

Swift_T_Variant_Calling’s documentation!

Welcome to this documentation site for a complete Variant Calling pipeline written in Swift/T [https://github.com/swift-lang/swift-t]. This guide leads you through the workflow in terms of what it does, and how to up and running in using it.

The pipeline has been implemented according to the GATK’s best practices [https://software.broadinstitute.org/gatk/best-practices/] for germline variant calling in Whole Genome and Whole Exome Next Generation Sequencing datasets, given a single sample or a cohort of samples, paired- or single-end reads with flexibility in choosing analysis stages, software tools and their versions, and their individual parameters for the specific analysis scenario.

	Pipeline architecture and function

	Installation
	Dependencies

	Workflow Installation

	User Guide
	Runfile Options

	Running the Pipeline

	Output Structure

	Logging functionality

	Data preparation

	Resource Requirements

	Pipeline Interruptions and Continuations

	Under The Hood

	Troubleshooting
	General Troubleshooting Tips

	FAQs

	Developer Guide

	Citation and Licensing

Pipeline architecture and function

This pipeline implements the GATK’s best practices [https://software.broadinstitute.org/gatk/best-practices/] for germline variant calling in Whole Genome and Whole Exome Next Generation Sequencing datasets, given a cohort of samples.

This pipeline was disigned for GATK 3.X, which include the following stages:

	Map to the reference genome

	Mark duplicates

	Perform indel realignment and/or base recalibration (BQSR)*

	Call variants on each sample

	Perform joint genotyping

* The indel realignment step was recommended in GATK best practices <3.6).

Additionally, this workflow provides the option to split the aligned reads by chromosome before calling variants, which often speeds up performance when analyzing WGS data.

An overview of the Workflow architecture is depicted in Figure 1 below

[image: Overview of the Swift/T variant calling pipeline]

Installation

Dependencies

First, you need Swift/T installed in your system. Depending on your system, the instructions below will guide you through the process:

http://swift-lang.github.io/swift-t/guide.html#_installation

Next, depending on the analysis step you like, you also need the installation path of the following tools in your system:

	Step

	Tool options

	Alignment

	Bwa mem [https://github.com/lh3/bwa] or Novoalign [http://novocraft.com/]

	Sorting

	Novosort [http://novocraft.com/]

	Marking Duplicates

	Samblaster [https://github.com/GregoryFaust/samblaster],

	Novosort [http://novocraft.com/], or

	Picard [https://broadinstitute.github.io/picard/]

	IndelRealignment

	GATK [https://software.broadinstitute.org/gatk/download/]

	BaseRecalibration

	Variant Calling

	Joint Genotyping

	Miscellaneous

	Samtools [http://samtools.github.io/], and

	Novosort [http://novocraft.com/]

Workflow Installation

Simply, clone the repository:

git clone https://github.com/ncsa/Swift-T-Variant-Calling/

Additionally, you may need R installed along with the following packages shiny, lubridate, tidyverse and forcats. Detailed instructions are on the Logging functionality section of the User Guide

User Guide

For maximum flexibility, the workflow is controlled by modifying the variables contained within a runfile.

A template.runfile [https://github.com/ncsa/Swift-T-Variant-Calling/blob/master/template.runfile] is packaged within the source repo, and one can simply change the respective variables according to analysis needs. The coming sections explain the possible options in details.

Runfile Options

Different options are available by setting the variables below. Ordering is, of course, irrelevant in this context, but the workflow is sensitive to spelling, so variable names should be identical.

	Variable

	Effect and meaning

	SAMPLEINFORMATION

	
	The file that contains the paths to each sample’s

	reads, where each sample is on its own line in the form:

SampleName /path/to/read1.fq /path/to/read2.fq

	Alternatively, if analyzing single-end reads, the format

	is simply: SampleName /path/to/read1.fq

It is necessary that no empty line is inserted at the end of this file

	OUTPUTDIR

	
	The path that will serve as the root of all of the output files

	generated from the pipeline (See Output directories and files generated from a typical run of the pipeline)

	TMPDIR

	The path to where temporary files will be stored (See Output directories and files generated from a typical run of the pipeline)

	REALIGN

	YES if one wants to realign before recalibration, NO if not.

	SPLIT

	YES if one wants to split-by-chromosome before calling variants, NO if not.

	PROGRAMS_PER_NODE

	
	Sometimes it is more efficent to double (or even triple) up runs of an

	application on the same nodes using half of the available threads than
letting one run of the application use all of them. This is because many
applications only scale well up to a certain number of threads, and
often this is less than the total number of cores available on a node.
Under the hood, this variable simply controls how many threads each tool
gets. If CORES_PER_NODE is set to 20 but PROGRAMS_PER_NODE is
set to 2, each tool will use up to 10 threads.

IMPORTANT NOTE

	It is up to the user at runtime

	to be sure that the right number of processes are requested per node
when calling Swift-T itself (See Running the Pipeline),
as this is what actually controls how processes are distributed.

	CORES_PER_NODE

	
	Number of cores within nodes to be used in the analysis. For

	multi-threaded tools: \(Number Of Threads = \frac{CoresPerNode}{ProgramsPerNode}\)

	EXIT_ON_ERROR

	
	If this is set to YES, the workflow will quit after a sample fails

	quality control.

	If set to NO, the workflow will let samples fail, and continue

	processing all of those that did not. The workflow will only stop if
none of the samples remain after the failed ones are filtered out.

This option is provided because for large sample sets one may expect a
few of the input samples to fail quality control, and it may be
acceptable to keep going if a few fail. However, exercise caution and
monitor the Failures.log generated in the DELIVERYFOLDER/docs
folder to gauge how many of the samples are failing.

	ALIGN_DEDUP_STAGE

	
	These variables control whether each stage is ran or skipped (only

	stages that were successfully run previously can be skipped, as the “skipped” option simply looks for the output files that were generated from a previous run.)

	Each of these stage variables can be set to Y or N. In addition,

	all but the last stage can be set to End, which will stop the pipeline after that stage has been executed (think of the End setting as shorthand for “End after this stage”)
See Pipeline Interruptions and Continuations for more details.

	CHR_SPLIT_STAGE

	VC_STAGE

	COMBINE_VARIANT_STAGE

	JOINT_GENOTYPING_STAGE

	PAIRED

	0 if reads are single-ended only; 1 if they are paired-end reads

	ALIGNERTOOL

	Tool for the alignment stage. either: BWAMEM or NOVOALIGN

	MARKDUPLICATESTOOL

	Tool for marking duplicates. either: SAMBLASTER, PICARD, or NOVOSORT

	BWAINDEX

	
	Depending on the tool being used, one of these variables specify

	

the location of the index file

	NOVOALIGNINDEX

	BWAMEMPARAMS;
NOVOALIGNPARAMS

	
	This string is passed directly as arguments to the corresponding tool

	as (an) argument(s). For example:
BWAMEMPARAMS=-k 32 -I 300,30

Note: There is no space between the ‘=’ character and your parameters

Note: Do not set the thread count or paired/single-ended flags, as they are taken care of by the workflow itself

	CHRNAMES

	List of chromosome/contig names separated by a :.
For example: chr1:chr2:chr3 or 1:2:3

	Note: chromosome names must match those found in the files located in

	the directory that INDELDIR points to, as well as those in the reference fasta files

	NOVOSORT_MEMLIMIT

	
	Novosort is a tool that used a lot of RAM. If doubling up novosort runs

	on the same node, this may need to be reduced to avoid an OutOfMemory
Error. Otherwise, just set it to most of the RAM on a node. You need to
set this value regardless of you analysis scenario

	This is set in bytes, so if you want to limit novosort to using 30 GB,

	one would set it to NOVOSORT_MEMLIMIT=30000000000

	MAP_CUTOFF

	The minimum percentage of reads that were successfully mapped in a successful
alignment

	DUP_CUTOFF

	The maximum percentage of reads that are marked as duplicates in a successful sample

	REFGENOME

	Full path to the reference genome /path/to/example.fa.

	It is assumeed reference has .dict and .fai (index) files in the same

	directory

	DBSNP

	Full path to the dbsnp vcf file (GATK assumes that this file is indexed)

	INDELDIR

	
	Full path to the directory that contains the standard indel variant files

	used in the realignment/recalibration step

	Within the directory, the vcf files should be named with only the

	chromosome name in front and nothing else.

	For example, if the chromosome is chr12 or 12, name the vcf

	files chr12.vcf or 12.vcf, respectively.

	If not splitting by chromosome, the workflow will look for all of the

	vcf files in the directory.

	JAVAEXE

	Full path of the appropriate executable file

	BWAEXE

	SAMBLASTEREXE

	SAMTOOLSEXE

	NOVOALIGNEXE

	NOVOSORTEXE

	PICARDJAR

	Full path of the appropriate jar file

	GATKJAR

	JAVA_MAX_HEAP_SIZE

	
	Memory area to store all java objects. This should be tuned in relevance to

	the speed and frequency at which garbage collection should occur. With larger
input size, larger heap is needed.

Running the Pipeline

Requesting Resources from the Job Scheduler

Swift-T works by opening up multiple “slots”, called processes, where
applications can run. There are two types of processes this workflow
allocates:

	SERVERS - Control the execution of Swift-T itself; all Swift-T applications must have at least one of these.

	WORKERS - Run the actual work of each application in the workflow; these will make up the vast majority of processes

Controlling various aspects of the job submission is achieved by setting
environment variables to the desired values. For example, the user can
fine control the total number of processes needed by setting
PROCS=<Number of MPI processes>, and/or the number of workers via
TURBINE_WORKERS and the number of servers via ADLB_SERVERS.
Similarly, one can specify QUEUE, WALLTIME and PROJECT
specifications. More coverage of these is provided in the Swift/T sites
guide [http://swift-lang.github.io/swift-t/sites.html#variables].

Other options allow control of logging options. Especially for users
unfamiliar with Swift/T, we recommend always setting the environment
variable ADLB_DEBUG_RANKS=1 and checking the beginning of the
Swift/T log to be sure processes are being allocated as the user
expects.

Often when we use a cluster we set the PPN variable to the number of
cores on each node. Swift/T will allocate PPN processes on each node.
Normally, we set PPN to the number of cores for maximal concurrency,
although the PPN setting can be used to over- or under-subscribe
processes. For example, an application that is short on memory might set
a lower PPN, where an I/O intensive application might set a higher PPN.

For convenience, we recommend setting all such environment variables in
a file, and then adding it to the Swift/T command. This is shown in the
sections below for different schedulers (PBS Torque (general), Cray System (Like Blue Waters at UIUC), SLURM based Systems (Like Biocluster2 at UIUC, and Stampede1/Stampede2 on XSEDE), Systems without a resource manager:).

Executing the Swift-T Application

If using multiple nodes, one should set the SWIFT_TMP to another
location besides the default /tmp, that is shared by all of the
nodes

For example, export SWIFT_TMP=/path/to/home/directory/tmp

The type of job scheduler dictates how one calls Swift-T will be seen in the sections below.

PBS Torque (general)

Usually, one can use swift-t’s built-in job launcher for PBS Torque
schedulers (calling swift-t with -m pbs)

$ cat settings.sh # Conveniently, we save environment variables in settings.sh
export PPN=<PROGRAMS_PER_NODE>
export NODES=<#samples/PROGRAMS_PER_NODE + (1 or more)>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM::SS>
export PROJECT=<Project ID>
export QUEUE=<queue>
export SWIFT_TMP=/path/to/directory/temp

(Optional variables to set)
export TURBINE_LOG=1
export ADBL_DEBUG_RANKS=1
export TURBINE_OUTPUT=/path/to/output_log_location

$ swift-t -m pbs -O3 -s settings.sh \
 -o /path/to/where/compiled/should/be/saved/compiled.tic \
 -I /path/to/Swift-T-Variant-Calling/src/ \
 -r /path/to/Swift-T-Variant-Calling/src/bioapps \
 /path/to/Swift-T-Variant-Calling/src/VariantCalling.swift \
 -runfile=/path/to/your.runfile

This command will compile and run the pipeline all in one command, and
the flags used in this call do the following:

	-O3 Conduct full optimizations of the Swift-T code during
compilation (Even with full optimizations, compilation of the code
takes only around 3 seconds)

	-m pbs The job scheduler type, pbs torque in this case

	-s settings.sh The file with environment variables’ settings for
the scheduler

	-o The path to the compiled swift-t file (has a .tic extension);
on the first run, this file will be created.

	-I This includes some source files that are imported during
compilation

	-r This includes some tcl package files needed during compilation

	-n The number of processes (ranks) Swift-T will open for this run
of the workflow (this overrides the PROCS specification above, so
I’m not sure we should use both – ask/advise)

	-runfile The path to the runfile with all of the configuration
variables for the workflow

PBS Torque (alternative)

If you need to import a module to use Swift/T (as is the case on iForge
at UIUC), one cannot simply use the swift-t launcher as outlined above,
since the module load command is not part of the qsub file that Swift-t
generates and submits.

This command must be included (along with any exported environment
variables and module load commands) in a job submission script and not
called directly on a head/login node.

swift-t -O3 -o </path/to/compiled_output_file.tic> \
-I /path/to/Swift-T-Variant-Calling/src \
-r /path/to/Swift-T-Variant-Calling/src/bioapps \
-n < Node# * PROGRAMS_PER_NODE + 1 or more > \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift \
-runfile=/path/to/example.runfile

It is important to note that (at least for PBS Torque schedulers) when
submitting a qsub script, the ppn option should be set, not to the
number of cores on each compute node, but to the number of WORKERS
Swift-T needs to open up on that node.

Example

If one is wanting to run a 4 sample job with PROGRAMS_PER_NODE set
to 2 in the runfile (meaning that two BWA runs can be executing
simultaneously on a given node, for example), one would set the PBS flag
to -l nodes=2:ppn=2 and the -n flag when calling the workflow to
5 (nodes*ppn + 1)

Cray System (Like Blue Waters at UIUC)

Configuring the workflow to work in this environment requires a little
more effort.

Create and run the automated qsub builder

To get the right number of processes on each node to make the
PROGRAMS_PER_NODE work correctly, one must set
PPN= PROGRAMS_PER_NODE and NODES to
#samples/PROGRAMS_PER_NODE + (1 or more), because at least one
process must be a Swift-T SERVER. If one wanted to try running 4 samples
on 2 nodes but with PPN=3 to make room for the processes that need
to be SERVER types, one of the nodes may end up with 3 of your WORKER
processes running simultaneously, which may lead to memory problems when
Novosort is called.

(The exception to this would be when using a single node. In that case,
just set PPN=#PROGRAMS_PER_NODE + 1)

So, with that understanding, call swift-t in the following way:

$ cat settings.sh
export PPN=<PROGRAMS_PER_NODE>
export NODES=<#samples/PROGRAMS_PER_NODE + (1 or more)>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM:SS>
export PROJECT=<Project ID>
export QUEUE=<Queue>
export SWIFT_TMP=/path/to/directory/temp

CRAY specific settings:
export CRAY_PPN=true

(Optional variables to set)
export TURBINE_LOG=1 # This produces verbose logging info; great for debugging
export ADLB_DEBUG_RANKS=1 # Displays layout of ranks and nodes
export TURBINE_OUTPUT=/path/to/log/directory # This specifies where the log info will be stored; defaults to one's home directory

$ swift-t -m cray -O3 -n $PROCS -o /path/to/where/compiled/should/be/saved/compiled.tic \
-I /path/to/Swift-T-Variant-Calling/src/ -r /path/to/Swift-T-Variant-Calling/src/bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift -runfile=/path/to/your.runfile

Kill, fix, and rerun the generated qsub file

Swift-T will create and run the qsub command for you, however, this one
will fail if running on two or more nodes, so immediately kill it. Now
we must edit the qsub script swift produced

To fix this, we need to add a few variables to the submission file that
was just created.

The file will be located in the $SWIFT_TMP directory and will be
called turbine-cray.sh

Add the following items to the file:

#PBS -V

Note: Make sure this directory is created before running the workflow,
and make sure it is not just ‘/tmp’

export SWIFT_TMP=/path/to/tmp_dir
export TMPDIR=/path/to/tmp_dir
export TMP=/path/to/tmp_dir

Now, if you submit the turbine-cray.sh script with qsub, it should work.

SLURM based Systems (Like Biocluster2 at UIUC, and Stampede1/Stampede2 on XSEDE)

As in the case with the pbs-based clusters, it is sufficient to only
specify the scheduler using -m slurm, and then proceed as above.
Additionaly, the same settings.sh file can be used, except that the
user can also instruct the scheduler to send email notifications as
well. The example below clarifies these:

$ cat settings.sh
export PPN=<PROGRAMS_PER_NODE>
export NODES=<#samples/PROGRAMS_PER_NODE + (1 or more)>
export PROCS=$(($PPN * $NODES))
export WALLTIME=<HH:MM:SS>
export PROJECT=<Project ID>
export QUEUE=<Queue>
export SWIFT_TMP=/path/to/directory/temp

SLURM specific settings
export MAIL_ENABLED=1
export MAIL_ADDRESS=<the desired email address for sending notifications- on job start, fail and finish >
export TURBINE_SBATCH_ARGS=<Other optional arguments passed to sbatch, like --exclusive and --constraint=.. etc>

(Optional variables to set)
export TURBINE_LOG=1 # This produces verbose logging info; great for debugging
export ADLB_DEBUG_RANKS=1 # Displays layout of ranks and nodes
export TURBINE_OUTPUT=/path/to/log/directory # This specifies where the log info will be stored; defaults to one's home directory

$ swift-t -m slurm -O3 -n $PROCS -o /path/to/where/compiled/should/be/saved/compiled.tic \
-I /path/to/Swift-T-Variant-Calling/src/ -r /path/to/Swift-T-Variant-Calling/src/bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift -runfile=/path/to/your.runfile

Systems without a resource manager:

For these system, specifying the settings.sh file as above doesn’t
really populate the options to turbine when using
Swift/T version 1.2. The workaround in such cases would be to export
the settings directly to the environment, and nohup or screen
the script launching the swift/t pipeline. Below is a good example:

$ cat runpipeline.sh
#!/bin/bash
export PROCS=$(PROGRAMS_PER_NODE * (#samples/PROGRAMS_PER_NODE + (1 or more)))
export SWIFT_TMP=/path/to/directory/temp

(Optional variables to set)
export TURBINE_LOG=1 # This produces verbose logging info; great for debugging
export ADLB_DEBUG_RANKS=1 # Displays layout of ranks and nodes
export TURBINE_OUTPUT=/path/to/log/directory # This specifies where the log info will be stored; defaults to one's home directory

$ swift-t -O3 -l -u -o /path/to/where/compiled/should/be/saved/compiled.tic \
-I /path/to/Swift-T-Variant-Calling/src/ -r /path/to/Swift-T-Variant-Calling/src/bioapps \
/path/to/Swift-T-Variant-Calling/src/VariantCalling.swift -runfile=/path/to/your.runfile

echo -e "Swift-T pipeline run on $HOSTNAME has concluded successfully!" | mail -s "swift_t_pipeline" "your_email"

$
$ nohup ./runpipeline.sh &> log.runpipeline.swift.t.nohup &

Output Structure

The figure below shows the Directory structure of various Output directories and files generated from a typical run
of the pipeline

[image: OUTPUTDIRs]
Output directories and files generated from a typical run of the pipeline

[image: Output directories and files generated from a typical run of the pipeline]

Logging functionality

Swift/T logging options

While the outputs generated by all the tools of the workflow itself will
be logged in the log folders within the OUTDIR structure, Swift-T
generates a log itself that may help debug if problems occur.

Setting the environment variable TURBINE_LOG=1 will make the log
quite verbose

Setting ADLB_DEBUG_RANKS=1 will allow one to be sure the processes
are being allocated to the nodes in the way one expects

Workflow logging options

The provided scripts allow you to check out the trace of a successful
run of the pipeline. To invoke it, and for the time being, you need R
installed in your environment along with the shiny package.

To do so, proceed as follows:

	Go to the R-project
webpage [http://ftp.heanet.ie/mirrors/cran.r-project.org/], and
follow the instructions based on your system

	Once the step above is completed and R is installed, open a terminal
window, type R, then proceed as follows:

if (!require(shiny)) {
 install.packages('shiny')
 library(shiny)
}
runGitHub(repo = "ncsa/Swift-T-Variant-Calling", ref = "master",
 subdir = "src/plotting_app")

The first time you run these commands in your system it will also
install some libraries for you in case you don’t have them already,
namely: lubridate, tidyverse and forcats.

Once all is done, a webpage should open up for you to actually take a
look at your trace files. For a taste of how things look, you may take a
look at the sample Timing.log file provided in the
repo [https://github.com/jacobrh91/Swift-T-Variant-Calling/master/src/plotting_app]

To take a look at your own analysis trace, you need to have a copy of
this branch first, Run it on you samples, and then find your own
Timing.log file within <OUTPUTDIR>/delivery/docs, where
OUTPUTDIR is specified as per the runfile. Simply
upload this file, and start using the app.

Important Notes

	To investigate a partial pipeline run, you may cat the contents
of all the small files in your TMPDIR (See
runfile options). In the example below, the
contents of thid directory are catted to the
partial_run_timing.log, which is then uploaded to the logging
webpage.

$ cd <TMPDIR> #TMPDIR is what has been specified in the runfile
$ find . -name '*.txt' -exec cat {} \; > partial_run_timing.log

	The overall summary tab of the logging webpage is handy in
summarizing which samples, and which chromosomes have run
successfully. It is easier to look at it when in doubt.

	Running this pipeline in its current form is expected to be more
expensive than normal, due to the manual logging involved. The
alternative is to use the native MPE library (or equivalent),
which requires re-compiling the Swift/T source. This approach is
currently limited at the moment, but some discussions with the
Swift/T team on this is found
here [https://github.com/swift-lang/swift-t/issues/118]

Data preparation

For this pipeline to work, a number of standard files for calling
variants are needed (besides the raw reads files which can be
fastq/fq/fastq.gz/fq.gz), namely these are the reference sequence and
database of known variants (Please see this
link [https://software.broadinstitute.org/gatk/guide/article?id=1247]).

For working with human data, one can download most of the needed files
from the GATK’s resource
bundle [http://gatkforums.broadinstitute.org/gatk/discussion/1213/whats-in-the-resource-bundle-and-how-can-i-get-it].
Missing from the bundle are the index files for the aligner, which are
specific to the tool that would be used for alignment (i.e., bwa or
novoalign in this pipeline)

Generally, for the preparation of the reference sequence, the following
link is a good start the GATK’s
guidelines [http://gatkforums.broadinstitute.org/wdl/discussion/2798/howto-prepare-a-reference-for-use-with-bwa-and-gatk].

If splitting by chromosome for the
realignment/recalibration/variant-calling stages, the pipeline needs a
separate vcf file of known variants for each chromosome/contig, and each
should be named as: *${chr_name}.vcf . Further, all these files need
to be in the INDELDIR which should be within the REFGENOMEDIR
directory as per the runfile.

Resource Requirements

The table below describes the number of nodes each stage needs to achieve
the maximum level of parallelism. One can request fewer resources if
necessary, but at the cost of having some portions running in series.

	Analysis Stage

	Resource
Requirements

	Alignment and Deduplication

	\(Nodes = \frac{Samples}{PROGRAMS_PER_NODE}\)

	Spliting by Chromosome/Contig

	\(Nodes=Chromosomes*\frac{Samples}{PROGRAMS_PER_NODE}\)

	Realignment, Recalibration, and Variant Calling (w/o
splitting by chr)

	\(Nodes = \frac{Samples}{PROGRAMS_PER_NODE}\)

	Realignment, Recalibration, and Variant Calling (w/
splitting by chr)

	\(Nodes=Chromosomes*\frac{Samples}{PROGRAMS_PER_NODE}\)

	Combine Sample Variants

	\(Nodes = \frac{Samples}{PROGRAMS_PER_NODE}\)

	Joint Genotyping

	\(Nodes = 1\)

Notes:

	PROGRAMS_PER_NODE is a variable set in the runfile. Running 10

processes using 20 threads in series may actually be slower than running
the 10 processes in pairs utilizing 10 threads each

	The call to GATK’s GenotypeGVCFs must be done on a single node. It

is best to separate out this stage into its own job submission, so as
not to waste unused resources.

Pipeline Interruptions and Continuations

Background

Because of the varying resource requirements at various stages of the
pipeline, the workflow allows one to stop the pipeline at many stages
and jump back in without having to recompute.

This feature is controlled by the *_STAGE variables of the runfile. At
each stage, the variable can be set to Y if it should be computed, and
N if that stage was completed on a previous execution of the workflow.
If N is selected, the program will simply gather the output that
should have been generated from a previous run and pass it to the next
stage.

In addition, one can set each stage but the final one to End, which
will stop the pipeline after that stage has been executed. Think of
End as a shorthand for “End after this stage”.

Examples

If splitting by chromosome, it may make sense to request different
resources at different times.

One may want to execute only the first two stages of the workflow with #
Nodes = # Samples. For this step, one would use these settings:

ALIGN_STAGE=Y
DEDUP_SORT_STAGE=Y
CHR_SPLIT_STAGE=End # This will be the last stage that is executed
VC_STAGE=N
COMBINE_VARIANT_STAGE=N
JOINT_GENOTYPING_STAGE=N

Then for the variant calling step, where the optimal resource
requirements may be something like # Nodes = (# Samples * #
Chromosomes), one could alter the job submission script to request more
resources, then use these settings:

ALIGN_STAGE=N
DEDUP_SORT_STAGE=N
CHR_SPLIT_STAGE=N
VC_STAGE=End # Only this stage will be executed
COMBINE_VARIANT_STAGE=N
JOINT_GENOTYPING_STAGE=N

Finally, for the last two stages, where it makes sense to set # Nodes =
Samples again, one could alter the submission script again and use
these settings:

ALIGN_STAGE=N
DEDUP_SORT_STAGE=N
CHR_SPLIT_STAGE=N
VC_STAGE=N
COMBINE_VARIANT_STAGE=Y
JOINT_GENOTYPING_STAGE=Y

This feature was designed to allow a more efficient use of computational
resources.

Under The Hood

Each Run function has two paths it can use to produce its output:

	One path actually performs the computations of this stage of the pipeline

2. The other skips the computations and just gathers the output of a prior
execution of this stage.

The later is useful when one wants to jump into
different sections of the pipeline, and also allows Swift/T’s dependency
driven execution to correctly string the stages together into one
workflow.

[image: Structure of the Swift/T pipeline]

Troubleshooting

General Troubleshooting Tips

Regardless of the platform, one can use the following environmental
variables to better debug the workflow:

	ADLB_DEBUG_RANKS=1 One can see if the processes are spread across the nodes correctly

	TURBINE_LOG=1 Makes the Swift-T log output very verbose

	TURBINE_LOG_FILE=<filePath> Changes the Swift-T log output from

StdOut to the file of choice

More debug info can be found
here [http://swift-lang.github.io/swift-t/guide.html]

FAQs

	The pipeline seems to be running, but then prematurely stops at one
of the tools?

	Solution: make sure that all tools are specified in your runfile up to the executable itself (or the jar file if applicable)

	The realignment/recalibration stage produces a lot of errors or
strange results?

	Solution: make sure you are preparing your reference and extra files (dbsnp, 1000G,…etc) according to the guidelines in the Data Preparation section

	Things that should be running in parallel appear to be running
sequencially

	Solution: make sure you are setting the -n flag to a value at least one more than PROGRAMS_PER_NODE * NODES, as this allocates processes for Swift/T itself to run on

	
	The job is killed as soon as BWA is called?

	
	Solution: make sure there is no space in front of BWAMEMPARAMS

	DO-THIS: BWAMEMPARAMS=-k 32 -I 300,30

	NOT-THIS: BWAMEMPARAMS= -k 32 -I 300,30

	I’m not sure how to run on a cluster that uses torque as a resource
manager?

	Clusters are typically configured to kill head node jobs that run longer than a few minutes, to prevent users from hogging the head node. Therefore, you may qsub the initial job, the swift-t command with its set variables, and it will qsub everybody else from its compute node.

	I’m having difficulty running the plotting app. I get an error
regarding plotly

	The logging app depends on many R packages, including plotly and tidyverse. Some of these packages however require some OS specific packages. Fore deb systems (Debian, Ubuntu, ..etc), you may need to install libssl-dev, libcurl4-openssl-dev and libxml2-dev with your favourite package manager for tidyverse and plotly packages to work.

Developer Guide

Files in this repo are organized as follows:

	Folder

	Content

	docs

	The files for
this companion
site [http://swift-t-variant-calling.readthedocs.io/en/latest/]

	media

	Various figures
used in the
documentation

	src

	The source code
of the pipeline,
written in
Swift/T. See the
section Under
The
Hood [https://swift-t-variant-calling.readthedocs.io/en/latest/UnderTheHood.html]
for how it is
designed

	test

	Files for
testing the
pipeline on
different
platforms:
XSEDE [https://www.xsede.org/],
Biocluster [http://help.igb.illinois.edu/Biocluster2],
Blue
Waters [https://bluewaters.ncsa.illinois.edu/]
_,
iForge [http://www.ncsa.illinois.edu/industry/iforge],
and stand alone
server

Citation and Licensing

If you would like to cite the code of this workflow, please use this doi: doi_number <doi_link>. If you would like a specific code version however, please use the doi associated with that version (in the release notes).

Alternatively, you may refer to these works:

	Mainzer LS, Ahmed AE, et al. “Comparative Analysis of Genomic Sequencing Workflow Management Systems”. Poster presentation at the Intelligent Systems for Molecular Biology (ISMB) 2018 conference | Chicago, USA 6-10 July 2018 [pdf]

	Heldenbrand J*, Ahmed AE*, Rodriguez E, et. al. “Modular genomic variant calling workflow in Swift/T”. Poster presentation at the 15th Rocky Mountain Bioinformatics Conference | Aspen/Snowmass, Colorado, USA 7–9 Dec 2017 [pdf]

Index

 _static/ajax-loader.gif

_images/ProgramStructure.png
K/a riantCalling.swift

Align.swift

‘o Align \

DedupSort.swift

dedupSortRun()
e Deduplicate
e Sort

SplitByChr.swift
splitByChrRun()
e Split by Chromosome

RealignRecalAndVC.swift
VCSplitRun() VCNoSplitRun()

e Realign e Realign
e Recalibrate e Recalibrate
e Call Variants e Call Variants
(Split Version) (Non-Split Version)

combineVariantsRun()
e Combine Variants

CombineVariants.swift

jointGenotypeRun()
e Joint Genotyping

k JointGenotyping.swift

_images/WorkflowOverview.png
Alignment &
Deduplication

Split by
Chromosome

Realignment,
Recalibration,
& Variant Calling

Combine Sample
Variants

[Joint Genotyping]

Sample1.bam

CHROMOSOME 1

Sample1.chr1.bam
Sample2.chr1.bam

SampleN.chr1.bam

Sample2.bam

CHROMOSOME 2

Sample1.chr2.bam
Sample2.chr2.bam

SampleN.chr2.bam

SampleN.bam

CHROMOSOME M

Sample1.chrM.bam
Sample2.chrM.bam

SampleN.chrM.bam

Sample1.chr1.vcf
Sample2.chr1.vcf

SampleN.chr1.vcf

Sample1.chr2.vcf
Sample2.chr2.vcf

SampleN.chr2.vcf

Sample1 vcf

N\

JointVariants.vcf

Sample1.chrM.vcf
Sample2.chrM.vcf

SampleN.chrM.vcf

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/OutputLayout.png
deliverables

docs

- runfile

- sampleinfo
- Failure.log
- Timing.log

jointVCFs

The file of
variants called
from all
samples
collectively

OUTPUTDIR

ampleN
Sample2
SampleT

S A T i

align realign variant logs

- original bam - (optional) - (optional) - Tool specific
- sorted bam split bams split vcfs logs
- sorted & - (optional) - full sample

dedupped bam split, realigned, vcf
- flagstats and/or
-(optional) recalibrated bams

picard metrics - realigned, and/or

recalibrated bam

_static/file.png

nav.xhtml

 Table of Contents

 		
 Swift_T_Variant_Calling’s documentation!

 		
 Pipeline architecture and function

 		
 Installation

 		
 Dependencies

 		
 Workflow Installation

 		
 User Guide

 		
 Runfile Options

 		
 Running the Pipeline

 		
 Requesting Resources from the Job Scheduler

 		
 Executing the Swift-T Application

 		
 Output Structure

 		
 Logging functionality

 		
 Swift/T logging options

 		
 Workflow logging options

 		
 Important Notes

 		
 Data preparation

 		
 Resource Requirements

 		
 Pipeline Interruptions and Continuations

 		
 Background

 		
 Examples

 		
 Under The Hood

 		
 Troubleshooting

 		
 General Troubleshooting Tips

 		
 FAQs

 		
 Developer Guide

 		
 Citation and Licensing

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

