iter_import_submods(packages, recursive=False, imp_excs=())

	Iteratively import all submodules of a module, including subpackages
with optional recursion.

	Parameters:	package (str | module) – package (name or actual module)

	Return type:	(dict[str, types.ModuleType], dict[str, ImportError])

	
switchy.utils.log_to_stderr(level=None)

	Turn on logging and add a handler which writes to stderr

	
switchy.utils.ncompose(*funcs)

	Perform n-function composition

	
switchy.utils.param2header(name)

	Return the appropriate event header name corresponding to the named
parameter name which should be used when the param is received as a
header in event data.

Most often this is just the original parameter name with a 'variable_'
prefix. This is pretty much a shitty hack (thanks goes to FS for the
asymmetry in variable referencing...)

	
switchy.utils.pstr(self, host='unknown-host')

	Pretty str repr of connection-like instances.

	
switchy.utils.uncons(first, *rest)

	Unpack args into first element and tail as tuple

	
switchy.utils.uuid()

	Return a new uuid1 string

	
switchy.utils.waitwhile(predicate, timeout=inf, period=0.1, exc=True)

	Block until predicate evaluates to False.

	Parameters:	
	predicate (function) – predicate function

	timeout (float [http://docs.python.org/library/functions.html#float]) – time to wait in seconds for predicate to eval False

	period (float [http://docs.python.org/library/functions.html#float]) – poll loop sleep period in seconds

	Raises:	TimeoutError – if predicate does not eval to False within timeout

	
switchy.utils.xheaderify(header_name)

	Prefix the given name with the freeswitch xheader token
thus transforming it into an fs xheader variable

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	switchy 0.1.alpha documentation

 	Quick-Start - Originating a single call

API Reference

Note

This reference is not entirely comprehensive and is expected to change.

Connection wrapper

A thread safe (plus more) wrapper around the ESL swig module’s
ESLConnection type is found in
connection.py.

Observer components

The core event processing loop and logic and Client
interface can be found in observe.py.
There are also some synchronous helpers hidden within.

Call Control Apps

All the built in apps can be found in the
switchy.apps subpackage.

Model types

The Models api holds automated wrappers for interacting with different
FreeSWITCH channel and session objects as if they were local
instances.

	Session - represents a FreeSWITCH
session entity and provides a rich method api for control using
call management commands [https://freeswitch.org/confluence/display/FREESWITCH/mod_commands#mod_commands-CallManagementCommands].

	Job - provides a synchronous interface for
background job handling.

Cluster tooling

Extra helpers for managing a FreeSWITCH process cluster.

	MultiEval - Invoke arbitrary python
expressions on a collection of objects.

	SlavePool - a subclass which adds
oberver component helper methods.

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	switchy 0.1.alpha documentation

Running Unit Tests

Switchy’s unit test set relies on pytest [http://pytest.org] and tox [http://tox.readthedocs.io]. Tests require a
FreeSWITCH slave process which has been deployed
with the required baseline config and can be accessed by hostname.

To run all tests invoke tox from the source dir and pass the FS hostname:

tox -e ALL -- --fshost=hostname.fs.com

SIPp [https://github.com/SIPp/sipp] and pysipp [https://github.com/SIPp/pysipp] are required to be installed locally in order to run call/load tests.

To run multi-slave tests at least two slave hostnames are required:

tox -e ALL -- --fsslaves='["fs.slave.hostname1","fs.slave.hostname2"]'

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	switchy 0.1.alpha documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 switchy	

 	
 	
 switchy.apps	

 	
 	
 switchy.apps.bert	

 	
 	
 switchy.apps.call_gen	

 	
 	
 switchy.apps.dtmf	

 	
 	
 switchy.apps.measure.cdr	

 	
 	
 switchy.apps.measure.sys	

 	
 	
 switchy.apps.players	

 	
 	
 switchy.commands	

 	
 	
 switchy.connection	

 	
 	
 switchy.distribute	

 	
 	
 switchy.models	

 	
 	
 switchy.observe	

 	
 	
 switchy.sync	

 	
 	
 switchy.utils	

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	switchy 0.1.alpha documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	

 	active_client() (in module switchy.observe)

 	add_callback() (switchy.observe.EventListener method)

 	add_handler() (switchy.observe.EventListener method)

 	api() (switchy.connection.Connection method)

 	

 	(switchy.observe.Client method)

 	APIError

 	

 	app() (in module switchy.apps)

 	append() (switchy.models.Call method)

 	AppManager (class in switchy.apps)

 	attrs() (switchy.distribute.MultiEval method)

B

 	

 	Bert (class in switchy.apps.bert)

 	bg_jobs (switchy.observe.EventListener attribute)

 	bgapi() (switchy.observe.Client method)

 	block_jobs() (switchy.observe.EventListener method)

 	breakmedia() (switchy.models.Session method)

 	

 	bridge() (switchy.models.Session method)

 	broadcast() (switchy.models.Session method)

 	build_originate_cmd() (in module switchy.commands)

 	bypass_media() (switchy.models.Session method)

C

 	

 	Call (class in switchy.models)

 	call_metrics() (in module switchy.apps.measure.cdr)

 	callee (switchy.apps.players.RecInfo attribute)

 	caller (switchy.apps.players.RecInfo attribute)

 	CDR (class in switchy.apps.measure.cdr)

 	check_con() (in module switchy.connection)

 	check_state() (switchy.apps.call_gen.Originator method)

 	clear_tasks() (switchy.models.Session method)

 	Client (class in switchy.observe)

 	cmd() (switchy.connection.Connection method)

 	

 	(switchy.observe.Client method)

 	

 	compose() (in module switchy.utils)

 	con_repr() (in module switchy.observe)

 	ConfigurationError

 	connect() (switchy.connection.Connection method)

 	

 	(switchy.observe.Client method)

 	(switchy.observe.EventListener method)

 	connected() (switchy.connection.Connection method)

 	

 	(switchy.observe.Client method)

 	(switchy.observe.EventListener method)

 	Connection (class in switchy.connection)

 	count_calls() (switchy.observe.EventListener method)

 	count_failed() (switchy.observe.EventListener method)

 	cycle() (switchy.apps.call_gen.WeightedIterator method)

D

 	

 	default_handlers (switchy.observe.EventListener attribute)

 	deflect() (switchy.models.Session method)

 	DictProxy() (in module switchy.utils)

 	

 	dirinfo() (in module switchy.utils)

 	disconnect() (switchy.connection.Connection method)

 	

 	(switchy.observe.Client method)

 	(switchy.observe.EventListener method)

 	DtmfChecker (class in switchy.apps.dtmf)

E

 	

 	echo() (switchy.models.Session method)

 	elapsed() (switchy.utils.Timer method)

 	epoch (switchy.observe.EventListener attribute)

 	ESLError

 	

 	evals() (switchy.distribute.MultiEval method)

 	event2dict() (in module switchy.utils)

 	EventListener (class in switchy.observe)

 	Events (class in switchy.models)

F

 	

 	fail() (switchy.models.Job method)

 	first (switchy.models.Call attribute)

 	

 	folder() (switchy.distribute.MultiEval method)

G

 	

 	get() (in module switchy.apps)

 	

 	(switchy.models.Events method)

 	(switchy.models.Job method)

 	(switchy.models.Session method)

 	get_args() (in module switchy.utils)

 	get_event_time() (in module switchy.utils)

 	get_id() (switchy.observe.EventListener method)

 	get_listener() (in module switchy.observe)

 	get_logger() (in module switchy.utils)

 	

 	get_name() (in module switchy.utils)

 	get_new_con() (switchy.observe.EventListener method)

 	get_originator() (in module switchy.apps.call_gen)

 	get_peer() (switchy.models.Call method)

 	get_pool() (in module switchy.observe)

 	groupbymod() (in module switchy.apps)

H

 	

 	hangup() (switchy.models.Call method)

 	

 	(switchy.models.Session method)

 	hangup_on_error (switchy.apps.bert.Bert attribute)

 	hard_hupall() (switchy.apps.call_gen.Originator method)

 	

 	host (switchy.apps.players.RecInfo attribute)

 	

 	(switchy.models.Session attribute)

 	hupall() (switchy.apps.call_gen.Originator method)

 	

 	(switchy.observe.Client method)

I

 	

 	ident() (switchy.observe.EventListener method)

 	is_alive() (switchy.apps.call_gen.Originator method)

 	

 	(switchy.observe.EventListener method)

 	is_callback() (in module switchy.utils)

 	is_inbound() (switchy.models.Session method)

 	

 	is_outbound() (switchy.models.Session method)

 	iter_cons() (switchy.observe.EventListener method)

 	iter_import_submods() (in module switchy.utils)

 	iterapps() (in module switchy.apps)

 	

 	(switchy.apps.AppManager method)

J

 	

 	Job (class in switchy.models)

L

 	

 	last (switchy.models.Call attribute)

 	last_time (switchy.utils.Timer attribute)

 	limiter() (in module switchy.apps.call_gen)

 	load() (in module switchy.apps)

 	load_app() (switchy.apps.AppManager method)

 	

 	(switchy.apps.call_gen.Originator method)

 	(switchy.observe.Client method)

 	

 	load_multi_app() (switchy.apps.AppManager method)

 	log (switchy.models.Session attribute)

 	log_stats() (switchy.apps.measure.cdr.CDR method)

 	log_to_stderr() (in module switchy.utils)

 	lookup_sess() (switchy.observe.EventListener method)

M

 	

 	max_rate (switchy.apps.call_gen.Originator attribute)

 	MultiEval (class in switchy.distribute)

 	

 	mute() (switchy.models.Session method)

N

 	

 	ncompose() (in module switchy.utils)

O

 	

 	on_create() (switchy.apps.measure.cdr.CDR method)

 	on_lost_sync() (switchy.apps.bert.Bert method)

 	on_park() (switchy.apps.bert.Bert method)

 	on_stop() (switchy.apps.players.PlayRec method)

 	

 	on_timeout() (switchy.apps.bert.Bert method)

 	originate() (switchy.observe.Client method)

 	originate_cmd (switchy.apps.call_gen.Originator attribute)

 	Originator (class in switchy.apps.call_gen)

P

 	

 	param2header() (in module switchy.utils)

 	park() (switchy.models.Session method)

 	partial() (switchy.distribute.MultiEval method)

 	playback() (switchy.models.Session method)

 	

 	PlayRec (class in switchy.apps.players)

 	pprint() (switchy.models.Events method)

 	pstr() (in module switchy.utils)

R

 	

 	ready() (switchy.models.Job method)

 	RecInfo (class in switchy.apps.players)

 	record() (switchy.models.Session method)

 	reducer() (switchy.distribute.MultiEval method)

 	register() (in module switchy.apps)

 	register_job() (switchy.observe.EventListener method)

 	

 	remove_callback() (switchy.observe.EventListener method)

 	reset() (switchy.observe.EventListener method)

 	

 	(switchy.utils.Timer method)

 	respond() (switchy.models.Session method)

 	result (switchy.models.Job attribute)

 	route() (built-in function)

S

 	

 	sched_dtmf() (switchy.models.Session method)

 	sched_hangup() (switchy.models.Session method)

 	send_dtmf() (switchy.models.Session method)

 	Session (class in switchy.models)

 	set_orig_cmd() (switchy.observe.Client method)

 	setup() (switchy.apps.call_gen.Originator method)

 	setvar() (switchy.models.Session method)

 	setvars() (switchy.models.Session method)

 	shutdown() (switchy.apps.call_gen.Originator method)

 	SlavePool() (in module switchy.distribute)

 	start() (switchy.apps.call_gen.Originator method)

 	

 	(switchy.observe.EventListener method)

 	start_record() (switchy.models.Session method)

 	State (class in switchy.apps.call_gen)

 	state (switchy.apps.call_gen.Originator attribute)

 	status() (switchy.observe.EventListener method)

 	stop() (switchy.apps.call_gen.Originator method)

 	stop_record() (switchy.models.Session method)

 	stopped() (switchy.apps.call_gen.Originator method)

 	subscribe() (switchy.connection.Connection method)

 	

 	successful() (switchy.models.Job method)

 	switchy.apps (module)

 	switchy.apps.bert (module)

 	switchy.apps.call_gen (module)

 	switchy.apps.dtmf (module)

 	switchy.apps.measure.cdr (module)

 	switchy.apps.measure.sys (module)

 	switchy.apps.players (module)

 	switchy.commands (module)

 	switchy.connection (module)

 	switchy.distribute (module)

 	switchy.models (module)

 	switchy.observe (module)

 	switchy.sync (module)

 	switchy.utils (module)

 	sync_caller() (in module switchy.sync)

 	sys_stats() (in module switchy.apps.measure.sys)

 	SysStats (class in switchy.apps.measure.sys)

T

 	

 	time (switchy.models.Session attribute)

 	TimeoutError

 	Timer (class in switchy.utils)

 	

 	TonePlay (class in switchy.apps.players)

 	trigger_playback() (switchy.apps.players.PlayRec method)

 	two_sided (switchy.apps.bert.Bert attribute)

U

 	

 	unblock_jobs() (switchy.observe.EventListener method)

 	uncons() (in module switchy.utils)

 	unload_app() (switchy.observe.Client method)

 	unmute() (switchy.models.Session method)

 	unsetvar() (switchy.models.Session method)

 	

 	unsubscribe() (switchy.observe.EventListener method)

 	update() (switchy.models.Events method)

 	

 	(switchy.models.Job method)

 	(switchy.models.Session method)

 	uptime (switchy.models.Session attribute)

 	

 	(switchy.observe.EventListener attribute)

 	uuid() (in module switchy.utils)

W

 	

 	wait() (switchy.models.Job method)

 	

 	(switchy.observe.EventListener method)

 	waitfor() (switchy.observe.EventListener method)

 	

 	waitwhile() (in module switchy.utils)

 	

 	(switchy.apps.call_gen.Originator method)

 	WeightedIterator (class in switchy.apps.call_gen)

X

 	

 	xheaderify() (in module switchy.utils)

 Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/down-pressed.png

_static/comment.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		switchy 0.1.alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Sangoma Technologies.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

