
Sverchok Documentation
Release 0.5

nortikin

Nov 05, 2017

Contents

1 Installation 3
1.1 Troubleshooting Installation Errors . 3

2 Introduction to geometry 5
2.1 Basics . 5
2.2 3D Geometry . 5

3 Introduction to Sverchok 9
3.1 Unit 00 - Introduction to NodeView and 3DView . 9
3.2 Unit 01 - Introduction to modular components . 10

4 Nodes 19
4.1 Generators . 19
4.2 Generators Extended . 34
4.3 Transforms . 69
4.4 Analyzers . 77
4.5 Modifier Change . 94
4.6 Modifier Make . 115
4.7 Number . 121
4.8 Vector . 134
4.9 Matrix . 149
4.10 Logic . 150
4.11 List Main . 152
4.12 List Struct . 157
4.13 List Masks . 163
4.14 List Mutators . 165
4.15 Viz . 168
4.16 Text . 173
4.17 Scene . 178
4.18 Objects . 181
4.19 BPY data . 182
4.20 Layout . 182
4.21 Network . 184
4.22 Beta Nodes . 184
4.23 Alpha Nodes . 185

5 Contribute 187

i

5.1 Our workflow: . 187
5.2 What not to do: . 187
5.3 Helpful hints . 187
5.4 To create a node: . 188
5.5 SOME RULES: . 188

6 Panels of Sverchok 191
6.1 Node Tree Panel . 191
6.2 3D Panel . 192
6.3 Import Export Panel . 193
6.4 Groups Panel . 194
6.5 Templates in menu panel of nodes area . 194

7 Indices and tables 195

ii

Sverchok Documentation, Release 0.5

Contents:

Contents 1

Sverchok Documentation, Release 0.5

2 Contents

CHAPTER 1

Installation

1.1 Troubleshooting Installation Errors

1.1.1 NumPy

We now include NumPy code in Sverchok nodes, this means that you should have an up-to-date version of NumPy on
your machine. Normally if you get your Blender from official site, precompiled NumPy will be included with Python,
however this isn’t always the case. The windows builds on blender buildbot may contain a cut down version of NumPy
due to the licenses under which it can be spread in compiled form. In any operation system if you have correct python
version installed stand-alone, you may have not proper version of numpy itself.

If you get an error when enabling Sverchok the last lines of the error are important, if it mentions:

• ImportError: No module named ‘numpy’

• multiarray

• DLL failure

• Module use of python33.dll conflicts with this version of Python

then here are steps to fix that1:

• download and install Python 3.4.(1) for your os

• download and install NumPy 1.8 (for python 3.4) for your os.

• in the Blender directory rename the python folder to _python so Blender uses your local Python 3.4 install.

binaries:

• python: https://www.python.org/downloads/release/python-341/

• numpy: http://sourceforge.net/projects/numpy/files/NumPy/

To confirm that NumPy is installed properly on your system, for py3.4, launch your python34 interpretter/console and
the following NumPy import should produce no error.:

1 If you get an error, this means NumPy failed to install. We can’t really troubleshoot that

3

https://www.python.org/downloads/release/python-341/
http://sourceforge.net/projects/numpy/files/NumPy/

Sverchok Documentation, Release 0.5

Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:38:22) <edited>
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>>

4 Chapter 1. Installation

CHAPTER 2

Introduction to geometry

2.1 Basics

If you’ve ever created a mesh and geometry programatically then you can skip this section. If you are uncertain what
any of the following terms mean then use it as a reference for further study:

List, Index, Vector, Vertex, Edge, Polygon, Normal, Transformation, and Matrix.

2.1.1 List

As a visual programming language Sverchok borrows many terms from text-based programming languages, specifi-
cally from Python. Sverchok uses Lists to store geometry, Lists offer fast and ordered storage. The items stored in
Lists are called Elements. Each element of a List is assigned a unique sequential index.

2.1.2 Index

plural: Indices

Indices allow us to quickly reference a specific element of a List. The index of the first element is 0 and the index of
the last element is equal to the number of total elements minus 1.

2.2 3D Geometry

2.2.1 Vector

The most fundamental element you need to know about is the Vector. Think of Vectors as things that have a multitude
of properties (also called components). For example House prices are calculated depending on maybe 20 or more
different properties: floor space, neighbourhood, age, any renovations, rooms, bathrooms, garage... The point is, a
house can be seen as a Vector datapoint:

5

Sverchok Documentation, Release 0.5

House_one = Vector((floor_space, neighbourhood, age, renovations, rooms, ...))

or simply
House_one = (floor_space, neighbourhood, age, renovations, rooms, ...)

3D Geometry concentrates mostly on a small number of components. X, Y, Z, and maybe W. If you’ve ever
scaled or moved a model in 3d space you have performed Vector Math on the locations of those 3d points. The concept
of 3d location or point in 3d space is so important that the Vector used to describe the idea has a special name; Vertex,
and it is a special, limited, case of a Vector. More about this later.

Understanding Vectors and Vector math is an integral part of parametric modeling and generative design, and it’s a
lot easier than it might appear at first. You won’t have to do the calculations yourself, but you will need to feed
Sverchok meaningful input. The good news is that figuring out what Vector math operations produce which results
can be learned through observation and understood by experimenting interactively.

The various ways in which Vectors can be manipulated will be covered in subsequent parts. If you want to do cool
stuff with Sverchok spend time getting to understand Vector based math, it will be time well spent.

2.2.2 Vertex

plural: Vertices

A vertex is a point in 3d space described by 3 or 4 values which represent its X, Y and Z location. Optionally a 4th
value can represent a property of the vertex, usually influence or weight and is denoted by W.

A quick Python example should clarify this. The following would make 3 vertices. In this case each vertex has 3
components.:

v0 = (1.0, 1.0, 0.0)
v1 = (0.5, 0.6, 1.0)
v2 = (0.0, 1.0, 0.0)

Mesh objects in Blender contain geometric data stored in lists. In Python and Sverchok an empty list looks like []
(open and closed square brackets). Vertices are stored in lists too, a list with 3 vertices might look like:

vertices = [
(1.0, 1.0, 0.0),
(0.5, 0.6, 1.0),
(0.0, 1.0, 0.0)

]

2.2.3 Edges

Edges form a bond between 2 vertices. Edges are also stored in a list associated with the mesh object. For example
the following sets up an empty list to hold the edges:

edges = []

If we want to declare edges, we reference the vertices by index. Below is an example of how 3 edges are created:

edges = [[0, 1], [1, 2], [2, 0]]

Here you see we are using lists inside lists to help separate the edges. This is called Nesting

6 Chapter 2. Introduction to geometry

Sverchok Documentation, Release 0.5

2.2.4 Polygons

also called Faces or Polys

Polygons are built using the same convention as Edges. The main difference is that polygons include at least 3 unique
vertex indices. For the purposes of this introduction we’ll only cover polygons made from 3 or 4 vertices, these are
called Tris and Quads respectively.

Now imagine we have a total of 6 vertices, the last vertex index is 5. If we want to create 2 polygons, each built from
3 vertices, we do:

polygons = [[0, 1, 2], [3, 4, 5]]

In Blender you might mix Tris and Quads in one object during the modelling process, but for Sverchok geometry
you’ll find it more convenient to create separate lists for each and combine them at the end.

An example that sets us up for the first Sverchok example is the following pyhon code:

this code can be run from Blender Text Editor and it will generate a Cube.

import bpy

verts = [
(1.0, 1.0,-1.0),
(1.0,-1.0,-1.0),
(-1.0,-1.0,-1.0),
(-1.0, 1.0,-1.0),
(1.0, 1.0, 1.0),
(1.0,-1.0, 1.0),
(-1.0,-1.0, 1.0),
(-1.0, 1.0, 1.0)

]

edges = [] # empty list for now.

faces = [
(0, 1, 2, 3),
(4, 7, 6, 5),
(0, 4, 5, 1),
(1, 5, 6, 2),
(2, 6, 7, 3),
(4, 0, 3, 7)

]

mesh_data = bpy.data.meshes.new("cube_mesh_data")
mesh_data.from_pydata(verts, edges, faces)
mesh_data.update()

cube_object = bpy.data.objects.new("Cube_Object", mesh_data)

scene = bpy.context.scene
scene.objects.link(cube_object)
cube_object.select = True

If we extract from that the geometry only we are left with:

v0 = (1.0, 1.0, -1.0)
v1 = (1.0, -1.0, -1.0)
v2 = (-1.0, -1.0, -1.0)

2.2. 3D Geometry 7

Sverchok Documentation, Release 0.5

v3 = (-1.0, 1.0, -1.0)
v4 = (1.0, 1.0, 1.0)
v5 = (1.0, -1.0, 1.0)
v6 = (-1.0, -1.0, 1.0)
v7 = (-1.0, 1.0, 1.0)

vertices = [v0, v1, v2, v3, v4, v5, v6, v7]

polygons = [
(0, 1, 2, 3),
(4, 7, 6, 5),
(0, 4, 5, 1),
(1, 5, 6, 2),
(2, 6, 7, 3),
(4, 0, 3, 7)

]

2.2.5 Side Effect of Defining Polygons

A chain of Vertex indices defines a polygon and each polygon has edges that make up its boundary. If a polygon has
4 vertices, then it also has 4 edges (or sides..if you prefer).

example 1

If we take the above polygons list as example and look at the first polygon (index=0), it reads (0, 1, 2, 3). That
polygon therefor defines the following edges (0,1),(1,2),(2,3),(3,0). The last edge (3,0) is the edge that
closes the polygon.

example 2

The polygon with index 3 reads (1, 5, 6, 2), it implies the following edges (1,5) (5,6) (6,2) (2,1).

2.2.6 Ready?

I think this broadly covers the things you should be comfortable with before Sverchok will make sense.

2.2.7 Sverchok

This section will introduce you to a selection of nodes that can be combined to create renderable geometry. Starting
with the simple Plane generator

8 Chapter 2. Introduction to geometry

CHAPTER 3

Introduction to Sverchok

> Dealga McArdle | December | 2014

You have installed the addon, if not then read the installation notes. If you’ve ever used Nodes for anything in Blender,
Cycles / Compositor Nodes feel free to continue straight to Unit 01 if you see the RNA icon in the list of NodeView
types.

3.1 Unit 00 - Introduction to NodeView and 3DView

The following Unit(s) will introduce you to the essential parts of the Blender interface that Sverchok uses: The 3DView
and the Node Editor (NodeView)

3.1.1 Unit 00. Introduction to Blender, the NodeView and 3DView

Sverchok Installed, what now?

If you have a tickbox beside the Sverchok add-on in the Add-ons list in User Preferences, then it’s safe to assume the
add-on is enabled. To show the basics you need to have a NodeView open, and it’s useful to have a 3DView open at
the same time.

NodeView and 3DView

1. Split a View:

To do this we can split the existing 3DView into two views, by leftclicking into the little triangle/diagonal lines
in the bottom left of the 3dview, and dragging to the right.

2. Switch a View:

Then you switch the resulting second 3DView to a NodeView (Node Editor)

9

Sverchok Documentation, Release 0.5

3. Sverchok Node Tree:

This icon shows that Sverchok Nodes can be loaded, you’ll see it among the other Node Tree types.

4. Make a new Tree:

When you start out you will have to press the New button to make a new node tree called (by default) NodeTree

becomes

5. Adding Nodes to the View:

This View is a NodeView, from here you can use the Add Menu.

3.2 Unit 01 - Introduction to modular components

The following Units will introduce no more than 10 node types per lesson. Take your time to get through the parts that
are text heavy, some concepts take longer to explain not because they are difficult to understand, but because there is
simply more to cover.

3.2.1 Introduction to modular components

prerequisites

You should have a general understanding of Vectors and Trigonometry, if not then soon enough parts of these lessons
might be confusing. If you want to get the most of out Sverchok but don’t have a strong Math background then work
your way through related KhanAcademy content, it’s a great resource and mind bogglingly comprehensive.

Lesson 01 - A Plane

Nodes covered in this lesson: Math, Vector In, Float, Range Float, Viewer Draw,
Stethoschope, Formula, Vector Math.

Let’s make a set of 4 vectors and combine them to represent a plane. I’ll use the Trigonometric concept of the unit-
circle to get coordinates which are 0.5 PI appart.

We carefully pick points on the unit-circle so that when we connect them via edges it results in a square. To begin we
want to create a series of numbers, to represent those points on the unit-circle. Essentially this sequence is [0.25
pi, 0.75 pi, 1.25 pi, 1.75 pi]. Because these aren’t whole numbers, but so called Floats, we use a
Node that generates a range of Floats: Range Float. (or ‘Float series’ as it’s called when added to the node view).

Making a series of numbers

• Add -> numbers -> Range Float

This node has a set of defaults which output [0.000, 1.000..... 9.000]. We will tell the node to make
[0.25, 0.75, 1.25, 1.75] and multiply them later with the constant PI.

Seeing the output of the Range Float node

• Add -> Text -> Stethoscope

Hook up the Stethoscope input into the Float range output, you’ll see text printed onto the node view. You can change
the color of the Stethoscope text using the color property if the background color is too similar to the text color.

Setting up the input values of Range Float to generate the right output

10 Chapter 3. Introduction to Sverchok

Sverchok Documentation, Release 0.5

Set the Float Series mode to Step and make sure the Start value is 0.25 and Step value is 0.50. You should type these
numbers in instead of adjusting the slider, it’s fast and instantly accurate. Set the Count slider to 4, whichever way is
fastest for you.

Multiplying the series by PI

• Add -> numbers -> Math (add two math nodes)

We know the output of the Float series now, what we will do is multiply the series by a constant PI. This is like doing
[0.25, 0.75, 1.25, 1.75] * pi, which is what we wanted from the beginning, namely; [0.25 * pi,
0.75 * pi, 1.25 * pi, 1.75 * pi].

1. Set one of the Math nodes to the constant PI

2. Switch the other Math node to a Multiplier node by selecting Multiplication (*) from its dropdowns.

3. Connect the output of PI to one of the input sockets of the Multiply Node

4. Connect the output of the Float Series into the other input of the Multiply Node.

The result should look something like this, hook up the Stethoscope to see the outputs.

Getting the Sine and Cosine of this series

• Add -> numbers -> Math (add two math nodes)

These new Math nodes will do the Trigonometry for us. Set one of them to a Cosine and the other to a Sine. These
two nodes will now output the cos or sin of whatever is routed into them, in this case the series of Floats.

See the outputs of the Sine and Cosine node, each element represents a component of the set of Vectors we want to
make. Sine will represent Y and Cosine will be X.

Making Vectors from a series of numbers

• Add -> Vector -> Vector In

The Vector In node takes as input 1 or more numbers per component. Sockets which are not explicitely connected to
will be represented by a zero.

1. Connect the resulting Cosine series to the first component in of Vector in (x)

2. Connect the resulting Sine series to the second component in of Vector in (y)

3. Leaving Vector In’s 3rd socket (z) empty puts a zero as the z component for all vectors generated by that node.

Display Geometry

• Add -> Viz -> Viewer Draw

Sverchok draws geometry using the Viewer Nodes, there are two types of viewer nodes but we’ll focus on Viewer
Draw for the moment. Stethoscope is useful for showing the values of any socket, but when we’re dealing with final
geometric constructs like Vectors often we want to see them in 3D to get a better understanding.

Connect the output of Vectors In into the Vertices on the Viewer Draw node. You should see 4 vertices appear on your
3d view (but don’t worry if you don’t immediately spot them):

Notice the 3 color fields on the Viewer Draw node, they represent the color that this node gives to its Vertices, Edges,
and Faces. If (after connecting Vector In to ViewerDraw) you don’t see the Vertices in 3dview, it is probably because
your background 3dview color is similar to the Vertex color. Adjust the color field to make them visible.

Increasing the Size of the Vertex

Sometimes, especially while introducing Sverchok, it’s preferred to display Vertices a little bigger than the default
values of 3 pixels. If you had difficulty spotting the vertices initially you will understand why. The N-panel (side
panel, or properties panel) for the Node View will have extra panels when viewing a [Sverchok Node Tree]. Some
nodes have a dedicated properties area in this panel to hold features that might otherwise complicate the node’s UI.

3.2. Unit 01 - Introduction to modular components 11

Sverchok Documentation, Release 0.5

In the case of the Viewer Draw, there’s quite a bit of extra functionality hidden away in the properties area. For now
we are interested only in the Vertex Size property. In the image below it’s marked with a (red) dot. This slider has a
range between 0 and 10, set it to whatever is most comfortable to view. Here a close up:

I think you’ll agree that the Vertices are much easier to see now:

Make some edges

We’ve created vertices, now we’re going to generate edges. We have 4 vertices and thus 4 indices: [0,1,2,3], the
edges will be connected as [[0,1],[1,2],[2,3],[3,0]].

Vertices Indexed:

• Add -> Numbers -> Formula

There are numerous ways to generate the index list for edges. For our basic example the simplest approach is to write
them out manually. Eventually you will be making hundreds of Vertices and at that point it won’t be viable to write
them out manually. For this lesson we’ll not touch that subject.

The formula node evaluates what you write into the function field, and then outputs the result to its out socket. Type
into that field the following sequence [[0,1],[1,2],[2,3],[3,0]]. Now hook the output of Formula node
into the EdgPol input of ViewerDraw. You should see the following:

Make a first Polygon

We will reuse the Vertices, you can disconnect the Formula node from Viewer Draw. Let’s also reuse the Formula
node by clearing the function field and replacing the content with the following sequence: [[0,1,2,3]]. Connect
the output of this Formula node to the EdgPol input on Viewer Draw. You should now see the following:

Controlling the size of the Polygon

There are many ways to scale up a set of vectors, we’ll use the Vector Math node.

• Add -> Vector -> Vector Math

Change the Vector Math node’s mode to Multiply Scalar. This will let you feed a number to the Vectors to act as a
multiplier. We’ll add a Float node to generate the multiplier.

• Add -> Numbers -> Float

1. Hook up the Float node to the Scalar (green) input of the Vector Math (Multiply Scalar) node

2. Connect the output of the Vector In node into the top input of the Vector Math node.

3. Now connect the output of the Vector Math node into the Vertices socket of the Viewer Draw node.

You should have something like this.

Now if you change the slider on the Float node, you’ll notice 2 things:

1. the header of the Float node gets the value of the slider, and more importantly,

2. the Polygon will start to increase and decrease in size because you are multiplying the x, y, and z components of
the Vectors by that amount.

End of lesson 01

Save this .blend you’ve been working in now, somewhere where you will find it easily, as Sver-
chok_Unit_01_Lesson_01. We will use it as a starting point for the next lesson.

We’ll stop here for lesson 01, if you’ve followed most of this you’ll be making crazy shapes in a matter of hours.
Please continue on to Lesson 02 - A Circle, but take a break first. Look outside, stare at a tree – do something else for
10 minutes.

12 Chapter 3. Introduction to Sverchok

Sverchok Documentation, Release 0.5

3.2.2 Introduction to modular components

prerequisites

Same as lesson 01.

Lesson 02 - A Circle

This lesson will introduce the following nodes: List Length, Int Range, List Shift, List Zip

This will continue from the previous lesson where we made a plane from 4 vectors. We can reuse some of these nodes
in order to make a Circle. If you saved it as suggested load it up, or download from here. You can also create it from
scratch by cross referencing this image.

A Circle

Just like Blender has a Circle primitive, Sverchok also has a built in Circle primitive called the Circle Generator. We
will avoid using the primtives until we’ve covered more of the fundamental nodes and how they interact.

Dynamic Polygons

In the collection of nodes we have in the Node View at the moment, the sequence used for linking up vertices to form
a polygon is input manually. As mentioned earlier, as soon as you need to link many vertices instead of the current
4, you will want to make this list creation automatic. You will probably also want to make it dynamic to add new
segments automatically if the vertex count is changeable.

Because this is a common task, there’s a dedicated node for it called UV Connect (link) , but just like the Circle
generator nodes we will avoid using that for the same reason. Learning how to build these things yourself is the best
way to learn Visual Programming with nodes.

Generating an index list for the polygon

In order to make the list automatically, we should know how many vertices there are at any given moment.

• Add -> List Main -> List Length

The List Length node lets you output the length of incoming data, it also lets you pick what level of the data you want
to inspect. It’s worth reading the reference of this node for a comprehensive tour of its capabilities.

1. hook the Vector In output into the Data input of List Length

2. hook a new Stethoscope up to the output of the List Length node.

3. notice the Level slider is set to 1 by default, you should see Stethoscope shows output.

Notice that, besides all the square brackets, you see the length of the incoming data is 4, as expected. We want
to generate a sequence (list) that goes something like [0,1,2,...n] where n is the index of that last vertex. In
Python you might write something like this this:

n = 4
range(start=0, end=n, step=1)
>> [0,1,2,...n]

To generate the index list for the polygon we need a node that outputs a sequential list of integers, Sverchok has exactly
such a node and it accepts values for start, step and count as parameters. This is what the Range Integer (count mode)
node does.

• Add -> Numbers -> Range Int

1. Set the mode of List Range int to Count

2. Make sure start is 0 and step is 1

3.2. Unit 01 - Introduction to modular components 13

Sverchok Documentation, Release 0.5

3. Hook the output of List Length into the count socket of Range Int

4. Disconnect the Formula node from the EdgPol socket

5. Connect the output of Range Int into EdgPol instead

6. Optionally you can connect a Stethoscope also to the output of Range Int in order to see the generated list for
yourself

Generating the set of circular verts

The 4 verts we’ve had from the very beginning are already points on a circular path, we can make a simple change to
finally see this Circle emerge.

1. Set the mode of the Float series node to Range

2. Set the stop parameter to 2.0

3. Set the step to 0.2 for example.

2.0 / 0.2 = 10, this means the Float Series node will now output [0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8]. Notice that it does not output 2.0 at the end, because this mode excludes the terminating
value. (called non inclusive)

You can see the beginnings of a circle.

Forcing an even spread of Vertices

Above we have the step set to 0.2, this manually sets the distance but calculation of this step value soon gets cumber-
some. We will add nodes to do the calculation for us. Think about how you might do that.

I would want to have something like 1 / number_vertices, this calls for a Math node and an Int to represent
the whole number of vertices.

• Add -> Numbers -> Math

• Add -> Numbers -> Int

1. Set the Math node mode to / (division) , and put 1.0 in the numerator

2. Connect the Int node into the bottom socket of the division Math node

3. Adjust the integer value on the Int node to 18 for example

4. In the image below I’ve connected a Stethoscope to the output of the Math Node to see the value of this compu-
tation

5. Finally, hook up the output of the division Math node into the step socket of Float series

You should see something like this, if not you can by now probably figure out what to do.

Notice this is starting to get crowded, let’s minimize nodes

Before going any further I would like to draw attention to the fact that you can make nodes smaller. This minimizing
feature is called hide, we can argue about how good or badly that option is named. With Any node selected press H,
to ‘minimize/hide’.

In Sverchok we added special functionality to certain nodes to draw information about themselves into their header
area. This allows you to see what the node is supposed to be doing even when the UI is minimized. Currently the Int,
Float, Math, Vector Math nodes have this behaviour because they are essential nodes and used very often.

In future lessons you will often see minimized/hidden nodes

Polygon is easy, what about Edges?

Remember, there are nodes that can take an incoming set of vertices and generate the required Edges index lists. But
we’re trying to explore the modular features of Sverchok – we’ll build our own Edges generator this time.

14 Chapter 3. Introduction to Sverchok

Sverchok Documentation, Release 0.5

The edge index list of the square looked like [[0,1],[1,2],[2,3],[3,0]]. For the Circle of a variable number
of vertices that list will look like [[0,1],[1,2],...,[n-1,n],[n,0]]. Notice i’m just showing the start of
the list and the end, to indicate that there might be a formula for it based purely on how many verts you want to link.

In python you might express this using a for loop or a list comprehension:

for loop
n = 5
for i in range(n):

print(i, (i+1) % n)

>> 0 1
>> 1 2
>> 2 3
>> 3 4
>> 4 0

list comprehension
n = 5
edges = [[i, (i+1) % n] for i in range(n)]
print(edges)
>> [[0, 1], [1, 2], [2, 3], [3, 4], [4, 0]]

In Sverchok the end result will be the same, but we’ll arrive at the result in a different way.

The second index of each edge is one higher than the first index, except for the last edge. The last edge closes the ring
of edges and meets back up with the first vertex. In essenence this is a wrap-around. Or, you can think of it as two
lists, one of which is shifted by one with respect the other list.

Sverchok has a node for this called List Shift. We’ll zip the two lists together using List Zip node.

• add -> List Struct -> List Shift

• add -> List Main -> List Zip

1. Hook the output of List Range Int into the first Data socket of the List Zip node.

2. Hook the output of List Range Int also into the List Shift node.

3. To make the wrap-around, simply set the Shift slider to 1.

4. connect the output of List Shift to the second Data input of List Zip.

5. Make sure the level parameter on List Zip is set to 1.

6. Hook up a Stethoscope to the output of List Zip to verify

Notice in this image I have minimized/hidden (shortcut H) a few nodes to keep the node view from getting claustro-
phobic.

7. Or hook up the output of List Zip straight into the EdgPol socket of‘Viewer Draw‘.

End of lesson 02

Save this .blend you’ve been working on as Sverchok_Unit_01_Lesson_02 for future tutorials or as reference if you
want to look something up later if you like.

You now know how to create basic shapes programmatically using Sverchok nodes. In Lesson 03 a dynamic grid will
be generated, but first relax and reiterate what has been learned so far.

Addendum

3.2. Unit 01 - Introduction to modular components 15

Sverchok Documentation, Release 0.5

Viewer Draw automatically generates Edges when you pass one or more Vertices and Polygons. This means in
practice when you already have the Polygons for an object then you don’t need to also pass in the Edges, they are
inferred purely from the indices of the incoming Polygons.

3.2.3 Introduction to modular components

prerequisites

Same as lesson 01.

Status: WIP

Lesson 03 - A Grid

Grids are another common geometric primitive. A Grid can be thought of as a Plane subdivided over its x and y axes.
Sverchok’s Plane generator makes grids (including edges and polygons), but we will combine the elementary nodes
to build one from scratch. Doing this will cover several important concepts of parametric design, and practical tips for
the construction of dynamic topology.

What do we know about Grids?

For simplicity let’s take a subdivided Plane as our template. We know it’s flat and therefore the 3rd dimension (z) will
be constant. We can either have a uniformly subdivided Plane or allow for x and y to be divided separately. A separate
XY division is a little bit more interesting, let’s go with that.

Where to start?

For non trivial objects we often use a notepad (yes, actual paper – or blender Greasepencil etc) to draw a simplified
version of what we want to accomplish. On a drawing we can easily name and point to properties, see relationships,
and even solve problems in advance.

I chose a Grid because it has only a few properties: X Side Length, Y Side Length, X num subdivs, Y num subdivs.
These properies can be exposed in several ways. You could expose the number of divisions (edges) per side, or the
amount of vertices per side. 1 geometric property, but two ways of looking at it.

Decide which variables you want to expose

The upside of building generators from scratch is that you can make decisions based on what is most convenient for
you. Here I’ll pick what I think is the most convenient, it can always be changed later.

• Division distance side X

• Division distance side Y

• Number Vertices on side X

• Number Vertices on side Y

Think in Whole numbers (ints) if you can

What I mean by this is, reduce the problem to something that is mathematically uncomplicated. Here’s a grid drawn
on an xy graph to illustrate the coordinates. The z-dimension could be ignored but it’s included for completeness.

The reason I pick 4 verts for the X axis and 3 for Y, is because that’s the smallest useful set of vertices we can use as
a reference. The reason i’m not picking 3*3 or 4*4 is because using different vertex counts makes it clear what that X
axis might have some relation to 4 and to Y to 3.

If you consider the sequence just by looking at the first index of each vertex, it goes [0,1,2,3,0,1,2,3,0,1,
2,3]. We can generate sequences like that easily. When we look at the second index of these vertices that sequence
is [0,0,0,0,1,1,1,1,2,2,2,2], this also is easy to generate.

16 Chapter 3. Introduction to Sverchok

Sverchok Documentation, Release 0.5

Using ‘modulo‘ and ‘integer division‘ to get grid coordinates

I hope you know Python, or at the very least what % (modulo) and // (int div) are. The sequences above can be
generated using code this way – If this code doesn’t make sense keep reading, it’s explained further down:

variables
x = 4
y = 3
j = x * y # 12

using for loop
final_list = []
for i in range(j):

x = i % 4 # makes: 0 1 2 3 0 1 2 3 0 1 2 3
y = i // 4 # makes: 0 0 0 0 1 1 1 1 2 2 2 2
z = 0
final_list.append((x, y, z))

print(final_list)
'''
>> [(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0),
>> (0, 1, 0), (1, 1, 0), (2, 1, 0), (3, 1, 0),
>> (0, 2, 0), (1, 2, 0), (2, 2, 0), (3, 2, 0)]
'''

using list comprehension
final_list = [(i%4, i//4, 0) for i in range(j)]

With any luck you aren’t lost by all this code, visual programming is very similar except with less typing. The
plumbing of an algorithm is still the same whether you are clicking and dragging nodes to create a flow of information
or writing code in a text editor.

Operands

We introduced the Math node in lesson 01 and 02, the Math node (from the Number menu) has many operations called
operands. We’ll focus on these to get the vertex components.

Operand Sym-
bol

Behaviour

Modulo (mod) % i % 4 returns the division remainder of i / 4, rounded down to the nearest whole
number

Integer
Division

// i // 4 returns the result of i / 4, rounded down to the nearest whole number.

We can use:

• i % 4 to turn [0,1,2,3,4,5,6,7,8,9,10,11] into [0,1,2,3,0,1,2,3,0,1,2,3]

• i // 4 to turn [0,1,2,3,4,5,6,7,8,9,10,11] into [0,0,0,0,1,1,1,1,2,2,2,2]

Making vertices

A recipe which you should be able to hook up yourself by seeing the example image.

• Add -> Vector -> Vector In

• Add -> Number -> Math (3x) notice I minimized the Multiplication Node.

• Add -> Number -> Integer (2x)

• Add -> Number -> Range Int

3.2. Unit 01 - Introduction to modular components 17

Sverchok Documentation, Release 0.5

We multiply y=3 by x=4 to get 12 this is the number of vertices. This parameter determines the length of the range
[0,1..11] (12 vertices, remember we start counting indices at 0).

With all nodes hooked up correctly you can hook Vector In‘s output to the vertices socket of a ViewerDraw node
to display the vertices. To test if it works you can use the sliders on the two Integer nodes to see the grid of vertices
respond to the two parameters. Remember to put these sliders back to 3 and 4 (as displayed in the image), to continue
to the next step.

Making Polygons

This might be obvious to some, so this is directed at those who’ve never done this kind of thing before. This is where
we use a notepad to write out the indexlist for the 6 polygons (two rows of 3 polygons, is the result of a x=4, y=3 grid).
Viewing the vertices from above, go clockwise. The order in which you populate the the list of polygons is determined
by what you find more convenient.

For my example, I think of the X axis as the Columns, and I go from left to right and upwards

Notice that between polygon index 2 and 3 there is a break in the pattern. The polygon with vertex indices [3,7,
8,4] doesn’t exist (for a grid of x=4, y=3), if we did make that polygon it would connect one Row to the next like
so:

We know how many polygons we need (let’s call this number j), it is useful to think of an algorithm that produces
these index sequences based on a range from 0 thru j-1 or [0,1,2,3,4,5]. We can first ignore the fact that
we need to remove every n-th polygon, or avoid creating it in the first place. Whatever you decide will be a choice
between convenience and efficiency - I will choose convenience here.

A polygon Algorithm

Sverchok lets you create complex geometry without writing a single line of code, but you will not get the
most out of the system by avidly avoiding code. Imagine living a lifetime without ever taking a left turn
at a corner, you would miss out on faster more convenient ways to reach your destination.

It’s easier for me to explain how an algorithm works, and give you something to test it with, by showing the algorithm
as a program, a bit of Python. Programming languages allow you to see without ambiguity how something works by
running the code.

WIP - NOT ELEGANT

this generates faces from a vertex count for x,y:

ny = 3
nx = 4

faces = []
add_face = faces.append

total_range = ((ny-1) * (nx))
for i in range(total_range):

if not ((i+1) % nx == 0): # +1 is the shift
add_face([i, i+nx, i+nx+1, i+1]) # clockwise

print(faces)

This is that same algorithm using the elementary nodes, can you see the similarity?

// – TODO

18 Chapter 3. Introduction to Sverchok

CHAPTER 4

Nodes

4.1 Generators

4.1.1 3 Point Arc

Functionality

Given a start coordinate, a through coordinate, and an end coordinate this Node will find the Arc that passes through
those points.

Inputs

• arc_pts input is [begin, mid, end, begin, mid, end, begin, mid, end.....]

– must be (len % 3 == 0)

• num verts is either

– constant

– unique

– or repeats last value if the number of arcs exceeds the number of values in the num_vert list

Parameters

The UI is quite minimal.

• num verts can be changed via Slider input on the UI or as described above, it can be fed multiple values through
the input sockets.

19

Sverchok Documentation, Release 0.5

Output

• (verts, edges) : A set of each of these that correspond with a packet of commands like ‘start, through, end,
num_verts’

• verts needs to be connected to get output

• edges is optional

Examples

See the progress of how this node came to life here (gifs, screenshots)

Basic example:

..image:: https://cloud.githubusercontent.com/assets/1275858/23209252/c5936418-f8f8-11e6-8e1c-3b1bbbf83202.
png

4.1.2 2 Point Spline

Functionality

Single section Bezier Spline. Creates a Spline Curve from 2 sets of points. Analogue to the Blender native Curve
object, but limited to 2 pairs of knots and control points per curve.

Inputs

Parameter Type Description
num verts int per curve this sets how many verts define the curve
knot 1 Vector These place and adjust the shape of the curve. The knots

are vectors on the curve, the controls are vectors to which
the curve is mathematically attracted

control 1 Vector
control 2 Vector
knot 2 Vector

The node accepts these The node will adjust to make sure the length of

Parameters

The Node is vectorized in the following way. If any of the knots or control points are given in a list that doesn’t match
the length of the other lists, then the last value of that shorter list is repeated to match the length of the longest.

This means; if knot1, control1, knot2 are length 3, 4 and 8 and control2 is length 20 then knot1, control1, knot2 will
all get their last value repeated till the full list matches 20 values.

The same filling procedure is applied to the Num Verts parameter.

Outputs

• (verts, edges) : A set of each of these that correspond with a packet of commands like ‘knot1, ctrl1, ctrl2, knot2’

• verts needs to be connected to get output

• edges is optional

optionals for visualizing the curve handles

20 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/254
https://cloud.githubusercontent.com/assets/1275858/23209252/c5936418-f8f8-11e6-8e1c-3b1bbbf83202.png
https://cloud.githubusercontent.com/assets/1275858/23209252/c5936418-f8f8-11e6-8e1c-3b1bbbf83202.png

Sverchok Documentation, Release 0.5

• hnd. Verts

• hnd. Edges

Passing hnd.Verts and hnd.Edges to a ViewerDraw node helps visualize the Handles that operate on your Spline curve.

Examples

See the progress of how this node came to life here (gifs, screenshots)

4.1.3 Box

Functionality

Offers a Box primitive with variable X,Y and Z divisions, and overal Size.

Inputs

All inputs are expected to be scalar values. Divisions are given in Integers only, it will cast incoming floats to int.

• Size

• Div X

• Div Y

• Div Z

Parameters

None

Outputs

• Verts

• Edges

• Faces

Examples

None other than variables given by Inputs.

Notes

This is not a very fast implementation of Box, but it can act as an introduction to anyone interested in coding their own
Sverchok Nodes. It is a very short node code-wise, it has a nice structure and shows how one migh construct a bmesh
and use existing bmesh.ops to operate on it.

4.1. Generators 21

https://github.com/nortikin/sverchok/issues/247

Sverchok Documentation, Release 0.5

4.1.4 Bricks Grid

destination after Beta: Generators

Functionality

This node generates bricks-like grid, i.e. a grid each row of which is shifted with relation to another. It is also possible
to specify toothing, so it will be like engaged bricks. All parameters of bricks can be randomized with separate control
over randomization of each parameter.

Inputs & Parameters

All parameters except for Faces mode can be given by the node or an external input. All inputs are vectorized and
they will accept single or multiple values.

22 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Param Type Default Description
Faces mode Flat or

Stitch or
Center

Flat What kind of polygons to
generate:

• Flat - generate one
polygon (n-gon, in
general) for each
brick.

• Stitch - split each
brick into several
triangles, with
edges going across
brick.

• Center - split each
brick into triangles
by adding new ver-
tex in the center of
the brick.

Unit width Float 2.0 Width of one unit (brick).
Unit height Float 1.0 Height of one unit (brick).
Width Float 10.0 Width of overall grid.
Height Float 10.0 Height of overall grid.
Toothing Float 0.0 Bricks toothing amount.

Default value of zero
means no toothing.

Toothing random Float 0.0 Toothing randomization
factor. Default value
of zero means that all
toothings will be equal.
Maximal value of 1.0
means toothing will
be random in range
from zero to value of
Toothing parameter.

Random U Float 0.0 Randomization amplitude
along bricks rows. De-
fault value of zero means
all bricks will be of same
width.

Random V Float 0.0 Randomization amplitude
across bricks rows. De-
fault value of zero means
all grid rows will be of
same height.

Shift Float 0.5 Brick rows shift factor.
Default value of 0.5
means each row of bricks
will be shifted by half of
brick width in relation to
previous row. Minimum
value of zero means no
shift.

Seed Int 0 Random seed.

4.1. Generators 23

Sverchok Documentation, Release 0.5

Outputs

This node has the following outputs:

• Vertices

• Edges. Note that this output will contain only edges that are between bricks, not that splitting bricks into
triangles.

• Polygons

• Centers. Centers of bricks.

Examples of usage

Default settings:

The same with Stitch faces mode:

The same with Centers faces mode:

Using toothing parameter together with randomization, it is possible to generate something like stone wall:

A honeycomb structure:

Wooden floor:

You can also find some more examples in the development thread.

4.1.5 Circle

Functionality

Circle generator creates circles based on the radius and the number of vertices. What does that mean? It means that if
the number of vertices is too low, ir will stop being a circle and will be a regular polygon, in example:

- 3 vertices = triangle.
- 4 vertices = square
- ...
- 6 vertices = hexagon
- ...
- Many vertices = circle

This node will also create sector or semgent of circles using the Degrees option. See the examples below to see it
working also with the mode option.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is three inputs:

• Radius

• N Vertices

• Degrees

Same as other generators, all inputs will accept a single number, an array or even an array of arrays:

24 Chapter 4. Nodes

https://github.com/portnov/sverchok/issues/19

Sverchok Documentation, Release 0.5

[2]
[2, 4, 6]
[[2], [4]]

Parameters

All parameters except Mode can be given by the node or an external input.

Param Type Default Description
Radius Float 1.00 radius of the circle
N Vertices Int 24 number of vertices to generate the circle
Degrees Float 360.0 angle for a sector/segment circle
Mode Bollean False switch between two sector and segment circle

Outputs

Vertices, Edges and Polygons. All outputs will be generated. Depending on the type of the inputs, the node will
generate only one or multiples independant circles. In example:

As you can see in the red rounded values, depending on how many inputs have the node, will be generated those same
number of outputs.

If Degrees is minor than 0, depending of the mode state, will be generated a sector or a segment of a circle with that
degrees angle.

Example of usage

In this first example we see that circle generator can be a circle but also any regular polygon that you want.

The second example shows the use of mode option and how it generates sector or segment of a circle based on the
degrees value.

4.1.6 Cylinder

Functionality

Cylinder generator, as well as circle, is used to create a big variety of polyhedra based on the cyliner form: two
polygons connected by a body. In the examples will see some possibilities.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is three inputs:

• Radius Top

• Radius Bottom

• Vertices

• Height

• Subdivisions

4.1. Generators 25

Sverchok Documentation, Release 0.5

Parameters

All parameters except Separate and Caps can be given by the node or an external input.

Param Type Default Description
Radius Top Float 1.00 radius of the top polygon
Radius Bottom Float 1.00 radius of the bottom polygon
Vertices Int 32 number of vertices to generate top and bottom poygons
Height Float 2.00 height of the cylinder
Subdivisions Int 0 number of the height subdivisions
Separate Bollean False grouping vertices by V direction
Caps Bollean True turn on and off top and bottom cap

Outputs

Vertices, Edges and Polygons. All outputs will be generated. Depending on the type of the inputs, the node will
generate only one or multiples independant cylinders. If Separate is True, the only the top and the bottom polygons
will be generated. With Caps with can enable or disable the top and bottom caps.

Example of usage

In this example with can see some examples of what can be done with this node.

4.1.7 Image

4.1.8 Line

Functionality

Line generator creates a series of connected segments based on the number of vertices and the length between them.
Just a standard subdivided line along X axis

Inputs

N Verts and Step are vectorized. They will accept single or multiple values. Both inputs will accept a single number
or an array of them. It also will work an array of arrays:

[2]
[2, 4, 6]
[[2], [4]]

Parameters

All parameters except Center can be given by the node or an external input.

Param Type Default Description
N Verts Int 2 number of vertices. The minimum is 2
Step Float 1.00 length between vertices
Center Boolean False center line around 0

26 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Outputs

Vertices and Edges. Verts and Edges will be generated. Depending on the inputs, the node will generate only one or
multiples independant lines. See examples below.

Example of usage

The first example shows just an standard line with 6 vertices and 1.20 ud between them

In this example the step is given by a series of numbers:

[0.5, 1.0 , 1.5, 2.0, 2.5]

4.1.9 NGon

destination after Beta: generators

Functionality

NGon generator creates regular (or not exactly, see below) polygons of given radius with given number of sides. As
an example, it can create triangles, squares, hexagons and so on. In this sence, it is similar to Circle node.

Location of vertices can be randomized, with separate control of randomization along radius and randomization of
angle. See the examples below.

Each vertex can be connected by edge to next vertex (and produce usual polygon), or some number of vertices can be
skipped, to produce star-like polygons. In the last case, you most probably will want to pass output of this node to
Intersect Edges node.

Inputs

All inputs are vectorized and they will accept single or multiple values. This node has the following inputs:

• Radius

• N Sides

• RandomR

• RandomPhi

• Seed

• Shift

Same as other generators, all inputs will accept a single number, an array or even an array of arrays:

[2]
[2, 4, 6]
[[2], [4]]

4.1. Generators 27

Sverchok Documentation, Release 0.5

Parameters

All parameters can be given by the node or an external input.

Param Type De-
fault

Description

Ra-
dius

Float 1.00 Radius of escribed circle. When RandomR is zero, then all vertices will be at this distance
from origin.

N
Sides

Int 5 Number of sides of polygon to generate. With higher values and Shift = 0, RandomR =
0, RandomPhi = 0, you will get the same output as from Circle node.

Ran-
domR

Float 0.0 Amplitude of randomization of vertices along radius.

Ran-
dom-
Phi

Float 0.0 Amplitude of randomizaiton of angles. In radians.

Seed Float 0.0 Random seed. Affects output only when RandomR != 0 or RandomPhi != 0.
Shift Int 0 Also known as “star factor”. When this is zero, each vertex is connected by edge to next

one, and you will get usual polygon. Otherwise, n’th vertex will be connected to
(n+shift+1)’th. In this case, you will get sort of star.

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons

If Shift input is not zero, then Polygons output will be empty - this node does not create degenerated polygons.

Depending on the type of the inputs, the node will generate only one or multiples independant circles.

Examples

Sides=5, Shift=0, RandomR=0, RandomPhi=0 (default values):

Sides=6, RandomPhi=0.3:

Sides=6, RandomR=0.3:

Sides=7, Shift=1, RandomR=0.24, RandomPhi=0.15:

Sides=29, Shift=9, RandomR=0, RandomPhi=0:

4.1.10 Plane MK2

Functionality

Plane generator creates a grid in the plane XY/YZ or ZX, based on the number of vertices and the length between
them in X and Y directions. It works in a similar way than Line, but creating a grid instead of a line.

28 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Inputs

Just like in Line Node, all inputs are vectorized and they will accept single or multiple values. There is two basic
inputs N Verts and Step, but referenced to both X and Y directions, so it results in 4 inputs:

• N Verts X

• N Verts Y

• Step X

• Step Y

Same as Line, all inputs will accept a single number or an array of them or even an array of arrays:

[2]
[2, 4, 6]
[[2], [4]]

Parameters

All parameters except Separate, Direction, Center, Normalize, Size X and Size Y can be given by the node or an
external input.

Param Type Default Description
N Verts X Int 2 number of vertices in X. The minimum is 2.
N Verts Y Int 2 number of vertices in X. The minimum is 2.
Step X Float 1.00 length between vertices in X axis
Step Y Float 1.00 length between vertices in Y axis
Separate Boolean False grouping vertices by V direction
Direction Enum XY generate grid in XY, YZ or ZX plane
Center Boolean False center the plane around origin
Normalize Boolean False normalize the plane sizes to specific values
Size X Float 10.00 normalized plane size along X direction [1]
Size Y Float 10.00 normalized plane size along Y direction [1]

Notes: [1] - the Size X / Size Y parameters are only available when the Normalize is on.

Outputs

Vertices, Edges and Polygons. All outputs will be generated. Depending on the type of the inputs, the node will
generate only one or multiples independant grids.

If Separate is True, the output is totally different. The grid disappear (no more polygons are generated) and instead it
generates a series of lines repeated along Y axis. See examples below to a better understanding.

Example of usage

4.1.11 Random Vector

Functionality

Produces a list of random unit vectors from a seed value.

4.1. Generators 29

Sverchok Documentation, Release 0.5

Inputs & Parameters

Parameters Description
Count Number of random vectors numbers to spit out
Seed Accepts float values, they are hashed into Integers internally.
Scale Scales vertices on some value Floats.

Outputs

A list of random unit vectors, or nested lists.

Examples

Notes

Seed is applied per output, not for the whole operation (Should this be changed?) A unit vector has length of 1, a
convex hull of random unit vectors will approximate a sphere with radius off 1.

Examples

4.1.12 SNLite Docs

There’s no rst for this at present, please read the preliminary (but comprehensive) docs on :

https://github.com/nortikin/sverchok/issues/942

4.1.13 Sphere

Functionality

Sphere generator will create a sphere based on its Radius and de U and V subdivisions.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is three inputs:

• Radius

• U

• V

Parameters

All parameters except Separate and Caps can be given by the node or an external input.

Param Type Default Description
Radius Float 1.00 radius of the sphere
U Int 24 U subdivisions
V Int 24 V subdivisions
Separate Bolean False Grouping vertices by V direction

30 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/942

Sverchok Documentation, Release 0.5

Outputs

Vertices, Edges and Polygons. All outputs will be generated. Depending on the type of the inputs, the node will
generate only one or multiples independant spheres.

Example of usage

As you can see, lot of different outputs can be generated with this node.

4.1.14 IcoSphere Node

Functionality

This node creates an IcoSphere primitive. In case of zero subdivisions, it simply produces right icosahedron.

Inputs

This node has the following inputs:

• Subdivisions

• Radius

Parameters

This node has the following parameters:

• Max. Subdivisions. Maximum value available for Subdivisions parameter. This affects not only parameter,
but also restricts values provided via input. Default maximum is 5.

• Subdivisions. How many times to recursively subdivide the sphere. In case this parameter is 0, the node
will simply produce right icosahedron. Maximum value is restricted by Max. Subdivisions parameter. This
parameter can be provided via node input.

• Radius. Sphere radius. This parameter can be provided via node input.

Outputs

This node has the following outputs:

• Vertices

• Edges

• Faces

Example of usage

Simple example:

4.1. Generators 31

Sverchok Documentation, Release 0.5

4.1.15 Torus

Functionality

Torus generator will create a torus based on its radii sets, number of sections and section phases.

Inputs

All inputs are vectorized and they will accept single or multiple values.

• Major Radius [1]

• Minor Radius [1]

• Exterior Radius [2]

• Interior Radius [2]

• Revolution Sections

• Spin Sections

• Revolution Phase

• Spin Phase

Notes: [1] : Major/Minor radii are available when Major/Minor mode is elected. [2] : Exterior/Interior radii are
available when Exterior/Interior mode is elected.

Parameters

The MODE parameter allows to switch between Major/Minor and Exterior/Interior radii values. The input socket
values for the two radii are interpreted as such based on the current mode.

All parameters except mode and Separate can be given by the node or an external input.

Param Type Default Description
Major Radius Float 1.00 Major radius of the torus [1]
Minor Radius Float 0.25 Minor radius of the torus [1]
Exterior Radius Float 1.25 Exterior radius of the torus [2]
Interior Radius Float 0.75 Interior radius of the torus [2]
Revolution Sections Int 32 Number of sections around torus center
Spin Sections Int 16 Number of sections around torus tube
Revolution Phase Float 0.00 Phase revolution sections by a radian amount
Spin Phase Float 0.00 Phase spin sections by a radian amount
Separate Bolean False Grouping vertices by V direction

Notes: [1] : Major/Minor radii are available when Major/Minor mode is elected. [2] : Exterior/Interior radii are
available when Exterior/Interior mode is elected.

Outputs

Vertices, Edges, Polygons and Normals All outputs will be generated when connected.

32 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Example of usage

4.1.16 Torus Knot

Functionality

Torus Knot generator will create a torus knot based on its radii sets, curve resolution and phases.

Inputs

All inputs are vectorized and they will accept single or multiple values.

• Major Radius [1]

• Minor Radius [1]

• Exterior Radius [2]

• Interior Radius [2]

• Curve Resolution

• Revolution Phase

• Spin Phase

Notes: [1] : Major/Minor radii are available when Major/Minor mode is elected. [2] : Exterior/Interior radii are
available when Exterior/Interior mode is elected.

Parameters

The MODE parameter allows to switch between Major/Minor and Exterior/Interior radii values. The input socket
values for the two radii are interpreted as such based on the current mode.

All parameters except mode can be given by the node or an external input.

Param Type Default Description
Major Radius Float 1.00 Major radius of the torus [1]
Minor Radius Float 0.25 Minor radius of the torus [1]
Exterior Radius Float 1.25 Exterior radius of the torus [2]
Interior Radius Float 0.75 Interior radius of the torus [2]
Curve Resolution Int 100 Number of vertices in a curve (per link
Revolution Phase Float 0.00 Phase revolution vertices by a radian amount
Spin Phase Float 0.00 Phase spin vertices by a radian amount

Notes: [1] : Major/Minor radii are available when Major/Minor mode is elected. [2] : Exterior/Interior radii are
available when Exterior/Interior mode is elected.

Extra Parameters

A set of extra parameters are available on the property panel. These parameters do not receive external input.

4.1. Generators 33

Sverchok Documentation, Release 0.5

Extra Param Type Default Description
Adaptive Resolution Bool False Adjusts curve resolution dynamically
Multiple Links Bool True Generate multiple links in a degenerate knot
Flip p Bool False Flip REVOLUTION direction (P)
Flip q Bool False Flip SPIN direction (Q)
P multiplier Int 1 Multiplies the p count [1]
Q multiplier Int 1 Multiplies the q count [1]
Height Float 1.00 Scales the vertices along Z by this amount
Scale Float 1.00 Scales both radii by this amount
Normalize Tangents Bool True Normalize the TANGENT vectors [2]
Normalize Normals Bool True Normalize the NORMAL vectors [2]

Notes: [1] Used without adaptive resolution these allow to create aliased torus knots resulting in all sorts of inter-
esting shaped knots. [2] Turn off normalization to save computation whenever the output vectors do not need to be
normalized.

Outputs

Vertices, Edges, Tangents and Normals All outputs will be generated when connected.

Example of usage

4.1.17 Formula Shape

Usage

4.2 Generators Extended

4.2.1 Rounded box

Functionality

See the BlenderArtists thread by original author Phymec. This node merely encapsulates the code into a form that
works for Sverchok. Internally the main driver is the amount of input vectors, each vector represents the x y z
dimensions of a box. Each box can have unique settings. If fewer parameters are provided than sizes, then a default or
the last parameter is repeated.

Inputs & Parameters

name type info
radius single value or list radius of corner fillets
arc div single value or list number of divisions in the fillet
lin div single value or list number of internal divisions on straight parts ([0..1] or [1..20])
Vector Size single vector or list x y z dimensions for each box
div type 3way switch, integers just corners, corners and edges, all
odd axis align 0..1 on or off internal rejiggery, not sure.

34 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Outputs

Depending on how many objects the input asks for, you get a Verts and Polygons list of rounded box representations.

Examples

Notes

see:

Round Cube, real Quadsphere, Capsule (snipped thread title):

original thread

4.2.2 IcoSphere Node

Functionality

This node creates an IcoSphere primitive. In case of zero subdivisions, it simply produces right icosahedron.

Inputs

This node has the following inputs:

• Subdivisions

• Radius

Parameters

This node has the following parameters:

• Subdivisions. How many times to recursively subdivide the sphere. In case this parameter is 0, the node will
simply produce right icosahedron. This parameter can be provided via node input.

• Radius. Sphere radius. This parameter can be provided via node input.

Outputs

This node has the following outputs:

• Vertices

• Edges

• Faces

Example of usage

Simple example:

4.2. Generators Extended 35

http://blenderartists.org/forum/showthread.php?348741-Round-Cube-real-Quadsphere-Capsule-Rounded-Cuboid-3D-Grid-Convex-Hull-Margin

Sverchok Documentation, Release 0.5

4.2.3 Generative Art

destination after Beta: Generators

Functionality

This node can be used to produce recursive three dimensional structures following a design specified in a separate xml
file. These structures are similar to fractals or lsystems.

The xml file defines a set of transformation rules and instructions to place objects. A simple set of rules can often
generate surprising and complex structures.

Inputs & Parameters

This node has the following parameters:

• xml file - Required. This specifies the LSystem design and should be a linked text block in the .blend file.

• r seed - Integer to initialize python’s random number generator. If the design includes a choice of multiple rules,
changing this will change the appearance of the design

• max mats - To avoid long delays or lock ups the output of the node is limited to this number of matrices

This node has the following inputs:

• Vertices - Optional. A list of vertices to be joined in a ring and used as the basis for a tube structure. Typically
the output of a Circle or NGon node.

• data - Optional. The xml file can have optional variables defined using {myvar} type format notation. Extra
named data inputs are generated for each of these these variables. These variables can be used to control
animations.

Outputs

• Vertices, Edges and Faces - If the Vertices input is connected, these outputs will define the mesh of a tube that
skins the structure defined in the xml file.

• Shapes Matrices - For each shape atribute defined in the xml file a named output will be generated. This output
is a list list of matrices that define the structure.

Examples of usage

A simplified description of the algorithm for the evaluation of a design.

The xml file (see below for examples and descriptions) consist of a set of rules, each rule has a list of instructions,
each instruction defines a transform and either a call to a rule or an instruction to place an instance.

The system is implemented by a stack where each item in the stack consists of the next rule to call, the current depth
of the system and the current state of the system. At each iteration of the processor the last item is removed from the
stack and processed.

Each instruction in the rule removed from the stack is processed in turn. The current state of this system is set to that
of the item removed from the stack. Any transform in the instruction is applied to the system state. If the instruction
is a call to a rule, a new item is added to the stack with the new rule, the depth increased by one, and the new system
state. If the instruction is to place an instance, the matrix representing the new system state is added to the output
matrix list for that type of shape. The processor then proceeds to what is now the last item on the stack.

36 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

If the max_depth for the current rule is reached or the max_depth for overall design is reached then the processor goes
back and processes what is now the last item on the stack without taking any other action. If the stack is empty or the
maximum number of matrices has been reached the processor stops.

A simple example of an xml design file:

6 Spirals

<rules max_depth="150">
<rule name="entry">

<call count="3" transforms="rz 120" rule="R1"/>
<call count="3" transforms="rz 120" rule="R2"/>

</rule>
<rule name="R1">

<call transforms="tx 2.6 rx 3.14 rz 12 ry 6 sa 0.97" rule="R1"/>
<instance transforms="sa 2.6" shape="box"/>

</rule>
<rule name="R2">

<call transforms="tx -2.6 rz 12 ry 6 sa 0.97" rule="R2"/>
<instance transforms="sx 2.6" shape="box"/>

</rule>
</rules>

This specifies the following design with 6 spirals.

The xml file consists of a list of rules. There must be at least one rule called entry. This is the starting point for the
processor. Each rule consists of a list of instructions. These instructions can either be a call to another rule or an
instruction to place an instance of an object.

Calls can be recursive. For the example above the first instruction in rule R1 also calls rule R1. This recursion stops
when the max_depth value is reached or the max_mats value set in the node is reached. The max_depth can also be
set separately for each rule and is added as an attribute eg <rule name="R1" max_depth="10">.

Each of these instructions can be modified with a set of transforms. If the transform is omitted it defaults to the identity
transform.

A transform consist of translations, rotations and scaling operations. For example tx 1.3 means translated 1.3 units
in the x direction, rz 6 means rotate 6 degrees about the z axis and sa 0.99 means scale all axes by 0.99.

The full list of transforms that take one argument : tx ty tz rx ry rz sx sy sz sa In addition all three
axes values for either a translation or scale can be applied at once with a triplet of values. For example: t 1.1 2.2
3.3 s 0.9 0.9 0.7

Instead of using a single transform attribute, each transform can be specified individually. For example
transforms="tx 1 rz 90 sa 0.75" can be replaced with tx="1" rz="90" sa="0.75".

The count attribute specifies how many times that instruction is repeated. if count is omitted it defaults to 1. For
example the instruction <call count="3" transforms="rz 120" rule="R1"/> calls rule R1 applying
a 120 degree rotation about z in between each call.

An instance instruction tells the processor to add a matrix to the output list defining the state of the system at that
point. The names used in the shape attribute are used as the names for the node’s output sockets. If there is more than
one type of shape each will have its own output socket.

Multiple Rule Definition Example

There can be multiple definitions of the same rule in an xml file.

For example

4.2. Generators Extended 37

Sverchok Documentation, Release 0.5

Tree

<rules max_depth="100">
<rule name="entry">

<call rule="spiral"/>
</rule>
<rule name="spiral" weight="100">

<call transforms="tz 0.1 rx 1 sa 0.995" rule="spiral"/>
<instance transforms="s 0.1 0.1 0.15" shape="tubey"/>

</rule>
<rule name="spiral" weight="100">

<call transforms="tz 0.1 rx 1 ry 4 sa 0.995" rule="spiral"/>
<instance transforms="s 0.1 0.1 0.15" shape="tubey"/>

</rule>
<rule name="spiral" weight="100">

<call transforms="tz 0.1 rx 1 rz -4 sa 0.995" rule="spiral"/>
<instance transforms="s 0.1 0.1 0.15" shape="tubey"/>

</rule>
<rule name="spiral" weight="20">

<call transforms="rx 15" rule="spiral"/>
<call transforms="rz 180" rule="spiral"/>

</rule>
</rules>

In the above xml file there are four definitions of the spiral rule. Each rule version has a weight attribute. The
processor will call each version of the spiral rule in a random manner. The weight attribute will determine the
probability a particular rule version is called.

The first three definitions of the spiral rule all place an object instance and then call the spiral rule with the
same translation along the z axis and rotation about the x axis but different amounts of rotation about the y and z
axis. The fourth definition calls the spiral rule twice without placing an instance. This causes the branches in the
tree structure. Changing the value of the weight attribute for this rule version will change how often the tree branches.
For a larger weight value, the rule gets called more often and there are more branches.

If the weight attribute is omitted each version will have equal weight. Changing the value of r seed in the node
interface will change the generated structure for xml files with multiple rule definitions. This example had rseed = 1.

Successor Rule Example

Normally when the max_depth for a rule is reached that ‘arm’ of the structure is finished. If a rule defines a successor
rule then this rule will be called when the max_depth is reached. In the following example when the y180 rule gets
called it will be called 90 times in succession and produce a 180 degree turn about the y axis. When it finishes the
successor rule r will be called and either produce a 180 degree turn about the y axis or the z axis.

Nouveau variation

<rules max_depth="1000">
<rule name="entry">

<call count="2" transforms="rz 60" rule="r"/>
</rule>
<rule name="r"><call rule="y180"/></rule>
<rule name="r"><call rule="z180"/></rule>
<rule name="y180" max_depth="90" successor="r">

<call rule="dbox"/>
<call transforms="ry -2 tx 0.1 sa 0.996" rule="y180"/>

</rule>
<rule name="z180" max_depth="90" successor="r">

38 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

<call rule="dbox"/>
<call transforms="rz 2 tx 0.1 sa 0.996" rule="z180"/>

</rule>
<rule name="dbox">

<instance transforms="s 0.55 2.0 1.25 ry 90 rz 45" shape="box"/>
</rule>

</rules>

This example needs “max matrices” set to 5000 to get the above result.

Mesh Mode Example

Using the matrices output allows a separate object to be placed at each location. The vertices input and the mesh
(vertices, edges, faces) output “skins” the mesh into a much smaller number of objects. The vertices input should be a
list of vertices such as that generated by the “Circle” node or “NGon” node. It could also be a circle type object taking
from the scene using the “Objects In” node. The list of vertices should be in order so they can be made into a ring with
the last vertex joined to the first. That ring dosen’t have to be planar.

The output will not always be one mesh. If the rule set ends one ‘arm’ and goes back to start another ‘arm’ these two
sub-parts will be separate meshes. Sometimes the mesh does not turn out how you would like. This can often be fixed
by changing the rule set.

Often a mesh tube will turn out flat rather than being tube like. This can usually be fixed by either rotating the vertex
ring in the scene or by adding a rotation transform to the “instance” commands in the rule set.

For example change <instance shape="s1"/> to <instance transforms="ry 90" shape="s1"/
>

In other cases the mesh can be connected in the wrong order.

For example the following two xml files will look the same when the matrix output is used to place objects, but have
different output when they are used in mesh mode. Both sets of xml rules produce the same list of matrices just in a
different order.

Fern 1

<rules max_depth="2000">
<rule name="entry">

<call rule="curl" />
</rule>

<rule name="curl" max_depth="80">
<call transforms="rx 12.5 tz 0.9 s 0.98 0.95 1.0" rule="curl"/>
<instance shape="box"/>
<call transforms="tx 0.1 ty -0.45 ry 40 sa 0.25" rule="curlsmall" />

</rule>

<rule name="curlsmall" max_depth="80">
<call transforms="rx 25 tz 1.2 s 0.9 0.9 1.0" rule="curlsmall"/>
<instance shape="box"/>

</rule>

</rules>

Fern 2

<rules max_depth="2000">
<rule name="entry">

4.2. Generators Extended 39

Sverchok Documentation, Release 0.5

<call rule="curl1" />
<call rule="curl2" />

</rule>

<rule name="curl1" max_depth="80">
<call transforms="rx 12.5 tz 0.9 s 0.98 0.95 1.0" rule="curl1"/>
<instance shape="box"/>

</rule>

<rule name="curl2" max_depth="80">
<call transforms="rx 12.5 tz 0.9 s 0.95 0.95 1.0" rule="curl2"/>
<call transforms="tx 0.1 ty -0.45 ry 40 sa 0.25" rule="curlsmall" />

</rule>

<rule name="curlsmall" max_depth="80">
<call transforms="rx 25 tz 1.2 s 0.9 0.9 1.0" rule="curlsmall"/>
<instance shape="box"/>

</rule>
</rules>

Again these were both done with max mats set to 5000.

Constants and Variables Example

Constants and variables can be included in the xml file by replacing a numerical value with a pair of braces.

transforms = "tx 0.5 rx 20 sa 0.9"

becomes

transforms = "tx {x_const} rx 20 sa 0.9"

Constants are defined within the xml as follows:

<constants x_const="0.5" />

Multiple constants can be defined within one element and several constants elements can be used as required in the
xml file.

If a field name in between curly brackets is not given a value in a constants element then a named input socket will be
added to the node. A Float, Integer or similar node input can be wired up to this input variable.

The example below uses a variable ({curl_angle}) to animate the amount of curl on the fern structure shown in the
mesh mode example and two constants to fix the the value of the tz transform in the large curl and the scale ({sxy})
in all the curls.

Fern 3

<rules max_depth="2000">
<constants zd="1.5" sxy="0.9" />
<rule name="entry">

<call rule="curl1" />
<call rule="curl2" />

</rule>

<rule name="curl1" max_depth="60">
<call transforms="rx {curl_angle} tz {zd} s {sxy} {sxy} 1.0" rule="curl1"/>

40 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

<instance shape="box"/>
</rule>

<rule name="curl2" max_depth="40">
<call transforms="rx {curl_angle} tz {zd} s {sxy} {sxy} 1.0" rule="curl2"/>
<call transforms="tx 0.1 ty -0.45 ry 40 sa 0.25" rule="curlsmall" />

</rule>

<rule name="curlsmall" max_depth="40">
<call transforms="rx 2*{curl_angle} tz 2.7 s {sxy} {sxy} 1.0" rule="curlsmall

→˓"/>
<instance shape="box"/>

</rule>
</rules>

For this animation the index number of the current frame in the animation is translated from the range 1 to 250 to the
range 16 to 6 via the “Map Range” node and wired into the curl_angle input of the “Generative Art” node. This
cause the fern to unwind as the animation proceeds.

Simple maths can also be use in the transforms definition. This has been used above in the curlsmall rule. The rx
rotation of the transform will always be twice that of the rx rotation in the curl1 and curl2 rules. There cannot be
any spaces in any maths expressions for the rotation, translation or scale parameters when using a single transforms
attribute string. To allow for more complicated expressions each transform can be separated out into its own attribute.

transforms as single attribute (no spaces allowed in maths expression)

<call transforms="tx 1 rz -1*{v1} ry {v2}" rule="R1"/>

each transform with its own attribute (can have spaces)

<call tx="1" rz="-1 * {v1}" ry="{v2}" rule="R1"/>

All this is implemented by first using python’s string format method to substitute in the variable value from the
node data input. Then the resulting string is passed to python’s eval() function. The string must evaluate to a
single number (float or integer). Using eval() is a potential security problem as in theory someone could put some
malicious code inside an xml lsystem definition. As always don’t run code from a source you don’t trust.

The python math and random modules exist in the namespace of the “Generative Art” node so for example a
transform could be defined as:

tx="2**0.5"

or:

tx="math.sqrt(2)"

Only the transforms that take a single number that is tx, ty, tz, rx, ry, rz, sx, sy, sz and sa have
been implemented using individual attributes. The ones that use triplets to specify all three translations or scales at
once (t and s) can only be used in a transform string.

References

This node is closely based on Structure Synth but the xml design format and most of the code comes from Philip
Rideout’s lsystem repository on github.

4.2. Generators Extended 41

http://structuresynth.sourceforge.net/
http://prideout.net/
http://prideout.net/
https://github.com/prideout/lsystem

Sverchok Documentation, Release 0.5

4.2.4 Hilbert 2D

Functionality

Hilbert field generator. this is concept of dence flooding of space by continuous line, that achived with division and
special knotting. Hilbert space can be only square, because of his nature.

Inputs

All inputs are not vectorized and they will accept single value. There is two inputs:

• level

• size

Parameters

All parameters can be given by the node or an external input.

Param Type Default Description
level Int 2 level of division of hilbert square
size float 1.0 scale of hilbert mesh

Outputs

Vertices, Edges.

Example of usage

Smooth labirynth

4.2.5 Hilbert 3D

Functionality

Hilbert space generator. this is concept of dence flooding of space by continuous line, that achived with division and
special knotting. Hilbert space can be only cube, because of his nature.

Inputs

All inputs are not vectorized and they will accept single value. There is two inputs:

• level

• size

42 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

All parameters can be given by the node or an external input.

Param Type Default Description
level Int 2 level of division of hilbert square
size float 1.0 scale of hilbert mesh

Outputs

Vertices, Edges.

Example of usage

Smooth labirynth

4.2.6 Hilbert 3D

Functionality

Hilbert image recreator. Based on hilbert space this node recreates image by interpolating it on pixels.

Inputs

• level

• size

• sensitivity

Parameters

All parameters can be given by the node or an external input.

Param Type Default Description
RGB float 0.3,0.59,0.11 RGB map of imported image, sensitivity to each color
image name string None enumerate popup to choose image from stack
level Int 2 level of division of hilbert square
size float 1.0 scale of hilbert mesh
sensitivity float 1.0 define scale of values to react and build image

Outputs

Vertices, Edges.

Example of usage

recreate image in hilbert

4.2. Generators Extended 43

Sverchok Documentation, Release 0.5

4.2.7 Hexa Grid

Functionality

Hexa Grid generator will create a set of staggered points suitable for creating a hexagonal grid (i.e. in conjuction with
a hexagon mesh generated by the circle node).

The generated points are confined within one of the selected layouts: rectangle, triangle, diamond and hexagon.

Inputs

All inputs are vectorized and they will accept single or multiple values.

• Level [1]

• NumX [2]

• NumY [2]

• Radius

Notes: [1] : Level input is available for the triangle, diamond and hexa layout types [2] : NumX, NumY are available
for the rectangular layout type

Parameters

The Type parameter allows to select one of the 4 layout types: RECTANGLE, TRIANGLE, DIAMOND and
HEXAGON. The points will be geneated to fit within one of these layouts.

The Center parameters allows to center the grid around the origin.

All parameters except Type and Center can be given by the node or an external input.

All inputs are “sanitized” to restrict their values: - Level, NumX and NumY are integer with values >= 1 - Radius is
float with value >= 0.0

Param Type Default Description
Level Int 3 Number of levels around the center point [1]
NumX Int 7 Number of points along X [2]
NumY Int 6 Number of points along Y [2]
Radius Float 1.0 Radius of the grid tile

Notes: [1] : Level input is available for the TRIANGLE, DIAMOND AND HEXAGON layout type. [2] :
NumX/NumY inputs are available for the RECTANGULAR layout type.

Outputs

Vertices Outputs will be generated when connected.

Example of usage

4.2.8 Image Decomposer

destination after Beta: analyzers

44 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Functionality

To get output from this node you must connect something to the first 2 output sockets (xya and rgb), polygons is
optional and only outputs faces when Filter? is off.

Takes the rgba components of an image currently loaded in Blender and decomposes them into xya and rgb Vertex-
style sockets. xy are inferred by the number of pixels in the image and the image width. z doesn’t make much sense
in relation to a pixel and was replaced by the Alpha channel of the pixel (a).

If you don’t have images loaded in the UV editor, they can be imported from N panel into Blender and loaded from
there.

Inputs & Parameters

name function
Skip n
pixels

allows to sample a reduced grid of the image, every nth pixel in either direction.

xy_spread the xy component of the xya socket can be multiplied to get a wider spread.
z_spread this amplifies rgb, not a (which you can amplify yourself if that was needed.)
Filter? uses a restricted eval to drop pixels using a simple typed command : example r < 0.8 and g >

0.4 (more below)

Outputs

name function
xya the x and y of the pixel, combined with the Alpha channel. The value of x and y are multiplied by

xy_spread.
rgb each (unfiltered) pixel component is multiplied by z_spread
poly-
gons

this output will generate sensible polygon index list for xya when pixels are unfiltered.

Examples

The development thread contains working examples of this Node used as preprocessor for game maps.

Notes

The loaded image gets a fake user automagically, tho perhaps this should be optional.

4.2.9 Profile Parametric Node

Profile Node implements a useful subset of the SVG path section commands. Currently the following segment types
are available:

name cmd parameters
MoveTo M, m <2v coordinate>
LineTo L, l <2v coordinate 1> <2v coordinate 2> <2v coordinate n> [z]
CurveTo C, c <2v control1> <2v control2> <2v knot2> <int num_verts> <int even_spread> [z]
ArcTo A, a <2v rx,ry> <float rot> <int flag1> <int flag2> <2v x,y> <int num_verts> [z]
Close X
comment # must be first thing on the line, no trailing comment instructions.

4.2. Generators Extended 45

https://github.com/nortikin/sverchok/issues/405

Sverchok Documentation, Release 0.5

<> : mandatory field
[] : optional field
2v : two point vector `a,b`

- no space between ,
- no backticks
- a and b can be

- number literals
- lowercase 1-character symbols for variables

int : means the value will be cast as an int even if you input float
flags generally are 0 or 1.

z : is optional for closing a line
X : as a final command to close the edges (cyclic) [-1, 0]

in addition, if the first and last vertex share coordinate space
the last vertex is dropped and the cycle is made anyway.

: single line comment prefix

Mode 0: default behaviour, variables may be negated

M a,-a
L a,a -a,a -a,-a z

There are 2 slightly more elaborate evaluation modes:

Mode 1: Requires the use or parentheses to indicate where extra operations take place. Mode 1 is restrictive and only
allows addition and subtraction

(a+b-c)

Mode 2: Also requires parentheses but allows a more liberal evaluation of operations. Allowed operations are:

(a*b(c/d))

To use Mode 2, you must enable the extended parsing switch in the N-panel for the Profile node.

Parameters

This node has the following parameters:

• Axis. Available values are X, Y, Z. This parameter specifies the plane in which the curve will be produced. For
example, default value of Z means that all points will belong to XOY plane.

• File name. Name of Blender text buffer, containing profile description.

• Extended parsing. Toggles extended parsing node. See also description above. By default this parameter is
unchecked. This parameter is available only in the N panel.

• Precision. Number of decimal places used for points coordinates when generating a profile by from selection
operator. Default value is 8. This parameter is only available in the N panel.

• Curve points count. Default number of points for curve segment commands, generated by from selection
operator (see num_verts in description above). Default value is 20. This parameter is available only in the N
panel.

Operators

This node has one operator button: from selection. This operator takes an active Curve object, generates profile
description from it and sets up the node to use this generated profile. You can adjust the profile by editing created

46 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Blender’s text bufrfer.

Examples

If you have experience with SVG paths most of this will be familiar. The biggest difference is that only the LineTo
command accepts many points, and we always start the profile with a M <pos>,<pos>.

M 0,0
L a,a b,0 c,0 d,d e,-e

CurveTo and ArcTo only take enough parameters to complete one Curve or Arc, unlike real SVG commands which
take a whole sequence of chained CurveTo or ArcTo commands. The decision to keep it at one segment type per line
is mainly to preserve readability.

The CurveTo and ArcTo segment types allow you to specify how many vertices are used to generate the segment. SVG
doesn’t let you specify such things, but it makes sense to allow it for the creation of geometry.

the fun bit about this is that all these variables / components can be dynamic

M 0,0
L 0,3 2,3 2,4
C 2,5 2,5 3,5 10 0
L 5,5
C 7,5 7,5 7,3 10 0
L 7,2 5,0
X

or

M a,a
L a,b c,b -c,d
C c,e c,e b,e g 0
L e,e
C f,e f,e f,-b g 0
L f,c e,a
X

More Info

The node started out as a thought experiment and turned into something quite useful, you can see how it evolved in
the github thread

Example usage:

Gotchas

The update mechanism doesn’t process inputs or anything until the following conditions are satisfied:

• Profile Node has at least one input socket connected

• The file field on the Node points to an existing Text File.

4.2. Generators Extended 47

https://github.com/nortikin/sverchok/issues/350

Sverchok Documentation, Release 0.5

Keyboard Shortcut to refresh Profile Node

Updates made to the profile path text file are not propagated automatically to any nodes that might be reading that
file. To refresh a Profile Node simply hit Ctrl+Enter In TextEditor while you are editing the file, or click one of
the inputs or output sockets of Profile Node. There are other ways to refresh (change a value on one of the incoming
nodes, or clicking the sockets of the incoming nodes)

4.2.10 Mesh Expression Node

Functionality

This node generates mesh from description in JSON format. Variables and mathematical expressions are allowed in
definitions of vertex coordinates, so exact shape of mesh can be parametrized. All variables used in JSON definition
become inputs of node. It is also possible to generate JSON description from existing mesh.

Usual workflow

1. Create some mesh object by using usual Blender’s modelling techniques. Select that mesh.

2. Press “from selection” button in Mesh Expression node. New text buffer will appear in Blender.

3. Switch to Blender’s text editor and select newly created buffer.

4. Edit defintion. You can replace any of vertex coordinates with expression enclosed in double-quotes, such as
“x+1”. See also syntax description below.

5. Optionally, you can add “defaults” key to definition, with default values of variables.

6. In Mesh Expression node, all variables used in JSON definition will appear as inputs.

JSON syntax

For generic description of JSON, please refer to https://en.wikipedia.org/wiki/JSON.

Mesh Expression node uses JSON, which should be a dictionary with following keys:

• “vertices”. This should be a list, containing 3- or 4- item lists:

– First 3 items of each list are vertex coordinates. Each coordinate should be either integer or floating-point
number, or a string with valid expression (see expression syntax below).

– 4th item, if present, may be either string of list of strings. These strings denote vertex groups, to which
this vertex belongs.

Examples of valid vertex definition are:

– [0, 0, 0]

– [”X”, “Y”, 1.0]

– [1, 2, 3, “Selected”]

– [3, 2, 1, [”Top”, “Right”]]

• “edges”. This should be a list, containing 2-item lists of integer numbers, which are edges description in Sver-
chok’s native format.

• “faces”. This should be a list, containint lists of integer nubmers, which are mesh faces description in Sverchok’s
native format.

48 Chapter 4. Nodes

https://en.wikipedia.org/wiki/JSON

Sverchok Documentation, Release 0.5

• “defaults”. This should be a dictionary. Keys are variable names, and values are default variable values. Values
can be:

– integer or floating-point numbers;

– string expressions (see expression syntax below). Note that expressions in “defaults” section are evaluated
in alphabetical order of variable names. So, you can express “Y” in terms of “X”, but not vice versa.

See also JSON examples below.

Expression syntax

Expressions used in place of vertex coordinates are usual Python’s expressions.

For exact syntax definition, please refer to https://docs.python.org/3/reference/expressions.html.

In short, you can use usual mathematical operations (+, -, *, /, ** for power), numbers, variables, parenthesis, and
function call, such as sin(x).

One difference with Python’s syntax is that you can call only restricted number of Python’s functions. Allowed are:

• sin

• cos

• pi

• sqrt

This restriction is for security reasons. However, Python’s ecosystem does not guarantee that noone can call some
unsafe operations by using some sort of language-level hacks. So, please be warned that usage of this node with JSON
definition obtained from unknown or untrusted source can potentially harm your system or data.

Examples of valid expressions are:

• “1.0”

• “x”

• “x+1”

• “0.75*X + 0.25*Y”

• “R * sin(phi)”

Inputs

Set of inputs for this node depends on used JSON definition. Each variable used in JSON becomes one input. If there
are no variables used in JSON, then this node will have no inputs.

Parameters

This node has the following parameters:

• File name. Its value should be the name of existing Blender’s text buffer.

• Precision. Number of decimal places used for points coordinates when generating mesh definition by from
selection operator. Default value is 8. This parameter is only available in the N panel.

4.2. Generators Extended 49

https://docs.python.org/3/reference/expressions.html

Sverchok Documentation, Release 0.5

Operators

This node has one button: from selection. This button takes currently selected Blender’s mesh object and puts it’s
JSON description into newly created text buffer. Name of created buffer is assigned to File name parameter.

For each vertex, if it belongs to some vertex groups in initial mesh object, these group names will be added to vertex
definition.

If vertex is selected in edit mode, then special group named “Selected” will be added to vertex definition.

Outputs

This node always has the following outputs:

• Vertices

• Edges

• Faces

Apart from these, a separate output is created for each name of vertex group mentioned in “vertices” section of JSON
definition. Each of these outputs contain a mask for Vertices, which selects vertices from corresponding group.

Examples of usage

Almost trivial, a plane with adjusable size:

{
"faces": [
[0, 1, 3, 2]

],
"edges": [
[0, 2],
[0, 1],
[1, 3],
[2, 3]

],
"vertices": [
["-Size", "-Size", 0.0],
["Size", "-Size", 0.0],
["-Size", "Size", 0.0],
["Size", "Size", 0.0]

]
}

More complex example: Example JSON definition:

You can find more examples in the development thread.

4.2.11 Ring

Functionality

Ring generator will create a 2D ring based on its radii sets, number of sections and phase.

50 Chapter 4. Nodes

https://gist.github.com/portnov/3aae2b0e0f2d21a8da2d61fc28a96790
https://github.com/nortikin/sverchok/issues/1304

Sverchok Documentation, Release 0.5

Inputs

All inputs are vectorized and they will accept single or multiple values.

• Major Radius [1]

• Minor Radius [1]

• Exterior Radius [2]

• Interior Radius [2]

• Radial Sections

• Circular Sections

• Phase

Notes: [1] : Major/Minor radii are available when Major/Minor mode is elected. [2] : Exterior/Interior radii are
available when Exterior/Interior mode is elected.

Parameters

The MODE parameter allows to switch between Major/Minor and Exterior/Interior radii values. The input socket
values for the two radii are interpreted as such based on the current mode.

All parameters except Mode and Separate can be given by the node or an external input.

Param Type Default Description
Major Radius Float 1.00 Major radius of the ring [1]
Minor Radius Float 0.25 Minor radius of the ring [1]
Exterior Radius Float 1.25 Exterior radius of the ring [2]
Interior Radius Float 0.75 Interior radius of the ring [2]
Radial Sections Int 32 Number of sections around the ring center
Circular Sections Int 3 Number of sections accross the ring band
Phase Float 0.00 Phase of the radial sections (in radians)
Separate Bolean False Grouping vertices by V direction

Notes: [1] : Major/Minor radii are available when Major/Minor mode is elected. [2] : Exterior/Interior radii are
available when Exterior/Interior mode is elected.

Outputs

Vertices, Edges and Polygons. All outputs will be generated when connected.

Example of usage

4.2.12 Scripted Node (Generator)

aka Script Node or SN. (iteration 1)

• Introduction

• Features

• Structure

• Templates

4.2. Generators Extended 51

Sverchok Documentation, Release 0.5

• Conveniences

• Examples

• Techniques to improve Python performance

• Limitations

• Future

Introduction

When you want to express an idea in written form and the concept is suitable for a one line Python expression then
often you can use a Formula node. If you need access to imports, classes, temporary variables, and functions then you
can write a script to load into ScriptNode.

ScriptNode (SN) allows you to write multi-line python programs that define the functionality of a Node, while avoiding
some of the boilerplate associated with a regular Node. SN can be used as an environment for experimenting with
algorithms. Scripts written for SN are easily converted to full PyNodes.

It’s a prototype so bug reports are welcome.

Here’s a short tutorial to SN1, see An introduction and tutorial for the Scripted Nodes

Features

allows:

• Loading/Reloading scripts currently in TextEditor

• imports and aliasing, ie anything you can import from console works in SN

• nested functions and lambdas

• named inputs and outputs

• named operators (buttons to action something upon button press)

Structure

At present all scripts for SN must (strict list - general):

• have 1 sv_main function as the main workhorse

• sv_main must take 1 or more arguments (even if you don’t use it)

• all function arguments for sv_main must have defaults.

• each script shall define in_sockets and out_sockets

• ui_operators is an optional third output parameter

sv_main()

sv_main() can take int, float and list or nested list. Here are some legal examples:

def sv_main(vecs_in_multi=[[]], vecs_in_flat=[], some_var=1, some_ratio=1.2):
pass

[[]] # for nested input (lists of lists of any data type currently supported)
[] # for flat (one list)
int, float # for single value input

52 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

in_sockets

in_sockets = [
[type, 'socket name on ui', input_variable],
[type, 'socket name on ui 2', input_variable2],
...

]

out_sockets

out_sockets = [
[type, 'socket name on ui', output_variable],
[type, 'socket name on ui 2', output_variable2],
...

]

in_sockets and out_sockets

• Each socket name on ui string shall be unique.

• type are currently limited to

type id type data
‘s’ floats, ints, edges, faces, strings
‘v’ vertices, vectors, 3-tuples
‘m’ matrices, 4 x 4 nested lists

ui_operators

ui_operators = [
['button_name', func1]

]

• Here func1 is the function you want to call when pressing the button.

• Each “button_name” is the text you want to appear on the button. For simplicity it must be a unique and valid
python variable name

– with no special characters (|().\/...etc)

– doesn’t start with a number

– contains no spaces, use single underscores if you need word separation. The UI code replaces underscores
with spaces.

return

Simple, only two flavours are allowed at the moment.

return in_sockets, out_sockets
return in_sockets, out_sockets, ui_operators

Templates

Sverchok includes a list of easily accessible examples and templates. They can be accessed from the SN node if
nothing is loaded, or from the Template Menu in TextEditor as sv NodeScripts.

4.2. Generators Extended 53

Sverchok Documentation, Release 0.5

Conveniences

We vale our time, i’m sure you do too, so features have been added to help speed up the script creation process.

Text Editor

• has automatic in_sockets list creation when the key cursor is over sv_main. (please note: it doesn’t
attempt to detect if you want nested verts or edge/polygon so it assumes you want ‘v’)

– kb shortcut: Ctrl+I -> Generate in_sockets

• can also convert a template description (like kv lang if you know Kivy) into valid ScriptNode ready python.
Example available here

– kb shortcut: Ctrl+I -> Convert svlang

• can refresh the Script Node which currently loads that script by hitting Ctrl+Enter

Examples

The best way to get familiarity with SN is to go through the templates folder. They are intended to be lightweight and
educational, but some of them will show advanced use cases. The images and animations on this thread on github.
may also provide some insight into what’s possible.

A typical nodescript may look like this:

from math import sin, cos, radians, pi
from mathutils import Vector, Euler

def sv_main(n_petals=8, vp_petal=20, profile_radius=1.3, amp=1.0):

in_sockets = [
['s', 'Num Petals', n_petals],
['s', 'Verts per Petal', vp_petal],
['s', 'Profile Radius', profile_radius],
['s', 'Amp', amp],

]

variables
z_float = 0.0
n_verts = n_petals * vp_petal
section_angle = 360.0 / n_verts
position = (2 * (pi / (n_verts / n_petals)))

consumables
Verts = []

makes vertex coordinates
for i in range(n_verts):

difference is a function of the position on the circumference
difference = amp * cos(i * position)
arm = profile_radius + difference
ampline = Vector((arm, 0.0, 0.0))

rad_angle = radians(section_angle * i)
myEuler = Euler((0.0, 0.0, rad_angle), 'XYZ')

changes the vector in place, successive calls are accumulative

54 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/376#issuecomment-54062710
https://github.com/nortikin/sverchok/issues/85

Sverchok Documentation, Release 0.5

we reset at the start of the loop.
ampline.rotate(myEuler)
x_float = ampline.x
y_float = ampline.y
Verts.append((x_float, y_float, z_float))

makes edge keys, ensure cyclic
Edges = [[i, i + 1] for i in range(n_verts - 1)]
Edges.append([i, 0])

out_sockets = [
['v', 'Verts', [Verts]],
['s', 'Edges', [Edges]],

]

return in_sockets, out_sockets

but we are not forced to have all code inside sv_main, we can also do:

def lorenz(N, verts):
add_vert = verts.append
h = 0.01
a = 10.0
b = 28.0
c = 8.0 / 3.0

x0 = 0.1
y0 = 0
z0 = 0
for i in range(N):

x1 = x0 + h * a * (y0 - x0)
y1 = y0 + h * (x0 * (b - z0) - y0)
z1 = z0 + h * (x0 * y0 - c * z0)
x0, y0, z0 = x1, y1, z1

add_vert((x1,y1,z1))

def sv_main(N=1000):

verts = []
in_sockets = [['s', 'N', N]]
out_sockets = [['v','verts', [verts]]]

lorenz(N, verts)
return in_sockets, out_sockets

We can even define classes inside the .py file, or import from elsewhere.

Here’s a ui_operator example, it acts like a throughput (because in and out are still needed by design). You’ll notice
that inside func1 the node’s input socket is accessed using SvGetSockeyAnyType(...). It is probably more logical if we
could access the input data directly from the variable items_in, currently this is not possible – therefor the solution is
to use what sverchok nodes use in their internal code too. The upshot, is that this exposes you to how you might access
the socket content of other nodes. Experiment :)

def sv_main(items_in=[[]]):

in_sockets = [
['v', 'items_in', items_in]]

4.2. Generators Extended 55

Sverchok Documentation, Release 0.5

def func1():
directly from incoming Object_in socket.
sn = bpy.context.node

safe? or return early
if not (sn.inputs and sn.inputs[0].links):

return

verts = SvGetSocketAnyType(sn, sn.inputs['items_in'])
print(verts)

out_sockets = [['v', 'Verts', items_in]]
ui_operators = [['print_names', func1]]

return in_sockets, out_sockets, ui_operators

Breakout Scripts

For lack of a better term, SN scripts written in this style let you pass variables to a script located in /
sverchok-master/.. or /sverchok-master/your_module_name/some_library. To keep your
sverchok-master folder organized I recommend using a module folder. In the example below, I made a folder inside
sverchok-master called sv_modules and inside that I have a file called sv_curve_utils, which contains a function
loft. This way of coding requires a bit of setup work, but then you can focus purely on the algorithm inside loft.

from mathutils import Vector, Euler, Matrix
import sv_modules
from sv_modules.sv_curve_utils import loft

def sv_main(verts_p=[], edges_p=[], verts_t=[], edges_t=[]):

in_sockets = [
['v', 'verts_p', verts_p],
['s', 'edges_p', edges_p],
['v', 'verts_t', verts_t],
['s', 'edges_t', edges_t]]

verts_out = []

def out_sockets():
return [['v', 'verts_out', verts_out]]

if not all([verts_p, edges_p, verts_t, edges_t]):
return in_sockets, out_sockets()

while developing, it can be useful to uncomment this
if 'loft' in globals():

import imp
imp.reload(sv_modules.sv_curve_utils)
from sv_modules.sv_curve_utils import loft

verts_out = loft(verts_p[0], verts_t[0]) # this is your break-out code

here the call to out_sockets() will pick up verts_out
return in_sockets, out_sockets()

56 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Techniques to improve Python performance

There are many ways to speed up python code. Some slowness will be down to innefficient algorithm design, other
slowness is caused purely by how much processing is minimally required to solve a problem. A decent read regarding
general methods to improve python code performance can be found on python.org. If you don’t know where the cycles
are being consumed, then you don’t know if your efforts to optimize will have any significant impact.

Read these 5 rules by Rob Pike before any optimization. http://users.ece.utexas.edu/~adnan/pike.html

Limitations

Most limitations are voided by increasing your Python and bpy skills.

Future

SN iteration 1 is itself a prototype and is a testing ground for iteration 2. The intention was always to provide multiple
programming language interfaces, initially coffeescript because it’s a lightweight language with crazy expressive ca-
pacity. iteration 2 might work a little different, perhaps working from within a class but trying to do extra introspection
to reduce boilerplate.

The only reason in_sockets needs to be declared at the moment is if you want to have socket names that are differ-
ent than the function arguments. It would be possible to allow sv_main() to take zero arguments too. So possible
configurations should be:

sv_main()
sv_main() + in_sockets
sv_main() + out_sockets
sv_main(a=[],..)
sv_main(a=[],..) + in_sockets
sv_main(a=[],..) + out_sockets
sv_main(a=[],..) + in_socket + out_sockets

etc, with ui_operators optional to all combinations

That’s it for now.

4.2.13 Scripted Node 2(Generator)

aka Script Node MK2

• Introduction

• Features

• Structure

• Templates

• Conveniences

• Examples

• Techniques to improve Python performance

• Limitations

4.2. Generators Extended 57

https://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://users.ece.utexas.edu/~adnan/pike.html

Sverchok Documentation, Release 0.5

Introduction

When you want to express an idea in written form and the concept is suitable for a one line Python expression then
often you can use a Formula node. If you need access to imports, classes, temporary variables, and functions then you
can write a script to load into Script Node 2.

Script Node MK2 differs from Script Node iteratrion 1 in that offers more control. It also has a prototype system
where you could for example reuse the behavior of a generator and the template takes care of all the details leaving
you to focus on the function. Scripts using the templates automatically becomes more powerful.

It’s a prototype so bug reports, questions and feature request are very welcome.

Features

allows:

• Loading/Reloading scripts currently in TextEditor

• imports and aliasing, ie anything you can import from console works in SN2

• nested functions and lambdas

• named inputs and outputs

• named operators (buttons to action something upon button press)

Structure

At present all scripts for SN2 must:

• be subclasses SvScript

• include a function called process in the class

• have member attributes called inputs and outputs

• have one Script class per file, if more than one, last one found will be used

process(self)

process(self) is the main flow control function. It is called when all sockets without defaults are connected.
Usually the template provides a process function for you.

inputs

Default can be a float or integer value, not other types are usable yet:

inputs = [
[type, 'socket name on ui', default],
[type, 'socket name on ui2', default],
...

]

outputs

outputs = [
[type, 'socket name on ui'],
[type, 'socket name on ui 2'],
...

]

58 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

inputs and outputs

• Each socket name on ui string shall be unique.

• type are currently limited to

type id type data
‘s’ floats, ints, edges, faces, strings
‘v’ vertices, vectors, 3-tuples
‘m’ matrices, 4 x 4 nested lists

There are a series of names that have special meaning that scripts should avoid as class attributes or only used for the
intended meaning. To be described:

node draw_buttons update process enum_func inputs

outputs

Templates

Sverchok includes a series of examples for the different templates.

Conveniences

We value our time, we are sure you do too, so features have been added to help speed up the script creation process.

Text Editor

• can refresh the Script Node which currently loads that script by hitting Ctrl+Enter

Main classes for your subclasses are:

• SvScript

• SvScriptSimpleGenerator

• SvScriptSimpleFunction

Limitations

Using SvScriptSimpleGenerator and SvScriptSimpleFunction you limit inputs to deal with one ob-
ject. For plane, for example, you’ll get next data:

[(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)] [(0, 1, 3, 2)]

If you need Full support of Sverchok data - you’d better use SvScript class and self.node.inputs[0].
sv_get() function.

Examples

The best way to get familiarity with Script Node 2 is to go through the templates folder. They are intended to be
lightweight and educational, but some of them will show advanced use cases. The images and animations on this
thread on github. may also provide some insight into what’s possible.

A typical nodescript using the SvScriptSimpleGenerator may look like this, note that the third argument for
outputs is specific to this template:

4.2. Generators Extended 59

https://github.com/nortikin/sverchok/issues/439

Sverchok Documentation, Release 0.5

import numpy
import itertools

class GridGen(SvScriptSimpleGenerator):
inputs = [("s", "Size", 10.0),

("s", "Subdivs", 10)]
outputs = [("v", "verts", "make_verts"),

("s", "edges", "make_edges")]

@staticmethod
def make_verts(size, sub):

side = numpy.linspace(-size / 2, size / 2, sub)
return tuple((x, y, 0) for x, y in itertools.product(side, side))

@staticmethod
def make_edges(size, sub):

edges = []
for i in range(sub):

for j in range(sub - 1):
edges.append((sub * i + j, sub * i + j + 1))
edges.append((sub * j + i, sub * j + i + sub))

return edges

Note that here the name of the method that should be called for producing data for each socket in the final last
arguments to outputs but we are not forced to have all code inside the class, we can also do

def lorenz(N, verts, h, a, b, c):
add_vert = verts.append

x0 = 0.1
y0 = 0
z0 = 0
for i in range(N):

x1 = x0 + h * a * (y0 - x0)
y1 = y0 + h * (x0 * (b - z0) - y0)
z1 = z0 + h * (x0 * y0 - c * z0)
x0, y0, z0 = x1, y1, z1

add_vert((x1,y1,z1))

class LorenzAttractor(SvScriptSimpleGenerator):

inputs = [
['s', 'N', 1000],
['s', 'h', 0.01],
['s', 'a', 10.0],
['s', 'b', 28.0],
['s', 'c', 8.0/3.0]

]

@staticmethod
def make_verts(N, h, a, b, c):

verts = []
lorenz(N, verts, h, a, b, c)
return verts

@staticmethod
def make_edges(N, h a, b, c:

60 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

edges = [(i, i+1) for i in range(N-1)]
return edges

outputs = [
['v','verts', "make_verts"],
['s','edges', "make_edges"]

]

Here is a simple script for deleting loose vertices from mesh data, it also serves as an illustration for a type of script
that uses the `SvScriptSimpleFunction` template that has one main function that decomposes into separate
sockets. The methods don’t have be static but in general it is good practice to keep them free from side effects.

from itertools import chain

class DeleteLooseVerts(SvScriptSimpleFunction):
inputs = [

('v', 'verts'),
('s', 'pol')
]

outputs = [
('v', 'verts'),
('s', 'pol')
]

delete loose verts
@staticmethod
def function(*args, **kwargs):

ve, pe = args
find used indexes
v_index = sorted(set(chain.from_iterable(pe)))
remap the vertices
v_out = [ve[i] for i in v_index]
create a mapping from old to new vertices index
mapping = dict(((j, i) for i, j in enumerate(v_index)))
apply mapping to input polygon index
p_out = [tuple(map(mapping.get, p)) for p in pe]
return v_out, p_out

Breakout Scripts

Scripts that needs to access the node can do so via the `self.node` variable that is automatically set.

class Breakout(SvScript):
def process(self):

pass

def update(self):
node = self.node
node_group = self.node.id_data
here you can do anything to the node or node group
that real a real node could do including multisocket
adaptive sockets etc. templates and examples for this are
coming

Admit, you can call sockets data directly when using `SvScript` as `self.node.inputs[0].sv_get()`.
And other `self.node.` operations possible from this class.

4.2. Generators Extended 61

Sverchok Documentation, Release 0.5

Techniques to improve Python performance

There are many ways to speed up python code. Some slowness will be down to innefficient algorithm design, other
slowness is caused purely by how much processing is minimally required to solve a problem. A decent read regarding
general methods to improve python code performance can be found on python.org. If you don’t know where the cycles
are being consumed, then you don’t know if your efforts to optimize will have any significant impact.

Read these 5 rules by Rob Pike before any optimization. http://users.ece.utexas.edu/~adnan/pike.html

Limitations

Most limitations are voided by increasing your Python and bpy skills. But one should also realize what is approriate
for a node script to do.

That’s it for now.

4.2.14 An introduction and tutorial for the Scripted Nodes

> Dealga Mcardle | 2014 | October

In my opinion new users should avoid the Script Nodes until they understand a majority of the existing nodes and the
Sverchok Eco-system as a concept. This suggestion applies to everyone, even competent coders.

Script Nodes are great when you want to encapsulate a behaviour which may not be easy to achieve with existing
nodes alone. They are my prefered way to either 1) prototype code, or 2) write custom nodes that are too specific to
be submitted as regular nodes.

At the moment Sverchok has 2 Scripted Node implementations: SN and SN2. Exactly how they differ from eachother
will be shown later. Both offer practical shorthand ways to define what a node does, which sliders and sane defaults
it might have, and what socket types can connect to it. These scripts have a minimal interface, are stored inside the
.blend file as plain text python, and can be shared easily.

If you’ve ever written code for a Blender addon or script, you will be familiar with registration of classes. Nodes
normally also need to be registered so Blender can find them, but Script Nodes don’t because they are in essence a
shell for your code – and the shell is already registered, all you have to do is write code to process input into output.

Scripted Node 1 – an informal introduction

Here is a classic ‘Hello World’ style example used to demonstrate graphics coding. It’s called a Lorenz Attractor.

def lorenz(N, verts):
add_vert = verts.append
h = 0.01
a = 10.0
b = 28.0
c = 8.0 / 3.0

x0 = 0.1
y0 = 0
z0 = 0
for i in range(N):

x1 = x0 + h * a * (y0 - x0)
y1 = y0 + h * (x0 * (b - z0) - y0)
z1 = z0 + h * (x0 * y0 - c * z0)
x0, y0, z0 = x1, y1, z1

62 Chapter 4. Nodes

https://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://users.ece.utexas.edu/~adnan/pike.html

Sverchok Documentation, Release 0.5

add_vert((x1,y1,z1))

def sv_main(N=1000):

verts = []
in_sockets = [['s', 'N', N]]
out_sockets = [['v','verts', [verts]]]

lorenz(N, verts)
return in_sockets, out_sockets

Here’s what this code produces.

Infact, here’s the Node Interface that the script produces too

Compare the code with the image of the node and you might get a fair idea where the sockets are defined and where
the default comes from. Look carefully at in_sockets and out_sockets, two of the elements are strings (socket
type and socket name), and the third element is the Python variable that we automatically bind to those sockets.

Brief Guided Explanation

You’ve probably got a fair idea already from the example script. SN1 has a few conventions which let you quickly
define sockets and defaults. What follows are short remarks about the elements that make up these scripts, aimed at
someone who is about to write their first script for SN1.

Sockets

Sverchok at present has 3 main socket types: VerticesSocket, StringsSocket and MatrixSocket. Script Nodes refer to
these socket types with only their first letter in lowercase. ‘s’,’v’,’m’:

's' to hold: floats, ints, edges, faces, strings
'v' to hold: vertices, vectors, 3-tuples
'm' to hold: matrices, 4 x 4 nested lists

Socket Names

Each socket has a name. Take a minute to think about a good descriptive name for each. Socket names can always be
changed later, but my advice is to use clear names from the very beginning.

Variable names

Variable names are used to expose the values of the associated socket to your script. If the socket is unconnected then
the value of the variable will be taken from the specified default.

node function (sv_main)

The main function for SN1 is sv_main, in the body of this function is where we declare socket types, socket names,
and variable names for input and output sockets. These are declared in two arrays in_sockets and out_sockets.

The argument list of sv_main is where you provide defaults values or the nestedness of an incoming datatype. (don’t
worry if this makes no sense, read it again later).

4.2. Generators Extended 63

Sverchok Documentation, Release 0.5

That’s great, show me!

The easiest way to get started is to first load an existing script. Here are some steps:

• Go to Generators / Scripted Node and add it to the NodeView.

• Open a Blender TextEditor window so you can see the TextEditor and the NodeView at the same time.

• Paste the Lorenz Attractor script (from above) into the TextEditor and call it ‘attractor.py’

• In NodeView look at the field on the second row of the Scripted Node. This is a file selector which shows all
Text files in blender. When you click on it you will see “attractor.py”

• Select “attractor.py” press the button the right, the one that looks like a powersocket.

• This changes the way the Node appears. The node will now have 1 input socket and one output socket. It might
even have changed to a light blue.

That’s pretty much all there is to loading a script. All you do now is hook the output Verts to a Viewer Node and you’ll
see a classic Lorenz Attractor point set.

Study the sv_main

If you look carefully in sv_main there’s not a lot to the whole process. sv_main has two required lists;
in_sockets and out_sockets. sv_main also has a argument list which you must fill with defaults, here the
only variable is N so the argument list was sv_main(N=1000).

The lorenz function takes 2 arguments:

• N, to set the number of vertices.

• verts, a list-variable to store the vertices generated by the algorithm.

In this example the verts variable is also what will be sent to the output socket, because it says so in out_sockets.
Notice that the lorenz function doesn’t return the verts variable. All the lorenz function does is fill that list with values.
Just to be clear about this example. At the time sv_main ends, the content of verts is full, but before lorenz()
is called, verts is an empty list.

Here is the same lorenz attractor with more parameters exposed, see can you load it? https://github.com/nortikin/
sverchok/blob/master/node_scripts/templates/zeffii/LorenzAttractor2.py

Lastly

If none of this makes sense, spend time learning about Python and dig through the node_scripts/templates
directory.

4.2.15 Scripted Node 2(Generator)

aka Script Node MK2

• Introduction

• Features

• Structure

• Templates

• Conveniences

• Examples

64 Chapter 4. Nodes

https://github.com/nortikin/sverchok/blob/master/node_scripts/templates/zeffii/LorenzAttractor2.py
https://github.com/nortikin/sverchok/blob/master/node_scripts/templates/zeffii/LorenzAttractor2.py

Sverchok Documentation, Release 0.5

• Techniques to improve Python performance

• Limitations

Introduction

When you want to express an idea in written form and the concept is suitable for a one line Python expression then
often you can use a Formula node. If you need access to imports, classes, temporary variables, and functions then you
can write a script to load into Script Node 2.

Script Node MK2 differs from Script Node iteratrion 1 in that offers more control. It also has a prototype system
where you could for example reuse the behavior of a generator and the template takes care of all the details leaving
you to focus on the function. Scripts using the templates automatically becomes more powerful.

It’s a prototype so bug reports, questions and feature request are very welcome.

Features

allows:

• Loading/Reloading scripts currently in TextEditor

• imports and aliasing, ie anything you can import from console works in SN2

• nested functions and lambdas

• named inputs and outputs

• named operators (buttons to action something upon button press)

Structure

At present all scripts for SN2 must:

• be subclasses SvScript

• include a function called process in the class

• have member attributes called inputs and outputs

• have one Script class per file, if more than one, last one found will be used

process(self)

process(self) is the main flow control function. It is called when all sockets without defaults are connected.
Usually the template provides a process function for you.

inputs

Default can be a float or integer value, not other types are usable yet:

inputs = [
[type, 'socket name on ui', default],
[type, 'socket name on ui2', default],
...

]

outputs

4.2. Generators Extended 65

Sverchok Documentation, Release 0.5

outputs = [
[type, 'socket name on ui'],
[type, 'socket name on ui 2'],
...

]

inputs and outputs

• Each socket name on ui string shall be unique.

• type are currently limited to

type id type data
‘s’ floats, ints, edges, faces, strings
‘v’ vertices, vectors, 3-tuples
‘m’ matrices, 4 x 4 nested lists

There are a series of names that have special meaning that scripts should avoid as class attributes or only used for the
intended meaning. To be described:

node draw_buttons update process enum_func inputs

outputs

Templates

Sverchok includes a series of examples for the different templates.

Conveniences

We value our time, we are sure you do too, so features have been added to help speed up the script creation process.

Text Editor

• can refresh the Script Node which currently loads that script by hitting Ctrl+Enter

Main classes for your subclasses are:

• SvScript

• SvScriptSimpleGenerator

• SvScriptSimpleFunction

Limitations

Using SvScriptSimpleGenerator and SvScriptSimpleFunction you limit inputs to deal with one ob-
ject. For plane, for example, you’ll get next data:

[(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 0.0)] [(0, 1, 3, 2)]

If you need Full support of Sverchok data - you’d better use SvScript class and self.node.inputs[0].
sv_get() function.

66 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

The best way to get familiarity with Script Node 2 is to go through the templates folder. They are intended to be
lightweight and educational, but some of them will show advanced use cases. The images and animations on this
thread on github. may also provide some insight into what’s possible.

A typical nodescript using the SvScriptSimpleGenerator may look like this, note that the third argument for
outputs is specific to this template:

import numpy
import itertools

class GridGen(SvScriptSimpleGenerator):
inputs = [("s", "Size", 10.0),

("s", "Subdivs", 10)]
outputs = [("v", "verts", "make_verts"),

("s", "edges", "make_edges")]

@staticmethod
def make_verts(size, sub):

side = numpy.linspace(-size / 2, size / 2, sub)
return tuple((x, y, 0) for x, y in itertools.product(side, side))

@staticmethod
def make_edges(size, sub):

edges = []
for i in range(sub):

for j in range(sub - 1):
edges.append((sub * i + j, sub * i + j + 1))
edges.append((sub * j + i, sub * j + i + sub))

return edges

Note that here the name of the method that should be called for producing data for each socket in the final last
arguments to outputs but we are not forced to have all code inside the class, we can also do

def lorenz(N, verts, h, a, b, c):
add_vert = verts.append

x0 = 0.1
y0 = 0
z0 = 0
for i in range(N):

x1 = x0 + h * a * (y0 - x0)
y1 = y0 + h * (x0 * (b - z0) - y0)
z1 = z0 + h * (x0 * y0 - c * z0)
x0, y0, z0 = x1, y1, z1

add_vert((x1,y1,z1))

class LorenzAttractor(SvScriptSimpleGenerator):

inputs = [
['s', 'N', 1000],
['s', 'h', 0.01],
['s', 'a', 10.0],
['s', 'b', 28.0],
['s', 'c', 8.0/3.0]

]

4.2. Generators Extended 67

https://github.com/nortikin/sverchok/issues/439

Sverchok Documentation, Release 0.5

@staticmethod
def make_verts(N, h, a, b, c):

verts = []
lorenz(N, verts, h, a, b, c)
return verts

@staticmethod
def make_edges(N, h a, b, c:

edges = [(i, i+1) for i in range(N-1)]
return edges

outputs = [
['v','verts', "make_verts"],
['s','edges', "make_edges"]

]

Here is a simple script for deleting loose vertices from mesh data, it also serves as an illustration for a type of script
that uses the `SvScriptSimpleFunction` template that has one main function that decomposes into separate
sockets. The methods don’t have be static but in general it is good practice to keep them free from side effects.

from itertools import chain

class DeleteLooseVerts(SvScriptSimpleFunction):
inputs = [

('v', 'verts'),
('s', 'pol')
]

outputs = [
('v', 'verts'),
('s', 'pol')
]

delete loose verts
@staticmethod
def function(*args, **kwargs):

ve, pe = args
find used indexes
v_index = sorted(set(chain.from_iterable(pe)))
remap the vertices
v_out = [ve[i] for i in v_index]
create a mapping from old to new vertices index
mapping = dict(((j, i) for i, j in enumerate(v_index)))
apply mapping to input polygon index
p_out = [tuple(map(mapping.get, p)) for p in pe]
return v_out, p_out

Breakout Scripts

Scripts that needs to access the node can do so via the `self.node` variable that is automatically set.

class Breakout(SvScript):
def process(self):

pass

def update(self):

68 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

node = self.node
node_group = self.node.id_data
here you can do anything to the node or node group
that real a real node could do including multisocket
adaptive sockets etc. templates and examples for this are
coming

Admit, you can call sockets data directly when using `SvScript` as `self.node.inputs[0].sv_get()`.
And other `self.node.` operations possible from this class.

Techniques to improve Python performance

There are many ways to speed up python code. Some slowness will be down to innefficient algorithm design, other
slowness is caused purely by how much processing is minimally required to solve a problem. A decent read regarding
general methods to improve python code performance can be found on python.org. If you don’t know where the cycles
are being consumed, then you don’t know if your efforts to optimize will have any significant impact.

Read these 5 rules by Rob Pike before any optimization. http://users.ece.utexas.edu/~adnan/pike.html

Limitations

Most limitations are voided by increasing your Python and bpy skills. But one should also realize what is approriate
for a node script to do.

That’s it for now.

4.3 Transforms

4.3.1 Matrix Apply

Functionality

Applies a Transform Matrix to a list or nested lists of vectors (and therefore vertices)

Inputs

Inputs Description
Vectors Represents vertices or intermediate vectors used for further vector math
Matrices One or more, never empty

Outputs

Nested list of vectors / vertices, matching the number nested incoming matrices.

4.3. Transforms 69

https://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://users.ece.utexas.edu/~adnan/pike.html

Sverchok Documentation, Release 0.5

Examples

Notes

The update function is outdated, functionally this is of no relevance to users but we should change it for future
compatibility.

4.3.2 Mirror

Functionality

This node is used to make general mirroring over geometry. It works directly over vertices, not with matrixes. It offers
3 different types of mirror:

+=======================+===+
|Type of Mirror |Description | +=======================+===+
|Vertex Mirror | Based on one single point | |Axis Mirror | Mirror around an axis de-
fined by two points | |Plane Mirror | Mirror over a plane given by a matrix |
+=======================+===+

Vertex Mirror

This mode let us define a center point and a make mirror of the incoming Vertices

Inputs

All inputs are vectorized and they will accept single or multiple values. There is two inputs:

• Vertices

• Vert A

Parameters

Defult value for Vert A is equal to (0.0, 0.0, 0.0). Vertices need an input.

Param Type Default Description
Vertices Vertices none vertices to mirror
Vert A Vertices (0.0, 0.0, 0.0) center of the mirroring

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if they have more than one object, then more
objects will be outputted.

Example of usage

In this example we use Vertex mirror to mirroring an arbitrary shape. As you can see every point goes through the
center point.

70 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Axis Mirror

This mode is used to make mirroring around an axis defined by two vertices.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is three inputs:

• Vertices

• Vert A

• Vert B

Parameters

There is default values for Vert A and vert B. Vertices need an input.

Param Type Default Description
Vertices Vertices none vertices to mirror
Vert A Vertices (0.0, 0.0, 0.0) first point to define the axis
Vert B Vertices (1.0, 0.0, 0.0) second point to define the axis

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if one or more inputs have multiple values, then
more objects will be mirrored.

Example of usage

We define an axis with two vertices and use them to make a mirror. All the points reflect through the chosen axis.

Plane Mirror

This is the most common method of mirroring. We’ll use a plane defined by a matrix.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is two inputs:

• Vertices

• Plane

Parameters

Plane has a defult value, but Vertices need an input.

Param Type Default Description
Vertices Vertices none vertices to mirror
Plane Matrix Identity matrix to define the mirror plane

4.3. Transforms 71

Sverchok Documentation, Release 0.5

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if one or more planes are defined, then more
objects will be mirrored.

Example of usage

In this last case we just mirror the shape over the selected plane, defined by a matrix.

4.3.3 Vector Move

Functionality

equivalent to a Translate Transform

Moves incoming sets of Vertex Lists by a Vector. The Vector is bound to a multiplier (Scalar) which amplifies all
components of the Vector. The resulting Vector is added to the locations of the incoming Vertices.

You might use this to translate the center of an object away or towards from [0,0,0] in order to apply other transforms
like Rotation and Scale.

Inputs & Parameters

Description
Ver-
tices

Vertex or Vertex Lists representing one or more objects

Vec-
tor

Vector to use for Translation, this is simple element wise addition to the Vector representations of the
incoming vertices. If the input is Nested, it is possible to translate each sub-list by a different Vector.

Mul-
tiplier

Straightforward Vector * Scalar, amplifies each element in the Vector parameter

Outputs

A Vertex or nested Lists of Vertices

Examples

This works for one vertice or many vertices

translate back to origin

Move lists of matching nestedness. (whats that?! - elaborate)

72 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Notes

4.3.4 Rotation

Functionality

This node is used to make general rotation over geometry. It works directly over vertices, not with matrixes. Just like
Blender, it offers 3 different types of rotation:

Axis Rotation Based on axis (X, Y, Z) and a rotation angle (W)

Type of Rotation Description
Axis Rotation Based on axis (X, Y, Z) and a rotation angle (W)
Euler Rotation Using Euler Gimbal: 3 axis with a hierarchical relationship between them
Quaternion rotation Based on four values (X, Y, Z, W). W value will avoid X, Y, Z rotation

If you want to learn deeply about all this types of rotation, visit this link: http://wiki.blender.org/index.php/User:
Pepribal/Ref/Appendices/Rotation

Axis Rotation

This mode let us define an axis (X, y, Z), a center point and a rotation angle (W), in degrees, around the defined axis.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is four inputs:

• Vertices

• Center

• Axis

• Angle

Parameters

All parameters except Vertices has a default value. Angle can be given by the node or an external input.

Param Type Default Description
Vertices Vertices none vertices to rotate
Center Vertices (0.0, 0.0, 0.0) point to place the rotation axis
Axis Vector (0.0, 0.0, 1.0) axis around which rotation will be done
Angle Float 0.00 angle in degrees to make rotation

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if more than one angle is set, then more objects
will be outputted.

4.3. Transforms 73

http://wiki.blender.org/index.php/User:Pepribal/Ref/Appendices/Rotation
http://wiki.blender.org/index.php/User:Pepribal/Ref/Appendices/Rotation

Sverchok Documentation, Release 0.5

Example of usage

In this example we use axis rotation with multiple inputs in axis an angle to create a complex geometry from just one
plane.

Euler Rotation

This mode is used to perform Euler rotations, refered to an Eular gimbal. A gimbal is a set of 3 axis that have a
hierarchical relationship between them.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is four inputs:

• Vertices

• X

• Y

• Z

Parameters

All parameters except Vertices has a default value. X, Y and Z can be given by the node or an external input.

Param Type Default Description
Vertices Vertices none vertices to rotate
X Float 0.00 value to X axis rotation
Y Float 0.00 value to Y axis rotation
Z Float 0.00 value to Z axis rotation
Order Enum XYZ order of the hierarchical relationship between axis

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if one or more inputs have multiple values, then
more objects will be outputted.

Example of usage

In the first example we use Euler rotation to perfomr a simple operation, we just rotate a plane around Z axis multiple
times. The second is more complex, with multiple inputs in Y and Z to create a complex geometry from just one plane,
simulating infinite loop.

Quaternion Rotation

In this mode rotation is defined by 4 velues (X, Y, Z, W), but it works in a different way than Axis Rotation. The
important thing es the relation between all four values. For example, X value rotate the object around X axis up to
180 degrees. The effect of W is to avoid that rotation and leave the element with zero rotation. The final rotation is a
combination of all four values.

74 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Inputs

All inputs are vectorized and they will accept single or multiple values. There is five inputs:

• Vertices

• X

• Y

• Z

• W

Parameters

All parameters except Vertices has a default value. X, Y, Z and W can be given by the node or an external input.

Param Type Default Description
Vertices Vertices none vertices to rotate
X Float 0.00 value to X axis rotation
Y Float 0.00 value to Y axis rotation
Z Float 0.00 value to Z axis rotation
W Float 1.00 value to Z axis rotation

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if one or more inputs have multiple values, then
more objects will be outputted.

Example of usage

As we can see in this example, we try to rotate the plan 45 degrees and then set W with multiple values, each higher
than before, but the plane is never get to rotate 180 degrees.

4.3.5 Scale

Functionality

This node will allow you to scale any king of geometry. It works directly with vertices, not with matrixes, so the output
will be just scaled geometry from your original vertices.

Inputs

All inputs are vectorized and they will accept single or multiple values. There is three inputs:

• Vertices

• Center

• Factor

4.3. Transforms 75

Sverchok Documentation, Release 0.5

Parameters

All parameters except Vertices has a default value. Factor can be given by the node or an external input.

Param Type Default Description
Vertices Vertices none vertices to scale
Center Vertices (0.0, 0.0, 0.0) point from which the scaling will be done
Factor Float 1.0 factor of scaling

Outputs

Only Vertices will be generated. Depending on the type of the inputs, if more than one factor or centers are set, then
more objects will be outputted. If you generate more outputs than inputs were given, then is probably that you need to
use list Repeater with your edges or polygons.

Example of usage

In this example we use scale to convert a simple circle into a kind of parabola.

4.3.6 Simple Deformation

Functionality

This node transforms vertices by one of deformations, similar to Blender’s “Simple Deform” modifier.

Inputs

This node has the following inputs:

• Vertices

• Origin. This matrix defines origin and coordinate axis of deformation. Default value is identity matrix.

• Angle. Deformation angle. Available in Twist, Bend modes.

• Factor. Deformation factor. Available in Taper mode.

• Low limit. Percentage value. Vertices below this limit will use the same transformation as vertices on the
boundary.

• High limit. Percentage value. Vertices above this limit will use the same transformation as vertices on the
boundary.

Parameters

This node has the following parameters:

• Mode. Deformation mode. Supported modes are:

– Twist

– Bend

– Taper

These modes are similar to their namesakes in Blender’s “Simple Deform” modifier.

76 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

• Angle mode. Defines which units are used for Angle input. Available values are Radian and Degree. Default
is Radian. Available only in Twist, Bend modes.

• Lock X, Lock Y. If checked, then corresponding coordinates of vertices will not be changed. Note that this lock
is applied to coordinates relative to Origin.

Outputs

This node has one output: Vertices.

Examples of usage

Bend deformation:

Twist deformation:

Taper deformation:

4.4 Analyzers

4.4.1 Area

Functionality

Area node is one of the analyzer type. It is used to get the area of any polygon, no matter the number of its vertices or
its world position.

Inputs

Vertices and Polygons are needed. Both inputs need to be of the kind Vertices and Strings, respectively

Parameters

All parameters need to proceed from an external node.

Param Type Default Description
Vertices Vertices None vertices of the polygons
Polygons Strings None polygons referenced to vertices
Count Faces Boolean True output individual faces or the sum of all

Outputs

Area will be calculated only if both Vertices and Polygons inputs are linked.

Example of usage

In the example we have the inputs from a plane with 15 faces. We can use Area node to get the sum of all of them or
the area of every face individually.

4.4. Analyzers 77

Sverchok Documentation, Release 0.5

4.4.2 Bounding Box

Functionality

Generates a special ordered bounding box from incoming Vertices.

Inputs

Vertices, or a nested list of vertices that represent separate objects.

Outputs

Output Type Description
Vertices Vectors One or more sets of Bounding Box vertices.
Edges Key Lists One or more sets of Edges corresponding to the Vertices of the same index.
Mean Vectors Arithmetic averages of the incoming sets of vertices
Center Matrix Represents the Center of the bounding box; the average of its vertices

Examples

Mean: Average of incoming set of Vertices

Center: Average of the Bounding Box

Notes

GitHub issue tracker discussion about this node

4.4.3 Distance

Functionality

Finds distance from point to point, from matrix to matrix or between many points and one opposite.

Inputs

vertices1 and matrix1 and vertices2 and matrix2.

Parameters

Name Type Description
CrossOver Boolean for every point finds all opposite points, not one other, but many.

Outputs

distances in format [[12,13,14,15]]

78 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/161

Sverchok Documentation, Release 0.5

Example of usage

4.4.4 Angles at the Edges

This node testing is in progress, so it can be found under Beta menu

Functionality

This node calculates angles at the edges of input mesh. Angles can be measured in radians or degrees.

Inputs

This node has the following inputs:

• Vertices.

• Edges. Note that this input should be connected in order for output angles to be in correct order.

• Polygons.

Parameters

This node has the following parameters:

4.4. Analyzers 79

Sverchok Documentation, Release 0.5

Parameter Type Default Description
Signed Boolean False If checked, then the node

will output negative val-
ues for concave edges. By
default, it always outputs
positive angles.

Complement Boolean False Output complementary
angle to one calculated by
BMesh. BMesh assumes
that angle between two
complanar faces is zero.
With this flag checked,
the node will output PI (or
180) for angle between
complanar faces.

Wire/Boundary value Enum Default What to return as angle for
wire or boundary edges.
BMesh returns some an-
gle by default for such
edges, but in some cases
these values do not make
sense. This parameter is
displayed only in N panel.
Default. Use value re-

turned by BMesh.
Zero. Return zero.
Pi. Return PI (or 180).
Pi/2. Return PI/2 (or 90).
None. Return None.

Angles mode Enum Radian Whether to measure an-
gles in radians or in de-
grees.

Outputs

This node has one output: Angles. The output contains calculated angles at the edges of input mesh. Angles are in
the order of edges in the Edges input. If the Edges input is not connected or is empty, then angles will be in order
returned by BMesh, which is, strictly speaking, random order.

Example of usage

Bevel only acute angles:

4.4.5 KDT Closest Verts

Functionality

For every vertex in Verts, it checks the list of Vertices in Check Verts. What it does exactly depends on the Search
Mode. Search modes are mere examples of what is possible with Blender’s KDTree module. The documentation for
kdtree is found at the latest version of mathutils.kdtree.html.

80 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Inputs

Mode Input Name type
All Verts vertices

Check Verts vertices
N N int, or list of ints
Radius Radius float, or list of floats

Verts and Check Verts do not need to be the same pool of verts, they don’t even need to be the same length.

Parameters

Search
Mode

Description

1 for each vertex in Verts return the vertex in Check Verts which is closest.
N for each vertex in Verts return the list of N closest vertices found in Check Verts
Radius for each vertex in Verts return the vertices of Check Verts that are found within radius-distance of

that vertex.

Outputs

The meaning of each output differs between Modes, but essentially they are:

• Vertices coordinates

• Vertex Indices of related vertex in Check Verts

• Vertex Distance between Vertex in Verts and Check Verts

The output lists will be nested if the Mode allows mutiple outputs, as is the case in N and Radius Mode.

Examples

All kinds of crazy things are possible, see some examples here in the development thread

Notes

Design specs

'''
find(co)

: internal function
: < Find nearest point to co
: > returns co, index, dist

: inputs:
1) Main Verts for kdtree to hold
2) [cVert(s)] to check against

: outputs:
1) [Verts.co] from Main Verts that were closest
2) [Verts.idx] from Main Verts that were closest

find_n(co, n)

4.4. Analyzers 81

https://github.com/nortikin/sverchok/issues/99

Sverchok Documentation, Release 0.5

: internal function
: > Find nearest n points to co
: < returns iterable of (co, index, dist)

: inputs:
1) Main Verts for kdtree to hold
2) [cVert(s)] to check against (size don't have to match)
3) n, max n nearest
optional?
4) mask, [0, 0, 1, 0, 1] (return 3rd and 5th closest)
4) range clamp, [2:] (don't return first 2 closest)

: outputs:
for v in cVerts:
1) ([Verts.co],..) from Main Verts closest to v.co
2) ([Verts.idx],..) from Main Verts closest to v.co
optional!
3) could generate edges directly (Saves node noodle)

find_range(co, radius)
: > Find all points within radius of co
: < returns iterable of (co, index, dist)

: inputs:
1) Main Verts for kdtree to hold
2) [cVert(s)] to check against (size don't have to match)
3) [distance(s)] ,

: outputs:
options:
1) grouped [.co for points in Main Verts in radius of v in cVert]
2) grouped [.idx for points in Main Verts in radius of v in cVert]
3) grouped [.dist for points in Main Verts in radius of v in cVert]

'''

If you need large kdtree searches and memoization or specific functionality you shall want to write your own Node to
utilize the kdtree module. Part of the problem of making a general use node is that it becomes sub-optimal for certain
tasks. On the up-side, having this node allows you to rip out the specifics and implement your own more specialized
kdtree node. Recommend using a different Node name and sharing it with team Sverchok :)

4.4.6 KDT Closest Edges

Alias: KDTree Edges

Functionality

On each update it takes an incoming pool of Vertices and places them in a K-dimensional Tree. It will return the Edges
it can make between those vertices pairs that satisfy the constraints imposed by the 4 parameters.

Inputs

• Verts, a pool of vertices to iterate through

82 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

Parmameter Type Description
mindist float Minimum Distance to accept a pair
maxdist float Maximum Distance to accept a pair
maxNum int Max number of edges to associate with the incoming vertex
Skip int Skip first n found matches if possible

Outputs

• Edges, which can connect the pool of incoming Verts to eachother.

Examples

development thread has examples

4.4.7 Mesh Filter

destination after Beta: Analyzers

Functionality

This node sorts vertices, edges or faces of input mesh by several available criterias: boundary vs interior, convex vs
concave and so on. For each criteria, it puts “good” and “bad” mesh elements to different outputs. Also mask output
is available for each criteria.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Faces

Parameters

This node has the following parameters:

• Mode. Which sort of mesh elements to operate on. There are three modes available: Vertices, Edges and Faces.

• Filter. Criteria to be used for filtering. List of criterias available depends on mode selected. See below.

Outputs

Set of outputs depends on selected mode. See description of modes below.

4.4. Analyzers 83

https://github.com/nortikin/sverchok/issues/108

Sverchok Documentation, Release 0.5

Modes

Vertices

The following filtering criteria are available for the Vertices mode:

Wire. Vertices that are not connected to any faces.

Boundary. Vertices that are connected to boundary edges.

Interior. Vertices that are not wire and are not boundary.

The following outputs are used in this mode:

• YesVertices. Vertices that comply to selected criteria.

• NoVertices. Vertices that do not comply to selected criteria.

• VerticesMask. Mask output for vertices. True for vertex that comly selected criteria.

• YesEdges. Edges that connect vertices complying to selected criteria.

• NoEdges. Edges that connect vertices not complying to selected criteria.

• YesFaces. Faces, all vertices of which comply to selected criteria.

• NoFaces. Faces, all vertices of which do not comply to selected criteria.

Note that since in this mode the node filters vertices, the indicies of vertices in input list are not valid for lists in
YesVertices and NoVertices outputs. So in edges and faces outputs, this node takes this filtering into account.
Indicies in YesEdges output are valid for list of vertices in YesVertices output, and so on.

Edges

The following filtering criteria are available for the Edges mode:

Wire. Edges that are not connected to any faces.

Boundary. Edges that are at the boundary of manifold part of mesh.

Interior. Edges that are manifold and are not boundary.

Convex. Edges that joins two convex faces. This criteria depends on valid face normals.

Concave. Edges that joins two concave faces. This criteria also depends on valid face normals.

Contiguous. Manifold edges between two faces with the same winding; in other words, the edges which connect
faces with the same normals direction (inside or outside).

The following outputs are used in this mode:

• YesEdges. Edges that comply to selected criteria.

• NoEdges. Edges that do not comply to selected criteria.

• Mask. Mask output.

Faces

For this mode, only one filtering criteria is available: interior faces vs boundary faces. Boundary face is a face, any
edge of which is boundary. All other faces are considered interior.

The following outputs are used in this mode:

84 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

• Interior. Interior faces.

• Boundary. Boundary faces.

• BoundaryMask. Mask output. It contains True for faces which are boundary.

Examples of usage

Move only boundary vertices of plane grid:

Bevel only concave edges:

Extrude only boundary faces:

4.4.8 Select mesh elements by location

Functionality

This node allows to select mesh elements (vertices, edges and faces) by their geometrical location, by one of supported
criteria.

You can combine different criteria by applying several instances of this node and combining masks with Logic node.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Faces

• Direction. Direction vector. Used in modes: By side, By normal, By plane, By cylinder. Exact meaning
depends on selected mode.

• Center. Center or base point. Used in modes: By sphere, By plane, By cylinder, By bounding box.

• Percent. How many vertices to select. Used in modes: By side, By normal.

• Radius. Allowed distance from center, or line, or plane, to selected vertices. Used in modes: By sphere, By
plane, By cylinder, By bounding box.

Parameters

This node has the following parameters:

• Mode. Criteria type to apply. Supported criterias are:

– By side. Selects vertices that are located at one side of mesh. The side is specified by Direction input.
So you can select “rightmost” vertices by passing (0, 0, 1) as Direction. Number of vertices to select is
controlled by Percent input: 1% means select only “most rightmost” vertices, 99% means select “all but
most leftmost”. More exactly, this mode selects vertex V if (Direction, V) >= max - Percent * (max - min),
where max and min are maximum and minimum values of that scalar product amongst all vertices.

4.4. Analyzers 85

Sverchok Documentation, Release 0.5

– By normal direction. Selects faces, that have normal vectors pointing in specified Direction. So you can
select “faces looking to right”. Number of faces to select is controlled by Percent input, similar to By side
mode. More exactly, this mode selects face F if (Direction, Normal(F)) >= max - Percent * (max - min),
where max and min are maximum and minimum values of that scalar product amongst all vertices.

– By center and radius. Selects vertices, which are within Radius from specified Center; in other words, it
selects vertices that are located inside given sphere. More exactly, this mode selects vertex V if Distance(V,
Center) <= Radius. This mode also supports passing many points to Center input; in this case, “Distance”
is distance from vertex to the nearest “Center”.

– By plane. Selects vertices, which are within Radius from specified plane. Plane is specified by providing
normal vector (Direction input) and a point, belonging to that plane (Center input). For example, if you
specify Direction = (0, 0, 1) and Center = (0, 0, 0), the plane will by OXY. More exactly, this mode selects
vertex V if Distance(V, Plane) <= Radius.

– By cylinder. Selects vertices, which are within Radius from specified straight line. Line is specified
by providing directing vector (Direction input) and a point, belonging to that line (Center input). For
example, if you specify Direction = (0, 0, 1) and Center = (0, 0, 0), the line will by Z axis. More exactly,
this mode selects vertex V if Distance(V, Line) <= Radius.

– By edge direction. Selects edges, which are nearly parallel to specified Direction vector. Note that this
mode considers edges as non-directed; as a result, you can change sign of all coordinates of Direction and
it will not affect output. More exactly, this mode selects edge E if Abs(Cos(Angle(E, Direction))) >= max
- Percent * (max - min), where max and min are maximum and minimum values of that cosine.

– Normal pointing outside. Selects faces, that have normal vectors pointing outside from specified Center.
So you can select “faces looking outside”. Number of faces to select is controlled by Percent input. More
exactly, this mode selects face F if Angle(Center(F) - Center, Normal(F)) >= max - Percent * (max - min),
where max and min are maximum and minimum values of that angle.

– By bounding box. Selects vertices, that are within bounding box defined by points passed into Center
input. Radius is interpreted as tolerance limit. For examples:

* If one point (0, 0, 0) is passed, and Radius = 1, then the node will select all vertices that have -1 <= X
<= 1, -1 <= Y <= 1, -1 <= Z <= 1.

* If points (0, 0, 0), (1, 2, 3) are passed, and Radius = 0.5, then the node will select all vertices that have
-0.5 <= X <= 1.5, -0.5 <= Y <= 2.5, -0.5 <= Z <= 3.5.

• Include partial selection. Not available in By normal mode. All other modes select vertices first. This
parameter controls either we need to select edges and faces that have any of vertices selected (Include partial =
True), or only edges and faces that have all vertices selected (Include partial = False).

Outputs

This node has the following outputs:

• VerticesMask. Mask for selected vertices.

• EdgesMask. Mask for selected edges. Please note that this mask relates to list of vertices provided at node
input, not list of vertices selected by this node.

• FacesMask. Mask for selected faces. Please note that this mask relates to list of vertices provided at node input,
not list of vertices selected by this node.

Examples of usage

Select rightmost vertices:

86 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Select faces looking to right:

Select vertices within sphere:

Using multiple centers:

Select vertices near OYZ plane:

Select vertices near vertical line:

Bevel only edges that are parallel to Z axis:

Select faces that are looking outside:

Select faces by bounding box:

4.4.9 Select similar

Functionality

This node allows to select mesh elements (vertices, edges and faces), which are similar to elements already selected
in some aspect. This is the implementation of Blender’s own “Select similar” (Shift+G) feature. So fo additional
information, please refer to the Blender’s documentation on this feature.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Faces

• Mask. This indicates elements selected initially. This mask can be applied to vertices, edges or faces, depending
on selected mode.

• Threshold. Similarity threshold.

Parameters

This node has the following parameters:

• Select. This parameter defines what elements are you selecting: Vertices, Edges or Faces.

• Select by. Similarity criteria type to apply. Supported criteria set depends on selection mode:

– For Vertices supported criteria are:

* Normal. Vertices with similar normal vector.

* Adjacent edges. Vertices with similar number of adjacent edges.

* Adjacent faces. Vertices with similar number of adjacent faces.

– For Edges, supported criteria are:

* Length. Edges with similar length.

* Direction. Edges with similar direction.

* Adjacent faces. Edges with similar number of adjacent faces.

4.4. Analyzers 87

Sverchok Documentation, Release 0.5

* Face Angle. Edges which have similar angle between adjacent faces.

– For Faces, supported criteria are:

* Area. Faces with similar area.

* Sides. Faces with similar number of sides.

* Perimeter. Faces with similar perimeter.

* Normal. Faces with similar normal vector.

* CoPlanar. Faces nearly coplanar to selected.

• Compare by. Comparasion operator to use. Available values are =, >=, <=.

• Threshold. Similarity threshold. This parameter can be also provided as input.

Outputs

This node has the following outputs:

• Mask. This indicates elements selected by the node. This mask is to be applied to vertices, edges or faces,
depending on selected mode.

• Vertices. Selected vertices. This output is only available in Vertices mode.

• Edges. Selected edges. This output is only available in Edges mode.

• Faces. Selected faces. This output is only available in Faces mode.

Examples of usage

Select faces with similar normal vector. Originally selected faces are marked with red color.

Select faces with similar area. Originally selected faces are marked with red color.

Select edges with direction similar to selected edges. Originally selected edges are marked with orange color.

4.4.10 Proportional Edit Falloff

Functionality

This node implements Blender’s concept of “proportional edit mode” in Sverchok. It converts vertex selection mask
into selection coefficients. Vertices selected by mask get the coefficient of 1.0. Vertices that are farther than specified
radius from selection, get the coefficient of 0.0.

Supported falloff modes are basically the same as Blender’s.

Inputs

This node has the following inputs:

• Vertices

• Mask

• Radius. Proportional edit radius.

88 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

This node has the following parameters:

• Falloff type. Proportional edit falloff type. Supported values are:

– Smooth

– Sharp

– Root

– Linear

– Sphere

– Inverse Square

– Constant

The meaning of values is all the same as for standard Blender’s proportional edit mode.

• Radius. Proportional edit radius. This parameter can be also provided by input.

Outputs

This node has one output: Coeffs. It contains one real value for each input vertex. All values are between 0.0 and 1.0.

Examples of usage

Drag a circle on one side of the box, with Smooth falloff:

All the same, but with Const falloff:

Example of usage with Extrude Separate node:

4.4.11 Vertex normal

Alias - vector normal

Functionality

Vertex normal node finds normals of vectors

Inputs

Vertices and Polygons are needed. Both inputs need to be of the kind Vertices and Strings, respectively

Parameters

All parameters need to proceed from an external node.

Param Type Default Description
Vertices Vertices None vertices of the polygons
Polygons Strings None polygons referenced to vertices

4.4. Analyzers 89

Sverchok Documentation, Release 0.5

Outputs

Vertices normals will be calculated only if both Vertices and Polygons inputs are linked.

Example of usage

4.4.12 Calculate Normals

Functionality

This node calculates normals for faces and edges of given mesh. Normals can be calculated even for meshes without
faces, i.e. curves.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

Outputs

This node has the following outputs:

• FaceNormals. Normals of faces. This output will be empty if Polygons input is empty.

• VertexNormals. Normals of vertices.

Examples of usage

Move each face of cube along its normal:

Visualization of vertex normals for bezier curve:

Normals can be also calculated for closed curves:

4.4.13 Overlap Polygons

Functionality

For every polygon of one object search intersection at other object. Epsilon makes it harder to find intersaction. Based
on BVHtree mathutils.bvhtree.

Inputs

Mode Input Name type
All Vert(A) vertices
All Poly(A) polygons
All Vert(B) vertices
All Poly(B) polygons

90 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

Mode Description
all triangles Boolean to work with triangles makes it faster to calculate
epsilon float threashold for cut weak results

Outputs

Mode Input Name type
All PolyIndex(A) indices
All PolyIndex(B) indices
All OverlapPoly(A) polygons
All OverlapPoly(B) polygons

Examples

https://github.com/nortikin/sverchok/files/1326934/bvhtree-overlap_2017_09_23_23_07.zip

Notes

pass

4.4.14 Points Inside Mesh

Functionality

This node takes a list of probe points, and an associated manifold boundary mesh (verts, faces). It analyses for each
of the probe points whether it is located inside or outside of the boundary mesh.

A small implementation issue is the imprecise categorization when the associated boundary mesh is low poly.

Warning. This is only a first implementation, likely it will be more correct after a few iterations.

see https://github.com/nortikin/sverchok/pull/1703

4.4.15 Centers Polygons

Functionality

Analizing geometry and finding centers of polygons, normals (from global zero), normals from local centers of poly-
gons and matrices that find polygons rotation. Not works with edges.

Inputs

Vertices and Polygons from object that we analizing.

Outputs

Normals is normals from global zero coordinates, vector. Norm_abs is normals shifted to centers of polygons.
Origins centers of polygons. Centers matrices that has rotation and location of polygons.

4.4. Analyzers 91

https://github.com/nortikin/sverchok/files/1326934/bvhtree-overlap_2017_09_23_23_07.zip
https://github.com/nortikin/sverchok/pull/1703

Sverchok Documentation, Release 0.5

Example of usage

Problems

The code of matrix rotation based on Euler rotation, so when you rotate to plane X-oriented, it makes wrong. We need
spherical coordinates and quaternion rotation here, needed help or something

4.4.16 Centers Polygons

Functionality

Analizing geometry and finding centers of polygons, normals (from global zero), normals from local centers of poly-
gons and matrices that find polygons rotation. Not works with edges.

Inputs

Vertices and Polygons from object that we analizing.

Outputs

Normals is normals from global zero coordinates, vector. Norm_abs is normals shifted to centers of polygons.
Origins centers of polygons. Centers matrices that has rotation and location of polygons.

Example of usage

Problems

The code of matrix rotation based on Euler rotation, so when you rotate to plane X-oriented, it makes wrong. We need
spherical coordinates and quaternion rotation here, needed help or something

4.4.17 Raycast

Functionality

Functionality is almost completely analogous to the two built-in blender operators bpy.context.scene.
ray_cast and object.ray_cast. Ray is casted from “start” vector to “end” vector and can hit polygons of
mesh objects.

see docs: bpy.types.Object.ray_cast and bpy.types.Scene.ray_cast

Input sockets

Start - “start” vectors

End - “end” vectors

92 Chapter 4. Nodes

http://www.blender.org/documentation/blender_python_api_2_71_0/bpy.types.Object.html#bpy.types.Object.ray_cast
http://www.blender.org/documentation/blender_python_api_2_71_0/bpy.types.Scene.html#bpy.types.Scene.ray_cast

Sverchok Documentation, Release 0.5

Parameters

parameter description
object name Name of object to analize. (For object_space mode

only)
raycast modes In object_space mode: node works like bpy.types.

Object.ray_cast (origin of object- center of coor-
dinate for Start & End).
In world_space mode: node works like bpy.types.
Scene.ray_cast.

Output sockets

socket
name

description

Hitp Hit location for every raycast
Hitnorm Normal of hit polygon (in “object_space” mode-local coordinates, in “world_space”- global
Index/succes For object_space mode: index of hit polygon. For world_space mode: True if ray hit mesh

object, otherwise False.
data object bpy.data.objects[hit object] or None type if ray doesn’t hit a mesh object. (only in

“world_space” mode)
hit object
matrix

Matrix of hit/struck object. (only in “world_space” mode)

Usage

4.4.18 Volume

Alias: Volume

Functionality

Count Volume of every object. Output list of values

Inputs

• Vers vertices of object(s)

• Pols polygons of object(s)

Outputs

• Volume, corresponding to count of objects it outputs volumes in list.

4.4. Analyzers 93

Sverchok Documentation, Release 0.5

Examples

4.5 Modifier Change

4.5.1 Bevel

destination after Beta: Modifier Change

Functionality

This node applies Bevel operator to the input mesh. You can specify edges to be beveled.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

• BevelEdges. Edges to be beveled. If this input is not connected, then by default all edges will be beveled. This
parameter is used only when Vertex only flag is not checked.

• Amount. Amount to offset beveled edge.

• Segments. Number of segments in bevel.

• Profile. Profile shape.

Parameters

This node has the following parameters:

94 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameter Type Default Description
Amount type Offset or

Width or Depth or
Percent

Offset
• Offset - Amount is

offset of new edges
from original.

• Width - Amount is
width of new face.

• Depth - Amount is
perpendicular dis-
tance from original
edge to bevel face.

• Percent - Amount is
percent of adjacent
edge length.

Vertex only Bool False Only bevel edges, not
faces.

Amount Float 0.0 Amount to offset beveled
edge. Exact interpreta-
tion of this parameter de-
pends on Amount type
parameter. Default value
of zero means do not
bevel. This parameter can
also be specified via corre-
sponding input.

Segments Int 1 Number of segments in
bevel. This parameter can
also be specified via corre-
sponding input.

Profile Float 0.5 Profile shape - a float nub-
mer from 0 to 1; default
value of 0.5 means round
shape. This parameter can
also be specified via corre-
sponding input.

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons

• NewPolys - only bevel faces.

Examples of usage

Beveled cube:

Only two edges of cube beveled:

Another sort of cage:

4.5. Modifier Change 95

Sverchok Documentation, Release 0.5

You can work with multiple objects:

4.5.2 Subdivide Node

Functionality

This node applies Blender’s Subvidide operation to the input mesh. Please note that of options available differs from
usual editing operator.

Inputs

This node has the following inputs:

• Vertrices

• Edges. For this node to produce interesting result, this input must be provided.

• Faces

• EdgeMask. Selected edges to be subdivided. Faces surrounded by subdivided edges can optionally be subdi-
vided too.

• Number of Cuts

• Smooth

• Fractal

• Along normal

• Seed

Parameters

This node has the following parameters:

• Show Old. If checked, then outputs with “old” geometry will be shown. By default not checked.

• Show New. If checked, then outputs with newly created geometry will be shown. By default not checked.

• Show Options. If checked, then following parameters will be shown on the node itself. Otherwise, they will be
available only in the N panel. By default not checked.

• Falloff. Smooth falloff type. Please refer to examples below for demonstration.

• Corner cut type. This controls the way quads with only two adjacent selected edges are subdivided. Available
values are:

– Inner vertices

– Path

– Fan

– Straight Cut

• Grid fill. If checked, then fully-selected faces will be filled with a grid (subdivided). Otherwise, only edges will
be subdiveded, not faces. Checked by default.

• Only Quads. If checked, then only quad faces will be subdivided, other will not. By default not checked.

• Single edge. If checked, tessellate the case of one edge selected in a quad or triangle. By default not checked.

96 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

• Even smooth. Maintain even offset when smoothing. By default not checked.

• Number of Cuts. Specifies the number of cuts per edge to make. By default this is 1, cutting edges in half. A
value of 2 will cut it into thirds, and so on. This parameter can be also provided as input.

• Smooth. Displaces subdivisions to maintain approximate curvature, The effect is similar to the way the Subdi-
vision Surface Modifier might deform the mesh. This parameter can be also provided as input.

• Fractal. Displaces the vertices in random directions after the mesh is subdivided. This parameter can be also
provided as input.

• Along normal. If set to 1, causes the vertices to move along the their normals, instead of random directions.
Values between 0 and 1 lead to intermediate results. This parameter can be also provided as input.

• Seed. Random seed. This parameter can be also provided as input.

Outputs

This node has the following outputs:

• Vertices. All vertices of resulting mesh.

• Edges. All edges of resulting mesh.

• Faces. All faces of resulting mesh.

• NewVertices. All vertices that were created by subdivision. This output is only visible when Show New
parameter is checked.

• NewEdges. Edges that were created by subdividing faces. This output is only visible when Show New param-
eter is checked.

• NewFaces. Faces that were created by subdividing faces. This output is only visible when Show New parameter
is checked.

• OldVertices. Only vertices that were created on previously existing edges. This output is only visible when
Show Old parameter is checked.

• OldEdges. Only edges that were created by subdividing existing edges. This output is only visible when Show
Old parameter is checked.

• OldFaces. Only faces that were created by subdividing existing faces. This output is only visible when Show
Old parameter is checked.

Note: Indicies in NewEdges, NewFaces, OldEdges, OldFaces outputs relate to vertices in Vertices output.

Examples of usage

The simplest example, subdivide a cube:

Subdivide one face of a cube, with smoothing:

Subdivide a cube, with smooth falloff type = Smooth:

Subdivide a torus, with smooth falloff type = Sphere:

4.5.3 Smooth Vertices

Functionality

This node applies Blender’s Smooth or Laplacian Smooth operation to the input mesh.

4.5. Modifier Change 97

Sverchok Documentation, Release 0.5

Inputs

This node has the following inputs:

• Vertices

• Edges

• Faces

• VertMask. Selected vertices to be smoothed.

• Iterations

• Clip threshold

• Factor

• Border factor

Parameters

This node has the following parameters:

• X, Y, Z. Toggle axes vertices will be smoothed along. By default mesh is smoothed along all axes.

• Laplacian Smooth. Toggles smoothing algorithm: when checked, Laplacian smoothing is used; otherwise,
simple averaging scheme will be used. By default not checked.

• Clip X, Clip Y, Clip Z. Toggle axes along which “Mirror Clipping” procedure will be applied. This procedure
merges vertices that have X/Y/Z coordinate near zero, withing specified threshold. For example, it can merge
vertices (0.01, 3, 5) and (- 0.01, 3, 5) into one vertex (0, 3, 5). These parameters are available only when
Laplacian Smooth is off. Not checked by default.

• Preserve volume. If checked, the mesh will be “blown” a bit after smoothing, to preserve its volume. Available
only when Laplacian Smooth is on. Checked by default.

• Iterations. Number of smoothing operation iterations. Default value is 1. This parameter can also be provided
as input.

• Clip threshold. Threshold for “Mirror Clipping” procedure. Available only when Laplacian Smooth is off.
This parameter can also be provided as input.

• Factor. Smoothing factor. Zero means no smoothing. For simple mode, 1.0 is maximum sensible value, bigger
values will create degenerated forms in most cases. For Laplacian mode, sensible values can be much bigger.
This parameter can also be provided as input.

• Border factor. Smoothing factor for border. This parameter is only available when Laplacian Smooth is on.
This parameter can also be provided as input.

Outputs

This node has the following outputs:

• Vertices. All vertices of resulting mesh.

• Edges. All edges of resulting mesh.

• Faces. All faces of resulting mesh.

98 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples of usage

Laplacian smooth applied to the cube, along X and Y axes only:

Smoothing applied only to selected vertices:

Suzanne smoothed:

4.5.4 Delete Loose

Functionality

Delete Loose vertices, that not belong to edges or polygons that plugged in.

Inputs

• Vertices

• PolyEdge

Outputs

• Vertices - filtered

• PolyEdge

Examples of usage

Simple:

4.5.5 Extrude edges

destination after Beta: Modifier Change

Functionality

You can extrude edges along matrices. Every matrix influence on separate vertex of initial mesh.

Inputs

This node has the following inputs:

• Vertices

• Edgs/Pols

• Matrices

Parameters

Nope

4.5. Modifier Change 99

Sverchok Documentation, Release 0.5

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons

• NewVertices - only new vertices

• NewEdges - only new edges

• NewPolys - only new faces.

Examples of usage

Extruded circle in Z direction by sinus, drived by pi*N:

Extruded circle in XY directions by sinus and cosinus drived by pi*N:

Matrix input node can make skew in one or another direction:

Matrix input node can also scale extruded edges, so you will get bell:

4.5.6 Extrude Edges

This node testing is in progress, so it can be found under Beta menu

Functionality

This node applies Extrude operator to edges of input mesh. After that, matrix transformation can be applied to new
vertices. It is possible to provide specific transformation matrix for each of extruded vertices.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

• ExtrudeEdges. Edges of input mesh that are to be extruded. If this input is empty or not connected, then by
default all edges will be processed.

• Matrices. Transformation matrices to be applied to extruded vertices. This input can contain separate matrix
for each vertex. In simplest case, it can contain one matrix to be applied to all vertices.

Outputs

This node has the following outputs:

• Vertices

• Edges

100 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

• Polygons. All faces of resulting mesh.

• NewVertices. Newly created vertices only.

• NewEdges. Newly created edges only.

• NewFaces. Newly created faces only.

Examples of usage

Extrude only boundary edges of plane grid, along Z axis:

Extrude all edges of bitted circle, and scale new vertices:

4.5.7 Extrude Separate Faces

destination after Beta: Modifier Change

Functionality

This node applies Extrude operator to each of input faces separately. After that, resulting faces can be scaled up or
down by specified factor. It is possible to provide specific extrude and scaling factors for each face.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

• Mask. List of boolean or integer flags. Zero means do not process face with corresponding index. If this input
is not connected, then by default all faces will be processed.

• Height. Extrude factor.

• Scale. Scaling factor.

Parameters

This node has the following parameters:

Pa-
ram-
eter

Type De-
fault

Description

Height Float 0.0 Extrude factor as a portion of face normal length. Default value of zero means do not
extrude. Negative value means extrude to the opposite direction. This parameter can be
also provided via corresponding input.

Scale Float 1.0 Scale factor. Default value of 1 means do not scale.

4.5. Modifier Change 101

Sverchok Documentation, Release 0.5

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons. All faces of resulting mesh.

• ExtrudedPolys. Only extruded faces of resulting mesh.

• OtherPolys. All other faces of resulting mesh.

Example of usage

Extruded faces of sphere, extruding factor depending on Z coordinate of face:

Sort of cage:

4.5.8 Extrude Region

Functionality

This node applies Extrude operator to the region of selected faces, as whole. After that, resulting faces can be either
transformed by any matrix, or moved along normal and scaled. If transformation is specified by matrix, it is possible
to provide specific matrix for each vertex.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

• Mask. List of boolean or integer flags. Zero means do not process face with corresponding index. If this input
is not connected, then by default all faces will be processed.

• Height. Extrude factor. Available only in Along normal mode.

• Scale. Scaling factor. Available only in Along normal mode.

• Matrix. Transformation matrices. Available only in Matrix mode.

Parameters

This node has the following parameters:

• Transformation mode. Controls how the transformation of extruded vertices is specified. There are two modes
available:

– Matrix. This is the default mode. Transformation is specified by matrix provided at Matrix input.

– Along normal. Vertices are translated along normal and scaled. Please note, that by normal here we mean
average of normals of selected faces. Scaling center is average center of selected faces.

102 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

• Multiple extrude. This parameter defines how to deal with multiple matrices passed into Matrix input or
multiple values passed into Height and Scale inputs. This parameter is available only in Matrix mode; in
Along normal mode, this parameter is always checked.

– If not checked (and Matrix mode is used), then each matrix provided will be applied to corresponding
extruded vertex. So number of matrices in input is expected to be from 1 to the number of vertices which
are extruded.

– If checked, or Along normal mode is used, then extrusion operation may be performed several times:

* In Along normal mode, extrusion operation will be performed one time for each pair of Height and
Scale input values.

* In Matrix mode, extrusion operation will be performed one time for each matrix passed into Matrix
input.

• Keep original. If checked, the original geometry will be passed to output as well as extruded geometry. This
parameter is visible only in Properties (N) panel.

• Height. Available only in Along normal mode. Extrude factor as a portion of face normal length. Default value
of zero means do not extrude. Negative value means extrude to the opposite direction. This parameter can be
also provided via corresponding input.

• Scale. Available only in Along normal mode. Scale factor. Default value of 1 means do not scale. This
parameter can be also provided via corresponding input.

Outputs

This node has the following outputs:

• Vertices. All vertices of resulting mesh.

• Edges. All edges of resulting mesh.

• Polygons. All faces of resulting mesh.

• NewVerts. Only newly created vertices.

• NewEdges. Only newly created edges.

• NewFaces. Only newly created faces.

Note 1: Indicies in NewEdges, NewFaces outputs relate to vertices in Vertices output, not to NewVerts ones.

Note 2: If multiple extrusion is used, then NewVerts, NewEdges, NewFaces outputs will contain only geometry
created by last extrusion operation.

Examples of usage

Extrude along normal:

Extrude by scale matrix:

Multiple extrusion mode:

4.5.9 Fill Holes

Functionality

It fills closed countors from edges that own minimum vertices-sides with polygons.

4.5. Modifier Change 103

Sverchok Documentation, Release 0.5

Inputs

• Vertices

• Edges

Parameters

Param Type Default Description
Sides Float 4 Number of sides that will be collapsed to polygon.

Outputs

• Vertices

• Edges

• Polygons. All faces of resulting mesh.

Examples of usage

Fill holes of formula shape, edges of initial shape + voronoi grid + fill holes

4.5.10 Iterate

Functionality

This node iteratively applies affine transformation (specified by matrix) to input vertices, edges and polygons. So,
given matrix M and vertex V, it will produce vertices V, M*V, M*M*V, M*M*M*V and so on.

If several matrices are presented on input, then on each iteration this node will apply all these matrices to input vertices.
So, if 1 set of vertices and N matrices are passed, then on first iteration it will produce N sets of vertices, on second
iteration - N*N more, and so on.

Note 1. Source set of vertices (edges, and faces) is always passed to output as-is. With minimal number of iterations,
which is zero, this node will just copy input to output.

Note 2. Due to recursive nature of this node, with bigger iterations number and a several input matrices it can produce
a lot of data. For example, if you pass 100 vertices, 10 matrices and specify number of iterations = 4, then it will
produce 100 + 10*100 + 10*10*100 + 10*10*10*100 + 10*10*10*10*100 = 1111100 vertices.

Note 3. This node always produce one mesh. To split it to parts, use Separate Loose Parts node.

Inputs

This node has the following inputs:

• Matrix

• Verices

• Edges. Must be either empty (or not connected) or presenting number of edges sets, which is equal to number
of vertices sets in Vertices input.

104 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

• Polygons. Must be either empty (or not connected) or presenting number of polygons sets, which is equal to
number of vertices sets in Vertices input.

• Iterations. Can be used to pass value of Iterations parameter. If series of values is passed, then first value will
be used for first set of vertices, second for second set of vertices, and so on.

Parameters

This node has one parameter: Iterations. This parameter can also be defined via corresponding input slot. This
parameter defines a number of iterations to perform. Minimal value of zero means do not any iterations and just pass
input to output as is.

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons

• Matrices. Matrices that are applied to generated copies of source mesh.

If Edges or Polygons input is not connected, then corresponding output will be empty.

Examples

Circle as input, Iterations = 3; one matrix specifies scale by 0.65 (along all axis) and translation along X axis by 0.3:

One object as input, Iterations = 4; one matrix specifies scale by 0.6 along X and Y axis, and translation along Z by 1:

One Box as input, Iteration = 3, two matrices:

Iterate cubes along with pentagons:

4.5.11 Mesh Join

Functionality

Analogue to Ctrl+J in the 3dview of Blender. Separate nested lists of vertices and polygons/edges are merged. The
keys in the Edge and Polygon lists are incremented to coincide with the newly created vertex list.

The inner workings go something like:

vertices_obj_1 = [
(0.2, 1.5, 0.1), (1.2, 0.5, 0.1), (1.2, 1.5, 0.1),
(0.2, 2.5, 5.1), (0.2, 0.5, 2.1), (0.2, 2.5, 0.1)]

vertices_obj_2 = [
(0.2, 1.4, 0.1), (1.2, 0.2, 0.3), (1.2, 4.5, 4.1),
(0.2, 1.5, 3.4), (5.2, 6.5, 2.1), (0.2, 5.5, 2.1)]

key_list_1 = [[0,1,2],[3,4,5]]
key_list_2 = [[0,1,2],[3,4,5]]

verts_nested = [vertices_obj_1, vertices_obj_2]

4.5. Modifier Change 105

Sverchok Documentation, Release 0.5

keys_nested = [key_list_1, key_list_2]

def mesh_join(verts_nested, keys_nested):

mega_vertex_list = []
mega_key_list = []

def adjust_indices(klist, offset):
return [[i+offset for i in keys] for keys in klist]
for every key in klist, add offset
return result

for vert_list, key_list in zip(verts_nested, keys_nested):
adjusted_key_list = adjust_indices(key_list, len(mega_vertex_list))
mega_vertex_list.extend(vert_list)
mega_key_list.extend(adjusted_key_list)

return mega_vertex_list, mega_key_list

print(mesh_join(verts_nested, keys_nested))

result
[(0.2, 1.5, 0.1), (1.2, 0.5, 0.1), (1.2, 1.5, 0.1),
(0.2, 2.5, 5.1), (0.2, 0.5, 2.1), (0.2, 2.5, 0.1),
(0.2, 1.4, 0.1), (1.2, 0.2, 0.3), (1.2, 4.5, 4.1),
(0.2, 1.5, 3.4), (5.2, 6.5, 2.1), (0.2, 5.5, 2.1)]

[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]

Inputs & Outputs

The inputs and outputs are vertices and polygons / edges.

Expects a nested collection of vertex lists. Each nested list represents an object which can itself have many vertices
and key lists.

Examples

Notes

4.5.12 Separate Loose Parts

Functionality

Split a mesh into unconnected parts in a pure topological operation.

Input & Output

socket name Description
input Vertices Inputs vertices
input Poly Edge Polygon or Edge data
output Vertices Vertices for each mesh part
output Poly Edge Corresponding mesh data

106 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

Notes

Note that it doesn’t take double vertices into account. There is no guarantee about the order of the outputs

4.5.13 Duplicate along Edge

destination after Beta: Modifier Change

Functionality

This node creates an array of copies of one (donor) mesh and aligns it along given recipient segment (edge). Count of
objects in array can be specified by user or detected automatically, based on size of donor mesh and length of recipient
edge. Donor mesh can be scaled automatically to fill all length of recipient edge.

Donor objects are rotated so that specified axis of object is aligned to recipient edge.

This node also can output transformation matrices, which should be applied to donor object to be aligned along
recipient edge. By default, this node already applies that matrices to donor object; but you can turn this off, and apply
matrices to donor object in another node, or apply them to different objects.

Inputs

This node has the following inputs:

• Vertices. Vertices of the donor mesh. The node will produce nothing if this input is not connected.

• Edges. Edges of the donor mesh.

• Polygons. Faces of the donor mesh.

• Vertex1. First vertex of recipient edge. This input is used only when “Fixed” input mode is used (see description
of Input mode parameter below).

• Vertex2. Second vertex of recipient edge. This input is used only when “Fixed” input mode is used.

• VerticesR. Vertices of the recipient mesh. This input is used only when “Edges” input mode is used.

• EdgesR. Edges of the recipient mesh. These edges will be actually used as recipient edges. This input is used
only when “Edges” input mode is used.

• Count. Number of objects in array. This input is used only in “Count” scaling mode (see description of Scale
mode parameter below).

• Padding. Portion of the recipient edge length that should be left empty from both sides. Default value of zero
means fill whole available length.

Parameters

This node has the following parameters:

4.5. Modifier Change 107

Sverchok Documentation, Release 0.5

Parameter Type Default Description
Scaling mode Count or Up

or Down or
Off

Count
• Count: specify

number of objects
in array. Objects
scale will be calcu-
lated so that copies
will fill length of
recipient edge.

• Up: count is
determined au-
tomatically from
length of recipient
edge and size of
donor mesh, and
meshes are scaled
only up (for exam-
ple, if donor mesh
is 1 unit long, and
recipient edge is
3.6 units, then there
will be 3 meshes
scaled to be 1.2
units long each).

• Down: the same as
Up, but meshes are
scaled only down.

• Off: the same as
Up, but meshes are
not scaled, so there
will be some empty
space between
copies.

Orientation X or Y or Z X Which axis of donor ob-
ject should be aligned to
direction of the recipient
edge.

Input mode Edges or Fixed Edges
• Edges: recipient

edges will be de-
termined as all
edges from the
EdgesR input
between vertices
from VerticesR
input.

• Fixed: recipient
edge will be deter-
mied as an edge
between the edge
from Vertex1
input and the vertex
from Vertex2
input.

Scale all axes Bool False If False, then donor ob-
ject will be scaled only
along axis is aligned with
recipient edge direction.
If True, objects will be
scaled along all axes (by
the same factor).

Apply matrces Bool True Whether to apply calcu-
lated matrices to created
objects.

Count Int 3 Number of objects in ar-
ray. This parameter can be
determined from the cor-
responding input. It is
used only in “Count” scal-
ing mode.

Padding Float 0.0 Portion of the recipient
edge length that should
be left empty from both
sides. Default value of
zero means fill whole
length available. Max-
imum value 0.49 means
use only central 1% of
edge.

108 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons

• Matrices. Matrices that should be applied to created objects to align them along recipient edge. By default, this
node already applies these matrices, so you do not need to do it second time.

This node will output something only when Vertices or Matrices output is connected.

Examples of usage

Cylinders duplicated along the segment between two specified points:

Spheres duplicated along the edges of Box:

You can also find more examples and some discussion in the development thread.

4.5.14 Offset

destination after Beta: Modifier Change

Functionality

Make offset for polygons with bevel in corners. Output inner and outer polygons separately.

Inputs

This node has the following inputs:

• Vers - vertices of objects

• Pols - polygons of objects

• offset - offset values. Vectorized for every polygon as [[f,f,f,f,f]]

• nsides - number of rounded sides

• radius - bevel radius. Vectorized for every polygon as [[f,f,f,f,f]]

Parameters

All parameters can be given by the node or an external input. offset and radius are vectorized and they will
accept single or multiple values.

Param Type Default Description
offset Float 0.04 offset values.
nsides Integer 1 number of rounded sides.
radius Float 0.04 bevel radius.

4.5. Modifier Change 109

https://github.com/portnov/sverchok/issues/6

Sverchok Documentation, Release 0.5

Outputs

This node has the following outputs:

• Vers

• Edgs

• OutPols - get polygons that lay in outer polygon’s line.

• InPols - get polygons that lay in inner polygon’s line.

Examples of usage

Offset and radius are defined by distance between point and polygon’s center, divided by some number:

Parameters’ cases, that make different polygons (decomposer list node used to separate):

Upper image can be defined by one offset and list (range) of numbers, plugget to offset/radius, wich are vectorised:

4.5.15 Polygon Boom

Functionality

The vertices of each polygon will be placed into separate lists. If polygons share vertices then the coordinates are
duplicates into new vertices. The end result will be a nested list of polygons with each their own unique vertices. This
facilitates rotation of a polygon around an arbitrary points without affecting the vertices of other polygons in the list.

Inputs & Outputs

Lists of Vertices and Edge/Polygon lists. The type of data in the edg_pol output socket content depends on the what
kind of input is passed to edge_pol input socket. If you input edges only, that’s what the output will be.

Examples

The Box on default settings is a Cube with 6 polygons and each vertex is shared by three polygons. Polygon Boom
separates the polygons into seperate coordinate lists (vertices).

4.5.16 Polygons to Edges

Functionality

Each polygon is defined by a closed chain of vertices which form the edges of the polygon. The edges of each polygon
can be extracted. If a polygon is defined by a list of vertex indices (keys) as [3,5,11,23] then automatically the
edge keys can be inferred as [[3,5],[5,11],[11,23],[23,3]]. Note here that the last key closes the edge
loop and reconnects with the first key in the sequence.

Input & Output

socket name Description
input pols Polygons
output edges The edges from which the polygon is built

110 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

Notes

If you feed this node geometry and don’t get the expected output, try a subset of the input geometry and hook the output
up to a debug node. Seeing what the output really is helps get an understanding for how this Node has interpreted
the data. Also view the incoming data to see if it’s what you think it is, perhaps it has unexpected extra nesting or
wrapping.

Doesn’t currently work on Plane Generator, or any generator which expresses key lists using tuples.

4.5.17 Randomize

destination after Beta: Modifier Change

Functionality

This mode processes set of vertices by moving each of them by random distance along X, Y, and Z axis. You can
specify maximum distance of moving for each axis.

Inputs

This node has the following inputs:

• Vertices

• X amplitude

• Y amplitude

• Z amplitude

• Seed

Parameters

All parameters can be given by the node or an external input. This node has the following parameters:

Parameter Type Default Description
X amplitude Float 0.0 Maximum distance to move vertices along X axis.
Y amplitude Float 0.0 Maximum distance to move vertices along Y axis.
Z amplitude Float 0.0 Maximum distance to move vertices along Z axis.
Seed Int 0 Random seed.

Note. Each amplitude input specifies maximum distance to move vertices along corresponding axis. Vertices can be
moved both in negative and positive directions. For example, for vertex X coordinate = 10.0, and X amplitude =
1.0, you can get output vertex coordinate from 9.0 to 11.0.

Outputs

This node has one output: Vertices.

4.5. Modifier Change 111

Sverchok Documentation, Release 0.5

Example of usage

Given simplest nodes setup:

you will have something like:

4.5.18 Recalculate Normals

This node testing is in progress, so it can be found under Beta menu

Functionality

This node recalculates normals of mesh faces, so that they all point either outside or inside. This is equivalent of
Ctrl+N and Ctrl+Shift+N in the edit mode. This node is useful mainly when other nodes create degenerated geometry,
or when geometry was generated by low-level operations with vertex indicies. It can be also used to just turn all
normals inside out or vice versa.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

• Mask. List of boolean or integer flags. Zero or False means do not process face with corresponding index. If
this input is not connected, then all faces will be processed.

Parameters

This node has one parameter: Inside flag. The flag changes direction of normals to the opposite. By default, the flag
is not set.

Outputs

This node has the following outputs:

• Vertices. This is just copy of input vertices for convinience.

• Edges.

• Polygons.

Example of usage

Visualisation of cube normals turned inside:

Making normals normal:

112 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

4.5.19 Remove Doubles

Functionality

This removes double vertices/edges/polygons, as do same-named command in blender

Inputs

• Distance

• Vertices

• PolyEdge

Parameters

Param Type Default Description
Distance Float 0.001 Maximum distance to weld vertices

Outputs

This node has the following outputs:

• Vertices

• Edges

• Polygons

• Doubles - Vertices, that was deleted.

Examples of usage

4.5.20 Triangulate Mesh

This node testing is in progress, so it can be found under Beta menu

Functionality

This node applies Triangulate operator (Ctrl+T in normal mode) to the mesh. It can triangulate all faces or only
selected ones. This node is useful mainly when other node generates ngons, especially not-convex ones.

Inputs

This node has the following inputs:

• Vertices

• Edges

• Polygons

• Mask. List of boolean or integer flags. Zero or False means do not triangulate face with corresponding index.
If this input is not connected, then all faces will be triangulated.

4.5. Modifier Change 113

Sverchok Documentation, Release 0.5

Parameters

This node has the following parameters:

• Quads mode. Method of quads processing. Available modes are:

Beauty. Split the quads in nice triangles, slower method.

Fixed Split the quads on the 1st and 3rd vertices.

Fixed Alternate Split the quads on the 2nd and 4th vertices.

Shortest Diagonal Split the quads based on the distance between the vertices.

• Ngon mode. Method of ngons processing. Available modes are:

Beauty. Arrange the new triangles nicely, slower method.

Scanfill. Split the ngons using a scanfill algorithm.

Outputs

This node has the following outputs:

• Vertices. This is just copy of input vertices for convinience.

• Edges.

• Polygons.

• NewEdges. This contains only new edges created by triangulation procedure.

• NewPolys. This contains only new faces created by triangulation procedure. If Mask input is not used, then
this output will contain the same as Polygons output.

Examples of usage

Triangulated cube:

Triangulate only two faces of extruded polygon:

4.5.21 Mask Vertices

Functionality

Filter vertices with False/True bool values and automatically removes not connected edges and polygons.

Inputs

• Mask

• Vertices

• Poly Edge

114 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

Param Type De-
fault

Description

Mask list of
booleans

[1,0] Mask can be defined with ListInput node or Formula node or other as list
[n,n1,n2...ni] where n’s can be 0 or 1 (False or True)

Outputs

• Vertices

• Poly Edge

Examples of usage

4.6 Modifier Make

4.6.1 Bisect

Functionality

This can give the cross section of an object shape from any angle. The implementation is from bmesh.ops.
bisect_plane. It can also provide either side of the cut, separate or joined.

Inputs

Vertices, PolyEdges and Matrix

Parameters

Parameter Type Description
Clear Inner bool don’t include the negative side of the Matrix cut
Clear Outer bool don’t include the positive side of the Matrix cut
Fill cuts bool generates a polygon from the bisections

Outputs

Vertices, Edges, and Polygons.

4.6. Modifier Make 115

Sverchok Documentation, Release 0.5

Examples

Notes

4.6.2 Convex Hull

Functionality

Use this to skin a simple cloud of points. The algorithm is known as Convex Hull, and implemented in bmesh.ops.
convex_hull.

Input

Vertices

Outputs

Vertices and Polygons. The number of vertices will be either equal or less than the original number. Any internal
points to the system will be rejected and therefore not part of the output vertices.

Examples

Notes

4.6.3 Cross Section

Functionality

Sect object with blender operator to edges/polygons (F or Alt+F cases). In some cases work better than new bisect
node.

Inputs

Vertices and polygons for object, that we cut, matrix for this object to deform, translate before cut. Cut matrix - it is
plane, that defined by matrix (translation+rotation).

Parameters

table

Param Type Description
Fill section Bool Make polygons or edges
Alt+F/F Bool If polygons, than triangles or single polygon

Outputs

Vertices and Edges/Polygons.

116 Chapter 4. Nodes

http://en.wikipedia.org/wiki/Convex_hull_algorithms

Sverchok Documentation, Release 0.5

Example of usage

4.6.4 Delaunay 2D

4.6.5 Adaptative Edges

4.6.6 Lathe

Functionality

Analogous to the spin operator and the Screw modifier. It takes a profile shape as input in the form of vertices and
edges and produces vertices and faces based on a rotation axis, angle, center, delta and step count. Internally the node
is powered by the bmesh.spin operator.

Inputs

It’s vectorized, meaning it accepts nested and multiple inputs and produces multiple sets of output

Parameters

All Vector parameters (except axis) default to (0,0,0) if no input is given.

Param Type Description
cent Vector central coordinate around which to pivot
axis Vector axis around which to rotate around the pivot, default (0, 0, 1)
dvec Vector is used to push the center Vector by a Vector quantity per step
De-
grees

Scalar,
Float

angle of the total rotation. Default 360.0

Steps Scalar,
Int

numer of rotation steps. Default 20

Merge Bool,
toggle

removes double vertices if the geometry can be merged, usually used to prevent doubles of
first profile and last profile copy. Default off.

Outputs

Vertices and Poly. Verts and Polys will be generated. The bmesh.spin operator doesn’t consider the ordering of
the Vertex and Face indices that it outputs. This might make additional processing complicated, use IndexViewer to
better understand the generated geometry. Faces will however have consistent Normals.

Example of usage

See the progress of how this node came to life here (gifs, screenshots)

Glass, Vase.

4.6.7 Matrix Tube

destination after Beta: Modifier Make

4.6. Modifier Make 117

http://www.blender.org/documentation/blender_python_api_2_71_release/bmesh.ops.html#bmesh.ops.spin
https://github.com/nortikin/sverchok/issues/203

Sverchok Documentation, Release 0.5

Functionality

Makes a tube or pipe from a list of matrices. This node takes a list of matrices and a list of vertices as input. The
vertices are joined together to form a ring. This ring is transformed by each matrix to form a new ring. Each ring is
joined to the previous ring to form a tube.

Inputs

Matrices - List of transform matrices.

Vertices - Vertices of ring. Usually from a “Circle” or “NGon” node

Outputs

• Vertices, Edges and Faces - These outputs will define the mesh of the tube that skins the input matrices.

Example of usage

4.6.8 Pipe

Functionality

Making pipes from edges.

Inputs

Vers - Vertices of piped object.

Edgs - Edges of piped object.

diameter - Diameter of pipe.

nsides - Number of sides of pipe.

offset - Offset on length to awoid self intersection.

extrude - Scale the pipe on local X direction.

Properties

close - Close pipes between each other to make complete topology of united mesh.

Outputs

Vers - Vertices of output.

Pols - Polygons of output.

118 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

4.6.9 Adaptative Polygons

Functionality

Share one object’s verts+faces to another object’s verts+faces. Donor spreads itself onto recipient polygons, every
polygon recieves a copy of the donor object and deforms according to the recipients face normals.

Limitations: This node was created primarily with Quads (quadrilateral polygons) in mind, and will output un-
usual meshes if you feed it Tris or Ngons in the recipient Mesh. Original code taken with permission from
https://sketchesofcode.wordpress.com/2013/11/11/ by Alessandro Zomparelli (sketchesofcode).

Inputs

• VersR and PolsR is Recipient object’s data.

• VersD and PolsD is donor’s object data.

• Z_Coef is coefficient of height, can be vectorized.

Parameters

table

Param Type Description
Donor width Float Donor’s spread width is part from recipient’s polygons width

Outputs

Vertices and Polygons are data for created object.

Example of usage

4.6.10 Solidify

4.6.11 UV Connection

Functionality

Making edges/polygons between vertices objects it several ways.

Inputs

Vertices. Multysockets can eat many objects. every object to be connecting with other.

4.6. Modifier Make 119

https://sketchesofcode.wordpress.com/2013/11/11/

Sverchok Documentation, Release 0.5

Parameters

table

Param Type Description
UVdir Enum Direction to connect edges and polygons
cicled Bool, toggle For edges and polygons close loop
polygons Bool, toggle Active - make polygon, else edge
slice Bool, toggle Polygons can be as slices or quads

Outputs

Vertices and Edges/Polygons. Verts and Polys will be generated. The Operator doesn’t consider the ordering of the
Vertex and Face indices that it outputs. This might make additional processing complicated, use IndexViewer to better
understand the generated geometry. Faces will however have consistent Normals.

Example of usage

4.6.12 Voronoi 2D

4.6.13 Wafel

Functionality

This node make section possible to make as manufactured wafel structure. There is always pair of wafel nodes, two
directions.

If you want start with this node - try open json first.

1. Import from import sverchok panel waffel_minimal.json to new layout.

2. Make some order in layout and developt to needed condition.

Inputs

vecLine - lines sected between sections of solid object. Form factor of object. each object has only two certices
defining this section.

vecPlane - vectors of one side section.

edgPlane - closed edges (not planes) of one side section.

thickness - thickness of material to use in thickness of waffel slots.

Properties

threshold - threshold of line length from vecLine to limit cut material when producing.

Up/Down - direction of slots, there is only two cases, up or down. Not left and right and no XY directed vecLines
never. Remember this.

120 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Properties_extended

rounded - rounded edges.

Bind2 - circles to bind.

Contra - contrplane to define where to flip Up and Down direction. It is same as vecPlane.

Tube - case of section lines, making holes in body. It is same as vecLine.

Outputs

vert - vertices of output.

edge - edges of output.

centers - polygons centers.

Notes

Always make matrices rotations not orthogonal, it will not work 100%. Making something like (1.0,0.001,0) will work
for matrix sections.

Always use Cross section nodes, not bisect, it will not work.

Examples

4.6.14 Wireframe

4.7 Number

4.7.1 Exponential Sequence

destination after Beta: Number

Functionality

This node produces specified number of items from exponential sequence, defined by formula x_n = x0*exp(alpha*n)
or x_n = x0*base^n. Obviously, these formulas are equivalent when alpha = log(base).

Sequence can be re-scaled so that maximum of absolute values of produced items will be equal to specified value.

Note. Please do not forget well-known properties of exponential sequences:

• They grow very quickly when base is greater than 1.0 (or alpha greater than 0.0).

• They decrease very quickly when base is less than 1.0 (or alpha less than 0.0).

4.7. Number 121

Sverchok Documentation, Release 0.5

Inputs & Parameters

All parameters except for Mode can be given by the node or an external input. This node has the following parameters:

Pa-
rame-
ter

Type De-
fault

Description

Mode Enum: Log
or Base

Log If Log, then x_n = x0*exp(alpha*n). If Base, then x_n = x0*base^n.

X0 Float 1.0 Item of sequence for N=0.
Alpha Float 0.1 Coefficient in formula exp(alpha*n). Used only in Log mode.
Base Float 2.0 Exponential base in formula base^n. Used only in Base mode.
N
from

Int 0 Minimal value of N.

N to Int 10 Maximal value of N.
Max Float 0.0 If non-zero, then all output sequence will be re-scaled so that maximum of

absolute values will be equal to number specified.

Outputs

This node has one output: Sequence.

Inputs and outputs are vectorized, so if series of values is passed to one of inputs, then this node will produce several
sequences.

Example of usage

Given simplest nodes setup:

you will have something like:

4.7.2 Fibonacci Sequence

destination after Beta: Number

Functionality

This node produces specified number of items from Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21 ...

Each next item is sum of two previous.

This node allows you to specify first two items for your sequence. Note that these numbers can be even negative.

Sequence can be re-scaled so that maximum of absolute values of produced items will be equal to specified value.

Inputs & Parameters

All parameters can be given by the node or an external input. This node has the following parameters:

122 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Param-
eter

Type De-
fault

Description

X1 Float 1.0 First item of sequence.
X2 Float 1.0 Second item of sequence.
Count Int 10 Number of items to produce. Minimal value is 3.
Max Float 0.0 If non-zero, then all output sequence will be re-scaled so that maximum of absolute

values will be equal to number specified.

Outputs

This node has one output: Sequence.

Inputs and outputs are vectorized, so if series of values is passed to one of inputs, then this node will produce several
sequences.

Example of usage

Given simplest nodes setup:

you will have something like:

4.7.3 Float

Functionality

Float digit. Has maximum/minimum values and flexible labeling. Cached in Sverchok 3Dtoolbox.

Inputs & Parameters

float

Extended parameters

to-3d - boolean flag makes float catched in 3D toolbox

minimum - defines minimum value

maximum - defines maximum value

Outputs

float - only one digit.

Examples

Three cases of float. With output, as router and as input (not functional). Only first case will be catched in ‘scan for
propertyes’ in 3Dtoolbox of sverchok.

This is 3D toolbox scanned float. Max and min values appears in 3d and node toolboxes (last in extended interface in
propertyes panel). Label of node will apear in 3Dtoolbox and sorted depend on it. Flag ‘to_3d’ makes node catchable
in 3D.

4.7. Number 123

Sverchok Documentation, Release 0.5

Notes

Float output only one digit, for ranges and lists reroute use route node.

4.7.4 Float to Integer

Functionality

Converts incoming Float values to the nearest whole number (Integer). Accepts lists and preserves levels of nestedness.

Inputs

A float, alone or in a list

Outputs

An int, alone or in a list

Examples

1.0 becomes 1
-1.9 becomes -2
4.3 becomes 4
4.7 becomes 5

[1.0, 3.0, 2.4, 5.7] becomes [1, 3, 2, 6]

4.7.5 Formula

Functionality

Formula2 - support next operations:

• vector*vector, define hierarhy and calculate respectfully to it.

• Vector*scalar, the same. And output to vector.

• Moreover, you can define lists with formula, i.e. `0,1,2,3,4,5` for series or `(1,2,3),(1,2,3)`
for vertices.

• Supporting expressions beside * / - +:

– acos()

– acosh()

– asin()

– asinh()

– atan()

– atan2()

– atanh()

124 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

– ceil()

– copysign()

– cos()

– cosh()

– degrees()

– e

– erf()

– erfc()

– exp()

– expm1()

– fabs()

– factorial()

– floor()

– fmod()

– frexp()

– fsum()

– gamma()

– hypot()

– isfinite()

– isinf()

– isnan()

– ldexp()

– lgamma()

– log()

– log10()

– log1p()

– log2()

– modf()

– pi

– pow()

– radians()

– sin()

– sinh()

– sqrt()

– str()

– tan()

4.7. Number 125

Sverchok Documentation, Release 0.5

– tanh()

– trunc()

– ==

– !=

– <, >

– for, in, if, else

– []

Inputs

X - main x that defines sequence. it can be range of vertices or range of floats/integers. If x == one number, than other
veriables will be the same - one number, if two - two.

n[0,1,2,3,4] - multisocket for veriables.

Parameters

Formula - the string line, defining formula, i.e. `x>n[0]` or `x**n[0]+(n[1]/n[2])` are expressions. May
have `x if x>n[0] else n[1]`

Outputs

Result - what we got as result.

Usage

4.7.6 Integer

Functionality

Integer digit. Has maximum/minimum values and flexible labeling. Cached in Sverchok 3Dtoolbox.

Inputs & Parameters

int

Extended parameters

to-3d - boolean flag makes integer catched in 3D toolbox

minimum - defines minimum value

maximum - defines maximum value

Outputs

int - only one digit.

126 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

Three cases of integer. With output, as router and as input (not functional). Only first case will be catched in ‘scan for
propertyes’ in 3Dtoolbox of sverchok.

This is 3D toolbox scanned integer. Max and min values appears in 3d and node toolboxes (last in extended interface in
propertyes panel). Label of node will apear in 3Dtoolbox and sorted depend on it. Flag ‘to_3d’ makes node catchable
in 3D.

Notes

Integer output only one digit, for ranges and lists reroute use route node.

4.7.7 List Input

Functionality

Provides a way to creat a flat list of Integers, Floats, or Vectors. The length of the list is hardcoded to a maximum of
32 elements for integer or float and 10 vectors, we believe that if you need more then you should use a Text File and
the Text In node.

Parameters

The value input fields change according to the Mode choice.

Output

A single flat list.

Examples

Useful when you have no immediate need to generate such lists programmatically.

4.7.8 Mix Numbers

Functionality

This node mixes two values using a given factor and a selected interpolation and easing functions.

For a factor of 0.0 it outputs the first value while the factor of 1.0 it outputs the last value. For every factor value
between 0-1 it will output a value between the first and second input value. (*)

Note: (*) The Back and Elastic interpolations will generate outputs that are not strictly confined to the first-second
value interval, but they will output values that start at first and end at second value.

4.7. Number 127

Sverchok Documentation, Release 0.5

Inputs & Parameters

All parameters except for Type, Interpolation and Easing can be given by the node or an external input.

This node has the following parameters:

Parameter Type Default Description
Type

Enum: Int Float
Float Type of inputs values to

interpolate. When Float is
selected the input value1
and value2 expect float
values When Int is se-
lected the input value1
and value2 expect int val-
ues.

Interpolation
Enum: Linear Sinusoidal

Quadratic Cubic
Quadric Quintic
Exponential Circu-
lar Back Bounce
Elastic

Linear
Type of interpolation.

f(x) ~ x f(x) ~ sin(x)
f(x) ~ x*2 f(x) ~
x^3 f(x) ~ x^4 f(x)
~ x^5 f(x) ~ e^x f(x)
~ sqrt(1-x*x) f(x)
~ x*x*x - x*sin(x)
f(x) ~ series of geo-
metric progression
parabolas f(x) ~
sin(x) * e^x

Easing
Enum Ease In Ease Out

Ease In-Out

Ease In-Out
Type of easing. Ease In =

slowly departs the
starting value Ease
Out = slowly ap-
proaches the ending
value Ease In-Out =
slowly departs and
approaches values

Value1 Int or Float 0 or 0.0 Starting value
Value2 Int or Float 1 or 1.0 Ending value
Factor Float 0.5 Mixing factor (between

0.0 and 1.0)

Extra Parameters

For certain interpolation types the node provides extra parameters on the property panel.

• Exponential Extra parameters to adjust the base and the exponent of the exponential function. The Defaults are
2 and 10.0.

• Back Extra parameters to adjust the scale of the overshoot. The default is 1.0.

• Bounce Extra parameters to adjust the attenuation of the bounce and the number of bounces. The defaults are
0.5 and 4.

• Elastic Extra parameters to adjust the base and the exponent of the damping oscillation as well as the number of
bounces (oscillations).

128 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

The defaults are 1.6, 6.0 and 6.

Outputs

This node has one output: Value.

Inputs and outputs are vectorized, so if series of values is passed to one of inputs, then this node will produce several
sequences.

Example of usage

Given simplest nodes setup:

#

you will have something like:

#

4.7.9 Random

Functionality

Produces a list of random numbers from a seed value.

Inputs & Parameters

Parameters Description
Count Number of random numbers to spit out
Seed Accepts float values, they are hashed into Integers internally.

What’s a Seed? Read the Python docs here

Outputs

A list, or nested lists.

Examples

Notes

Providing a float values as a Seed parameter may be unconventional, if you are uncomfortable with it you could place
a FloatToInt node before the Seed parameter. We may add more Random Nodes in future.

4.7.10 Range Float

Functionality

alias: List Range Float

Useful for generating sequences of Float values. The code perhaps describes best what the three modes do:

4.7. Number 129

https://docs.python.org/3.4/library/random.html

Sverchok Documentation, Release 0.5

def frange(start, stop, step): ‘’‘Behaves like range but for floats’‘’ if start == stop:

stop += 1

step = max(1e-5, abs(step)) if start < stop:

while start < stop: yield start start += step

else: step = -abs(step) while start > stop:

yield start start += step

def frange_count(start, stop, count): ‘” Gives count total values in [start,stop] ‘” if count < 2:

yield start

else: count = int(count) step = (stop - start) / (count - 1) yield start for i in range(count - 2):

start += step yield start

yield stop

def frange_step(start, step, count): ‘” Gives count values with step from start’‘’ if abs(step) < 1e-5:

step = 1

for i in range(int(count)): yield start start += step

Inputs and Parameters

One UI parameter controls the behaviour of this Node; the Range | Count Mode switch. The last input changes
accordingly.

Mode In-
put

Description

Step Start value to start at
Step value of the skip distance to the next value. The Step value is considered the absolute difference

between successive numbers.
Range Stop last value to generate, don’t make values beyond this. If this value is lower than the start value then

the sequence will be of descending values.
Count Count number of values to produce given Start and Step. Never negative - negative produces an empty list

A word on implementation:

This Node accepts Integers and Floats and lists of them.

Outputs

floats or Integers, in list form.

Examples

Non-vectorized

Float Range _(start, stop, step)_

FloatRange(0.0, 1.1 ,10.0) >>> [0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9]

FloatRange(0.0 ,2.2, 10.0) >>> [0.0, 2.2, 4.4, 6.6, 8.8]

FloatRange(-3.97, 0.97, 6.0) >>> [-3.97, -3.0, -2.029, -1.059, -0.089, 0.88, 1.85, 2.82, 3.79, 4.76, 5.73]

130 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

FloatRange(2.0, 1.0, -4.0) >>> [2.0, 1.0, 0.0, -1.0, -2.0, -3.0]

Count Range _(start, stop, count)_

CountRange(0.0, 1.0, 5) >>> [0.0, 1.0, 2.0, 3.0, 4.0]

CountRange(0.0, 2.5, 5) >>> [0.0, 0.625, 1.25, 1.875, 2.5]

CountRange(-4.0, 1.2, 6) >>> [-4.0, -2.96, -1.91, -0.879, 0.16, 1.2]

CountRange(2.0, 1.0, 4) >>> [2.0, 1.6, 1.3, 1.0]

Step Range _(start, step, count)_

StepRange(0.0, 1.0, 10) >>> [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

StepRange(0.0, 2.4, 5) >>> [0.0, 2.4, 4.8, 7.2, 9.6]

StepRange(-4.0, 1.2, 6) >>> [-4.0, -2.8, -1.6, -0.4, 0.8, 2.0]

StepRange(2.0, 1.0, 4) >>> [2.0, 3.0, 4.0, 5.0]

Vectorized

Progress Thread for the IntRange in the issue tracker shows several examples.

4.7.11 Range Integer

Functionality

alias: List Range Int

Useful for generating sequences of Integer values. The code perhaps describes best what the two modes do:

def intRange(start=0, step=1, stop=1):
'''
"lazy range"
- step is always |step| (absolute)
- step is converted to negative if stop is less than start
'''
if start == stop:

return []
step = max(step, 1)
if stop < start:

step *= -1
return list(range(start, stop, step))

def countRange(start=0, step=1, count=10):
count = max(count, 0)
if count == 0:

return []
stop = (count*step) + start
return list(range(start, stop, step))

Inputs and Parameters

One UI parameter controls the behaviour of this Node; the Range | Count Mode switch. The last input changes
accordingly.

4.7. Number 131

https://github.com/nortikin/sverchok/issues/156

Sverchok Documentation, Release 0.5

Mode In-
put

Description

Both Start value to start at
Step value of the skip distance to the next value. The Step value is considered the absolute difference

between successive numbers.
Range Stop last value to generate, don’t make values beyond this. If this value is lower than the start value then

the sequence will be of descending values.
Count Count number of values to produce given Start and Step. Never negative - negative produces an empty list

A word on implementation:

This Node accepts only Integers and lists of Integers, so you must convert Floats to Int first. The reason is purely
superficial - there is no reasonable argument not to automatically cast values.

Outputs

Integers only, in list form.

Examples

Non-vectorized

Int Range

intRange(0,1,10)
>>> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

intRange(0,2,10)
>>> [0, 2, 4, 6, 8]

intRange(-4,1,6)
>>> [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]

intRange(2,1,-4)
>>> [2, 1, 0, -1, -2, -3]

Count Range

countRange(0,1,5)
>>> [0, 1, 2, 3, 4]

countRange(0,2,5)
>>> [0, 2, 4, 6, 8]

countRange(-4,1,6)
>>> [-4, -3, -2, -1, 0, 1]

countRange(2,1,4)
>>> [2, 3, 4, 5]

Vectorized

Progress Thread in the issue tracker shows several examples.

132 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/156

Sverchok Documentation, Release 0.5

4.7.12 Map Range

This node map all the incoming values in the desired range.

Input and Output

All the values except clamp, may be floats or int.

Examples

basic example:

..image:: https://cloud.githubusercontent.com/assets/1275858/24461336/0a4204d4-14a1-11e7-9e72-907a627c1cd0.
png

basic example with clamping:

..image:: https://cloud.githubusercontent.com/assets/1275858/24461347/1224300a-14a1-11e7-85da-5376a858c7bb.
png

example with variable lacunarity node:

..image:: https://cloud.githubusercontent.com/assets/1275858/24462196/aa61cfd8-14a3-11e7-8ef9-9f1f3da264d5.
png

In this example we need to map in the range (0.0, 1.0) because otherwise the image will be understaurated. See the
incoming range (-0.769, 0.892)

4.7.13 Math_mk2

Functionality

This node can transform incoming values by a sselected function (trigonometric, or other mathematical function, and
also provide some useful math costant)

Inputs & Parameters

float or int
class type
Trig Sine, Cosine, Tangent, Arcsine, Arccosine, Arctangent, acosh, asinh, atanh, cosh, sinh, tanh.
math Squareroot, Negate, Degrees, Radians, Absolute, Ceiling, Round, Round N, Fmod modulo, floor,

Exponent, log, log1p,log10, +, -, * , /, //, x-1, x+1, x * 2, x/2, x ** 2, **, min, max.
con-
stants

pi, e, phi, tau.

Outputs

float or int

4.7.14 Math

This is the mk1 version. Go to scalar_mk2.rst for a description of this node.

4.7. Number 133

https://cloud.githubusercontent.com/assets/1275858/24461336/0a4204d4-14a1-11e7-9e72-907a627c1cd0.png
https://cloud.githubusercontent.com/assets/1275858/24461336/0a4204d4-14a1-11e7-9e72-907a627c1cd0.png
https://cloud.githubusercontent.com/assets/1275858/24461347/1224300a-14a1-11e7-85da-5376a858c7bb.png
https://cloud.githubusercontent.com/assets/1275858/24461347/1224300a-14a1-11e7-85da-5376a858c7bb.png
https://cloud.githubusercontent.com/assets/1275858/24462196/aa61cfd8-14a3-11e7-8ef9-9f1f3da264d5.png
https://cloud.githubusercontent.com/assets/1275858/24462196/aa61cfd8-14a3-11e7-8ef9-9f1f3da264d5.png

Sverchok Documentation, Release 0.5

4.7.15 A Number

Functionality

This node lets you output a number, either Int or Float. It also lets you set the Min and Max of the slider to ensure that
the node never outputs beyond a certain range.

Warning

Currently:

The node will pass any input directly to the output, it will not first recast ints to floats if you feed it integers while the
node is in Integer mode. The reverse is also true. When the node’s input socket is connected it will not limit the values
of the incoming data. (you probably want to use a Remap Range node in that case anyway)

Inputs & Parameters

float or integer

Extended parameters

Show Limits - boolean switch will show the Min and Max sliders on the UI when pressed. Unpressed the node only
shows the choice between Integer and Float mode.

Outputs

float or integer - only one digit. when unlinked

Examples

see https://github.com/nortikin/sverchok/pull/1450 for examples

4.8 Vector

4.8.1 Attraction Vectors

Functionality

This node calculates vectors directed from input vertices to specified attractor. Vector lengths are calculated by one of
physics-like falloff laws (like 1/R^2), so it looks like attractor attracts vertices, similar to gravity force, for example.
Output vectors can be used to move vertices along them, for example.

Inputs

This node has the following inputs:

• Vertices

• Center. Center of used attractor. Exact meaning depends on selected attractor type.

134 Chapter 4. Nodes

https://github.com/nortikin/sverchok/pull/1450

Sverchok Documentation, Release 0.5

• Direction. Direction of used attractor. Exact meaning depends on selected attractor type. Not available if
attractor type is Point.

• Amplitude. Coefficient of attractor power. Zero means that all output vectors will be zero. If many values are
provided, each value will be matched to one vertex.

• Coefficient. Scale coefficient for falloff law. Exact meaning depends on selected falloff type. Available only
for falloff types Inverse exponent and Gauss. If many values are provided, each value will be matched to one
vertex.

Parameters

This node has the following parameters:

• Attractor type. Selects form of used attractor. Available values are: - Point. Default value. In simple case,
attractor is just one point specified in Center input. Several points can be passed in that input; in this case,
attracting force for each vertex will be calculated as average of attracting forces towards each attractor point. -
Line. Attractor is a straight line, defined by a point belonging to this line (Center input) and directing vector
(Direction input). - Plane. Attractor is a plane, defined by a point belonging to this line (Center input) and
normal vector (Direction input).

• Falloff type. Used falloff law. Avalable values are: - Inverse. Falloff law is 1/R, where R is distance from
vertex to attractor. - Inverse square. Falloff law is 1/R^2. This law is most common in physics (gravity and
electromagnetizm), so this is the default value. - Inverse cubic. Falloff law is 1/R^2. - Inverse exponent.
Falloff law is exp(- C * R), where R is distance from vertex to attractor, and C is value from Coefficient input.
- Gauss. Falloff law is exp(- C * R^2 / 2), where R is distance from vertex to attractor, and C is value from
Coefficient input.

• Clamp. Whether to restrict output vector length with distance from vertex to attractor. If not checked, then
attraction vector length can be very big for vertices close to attractor, depending on selected falloff type. Default
value is True.

Outputs

This node has the following outputs:

• Vectors. Calculated attraction force vectors.

• Directions. Unit vectors in the same directions as attracting force.

• Coeffs. Lengths of calculated attraction force vectors.

Examples of usage

Most obvious case, just a plane attracted by single point:

Plane attracted by single point, with Clamp unchecked:

Not so obvious, plane attracted by circle (red points):

Coefficients can be used without directions:

Torus attracted by a line along X axis:

Sphere attracted by a plane:

4.8. Vector 135

Sverchok Documentation, Release 0.5

4.8.2 Vector X | Y | Z

Functionality

Sometimes a Vector is needed which only has a value in one of the 3 axes. For instance the rotation vector of the
Matrix In node. Or the Axis parameter in the Lathe Node. Instead of using a Vector Node it can be useful to add this
Node instead, which lets you easily toggle between:

X = 1, 0, 0
Y = 0, 1, 0
Z = 0, 0, 1

The added bonus is that the minimized state of the Node can show what type of Vector it represents.

Parameters

A toggle between X | Y | Z

Outputs

A single Vector output, only ever:

(1,0,0) or (0,1,0) or (0,0,1)

Examples

issue tracker thread

4.8.3 Vector Drop

Functionality

Reverse operation to Matrix apply. If matrix apply adding all transformations to vertices. Than vector drop substract
matrix from vertices.

Inputs

Vertices - Vectors input to transform Matrix - Matrix to substract from vertices

Outputs

Vertices - vertices

136 Chapter 4. Nodes

https://github.com/nortikin/sverchok/pull/303

Sverchok Documentation, Release 0.5

Examples

4.8.4 Vector Interpolation Stripes

Functionality

Performs cubic spline STRIPES interpolation based on input points by creating a function x,y,z = f(t) with
tU=[0,1], tU=[0,1] and attractor vertex. The interpolation is based on the distance between the input points.
Stripes outputs as two lines of points for each object, so UVconnect node can handle it and make polygons for stripes.

Input & Output

socket name Description
input Ver-

tices
Points to interpolate

input tU Values to interpolate in U direction
input tV Values to interpolate in V direction
input Attrac-

tor
Vertex point as attractor of influence

out-
put

vStripes Interpolated points as grouped stripes [[a,b],[a,b],[a,b]], where a and b groups [v,v,v,v,v],
where v - is vertex

out-
put

vShape Interpolated points simple interpolation

out-
put

sCoefs String of float coefficients for each point

Parameters

Factor - is multiplyer after produce function as sinus/cosinus/etc. Scale - is multiplyer before produce function as
sinus/cosinus/etc. Function - popup function between Simple/Multiplyed/Sinus/Cosinus/Power/Square

Parameters extended

minimum - minimum value of stripe width (0.0 to 0.5) maximum - maximum value of stripe width (0.5 to 1.0)

Examples

Making surface with stripes separated in two groups of nodes for UVconnect node to process:

4.8.5 Vector Interpolation

Functionality

Performs linear or cubic spline interpolation based on input points by creating a function x,y,z = f(t) with
t=[0,1]. The interpolation is based on the distance between the input points.

4.8. Vector 137

Sverchok Documentation, Release 0.5

Input & Output

socket name Description
input Vertices Points to interpolate
input t Value to interpolate
output Vertices Interpolated points

Examples

Sine interpolated from 5 points. The input points are shown with numbers.

An interpolated surface between sine and cosine.

Notes

The node doesn’t extrapolate. Values outside of [0, 1] are ignored. It doesn’t support cyclic interpolation (TODO).

4.8.6 Vector Evaluate

Functionality

Vector Evaluate need two groups of vertices (or just 2) as inputs to evaluate al the global positions between them.

Inputs

• Factor

• Vertice A

• Vertice B

Only Factor can be set inside the node. There is no default values for Vertice A or B.

Parameters

All parameters need to proceed from an external node.

Param Type Default Description
Vertice A Vertices None first group of vertices
Vectice B Vertices None second group of vertices
Factor Float 0.50 distance percentage between vertices A and B

Outputs

EvPoint will need Vertices A and B to be generated. The output will be a new group of vertices between groups A
and B, based on the factor setting. See example below.

Example of usage

In this example just two vertices are evaluated. The gif shows the output based on the factor setting.

138 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

4.8.7 Vector Math Node

This is a versatile node. You can perform 1 operation on 1000’s of list-elements, or perform operations pairwise on
two lists of 1000’s of elements, even if they are nested. It is therefore what we call a Vectorized node, for an elaborate
explanation of what this means see this [introduction]().

The node expects correct input for the chosen operation (called mode), but it will fail gracefully with a message in the
console if the input is not right for the selected mode.

Input and Output

socket description
inputs Expect a Vector and Scalar (v,s), or two Vectors (u, v)
outputs Will output a Scalar (s), or a Vector (w).

Depending on the mode you choose the sockets are automatically changed to accommodate the expected inputs and
outputs types

Modes

Most operations are self explanatory, but in case they aren’t then here is a quick overview:

Tables inputs outputs description
Scale YZ v, s w scale vector by amount
Scale XZ v, s w scale vector by amount
Scale XY v, s w scale vector by amount
Cross product u, v s u cross v
Dot product u, v s u dot v
Add u, v w u + v
Sub u, v w u - v
Length u s distance(u, origin)
Distance u, v s distance(u, v)
Normalize u w scale vector to length 1
Negate u w reverse sign of components
Project u, v w u project v
Reflect u, v w u reflect v
Multiply Scalar u, s w multiply(vector, scalar)
Multiply 1/Scalar u, s w multiply(vector, 1/scalar)
Angle Degrees u, v s angle(u, origin, v)
Angle Radians u, v s angle(u, origin, v)
Round s digits u, s v reduce precision of components
Component-wise U*V u, v w w = (u.x*v.x, u.y*v.y, u.z*v.z)

4.8.8 Vector Noise

This noise node takes a list of Vectors and outputs a list of equal length containing either Vectors or Floats in the range
0.0 to 1.0. The seed value permits you to apply a different noise calculation to identical inputs.

4.8. Vector 139

Sverchok Documentation, Release 0.5

Inputs & Parameters

Parameters Description
Noise Function Pick between Scalar and Vector output
Noise Type Pick between several noise types

• Blender
• Cell Noise
• New Perlin
• Standard Perlin
• Voronoi Crackle
• Voronoi F1
• Voronoi F2
• Voronoi F2F1
• Voronoi F3
• Voronoi F4

See mathutils.noise docs (Noise)
Seed Accepts float values, they are hashed into Integers inter-

nally. Seed values of 0 will internally be replaced with
a randomly picked constant to allow all seed input to
generate repeatable output. (Seed=0 would otherwise
generate random values based on system time)

Examples

Notes

This documentation doesn’t do the full world of noise any justice, feel free to send us layouts that you’ve made which
rely on this node.

4.8.9 Fractal

This fractal node takes a list of Vectors and outputs a list of equal length containing Floats in the range 0.0 to 1.0.

140 Chapter 4. Nodes

http://www.blender.org/documentation/blender_python_api_current/mathutils.noise.html

Sverchok Documentation, Release 0.5

Inputs & Parameters

Parameters Description
Noise Function The node output only Scalar values
Noise Type Pick between several noise types

• Blender
• Cell Noise
• New Perlin
• Standard Perlin
• Voronoi Crackle
• Voronoi F1
• Voronoi F2
• Voronoi F2F1
• Voronoi F3
• Voronoi F4

See mathutils.noise docs (Noise)
Fractal Type Pick between several fractal types

• Fractal
• MultiFractal
• Hetero terrain
• Ridged multi fractal
• Hybrid multi fractal

H_factor Accepts float values, they are hashed into Integers inter-
nally.

Lacunarity Accepts float values
Octaves Accepts integers values
Offset Accepts float values
Gain Accepts float values

Examples

Basic example with a Vector rewire node.

json file: https://gist.github.com/kalwalt/5ef4f6b6018724874e3c51eaa255930c

Notes

This documentation doesn’t do the full world of fractals any justice, feel free to send us layouts that you’ve made
which rely on this node.

Links

Fractals description from wikipedia: https://en.wikipedia.org/wiki/Fractal

A very interesting resource is “the book of shaders”, it’s about shader programming but there is a very useful fractal
paragraph:

http://thebookofshaders.com/13/ and on github repo: https://github.com/patriciogonzalezvivo/thebookofshaders/tree/
master/13

4.8. Vector 141

http://www.blender.org/documentation/blender_python_api_current/mathutils.noise.html
https://gist.github.com/kalwalt/5ef4f6b6018724874e3c51eaa255930c
https://en.wikipedia.org/wiki/Fractal
http://thebookofshaders.com/13/
https://github.com/patriciogonzalezvivo/thebookofshaders/tree/master/13
https://github.com/patriciogonzalezvivo/thebookofshaders/tree/master/13

Sverchok Documentation, Release 0.5

4.8.10 Vector Lerp

Functionality

This node’s primary function is to perform the linear interpolation between two Vectors, or streams of Vectors. If
we have two Vectors A and B, and a factor 0.5, then the output of the node will be a Vector exactly half way on the
imaginary finite-line between A and B. Values beyond 1.0 or lower than 0.0 will be extrapolated to beyond the line
A-B.

Inputs

Vector Evaluate needs two Vertex stream inputs (each containing 1 or more vertices). If one list is shorter than the
other then the shortest stream is extended to match the length of the longer stream by repeating the last valid vector
found in the shorter stream.

Parameters

Param Type Default Description
mode Enum Lerp

• Lerp will linear in-
terpolate once be-
tween each corre-
sponding Vector

• Evaluate will re-
peatedly interpolate
between each mem-
ber of vectors A
and B for all items
in Factor input (see
example)

Vertex A Vector None first group of vertices
(Stream)

Vertex B Vector None second group of vertices
(Stream)

Factor Float 0.50 distance ratio between
vertices A and B. values
outside of the 0.0...1.0
range are extrapolated on
the infinite line A, B

Outputs

The content of EvPoint depends on the current mode of the node, but it will always be a list (or multiple lists) of
Vectors.

Example of usage

0.5

-0.5

142 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

1.5

range float ‘0.0 ... 1.0 n=10‘ Evaluate

range float ‘0.0 ... 1.0 n=10‘ Lerp

Lerp interpolation with noise

The development thread also has examples: https://github.com/nortikin/sverchok/issues/1098

4.8.11 Vector P Field

Functionality

makes a 3d vector grid, with option to slightly randomize (with seed) each vertex, and apply a ‘remove doubles’
distance to the product.

4.8.12 Vector Rewire

Functionality

Use this node to swap Vector components, for instance pass X to Y (and Y to X). Or completely filter out a component
by switching to the Scalar option. it will default to 0.0 when the Scalar socket is unconnected, when connected it will
replace the component with the values from the socket. If the content of the Scalar input lists don’t match the length
of the Vectors list, the node will repeat the last value in the list or sublist (expected Sverchok behaviour).

Inputs

Vectors - Any list of Vector/Vertex lists Scalar - value or series of values, will auto repeat last valid value to match
Vector count.

Outputs

Vector - Vertex or series of vertices

4.8.13 Vector In

Functionality

Inputs vector from ranges or number values either integer of floats.

Inputs

x - velue or series of values y - velue or series of values z - velue or series of values

Outputs

Vector - Vertex or series of vertices

4.8. Vector 143

https://github.com/nortikin/sverchok/issues/1098

Sverchok Documentation, Release 0.5

Operators

This node has one button: 3D Cursor. This button is available only when no of inputs are connected. When pressed,
this button assigns current location of Blender’s 3D Cursor to X, Y, Z parameters.

Examples

4.8.14 Vector Out

Functionality

Outputs values/numbers from vertices.

Inputs

Vector - Vertex or series of vertices

Outputs

x - velue or series of values y - velue or series of values z - velue or series of values

Examples

4.8.15 Vector Polar Input

destination after Beta: Vector

Functionality

This node generates a vector from it’s cylindrical or spherical coordinates. Angles can be measured in radians or in
degrees.

Inputs & Parameters

All parameters except for Coordinates and Angles mode can be specified using corresponding inputs.

Parameter Type Default Description
Coordi-
nates

Cylindrical or
Spherical

Cylindri-
cal

Which coordinates system to use.

Angles
mode

Radians or Degrees Radians Interpret input angles as specified in radians or degrees.

rho Float 0.0 Rho coordinate.
phi Float 0.0 Phi coordinate.
z Float 0.0 Z coordinate. This input is used only for cylindrical

coordinates.
theta Float 0.0 Theta coordinate. This input is used only for spherical

coordinates.

144 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Outputs

This node has one output: Vectors. Inputs and outputs are vectorized, so if you pass series of values to one of inputs,
you will get series of vectors.

Examples of usage

An archimedian spiral:

Logariphmic spiral:

Helix:

With spherical coordinates, you can easily generate complex forms:

4.8.16 Vector Polar Output

destination after Beta: Vector

Functionality

This node decomposes a vector to it’s cylindrical or spherical coordinates. Angles can be measured in radians or in
degrees.

Parameters

This node has the following parameters:

• Coordinates. Cylindrical or Spherical. Default mode is Cylindrical.

• Angles mode. Should this node output angles measured in radians or in degrees. By default Radians.

Inputs

This node has one input: Vectors Inputs and outputs are vectorized, so if you pass series of vectors to input, you will
get series of values on outputs.

Outputs

This node has the following outputs:

• rho. Rho coordinate.

• phi. Phi coordinate.

• z. Z coordinate. This output is used only for Cylindrical coordinates.

• theta. Theta coordinate. This output is used only for Spherical coordinates.

Examples of usage

Cube push-up:

4.8. Vector 145

Sverchok Documentation, Release 0.5

4.8.17 Vector X Doubles

This node simple remove double vertices from the input.

Inputs and Outputs

inputs are vertices and list of vertices.

outputs are vertices and list of vertices.

Example

..image:: https://cloud.githubusercontent.com/assets/1275858/24463951/98383630-14a8-11e7-8653-178335ec576b.
png

4.8.18 Vector Sort

Functionality

This Node sort the sequence of index according to python sort, with different criteria.

Inputs

Inputs are vertices lists(vectors, tuple) and polygons/edges as integer lists, and optional inputs(Vector, matrix and user
data)

Parameters

Param Type Default Description
Vertices Vector vertices from nodes generators or lists (in, out)
PolyEdge Int index of polgons or edges (in, out)
Sortmode XYZ, Dist, Axis, User XYZ will sort the index according to different criteria
Item order | Int output the index sequence

Outputs

The node will output the Vertices as list of Vectors(tuples), Polys/edges as int and the sorted list of Vertices.

Example of usage

Example with an Hilbert 3d node and polyline viewer with Vector sort set to Dist:

link to pull request: https://github.com/nortikin/sverchok/pull/88

4.8.19 Variable Lacunarity

This node takes a list of Vectors and outputs a list of equal length containing Floats in the range -1.0 to 1.0. The seed
value permits you to apply a different noise calculation to identical inputs. This nodes “_returns variable lacunarity
noise value, a distorted variety of noise, from noise type 1 distorted by noise type 2 at the specified position_.”

146 Chapter 4. Nodes

https://cloud.githubusercontent.com/assets/1275858/24463951/98383630-14a8-11e7-8653-178335ec576b.png
https://cloud.githubusercontent.com/assets/1275858/24463951/98383630-14a8-11e7-8653-178335ec576b.png
https://github.com/nortikin/sverchok/pull/88

Sverchok Documentation, Release 0.5

Inputs & Parameters

Parameters Description
Noise Type Pick between several noise types

• Blender
• Cell Noise
• New Perlin
• Standard Perlin
• Voronoi Crackle
• Voronoi F1
• Voronoi F2
• Voronoi F2F1
• Voronoi F3
• Voronoi F4

See mathutils.noise docs (Noise)
Seed Accepts int values.
Distortion Accepts floats values, modulate the two noise basis.

Examples

Notes

This documentation doesn’t do the full world of noise any justice, feel free to send us layouts that you’ve made which
rely on this node.

4.8.20 Turbulence

This Turbulence node takes a list of Vectors and outputs a list of equal length containing Floats in the range 0.0 to 1.0.
May output scalars or vectors. For some noise types, if your output goes to the texture viewer you need to remap them,
otherwise your texture will be supersaturated or undersaturated. See below ‘range table’ for a detailed description.

4.8. Vector 147

http://www.blender.org/documentation/blender_python_api_current/mathutils.noise.html

Sverchok Documentation, Release 0.5

Inputs & Parameters

Parameters Description
Noise Function Pick between Scalar and Vector output
Noise Type Pick between several noise types

• Blender
• Cell Noise
• New Perlin
• Standard Perlin
• Voronoi Crackle
• Voronoi F1
• Voronoi F2
• Voronoi F2F1
• Voronoi F3
• Voronoi F4

See mathutils.noise docs (Noise)
Octaves Accepts integers values The number of different noise

frequencies used.
Hard Accepts bool values: Hard(True) or Soft(False) Spec-

ifies whether returned turbulence is hard (sharp transi-
tions) or soft (smooth transitions).

Amplitude Accepts float values. The amplitude scaling factor.
Frequency Accepts float values. The frequency scaling factor.

Range table

Scalar values from turbulence node with size(n.verts)=64x64, step=0.05, octaves=3, amplitude=0.5, frequency=2.0,
random seed=0. Plug a map range node in the scalar output and map it to the desired range (min=0, max=1) as in the
image below.

Noise Type median maximum minimum
Blender 0.4574402868747711 1.2575798034667969 0.0
Stdperlin 0.37063807249069214 0.972740530967712 0.0
Newperlin 0.2982039898633957 0.7674642205238342 0.0
Voronoi_F1 0.5178706049919128 1.184566617012024 0.016996487975120544
Voronoi_F2 0.9441720247268677 1.696974754333496 0.07561451196670532
Voronoi_F3 1.3248268961906433 2.267115831375122 0.24465730786323547
Voronoi_F4 1.6119314432144165 2.4261345863342285 0.7868537306785583
Voronoi_F1F2 1.0320665836334229 1.7262239456176758 0.06919857859611511
Voronoi_Crackle 1.5918831825256348 1.75 0.12337762117385864
Cellnoise 0.9668738842010498 1.5000858306884766 0.1691771298646927

Examples

Basic example with a Scalar output and Vector rewire node.

Notes

This documentation doesn’t do the full world of fractals any justice, feel free to send us layouts that you’ve made
which rely on this node.

148 Chapter 4. Nodes

http://www.blender.org/documentation/blender_python_api_current/mathutils.noise.html

Sverchok Documentation, Release 0.5

Links

Fractals description from wikipedia: https://en.wikipedia.org/wiki/Fractal

A Perlin Noise and Turbulence description by Prof. Paul Bourke: http://paulbourke.net/texture_colour/perlin/

An introduction on Noise and Turbulence by Dr. Matthew O. Ward: https://web.cs.wpi.edu/~matt/courses/cs563/talks/
noise/noise.html

A very interesting resource is “the book of shaders”, it’s about shader programming but there is a very useful fractal
paragraph:

http://thebookofshaders.com/13/ and on github repo: https://github.com/patriciogonzalezvivo/thebookofshaders/tree/
master/13

4.9 Matrix

4.9.1 Apply Matrix to Mesh

Functionality

Applies a Transform Matrix to a list or nested lists of vertices, edges and faces. If several matrices are provided on the
input, then this node will produce several meshes.

Note. Unless there is further processing going on which explicitly require the duplicated topology, then letting the
Viewer Draw or BMesh Viewer nodes automatically repeat the index lists for the edges and faces is slightly
more efficient than use of this node.

Inputs

This node has the following inputs:

• Vertices. Represents vertices or intermediate vectors used for further vector math.

• Edges

• Faces

• Matrices. One or more, never empty.

Parameters

This node has the following parameter:

Join. If set, then this node will join output meshes into one mesh, the same way as Mesh Join node does. Otherwise,
if N matrices are provided at the input, this node will produce N lists of vertices, N lists of edges and N lists of faces.

Outputs

This node has the following outputs:

• Vertices. Nested list of vectors / vertices, matching the number nested incoming matrices.

• Edges. Input edges list, repeated the number of incoming matrices. Empty if corresponding input is empty.

• Faces. Input faces list, repeated the number of incoming matrices. Empty if corresponding input is empty.

4.9. Matrix 149

https://en.wikipedia.org/wiki/Fractal
http://paulbourke.net/texture_colour/perlin/
https://web.cs.wpi.edu/~matt/courses/cs563/talks/noise/noise.html
https://web.cs.wpi.edu/~matt/courses/cs563/talks/noise/noise.html
http://thebookofshaders.com/13/
https://github.com/patriciogonzalezvivo/thebookofshaders/tree/master/13
https://github.com/patriciogonzalezvivo/thebookofshaders/tree/master/13

Sverchok Documentation, Release 0.5

Examples

4.9.2 Matrix Deform

4.9.3 Euler

4.9.4 Matrix Input

4.9.5 Matrix Interpolation

4.9.6 Matrix In & Out

4.9.7 Matrix Shear

Functionality

Similar in behaviour to the Transform -> Shear tool in Blender (docs).

Matrix Shear generates a Transform Matrix which can be used to change the locations of vertices in two directions.
The amount of transformation to introduce into the Matrix is given by two Factor values which operate on the corre-
sponding axes of the selected Plane.

Inputs & Parameters

Parameters Description
Plane options = (XY, XZ, YZ)
Factor1 & Factor2 these are Scalar float values and indicate how much to affect the axes of the transform matrix

Outputs

A single 4*4 Transform Matrix

Examples

Usage: This is most commonly connected to Matrix Apply to produce the Shear effect.

4.10 Logic

4.10.1 Logic

Functionality

This node offers a variety of logic gates to evaluate any boolean inputs It also has different operations to evaluate a
pair of numbers, like minor than or greater than.

150 Chapter 4. Nodes

http://wiki.blender.org/index.php/Doc:2.6/Manual/3D_interaction/Transformations/Advanced/Shear

Sverchok Documentation, Release 0.5

Input and Output

Depending on the mode you choose the sockets are automatically changed to accommodate the expected inputs.
Output is always going to be a boolean.

Parameters

Most operations are self explanatory, but in case they aren’t then here is a quick overview:

Tables inputs type description
And x, y integer True if X and Y are True
Or x, y integer True if X or Y are True
Nand x, y integer True if X or Y are False
Nor x, y integer True if X and Y are False
Xor x, y integer True if X and Y are opposite
Xnor x, y integer True if X and Y are equals
If x integer True if X is True
Not x integer True if X is False
< x, y float True if X < Y
> x, y float True if X > Y
== x, y float True if X = Y
!= x, y float True if X not = Y
<= x, y float True if X <= Y
>= x, y float True if X >= Y
True none none Always True
False none none Always False

Example of usage

In this example we use Logic with Switch Node to choose between two vectors depending on the logic output.

4.10.2 Elman neuro node layer 1

Neuro network node This node teachable. You may teach him rules, that he understand himself. Just
put data and correct answer. When displace answer, he will find right answer himself. Input data.
Inserting many objects - output many objects. Inserting one object with many parameters - output
one object. Always insert constant numbers count of parameters, otherwise it will reset neuro data
and start every time from beginning. Keep constant numbers count.

• coef_learning - learning speed coeffitient, accuracy influence (less - more accuracy);

• gisterezis - spread of input and etalon data;

• maximum - maximum number input (better define little overhang number);

• cycles - passes on one object;

• A layer - input layer cores (and it is number of objects);

• B layer - inner layer cores - more - smarter (overlearning is bad too);

• C layer - output layer cores - numbers quantity in output;

• epsilon - inner variable - argument offset in passes ‘cycles’ (not much influence totally);

• lambda - holding coefficient, to preserve data flooding;

4.10. Logic 151

Sverchok Documentation, Release 0.5

• threshold - inner variable - defines reasonability limit in passes ‘cycles’ (not much influence totally).

4.10.3 Switch

Functionality

Switches between to sets of inputs.

Inputs

Input Description
state state that decides which set of sockets to use
T 0 If state is false this socket is used
F 0 If state is true this socket used

Parameters

Count

Number of sockets in each set.

state

If set to 1 T sockets are used, otherwise the F socket are used.

Outputs

Out 0 to Out N depending on count. Socket types are copied from first from the T set.

Examples

Switching between a sphere and cylinder for drawing using switch node.

4.11 List Main

4.11.1 List Decompose

Functionality

Inverse to list join node. Separate list at some level of data to several sockets. Sockets count the same as items count
in exact level.

Inputs

• data - adaptable socket

152 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

Parameter Type Default Description
level Int 1 Level of data to operate.
Count Int 1 Output sockets’ count. defined manually or with Auto set
Auto set Button Calculate output sockets’ count based on data count on choosen level

Outputs

• data - multisocket

Example of usage

Decomposed simple list in 2 level:

4.11.2 List Math

Functionality

This nodes offers some operations to make over list, meaning a group of numbers.

Inputs

It will operate only with list of single numbers, not tuples or vectors.

Parameters

Level: Set the level at which to observe the List. Function: Select the type of operation.

Tables description
Sum sum of all the elements of the list
Average average of element at selected level
Maximum Maximum value of the list
Minimum Minimum value of the list

Outputs

The output is always going to be a number, integer or float, depending on the input list.

• You can try to use this node with vectors, but it isn’t going to work properly. For operations with vectors you
should use Vector Math node.

Examples

In this example the node shows all the possible outputs.

4.11. List Main 153

Sverchok Documentation, Release 0.5

4.11.3 List Join

Functionality

level 1: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[(1,2,3), (4,5,6), (7,8,9), (10,11,12)]]

level 2 mix: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[(1,2,3),(7,8,9),(4,5,6),(10,11,12)]]

level 2 wrap: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[[(1,2,3),(4,5,6)], [(7,8,9),(10,11,12)]]]

level 2 mix + wrap: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[[(1,2,3),(7,8,9)], [(4,5,6),(10,11,12)]]]

level 3: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[[1,2,3,4,5,6,7,8,9,10,11,12]]]

level 3 mix: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[[1,7,2,8,3,9,4,10,5,11,6,12]]]

level 3 wrap: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[[1,2,3,4,5,6],[7,8,9,10,11,12]]]

level 3 mix + wrap: [[(1,2,3), (4,5,6)]] + [[(7,8,9), (10,11,12)]] = [[[1,7],[2,8],[3,9],[4,10],[5,11],[6,12]]]

Inputs

data multisocket

Parameters

mix to mix (not zip) data inside wrap to wrap additional level levels level of joining

Outputs

data adaptable socket

4.11.4 List Length

Functionality

The Node equivalent of the Python len() function. The length is inspected at the Level needed.

Inputs

Takes any kind of data.

Parameters

Level: Set the level at which to observe the List.

Outputs

Depends on incoming data and can be nested. Level 0 is top level (totally zoomed out), higher levels get more granular
(zooming in) until no higher level is found (atomic). The length of the most atomic level will be 1, for instance single
ints or float or characters. The output will reflect the nestedness of the incoming data.

154 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

Often a few experiments with input hooked-up to a debug node will make the exact working of this Node instantly
clearer than any explanation.

4.11.5 List Delete Levels

Functionality

This helps flatten lists, or make them less nested.

The analogy to keep in mind might be:

knocking through walls in a house to join two spaces, or knock non load bearing walls between buildings
to join them.

Incoming nested lists can be made less nested.

del level 0, remove outer wrapping

[[0,1,2,3,4]]
>>> [0,1,2,3,4]

[[4, 5, 6], [4, 7, 10], [4, 9, 14]]
>>> [4, 5, 6, 4, 7, 10, 4, 9, 14]

[[5], [5], [5], [5], [5], [5]]
>>> [5, 5, 5, 5, 5, 5]

Usage

Type 1,2 or 2,3 or 1,3 or 1,2,3 or 3,4 etc to leave this levels and remove others.

Throughput

Socket Description
Input Any meaningful input, lists, nested lists
Output Modified according to Levels parameter, or None

Parameters

Levels, this text field

4.11. List Main 155

Sverchok Documentation, Release 0.5

Examples

Notes

4.11.6 List Match

4.11.7 List Summa

Functionality

This node operates the sum of all the values in the inputs, no matter the levels or sublist inside the input.

Inputs

Takes any kind of data: singles values, vectors or even matrixes.

Outputs

No matter the type of input, the output will be the sum of all the values in the input list. This node works in a different
way of the “Sum” function in List Math node. See the example below to see the difference.

Examples

4.11.8 List Zip

Functionality

Making pares of data to mix togather as zip function.

x = [[[1,2],[3,4]]] y = [[[5,6],[7,8]]]

out level 1 = [[[[1, 2], [5, 6]], [[3, 4], [7, 8]]]] out level 1 unwrap = [[[1, 2], [5, 6]], [[3, 4], [7, 8]]] out level 2 = [[[[1,
3], [2, 4]], [[5, 7], [6, 8]]]] out level 2 unwrap = [[[1, 3], [2, 4]], [[5, 7], [6, 8]]] out level 3 = [[[[], []], [[], []]]]

Inputs

data multysocket

Properties

level integer to operate level of conjunction unwrap boolean to unwrap from additional level, added when zipped

Outputs

data adaptable socket

156 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

4.12 List Struct

4.12.1 List Flip

Functionality

Flips the data on selected level. [[[1,2,3],[4,5,6],[7,8,9]],[[3,3,3],[1,1,1],[8,8,8]]] (two objects, three vertices) with
level 2 turns to: [[[1, 2, 3], [3, 3, 3]], [[4, 5, 6], [1, 1, 1]], [[7, 8, 9], [8, 8, 8]]] (three objects, two vertices) with level 3
turns to: [[1, 4, 7], [2, 5, 8], [3, 6, 9], [3, 1, 8], [3, 1, 8], [3, 1, 8]] (six objects with three digits)

last example is not straight result, more as deviation. Ideally Flip has to work with preserving data levels and with
respect to other levels structure. But for now working level is 2

Inputs

data - data to flip

Properties

level - level to deal with

Outputs

data - flipped data

Examples

4.12.2 List Item

Functionality

Select items from list based on index. The node is data type agnostic, meaning it makes no assumptions about the data
you feed it. It shoudld accepts any type of data native to Sverchok..

Inputs

Input Description
Data The data - can be anything
item Item(s) to select, allows negative index python index

Parameters

Level

It is essentially how many chained element look-ups you do on a list. If SomeList has a considerable nestedness
then you might access the most atomic element of the list doing SomeList[0][0][0][0]. Levels in this case
would be 4.

item

4.12. List Struct 157

Sverchok Documentation, Release 0.5

A list of items to select, allow negative index python indexing so that -1 the last element. The items doesn’t have to be
in order and a single item can be selected more than a single time.

Outputs

Item, the selected items on the specifed level. Other, the list with the selected items deleted.

Examples

Trying various inputs, adjusting the parameters, and piping the output to a Debug Print (or stethoscope) node will be
the fastest way to acquaint yourself with the inner workings of the List Item Node.

4.12.3 List Repeater

Functionality

Allows explicit repeat of lists and elements. The node is data type agnostic, meaning it makes no assumptions about
the data you feed it. It shoudld accepts any type of data native to Sverchok..

Inputs

Input Description
Data The data - can be anything
Number The amount of times to repeat elements selected by the Level parameter

Parameters

Level and unwrap.

Level

It is essentially how many chained element look-ups you do on a list. If SomeList has a considerable nestedness
then you might access the most atomic element of the list doing SomeList[0][0][0][0]. Levels in this case
would be 4.

unwrap

Removes any extra layers of wrapping (brackets or parentheses) found at the current Level. If the element pointed at
is [[0,2,3,2]] it will become [0,2,3,2].

Outputs

Lists (nested). The type of Data out will be appropriate for the operations defined by the parameters of the Node.

Examples

Trying various inputs, adjusting the parameters, and piping the output to a Debug Print (or stethoscope) node will be
the fastest way to acquaint yourself with the inner workings of the List Repeater Node.

A practical reason to use the node is when you need a series of copies of edge or polygon lists. Usually in conjunction
with Matrix Apply, which outputs a series of vertex lists as a result of transform parameters.

158 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

4.12.4 List Reverse

Functionality

Reverse items from list based on index. It should accept any type of data from Sverchok: Vertices, Strings (Edges,
Polygons) or Matrix.

Inputs

Takes any kind of data.

Parameters

Level: Set the level at which to observe the List.

Outputs

Depends on incoming data and can be nested. Level 0 is top level (totally zoomed out), higher levels get more granular
(zooming in) until no higher level is found (atomic). The node will just reverse the data at the level selected.

Examples

In this example the node reverse a list a integers

4.12.5 List Shift

Functionality

Shifting data in selected level on selected integer value as:

[0,1,2,3,4,5,6,7,8,9] with shift integer 4 will be [4,5,6,7,8,9] But with enclose flag: [4,5,6,7,8,9,0,1,2,3]

Inputs

data - list of data any type to shift Shift - value that defines shift

Properties

level - manipulation level, 0 - is objects shifting enclose - close data when shifting, that way ending cutted numbers
turns to beginning

Outputs

data - shifter data, adaptive socket

4.12. List Struct 159

Sverchok Documentation, Release 0.5

Examples

4.12.6 List Shuffle

Functionality

Shuffle (randomize) the order of input lists.

Inputs

Input Description
Data The data - can be anything
Seed Seed setting used by shuffle operation

Parameters

Level

It is essentially how many chained element look-ups you do on a list. If SomeList has a considerable nestedness
then you might access the most atomic element of the list doing SomeList[0][0][0][0]. Levels in this case
would be 4.

Seed

Affects the output order.

Outputs

Item, the selected items on the specified level. Other, the list with the selected items deleted.

Examples

The shuffle operation is based on the python random.shuffle. https://docs.python.org/3.4/library/random.html?
highlight=shuffle#random.shuffle

Trying various inputs, adjusting the parameters, and piping the output to a Debug Print (or stethoscope) node will be
the fastest way to acquaint yourself with the inner workings of the List Shuffle Node.

4.12.7 List Slice

Functionality

Select a slice from a list. The node is data type agnostic, meaning it makes no assumptions about the data you feed
it. It shoudld accepts any type of data native to Sverchok.. Functionality is a subset of python list slicing, the stride
parameter functionality isn’t implemented.

160 Chapter 4. Nodes

https://docs.python.org/3.4/library/random.html?highlight=shuffle#random.shuffle
https://docs.python.org/3.4/library/random.html?highlight=shuffle#random.shuffle

Sverchok Documentation, Release 0.5

Inputs

Input Description
Data The data - can be anything
Start Slice start, allows negative python index
Stop Slice stop, allows negative python index

Parameters

Level

It is essentially how many chained element look-ups you do on a list. If SomeList has a considerable nestedness
then you might access the most atomic element of the list doing SomeList[0][0][0][0]. Levels in this case
would be 4.

Start

Start point for the slice

Stop

Stop point for the slice.

Outputs

Slice, the selected slices. Other, the list with the slices removed.

Examples

Trying various inputs, adjusting the parameters, and piping the output to a Debug Print (or stethoscope) node will be
the fastest way to acquaint yourself with the inner workings of the List Item Node.

Some slice examples. >>> l [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> l[1:-1] [1, 2, 3, 4, 5, 6, 7, 8] >>> l[0:2] [0, 1] >>> l[-1:2] []

Notes

4.12.8 List Sort

Functionality

Sort items from list based on index. It should accept any type of data from Sverchok: Vertices, Strings (Edges,
Polygons) or Matrix.

Inputs

Takes any kind of data.

Parameters

Level: Set the level at which to observe the List.

4.12. List Struct 161

Sverchok Documentation, Release 0.5

Outputs

Depends on incoming data and can be nested. Level 0 is top level (totally zoomed out), higher levels get more granular
(zooming in) until no higher level is found (atomic). The node will just reverse the data at the level selected.

Examples

In this example the node sort a list a integers previously shuffled.

4.12.9 List Split

Functionality

Split list into chuncks. The node is data type agnostic, meaning it makes no assumptions about the data you feed it. It
shoudld accepts any type of data native to Sverchok.

Inputs

Input Description
Data The data - can be anything
Split size Size of individual chuncks

Parameters

Level

It is essentially how many chained element look-ups you do on a list. If SomeList has a considerable nestedness
then you might access the most atomic element of the list doing SomeList[0][0][0][0]. Levels in this case
would be 4.

unwrap

Unrwap the list if possible, this generally what you want. [[1, 2, 3, 4]] size 2. +——–+——————-+ | Unwrap |
Result | +========+===================+ | On | [[1, 2], [3, 4]] | +——–+——————-+ | Off | [[[1, 2], [3,
4]]]| +——–+——————-+

Split size

Size of output chuncks.

Outputs

Split

The list split on the selected level into chuncks, the last chunck will be what is left over.

Examples

Trying various inputs, adjusting the parameters, and piping the output to a Debug Print (or stethoscope) node will be
the fastest way to acquaint yourself with the inner workings of the List Item Node.

162 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

4.12.10 List First & Last

Functionality

First and last items of data on some level

Inputs

Data - data to take items

Properties

level - leve to take first and last items

Outputs

Middl - all between first and last items First - First item Last - Last item

Examples

4.13 List Masks

4.13.1 List Mask Out

4.13.2 List Mask In

Functionality

This node use the mask list i.e. 1,0,0,0 as switch to mix two data list together.

0 means false, an item from the Data False will be appended to the output data;

1 will be considered as true (actually any value that evaluate as true in python), an item from the Data True will be
appended to the output data. If the mask list is not long enough to cover all the inputs, it will be repeated as the mask
for the rest of inputs.

Length of mask list affect output because every item (without Choice activated) corresponding to Inputs several times.

The main design reason behind this node is to be able to conditionally apply operations to one a masked list, for
example select vertices based on location and move them or as shown below, select numbers and negate them.

Inputs

Mask: Input socket for mask list.

Data True: Input socket for True Data list.

Data False: Input socket for False Data list.

4.13. List Masks 163

Sverchok Documentation, Release 0.5

Parameters

Level: Set the level at which the items to be masked.

Choise: Make length of out list the same as length of input list

Outputs

Data: Mixed data of the incoming data, the length of Outputs depends on the Data True and Data False list length.

Example

4.13.3 Mask Converter

Functionality

This node allows to convert masks that are to be applied to different types of mesh elements. For example, it can
convert mask on vertices to mask for faces, or mask for edges to mask for vertices, and so on.

Type of mask which is provided at input is defined by From parameter. Masks of all other types are available as
outputs.

Inputs

This node has the following inputs:

• Vertices. This input is available and required only when parameter From is set to Edges or Faces.

• VerticesMask. Mask for vertices. This input is available only when parameter From is set to Vertices.

• EdgesMask. Mask for edges. This input is available only when parameter From is set to Edges.

• FacesMask. Mask for faces. This input is available only when parameter From is set to Faces.

Parameters

This node has the following parameters:

• From. This parameter determines what type of mask you have as input. The following values are supported:

– Vertices. Convert mask for vertices to masks for edges and faces.

– Edges. Convert mask for edges to masks for vertices and faces.

– Faces. Convert mask for faces to masks for vertices and edges.

• Include partial selection. If checked, then partially selected elements will be accounted as selected.

– Vertex can be never partially selected, it is either selected or not.

– Edge is partially selected if it has only one of its vertices selected.

– Face is partially selected if only some of its vertices or faces are selected.

164 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Outputs

This node has the following outputs:

• VerticesMask. Mask for vertices. This output is not available if parameter From is set to Vertices.

• EdgesMask. Mask for edges. This output is not available if parameter From is set to Edges.

• FacesMask. Mask for faces. This output is not available if parameter From is set to Faces.

Examples of usage

Select face of cube by selecting its vertices, and extrude it:

Select faces of sphere with small area, and move corresponding vertices:

4.14 List Mutators

4.14.1 List Modifier

This node offers an assortment of list modification functions. The node has both Unary and Binary modes.

• In Unary mode it will use the input of either sockets, it will use data1 first, then check data2

• If both are linked data1 is used.

• The node will draw the name of the current mode into the node header, useful for minimized nodes.

4.14. List Mutators 165

Sverchok Documentation, Release 0.5

166 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Behaviour

Modes inputs Behaviour Description
Set unary turns the valid input into a set

input = [0,0,0,1,1,1,3,3,
→˓3,5,5,5,6,7,8,4,4,4,6,6,
→˓6,7,7,7,8]
output = [set(input)]

Ordered Set by input unary only unique numbers but ordered by
the original input sequence

input = [0,0,0,1,1,1,3,3,
→˓3,5,5,5,6,7,8,4,4,4,6,6,
→˓6,7,7,7,8]
output = [0,1,3,5,6,7,8,4]

Unique Consecutives unary no consecutive repeats

input = [0,0,0,1,1,1,3,3,
→˓3,5,5,5,6,7,8,4,4,4,6,6,
→˓6,7,7,7,8]
output = [0,1,3,5,6,7,8,4,
→˓6,7,8]

Sequential Set unary unique input values, ordered by
their value
input = [0,0,0,1,1,1,3,3,
→˓3,5,5,5,6,7,8,4,4,4,6,6,
→˓6,7,7,7,8]
output = [0,1,3,4,5,6,7,8]

Sequential Set Rev unary unique input values, ordered by
their value, reversed

input = [0,0,0,1,1,1,3,3,
→˓3,5,5,5,6,7,8,4,4,4,6,6,
→˓6,7,7,7,8]
output = [8,7,6,5,4,3,1,0]

Normalize unary scales down the values in the list to
the range -1.0 .. 1.0

Accumulating Sum unary see itertools.accumulate
input =
→˓list(accumulate(range(10)))
output = [0,1,3,6,10,15,
→˓21,28,36,45]

Mask Subset binary generates a mask to indicate for
each value in A whether it appears
in B
A = [0,1,2,3,4,5,6,7]
B = [2,3,4,5]
output = [False, False,
→˓True, True, True, True,
→˓False, False]

Intersection binary returns the set of items that appear
in both A and B

Union binary returns the set of items A joined
with B

Difference binary returns the set of items from A that
don’t appear in B

Symmetric Diff binary returns the set of elements of A and
B that don’t appear in Both

4.14. List Mutators 167

Sverchok Documentation, Release 0.5

output as list

The boolean switch to output as list will be on by default, essentially it will wrap the output as a list because true sets
don’t have a defined order (which we do need most of the time).

Example

See the pullrequest for details : https://github.com/nortikin/sverchok/pull/884

also see the original thread : https://github.com/nortikin/sverchok/issues/865

4.15 Viz

4.15.1 3D View Properties

Features

Provides a convenient way to

• adjust the background colour and gradient of 3dview

• switch to show render-only geometry

• set world horizon colour

• set grid colour

• show parts of the grid

• set 3dview rotation types (Trackball | Turntable)

• has per settings per open 3dview, when new 3d views are added click on the node to trigger a redraw.

While working with Sverchok we often adjust various Blender settings, having this nodes allows you to configure
3dview without leaving NodeView.

4.15.2 Viewer BMesh

Functionality

aliases: BMeshViewer, BMView

Similar to ViewerDraw but instead of using OpenGL calls to display geometry this Node writes or updates Blender
Meshes on every geometry update. The bonus is that this geometry is renderable without an extra bake step. We can
use Blender’s Modifier stack to affect the mesh. The only exception to the modifiers is the Skin Modifier but we aren’t
entirely sure why, maybe because BMview invalidates the BMesh between updates.

Inputs

• Verts

• Edges

• Faces

• Matrix

168 Chapter 4. Nodes

https://github.com/nortikin/sverchok/pull/884
https://github.com/nortikin/sverchok/issues/865

Sverchok Documentation, Release 0.5

Parameters & Features

Features we rarely need or want to interact with are placed in the N-Panel / Properties Panel.

Lo-
ca-
tion

Param Description

Node
UI

Update Processing only happens if update is ticked

Group On by default, auto groups all meshes produced by incoming geometry
Hide
View

Hides current meshes from view

Hide
Select

Disables the ability to select these meshes

Hide
Render

Disables the renderability of these meshes

Base
Name

Base name for Objects and Meshes made by this node

Select /
Deselect

Select every object in 3dview that was created by this Node using Base Name

Material
Select

Assign materials to Objects made by this node

N
Panel

Random
Name

In the case of multiple BMview nodes, this button makes it easier to generate a new random
name to prevent interference with existing Meshes. It will never produce and use the name of
an existing Object, it will always append names with indices.

Fixed
Vert
count

If you know the only change to the mesh is in vertex locations, then this toggle will use the
foreach construct to overwrite the locations only, leaving existing edges and faces unchanged.
Use it if you can.

Smooth
shade

Automatically sets shade type to smooth when ticked.

Outputs

Outputs directly to Blender bpy.data.meshes and bpy.data.objects

Examples

4.15.3 Viewer Index

Functionality

Displays indices of incoming geometry, much like what is possible in the debug mode of Blender. The individual
indices of Vertices, Edges and Faces can be displayed with and without a small background polygon to help contrast
the index numbers and the 3d view color.

Inputs

This node Accepts sets of Verts, Edges, Faces, and Matrices. In addition it accepts a Text input to display Strings at
the locations passed in through the Vertices socket.

4.15. Viz 169

Sverchok Documentation, Release 0.5

Parameters

default
parameters type description
show bool activation of the node
background bool display background polygons beneath each numeric (element of text)
verts, edges,
faces

multi
bool

set of toggles to choose which of the inputs are displayed.

Bake * operator bake text to blender geometry objects
Font Size * float size of baked text
Font * string font used to bake (import fonts to scene if you wish to use anything other than

BFont)

* - only used for baking text meshes, not 3dview printing

In the Properties Panel (N-Panel) of this active node, it is possible to specifiy the colors of text and background
polygons.

extended
parameters type description
colors font color colors for vertices, edges, polygons
colors background color colors for vertices, edges, polygons background
show bake UI bool reveals extended bake UI features (Bake button, font properties)

We added a way to show extended features in the main Node UI.

font

With show bake UI toggled, the Node unhides a selection of UI elements considered useful for Baking Text in prepa-
ration for fabrication. If no font is selected the default BFont will be used. BFont won’t be visible in this list until you
have done at least one bake during the current Blender session.

Glyph to Geometry

Font glyph conversion is done by Blender. If it produces strange results then most likely the font’s Glyph contains
invsibile mistakes. Blender’s font parser takes no extra precautions to catch inconsistant Glyph definitions.

Bake locations

Depending on the toggle set in Verts | Edges | Faces, the text can be shown and baked at various locations.

Mode Location
Verts directly on the vertex location (adjusted if Matrix is input too)
Edges in-between the two vertices of the edge
Faces the average location of all vertices associated with the polygon

Orientation of baked text

Currently only flat on the XY plane. Z = 0

Outputs

No socket output, but does output to 3d-view as either openGL drawing instructions or proper Meshes when Baking.

170 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples

4.15.4 Viewer Draw MKII

Functionality

Built on the core of the original ViewerDraw, this version allows all of the following features.

• Vertex Size (via N-Panel)

• Vertex Color

• Edge Width (via N-Panel)

• Edge Color

• Face shading: Flat vs Normal

• Vertex, Edges, Faces displays can be toggled.

• Defining Normal of Brigtness Source (via N-Panel)

• Faux Transparancy via dotted edges or checkered polygons.

• ngons tesselation (via N-Panel) - see description below

• bake and bake all. (via N-Panel, show bake interface is not on by default)

draws using display lists

Uses OpenGL display list to cache the drawing function. This optimizes for rotating the viewport around static
geometry. Changing the geometry clears the display cache, with big geometry inputs you may notice some lag on the
initial draw + cache.

ngons tesselation

By default vdmk2 drawing routine fills all polygons using the standard GL_POLYGON, which uses the triangle fan
approach (see here)

This is a fast way to draw large amounts of quads and triangles. This default (while faster) doesn’t draw concave ngons
correctly.

When enabled ngons tesselation will draw any Ngons using a slightly more involved but appropriate algo-
rithm. The algorithm turns all ngons into individual triangles and fills them, edge drawing will be unchanged and still
circumscribe the original polygon.

If you are always working on complex ngons, have a look at configuring defaults for this node.

Inputs

verts + edg_pol + matrices

Parameters

Some info here.

4.15. Viz 171

https://stackoverflow.com/a/8044252/1243487

Sverchok Documentation, Release 0.5

Fea-
ture

info

verts verts list or nested verts list.
edge_poledge lists or polygon lists, if the first member of any atomic list has two keys, the rest of the list is

considered edges. If it finds 3 keys it assumes Faces. Some of the slowness in the algorithm is down to
actively preventing invalid key access if you accidentally mix edges+faces input.

ma-
trices

matrices can multiply the incoming vert+edg_pol geometry. 1 set of vert+edges can be turned into 20
‘clones’ by passing 20 matrices. See example

Outputs

Directly to 3d view. Baking produces proper meshes and objects.

Examples

development thread: has examples

Notes

Tips on usage

The viewer will stay responsive on larger geometry when you hide elements of the representation, especially while
making updates to the geometry. If you don’t need to see vertices, edges, or faces hide them. (how often do you need
to see all topology when doing regular modeling?). If you see faces you can probably hide edges and verts.

System specs will play a big role in how well this scripted BGL drawing performs. Don’t expect miracles, but if you
are conscious about what you feed the Node it should perform quite well given the circumstances.

4.15.5 Texture Viewer

Functionality

This node allows viewing a list of scalar values and Vectors as a texture, very useful to display data from fractal, noise
nodes and others, before outputting to a viewer_draw_mk2.

Uses OpenGl calls to display the data.

Inputs

Floats and Vectors input

172 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/401

Sverchok Documentation, Release 0.5

Parameters

Feature info
Float input float and Vectors nested list
Show may be true or false: display or not the texture
Pass may be true or false: transfer data to the internal image viewer
Set texture
display

choose the size of the texture to display: (64x64px,128x128px, 256x256px, 512x512px,
1024x1024px)

Set color
mode

set the color mode: BW = grayscale image, RGB = image with red, green, blu channels RGBA =
image with red, green, blu, alpha channels

Custom tex may be true or false: enable custom size of texture
Width tex must be int: set the width of the texture when Custom tex is enabled
Height tex must be int: set the height of the texture when Custom tex is enabled

Outputs

Directly into node tree view in a blue bordered square or if you choose the Pass option the texture may be transfered
to the internal image viewer/editor.

Properties panel

You can save the texture in the desired folder. You can choose the format:

jpeg, jp2, bmp, tiff, tga, tga(raw), exr, exr(multilayer), png

Save the texture clicking on the button SAVE. You can save also passing the image to the blender image editor with
option Pass. This is much preferred because there are more saving options.

Examples

Basic usage:

Important notes

The Texture viewer node need adequate data size, this mean that number of input pixels should be equal to the
output. If not you will receive an error. See the image below for an RGBA example:

Links

dev. thread: https://github.com/nortikin/sverchok/pull/1255 texture viewer proposal: https://github.com/nortikin/
sverchok/issues/1248 Texture script by @ly29: https://github.com/Sverchok/Sverchok/issues/56

4.16 Text

4.16.1 Debug Print

Functionality

Prints raw socket data to console, useful for debug.

4.16. Text 173

https://github.com/nortikin/sverchok/pull/1255
https://github.com/nortikin/sverchok/issues/1248
https://github.com/nortikin/sverchok/issues/1248
https://github.com/Sverchok/Sverchok/issues/56

Sverchok Documentation, Release 0.5

Inputs

Dynamic number of inputs named Data 0, Data 1, ... , Data N that will be printed in order if linked.

Parameters

Active or not, turn off printing of individual node. In the N-panel controll printing of inddividual sockets.

Outputs

None

Example of usage

Mostly useful for development. For usage see above.

Notes

Note that printing will be system console and not the blender console, for information about how to use the system
console see blender documentation for your system.

4.16.2 GText

Functionality

Creates Text in NodeView using GreasePencil strokes. It has full basic English and Cyrillic Character map and several
extended character types:

[] \ / () ~ ! ? @ # $ % & ^ > < | 1234567890 - + * = _

Inputs

Gtext will display whatever text is currently in the system buffer / clipboard.

UI & Parameters

Node UI
Parameter Function
Set If clipboard has text, then Set will display that text beside the GText node.
Clear This erases the GreasePencil strokes

GText Node will display the context of the clipboard after pressing the Set button. If no text is found in the clipboard
it will write placeholder ‘your text here’.

N-panel

174 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameter Function
Get from
Clipboard

Gets and sets in one action, takes text from clipboard and writes to NodeView with
GreasePencil

Thickness sets pixel width of the GreasePencil strokes
Font Size Scales up text and line-heights

Moving GText

To move GText strokes around in NodeView you must move the GText Node then press Set again. This may not be
entirely intuitive but it hasn’t bugged us enough to do anything about it.

Outputs

Outputs only to NodeView

Examples

4.16.3 Note

Functionality

Note node allow show custom text and convert custom text to format naming indeces of viewer_INDX. For last writing
words separated with spaces will be i.e.: from A B C Name index_ output will be [[’A’], [’B’], [’C’], [’Name’],
[’index_’]].

Inputs

Input Description
Text_in Input text to show or convert to mark indeces

Parameters extended

Param Type Description
text String Line to write custom text, will be shown in node
show_text Bool, toggle Show text line string field on node
Output socket Bool, toggle Use or not output socket
Input socket Bool, toggle Use or not input socket
From clipboard Button Use data, stored in clipboard to fill the node
To text editor Button Sent text to text editor

Outputs

Output Description
Text_out Output text formatted to INDX viewer

Examples

Using hidden power of note node - output socket to name indeces in INDX viewer for any part. Vertices called as
strings, can be any text.

4.16. Text 175

Sverchok Documentation, Release 0.5

4.16.4 Stethoscope

destination after Beta: basic data

Functionality

The Node is designed to give a general sense of the connected data stream. After a short preprocessing step Stethoscope
draws the data directly to the Node view.

The processing step

The first and last 20 sublists will be displayed. The data in between is dropped and represented by placeholder
ellipses.
Float values are rounded if possible.

Inputs

Any known Sverchok data type.

Parameters

Currently a visibility toggle and text drawing color chooser.

Outputs

Direct output to Node View

Examples

Notes

Implementation is POST_PIXEL using bgl and blf

4.16.5 Text In

Functionality

Import data from text editor in formats csv, json or plain sverchok text.

Properties

Select - Select text from blender text editor Select input format - Property to choose between csv, plain sverchok and
json data format

csv: Header fields - to use headers from file Dialect - to choose dialect of imported table

Sverchok: Data type - output data socket as selected type

Load - Load data from text in blend file

176 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Outputs

vertices, data, matrices - if sverchok plain data selected

Col - if csv data selected

Random - if json data selected

4.16.6 Text Out

Functionality

Inserting and outputting data to text editor with preformatting in csv, json or plain sverchok text.

Inputs

Col - for csv type column definition multysocket Data - for sverchok single socket Data - for json multysocket

Properties

Select - Select text from blender text editor Select output format - Property to choose between csv, plain sverchok
and json data format

csv: Dialect - to choose dialect of table

Sverchok and json: Compact and Pretty - overall view of data presented readable or not so much read-
able

Dump - sent your data to text editor to selected text Append - to add text not deleting old text

4.16.7 Viewer Text

Functionality

Looking for data and convert to readable format as:

node name: Viewer text

vertices: (1) object(s) =0= (8) [0.5, 0.5, -0.5] [0.5, -0.5, -0.5] ...

data: (1) object(s) =0= (12) [0, 4] [4, 5] ...

matrixes: (1) object(s) =0= (4) (1.0, 0.0, 0.0, 0.0) (0.0, 1.0, 0.0, 0.0) (0.0, 0.0, 1.0, 0.0) (0.0, 0.0, 0.0, 1.0)

Where (1) object(s) means that we have 1 object =0= (8) means first (zero is first) object consists of 8 lists if you add
sublevels, there will be additional level like =0= (1) as vertices in separated sphere or plane generator gives. [0.5, 0.5,
-0.5] means vector or other data

Inputs

Input Description
Verts Vertices
Edges/Polygons Edges or Polygons data. Node understand what is linked
Matrix Matrices data
Object Object data

4.16. Text 177

Sverchok Documentation, Release 0.5

Parameters & Features

V I E W button will send formatted data to text editor, you have manually open text file called Sverchok_viewer, but
after this it will be updated and in upper of text will be name of your node to identify it.

Examples of usage

4.17 Scene

4.17.1 Dupli Instances

Functionality

This node exposes the functionality of the Duplication types VERTS and FACES to the Sverchok node tree. The Node
works in two ways. One mode accepts just Locations, the other mode accepts just Matrices.

Fea-
tures

Description

Loca-
tions

the node generates a proper blender mesh internally, based on vertices. The duplication is set to
VERTS.

Matri-
ces

the node generates a vertex+face mesh using the transforms contained in individual matrices. First it
makes a unit 1 triangle, then multiplies the vertex coordinates with a matrix. This is done for each of
the passed matrices. Passing 4 matrices, makes 4 triangles : a total of 12 verts and 4 faces. The
duplication is set to FACES.

Child
Object

You pick the child Object from the UI.

Parent
Object

(not exposed to the UI) , this is generated internally from the Locations or Matrices socket data

The name of the internal parent object in this example is ‘booom’ , but this can be changed and should probably be
node specific.

Inputs

Input Description
Locations Vertices, coordinates, vectors, 3tuples, 3lists
Matrices full on 4*4 transform matrices (but scale is converted to uniform)

Parameters

The only parameter is the Object selection, it needs to duplicate something

Limitations

It’s worth mentioning that because the faces duplication relies on the area of the triangle to determin the scale, that the
scale is a scalar, and therefor uniform (x,y,z are scaled equally).

Examples

More info: https://github.com/nortikin/sverchok/issues/740

178 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/740

Sverchok Documentation, Release 0.5

4.17.2 Frame Info

Functionality

Give the node graph access to the frame information. Some transport controls have been added since these images
were made.

Inputs

None

Parameters

None

Outputs

• Current Frame,

• Start Frame,

• End Frame

• Evaluate , this generates a value in the range (0.0 1.0), and represents the position of the ‘player head’ in
relation to the total amount of frames to play.

all wrapped to standard level.

Example of usage

Usage with Map Range node to give percentage of current frame range.

4.17.3 Get Property / Set Property

Functionality

These nodes can be used to control almost anything in Blender once you know the python path. For instance if you
want to Set the location of a scene object called Cube, the python path is `bpy.data.objects['Cube'].
location`.

By default these nodes don’t expose their input / output sockets, but they will appear if the node was able to find a
compatible property in the path you provided. The Socket types that the node generates depend on the kind of data
path you gave it. It knows about Matrices and Vectors and Numbers etc..

There are also convenience aliases. Instead of writing `bpy.data.objects['Cube'].location` you can
write `objs['Cube'].location` . The aliases are as follows:

aliases = {
"c": "bpy.context",
"C" : "bpy.context",
"scene": "bpy.context.scene",
"data": "bpy.data",
"D": "bpy.data",

4.17. Scene 179

Sverchok Documentation, Release 0.5

"objs": "bpy.data.objects",
"mats": "bpy.data.materials",
"meshes": "bpy.data.meshes",
"texts": "bpy.data.texts"

}

Input

In Set mode

Input Description
Dynamic Any of the Sverchok socket types that make sense

Output

In Get mode

Output Description
Dynamic Any of the Sverchok socket types that make sense

Parameters

The only parameter is the python path to the property you want to set or get. Usually we search this manually using
Blender’s Python console.

Limitations

(todo?)

Examples

Using aliases objs instead of bpy.data.objects

4.17.4 Object In

Functionality

Takes object from scene to sverchok. Support meshed, empties, curves, NURBS, but all converting to mesh. Empties
has only matrix data. Than sorting by name. If you write group of objects to group field, all object in signed group
will be imported. It understands also vertes groups, when activated, showing additional socket representing indexes,
that you can use to sort or mask edges/polygons. or do any you want with vertex groups. All groups cached in one
list, but without weight.

Inputs

None

180 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Parameters

Param Type Description
G E T Button Button to get selected objects from scene.
group String Name of group to import every object from group to Sverchok
sorting Bool, toggle Sorting inserted objects by name
post Bool, toggle Postprocessing, if activated, modifiers applyed to mesh before importing
vert groups Bool, toggle Import all vertex groups that in object’s data. just import indexes

Outputs

Output Description
Vertices Vertices of objects
Edges Edges of objects
Polygons Polyfons of objects
Matrixes Matrices of objects
_Vers_grouped_ Vertex groups’ indeces from all vertex groups

Examples

Importing cobe and look to indeces.

4.17.5 Object Remote

This node is a convenience node.

Its features are very limited:

• pick an object with the picker

• add vector sockets to control Location / Scale / Rotation (Euler in Rads)

That’s it.

4.17.6 Implementation details

It’s a nice short node, one thing it does to avoid setting your Object’s scale to 0,0,0 is to detect if 0,0,0 is passed. If
0,0,0 is passed it turns it into 0.00001, 0.00001, 0.00001. The reason for this is that an Object’s scale can not be set to
0,0,0 in Blender, it seems to wreck the internal transform matrix.

4.18 Objects

4.18.1 Weights

Functionality

automatically creates a group of vertices and allows you to assign each vertex weight in many different ways

4.18. Objects 181

Sverchok Documentation, Release 0.5

Input sockets

vertIND - Connect here a list of needed vertex indexes, or node automatically creates a list of indexes of all vertices
of the object

weights - vertex weights (floats less than 0.0 count as 0.0, bigger than 1.0 count as 1.0)

Parameters

clear unused - (on side panel) zero weights for all vertices which is not indexed in the list of indexes

object name - name of object to create vertex group for.

Usage

4.19 BPY data

4.19.1 Object ID Selector

Functionality

Has the ability to select items from bpy.data.. Some data types have more options than others. Currently the extended
options are available for Images, Objects and Grease Pencil.

• Images : lets you pick a name, and get the flattened pixels (by ticking pass pixels)

• Objects : lets you pick by name, or leave the name blank and you’ll get the list of objects for the selected type

• Grease Pencil : you can also pick a layer by name or leave blank, if you pick by name you’ll get the option to
pick active_frame for that layer or available frames. Ticking pass_points will pass

Example of usage

See the development thread: https://github.com/nortikin/sverchok/issues/1379#issuecomment-287331274

4.20 Layout

4.20.1 Socket Converter

Functionality

Converts sockets types if something go wrong or your node too alpha

Inputs

data

Outputs

vertices, data, matrices

182 Chapter 4. Nodes

https://github.com/nortikin/sverchok/issues/1379#issuecomment-287331274

Sverchok Documentation, Release 0.5

4.20.2 Wifi In & Out

Functionality

Create a invisble noodle, useful for keeping layout clean for example constants that are resued in many place.

Concept

A named Wifi Input node can be listened to by any number of Wifi Output nodes. A Wifi Output node needs to be
linked to a specific Wifi Input node useing the dropdown list.

Inputs

In the Wifi In node there are N inputs named after variable name.

Outputs

In a linked Wifi Out there are N-1 output of matching type.

Notes

Variable names for Wifi Input nodes need to be unique.

Sharing of data is at the moment only possible within one layout.

The virtual noodle has a small overhead that is small enough that it can ignored for most practical scenarios. In the
future even this should disappear.

4.20.3 Wifi In & Out

Functionality

Create a invisble noodle, useful for keeping layout clean for example constants that are resued in many place.

Concept

A named Wifi Input node can be listened to by any number of Wifi Output nodes. A Wifi Output node needs to be
linked to a specific Wifi Input node useing the dropdown list.

Inputs

In the Wifi In node there are N inputs named after variable name.

Outputs

In a linked Wifi Out there are N-1 output of matching type.

4.20. Layout 183

Sverchok Documentation, Release 0.5

Notes

Variable names for Wifi Input nodes need to be unique.

Sharing of data is at the moment only possible within one layout.

The virtual noodle has a small overhead that is small enough that it can ignored for most practical scenarios. In the
future even this should disappear.

4.21 Network

4.22 Beta Nodes

4.22.1 Set_dataobject

destination after Beta:

Functionality

It works with a list of objects and a list of Values

multiple lists can be combined into one with the help of ListJoin node

MK2 version can work with multiple nested lists

When there is only one socket Objects- performs (Object.str)

If the second socket is connected Values- performs (Object.str=Value)

If the second socket is connected OutValues- performs (OutValue=Object.str)

Do not connect both the Values sockets at the same time

First word in str must be property or metod of object

Use i. prefix in str to bring second property of same object

Inputs

This node has the following inputs:

• Objects - only one list of python objects, like bpy.data.objects or mathutils.Vector

• values - only one list of any type values like tupple or float or bpy.data.objects

Outputs

This node has the following outputs:

• outvalues - the list of values returned by the str expression for each object

184 Chapter 4. Nodes

Sverchok Documentation, Release 0.5

Examples of usage

4.22.2 Mask from Index

destination after Beta:

Functionality

It can create mask list and set certain index positions to True. Length of mask list can be set using either data list, or
by setting int value.

Inputs

This node has the following inputs:

• Index - List of indices of values inside of mask list to set True.

• Mask Length - Length of mask list. Seen only when Data Mask mode not used.

• Data to Mask - Data from which mask lists will be formed. Seen only when Data Mask mode is used.

Outputs

This node has the following outputs:

• Mask - Mask list with values of indices from Index list set to True, and others set to False.

Examples of usage

4.23 Alpha Nodes

4.23. Alpha Nodes 185

Sverchok Documentation, Release 0.5

186 Chapter 4. Nodes

CHAPTER 5

Contribute

5.1 Our workflow:

1. Freedom to code, only try to follow pep8, and avoid abuse.

2. Agile software development - look http://en.wikipedia.org/wiki/Agile_software_development here.

3. Ideas from other addons to implement to sverchok. It is big deal.

4. If you making something it is better to say in issues before.

5. Brainstorming and finding solutions. We are mostly new in python and programming, we are artists.

5.2 What not to do:

Doing these things will break old layouts and or create very ugly code in the node.

1. Change .bl_idname of a node

2. Remove or rename sockets

3. Adding new socket without updating upgrade.py

4. ‘current_mode’ names of properties are reserved for nodes, not use for anything else

5.3 Helpful hints

In blender console you can easily inspect the sverchok system by writing:

import sverchok
print(dir(sverchok.nodes))

187

http://en.wikipedia.org/wiki/Agile_software_development

Sverchok Documentation, Release 0.5

5.4 To create a node:

1. Make a scripted node to test the idea.

2. Show your node to us in an issue or silently create branch or fork of master in github. If it is huge complex job
we can make you collaborator.

3. Copy an existing node that is similar.

4. Change class name, class id, class description, class registration in your file

5. Add node id in menu.py in an approritate category.

6. Add file to category that you need

7. Add in nodes/__init__.py filename

8. Tell us to merge branches/forks

5.5 SOME RULES:

1. All classes that are subclasses of blender classes - have to have prefix Sv, ie SvColors.

2. node_tree.py contains base classes of node tree and, maybe you need to create collection property or new socket
(for new type of socket tell us first), you make it here.

3. data_structure.py has magic of:

(a) update definitions, that works pretty well with sockets’ and nodes’ updates

(b) some bmesh functiones

(c) cache – operates with handles – we use it to operate with nodes’ data, it is dictionary, with node’name,
node-tree’name and it’s data

(d) list levels definitions - you must yse them:

i. data correct makes list from chaotic to 4th levels list, seems like [[[floats/integers]]] and not [[f/i]]
or [[[[f/i]]]].

usage: dataCorrect(data, nominal_dept=2), where data - is your list, nominal_depth - optioal,
normal for your’ case depth of list

ii. data spoil - make list more nasty for value of depth

usage: dataSpoil(data, dept), where data - your list, depth - level of nestynessing. Gives list from
[] to [[]] etc

iii. Levels of list - find level of nestiness.

usage: levelsOflist(list) - returns level of list nestiness [[]] - is 2, [] - 1, [[[]]] - 3

(e) matrix definitions - to make something with matrices/vertices

i. Matrix_generate(prop) - make from simple list real mathutils.Matrix(()()()())

ii. Matrix_listing(prop) - make from mathutils.Matrix() simple list like [[][][][]] with container is
[[[][][][]]]

iii. Matrix_location(prop, list=False) - return mathutils.Vector() of matrix’ location

iv. Matrix_scale(prop, list=False) - the same, but returns matrix’ scale vectors

188 Chapter 5. Contribute

Sverchok Documentation, Release 0.5

v. Matrix_rotation(prop, list=False) - return rotation axis and rotation angle in radians value as tuple
(Vector((x,y,z)),angle)

vi. Vector_generate(prop) - makes from simple list real mathutils.Vector(), as Matrix generate def

vii. Vector_degenerate(prop) - as matrix listing, it degenerate Vectors to simple list

viii. Edg_pol_generate(prop) - define wether it is edges or polygons in list, and terurns tuple as (type,list)

ix. matrixdef(orig, loc, scale, rot, angle, vec_angle=[[]]) - defines matrix

(f) list definitions:

i. fullList(l, count) - makes list full till some count. last item multiplied to rest of needed length, ie
[1,2,3,4] for count 6 will be [1,2,3,4,4,4]

ii. match_short(lsts) Shortest list decides output length [[1,2,3,4,5], [10,11]] -> [[1,2], [10, 11]]

iii. match_cross2(lsts) cross rference [[1,2], [5,6,7]] ->[[1, 2, 1, 2, 1, 2], [5, 5, 6, 6, 7, 7]]

iv. match_long_repeat(lsts) repeat last of shorter list [[1,2,3,4,5] ,[10,11]] -> [[1,2,3,4,5]
,[10,11,10,11,10]]

v. match_long_cycle(lsts) cycle shorts lists [[1,2,3,4,5] ,[10,11]] -> [[1,2,3,4,5] ,[10,11,10,11,10]]

vi. repeat_last(lst) creates an infinite iterator that repeats last item of list, for cycle see itertools.cycle

vii. some others to operate with exact nodes

(g) update sockets - definitions to operate with update

(h) changable type of socket - makes possible to use changable socket in your node - it calling

usage:

i. node has to have self veriables:

ii. and in update:

• inputsocketname = ‘data’ # ‘data’ - name of your input socket, that defines type

• outputsocketname = [’dataTrue’,’dataFalse’] # ‘data...’ - are names of your sockets to be
changed

• changable_sockets(self, inputsocketname, outputsocketname)

(i) multi-socket multi_socket(node,min=1) - as used by ListJoin, List Zip, Connect UV

• multi_socket(node,min=1)

• base_name = ‘data’

• multi_socket_type = ‘StringsSocket’

• setup the fixed number of socket you need, the last of them is the first multi socket. minimum of one.

• then in update(self):

– multi_socket(self, min=1, start=0, breck=False) - [where min - minimum count of input sockets;

– start - starting of numeration, could be -1, -2 to start as in formula2 node; breck - to make breckets,
as used in formula2 node]

• for more details see files mentioned above

4. Utils folder has:

(a) CADmodule - to provide lines intersection

(b) IndexViewerDraw - to provide OpenGL drawing of INDXview node in basics

5.5. SOME RULES: 189

Sverchok Documentation, Release 0.5

(c) sv_bmeshutils - self say name

(d) sv_tools - it is toolbox in node area for update button, upgrade button and for layers visibility buttons, also
update node and upgrade functional to automate this process.

(e) text_editor_plugins - for sandbox node scripted node (SN) to implement Ctrl+I auto complete function

(f) text_editor_submenu - templates of SN

(g) upgrade - to avoid breaking old layouts. Defines new simplified interface override. if you change some
property in def draw_buttons() than just bring new properties here to avoid break old layout

(h) viewer_draw - for draw and handle OpenGL of Viewer Draw node (have to be remaked)

(i) voronoi - for delaunai and voronoi functions of correspond nodes

5. Node scripts folder for every template for SN (see utils-e.)

6. Nodes folder for categorized nodes. not forget to write your nodes to init.py there

7. To use enumerate property you have to assign index to items, never change the index of items added, it
will break if you add more functions.

8. Not make many nodes if you can do less multifunctional.

9. Use levels, findout how it works and use level IntProperty in draw to define what level is to operate. We operate
with 1,2,3 - standart and additional 4... infinity. make sure, that your levels limited, dropped down by levelsOflist
as maximum value

10. Keep order in node’ update definition as if output: if input. To count input only if you have output socket
assembled.

11. Look at todo list to know what is happening on and what you can do. use your nodes and test them.

12. There is no reason to auto wrap or make less levels of wrapping, than needed to proceed in other nodes. So,
for now canonical will be [[0,1,2,3]] for simple data and [[[0,1,2,3]]] for real data as edge, vertex, matrix other
cases may be more nasty, but not less nesty and wrapping need to be grounded on some reasons to be provided.

13. Do not use is_linked to test if socket is linked in def update(self), check links. In def
process(self) use .is_linked

14. to CHANGE some node, please, follow next:

(a) Put old node file to ../old_nodes add the corresponding bl_idname in __init__.py in the table. (there is
README file also);

(b) Make new changed node as mk2(3,4...n) and place to where old node was placed with all changes as new
node, change name and bl_idname (look ‘To create a node:’ in current instructions).

190 Chapter 5. Contribute

CHAPTER 6

Panels of Sverchok

6.1 Node Tree Panel

This panel allows to manage sverchok layouts as easy as you press buttons on an elevator.

6.1.1 Update

Update description
all Updates all trees of sverchok.
Update layout Updates currently active layout

6.1.2 Layout manager

Box to quickly pick layout, switch between them with buttons instead of popup list. Also have settins:

Button Function
B bake this layout - will gather all layout’s viewer draw and viewer text to bake them. Bake only if

bakeable button is active on node, else ignore.
Show
layout

Controlls all OpenGL viewer of this layout. Viewer, Stethoscop and Viewer Indices

Animate
layout

to animate the layout (or not) - may preserve you time.

Process
layout

Automaticlly evaluate layout while editing, disable for large or complex layouts

Fake User Sets fake user so layout isn’t deleted on save

6.1.3 Check for updates

Check for updates - finds if master branch on github has new version of sverchok. In future there will be releases,
but now dangerouse update.

191

Sverchok Documentation, Release 0.5

Upgrade Sverchok - upgrades Sverchok from github with new version - button appears only if ‘check for updates’
finds a new version.

6.2 3D Panel

With this panel your layout becomes addon itself. So, you making your life easy.

6.2.1 Scan for props

When layout is in, check for next nodes to embad them as properties:

• float node

• int node

• object in node

Sorting them by label, that user defined in node tree panel or if no label, the name of the node is used.

6.2.2 Update all

Forces update of all layouts.

6.2.3 Clean

Button to remove sverchok layouts, that has not users (0)

hard clean - boolean flag to remove layouts even if it has users (1,2...), but not fake user (F). Fake user layout will be
left.

Clean layouts - remove layouts. Button active only if no node tree windiw around. Better to make active layout
nothing or fake user layout to prevent blender crash. Easyest way - activate your Faked user layout, on 3D press
ctrl+UP and press button. than again ctrl+UP to go back. No wastes left after sverchok in scene.

Use with care.

6.2.4 Properties

Layouts by box. Every layout has buttons:

Button Function
B bake this layout - will gather all layout’s viewer draw and viewer text to bake them. Bake only if

bakeable button is active on node, else ignore.
Show
layout

show or hide all viewers - to draw or not to draw OpenGL in window, but bmesh viewer not
handled for now.

Animate
layout

to animate the layout (or not) - may preserve you time.

P Process layout, allows safely manupilate monsterouse layouts.
F Fake user of layout to preserve from removing with reloading file or with clean layouts button.

Properties has also gathered values:

floats and integers - digit itself, maximum and minimum vaues.

192 Chapter 6. Panels of Sverchok

Sverchok Documentation, Release 0.5

object in - button for object in node to collect selected objects.

6.3 Import Export Panel

location: N panel of any Sverchok Tree.

Import and export of the current state of a Sverchok Tree. This tool stores

• Node state: location, hidden, frame parent

• Node parameters: (internal state) like booleans, enum toggles and strings

• connections and connection order (order is important for dynamic-socket nodes)

6.3.1 Export

fea-
ture

description

Zip When toggled to on this will perform an extra zip operation when you press Export. The zip can
sometimes be a lot smaller that the json. These files can also be read by the import feature.

Ex-
port

Export to file, opens file browser in blender to let you type the name of the file, Sverchok will auto append
the .json or .zip file extention - trust it.

6.3.2 Import

feature description
Layout
name

name of layout to use, has a default but you might want to force a name

Import import to new layout with name (described above). Can import directly from zip file if there is only
one .json in the zip. Warning to the descerned reader, only import from zip if the source is trusted. If
you are not sure, resist the urge and take the time to learn a little bit about what you are doing.

Warnings

Consider this whole IO feature experimental for the time being. You use it at your own risk and don’t be surprised if
certain node trees won’t export or import (See bug reporting below). The concept of importing and exporting a node
tree is not complicated, but the practical implementation of a working IO which supports dynamic nodes requires a bit
of extra work behind the scenes. Certain nodes will not work yet, including (but not limited to) :

Node Issue
Object
In

the json currently doesn’t store geometry but an empty shell without object references instead

SN
MK1

currently this auto imports by design, but perhaps some interruption of the import process will be
implemented

Why make it if it’s so limited?

Primarily this is for sharing quick setups, for showing people how to achieve a general result. The decision to not
include geometry in the Object In references may change, until then consider it a challenge to avoid it. The way
to exchange large complex setups will always be the .blend, this loads faster and stores anything your Tree may
reference.

While importing I see lots of messages in the console!

6.3. Import Export Panel 193

Sverchok Documentation, Release 0.5

Relax, most of these warnings can be ignored, unless the Tree fails to import, then the last couple of lines of the
warning will explain the failure.

Bug Reporting

By all means if you like using this feature, file issues in this thread. The best way to solve issues is to share with us a
screenshot of the last few lines of the error if we need more then we will ask for a copy of the .blend.

6.4 Groups Panel

Crete a node group (Monad) from selection. It can have vectorized inputs, adding or removing sockets. Sverchok
groups is a beta feature, use a your own risk and please report bugs. Also while it is in beta old node groups may
break. Bug reports.

6.5 Templates in menu panel of nodes area

You can use embedded templates in Sverchok. They are stored in json folder as jsons for import to Sverchok.

194 Chapter 6. Panels of Sverchok

https://github.com/nortikin/sverchok/issues/422
https://github.com/nortikin/sverchok/issues/462

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

195

	Installation
	Troubleshooting Installation Errors

	Introduction to geometry
	Basics
	3D Geometry

	Introduction to Sverchok
	Unit 00 - Introduction to NodeView and 3DView
	Unit 01 - Introduction to modular components

	Nodes
	Generators
	Generators Extended
	Transforms
	Analyzers
	Modifier Change
	Modifier Make
	Number
	Vector
	Matrix
	Logic
	List Main
	List Struct
	List Masks
	List Mutators
	Viz
	Text
	Scene
	Objects
	BPY data
	Layout
	Network
	Beta Nodes
	Alpha Nodes

	Contribute
	Our workflow:
	What not to do:
	Helpful hints
	To create a node:
	SOME RULES:

	Panels of Sverchok
	Node Tree Panel
	3D Panel
	Import Export Panel
	Groups Panel
	Templates in menu panel of nodes area

	Indices and tables

