

Productive 4.0 - Sweden Demo

Live Liquidity Forecasting — Using GPS tracking, a distributed ledger and advanced probability analytics, we’re creating the next generation liquidity forecasting tool. The goal of this Productive 4.0 [https://productive40.eu/] demonstrator is to track the whereabouts of Volvo truck engines along with their state in the supply-chain. This information will be matched with corresponding truck purchase orders, in order to generate a live liquidity forecast (FX exposure).

In short: Industry 4.0 meets Bank 4.0.

Project members (in alphabetical order)

	Luleå Technical University [https://www.ltu.se/?l=en]

	Emanuel Palm

	Olof Schelén

	Ulf Bodin

	Midroc [https://www.midroc.se/]

	Oscar Carlsson

	NXP Semiconductors [https://www.nxp.com/]

	Till Witt

	Noah Winneberger

	SEB [https://sebgroup.com/]

	Christian Lagerkvist

	Caroline Berg von Linde

	Johan Hörmark

	Jamie Walters

	Volvo Trucks [https://www.volvotrucks.com]

	Richard Hedman

Contents:

	Introduction
	Management summary

	About the Productive 4.0

	Basic architecture

	Creating a Crossbar.io Publisher
	Downloading pip and crossbar:

	Installing autobahn.js via npm:

	Downloading crossbar libraries and autobahn.js repos:

	Creating the GPS Publisher
	Configuring the crossbar.io config file:

	Initializing the crossbar websocket node:

	glossary

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Management summary

Goal of this repository is to provide access to the Swedish usecase demo. The source for this document and the source code can be found at: https://github.com/tlwt/Productive4SwedenDemo

About the Productive 4.0

Productive4.0 is an ambitious holistic innovation project, meant to open the doors to the potentials of Digital Industry and to maintain a leadership position of the industries in Europe. All partners involved will work on creating the capability to efficiently design and integrate hardware and software of Internet of Things (IoT) devices. Linking the real with the digital world takes more than just adding software to the hardware.

Basic architecture

Creating a Crossbar.io Publisher

Downloading pip and crossbar:

Download pip:

$ apt install python3-pip

$ python -m ensurepip
$ python -m pip install -U pip

Install crossbar via pip3 (pyhthon3 is required):

$ pip3 install crossbar

Installing autobahn.js via npm:

Installing nodejs and npm:

$ wget https://nodejs.org/dist/v6.10.1/node-v6.10.1-linux-x64.tar.xz
$ tar xvf node-v6.10.1-linux-x64.tar.xz
$ export PATH=${HOME}/node-v6.10.1-linux-x64/bin:${PATH}
$ export NODE_PATH=${HOME}/node-v6.10.1-linux-x64/lib/node_modules

Installing autobahn and websocket functionality:

$ sudo npm install autobahn
$ sudo npm install ws@2

Downloading crossbar libraries and autobahn.js repos:

$ git clone https://github.com/crossbario/autobahn-js.git

Creating the GPS Publisher

Configuring the crossbar.io config file:

The important changes to make in regard to the initial default configuration is in the “transports” section, where we define the websocket we want to create (in our case the subdomain autobahn.distributedledger.systems and port 9000):

"type": "universal",
"endpoint": {
 "type": "tcp",
 "port": 9000
},
"rawsocket": {},
"websocket": {
 "ws": {
 "type": "websocket",
 "url": "ws://autobahn.distributedledger.systems:9000"
 }
},

Initializing the crossbar websocket node:

As seen in the image below (https://crossbar.io/static/img/gen/multi_protocol_on_white_paths.svg) the setup requires the initialization of a crossbar node via which to cennect to in order for a subscriber to successfully receive information published. Building on the changes made to the config.json file starting the crossabr node is simple.

[image: ../_images/e046be3424de2a56eef067a18d00a6f26ff33288.svg]

Initalizing the crossbar node:

$ crossbar init
$ crossbar start

The result should give an output like this:

[image: chapters/../images/crossbar.png]
We can now connect to the crossbar node via JavaScript:

try {
 // require the autobahn module that was installed via npm, if not globally insert the path to the local node_modules folder
 var autobahn = require('autobahn');
} catch (e) {
 // when running in browser, AutobahnJS will
 // be included without a module system
}

var connection = new autobahn.Connection({
 url: 'ws://autobahn.distributedledger.systems:9000/ws',
 realm: 'realm1'}
);

For more details and examples how to use the node for publishing and subscribing please refer to the frontend.js and backend.js files

glossary

	todo

	this still needing correction

	fork

	to be described ;-)

Index

 F
 | T

F

 	
 	fork

T

 	
 	todo

 nav.xhtml

 Table of Contents

 		
 Productive 4.0 - Sweden Demo

 		
 Introduction

 		
 Management summary

 		
 About the Productive 4.0

 		
 Basic architecture

 		
 Creating a Crossbar.io Publisher

 		
 Downloading pip and crossbar:

 		
 Installing autobahn.js via npm:

 		
 Downloading crossbar libraries and autobahn.js repos:

 		
 Creating the GPS Publisher

 		
 Configuring the crossbar.io config file:

 		
 Initializing the crossbar websocket node:

 		
 Initalizing the crossbar node:

 		
 glossary

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

