

Swauth

Copyright (c) 2010-2012 OpenStack, LLC

An Auth Service for Swift as WSGI Middleware that uses Swift itself as a
backing store. Docs at: https://swauth.readthedocs.io/ or ask in
#openstack-swauth on freenode IRC (archive: http://eavesdrop.openstack.org/irclogs/%23openstack-swauth/).

Source available at: https://github.com/openstack/swauth

See also https://github.com/openstack/keystone for the standard OpenStack
auth service.

Overview

Before discussing how to install Swauth within a Swift system, it might help to understand how Swauth does it work first.

	Swauth is middleware installed in the Swift Proxy’s WSGI pipeline.

	It intercepts requests to /auth/ (by default).

	It also uses Swift’s authorize callback [https://docs.openstack.org/swift/latest/development_auth.html] and acl callback [https://docs.openstack.org/swift/latest/misc.html#acls] features to authorize Swift requests.

	Swauth will also make various internal calls to the Swift WSGI pipeline it’s installed in to manipulate containers and objects within an AUTH_.auth (by default) Swift account. These containers and objects are what store account and user information.

	Instead of #4, Swauth can be configured to call out to another remote Swauth to perform #4 on its behalf (using the swauth_remote config value).

	When managing accounts and users with the various swauth- command line tools, these tools are actually just performing HTTP requests against the /auth/ end point referenced in #2. You can make your own tools that use the same API.

	In the special case of creating a new account, Swauth will do its usual WSGI-internal requests as per #4 but will also call out to the Swift cluster to create the actual Swift account.

	This Swift cluster callout is an account PUT request to the URL defined by the swift_default_cluster config value.

	This callout end point is also saved when the account is created so that it can be given to the users of that account in the future.

	Sometimes, due to public/private network routing or firewalling, the URL Swauth should use should be different than the URL Swauth should give the users later. That is why the default_swift_cluster config value can accept two URLs (first is the one for users, second is the one for Swauth).

	Once an account is created, the URL given to users for that account will not change, even if the default_swift_cluster config value changes. This is so that you can use multiple clusters with the same Swauth system; default_swift_cluster just points to the one where you want new users to go.

	You can change the stored URL for an account if need be with the swauth-set-account-service command line tool or a POST request (see API).

Install

	Install Swauth with sudo python setup.py install or sudo python
setup.py develop or via whatever packaging system you may be using.

	Alter your proxy-server.conf pipeline to have swauth instead of tempauth:

Was:

[pipeline:main]
pipeline = catch_errors cache tempauth proxy-server

Change To:

[pipeline:main]
pipeline = catch_errors cache swauth proxy-server

	Add to your proxy-server.conf the section for the Swauth WSGI filter:

[filter:swauth]
use = egg:swauth#swauth
set log_name = swauth
super_admin_key = swauthkey
default_swift_cluster = <your setting as discussed below>

The default_swift_cluster setting can be confusing.

	If you’re using an all-in-one type configuration where everything will be run on the local host on port 8080, you can omit the default_swift_cluster completely and it will default to local#http://127.0.0.1:8080/v1.

	If you’re using a single Swift proxy you can just set the default_swift_cluster = cluster_name#https://<public_ip>:<port>/v1 and that URL will be given to users as well as used by Swauth internally. (Quick note: be sure the http vs. https is set right depending on if you’re using SSL.)

	If you’re using multiple Swift proxies behind a load balancer, you’ll probably want default_swift_cluster = cluster_name#https://<load_balancer_ip>:<port>/v1#http://127.0.0.1:<port>/v1 so that Swauth gives out the first URL but uses the second URL internally. Remember to double-check the http vs. https settings for each of the URLs; they might be different if you’re terminating SSL at the load balancer.

Also see the proxy-server.conf-sample for more config options, such as the ability to have a remote Swauth in a multiple Swift cluster configuration.

	Be sure your Swift proxy allows account management in the proxy-server.conf:

[app:proxy-server]
...
allow_account_management = true

For greater security, you can leave this off any public proxies and just have one or two private proxies with it turned on.

	Restart your proxy server swift-init proxy reload

	Initialize the Swauth backing store in Swift swauth-prep -K swauthkey

	Add an account/user swauth-add-user -A http[s]://<host>:<port>/auth/ -K
swauthkey -a test tester testing

	Ensure it works swift -A http[s]://<host>:<port>/auth/v1.0 -U test:tester -K testing stat -v

If anything goes wrong, it’s best to start checking the proxy server logs. The client command line utilities often don’t get enough information to help. I will often just tail -F the appropriate proxy log (/var/log/syslog or however you have it configured) and then run the Swauth command to see exactly what requests are happening to try to determine where things fail.

General note, I find I occasionally just forget to reload the proxies after a config change; so that’s the first thing you might try. Or, if you suspect the proxies aren’t reloading properly, you might try swift-init proxy stop, ensure all the processes died, then swift-init proxy start.

Also, it’s quite common to get the /auth/v1.0 vs. just /auth/ URL paths confused. Usual rule is: Swauth tools use just /auth/ and Swift tools use /auth/v1.0.

Web Admin Install

	If you installed from packages, you’ll need to cd to the webadmin directory
the package installed. This is /usr/share/doc/python-swauth/webadmin
with the Lucid packages. If you installed from source, you’ll need to cd to
the webadmin directory in the source directory.

	Upload the Web Admin files with swift -A http[s]://<host>:<port>/auth/v1.0
-U .super_admin:.super_admin -K swauthkey upload .webadmin .

	Open http[s]://<host>:<port>/auth/ in your browser.

Swift3 Middleware Compatibility

Swift3 middleware [https://github.com/openstack/swift3] support has to be
explicitly turned on in conf file using s3_support config option. It can
easily be used with swauth when auth_type in swauth is configured to be
Plaintext (default):

[pipeline:main]
pipeline = catch_errors cache swift3 swauth proxy-server

[filter:swauth]
use = egg:swauth#swauth
super_admin_key = swauthkey
s3_support = on

The AWS S3 client uses password in plaintext to
compute HMAC signature [https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html]
When auth_type in swauth is configured to be Sha1 or Sha512, swauth
can only use the stored hashed password to compute HMAC signature. This results
in signature mismatch although the user credentials are correct.

When auth_type is not Plaintext, the only way for S3 clients to
authenticate is by giving SHA1/SHA512 of password as input to it’s HMAC
function. In this case, the S3 clients will have to know auth_type and
auth_type_salt beforehand. Here is a sample configuration:

[pipeline:main]
pipeline = catch_errors cache swift3 swauth proxy-server

[filter:swauth]
use = egg:swauth#swauth
super_admin_key = swauthkey
s3_support = on
auth_type = Sha512
auth_type_salt = mysalt

Security Concern: Swauth stores user information (username, password hash,
salt etc) as objects in the Swift cluster. If these backend objects which
contain password hashes gets stolen, the intruder will be able to authenticate
using the hash directly when S3 API is used.

Contents

	LICENSE

	Implementation Details

	swauth

	swauth.middleware

	Swauth API
	Overview

	Reseller/Admin Services

	Account Services

	User Services

	Other Services

	swauth.authtypes

Indices and tables

	Index

	Module Index

	Search Page

LICENSE

 Copyright (c) 2010-2011 OpenStack, LLC

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Implementation Details

The Swauth system is a scalable authentication and authorization system that
uses Swift itself as its backing store. This section will describe how it
stores its data.

Note

You can access Swauth’s internal .auth account by using the account:user of
.super_admin:.super_admin and the super admin key you have set in your
configuration. Here’s an example using st on a standard SAIO: st -A
http://127.0.0.1:8080/auth/v1.0 -U .super_admin:.super_admin -K swauthkey
stat

At the topmost level, the auth system has its own Swift account it stores its
own account information within. This Swift account is known as
self.auth_account in the code and its name is in the format
self.reseller_prefix + “.auth”. In this text, we’ll refer to this account as
<auth_account>.

The containers whose names do not begin with a period represent the accounts
within the auth service. For example, the <auth_account>/test container would
represent the “test” account.

The objects within each container represent the users for that auth service
account. For example, the <auth_account>/test/bob object would represent the
user “bob” within the auth service account of “test”. Each of these user
objects contain a JSON dictionary of the format:

{"auth": "<auth_type>:<auth_value>", "groups": <groups_array>}

The <auth_type> specifies how the user key is encoded. The default is plaintext,
which saves the user’s key in plaintext in the <auth_value> field.
The value sha1 is supported as well, which stores the user’s key as a salted
SHA1 hash. Note that using a one-way hash like SHA1 will likely inhibit future use of key-signing request types, assuming such support is added. The <auth_type> can be specified in the swauth section of the proxy server’s
config file, along with the salt value in the following way:

auth_type = <auth_type>
auth_type_salt = <salt-value>

Both fields are optional. auth_type defaults to plaintext and auth_type_salt defaults to “swauthsalt”. Additional auth types can be implemented along with existing ones in the authtypes.py module.

The <groups_array> contains at least two groups. The first is a unique group
identifying that user and it’s name is of the format <user>:<account>. The
second group is the <account> itself. Additional groups of .admin for
account administrators and .reseller_admin for reseller administrators may
exist. Here’s an example user JSON dictionary:

{"auth": "plaintext:testing",
 "groups": [{"name": "test:tester"}, {"name": "test"}, {"name": ".admin"}]}

To map an auth service account to a Swift storage account, the Service Account
Id string is stored in the X-Container-Meta-Account-Id header for the
<auth_account>/<account> container. To map back the other way, an
<auth_account>/.account_id/<account_id> object is created with the contents of
the corresponding auth service’s account name.

Also, to support a future where the auth service will support multiple Swift
clusters or even multiple services for the same auth service account, an
<auth_account>/<account>/.services object is created with its contents having a
JSON dictionary of the format:

{"storage": {"default": "local", "local": <url>}}

The “default” is always “local” right now, and “local” is always the single
Swift cluster URL; but in the future there can be more than one cluster with
various names instead of just “local”, and the “default” key’s value will
contain the primary cluster to use for that account. Also, there may be more
services in addition to the current “storage” service right now.

Here’s an example .services dictionary at the moment:

{"storage":
 {"default": "local",
 "local": "http://127.0.0.1:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9"}}

But, here’s an example of what the dictionary may look like in the future:

{"storage":
 {"default": "dfw",
 "dfw": "http://dfw.storage.com:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9",
 "ord": "http://ord.storage.com:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9",
 "sat": "http://ord.storage.com:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9"},
 "servers":
 {"default": "dfw",
 "dfw": "http://dfw.servers.com:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9",
 "ord": "http://ord.servers.com:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9",
 "sat": "http://ord.servers.com:8080/v1/AUTH_8980f74b1cda41e483cbe0a925f448a9"}}

Lastly, the tokens themselves are stored as objects in the
<auth_account>/.token_[0-f] containers. The names of the objects are the
token strings themselves, such as AUTH_tked86bbd01864458aa2bd746879438d5a.
The exact .token_[0-f] container chosen is based on the final digit of the
token name, such as .token_a for the token
AUTH_tked86bbd01864458aa2bd746879438d5a. The contents of the token objects
are JSON dictionaries of the format:

{"account": <account>,
 "user": <user>,
 "account_id": <account_id>,
 "groups": <groups_array>,
 "expires": <time.time() value>}

The <account> is the auth service account’s name for that token. The <user>
is the user within the account for that token. The <account_id> is the
same as the X-Container-Meta-Account-Id for the auth service’s account,
as described above. The <groups_array> is the user’s groups, as described
above with the user object. The “expires” value indicates when the token is no
longer valid, as compared to Python’s time.time() value.

Here’s an example token object’s JSON dictionary:

{"account": "test",
 "user": "tester",
 "account_id": "AUTH_8980f74b1cda41e483cbe0a925f448a9",
 "groups": [{"name": "test:tester"}, {"name": "test"}, {"name": ".admin"}],
 "expires": 1291273147.1624689}

To easily map a user to an already issued token, the token name is stored in
the user object’s X-Object-Meta-Auth-Token header.

Here is an example full listing of an <auth_account>:

.account_id
 AUTH_2282f516-559f-4966-b239-b5c88829e927
 AUTH_f6f57a3c-33b5-4e85-95a5-a801e67505c8
 AUTH_fea96a36-c177-4ca4-8c7e-b8c715d9d37b
.token_0
.token_1
.token_2
.token_3
.token_4
.token_5
.token_6
 AUTH_tk9d2941b13d524b268367116ef956dee6
.token_7
.token_8
 AUTH_tk93627c6324c64f78be746f1e6a4e3f98
.token_9
.token_a
.token_b
.token_c
.token_d
.token_e
 AUTH_tk0d37d286af2c43ffad06e99112b3ec4e
.token_f
 AUTH_tk766bbde93771489982d8dc76979d11cf
reseller
 .services
 reseller
test
 .services
 tester
 tester3
test2
 .services
 tester2

swauth

swauth.middleware

Swauth API

Overview

Swauth has its own internal versioned REST API for adding, removing,
and editing accounts. This document explains the v2 API.

Authentication

Each REST request against the swauth API requires the inclusion of a
specific authorization user and key to be passed in a specific HTTP
header. These headers are defined as X-Auth-Admin-User and
X-Auth-Admin-Key.

Typically, these values are .super_admin (the site super admin
user) with the key being specified in the swauth middleware
configuration as super_admin_key.

This could also be a reseller admin with the appropriate rights to
perform actions on reseller accounts.

Endpoints

The swauth API endpoint is presented on the proxy servers, in the
“/auth” namespace. In addition, the API is versioned, and the version
documented is version 2. API versions subdivide the auth namespace by
version, specified as a version identifier like “v2”.

The auth endpoint described herein is therefore located at “/auth/v2/”
as presented by the proxy servers.

Bear in mind that in order for the auth management API to be
presented, it must be enabled in the proxy server config by setting
allow_account_managment to true in the [app:proxy-server]
stanza of your proxy-server.conf.

Responses

Responses from the auth APIs are returned as a JSON structure.
Example return values in this document are edited for readability.

Reseller/Admin Services

Operations can be performed against the endpoint itself to perform
general administrative operations. Currently, the only operations
that can be performed is a GET operation to get reseller or site admin
information.

Get Admin Info

A GET request at the swauth endpoint will return reseller information
for the account specified in the X-Auth-Admin-User header.
Currently, the information returned is limited to a list of accounts
for the reseller or site admin.

	Valid return codes:

	
	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	5xx: Internal error

Example Request:

GET /auth/<api version>/ HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -D - https://<endpoint>/auth/v2/ \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Result:

HTTP/1.1 200 OK

{ "accounts":
 [
 { "name": "account1" },
 { "name": "account2" },
 { "name": "account3" }
]
}

Account Services

There are API request to get account details, create, and delete
accounts, mapping logically to the REST verbs GET, PUT, and DELETE.
These actions are performed against an account URI, in the following
general request structure:

METHOD /auth/<version>/<account> HTTP/1.1

The methods that can be used are detailed below.

Get Account Details

Account details can be retrieved by performing a GET request against
an account URI. On success, a JSON dictionary will be returned
containing the keys account_id, services, and users. The
account_id is the value used when creating service accounts. The
services value is a dict that represents valid storage cluster
endpoints, and which endpoint is the default. The ‘users’ value is a
list of dicts, each dict representing a user and currently only
containing the single key ‘name’.

	Valid Responses:

	
	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	5xx: Internal error

Example Request:

GET /auth/<api version>/<account> HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -D - https://<endpoint>/auth/v2/<account> \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Response:

HTTP/1.1 200 OK

{ "services":
 { "storage":
 { "default": "local",
 "local": "https://<storage endpoint>/v1/<account_id>" }
 },
 "account_id": "<account_id>",
 "users": [{ "name": "user1" },
 { "name": "user2" }]
}

Create Account

An account can be created with a PUT request against a non-existent
account. By default, a newly created UUID4 will be used with the
reseller prefix as the account ID used when creating corresponding
service accounts. However, you can provide an X-Account-Suffix header
to replace the UUDI4 part.

	Valid return codes:

	
	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	5xx: Internal error

Example Request:

PUT /auth/<api version>/<new_account> HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -XPUT -D - https://<endpoint>/auth/v2/<new_account> \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Response:

HTTP/1.1 201 Created

Delete Account

An account can be deleted with a DELETE request against an existing
account.

	Valid Responses:

	
	204: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	404: Account not found

	5xx: Internal error

Example Request:

DELETE /auth/<api version>/<account> HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -XDELETE -D - https://<endpoint>/auth/v2/<account> \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Response:

HTTP/1.1 204 No Content

User Services

Each account in swauth contains zero or more users. These users can
be determined with the ‘Get Account Details’ API request against an
account.

Users in an account can be created, modified, and detailed as
described below by apply the appropriate REST verbs to a user URI, in
the following general request structure:

METHOD /auth/<version>/<account>/<user> HTTP/1.1

The methods that can be used are detailed below.

Get User Details

User details can be retrieved by performing a GET request against
a user URI. On success, a JSON dictionary will be returned as
described:

{"groups": [# List of groups the user is a member of
 {"name": "<act>:<usr>"},
 # The first group is a unique user identifier
 {"name": "<account>"},
 # The second group is the auth account name
 {"name": "<additional-group>"}
 # There may be additional groups, .admin being a
 # special group indicating an account admin and
 # .reseller_admin indicating a reseller admin.
],
 "auth": "<auth-type>:<key>"
 # The auth-type and key for the user; currently only
 # plaintext and sha1 are implemented as auth types.
}

For example:

{"groups": [{"name": "test:tester"}, {"name": "test"},
 {"name": ".admin"}],
 "auth": "plaintext:testing"}

	Valid Responses:

	
	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	404: Unknown account

	5xx: Internal error

Example Request:

GET /auth/<api version>/<account>/<user> HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -D - https://<endpoint>/auth/v2/<account>/<user> \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Response:

HTTP/1.1 200 Ok

{ "groups": [{ "name": "<account>:<user>" },
 { "name": "<account>" },
 { "name": ".admin" }],
 "auth" : "plaintext:password" }

Create User

A user can be created with a PUT request against a non-existent
user URI. The new user’s password must be set using the
X-Auth-User-Key header. The user name MUST NOT start with a
period (‘.’). This requirement is enforced by the API, and will
result in a 400 error. Alternatively you can use
X-Auth-User-Key-Hash header for providing already hashed
password in format <auth_type>:<hashed_password>.

Optional Headers:

	X-Auth-User-Admin: true: create the user as an account admin

	X-Auth-User-Reseller-Admin: true: create the user as a reseller
admin

Reseller admin accounts can only be created by the site admin, while
regular accounts (or account admin accounts) can be created by an
account admin, an appropriate reseller admin, or the site admin.

Note that PUT requests are idempotent, and the PUT request serves as
both a request and modify action.

	Valid Responses:

	
	200: Success

	400: Invalid request (missing required headers)

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key, or insufficient priv

	404: Unknown account

	5xx: Internal error

Example Request:

PUT /auth/<api version>/<account>/<user> HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey
X-Auth-User-Admin: true
X-Auth-User-Key: secret

Example Curl Request:

curl -XPUT -D - https://<endpoint>/auth/v2/<account>/<user> \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey" \
-H "X-Auth-User-Admin: true" \
-H "X-Auth-User-Key: secret"

Example Response:

HTTP/1.1 201 Created

Delete User

A user can be deleted by performing a DELETE request against a user
URI. This action can only be performed by an account admin,
appropriate reseller admin, or site admin.

	Valid Responses:

	
	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key, or insufficient priv

	404: Unknown account or user

	5xx: Internal error

Example Request:

DELETE /auth/<api version>/<account>/<user> HTTP/1.1
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -XDELETE -D - https://<endpoint>/auth/v2/<account>/<user> \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Response:

HTTP/1.1 204 No Content

Other Services

There are several other swauth functions that can be performed, mostly
done via “pseudo-user” accounts. These are well-known user names that
are unable to be actually provisioned. These pseudo-users are
described below.

Set Service Endpoints

Service endpoint information can be retrived using the Get Account
Details API method.

This function allows setting values within this section for
the <account>, allowing the addition of new service end points
or updating existing ones by performing a POST to the URI
corresponding to the pseudo-user “.services”.

The body of the POST request should contain a JSON dict with
the following format:

{"service_name": {"end_point_name": "end_point_value"}}

There can be multiple services and multiple end points in the
same call.

Any new services or end points will be added to the existing
set of services and end points. Any existing services with the
same service name will be merged with the new end points. Any
existing end points with the same end point name will have
their values updated.

The updated services dictionary will be returned on success.

Valid Responses:

	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	404: Account not found

	5xx: Internal error

Example Request:

POST /auth/<api version>/<account>/.services HTTP/1.0
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

{"storage": { "local": "<new endpoint>" }}

Example Curl Request:

curl -XPOST -D - https://<endpoint>/auth/v2/<account>/.services \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey" --data-binary \
'{ "storage": { "local": "<new endpoint>" }}'

Example Response:

HTTP/1.1 200 OK

{"storage": {"default": "local", "local": "<new endpoint>" }}

Get Account Groups

Individual user group information can be retrieved using the Get User Details API method.

This function allows retrieving all group information for all users in
an existing account. This can be achieved using a GET action against
a user URI with the pseudo-user “.groups”.

The JSON dictionary returned will be a “groups” dictionary similar to
that documented in the Get User Details method, but representing
the summary of all groups utilized by all active users in the account.

	Valid Responses:

	
	200: Success

	403: Invalid X-Auth-Admin-User/X-Auth-Admin-Key

	404: Account not found

	5xx: Internal error

Example Request:

GET /auth/<api version>/<account>/.groups
X-Auth-Admin-User: .super_admin
X-Auth-Admin-Key: swauthkey

Example Curl Request:

curl -D - https://<endpoint>/auth/v2/<account>/.groups \
-H "X-Auth-Admin-User: .super_admin" \
-H "X-Auth-Admin-Key: swauthkey"

Example Response:

HTTP/1.1 200 OK

{ "groups": [{ "name": ".admin" },
 { "name": "<account>" },
 { "name": "<account>:user1" },
 { "name": "<account>:user2" }] }

swauth.authtypes

This module hosts available auth types for encoding and matching user keys.
For adding a new auth type, simply write a class that satisfies the following
conditions:

	For the class name, capitalize first letter only. This makes sure the user
can specify an all-lowercase config option such as “plaintext” or “sha1”.
Swauth takes care of capitalizing the first letter before instantiating it.

	Write an encode(key) method that will take a single argument, the user’s key,
and returns the encoded string. For plaintext, this would be
“plaintext:<key>”

	Write a match(key, creds) method that will take two arguments: the user’s
key, and the user’s retrieved credentials. Return a boolean value that
indicates whether the match is True or False.

	
swauth.authtypes.MAX_TOKEN_LENGTH = 5000

	Maximum length any valid token should ever be.

	
class swauth.authtypes.Plaintext

	Bases: object

Provides a particular auth type for encoding format for encoding and
matching user keys.

This class must be all lowercase except for the first character, which
must be capitalized. encode and match methods must be provided and are
the only ones that will be used by swauth.

	
encode(key)

	Encodes a user key into a particular format. The result of this method
will be used by swauth for storing user credentials.

	Parameters

	key – User’s secret key

	Returns

	A string representing user credentials

	
match(key, creds, **kwargs)

	Checks whether the user-provided key matches the user’s credentials

	Parameters

	
	key – User-supplied key

	creds – User’s stored credentials

	kwargs – Extra keyword args for compatibility reason with
other auth_type classes

	Returns

	True if the supplied key is valid, False otherwise

	
validate(auth_rest)

	Validate user credentials whether format is right for Plaintext

	Parameters

	auth_rest – User credentials’ part without auth_type

	Returns

	Dict with a hash part of user credentials

	Raises

	ValueError – If credentials’ part has zero length

	
class swauth.authtypes.Sha1

	Bases: object

Provides a particular auth type for encoding format for encoding and
matching user keys.

This class must be all lowercase except for the first character, which
must be capitalized. encode and match methods must be provided and are
the only ones that will be used by swauth.

	
encode(key)

	Encodes a user key into a particular format. The result of this method
will be used by swauth for storing user credentials.

If salt is not manually set in conf file, a random salt will be
generated and used.

	Parameters

	key – User’s secret key

	Returns

	A string representing user credentials

	
encode_w_salt(salt, key)

	Encodes a user key with salt into a particular format. The result of
this method will be used internally.

	Parameters

	
	salt – Salt for hashing

	key – User’s secret key

	Returns

	A string representing user credentials

	
match(key, creds, salt, **kwargs)

	Checks whether the user-provided key matches the user’s credentials

	Parameters

	
	key – User-supplied key

	creds – User’s stored credentials

	salt – Salt for hashing

	kwargs – Extra keyword args for compatibility reason with
other auth_type classes

	Returns

	True if the supplied key is valid, False otherwise

	
validate(auth_rest)

	Validate user credentials whether format is right for Sha1

	Parameters

	auth_rest – User credentials’ part without auth_type

	Returns

	Dict with a hash and a salt part of user credentials

	Raises

	ValueError – If credentials’ part doesn’t contain delimiter
between a salt and a hash.

	
class swauth.authtypes.Sha512

	Bases: object

Provides a particular auth type for encoding format for encoding and
matching user keys.

This class must be all lowercase except for the first character, which
must be capitalized. encode and match methods must be provided and are
the only ones that will be used by swauth.

	
encode(key)

	Encodes a user key into a particular format. The result of this method
will be used by swauth for storing user credentials.

If salt is not manually set in conf file, a random salt will be
generated and used.

	Parameters

	key – User’s secret key

	Returns

	A string representing user credentials

	
encode_w_salt(salt, key)

	Encodes a user key with salt into a particular format. The result of
this method will be used internal.

	Parameters

	
	salt – Salt for hashing

	key – User’s secret key

	Returns

	A string representing user credentials

	
match(key, creds, salt, **kwargs)

	Checks whether the user-provided key matches the user’s credentials

	Parameters

	
	key – User-supplied key

	creds – User’s stored credentials

	salt – Salt for hashing

	kwargs – Extra keyword args for compatibility reason with
other auth_type classes

	Returns

	True if the supplied key is valid, False otherwise

	
validate(auth_rest)

	Validate user credentials whether format is right for Sha512

	Parameters

	auth_rest – User credentials’ part without auth_type

	Returns

	Dict with a hash and a salt part of user credentials

	Raises

	ValueError – If credentials’ part doesn’t contain delimiter
between a salt and a hash.

	
swauth.authtypes.validate_creds(creds)

	Parse and validate user credentials whether format is right

	Parameters

	creds – User credentials

	Returns

	Auth_type class instance and parsed user credentials in dict

	Raises

	ValueError – If credential format is wrong (eg: bad auth_type)

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 swauth	

Index

 S

S

 	
 	swauth (module)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Swauth

 		
 LICENSE

 		
 Implementation Details

 		
 swauth

 		
 swauth.middleware

 		
 Swauth API

 		
 Overview

 		
 Authentication

 		
 Endpoints

 		
 Responses

 		
 Reseller/Admin Services

 		
 Get Admin Info

 		
 Account Services

 		
 Get Account Details

 		
 Create Account

 		
 Delete Account

 		
 User Services

 		
 Get User Details

 		
 Create User

 		
 Delete User

 		
 Other Services

 		
 Set Service Endpoints

 		
 Get Account Groups

 		
 swauth.authtypes

_static/up-pressed.png

_static/up.png

